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In this paper a novel approach is presented for an analytic approximate solution of nonlin-
ear differential equations with boundary conditions. By converting the nonlinear problem
into an initial value form, a shooting-like procedure is introduced based on the powerful
homotopy analysis technique. The proposedmethodology is shown towork adequately for
solving single or multiple solutions of some sample nonlinear boundary value problems.
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1. Introduction

Finding approximate analytical solutions of nonlinear boundary value problems is extremely significant in engineering
and physical sciences. The driving motivation behind this article is prompted by the recent publications [1,2], where the
papers consider the approximate analytical solutions of some nonlinear boundary layer equations of fluid mechanics. In
this connection, a shooting-like procedure which can be adopted for the solution of such equations is proposed here.

A commonly used numerical method for the solution of two-point boundary value problems is the shooting method.
This well-known technique is an iterative algorithm which attempts to identify appropriate initial conditions for a related
initial value problem that provides the solution to the original boundary value problem. Hence, solutions of boundary value
problemswith boundary conditions at distinct points are generally calculated by certain integration schemes in combination
with a shooting procedure, see for instance [3,4]. The shooting method is implemented as a standard numerical procedure
for the solution of two-point boundary-value problems (generally arising from the Navier–Stokes equations) in standard
all-purpose mathematical software like MathCAD with its sbval function and Mathematica with its ndsolve function [5].
Estimation of the global discretization error in shooting methods for linear boundary value problems was discussed in [6].
In [7] using a spline approximation, the Falkner–Skan equation was solved through the use of the shooting technique for
handling the problem when the conditions imposed are of boundary-value rather than an initial-value type for different
values of its parameters. A nonlinear shooting method for two-point boundary value problems was proposed in [8]. Gebeily
and Attili [9] introduced an iterative shooting method for a certain class of singular two-point boundary value problems. A
shooting method for nonlinear heat transfer using automatic differentiation was implemented in [10]. Very recently, Attili
and Syam [11] presented an efficient shooting method for solving two-point boundary value problems.

Together with certain widespread numerical techniques, another classical approach for approximate solutions of non-
linear boundary value problems is to pursue perturbation methods. However, the solutions obtained within perturbation
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techniques may not be uniform, restricting the applicability of results [12,13]. To overcome the limitations of the perturba-
tive techniques Liao in [14] proposed a new analytic method for highly nonlinear problems, namely the homotopy analysis
method. Unlike the perturbative and non-perturbative methods, this technique allows more than a uniformly valid analytic
solution of nonlinear equations with no possible small parameters. In this method, according to the homotopy technique, a
homotopy with an embedding parameter is constructed, and the embedding parameter is considered as a small parameter.
Thus the original nonlinear problem is converted into an infinite number of linear problems without using the perturbation
techniques. Further advantages of this new technique have been severally outlined in the literature as also briefly addressed
in Section 2. After the introduction of the method, several problems of science and engineering have been revisited. For ex-
ample, Liao successfully applied the method for the analytical solution of the Falkner–Skan equation [15]. Foundations and
fundamentals of themethod have been recently summarized in [16]. The homotopy analysismethod keeps evolving steadily
and the recent research clearly shows that it may replace the place of traditional perturbation or numerical methods in the
near future, see for instance [17]. The idea of shooting was recently used in the homotopy analysis approach [18].

As opposed to the conventional shooting schemes implemented via different numerical methods, the objective of this
paper is to propose an analytic approximate procedure for the two-point boundary value problems. The methodology
that we develop relies essentially upon the recently fashionable and powerful homotopy analysis method. Within this
aim, suitable auxiliary linear operators, convergence control parameters and initial guesses are suggested that generate
an explicit analytic form of the solution of nonlinear two-point boundary value problems. The proposed homotopy analysis
technique provides uniformly valid approximate series solutions. Three examples are discussed in this paper which provide
samples of how simple shooting introduced here can be applied to the analysis of boundary value problems encountered in
mechanical engineering.

The following strategy is adopted in the rest of the paper. In Section 2 themethodology of the homotopy analysis approach
is presented. Application of themethod to nonlinear boundary value problems is implemented in Section 3, inwhich analytic
expressions are derived and compared with the numerical ones. Finally conclusions follow in Section 4.

2. The problem and proposed methodology

The basic idea of the shooting method for two-point boundary value problems is to reformulate the problem as a
nonlinear parameter estimation problem. The new problem requires the solution of a related initial value problem with
initial conditions chosen to approximate the boundary conditions at the other endpoint. If these boundary conditions are
not satisfied to the desired accuracy, the process is repeated with a new set of initial conditions until the desired accuracy
is achieved or an iteration limit is reached. To be more specific, we consider the two-point boundary value problems of the
form

F [x, f (x), f ′(x), f ′′(x), f ′′′(x)] = 0,

f (0) = λ1, f ′(0) = λ2, f ′′(0) = λ3, f (∞) = 1, f ′(∞) = 1, (2.1)

where either of the infinity boundary conditions is supplemented with only one unknown λ. It should be noticed that the
unknownparameterλ can be scaled out of the boundary conditions for the sake of embedding it into the differential equation
after some suitable transformations.

The usual algorithmknown for the solution of (2.1) is the simple or single shootingmethod.While thismethod is effective
for many problems, some specific deficiencies should be mentioned [19]. For instance, assuming (2.1) has a solution, there
is no guarantee that the initial value problem replaced by the boundary value problem will have a solution on the interval
of interest for all λ. Even if it does have a solution, the problem may be stiff. In such a case the solution at x = ∞ may
be so inaccurate as to make the results of the Newton–Raphson step meaningless. When the accuracy of the solution at
x = ∞ is known with sufficient accuracy, the local convergence of the Newton–Raphson step may prevent the iterations
from converging to a solution of the original boundary value problem (2.1). This difficulty can be addressed by replacing
the Newton–Raphson step with another iterative solver with improved convergence properties (e.g., modified Newton’s
method). Another difficulty is to truncate the infinity boundary condition at a finite value in numerical schemes, whichmay
yield converged solutions not to the true solution of (2.1).

Liao in [14] proposed a new kind of analytic technique for nonlinear problems, namely the homotopy analysis method.
This method is based on the homotopy and has several advantages. To underline, firstly its validity does not depend upon
whether or not nonlinear equations under consideration contain small or large parameters, hence it can solve more of the
strongly nonlinear equations than the perturbation techniques. Secondly, it provides uswith a great freedom to select proper
auxiliary linear operators and initial guesses so that uniformly valid approximations can be obtained. Thirdly, it gives a family
of approximations which are convergent in a larger region. Fascinating examples are provided within the ref. [20].

Prior to an outline of the homotopy analysis method let us reformulate (2.1) into the form

N[u(t)] = 0, (2.2)

with boundary conditions

B1[u, u′, u′′
] = 0, (2.3)
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where N is a general nonlinear operator and B1 is a boundary operator. The important stage of the technique is that the
boundary value problem (2.2) and (2.3) is transformed to an equivalent problem so that the conditions (2.3) involve an
unknown parameter λ and are separated into

B[u, u′, u′′
; λ] = 0, G[u, u′, u′′

] = 0, (2.4)

where the latter condition corresponds to the unused boundary condition at the other point that will later determine the
value of λ.

Such a split of the original system (2.2)–(2.3) enables us to construct a homotopy

(1 − p)L(u − u0) + phN = 0,

B[u, u′, u′
; λ] = 0. (2.5)

In the homotopy system (2.5), p ∈ [0, 1] is an embedding parameter, and h is the parameter to adjust the convergence of
the homotopy series to be defined later. Moreover, L is an auxiliary linear differential operator whose proper shape depends
on the particular example considered, while u0(t) is the initial guess for the solution.

At this stage λ might be treated in two different manners;
Case I. The unknown λ might be taken independent of the embedding parameter p and it is eventually computed from the
unused boundary condition from (2.4), as implemented in [2] for instance. However, this process requires solution of a
high-order algebraic equation involving λ, while it can be easily evaluated by a numerical scheme, but resulting in so many
irrelevant roots to be dropped off.
Case II. In the second case, λ is taken as the function of p and determined sequentially during the calculation of homotopy
variables; as a result an explicit analytic formula is constructed for λ. We discuss both of the methodologies in this paper,
but only describe the second case in the following.

It is obvious from Eqs. (2.5) that for p = 0 we have the initial approximation (u0(t) = u(t, 0), λ0 = λ(0)) to the
solution, and when p = 1 we have the exact solution (u(t) = u(t, 1), λ = λ(1)) to Eqs. (2.2)–(2.3). It can be deduced
that the deformation process of p from zero to unity is just that of from (u(t, 0), λ(0)) to (u(t, 1), λ(1)). The zeroth-order
deformations to homotopy (2.5) are thus basically the linear differential equation with the boundary conditions in (2.5)
satisfied exactly and N = 0. Next, the kth-order deformation equations follow as

L(uk − κkuk−1) = −hNk, uk(0) = 0 (2.6)

and where κk = 0 for k ≤ 1 and κk = 1 otherwise. In addition to this, Nk and λk are defined by

Nk =
1
k!

∂kN
∂pk


p=0

, λk =
1
k!

∂kλ

∂pk


p=0

.

Taking into account Taylor series expansion of the solutions u(t, p) and λ(p) at p = 0 and later imposition of the expansion
at p = 1 we obtain respectively

u(t) = u0(t) +

∞−
k=1

uk(t), (2.7)

and

λ = λ0 +

∞−
k=1

λk, (2.8)

where uk and λk are also defined by

uk =
1
k!

∂ku
∂pk


p=0

, λk =
1
k!

∂kλ

∂pk


p=0

.

TheMth-order finite truncation of the series (2.7)–(2.8) yields the approximations to the solutions

u(t) =

M−
k=0

uk(t),

λ =

M−
k=0

λk, (2.9)

which represent the approximate solution of (2.2) to the desired degree of accuracy.
It is worth indicating that up to this stage, the linear operator L, the initial approximation guess u0, and the auxiliary

parameterhhavebeen chosenproperly so that the series solutions (2.7)–(2.8)would be convergent.Meanwhile, owing to the
unknown parameter λ called the shooting parameter, the above procedure resembles the shooting techniques as employed
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Table 1
Illustrating the λ computed at the orders written for the problem (3.10).

α M = 1 M = 20 M = 40 M = 60 Exact

−.20 0.29393 0.30365 0.30393 0.30415 0.30417
0.00 0.31622 0.33171 0.33191 0.33205 0.33206
0.20 0.29933 0.31298 0.31319 0.31334 0.31336
0.40 0.28000 0.29202 0.29225 0.29243 0.29244

during the conventional numerical schemes. Therefore, we call the above method the shooting-like analytic method in this
paper. It is essential that the existence of unique or multiple solutions for the original boundary value problem (2.2)–(2.3)
depends on the fact whether the unused boundary condition in (2.4) admits unique or multiple values for the formally
introduced parameterλ in the boundary conditions. Setting the unused boundary condition at theMth-order approximation
(2.9) in the first case will produce the shooting parameter numerically, or in the second case setting the unused condition
initially will yield the analytic expression for the shooting parameter.

3. Results and discussion

In this section we apply the above outlined homotopy algorithms to some selected physical two-point boundary value
problems. Approximate analytical solutions obtained from the method have been compared with those obtained from the
numerical computations.

The first example that is encountered here is the boundary layer flow over a flat plate which has a constant velocity
opposite in direction to that of the uniform main stream. In terms of the Crocco variables [21] (which naturally reduce the
infinity boundary condition to unity) and some further suitable transformations, the problem can be formulated as

λ2F(η)F ′′(η) +
η + α

2
= 0, F(0) = 1, F ′(0) = 0, F(1 − α) = 0, (3.10)

where α is the ratio of the speed of the plate surface to the velocity of the free stream and λ corresponds to the skin friction
coefficient, that appears due to the rescaling of the first boundary condition in (3.10). For clarity, we propose the following
homotopy parameters for evaluation of the solutions u(t, p) and λ(p), that are to be substituted into Eqs. (2.5)

L =
d2

dη2
, F0 = 1 −

1
(−1 + α)2

η2,

N1 = λ2
0F0F

′′

0 +
η + α

2
,

Nk =

k−1−
j=0

F1jF2k−1−j, F1k =

k−
j=0

λk−jFj, F2k =

k−
j=0

λk−jF ′′

j .

As a result, the leading value of λ is calculated as

λ = | − 1 + α|

√
1 + 2α
√
10

.

Together with these and also taking into account α varying initially, and having assigned the convergence control parameter
h = −5, the homotopy solutions in (2.9) of orderM = 1, 5 and20 are shown in Fig. 1 for the pair (α, λ)using case II. It is seen
from the curves how the homotopy solutions converge. In addition to this, for specific values of α, the corresponding values
of λ are compared using case II with the numerical solution in Table 1. It can be seen that as the order of the homotopy series
solution in Eqs. (2.9) increases, a fast convergence takes place to bring our approximate solution into excellent agreement
with the numerical solution; so, the approximation to the present order can be used to represent the exact solution. It is
quite remarkable that the difference between our homotopy solution and the numerically calculated one decays quite fast
as the order of iteration in the homotopy series (2.9) increases. This clearly implies the fact of convergence of the homotopy
series solution to the true solution of system (3.10).

It is well-known that nonlinear boundary-value problems have multiple solutions in many cases, see for instance, the
nonlinear problem arising in heat transfer [22], the strongly nonlinear Bratu equation [23] and the nonlinear reaction–
diffusion model [24]. The second example that we consider is a model of convective flow in fluid-saturated porous medium
which admits multiple (dual) solutions, see [25]. Under the boundary layer and Darcy–Boussinesq approximations and also
further proper transformations the governing equations of the steadymixed convection flow past a plane of arbitrary shape
can be reduced to the following form

2λ2F ′′(η) + F(η) − F 2(η) = 0, F(0) = 1 + β, F ′(0) = 1, F(∞) = 1. (3.11)



1752 M. Turkyilmazoglu / Mathematical and Computer Modelling 53 (2011) 1748–1755

Fig. 1. Solution of Blasius equation (3.10), skin friction parameter λ versus α with h = −5: straight curve from the numerical solution and homotopy
solutions are the thick-dashed curve from the 20th-order, dashed curve from the 5th-order and dotted curve is the leading-order approximation.

Table 2
Illustrating the values of λ computed at the orders written for the problem (3.11) for case II.

ϵ M = 1 M = 5 M = 10 M = 15 Exact

−1.20 0.359487 0.379150 0.379492 0.379473 0.379473
−1.00 0.408248 0.408248 0.408248 0.408248 0.408248
−0.80 0.397048 0.386706 0.386446 0.386437 0.386437
−0.60 0.341822 0.329313 0.328692 0.328633 0.328633
−0.40 0.230940 0.242028 0.242272 0.242212 0.242212

Magyari et al. [26] showed that Eqs. (3.11) admit dual solutions for any given value of the parameter b ∈ [
−3
2 , 0] which are

F = −
1
2

+
3
2
tanh2


η

2
√
2

± ln

√
3 +

√
3 + 2β

√
3 −

√
3 + 2β


, (3.12)

so that the physical interest wall skin friction is obtained as follows

λ = ±β


2β + 3

6
. (3.13)

It should be remarked that λ appears in (3.11) due to the rescaling of the second boundary condition in (3.11).
For this problem, the corresponding auxiliary homotopy parameters are as listed

L =
d2

dη2
− 1, F0 = 1 + (1 + 2β)e−η

− (1 + β)e−2η,

Nk = Fk−1 + 2
k−1−
j=0

j−
i=0

λiλj−iF ′′

k−1−j −

k−1−
j=0

FjFk−1−j.

The leading-order value of λ from the analysis is obtained as

λ = ±


−6 − 27β − 16β2
√
10

√
5 + 2β

.

It is plausible that for β = −1, this homotopy formula yields λ = ±
1

√
6
, which are the exact values obtained from (3.13). The

homotopy solution is next performedwith the convergence control parameter h = −1.65. Fig. 2 demonstrates a comparison
between the 5th-order homotopy series solution (2.9) and the numerically computed one from (3.13). Moreover, Fig. 3
shows a comparison between the homotopy solution for F and the exact solution corresponding to β = −1. As seen from
the figures, the homotopy method generates results which get more accurate as the order of approximation increases. It
is worth mentioning that the absolute residual error (evaluated as the integral of the difference) between the 15th-order
homotopy solution and the exact solution is only 4.43055 × 10−8.

Table 2 presents a list of values calculated at different orders of approximation, which clearly illustrate the convergence
of homotopy series results (3.11) to the exact ones. Table 3 presents case 1 of the homotopy methodology as described in
Section 2. It is seen that method II of determining λ is better than method I.
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Fig. 2. Solution of Eq. (3.11), skin friction parameter λ versus α with h = −1.65: straight curve from the numerical solution of Eq. (3.13) and homotopy
solutions are the thick-dashed curve from the 5th-order and dotted curve is the leading-order approximation.

Fig. 3. Solution of Eq. (3.11) with β = −1 and h = −1.65: straight curve from the numerical solution of Eq. (3.12) and homotopy solutions are the
thick-dashed curve from the 15th-order, dash–dotted curve from the 3th-order and dotted curve is the leading-order approximation.

Table 3
Illustrating the values of λ computed at the orders written for the problem (3.11) for case I.

ϵ M = 1 M = 5 M = 10 M = 15 Exact

−1.20 0.359487 0.369419 0.371126 0.371397 0.379473
−1.00 0.408248 0.408248 0.408248 0.408248 0.408248
−0.80 0.397048 0.388123 0.386766 0.386521 0.386437
−0.60 0.341822 0.330334 0.328876 0.328673 0.328633
−0.40 0.230940 0.241217 0.242210 0.242193 0.242212

The final example that we consider here is a similar solution for the nano boundary layerwith nonlinear Navier boundary
condition, particularly the flow past a wedge, see [2]. The governing equations for the fluid flow are given by

f ′′′
+

2n − 1
3n − 2

ff ′′
−

n
3n − 2

(f ′2
− 1) = 0, (3.14)

complemented with the boundary conditions

f (0) = 0, |f ′(0)| − l|f ′′(0)|n = 0, f ′(∞) = 1. (3.15)

A prime denotes a derivative with respect to ζ and the parameters in Eqs. (3.14)–(3.15) are n > 0 is an arbitrary power
parameter related to the wedge angle and the constant l ≥ 0 is the slip length. Moreover, the second condition in (3.15) is
the Navier slip boundary condition.

Liao [2] introduced f ′(0) = α instead of the Navier boundary condition in Eq. (3.15) and pursued the usual homotopy
method as outlined above. At the Mth-order approximation to the solution f , he then imposes f ′′(0) which is related to α
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Fig. 4. Solution of Eq. (3.18), the parameter λ versus n with l = 0 and h = −0.05: straight curve from the numerical solution of equation and homotopy
solutions are the dashed curve from the 5th-order and dotted curve is the leading-order approximation.

via the Navier boundary condition

|α| = l|f ′′(0)|n. (3.16)

However, Eq. (3.16) is an algebraic equation which demands a numerical solution. We instead reformulate the system
(3.14)–(3.15) in such a way that the shooting-like approach can be used. Keeping this in mind, let us use the new
transformations

f =
F
λ

, η = λζ , (3.17)

where λ = f ′′(0). Under these transformations, Eqs. (3.14)–(3.15) can be rewritten as

λ2F ′′′
+

2n − 1
3n − 2

FF ′′
−

n
3n − 2

(F ′2
− 1) = 0, (3.18)

F(0) = 0, |F ′(0)| = l|λ|
n, F ′′(0) = 1, F ′(∞) = 1.

For this physical two-point boundary value problem, the corresponding auxiliary homotopy parameters are as follows

L =
d3

dη3
+

d2

dη2
, F0 =

1
2
(−2 + 3l) + η + (1 − 2l)e−η

+
l
2
e−2η,

Nk =

k−1−
j=0

j−
i=0

λiλj−iF ′′′

k−1−j +
2n − 1
3n − 2

k−1−
j=0

FjF ′′

k−1−j −
n

3n − 2


k−1−
j=0

F ′

j F
′

k−1−j − (1 − κk)


.

The homotopy solution in this case is performed with the convergence control parameter h = −0.05. For instance, when
l = 0, the leading-order λ as a function of n is obtained as

λ =

√
−23 + 123n

6
√

−4 + 6n
. (3.19)

Fig. 4 shows the variation of λ against n for l = 0 obtained from the homotopy series solution as well as the numerical
solution.

Homotopy solutions corresponding to various combinations of n and l can be obtained from (3.18) using the shooting-like
homotopy procedure. It can be readily deduced from Figs. 1–4 and Table 1–2 that the homotopy analysis solutions for the
two-point boundary value problems considered are uniformly valid approximate solutions andhence they reliably represent
the exact solutions. It is furthermore worthwhile to state that although specific problems are chosen as examples for the
homotopy analysis solutions obtained here, themethodologies introduced can be applied to a vast variety of boundary value
problems.

It should be further remarked here that the proposedmathematical softwarewas validated for the problemswith a single
governing transport equation. However, although not implemented here, themethodology can also be applied for a problem
that involves a system of governing transport equations, i.e. for a 3D flow like rotating/swirl flows (rotating disks etc.) [27].
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4. Concluding remarks

In this paper the nonlinear two-point boundary value problems have been considered bymeans of the homotopy analysis
technique. The governing equations have first beenmodified so that a shooting-like analytic approach based on the homotopy
can be accessed with a proper proposal of auxiliary parameters involved.

The success of the method has later been tested by applying it to three physical problems taken from the literature.
Even sufficiently low-order uniformly valid approximate analytic homotopy solutions whose graphs have been depicted
here reveal excellent agreement with the numerical solutions. The advantages of the presented approaches have also been
discussed.
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