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This paper aims to give a new perspective for definability in rough set theory. First, a coun-

terpart of definability is introduced in textural approximation spaces. Then a complete field

of sets for texture spaces is defined and using textural arguments, some new results are

obtained for rough sets. It is shown that definability can be also discussed in terms of a

complete field of fuzzy sets on a fuzzy lattice for the various fuzzy approximation spaces. It

is also given a partial affirmative answer to an open problem posed by Wei-Zhi Wu in On

some mathematical structures of T-fuzzy rough set algebras in infinite universes of discourse in
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0. Introduction

Definability is one of the primary concepts in rough set theory (see, e.g. [10–12,18,19]). Recall that a set is called definable

if it is a union of some equivalence classes with respect to given equivalence relation [12]. This concept can be stated in

terms of approximation operators. That is, a set is definable if the upper and lower approximations of it are equal. The

pairs of rough set approximation operators and powersets form a category denoted by R-APR [7]. On the other hand, a

texture is a family of sets satisfying certain conditions for a given universe. The basic motivation for textures is to provide a

point-set based setting for fuzzy sets [1,2]. Duality is an essential phenomena in textures and then suitable morphisms are

direlations between textures with two parts which are called relation and corelation, respectively. Complemented textures

and complemented direlations form a category which is denoted by cdrTex, and R-APR is a full subcategory of cdrTex.

Hence, the category cdrTex may be regarded as an abstract model for rough set theory (see [6,7]). In this paper, we do

not follow the line containing categorical discussions. We introduce a counterpart of definability in cdrTex and in view of

textural discussions, we present some new results in rough set theory. Recall that a complete field of sets on a universe is

a family which is closed under arbitrary unions. Here, we consider a complete field of sets in texture spaces and then we

show that such families can be stated using approximation operators. In [15], it is observed that direlations between Hutton

textures turn into textural fuzzy direlations between fuzzy lattices (Hutton algebras). In [5], it is proved that if (φ, �) is

a complemented textural fuzzy direlation on F(U), then the system (F(U),∧,∨,∼, φ←, �←) defines a fuzzy rough set

algebra where the lower and upper approximation operators φ←, �← : F(U)→ F(U) are defined by

(φ←α)(u) =∨{s ∈ [0, 1] | φ(u, s, v) ≤ α(v) ∀v ∈ U}
and

(�←α)(u) =∧{s ∈ [0, 1] | α(v) ≤ �(u, s, v) ∀v ∈ U}
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for any fuzzy set α, respectively. We use this fact and prove that definability can be also discussed in terms of a complete

field of fuzzy sets on a fuzzy lattice for the various fuzzy rough set algebras. Clearly, every complete field of fuzzy sets is also

a fuzzy σ -algebra. Then for the system (F(U),∧,∨,∼, φ←, �←), we give a partial affirmative answer to an open problem

related to fuzzy approximation spaces imposed by Wu in [20] (see Theorem 9.4). Furthermore, if the universe is finite, then

the concepts of complete field and σ -algebra are coincide. Hence, for the finite case, our results are also true for σ -algebras.

This paper is an extension of our short conference paper [8]. Compared to [8], the present paper contains full proofs,

more detailed remarks, and several further results.

For thebenefit of the reader,wegive thenecessary concepts and results related to textures. Thedetails on various concepts

and results on textures given in Sections 1–6 may be found in [1–7,9,15].

1. Textures

Let U be a set. Then U ⊆ P(U) is called a texturing of U, and (U, U) is called a texture space, or simply a texture, if

(i) (U, ⊆) is a complete lattice containing U and ∅, which has the property that arbitrary meets coincide with intersec-

tions, and finite joins coincide with unions,

(ii) U is completely distributive, that is, for all index set I, and for all i ∈ I, if Ji is an index set and if A
j
i ∈ U , then we

have ⋂
i∈I

∨
j∈Ji

A
j
i =

∨
γ∈∏

i Ji

⋂
Ai
γ (i),

(iii) U separates the points ofU. That is, given u1 �= u2 inU there exists A ∈ U such that u1 ∈ A, u2 /∈ A, or u2 ∈ A, u1 /∈ A.

A mapping cU : U → U is called a complementation on (U, U) if it satisfies the conditions c2U(A) = A for all A ∈ U and

A ⊆ B in U implies cU(B) ⊆ cU(A). Then the triple (U, U, cU) is said to be a complemented texture space.

For u ∈ U, the p-sets and q-sets are defined by

Pu =
⋂{A ∈ U | u ∈ A} and Qu =

∨{A ∈ U | u /∈ A}.
A nonempty set A ∈ U is a molecule if ∀B, C ∈ U, A ⊆ B ∪ C ⇒ A ⊆ B or A ⊆ C. Clearly, p-sets are molecules of a texture

space. A texture space (U, U) is called simple if all molecules of the space are p-sets. The p-sets and the q-sets are important

tools in the theory of texture spaces since the complete distributivity can be written in terms of p-sets and the q-sets.

Theorem 1.1 [4]. Let (U,⊆) be a complete lattice. The following statements are equivalent.

(i) (U, U) is completely distributive.

(ii) For A, B ∈ U , if A �⊆ B then there exists u ∈ U with A �⊆ Qu and Pu �⊆ B.

Example 1.2 [1]. (i) The pair (U,P(U)) is a texture space where P(U) is the power set of U. It is called a discrete texture.

Clearly, (U,P(U)) is simple and for u ∈ U we have

Pu = {u} and Qu = U \ {u}
and cU : P(U)→ P(U) is the ordinary complementation on (U,P(U)) defined by cU(A) = U\A for all A ∈ P(U).

(ii) The family M = {(0, r] | r ∈ [0, 1]} is a texture on M = (0, 1] which is called the Hutton texture. Clearly, M is

closed under arbitrary intersections. Then it is easy to see that it is a complete lattice with respect to set inclusion. It is

also completely distributive. To see this, take (0, r], (0, s] ∈ M where (0, r] �⊆ (0, s]. Then we have s < r. Choose a point

t ∈ [0, 1] where s < t < r. Since we have Pt = Qt = (0, t], we may write that (0, r] �⊆ Qt and Pt �⊆ (0, s]. Therefore, by
Theorem 1.1. we obtain the complete distributivity of M. Further, M is simple and the complementation cM : M→ M is

defined by ∀r ∈ (0, 1], cM(0, r] = (0, 1− r].

2. Products

Here,we discuss on the product of any two texture spaces (U, U) and (V, V). For themore information about the products

of arbitrary families of textures can be found in [2]. Consider the family A = {A× V | A ∈ U}⋃{U × B | B ∈ V} and define

B =
⎧⎨⎩⋃

j∈J
Ej | {Ej}j∈J ⊆ A

⎫⎬⎭ .
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The family of arbitrary intersections of the elements of B, that is, the family

U ⊗ V =
⎧⎨⎩⋂

i∈I
Di | {Di}i∈I ⊆ B

⎫⎬⎭
is a texture on U × V . Clearly, for all A ∈ U and for all B ∈ V , we have A× B ∈ U ⊗ V . Further, the p-sets and q-sets may be

easily determined as

P(u,v) = Pu × Pv and Q(u,v) = (U × Qv) ∪ (Qu × V).

If cU and cV are complementations on the textures (U, U) and (V, V), respectively, then for the complementation cU×V on

the product, it is enough to check that

cU×V (U × B) = U × cV (B) and cU×V (A× V) = cU(A)× V

for all A ∈ U and B ∈ V . In particular, if P(U) is a discrete texture on U, then for the textures (U,P(U)), (V, V), the p-sets

and q-sets will be

P(u,v) = {u} × Pv and Q (u,v) = ((U\{u})× V) ∪ (U × Qv)

for the product texture (U × V, P(U) ⊗ V). Now take the texture (M,M, cM) in Example 1.2 (ii). We clarify the product

texture P(U)⊗M on U × M. It is easy to see that the sets A× (0, r] are the elements of the product texture for all A ⊆ U

and r ∈ [0, 1]. Note that for P(U), we have Pu = {u} and Qu = U\{u}where u ∈ U. Further, we have Pr = Qr = (0, r] = Qr

in M. Therefore, the p-sets and q-sets of the product texture P(U)⊗M are P(u,r) = Pu × Pr = {u} × (0, r] and Q(u,r) =
(Qu × (0, 1])∪ (U × Qr) = (U\{u} × (0, 1])∪ (U × (0, r]), respectively. On the other hand, the complementations onM
and P(U) are given by

∀r ∈ (0, 1], c(0,1](0, r] = (0, 1− r] and ∀A ⊆ U, cU(A) = U\A.
For the complementation cU×M on the product texture P(U)⊗M, we have

cU×(0,1]((A×M) ∪ (U × (0, r])) = (U\A)× (0, 1− r]
for every subset A ⊆ U and r ∈ M.

3. Hutton textures

The basic motivation of textures is the correspondence between the fuzzy lattices and simple textures [2]. Let (L,≤, ′)
be a fuzzy lattice (Hutton algebra), that is, a complete, completely distributive lattice with an order reversing involution “′".
Recall thatm ∈ L is join-irreducible, if

∀a, b ∈ L, m ≤ a ∨ b⇒ m ≤ a or m ≤ b.

Consider the sets

ML = {m | m is join-irreducible in L},
ML = {̂a | a ∈ L}, and
â = {m | m ∈ ML andm ≤ a}, for all a ∈ L.

Then the mapping :̂L→ML defined by ∀a∈ L, a �→ â is a lattice isomorphism and the triple (ML,ML, cML
) is a com-

plemented simple texture space which is called a Hutton texture. Here the complementation cML
:ML→ML is defined by

∀a ∈ L, cML
(̂a) = â′.

Conversely, every complemented simple texture may be obtained in this way from a suitable Hutton algebra [2].

Example 3.1. (i) The unit interval L = [0, 1] is a Hutton algebrawith the usual ordering≤ and the order reversing involution

′ where u′ = 1 − u for all u ∈ [0, 1]. The corresponding simple texture to the Hutton algebra [0, 1] is the Hutton texture

(M,M, cM) given in Example 1.2 (ii) where

ML =M = {(0, u] | u ∈ [0, 1]} and cML
(0, u] = cM(0, u] = (0, 1− u], ∀u ∈ [0, 1].

Indeed, the set of all join-irreducible elements of [0, 1] is ML = (0, 1] = M and for every u ∈ [0, 1], we have û = (0, u].
Then the mapping

̂: [0, 1] −→M,

u −→ (0, u], ∀u ∈ [0, 1]
is a lattice isomorphism.
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(ii) Recall that a fuzzy subset α of U is a membership function α : U → [0, 1]. We denote the set of all fuzzy subsets of U

by F(U). It is well known that F(U) is also an Hutton algebra with the pointwise ordering

∀u ∈ U, α ≤ β ⇐⇒ α(u) ≤ β(u)

and the order reversing involution α′(u) = 1− α(u). Here the join and the meet of fuzzy sets are considered as

(α ∧ β)(u) = α(u) ∧ β(u) and (α ∨ β)(u) = α(u) ∨ β(u)

for all α, β ∈ F(U).

Now consider the fuzzy points us and fuzzy copoints us of F(U) defined by

us(z) =
⎧⎨⎩ s, if z = u,

0, if z �= u,
and us(z) =

⎧⎨⎩ s, if z = u,

1, if z �= u,

for all z ∈ U, respectively [2,15]. Let us take the sets:

α̂ = {us | us ≤ α},
MF(U) = {α̂ | α ∈ F(U)}, and

MF(U) = {us | us is a fuzzy point in F(U) }.
Then under the lattice isomorphim̂ : F(U) → MF(U), the corresponding texture space will be (MF(U),MF(U)). Every
fuzzy point us can be regarded as an ordered pair (u, s) ∈ U × (0, 1] and then we may write that α̂ = {(u, s) | s ≤ α(u)}.
Therefore, it can be shown that the texture (MF(U),MF(U)) is isomorphic to the product texture

(U ×M, P(U)⊗M, cU×M)

of (U,P(U), cU) and (M,M, cM) while the complementation mapping is defined by

cU×M (α̂) = 1̂− α

for all α ∈ F(U) [2]. Meanwhile, we immediately have that

ûs = {u} × (0, s] = P(u,s) and ûs = (U\{u} × [0, 1]) ∪ (U × (0, s]) = Q(u,s).

4. Direlations

Duality is an essential phenomena in textures and then suitable morphisms are direlations between textures with two

parts which are called relation and corelation, respectively [3]. Now let (U, U), (V, V) be texture spaces and let us consider

the product texture P(U)⊗ V of the texture spaces (U,P(U)) and (V, V) and denote the p-sets and the q-sets by P(u,v) and

Q (u,v) respectively. Then

(i) r ∈ P(U)⊗ V is called a relation from (U, U) to (V, V) if it satisfies

R1 r � Q (u,v), Pu′ � Qu �⇒ r � Q (u′,v).

R2 r � Q (u,v) �⇒ ∃u′ ∈ U such that Pu � Qu′ and r � Q (u′,v).

(ii) R ∈ P(U)⊗ V is called a corelation from (U, U) to (V, V) if it satisfies

CR1 P(u,v) � R, Pu � Qu′ �⇒ P(u′,v) � R.

CR2 P(u,v) � R �⇒ ∃u′ ∈ U such that Pu′ � Qu and P(u′,v) � R.

A pair (r, R), where r is a relation and R a corelation from (U, U) to (V, V) is called a direlation from (U, U) to (V, V).

Note that if (r, R) is a direlation from the texture (U,P(U)) to (V,P(V)), then r and R are point relations from U to V , that

is, r, R ⊆ U × V since P(U)⊗ P(V) = P(U × V). The identity direlation (i, I) on (U, U) is defined by

i =∨{P(u,u) | u ∈ U} and I =⋂{Q (u,u) | u ∈ U�}
where U� = {u | U �⊆ Qu}. Recall that if (r, R) is a direlation on (U, U), then r is reflexive if i ⊆ r and R is reflexive if R ⊆ I.

Then we say that (r, R) is reflexive if r and R are reflexive.

Now let (r, R) be a direlation from (U, U) to (V, V)where (U, U) and (V, V) are any two texture spaces. Then the inverses

of r and R are defined by

r← =⋂ {
Q (v,u) | r � Q (u,v)

}
and R← =∨ {

P(v,u) | P(u,v) � R
}
,

respectively where r← is a corelation and R← is a relation.
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Further, the direlation (r, R)← = (R←, r←) from (V, V) to (U, U) is called the inverse of the direlation (r, R). Then (r, R)
is called symmetric if r = R← and R = r←.

The A-sections and the B-presections with respect to relation and corelation are given as

r→A =⋂ {
Qv | ∀u, r � Q (u,v) ⇒ A ⊆ Qu

}
R→A =∨ {

Pv | ∀u, P(u,v) � R⇒ Pu ⊆ A
}

r←B =∨ {
Pu | ∀v, r � Q (u,v) ⇒ Pv ⊆ B

}
, and

R←B =⋂ {
Qu | ∀v, P(u,v) � R⇒ B ⊆ Qv

}
for all A ∈ U and B ∈ V , respectively.

Now let (U, U), (V, V), (W,W) be texture spaces. For any relation p from (U, U) to (V, V) and for any relation q from

(V, V) to (W,W) their composition q ◦ p from (U, U) to (W,W) is defined by

q ◦ p =∨ {
P(u,w) | ∃ v ∈ V with p � Q (u,v) and q � Q (v,w)

}
and any corelation P from (U, U) to (V, V) and for any corelationQ from (U, U) to (V, V) their composition Q ◦P from (U, U)
to (W,W) defined by

Q ◦ P =⋂ {
Q (u,w) | ∃ v ∈ V with P(u,v) � P and P(v,w) � Q

}
.

Finally, the composition of the direlations (p, P), (q,Q) is the direlation

(q,Q) ◦ (p, P) = (q ◦ p,Q ◦ P).
Further, r is transitive if r ◦ r ⊆ r and R is transitive if R ⊆ R◦R. Thenwe say that (r, R) is transitive if r and R are transitive.

Now let cU and cV be the complementations on (U, U) and (V, V), respectively. The complement r′ of the relation r is the

corelation

r′ =⋂ {
Q (u,v) | ∃w, z with r �⊆ Q (w,z), cU(Qu) �⊆ Qw and Pz �⊆ cV (Pv)

}
.

The complement R′ of the corelation R is the relation

R′ =∨ {
P(u,v) | ∃w, z with P(w,z) �⊆ R, Pw �⊆ cU(Pu) and cV (Qv) �⊆ Qz

}
.

The complement (r, R)′ of the direlation (r, R) is the direlation (r, R)′ = (R′, r′). A direlation (r, R) is called complemented

if r = R′ and R = r′.

5. Textural rough set algebras

Let (r, R) be a direlation on a texture (U, U). Then the quadruple (U, U, r, R) is called a textural approximation space. If

(r, R) is a complemented direlation, then we say (U, U, r, R) is a complemented textural approximation space. Presections

satisfy significant properties as rough sets [3,6]. In this section, we recall some basic results on presections. Some of them

are already proved in [3].

Lemma 5.1. For all A, B ∈ U and the family {Aj | j ∈ J} ⊆ U , presections satisfy the following properties:

(a) A ⊆ B �⇒ r←A ⊆ r←B.

(b) A ⊆ B �⇒ R←A ⊆ R←B.

(c)
∨

j∈J r←Aj ⊆ r←∨
j∈J Aj.

(d) r←⋂
j∈J Aj = ⋂

j∈J r←Aj.

(e)
∨

j∈J R←Aj = R←∨
j∈J Aj.

(f) R←⋂
j∈J Aj ⊆ ⋂

j∈J R←Aj.

(g) r←U = U and R←∅ = ∅.
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Theorem 5.2. If (r, R) is a complemented direlation on the complemented texture space (U, U, cU), then

cUr
←A = R←cUA and cUR

←A = r←cUA.

Let L,H : U → U be two unary operators. Then L and H are called dual operators on (U, U) if,

cUL(A) = H(cU(A)) and cUH(A) = L(cU(A))

for all A ∈ U . Now consider the following conditions:

(L1) L(U) = U, (H1) H(∅) = ∅,
(L2) L(

⋂
j∈J Aj) = ⋂

j∈J L(Aj). (H2) H(
∨

j∈J Aj) = ∨
j∈J H(Aj).

If two dual operators L andH satisfy the conditions L1 and L2 or equivalently,H1 andH2, then the system (U,∨,∩, cU, L,H)
defines a (textural) rough set algebra in the sense of Yao [17], and the operators L and H are called approximation operators

on (U, U).
By Lemma 6.4 and Theorem 5.2, the system (U,∩,∨, cU, r←, R←) is a textural rough set algebra where

r←, R← : U → U
are approximation operators defined by

r←A =∨ {
Pu | ∀v, r � Q (u,v) ⇒ Pv ⊆ A

}
, and

R←A =⋂ {
Qu | ∀v, P(u,v) � R⇒ A ⊆ Qv

}
for all A ∈ U . Then the pair (r←A, R←A) is called a textural rough set.

The following results give an idea for the axiomatic structure of textural rough sets.

Theorem 5.3. Let L,H : U → U be dual operators on the complemented texture space (U, U, cU). Then there exists a unique

complemented direlation (r, R) on (U, U) such that

L(A) = r←A and H(A) = R←A

for all A ∈ U if and only if L and H satisfy the equivalent properties

(L1) L(U) = U,

(L2) L(
⋂

j∈J Aj) = ⋂
j∈J L(Aj), and

(H1) H(∅) = ∅,
(H2) H(

∨
j∈J Aj) = ∨

j∈J H(Aj).

Theorem 5.4. Let L,H : U → U be dual operators. If L satisfies L1, L2 and the axioms

L3 L(A) ⊆ A,

L4 L(L(A)) = L(A), and

L5 cU(L(cU(L(A)) ⊆ A,

then there exists a unique complemented equivalence direlation (r, R) on (U, U) such that

L(A) = r←(A) and H(A) = R←(A)

for all A ∈ U .

Recall that if r is a point relation on U, that is, r ⊆ U × U, then the generalized rough set based on the point relation r is

given by (apr
r
A, aprrA) where

apr
r
A = {x | ∀y ∈ U, (x, y) ∈ r �⇒ y ∈ A}, and

aprrA = {x | ∃y ∈ U, (x, y) ∈ r and y ∈ A}
for all A ⊆ U (see, e.g. [16]). On the other hand, the pair (r, (U × U)\r) can be regarded as a complemented direlation on

the discrete texture (U,P(U)) where R = (U × U)\r. Conversely, if (r, R) is a complemented direlation on (U,P(U)), then
r and R are point relations on U where R = (U × U)\r. Therefore, using the facts

(1) r �⊆ Q (u,v) ⇐⇒ (u, v) ∈ r, and

(2) P(u,v) �⊆ R⇐⇒ (u, v) �∈ R,
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we immediately conclude that

(r←A, R←A) =
(
apr

r
A, aprrA

)
for every set A ∈ P(U). Now we have.

Theorem 5.5. If r is a point relation on U, that is, r ⊆ U × U, then

∀X ⊆ U, apr
r
X = U\r−1(U\X) = r←X and aprrX = r−1(X) = R←X.

6. Textural fuzzy direlations

Textural fuzzy direlations between any two fuzzy lattices are introduced in [15]. Let us denote the texture space (U ×
(0, 1], P(U)⊗M) by (WU,WU) whereM is the texturing in Example 3.1 (i). Consider the fuzzy lattice F(U× [0, 1] × U),
that is, the family of all fuzzy subsets

φ : U × [0, 1] × U → [0, 1]
of the set U × [0, 1] × U. Clearly, the corresponding texture is P(U × (0, 1] × U)⊗M. It is easy to see that the textures

P(U × (0, 1] × U)⊗M and P(U × (0, 1])⊗ (P(U)⊗M)

are isomorphic where P(U × (0, 1]) ⊗ (P(U) ⊗M) = P(WU) ⊗ WU . Hence, if we consider the lattice isomorphism̂ : F(U × [0, 1] × U)→ P(WU)⊗WU, then for all φ ∈ F(U × [0, 1] × U), we obtain

φ̂ = {((u, s), (v, t)) | t ≤ φ(u, s, v)}.
Hence, if r is a relation or a corelation on the texture (WU,WU,wU), then we have r ∈ P(WU) ⊗ WU and so for some

μr : U × [0, 1] × U → [0, 1], we may write that

μ̂r = r and μ̂r = {((u, s), (v, t)) | t ≤ μr(u, s, v)}.
Now let us consider the following definition.

Definition 6.1. Let φ, � ∈ F(U × [0, 1] × U).

(1) φ is called a textural fuzzy relation on F(U) if

φ(u, s, v) =∨{φ(u, s′, v) | 0 < s′ < s},∀(u, s, v) ∈ U × [0, 1] × U.

(2) � is called a textural fuzzy corelation on F(U) if

�(u, s, v) =∧{�(u, s′, v) | s < s′ ≤ 1},∀(u, s, v) ∈ U × [0, 1] × U.

(3) If φ is a textural fuzzy relation and � is a textural fuzzy corelation, (φ, �) is called a textural fuzzy direlation

on F(U).

Definition 6.2. Let (φ, �) be a textural fuzzy direlation on F(U). Then

(i) β ∈ F(U) is called the α-section of the textural fuzzy relation φ on F(U) if

β(v) =∧{t ∈ [0, 1] | s < α(u) �⇒ φ(u, s, v) ≤ t}, ∀v ∈ U.

(ii) β ∈ F(U) is called the α-section of the textural fuzzy corelation � on F(U) if

β(v) =∨{t ∈ [0, 1] | α(u) < s �⇒ t ≤ �(u, s, v)}, ∀v ∈ U.

If β is the α-section of φ, it is denoted by φ→α = β . Similarly, if β is the α-section of �, it is denoted by �→α = β .

Definition 6.3. Let (φ, �) be a textural fuzzy direlation on F(U). Then the pair (�←, φ←) is called the inverse direlation of

(φ, �) where

φ←(v, t, u) =∨{s ∈ [0, 1] | φ(u, s, v) ≤ t}, and

�←(v, t, u) =∧{s ∈ [0, 1] | t ≤ �(u, s, v)}
for all (v, t, u) ∈ U × [0, 1] × U.
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Lemma 6.4. Let (φ, �) be a textural fuzzy direlation on F(U) and α ∈ F(U). Then

(i) (φ←α)(u) = ∨{s ∈ [0, 1] | φ(u, s, v) ≤ α(v) ∀v ∈ U}.
(ii) (�←α)(u) = ∧{s ∈ [0, 1] | α(v) ≤ �(u, s, v) ∀v ∈ U}.

Note that if (φ, �) is a textural fuzzy direlation on F(U), then by Theorem 2.3 in [15] there exists a direlation (r, R) on
(WU,WU) such that φ = μr and � = μR. Therefore, we may write that

φ←(v, t, u) =∨{s ∈ [0, 1] | μr(u, s, v) ≤ t} = μr←(v, t, u), and

�←(v, t, u) =∧{s ∈ [0, 1] | t ≤ μR(u, s, v)} = μR←(v, t, u)

and since φ← = μ←r and �← = μ←R , we have

μr← = μ←r and μR← = μ←R .

On the other hand, we may write the following equivalences.

μ←r α = β ⇐⇒ r←α̂ = β̂, μ←R α = β ⇐⇒ R←α̂ = β̂

and

μ→r α = β ⇐⇒ r→α̂ = β̂, μ→R α = β ⇐⇒ R→α̂ = β̂.

If (i, I) is the identity direlation on (WU,WU), then the corresponding fuzzy textural direlation (μi, μI) on F(U) is given by

μi(u, s, v) =
{

0, if u �= v,

s, if u = v,
μI(u, s, v) =

{
1, if u �= v,

s, if u = v,

The pair (μi, μI) is called the textural fuzzy identity direlation on F(U).
Finally, we recall the following definitions:

(i) (φ, �) is called reflexive if μi ≤ φ and � ≤ μI .

(ii) (φ, �) is called symmetric if φ← = � and �← = φ.

(iii) (φ, �) is called transitive if φ ◦ φ ≤ φ and � ≤ � ◦�.

(iv) (φ, �) is called an equivalence fuzzy direlation if it is reflexive, symmetric and transitive.

7. Textural definability

As it ismentioned in Section 4, the system (U,∩,∨, cU, r←, R←) is a textural rough set algebrawhere r←, R← : U → U
are the approximation operators. Definability can be given in terms of presections.

Definition 7.1. Let (r, R) be a complemented direlation on (U, U). Then the set A ∈ U is called definable if r←A = R←A.

Difunctionsare important tools for texturesasmorphismsof thecategorydfTexwhoseobjects are textures [3].Adifunction

on a texture (U, U) is a direlation (r, R) satisfying the following two conditions:

DF1 For u, v ∈ U, Pu � Qv �⇒ ∃w ∈ U with r � Q (u,w) and P(v,w) � R.

DF2 For u, v ∈ U and w ∈ U, r � Q (w,u) and P(w,v) � R �⇒ Pv � Qu.

Let us note that there is a close relation between difunctions and definability, i.e., textural definability characterizes

difunctions.

Theorem 7.2 [3]. Let (r, R) be a direlation on (U, U). Then the following conditions are equivalent:

(i) (r, R) is a difunction on (U, U).

(ii) Every set A in U is definable that is, r←A = R←A.

Theorem 7.3. Let (r, R) be a reflexive and symmetric direlation on a texture (U, U) and A ∈ U . Then the following conditions

are equivalent.
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(i) A is definable.

(ii) r←A = A.

(iii) R←A = A.

Proof. (i) �⇒ (ii) Let A be definable, that is, let r←A = R←A. Since (r, R) is reflexive, by Theorem 4.2 in [5], we have

r←A ⊆ A and A ⊆ R←A. This implies that r←A = A.

(ii) �⇒ (iii) Since (r, R) is symmetric, by Theorem 4.8 in [6], we may write that R←r←A ⊆ A and so by the assumption

we find R←A ⊆ A. Since R is reflexive, we find R←A = A.

(iii) �⇒ (i) Suppose that R←A = A. Since r is reflexive, r←A ⊆ A and hence, r←A ⊆ R←A. Further, by Theorem 4.8 in

[6], A ⊆ r←R←A and this implies that A ⊆ r←A, that is R←A ⊆ r←A. �

Theorem 7.4. If (r, R) is an equivalence direlation, then for all A ∈ U the presections r←A and R←A are definable.

Proof. Since (r, R) is reflexive and transitive, by Theorem 4.7 in [6], we have r←r←A = r←A and R←R←A = R←A. Then

by Theorem 7.3, we obtain that r←A and R←A are definable. �

The following is a textural counterpart of a family of complete field of sets.

Definition 7.5. Let (U, U, cU) be a complemented texture space and D ⊆ U . Then D is called a textural complete field of sets

on (U, U, cU) if the following conditions hold:

(i) U ∈ D,

(ii) G ⊆ D �⇒ ∨ G ∈ D,

(iii) G ∈ D �⇒ cU(G) ∈ D.

In the above definition, clearly, we have ∅ ∈ D. Further, if G ⊆ D, then we also have⋂
G = cU

(∨{cU(G) | G ∈ G}
)
∈ D.

Theorem 7.6. Let (r, R) be a complemented direlation on (U, U) and D be the family of all definable sets, that is, D = {A ∈ U |
r←A = R←A}. Then we have the following.

(i) If (r, R) is reflexive, then D is a textural complete field of sets.

(ii) If (r, R) is an equivalence direlation, then

∀A ∈ U, r←A =∨{B ∈ D | B ⊆ A} and R←A =⋂{B ∈ D | A ⊆ B}.
Proof. (i) By Lemma 4.1 (g) in [6], we have r←U = U. Since R is reflexive, by Theorem 4.4. (ii) in [6], U ⊆ R←U, that is

R←U = U and so we find that U ∈ D. Now let A ∈ D. In this case,

r←cU(A) = cU(R←A) = cU(r←A) = R←cU(A).

This follows that cU(A) ∈ D. Let {Aj | j ∈ J} ⊆ D. We show that R←∨
j∈J Aj = r←∨

n∈J Aj . Since (r, R) is reflexive, by

Theorem 4.4 in [6], we may write that

r←
∨
j∈J

Aj ⊆
∨
j∈J

Aj ⊆ R←
∨
j∈J

Aj.

By Corollary 2.12 in [3], we have

R←
∨
j∈J

Aj =
∨
j∈J

R←Aj =
∨
j∈J

r←Aj ⊆ r←
∨
j∈J

Aj

and this gives us the desired equality.

(ii) Since r is reflexive, we have r←A ⊆ A. By Theorem 7.4, r←A is definable and so r←A ∈ D. Hence we have r←A ⊆∨{B ∈ D|B ⊆ A}. For the reverse inclusion, let B ⊆ A and B ∈ D. Then wemay write that r←B ⊆ r←A. Further, by Theorem

7.3, r←B = B and this completes the proof. �

Theorem 7.7. LetD be a textural complete field of sets on a complemented texture (U, U, cU). Then there exists a complemented

equivalence direlation (r, R) on (U, U) such that

D = {A ∈ U | r←A = R←A}.
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Proof. Let us consider the operators L,H : U −→ U defined by

L(A) = ∨{B | B ⊆ A and B ∈ D}
and

H(A) = ⋂{C | A ⊆ C and C ∈ D}
for all A ∈ U , respectively. Since we also have D = {cU(A) | A ∈ D}, it is easy to see that L and H are dual operators. Let us

show that L satisfies the following conditions:

(L1) L(U) = U,

(L2) L(
⋂

j∈J Aj) = ⋂
j∈J L(Aj),

(L3) L(A) ⊆ A,

(L4) L(L(A)) = L(A),

(L5) cU(L(cU(L(A)))) ⊆ A.

First, we verify the conditions (L1), (L3) and (L4). Since U ∈ D, clearly L(U) = U. By definition of L we immediately have

L(A) ⊆ A. Furthermore, since L(A) ∈ D, L(L(A)) = L(A). The mapping L is monotonic. Indeed, take A, B ∈ U where A ⊆ B.

This implies that L(A) ⊆ B and since L(A) ∈ D, we find L(A) ⊆ L(B). Clearly, for all j ∈ J, we have
⋂

j∈J Aj ⊆ Aj and since

L is monotonic, L(
⋂

j∈J Aj) ⊆ L(Aj) and this implies that L(
⋂

j∈J Aj) ⊆ ⋂
j∈J L(Aj). By (L3), for all j ∈ J, we may write that

L(Aj) ⊆ Aj and then
⋂

j∈J L(Aj) ⊆ ⋂
j∈J Aj . However, D is a textural complete field, and so we have

⋂
j∈J L(Aj) ∈ D. This

implies that
⋂

j∈J L(Aj) ⊆ L(
⋂

j∈J Aj), that is, the proof of (L2) is complete. For (L5), note that

cU(L(cU(L(A)))) = H(L(A)) =⋂{B ∈ U | L(A) ⊆ B, B ∈ D} = L(A) ⊆ A

since L(A) ∈ D. Since the operators L and H are dual, the dual conditions for the operator H can be proved by using a similar

argument. Then by Theorem 5.4, there exists a complemented equivalence direlation (r, R) on (U, U) where

L(A) = r←A, and H(A) = R←A

for all A ∈ U . Note that for A ∈ D, we have L(A) = A = H(A) and so clearly, we may write D = {A ∈ U | r←A = R←A}. �

8. Definability

Recall that for a given relation r on a universe U, a subset X ⊆ U is definable if apr
r
X = aprrX [16]. In this section, we show

that definability can be stated in terms of inverse relation if the relation is reflexive and symmetric. We observe that if all

sets are definable in a universe, then the relation is a function, and vice versa. Further, if it is given a complete field of sets

D, then we prove the existence of an equivalence relation such that D can be stated using definable sets. Essentially, the

following theorems are natural results of textural discussions in the preceeding section. However, the proofs may be given

independently.

Theorem 8.1. Let r be a reflexive and symmetric relation on U and A ⊆ U. Then the following conditions are equivalent.

(i) A is definable.

(ii) U\r−1(A) = r−1(U\A).
(iii) r−1(A) = A.

Proof. (i) �⇒ (ii) : Since A is definable, apr
r
X = aprrX , and by Theorem 5.5, we have

U\r−1(U\A) = r−1(A),

that is, r−1(U\A) = U\r−1(A).
(ii) �⇒ (iii) : Since r is reflexive, clearly, A ⊆ r−1(A). Suppose that r−1(A) �⊆ A. Let us choose a point u ∈ U where

u ∈ r−1(A) and u �∈ A. Then by the assumption, we have u �∈ r−1(U\A) and this means that

v ∈ U\A �⇒ (u, v) �∈ r.

But u ∈ U\A, and so we find that (u, u) �∈ r. This implies a contradiction because of reflexivity of r.

(iii) �⇒ (i) : Since r is reflexive, we have apr
r
A ⊆ aprrA, that is

U\r−1(U\A) ⊆ r−1(A) = A.



568 M. Diker / International Journal of Approximate Reasoning 53 (2012) 558–572

NowweshowthatA ⊆ U\r−1(U\A). Suppose thatA �⊆ U\r−1(U\A). Choosea ∈ U such thata ∈ Aanda �∈ U\r−1(U\A).
Then a ∈ r−1(U\A) and so for some b ∈ U\A, we have (a, b) ∈ r. By symmetry, (b, a) ∈ r and hence b ∈ r−1({a}) ⊆
r−1(A) = Awhich is a contradiction. �

Let (r, R) be a difunction on (U,P(U)). Then it is easy to see that DF1 and DF2 correspond to the following conditions,

respectively, that is, r is an ordinary function on U:

(F1) For any u ∈ U we have w ∈ U such that (u,w) ∈ r.

(F2) If for some w ∈ U, (w, u) ∈ r and (w, v) ∈ r where u, v ∈ U, then u = v.

Theorem 8.2. Let r be a relation on U. Then the following conditions are equivalent.

(i) r is a function on U.

(ii) ∀X ⊆ U, X is definable.

(iii) ∀x ∈ U, {x} is definable.
Proof. (i) �⇒ (ii) : Let r be a function on U and suppose that apr

r
X �= aprrX . Then for some x ∈ U, we may write that

x ∈ U\r−1(U\X) and x �∈ r−1(X), and so we have

x �∈ r−1(X) ∪ r−1(U\X) = r−1(X ∪ (U\X)) = r−1(U).

However, this is a contradiction, since r−1(U) = U. Now let x �∈ U\r−1(U\X) and x ∈ r−1(X). Then x ∈ r−1(U\X) and this

implies that (x, y), (x, z) ∈ r for some y, z ∈ U where y �= z. Since r is a function, we also obtain a contradiction.

(ii) �⇒ (iii) : Immediate.

(iii) �⇒ (i) Now suppose that for all x ∈ U, {x} is definable. If r is not a function, then we have two cases:

(a) For some x, y, z ∈ U we have (x, y), (x, z) ∈ r where y �= z, or

(b) For some x ∈ U, x �∈ r−1(U).

Consider the case (a). Note that x �= y or x �= z. Let x �= y. By the assumption, we have U\r−1(U\{z}) = r−1({z}).
Since (x, z) ∈ r, then x ∈ r−1({z}). However, z �= y implies that y ∈ U\{z}. Hence, we have x ∈ r−1(U\{z}) and this

gives that x �∈ U\r−1(U\{z}). But this contradicts to the equality U\r−1(U\{z}) = r−1({z}). If x �= z, we obtain a similar

contradiction.

Now take the case (b). Since {x} is definable, we have U\r−1(U\{x}) = r−1({x}). Further, by (b), x �∈ r−1({x}) and x �∈
r−1(U\{x}) and so x ∈ U\r−1(U\{x}) is a contradiction. �

Theorem 8.3. Let D be a complete field on U. Then there exists an equivalence relation r on U such that

D = {A ⊆ U | apr
r
A = aprrA}.

Furthermore,

[u]r =
⋂{A ⊆ U | u ∈ A and A ∈ D}

for all u ∈ U where [u]r is the equivalence class with respect to r.

Proof. Consider the operators L,H : P(U)→ P(U) defined by

L(A) = ⋃{B | B ⊆ A and B ∈ D}
and

H(A) = ⋂{C | A ⊆ C and C ∈ D}
for all A ⊆ U, respectively. We may use a similar argument as in the proof of Theorem 7.7 that the operators L and H satisfy

the conditions of Theorem 5 in [16]. Hence, we have an equivalence relation r such that the operators L and H satisfy the

equalities

L(A) = apr
r
A, and H(A) = aprrA

where

D = {A ⊆ U | apr
r
A = aprrA}.
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Sinceu ∈ [u]r and [u]r ∈ D, clearly
⋂{A ⊆ U | u ∈ A andA ∈ D} ⊆ [u]r . Suppose that [u]r �⊆ ⋂{A ⊆ U | u ∈ A andA ∈ D}.

Let us choose a point v ∈ U where v ∈ [u]r and v �∈ ⋂{A ⊆ U | u ∈ A and A ∈ D}. This implies that (u, v) ∈ r and for some

A ∈ D, we have u ∈ A and v �∈ A. Then u �∈ apr
r
A and so u �∈ L(A). But since A ∈ D, L(A) = H(A) and so u �∈ H(A). Now the

inclusion A ⊆ H(A) gives that u �∈ Awhich leads to a contradiction. �
The above result can be proved using textural concepts. To see this let us consider ordinary relations, and direlations in

the context of discrete textures. For details on more general results, we refer to [14].

Let (r, R) be a direlation on the discrete texture (U,P(U)). Then we have

r, R ∈ P(U)⊗ P(U) = P(U)× P(U) = P(U × U),

that is, r, R ⊆ U × U. Further,

r′ =⋂{Q (u,v) | ∃w, z ∈ U with r �⊆ Q (w,z), cU(Qu) �⊆ Qw and Pz �⊆ cU(Pv)}
=⋂{(U × U)\{(u, v)} | ∃w, z with (w, z) ∈ r, {u} �⊆ U\{w} and {z} �⊆ V\{v}}
= (U × U)\⋃{(u, v) | ∃w, z with (w, z) ∈ r, u = w, v = z}
= (U × U)\⋃{(u, v) | (u, v) ∈ r}
= (U × U)\r

and

R′ =∨{P(u,v) | ∃w, z with P(w,z) �⊆ R, Pw �⊆ cU(Pu) and cU(Qv) �⊆ Qz}
=⋃{{(u, v)} | ∃w, z with (w, z) �∈ R,w �∈ U\{u} and v �∈ U\{z}}
=⋃{(u, v) | ∃w, z with (w, z) �∈ R, u = w and v = z}
= (U × U)\⋃{(u, v) | (u, v) ∈ R}
= (U × U)\R.

If (r, R) is a complemented direlation on (U, U), then we have R = r′ = (U × U)\r. Furthermore, the textural inverses of

the relation and corelation are:

R← =∨{P(v,u) | Pu,v) �⊆ R}
= {{(v, u)} | (u, v) �∈ R} = R−1

and

r← =⋂{Q (v,u) | r � Q (u,v)}
=⋂{(U × U)\{(v, u)} | (u, v) ∈ r}
= (U × U)\{{(v, u)} | (u, v) ∈ r} = (U × U)\r−1.

It is easy to check that if (iU, IU) is the identity direlation on (U,P(U)), then

i = 	 = {(u, u) | u ∈ U} and I = (U × U)\	.

In view of Lemma 3.1 in [14], we have the following equivalences for the complemented direlations on discrete textures:

Theorem 8.4. Let (r, R) be a direlation on (U,PU). Then

(i) (r, R) is a reflexive direlation on (U,P(U))⇐⇒ r is a reflexive relation on U.

(ii) (r, R) is a symmetric direlation on (U,P(U))⇐⇒ r is a symmetric relation on U.

(iii) (r, R) is a transitive direlation on (U,P(U))⇐⇒ r is a transitive relation on U.

Proof. (i) it is immediate since i ⊆ r ⇐⇒ {(u, u) | u ∈ U} ⊆ r.

(ii) r← = R⇐⇒ (U × U)\r−1 = (U × U)\r ⇐⇒ r = r−1.
(iii) Since

r ◦ r =∨{P(u,v) | ∃w ∈ U with r �⊆ Q (u,w) and r �⊆ Q (w,v)}
= {(u, v) | ∃w ∈ U with (u,w) ∈ r and (w, v) ∈ r},

the textural composition is the usual composition of relations. This follows that r is a transitive relation on U. �



570 M. Diker / International Journal of Approximate Reasoning 53 (2012) 558–572

IfD is a complete field of sets onU, then it is also a textural complete field of sets on the discrete texture (U,P(U)). Thenby

Theorem 7.7, there exists a complemented equivalence direlation (r, R) on P(U) such thatD = {A ∈ P(U) | r←A = R←A}.
On the other hand, by Theorem 8.4, r is an equivalence relation on U. Further, by Theorem 5.5 we have

∀X ⊆ U, apr
r
X = r←X and aprrX = R←X.

This shows that the first part of Theorem 8.3 is a natural result of Theorem 7.7.

9. Complete Fields of Fuzzy Sets

Nowwepresent somebasic results on various fuzzy rough set algebras in the sense of Yao [16]. As it ismentioned in Sections 3

and 6, a fuzzy lattice (Hutton algebra) F(U) corresponds to a texture (WU,WU) which is called a Hutton texture, and a

direlation between any two Hutton textures corresponds to a textural fuzzy direlation. This provides an easy way to observe

the properties of definable fuzzy sets and complete fields of fuzzy sets on a fuzzy lattice F(U).

Definition 9.1. A subset F ⊆ F(U) is called a complete field of fuzzy sets on F(U) if the following conditions hold:

(i) 1∈ F where 1 : U → [0, 1] is the function defined by ∀u ∈ U, 1(u) = 1.

(ii) G ⊆ F �⇒ ∨ G ∈ F .

(iii) ∀α ∈ F , 1−α ∈ F .

Theorem 9.2. If F is a complete field of fuzzy sets on F(U), then the family

D = {α̂ | α ∈ F}
is a textural complete field of sets on the corresponding texture (WU,WU).

Proof. Recall that the mapping ̂ : F(U)→ MF(U) is a lattice isomorphism where MF(U) is the set of all fuzzy points in

F(U). Therefore the family D satisfies the following conditions:

(a) 1̂ = U × (0, 1] = WU ∈ D.

(b) Let {α̂j | j ∈ J} ⊆ D. Then {αj | j ∈ J} ⊆ F . Since F is a complete field of fuzzy sets in F(U), we have
∨{αj | j ∈ J} ∈ F

and so we may write that∨
j∈J

α̂j =
∨̂
j∈J

αj ∈ D.

(c) For all α ∈ F , we have 1− α ∈ F and so 1̂− α ∈ D. By definition of the complementation c of (WU,WU), we have

1̂− α = c(α̂) ∈ D.

Hence, D is a textural complete field of sets on (WU,WU). �

Theorem 9.3. Let (φ, �) be a reflexive textural fuzzy direlation on F(U). Then the family

F = {α ∈ F(U) | φ←α = �←α}
is a complete field of fuzzy sets on F(U).

Proof. By Theorem 2.3 in [15], there is a direlation (r, R) on (WU,WU) where μr = φ and μR = �. By Theorem 7.1 (i) in

[5], (r, R) is also a reflexive direlation on (WU,WU). Then by Theorem 7.6 (i), the family

D = {α̂ | r←α̂ = R←α̂, α ∈ F(U)}
is a textural complete field of sets on (WU,WU). On the other hand, by definition of presections of direlations and textural

fuzzy direlations, we have

r←α̂ = β̂ ⇐⇒ φ←α = β ,

R←α̂ = γ̂ ⇐⇒ �←α = γ .

Since the lattice isomorphism̂ is injective, r←α̂ = R←α̂ implies that β = γ . Hence, we find φ←α = �←α. Essentially,

we have

r←α̂ = R←α̂ ⇐⇒ φ←α = �←α

for all α ∈ F(U). We have concluded that the family F satisfies the desired conditions. �
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Theorem 9.4. Let F be a complete field of fuzzy sets on F(U). Then there exists an equivalence textural fuzzy direlation (φ, �)
such that

F = {α | φ←α = �←α}.
Proof. By Theorem 9.2, D = {α̂ | α ∈ F} is a textural complete field of sets on (WU,WU). Then by Theorem 7.7, there is

an equivalence direlation (r, R) on (WU,WU) such that D = {α̂ | r←α̂ = R←α̂}. Take the corresponding textural fuzzy

direlation (φ, �) on F(U) where φ = μr and � = μR. By Theorem 7.1 in [5], (φ, �) is an equivalence textural fuzzy

direlation on F(U). Further, we have

F = {α ∈ F(U) | α̂ ∈ D} = {α ∈ F(U) | r←α̂ = R←α̂} = {α ∈ F(U) | φ←α = �←α}. �

Now let ϕ be a fuzzy relation, that is, ϕ ∈ F(U × U). Recall that the pair (φϕ, �ϕ) is a textural fuzzy direlation on F(U)
where

φϕ(u, s, v) = ϕ(u, v) ∧ s and �ϕ(u, s, v) = (1− ϕ(u, v)) ∨ s

for all (u, s, v) ∈ U × [0, 1] × U [15]. For any α ∈ F(U), the presections are the fuzzy sets, that is,

∀u ∈ U, �←ϕ α(u) = aprα(u) =∧{s ∈ [0, 1] | α(v) ≤ 1− ϕ(u, v) ∨ s, v ∈ U}
and

φ←ϕ α(u) = aprα(u) =∨{s ∈ [0, 1] | ϕ(u, v) ∧ s ≤ α(v), v ∈ U}.
Further, the system (F(U),∧,∨,∼, �←ϕ , φ←ϕ ) is a fuzzy rough set algebra [5].

Then we may write the following result as a corollary of Theorem 9.3:

Corollary 9.5. Let ϕ be a reflexive fuzzy relation. Then the family

F =
{
α ∈ F(U) | �←ϕ α = φ←ϕ α

}
is a complete field of fuzzy sets on F(U).

For a fuzzy relation ϕ : U × U → [0, 1], the system(
F(U),∧,∨,∼, φ→ϕ , �→ϕ

)
is also a fuzzy rough set algebra and this gives the fuzzy rough sets

∀u ∈ U, �→ϕ α(u) = aprα(u) =∧{1− ϕ(v, u) ∨ α(v) | v ∈ U},
φ→ϕ α(u) = aprα(u) =∨{ϕ(v, u) ∧ α(v) | v ∈ U}

of Pei’s model under the assumption that ϕ has the symmetry property (see [13] and Example 2.26 in [15]).

Finally, using dual arguments we have the following.

Corollary 9.6. Let ϕ be a reflexive fuzzy relation. Then the family

F = {α ∈ F(U) | �→ϕ α = φ→ϕ α}
is a complete field of fuzzy sets on F(U).

10. Conclusion

Direlations are suitable morphisms for textures and they play an important role in texture space theory (see e.g., [3,7]).

Presections and sections with respect to direlations provide a different perspective for the basic properties of rough sets.

Hence, theyare alsoessential tools for anabstractmodel of roughset theory [7]. It is knownthat textures are alternativepoint-

set based setting for fuzzy sets. In this setting, direlations between Hutton textures turn into the textural fuzzy direlations

between fuzzy lattices [15]. In view of this fact, using definability we have observed that the complete field of fuzzy sets can

be stated for the various fuzzy rough set algebras which are studied in the literature of rough set theory. On the way, we

have given a partial affirmative answer to an open problem related to fuzzy approximation spaces imposed by Wu in [20].
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