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Abstract-In [l), Koh and Kuan defined the powers of the Dirac-delta distribution for positive 

integers. Here we extend their definition for negative integers. Also, we give meaning to the distri- 

bution 15;“. @ 2001 Elsevier Science Ltd. All rights reserved. 
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1. INTRODUCTION 

In the theory of distributions, no meaning can be given to expressions of the form H(61S)(z)), 

6”, In S, St, and the like. However, in physics, one finds the need to evaluate b2 when calculating 

the transition rates of certain particle interaction [2, p. 1411. Bremermann used the Cauchy rep- 

resentations of distributions to define 6, 6+, and In 6+ (see [3]). Unfortunately, his definition 

does not carry over to &, ln6, and 6 $. In [4], Antosik gave the results fi = 0, dm = 1 + 6, 

log(1 + 6) = 0, sin6 = 0, cosS = 1, and (S + l)-’ = 1. Recently, Koh and Kuan [l] used the 

fixed d-sequence to give meaning to the distributions 6” and (#)k for Ic E (0,l) and k = 2,3, . . . . 

Later they redefined 6”(z) as the boundary value of S”(z - if) as E -+ O+ [5]. Fisher and Kou 

considered the more general form (S(S)(z))k in [6]. 

2. THE NEUTRIX COMPOSITION OF DISTRIBUTIONS 

The technique of neglecting appropriately defined infinite quantities was devised by Hada- 

mard [7] and the resulting finite value extracted from the divergent integral is usually referred to 

as the Hadamard finite part. In fact, his method can be regarded as a particular application of 

the neutrix calculus developed by van der Corput (see [7]). This is a general principle for the dis- 
carding of unwanted infinite quantities from asymptotic expansions and has been exploited in the 

context of distributions by Fisher in connection with the problem of distributional multiplication, 

convolution, and composition (see [S-lo]). 

The author would like to thank the referee for his helpful suggestions. 
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To define the composition of two distributions, we shall first let p(z) be any infinitely differen- 

tiable function having the following properties: 

(i) p(z) = 0, for ]z] 2 1, 

(ii) p(z) L 0, 
(iii) p(z) = p(-a), 

(iv) J!, p(z) dx = 1. 

For our purpose, we additionally assume that p(x) is decreasing on the open interval (0,l). We 

define S,(z) = np(nx) for n = 1,2,. . . . It follows that 6,(x) is a regular sequence of infinitely 

differentiable functions converging to Dirac-delta function b(s). Let f be an arbitrary distribution 

and define 

f&c) = (f * 43) (x) = (f(t), Mr - t)). 

Then {f%(x)} is a regular sequence of infinitely differentiable functions converging to f. 

Let V be the space of infinitely differentiable functions with compact support and 2)’ the space 

of distributions. 

DEFINITION. Let F and f be distributions in 23’. We say that the distribution F(f(z)),’ the 

neutrix composition of F and f, exists and is equal to h(x) on the interval (a,b) if the double 

neutrix limit 

N,Lrn [N_-_km S_m_ F, Urn(x)) 4(x) dx ] = (k(x), #J(X))> 

for all 4 in D with support contained in the interval (a,b), where F,(Z) = (F * b,)(x), fm(x) = 

(f * S,)(x), and N is the neutrix having domain N’ = {1,2,. . . , n, . . . }, range the real numbers 

with negligible functions which are finite linear sums of the functions nx In”-’ n, lnr n (A > 

0, r = 1,2,. . . ), and all functions which converge to zero in the usual sense as n tends to infinity 

(see [7,8,101). 

3. RESULTS 

Koh and Kuan [l] define 6” for the fixed b-sequence as follows: 

if k even, 

Ck6(k-1)(x), if k odd, 

for k = 1,2,. . . , where CI, = [2k-1((k - 1)/2)!kk’2~(k-1)/2]-1 (see [l]). We extend this result to 

the negative integers as follows. 

THEOREM 1. The distribution 6-” exists on the real line and 

6-“(x) = 0, 

fork = 1,2,.... 

PROOF. Writing x-’ = ((-l)k-l/(k - l)!)(lnz)(“), we have 

(x-k)n = x-k *6,(x) = 
(_qk-1 l/n s (k - l)! -iln 

In Jt - xl&(“)(t) dt. 
7L 

Then for 4 E V, 

( [(6,(x))-k] 
7L 

,4(x)) = g Az,zl, 4W 1:; W - W4I ~~kWtdx 

+ (-l;-l 
n 

I- (k - 1Y lzl<l/m 
4(z) 1:; In It - bm(x)l 6kk)(t) dt dx. 
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The function bm(z) is equal to zero on the set {X : 1x1 > l/m}. Thus, 

and making the substitution nt = u, we have 

Next 

for (1/m)p-‘(l/mn) I ]z] < l/m. 

If I4 < W~WIW mn , we have l/n < &(z)- 5 mp(0) and ) 

In (1 + p(O)m) = s;p 
( 

sup Iln It - L(~)lI . 
I4<(llmh-‘(llmn) ) 

Thus, 

It follows from what we have just proved that 

for all 4 E V. This completes the proof of the theorem. 

In [ll], the definition of the distribution b!$ was given by 

,j$ = (-l)‘k-l’~k pfi(k-l)(x) 
(k-l)! ’ ’ 
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for k = 1,2,. . . , where ck,p = J~~[P(Y)]“~~-’ dy. In particular, 

sy = 0, for even k. 

Similarly, we now give the definition of the kth power of S+ for negative integers. 

THEOREM 2. The distribution 15;~ on the real line is defined by 

ST” = 0, 

forallk=1,2,.... 

PROOF. Put 

(-1)k x 

s (k - l)! _lln 
ln(a: - t)G”)(t) dt, 

R 
2 < 1 

72’ 

(x;k), = xp * &(x) = (-Ok J l/n ln(a: - t)s(“)(t) dt, 
(k-l)! _I/,, ,z 

5 2 1 
n’ 

0, 
1 

XI--, 
n 

(-1)” J 
w(ms) 

(k - I)! -r/n 
ln(S,(s) - t)sck)(t) dt, 7L L(Z) < L 

72’ 

[(6m(2));k]n = $J$ J_“n In (Jm(z) - t) 6ik)(t) dt, 47&(z) 11 
. l/n n’ 

0, 6,(X) I -5 
n 

For C$ E D, we have 

+ J ln(dm(x) - t)6ik)(t) dtdx 
(l/m)p-‘(l/mn)<lzl<l/m 

(2) 

+ J In (J,(z) - t) b(“)(t) dt dx n . 
I4I(llmb-‘(llmn) 

If 1x1 2 l/m, then 6,(z) = 0. Thus, 

lim J m-M Izl~l/m 

ln(&(x) - t)@)(t) dtdx = [I 4bc> da: [l,nW-t)@(t) dt, 

and by making the substitution nt = u, 

= LI 4(z) dx pnzirn(-n)” l’[ln(-u) - lnn]pCk)(U) du] = 0. 

Now, as in equation (l), we have 

J_yr’““’ lln(6,(s) - t)cQJ(t)I dt < nk+r s;p { Ip(k J w(ms) 
Iln (L(x) - t)l dt 

-l/n 

(3) 

5 2nk s;p { Ip(” (In2 + Inn), 
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for (l/m)p-l(l/mn) < 121 < l/m. Thus, 

I 4n” yp { Id”‘(t)(} ( ln2+lnn)sup14(2)1 [i - Ap-l (A)] -+O, 

as m + oo. Similarly, if 1x1 5 (l/m)pV1(l/rnvL), then l/n 5 J*(X) 2 p(O)m, and so 

/1’n Iln(b,(z) - t)6ik)(t)l dt 
-l/n 

p(O)mn - 1 

p(O)mn + 1 

(4) 

,ll + 21 ln(p(O)m + 1)l + 2 
1 

. 

Thus, 

ln(d,(z) - t)dr)(t) dt dx I 2n” s;p { Ipck)(t)l} sup 

(5) 

asm--+co. 
It follows from equations (2)-(5) that 

for all C$ E 23. This completes the proof of the theorem. 

REMARK. The existence of 6” and 6-” as a power of 6 has never been proved, although the 

symbols continue to appear in print. In this paper, we have given a class of distributions Sek 

and 8Tk which are the neutrix limit of the kth power of a delta sequence for negative integers. 
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