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0. Introduction

Definability is one of the primary concepts in rough set theory (see, e.g.[10-12,18,19]). Recall that a set is called definable
if it is a union of some equivalence classes with respect to given equivalence relation [12]. This concept can be stated in
terms of approximation operators. That is, a set is definable if the upper and lower approximations of it are equal. The
pairs of rough set approximation operators and powersets form a category denoted by R-APR [7]. On the other hand, a
texture is a family of sets satisfying certain conditions for a given universe. The basic motivation for textures is to provide a
point-set based setting for fuzzy sets [1,2]. Duality is an essential phenomena in textures and then suitable morphisms are
direlations between textures with two parts which are called relation and corelation, respectively. Complemented textures
and complemented direlations form a category which is denoted by cdrTex, and R-APR is a full subcategory of cdrTex.
Hence, the category cdrTex may be regarded as an abstract model for rough set theory (see [6,7]). In this paper, we do
not follow the line containing categorical discussions. We introduce a counterpart of definability in cdrTex and in view of
textural discussions, we present some new results in rough set theory. Recall that a complete field of sets on a universe is
a family which is closed under arbitrary unions. Here, we consider a complete field of sets in texture spaces and then we
show that such families can be stated using approximation operators. In [15], it is observed that direlations between Hutton
textures turn into textural fuzzy direlations between fuzzy lattices (Hutton algebras). In [5], it is proved that if (¢, ®) is
a complemented textural fuzzy direlation on F(U), then the system (F(U), A, V, ~, ¢, ®*) defines a fuzzy rough set
algebra where the lower and upper approximation operators ¢ <, ®< : F(U) — F(U) are defined by

@)W =\/{s€0,1] | pu,s,v) < a(v) Vv e U}
and
(@ )W) = \{s€[0,1] | a(v) < ®(u,s,v) Vv € U}
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for any fuzzy set «, respectively. We use this fact and prove that definability can be also discussed in terms of a complete
field of fuzzy sets on a fuzzy lattice for the various fuzzy rough set algebras. Clearly, every complete field of fuzzy sets is also
a fuzzy o -algebra. Then for the system (F(U), A, V, ~, ¢, ®), we give a partial affirmative answer to an open problem
related to fuzzy approximation spaces imposed by Wu in [20] (see Theorem 9.4). Furthermore, if the universe is finite, then
the concepts of complete field and o -algebra are coincide. Hence, for the finite case, our results are also true for o -algebras.

This paper is an extension of our short conference paper [8]. Compared to [8], the present paper contains full proofs,
more detailed remarks, and several further results.

For the benefit of the reader, we give the necessary concepts and results related to textures. The details on various concepts
and results on textures given in Sections 1-6 may be found in [1-7,9,15].

1. Textures
Let U be a set. Then &/ C P(U) is called a texturing of U, and (U, ¥/) is called a texture space, or simply a texture, if

(i) U, <©)is a complete lattice containing U and @, which has the property that arbitrary meets coincide with intersec-
tions, and finite joins coincide with unions,

(ii) U is completely distributive, that is, for all index set I, and for all i € I, if J; is an index set and if A{ € U, then we

have
NVa=V Nae.

iel jeji yellili

(iii) U separates the points of U. That s, given uqy # uy in U there existsA € U/ suchthatu; € A, uy ¢ A,oruy € A, uy ¢ A.

A mapping cy : U — U is called a complementation on (U, i) if it satisfies the conditions clzj (A) = Aforall A € ¢ and
A C BinY implies cy(B) € cy(A). Then the triple (U, U, cy) is said to be a complemented texture space.
For u € U, the p-sets and g-sets are defined by

Pp=({Acu|uecA} and Q,=\/{Acu|u¢A}

A nonempty set A € U/ is a molecule if VB,C € U,A C BUC = A C BorA C C. Clearly, p-sets are molecules of a texture
space. A texture space (U, i) is called simple if all molecules of the space are p-sets. The p-sets and the q-sets are important
tools in the theory of texture spaces since the complete distributivity can be written in terms of p-sets and the q-sets.

Theorem 1.1 [4]. Let (4, C) be a complete lattice. The following statements are equivalent.

(i) (U, u) is completely distributive.
(ii) For A, B € U, if A £ B then there existsu € U withA Z Q, and P, Z B.

Example 1.2 [1]. (i) The pair (U, P(U)) is a texture space where P(U) is the power set of U. It is called a discrete texture.
Clearly, (U, P(U)) is simple and for u € U we have

Py ={u} and Q, =U\ {u}

and ¢y : P(U) — P(U) is the ordinary complementation on (U, P(U)) defined by cy(A) = U\Afor allA € P(U).

(ii) The family M = {(0,r] | r € [0, 1]} is a texture on M = (0, 1] which is called the Hutton texture. Clearly, M is
closed under arbitrary intersections. Then it is easy to see that it is a complete lattice with respect to set inclusion. It is
also completely distributive. To see this, take (0, r], (0, s] € M where (0, r] € (0, s]. Then we have s < r. Choose a point
t € [0, 1] wheres < t < r. Since we have P, = Q; = (0, t], we may write that (0, r]  Q; and Py Z (0, s]. Therefore, by
Theorem 1.1. we obtain the complete distributivity of M. Further, M is simple and the complementation c¢y; : M — M is
defined by Vr € (0, 1], ¢ (0, 7] = (0,1 —r].

2. Products

Here, we discuss on the product of any two texture spaces (U, ¢/) and (V, V). For the more information about the products
of arbitrary families of textures can be found in [2]. Consider the family A = {A x V | A € 4} U{U x B | B € V} and define

B= [UEj | {Ejljes EA’-

Jjel
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The family of arbitrary intersections of the elements of 3, that is, the family

iel

URYV = [ﬂDi | {Ditier SB]

is a texture on U x V. Clearly, for allA € ¢/ and for all B € V, we have A x B € U ® V. Further, the p-sets and g-sets may be
easily determined as

P,y =Py x P, and Qv = (U x Q) U (Qy x V).

If cy and cy are complementations on the textures (U, /) and (V, V), respectively, then for the complementation cyxy on
the product, it is enough to check that

cuxv(U X B) =U x cy(B) and cyxy(A X V) =cy(A) xV

forall A € ¢4 and B € V. In particular, if P(U) is a discrete texture on U, then for the textures (U, P(U)), (V, V), the p-sets
and g-sets will be

T)(u,v) = {u} x Py and a(u,v) = ((U\{u}) x V) U (U x Q)

for the product texture (U x V, P(U) ® V). Now take the texture (M, M, cy;) in Example 1.2 (ii). We clarify the product
texture P(U) ® M on U x M. It is easy to see that the sets A x (0, r] are the elements of the product texture for allA C U
andr € [0, 1]. Note that for P(U), we have P, = {u} and Q, = U\{u} whereu € U. Further, we have P, = Q, = (0, 1] = Q,
in M. Therefore, the p-sets and g-sets of the product texture P(U) ® M are Py ;) = Py x P, = {u} x (0, r]and Qq,;) =
(Qu x (0,1]) U (U x Q) = (U\{u} x (0,1]) U (U x (0, r]), respectively. On the other hand, the complementations on M
and P(U) are given by

Vr € (0,1], ¢o,11(0,7r1=(0,1—r] and VA C U, cy(A) = U\A.

For the complementation cyxy on the product texture P(U) ® M, we have

cux(0,11((A X M) U (U x (0,r])) = (U\A) x (0,1 —r]

for every subset A C U andr € M.

3. Hutton textures

The basic motivation of textures is the correspondence between the fuzzy lattices and simple textures [2]. Let (L, <, )
be a fuzzy lattice (Hutton algebra), that is, a complete, completely distributive lattice with an order reversing involution “/".
Recall that m € L is join-irreducible, if

Va,bel, m<avb=m<a or m<h.

Consider the sets
My = {m | mis join-irreducible in L},
M ={da|ael}and
a={m|meM andm < a},foralla € L.
Then the mapping ~:L — M; defined by Va € L, a +— @ s a lattice isomorphism and the triple (M, My, cy,) is a com-
plemented simple texture space which is called a Hutton texture. Here the complementation ¢y, : M — M_ is defined by
Vael, cy @ =d.
Conversely, every complemented simple texture may be obtained in this way from a suitable Hutton algebra [2].
Example 3.1. (i) The unitinterval L = [0, 1] is a Hutton algebra with the usual ordering < and the order reversing involution

/whereu’ = 1 — uforallu € [0, 1]. The corresponding simple texture to the Hutton algebra [0, 1] is the Hutton texture
(M, M, cy) given in Example 1.2 (ii) where

My =M={0,u] |uel0,1]} and cp, (0, u] =cm(0,ul = (0,1 —ul], Yuel0,1].

Indeed, the set of all join-irreducible elements of [0, 1] is M; = (0, 1] = M and for every u € [0, 1], we have u = (0, u].
Then the mapping

= [0,1] — M,
u—> (0,u], Yuel0,1]

is a lattice isomorphism.
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(ii) Recall that a fuzzy subset « of U is a membership function « : U — [0, 1]. We denote the set of all fuzzy subsets of U
by F(U). It is well known that F(U) is also an Hutton algebra with the pointwise ordering

YuelU, a=<p<— o) <p{)
and the order reversing involution o’ (u) = 1 — «(u). Here the join and the meet of fuzzy sets are considered as

(@A B)w) =a@) A B and (aV B)() =a) Vv B(u)
forall, B € F(U).

Now consider the fuzzy points u;s and fuzzy copoints u° of 7(U) defined by

s, if z=u, s, if z=u,
us(z) = and v’(z) =
0, if z#u, 1, if z#u,
for all z € U, respectively [2,15]. Let us take the sets:
a={us | us < a},
Mgy =1{@ |a € F(U)}, and
Mz = {us | us is a fuzzy point in F(U) }.
Then under the lattice isomorphim™: F(U) — M), the corresponding texture space will be (Mz(y), Mz)). Every

fuzzy point ug can be regarded as an ordered pair (u, s) € U x (0, 1] and then we may write that& = {(u, s) | s < a(u)}.
Therefore, it can be shown that the texture (Mz(y), Mz ()) is isomorphic to the product texture

(U x M, P(U)® M, cyxm)

of (U, P(U), cy) and (M, M, cp) while the complementation mapping is defined by
cuxm (@) =1—«

forall € F(U) [2]. Meanwhile, we immediately have that
i = {u} x (0,s] = P(u,s) and u® = (U\{u} x [0,1]) U (U x (0,s]) = Q(u,s)-

4. Direlations

Duality is an essential phenomena in textures and then suitable morphisms are direlations between textures with two
parts which are called relation and corelation, respectively [3]. Now let (U, /), (V, V) be texture spaces and let us consider
the product texture P(U) ® V of the texture spaces (U, P(U)) and (V, V) and denote the p-sets and the g-sets by P, v, and
Q(u,v) Tespectively. Then
(i)r € P(U) ® Vis called a relation from (U, U) to (V, V) if it satisfies

R1r ,(Z Qv Pw SZ Q = r1 ,(Z Q' v)-

R2r € Quy = I € UsuchthatP, € Qyandr & Quy ).

(ii)R € P(U) ® Vs called a corelation from (U, i) to (V, V) if it satisfies
CR1 Py £ R Py € Qv = Py € R
CR2P(y,) € R = ' € UsuchthatPy ¢ Q,and Py ) € R.
A pair (r, R), where r is a relation and R a corelation from (U, /) to (V, V) is called a direlation from (U, U) to (V, V).
Note that if (r, R) is a direlation from the texture (U, P(U)) to (V, P(V)), then r and R are point relations from U to V, that
is,r,R C U x Vsince P(U) ® P(V) = P(U x V). The identity direlation (i, I) on (U, i) is defined by
i=\/{PuuwlueU} and I =) {Quu |ueU’

where U” = {u | U Z Qu}. Recall that if (r, R) is a direlation on (U, U/), then r is reflexive if i € r and R is reflexive if R C I.
Then we say that (r, R) is reflexive if r and R are reflexive.

Now let (r, R) be a direlation from (U, ¢/) to (V, V) where (U, &) and (V, V) are any two texture spaces. Then the inverses
of r and R are defined by

r = ﬂ {a(v,u) | r ,@ a(u,v)} and RT = \/ {F(v,u) | F(u,v) ,¢_ R} 5

respectively where r <~ is a corelation and R is a relation.
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Further, the direlation (r, R) = (R, r<") from (V, V) to (U, /) is called the inverse of the direlation (r, R). Then (r, R)
is called symmetricifr = R~ andR =r*".
The A-sections and the B-presections with respect to relation and corelation are given as

A= {Q Ve, r & Quy = A Q)
R”A=\/{P, | Vu,Pqy € R= P, C A}
r"B=1\/ {Pu [ Vv, 1 € Qv = Py C B} , and

RTB=({Qu | Vv,Puyw £ R=BCQ}

forall A € & and B € V, respectively.
Now let (U, ), (V, V), (W, W) be texture spaces. For any relation p from (U, &) to (V, V) and for any relation q from
(V, V) to (W, W) their composition q o p from (U, &) to (W, W) is defined by

qop= \/ {ﬁ(u,w) | v € Vwithp ,¢_ a(u,v) and q 7¢_ a(v,w)}

and any corelation P from (U, &) to (V, V) and for any corelation Q from (U, i) to (V, V) their composition Q o P from (U, /)
to (W, W) defined by

QoP=[) {Q(u’w) [IveV with Py P and Py € Q} .
Finally, the composition of the direlations (p, P), (g, Q) is the direlation
(@,Q o (p,P)=(qop,QoP).

Further, r is transitive if ror C r and R is transitive if R C Ro R. Then we say that (r, R) is transitive if r and R are transitive.
Now let ¢y and ¢y be the complementations on (U, &) and (V, V), respectively. The complement 1’ of the relation r is the
corelation

= {E(u,v) | 3w, zwithr € Qw,z), cu(Q) £ Qwand P, £ c\/(Pv)} :
The complement R’ of the corelation R is the relation

R'=\/{Pwy | 3w, zwith Pz Z R, P Z cy(Py) and cv(Q) € Q} .

The complement (r, R)’ of the direlation (r, R) is the direlation (r, R)’ = (R’, r’). A direlation (r, R) is called complemented
ifr=R andR=1r".
5. Textural rough set algebras

Let (r, R) be a direlation on a texture (U, &/). Then the quadruple (U, U, r, R) is called a textural approximation space. If
(r, R) is a complemented direlation, then we say (U, i, r, R) is a complemented textural approximation space. Presections
satisfy significant properties as rough sets [3,6]. In this section, we recall some basic results on presections. Some of them
are already proved in [3].
Lemma 5.1. Forall A, B € U and the family {A; | j € J} € U, presections satisfy the following properties:

(A)ACB = r“ACTr B

(b)AC B =—> R“ACR“B.

(©) Vijg r=A ST Vg A

(DR Njg4j € Njg RTA;.

(g)rU=UandR<0 = 0.
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Theorem 5.2. If (r, R) is a complemented direlation on the complemented texture space (U, U, cy), then
cyr"A=R"cyA and cyR“A =r"cyA.

Let L, H : 4 — U be two unary operators. Then L and H are called dual operators on (U, i) if,
cyL(A) = H(cy(A)) and cyH(A) = L(cy(A))

for all A € Y. Now consider the following conditions:

(L)L) =U, (H1)H(®) =0,

(L2) L(Njer A = Njey L(A)). (H2) H(V ey Aj) = Vg H(A)).

If two dual operators L and H satisfy the conditions Ly and L, or equivalently, H; and Hy, then the system (&, Vv, N, cy, L, H)
defines a (textural) rough set algebra in the sense of Yao [17], and the operators L and H are called approximation operators

on (U, U).
By Lemma 6.4 and Theorem 5.2, the system (i, N, V, cy, r, R"7) is a textural rough set algebra where

R :uU—U

are approximation operators defined by
rTA=\/ {Pu [ Vv, 1 € Qv = Py C A} , and
RTA = ({Qu | W, Puy ZR=AC Q)

for all A € U. Then the pair (r A, R A) is called a textural rough set.
The following results give an idea for the axiomatic structure of textural rough sets.

Theorem 5.3. Let L, H : #/ — U be dual operators on the complemented texture space (U, U, cy). Then there exists a unique
complemented direlation (r, R) on (U, U) such that
LA =r“AandHA) =R“A
forall A € U if and only if L and H satisfy the equivalent properties
(L) LU) =1,
(L2) L(Njey A)) = Njey L(Ay), and
(H)H) =0,
(H2) H(V ey Aj) = Ve HA)).
Theorem 5.4. Let L, H : &/ — U be dual operators. If L satisfies L1, L, and the axioms
L3 L(A) C A
Ly L(L(A)) = L(A), and

Ls cy(L(cy(L(A)) € A
then there exists a unique complemented equivalence direlation (r, R) on (U, U) such that

L(A) =r"(A) and H(A) =R (A)
forallA € U.
Recall that if r is a point relation on U, that is, r C U x U, then the generalized rough set based on the point relation r is
given by (@rA, apr.A) where
apr A= {x|VyeU, (x,y)er = y € A},and
apr,A={x|3JyeU, (x,y) erandy € A}

forall A C U (see, e.g. [16]). On the other hand, the pair (r, (U x U)\r) can be regarded as a complemented direlation on
the discrete texture (U, P(U)) where R = (U x U)\r. Conversely, if (r, R) is a complemented direlation on (U, P(U)), then
r and R are point relations on U where R = (U x U)\r. Therefore, using the facts

()1 € Quv < (u,v) €r,and
(Z)F(u,v) ZR< (u,v) €R,
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we immediately conclude that
(r A, RTA) = (@rA, WrA)
for every set A € P(U). Now we have.

Theorem 5.5. Ifr is a point relation on U, that is,r C U x U, then

VX CU, aprX=U\r""(U\X) =r"X and apr,X =r""(X) =R“X.
6. Textural fuzzy direlations

Textural fuzzy direlations between any two fuzzy lattices are introduced in [15]. Let us denote the texture space (U x
(0, 1], P(U) ® M) by (Wy, Wy) where M is the texturing in Example 3.1 (i). Consider the fuzzy lattice (U x [0, 1] x U),
that is, the family of all fuzzy subsets

¢ :Ux[0,1] x U— [0,1]
of the set U x [0, 1] x U. Clearly, the corresponding texture is P(U x (0, 1] x U) ® M. It is easy to see that the textures
PWU x (0,1] x U) ® M and P(U x (0,1]) ® (P(U) ® M)

are isomorphic where P(U x (0,1]) ® (P(U) ® M) = P(Wy) ® Wy. Hence, if we consider the lattice isomorphism
~: F(U x [0,1] x U) = P(Wy) ® Wy, thenforall ¢ € F(U x [0, 1] x U), we obtain

¢ ={(ws), (v.0) |t < ¢(u,s,v)}

Hence, if r is a relation or a corelation on the texture (Wy, Wy, wy), then we have r € P(Wy) ® Wy and so for some
ur 2 Ux[0,1] x U— [0, 1], we may write that

pr=rand [y = {((u,s), (v,t)) | t < ur(u,s, v)}.
Now let us consider the following definition.

Definition 6.1. Let ¢, ® € F(U x [0, 1] x U).

(1) ¢ is called a textural fuzzy relation on F(U) if

Pu,s,v) = \/{p,s,v)|0<s <s},V(u,s,v)eUx[0,1] x U.
(2) @ is called a textural fuzzy corelation on F(U) if

d(u,s,v) = N\, s, v) |s<s <1}, V(u,s,v) eUx[0,1] xU.

(3) If ¢ is a textural fuzzy relation and & is a textural fuzzy corelation, (¢, ®) is called a textural fuzzy direlation
on F(U).

Definition 6.2. Let (¢, ®) be a textural fuzzy direlation on F(U). Then
(i) B € F(U) is called the a-section of the textural fuzzy relation ¢ on F(U) if
BW) = Altelo,1]|s <a) = ¢u,s,v) <t}, Vel
(ii) B € F(U) is called the a-section of the textural fuzzy corelation ® on F(U) if
Bw) =\{telo,1]|aw <s = t < d(u,s,v)}, VveU.
If B is the a-section of ¢, it is denoted by ¢~ « = B. Similarly, if B is the a-section of @, it is denoted by @~ « = B.

Definition 6.3. Let (¢, ®) be a textural fuzzy direlation on F(U). Then the pair (&<, ¢ ) is called the inverse direlation of
(¢, ) where

¢ (v.t,u)y=\/{s €[0,1] | p(u,s,v) <t}, and

O (v.t,u) = \{s€[0,1] |t < D(u,s,v)}
forall (v,t,u) €e U x [0,1] x U.
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Lemma 6.4. Let (¢, ®) be a textural fuzzy direlation on F(U) and o € F(U). Then
(1) (@ a)w) = V{s€[0,1] | #(u,s,v) < a(v) Vv e U}.
(i) (P a)(u) = A{s €[0,1] | a(v) < ®(u,s,v) Vv € U}.

Note that if (¢, @) is a textural fuzzy direlation on F(U), then by Theorem 2.3 in [15] there exists a direlation (r, R) on
(Wy, Wy) such that ¢ = u, and ® = ug. Therefore, we may write that

¢ (v, t,u) =\/{s € [0, 1] | pur(u,s,v) <t} = pr=(v,t,u), and

(v, t,u) = \{s €[0,1] | £ < pg(u, 5, v)} = pr=(v, t, u)

and since <~ = p;” and @ = puy, we have
pre— =pu and ppe = pg .

On the other hand, we may write the following equivalences.

pa=pesra=p. pre=pe=R"a=4

and
poa=pe=r"a=p pga=p<R"a=4§.

If (i, I) is the identity direlation on (Wy, Wy ), then the corresponding fuzzy textural direlation (w;, ;) on F(U) is given by

0, if uv,
s, if u=v,

1, ifu#v,

u,s,v) = .
mi(u, s, v) s, ifu=v,

wi(u, s, v) =
The pair (u;, () is called the textural fuzzy identity direlation on F(U).
Finally, we recall the following definitions:
(i) (¢, @) is called reflexive if u; < ¢ and ® < ;.
(ii) (¢, @) is called symmetricif <~ = ® and @ = ¢.
(iii) (¢, @) is called transitive if p o p < pand & < ® o .
(

iv) (¢, @) is called an equivalence fuzzy direlation if it is reflexive, symmetric and transitive.

7. Textural definability

As it is mentioned in Section 4, the system (i, N, V, ¢y, 1", R<) is a textural rough set algebrawhere r <, R : U/ — U
are the approximation operators. Definability can be given in terms of presections.

Definition 7.1. Let (r, R) be a complemented direlation on (U, /). Then the set A € U is called definable if r"A = RA.
Difunctions are important tools for textures as morphisms of the category dfTex whose objects are textures [3]. A difunction
on a texture (U, ) is a direlation (r, R) satisfying the following two conditions:
DF1 Foru,v € U,P, £ @, = 3w € Uwithr € Qyw) and Py,w) € R.
DF2Foru,ve Uandw € U,r € Q. and Py € R = P, € Qu.
Let us note that there is a close relation between difunctions and definability, i.e., textural definability characterizes
difunctions.
Theorem 7.2 [3]. Let (r, R) be a direlation on (U, U). Then the following conditions are equivalent:
(i) (r, R) is a difunction on (U, U).
(ii) Every set A in U is definable that is, r"A = RA.

Theorem 7.3. Let (r, R) be a reflexive and symmetric direlation on a texture (U, ) and A € U. Then the following conditions
are equivalent.
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(i) Ais definable.
(i) r A=A
(ili)RTA = A
Proof. (i) = (ii) Let A be definable, that is, let r"A = R A. Since (r, R) is reflexive, by Theorem 4.2 in [5], we have
r"A C Aand A C R A. This implies that r"A = A.

(ii) = (iii) Since (r, R) is symmetric, by Theorem 4.8 in [6], we may write that R r"A C A and so by the assumption
we find R A C A. Since R is reflexive, we find R“A = A.

(iii) = (i) Suppose that R A = A. Since r is reflexive, r"A C A and hence, r"A C R A. Further, by Theorem 4.8 in
[6],A € r* R A and this implies that A C r <A, thatisRA C r<A. O

Theorem 7.4. If (r, R) is an equivalence direlation, then for all A € U the presections r A and R A are definable.

Proof. Since (r, R) is reflexive and transitive, by Theorem 4.7 in [6], we have r“" r"A = r“"Aand R“R“A = R A. Then
by Theorem 7.3, we obtain that r~A and R<"A are definable. [

The following is a textural counterpart of a family of complete field of sets.
Definition 7.5. Let (U, U, cy) be a complemented texture space and D C ¢/. Then D is called a textural complete field of sets
on (U, U, cy) if the following conditions hold:
(i)U € D,
(i< D = VGeD,
(iii)G e D = cy(G) € D.
In the above definition, clearly, we have § € D. Further, if G C D, then we also have

No=c(Viw© Geg)en.

Theorem 7.6. Let (1, R) be a complemented direlation on (U, U) and D be the family of all definable sets, thatis, D = {A € U |
"A = R A}. Then we have the following.

(i) If (r, R) is reflexive, then D is a textural complete field of sets.

(ii) If (r, R) is an equivalence direlation, then

VAcu, r"A=\/{Be€D|BCA} and RTA=()|{BeD|ACB}.

Proof. (i) By Lemma 4.1 (g) in [6], we have r"U = U. Since R is reflexive, by Theorem 4.4. (ii) in [6], U € R< U, that is
R*"U = U and so we find that U € D. Now let A € D. In this case,

1 cy(A) = cy(RTA) = cy(r"A) =R cy(A).

This follows that cy(A) € D.Let {A; | j € J} S D. We show that R V¢; Aj = 1™ V¢ Aj. Since (r, R) is reflexive, by
Theorem 4.4 in [6], we may write that

r"\VA S \/A SRTVA.

jel jel jel
By Corollary 2.12 in [3], we have
RV A =VR™A=\r"4cr\/4
jel jel jel jel
and this gives us the desired equality.
(i) Since r is reflexive, we have r"A C A. By Theorem 7.4, r A is definable and so r A € D. Hence we have r<A C
\V{B € D|B C A}. For the reverse inclusion, let B C A and B € D. Then we may write that r"B C rA. Further, by Theorem
7.3, "B = B and this completes the proof. [

Theorem 7.7. Let D be a textural complete field of sets on a complemented texture (U, U, cy). Then there exists a complemented
equivalence direlation (r, R) on (U, U) such that

D={AcU|r“A=R"A}.
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Proof. Let us consider the operators L, H : & —> U defined by
L(A) = V{B|BC AandB € D}

and

HA) =N{C|AC CandC € D}

for all A € U, respectively. Since we also have D = {cy(A) | A € D}, it is easy to see that L and H are dual operators. Let us
show that L satisfies the following conditions:

(L) L(U) = U,

(L2) L(Njer A = Njey LAY,
(L3) L(A) C A

(Lg) L(L(A)) = L(A),

(Ls) cu(L(cy(L(A)))) € A.

First, we verify the conditions (L;), (L3) and (L4). Since U € D, clearly L(U) = U. By definition of L we immediately have
L(A) C A. Furthermore, since L(A) € D, L(L(A)) = L(A). The mapping L is monotonic. Indeed, take A, B € ¢/ where A C B.
This implies that L(A) € B and since L(A) € D, we find L(A) € L(B). Clearly, for all j € J, we have ;¢; Aj C Aj and since
L is monotonic, L(;e; Aj)) € L(A;) and this implies that L(N;¢; Aj) S Njey L(A4)). By (L3), for all j € J, we may write that
L(Aj)) € Aj and then ¢ L(Aj) S jes Aj- However, D is a textural complete field, and so we have (j¢; L(Aj) € D. This
implies that ¢y L(Aj) € L(Njg Aj), that is, the proof of (L) is complete. For (Ls), note that

cy(Lcy(L(A))) = H(L(A) = (B € U | L(A) C B,B € D} = L(A) C A

since L(A) € D. Since the operators L and H are dual, the dual conditions for the operator H can be proved by using a similar
argument. Then by Theorem 5.4, there exists a complemented equivalence direlation (r, R) on (U, /) where

L(A) =r“A, andHA) =R“A

forall A € U. Note that for A € D, we have L(A) = A = H(A) and so clearly, we may write D = {A € U | r"A=R“A}. O

8. Definability

Recall that for a given relation r on a universe U, a subset X C U is definable if@rx = apr,.X [16]. In this section, we show
that definability can be stated in terms of inverse relation if the relation is reflexive and symmetric. We observe that if all
sets are definable in a universe, then the relation is a function, and vice versa. Further, if it is given a complete field of sets
D, then we prove the existence of an equivalence relation such that D can be stated using definable sets. Essentially, the
following theorems are natural results of textural discussions in the preceeding section. However, the proofs may be given
independently.

Theorem 8.1. Let r be a reflexive and symmetric relation on U and A C U. Then the following conditions are equivalent.

(i) Ais definable.

(i) U\r~1(A) = r 1 (U\A).

(iii) r= ' (A) = A.

Proof. (i) = (ii) : Since A is definable, apr X = apr,X, and by Theorem 5.5, we have

U\r (U\A) = 1 (A),

thatis, =1 (U\A) = U\r~'(A).
(ii) == (iii) : Since r is reflexive, clearly, A € r~1(A). Suppose that r~1(A) & A. Let us choose a point u € U where
u e r~'(A) and u ¢ A. Then by the assumption, we have u ¢ r~!(U\A) and this means that

veU\A = (u,v) ¢r.

But u € U\A, and so we find that (u, u) ¢ r. This implies a contradiction because of reflexivity of r.
(iii) == (i) : Since r is reflexive, we have @TA C apr,A, thatis

U\r ' (U\A) € r @A) = A
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Now we show thatA C U\r~!(U\A).Suppose thatA & U\r~!(U\A).Choosea € Usuchthata € Aanda ¢ U\r~1(U\A).
Then a € r~'(U\A) and so for some b € U\A, we have (a, b) € r. By symmetry, (b, a) € r and hence b € r~!({a}) <
r~1(A) = A which is a contradiction. O

Let (r, R) be a difunction on (U, P(U)). Then it is easy to see that DF1 and DF2 correspond to the following conditions,
respectively, that is, r is an ordinary function on U:
(F1) For any u € U we have w € U such that (u, w) € r.
(F2) If for some w € U, (w, u) € rand (w, v) € r whereu, v € U, thenu = v.
Theorem 8.2. Let r be a relation on U. Then the following conditions are equivalent.
(i) r is a function on U.
(ii) VX C U, X is definable.
(iii) Vx € U, {x} is definable.
Proof. (i) = (ii) : Let r be a function on U and suppose that apr X # apr,.X. Then for some x € U, we may write that
x € U\r 1(U\X) and x & r~1(X), and so we have

xgr 'O Ur i U\X) =r T XU U\X) =r ' (U).
However, this is a contradiction, since r~1(U) = U. Now letx & U\r~'(U\X) and x € r~!(X). Then x € r~'(U\X) and this
implies that (x, y), (x, z) € r for some y, z € U where y # z. Since r is a function, we also obtain a contradiction.
(ii) = (iii) : Immediate.
(iii) = (i) Now suppose that for all x € U, {x} is definable. If r is not a function, then we have two cases:
(a) For some x, y, z € U we have (x,y), (x,z) € r wherey # z, or
(b) For some x € U,x & r~1(U).

Consider the case (a). Note that x # y or x # z. Let x # y. By the assumption, we have U\r_l(U\{z}) = r~1({z})).
Since (x,z) € r, then x € r—'({z}). However, z # y implies that y € U\{z}. Hence, we have x € r~!'(U\{z}) and this
gives that x & U\r~'(U\({z}). But this contradicts to the equality U\r~'(U\{z}) = r~'({z}). If x # z, we obtain a similar
contradiction.

Now take the case (b). Since {x} is definable, we have U\r~'(U\{x}) = r~'({x}). Further, by (b), x ¢ r~'({x}) and x ¢&
r~1(U\{x}) and so x € U\r~'(U\{x}) is a contradiction. O

Theorem 8.3. Let D be a complete field on U. Then there exists an equivalence relation r on U such that
D:{A§U|@TA=WrA}.

Furthermore,
[ul, = ﬂ{A CU|ueAandA € D}

forallu € U where [u]; is the equivalence class with respect to r.

Proof. Consider the operators L, H : P(U) — P(U) defined by

L(A) =U{B|BC AandB € D}

and

HA) =N{C|AC CandC € D}

forall A C U, respectively. We may use a similar argument as in the proof of Theorem 7.7 that the operators L and H satisfy
the conditions of Theorem 5 in [16]. Hence, we have an equivalence relation r such that the operators L and H satisfy the
equalities

LA) = apr A, and H(A) = apr,A
where

D:{A§U|@TA=WrA}.
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Sinceu € [u];and [u], € D,clearly\{A C U | u € AandA € D} C [u],.Suppose that[u], Z ({A C U | u € AandA € D}.
Let us choose a point v € U wherev € [u], andv &€ N{A C U | u € Aand A € D}. This implies that (u, v) € r and for some
A€ D,wehaveu € Aandv ¢ A. Thenu ¢ apr A andsou ¢ L(A).Butsince A € D,L(A) = H(A) and so u ¢ H(A). Now the

inclusion A € H(A) gives that u ¢ A which leads to a contradiction. [J

The above result can be proved using textural concepts. To see this let us consider ordinary relations, and direlations in
the context of discrete textures. For details on more general results, we refer to [14].
Let (r, R) be a direlation on the discrete texture (U, P(U)). Then we have

rnRePU)QPWU)=PWU) xPU)=PWU x U),

thatis,r, R € U x U. Further,

= ({Qquy | W,z € Uwithr € Qu ), cu(Q) € Qwand P; Z cy(Py)}
= ﬂ{(U x U\{(u, v)} | Iw, zwith (w, z2) € r, {u} £ U\{w}and {z} € V\{v}}
= (U x U)\ U{(u, v) | 3w, zwith (w,z) er,u=w,v =1z}
= U x D\ Jlw,v) | (@ v) er)
= (U x U)\r

and

R = \/{Pwy | 3w, zwith Py 2y £ R, Py € cy(Py) and cy(Qv) £ Q)
= U{{(u, v)} | 3w, zwith (w,z) € R,w & U\{u}and v & U\{z}}
= U{(u, v) | 3w, zwith (w,z) € R, u =wandv = z}
= U x O\ Jl@,v) | (u,v) €R}
= (U x U)\R.

If (r, R) is a complemented direlation on (U, /), then we have R = r’ = (U x U)\r. Furthermore, the textural inverses of
the relation and corelation are:

R = \/{Pwuw | Puy) £ R}
= {mw} | wv) ¢Ry=R"
and
" =Quuw I T Z Quv)}
= (U x O\{(v, w} | (u,v) €1}
= U x D\{(v.w)} | w,v) €r} = U x D\r .
It is easy to check that if (iy, Iy) is the identity direlation on (U, P(U)), then
i=A={(u,u) |ueU}landl = (U x U)\A.

In view of Lemma 3.1 in [14], we have the following equivalences for the complemented direlations on discrete textures:

Theorem 8.4. Let (r, R) be a direlation on (U, PU). Then

(i) (r, R) is a reflexive direlation on (U, P(U)) <= r is a reflexive relation on U.

(ii) (r, R) is a symmetric direlation on (U, P(U)) <= r is a symmetric relation on U.
(iii) (r, R) is a transitive direlation on (U, P(U)) <= r is a transitive relation on U.
Proof. (i)itisimmediate sincei Cr <= {(u,u) |[lue U} Cr.

()r< =R<= UxU\r ' =UxU\r<r=rL
(iii) Since

ror= \/{F(u,v) | 3w € Uwithr € Quw) andr € Qqw,v)}
= {(u,v) | 3w € U with (u, w) € rand (w, v) € r},

the textural composition is the usual composition of relations. This follows that r is a transitive relation on U. [
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If Dis a complete field of sets on U, then it is also a textural complete field of sets on the discrete texture (U, P(U)). Then by
Theorem 7.7, there exists a complemented equivalence direlation (r, R) on P(U) such thatD = {A € P(U) | r"A = RTA}.
On the other hand, by Theorem 8.4, r is an equivalence relation on U. Further, by Theorem 5.5 we have

VX CU, aprX= rX and apr,X =R"X.

This shows that the first part of Theorem 8.3 is a natural result of Theorem 7.7.

9. Complete Fields of Fuzzy Sets

Now we present some basic results on various fuzzy rough set algebras in the sense of Yao [16]. As it is mentioned in Sections 3
and 6, a fuzzy lattice (Hutton algebra) F(U) corresponds to a texture (Wy, W) which is called a Hutton texture, and a
direlation between any two Hutton textures corresponds to a textural fuzzy direlation. This provides an easy way to observe
the properties of definable fuzzy sets and complete fields of fuzzy sets on a fuzzy lattice #(U).

Definition 9.1. A subset 7 C F(U) is called a complete field of fuzzy sets on F(U) if the following conditions hold:

(i)1€ Fwhere1: U — [0, 1] is the function defined by Yu € U, 1(u) = 1.

(i) CF = VGeF

(iii) Voo € F,1—a € F.

Theorem 9.2. If F is a complete field of fuzzy sets on F(U), then the family
D={a|uoecF}
is a textural complete field of sets on the corresponding texture (Wy, Wy).
Proof. Recall that the mapping ~ : F(U) — Mz, is a lattice isomorphism where Mz (y) is the set of all fuzzy points in
F(U). Therefore the family D satisfies the following conditions:
(@Q1=Ux(0,1] =Wy € D.

(b)Let {aj | j € J} € D.Then {e; | j € J} C F. Since F is a complete field of fuzzy sets in F(U), we have \/{c; | j € J]} € F
and so we may write that

V& =Vaoen.
Jjel jel

(c)Foralla € F,we have1 — « € F and so 1i-aen. By definition of the complementation c of (Wy, Wy ), we have

1—a=c@)enD.

Hence, D is a textural complete field of sets on (Wy, Wy). O

Theorem 9.3. Let (¢, @) be a reflexive textural fuzzy direlation on F(U). Then the family
F={aeFU)| ¢ a=>"a)
is a complete field of fuzzy sets on F(U).
Proof. By Theorem 2.3 in [15], there is a direlation (r, R) on (Wy, Wy) where , = ¢ and ug = ®. By Theorem 7.1 (i) in
[5], (r, R) is also a reflexive direlation on (Wy, Wy). Then by Theorem 7.6 (i), the family
D={@|r"a=R"a, a € F(U)}

is a textural complete field of sets on (Wy, Wy). On the other hand, by definition of presections of direlations and textural
fuzzy direlations, we have

rCa=pf <= a=4
RTa=y <= o a=y.
Since the lattice isomorphism ~is injective, r"& = R @ implies that 8 = y. Hence, we find ¢ “a = & «. Essentially,
we have
r @ =RTA¢= P a=0 "«

for all @ € F(U). We have concluded that the family F satisfies the desired conditions. [J
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Theorem 9.4. Let F be a complete field of fuzzy sets on F(U). Then there exists an equivalence textural fuzzy direlation (¢, ®)
such that

F=la|¢“a=> al.

Proof. By Theorem 9.2, D = {& | o € F} is a textural complete field of sets on (Wy, Wy). Then by Theorem 7.7, there is
an equivalence direlation (r, R) on (Wy, Wy) such that D = {& | r"@ = R*a&}. Take the corresponding textural fuzzy
direlation (¢, ®) on F(U) where ¢ = pu, and ® = ug. By Theorem 7.1 in [5], (¢, ®) is an equivalence textural fuzzy
direlation on F(U). Further, we have

F=lacFrU)|aeDl={acFU) |r"a@a=R"ad}={accFU) | ¢Ta=> a}. O

Now let ¢ be a fuzzy relation, that is, ¢ € F(U x U). Recall that the pair (¢, ®,) is a textural fuzzy direlation on F(U)
where

Pp(u,s,v) =@, v) As and Oy(u,s,v) = (1 — oW, v)) Vs
forall (u,s,v) € U x [0, 1] x U[15]. For any @ € F(U), the presections are the fuzzy sets, that is,
Vu e U, & a(u) = apra(u) = NAsel01]]aw) <1—¢@v) Vs, veU}
and
¢;a(u) = apra(u) = \/{s € [0,1] | (u,v) As <a(v), v eU}.
Further, the system (F(U), A, V, ~, d>;f, ¢(;_) is a fuzzy rough set algebra [5].
Then we may write the following result as a corollary of Theorem 9.3:
Corollary 9.5. Let ¢ be a reflexive fuzzy relation. Then the family
F=laeFU) | o5 a=0¢;al

is a complete field of fuzzy sets on F(U).

For a fuzzy relation ¢ : U x U — [0, 1], the system
— —
(FW. A v~ 0,7, 0,)
is also a fuzzy rough set algebra and this gives the fuzzy rough sets
Yu e U, @;a(u) = apra(u) = /\{1 — oW, u) Va() |veUl,
¢, a(u) = apra(u) = \/{pv,u) Aa(v) | v €U}

of Pei’'s model under the assumption that ¢ has the symmetry property (see [13] and Example 2.26 in [15]).
Finally, using dual arguments we have the following.

Corollary 9.6. Let ¢ be a reflexive fuzzy relation. Then the family
F={a e FU) | o) a =, o}

is a complete field of fuzzy sets on F(U).

10. Conclusion

Direlations are suitable morphisms for textures and they play an important role in texture space theory (see e.g., [3,7]).
Presections and sections with respect to direlations provide a different perspective for the basic properties of rough sets.
Hence, they are also essential tools for an abstract model of rough set theory [7]. It is known that textures are alternative point-
set based setting for fuzzy sets. In this setting, direlations between Hutton textures turn into the textural fuzzy direlations
between fuzzy lattices [15]. In view of this fact, using definability we have observed that the complete field of fuzzy sets can
be stated for the various fuzzy rough set algebras which are studied in the literature of rough set theory. On the way, we
have given a partial affirmative answer to an open problem related to fuzzy approximation spaces imposed by Wu in [20].
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