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1. Introduction

Many topological properties are defined or characterized in terms of the following two classical selection principles.
Let A and B be sets consisting of families of subsets of an infinite set X . Then:

S1(A, B) is the selection hypothesis: for each sequence 〈An: n ∈ N〉 of elements of A there is a sequence 〈bn: n ∈ N〉
such that for each n, bn ∈ An , and {bn: n ∈ N} is an element of B.

Sfin(A, B) denotes the selection hypothesis: for each sequence 〈An: n ∈ N〉 of elements of A there is a sequence
〈Bn: n ∈ N〉 of finite sets such that for each n, Bn ⊂ An , and

⋃
n∈N

Bn ∈ B.

The prototypes for these selection principles are the Rothberger covering property S1(O, O) and the Menger property
Sfin(O, O).

In recent years many papers about selection principles in topological spaces have appeared in the literature.
On the other hand, there are very few papers which deal with bitopological spaces and selection principles. They are

mainly related to function spaces (see [7,14,17,19,22]). However, there is not a systematic study of selection principles
theory in bitopological context. Here we study versions of separability in bitopological spaces.

Recently several papers on selective versions of separability have been published. Let D denote the family of dense
subspaces of a topological space X . In [23] the selection principles Sfin(D, D) and S1(D, D) have been introduced. These
principles appeared in a natural way in a study of hyperspace topologies in [7,8]. Also, in [8] the notion of groupable
(countable) dense sets was introduced; denote by Dgp the family of groupable dense subsets of a space. In [8] (see also [7]),
the selection properties Sfin(D, Dgp) and S1(D, Dgp) were introduced and studied in connection with hyperspace topologies.
Later on, these four selection properties have been systematically studied by several authors [2–5,9,20]. In [4] the selection
properties Sfin(D, D), S1(D, D) and S1(D, Dgp) are called M-separability, R-separability and GN-separability, respectively,
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while a bit modified property Sfin(D, Dgp) is called H-separability (the last two after characterizations of the Hurewicz and
Gerlits–Nagy properties given in [15]).

In this article we study these properties in the bitopological context, in particular in the space C(X) of all continuous
real-valued functions on a Tychonoff space X , where C(X) is endowed with the topology τp of pointwise convergence
and the compact-open topology τk . Because both spaces (C(X), τp) and (C(X), τk) are homogeneous it is enough to study
local properties of these spaces considering the constantly 0 function 0 ∈ C(X). Recall that the sets W (0, F , ε) = { f ∈
C(X): f (F ) ⊂ (−ε, ε)}, F finite (resp. compact) in X , ε > 0, form a local base of 0 in (C(X), τp) (resp. (C(X), τk)).

This study naturally suggests to consider selection principles Sfin(K,Ω) and S1(K,Ω) introduced in [11], as well as
(versions of) the principles Sfin(K,Ωgp) and S1(K,Ωgp) [7].

Recall that Ω , K, Ωgp denote the families of ω-covers, k-covers, groupable ω-covers, respectively. An open cover U of
a topological space X is an ω-cover (a k-cover) of X if X /∈ U and each finite (compact) subset of X belongs to a member
of U . A countable ω-cover U is groupable [15] if it can be partitioned into countable many pairwise disjoint finite sets Un
such that each finite subset of the space is contained in an element of Un for all but finitely many n.

For undefined notions regarding selection principles in topological spaces we refer the reader to the survey papers [10,
13]. The books [1,16] are nice sources concerning function spaces.

At the end of this introduction we mention that there is a deep relationship between selection principles theory and
game theory.

The symbol G1(A, B) denotes the infinitely long game for two players, ONE and TWO, who play a round for each positive
integer. In the n-th round ONE chooses a set An ∈ A, and TWO responds by choosing an element bn ∈ An . TWO wins a play
(A1,b1; . . . ; An,bn; . . .) if {bn: n ∈ N} ∈ B; otherwise, ONE wins.

Gfin(A, B) denotes the game where in the n-th round ONE chooses a set An ∈ A, while TWO responds by choosing a
finite set Bn ⊂ An . A play (A1, B1, . . . , An, Bn, . . .) is won by TWO if and only if

⋃
n∈N

Bn ∈ B.
It is evident that if ONE does not have a winning strategy in the game G1(A, B) (resp. Gfin(A, B)) then the selection

hypothesis S1(A, B) (resp. Sfin(A, B)) is true. The converse implication need not be always true (though many properties
described by selection principles can be characterized by the corresponding game).

2. Definitions

Throughout this paper (X, τ1, τ2), sometimes written simply X , will be a bitopological space (shortly bispace), i.e. the
set X endowed with two topologies τ1 and τ2. For a subset A of X , Cli(A) will denote the closure of A in (X, τi), i = 1,2.

We begin with some definitions.
Let (X, τ1, τ2) be a bitopological space. Then:

1. ([6]) A subset A of X is bidense (here called double dense or shortly d-dense) in X if A is dense in both (X, τ1) and
(X, τ2). X is d-separable if there is a countable set A which is d-dense in X .

2. A pairwise π -base of X is a collection of pairs (Pα, Q α) ∈ τ1 × τ2, α ∈ Λ, such that for every (U , V ) ∈ τ1 × τ2 there is
α ∈ Λ such that Pα ⊂ V and Q α ⊂ U .

3. X has countable (τi, τ j)-fan tightness (i �= j; i, j = 1,2) if for each x ∈ X and each sequence 〈An: n ∈ N〉 of subsets of X
such that x ∈ Cli(An) for each n ∈ N, there are finite sets Fn ⊂ An , n ∈ N, with x ∈ Cl j(

⋃
n∈N

Fn).
4. X has countable (τi, τ j)-strong fan tightness (i �= j; i, j = 1,2), if for each x ∈ X and each sequence 〈An: n ∈ N〉 of

subsets of X such that x ∈ Cli(An) for each n ∈ N, there are points xn ∈ An , n ∈ N, with x ∈ Cl j({xn: n ∈ N}).

Denote by D1 and D2 the collections of all dense subsets of (X, τ1) and (X, τ2), respectively. We say that X is:

• M(τi ,τ j)-separable (i, j = 1,2; i �= j), if for each sequence 〈Dn: n ∈ N〉 of elements of Di there are finite sets Fn ⊂ Dn ,
n ∈ N, such that

⋃
n∈N

Fn ∈ D j , i.e. if Sfin(Di, D j) holds;
• R(τi ,τ j)-separable if S1(Di, D j) holds;
• H(τi ,τ j)-separable if for each sequence 〈Dn: n ∈ N〉 of elements of Di there are finite sets Fn ⊂ Dn , n ∈ N, such that each

τ j-open subset of X intersects Fn for all but finitely many n;
• GN(τi ,τ j)-separable if S1(Di, Dgp

j ) holds.

Here Dgp is the collection of groupable dense subsets of a space; a countable dense subset D of a space Z is groupable if
D = ⋃

n∈N
An , each An finite and each open set U in Z intersects all but finitely many An [8].

Clearly, if τ1 = τ2 = τ , then these definitions coincide with definitions of corresponding topological selective versions of
separability of (X, τ ).

Obviously,

GN(τi ,τ j)-separability ⇒ R(τi ,τ j)-separability ⇒ M(τi ,τ j)-separability,

and

H(τi ,τ j)-separability ⇒ M(τi ,τ j)-separability.
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3. Bitopological R-separability

In this section we give some results on bitopological R-separability.

Fact 1. R(τi ,τ j)-separability implies separability of (X, τ j).

Fact 2. If τ1 � τ2 then:

2.1 R(τ1,τ2)-separability implies (X, τ1) is R-separable (and, by Fact 1, (X, τ2) is separable).
2.2 (X, τ1) is R-separable ⇒ (X, τ1, τ2) is R(τ2,τ1)-separable ⇒ (X, τ1) is separable.

Fact 3. If Y is either d-dense or d-open in (X, τ1, τ2) and X is R(τi ,τ j)-separable, then Y is also R(τi ,τ j)-separable.

[It follows from the fact that each set which is τi -dense (open) in Y is τi -dense (open) in X .]

Theorem 1. If X has a countable pairwise π -base, then X is R(τi ,τ j)-separable, i, j = 1,2.

Proof. (For i = 1, j = 2) Let {(Pn, Q n): n ∈ N} be a countable pairwise π -base of X . Take any sequence 〈Dn: n ∈ N〉 of dense
subsets of (X, τ1). For each n ∈ N, the intersection Dn ∩ Pn is non-empty; take a point xn ∈ Dn ∩ Pn , n ∈ N, and prove that
the set {xn: n ∈ N} is dense in (X, τ2). Indeed, if V ∈ τ2, then there is m ∈ N such that Pm ⊂ V , hence xm ∈ V . �
Theorem 2. Let (X, τ1, τ2) be a d-separable bitopological space with countable (τi, τ j)-strong fan tightness. Then X is R(τi ,τ j)-
separable.

Proof. We consider only the case i = 1, j = 2. Let 〈Dn: n ∈ N〉 be a sequence of dense subsets of (X, τ1), and let A =
{an: n ∈ N} be a countable set dense in (X, τ1) and in (X, τ2). Fix a partition N = M1 ∪ M2 ∪ · · · of N into infinite, pairwise
disjoint sets. For each n ∈ N, an ∈ ⋂

k∈Mn
Cl1(Dk). Since (τ1, τ2)-strong fan tightness of (X, τ1, τ2) is countable, there is

a sequence (xk: k ∈ Mn) of points such that for each k ∈ Mn , xk ∈ Dk and an ∈ Cl2({xk: k ∈ Mn}). We claim that the set
{xn: n ∈ N} is dense in (X, τ2). Let U be a set open in (X, τ2). Since A is dense in (X, τ2), there is some am ∈ U . But
am ∈ Cl2({xk: k ∈ Mm}), hence U ∩ ({xk: k ∈ Mm}) �= ∅ and thus U ∩ {xn: n ∈ N} �= ∅. �
Corollary 3. Let (X, τ1, τ2) be a bitopological space such that τ1 � τ2 . If (X, τ2) is separable and X has countable (τi, τ j)-strong fan
tightness, then (X, τ1, τ2) is R(τi ,τ j)-separable.

As we mentioned, in what follows τp denotes the pointwise topology, and τk denotes the compact-open topology on the
set C(X) of all continuous real-valued functions on a Tychonoff space X .

Theorem 4. Let X be a Tychonoff space such that w(X) = ω. Then the following are equivalent:

(1) X ∈ S1(K,Ω);
(2) (C(X), τp, τk) is R(τk,τp)-separable.

Proof. (1) ⇒ (2): From d(C(X), τk) = w(X) [16] it follows that (C(X), τk) is separable. On the other hand, by Theorem 2.4
in [17], (τk, τp)-strong fan tightness of (C(X), τp, τk) is countable if (and only if) X ∈ S1(K,Ω). By Corollary 3 we obtain
(C(X), τp, τk) is R(τk,τp)-separable.

(2) ⇒ (1): Let 〈Un: n ∈ N〉 be a sequence of k-covers of X . For every n ∈ N let

An = {
f ∈ Ck(X): there is U ∈ Un, f (X \ U ) = {1}}.

We prove that each An is dense in Ck(X). Let f ∈ Ck(X) and let
⋂

i�m W (Ki, V i) be a basic neighbourhood of f . [Here
W (Ki, V i) = { f ∈ C(X): f (Ki) ⊂ V i}, Ki compact in X , V i open in R.] The set K = ⋃

i�m Ki is compact, and since Un is
a k-cover of X , there is U ∈ Un containing K . There is also g ∈ Ck(X) such that g(X \ U ) = {1} and g � K = f � K . Then
g ∈ ⋂

i�m W (Ki, V i) ∩ An .
Since (C(X), τp, τk) is R(τk,τp)-separable there are functions fn ∈ An , n ∈ N, such that the set { fn: n ∈ N} is dense in

(C(X), τ1). Let Un ∈ Un be a set for which fn(X \ Un) = {1} holds. We claim that {Un: n ∈ N} is an ω-cover of X . Let F be
a finite subset of X . Suppose that for each n ∈ N there is a point xn ∈ F \ Un . This means that for each n, fn(xn) = 1 which
contradicts the fact that { fn: n ∈ N} is dense in (C(X), τp) (the open set W (F , (−1,1)) = {g ∈ C(X): f (F ) ⊂ (−1,1)} does
not contain any fm , m ∈ N). �
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4. Bitopological M-separability

Because M-separability has many similarities with R-separability, we formulate here statements parallel to the corre-
sponding statements from the previous section.

The proof of the following theorem is quite similar to the proof of Theorem 2 and thus will be omitted. Instead we prove
Corollary 6 below parallel to Corollary 3.

Theorem 5. Let (X, τ1, τ2) be a d-separable bitopological space with countable (τi, τ j)-fan tightness. Then X is M(τi ,τ j)-separable.

Corollary 6. Let (X, τ1, τ2) be a bitopological space with τ1 � τ2 . If (X, τ2) is separable and the (τi, τ j)-fan tightness of X is countable,
then (X, τ1, τ2) is M(τi ,τ j)-separable.

Proof. (i = 1, j = 2) Let 〈Dn: n ∈ N〉 be a sequence of dense subsets of (X, τ1). Fix a countable set A = {an: n ∈ N} dense
in (X, τ2), so also in (X, τ1) because τ1 � τ2. Let N = M1 ∪ M2 ∪ · · · be a partition of N into infinite, pairwise disjoint sets.
For each n we have an ∈ Cl1(Dk) for each k ∈ Mn . Since (τ1, τ2)-fan tightness of (X, τ1, τ2) is countable, there is a sequence
〈Fk: k ∈ Mn〉 of finite sets such that for each k ∈ Mn , Fk ⊂ Dk and an ∈ Cl2(

⋃{Fk: k ∈ Mn}). We claim that the sequence
〈Fn: n ∈ N〉 witnesses for 〈Dn: n ∈ N〉 that (X, τ1, τ2) is M(τ1,τ2)-separable, i.e. that

⋃{Fn: n ∈ N} is dense in (X, τ2). Let U be
a set open in (X, τ2). Then there is m ∈ N such that am ∈ U . But am ∈ Cl2(

⋃{Fk: k ∈ Mm}) so that U ∩ (
⋃{Fk: k ∈ Mm}) �= ∅,

hence
⋃{Fn: n ∈ N} is dense in (X, τ2). �

Theorem 7. For a Tychonoff space X with countable base the following are equivalent:

(1) X ∈ Sfin(K,Ω);
(2) (C(X), τp, τk) is M(τk,τp)-separable.

Proof. (1) ⇒ (2): The space (C(X), τk) is separable since d(C(X), τk) = w(X). On the other hand, by [17, Theorem 2.5],
(τk, τp)-fan tightness of (C(X), τp, τk) is countable if and only if X has selection property Sfin(K,Ω). Apply Corollary 6.

(2) ⇒ (1): Let 〈Un: n ∈ N〉 be a sequence of k-covers of X . For every n ∈ N let

An = {
f ∈ Ck(X): there is U ∈ U , f (X \ U ) = {1}}.

As in the proof of Theorem 4 one proves that each An is dense in Ck(X).
Since (C(X), τp, τk) is M(τk,τp)-separable there are finite sets Bn = { fn,1, . . . , fn,mn } ⊂ An , n ∈ N, such that the set

⋃
n∈N

Bn

is dense in (C(X), τp). For each n, let Vn = {Un,1, . . . , Un,mn : fn,i(X \ Un,i) = {1}, i � mn}. Then Vn is a finite subset of Un .
We claim that

⋃
n∈N

Vn is an ω-cover of X . Let F be a finite subset of X . The τp-open set W (0, F ,1) meets B j for some
j ∈ N, i.e. there is a function f j,m j ∈ B j such that f j,m j (x) ∈ (−1,1) for each x ∈ F . This means F ⊂ U j,m j as required. �

The unexpected result that separable Fréchet–Urysohn spaces are M-separable was shown in [3].
The following is a bitopological version of this result. Call a bispace (X, τ1, τ2) (τi, τ j)-Fréchet–Urysohn (i �= j; i, j = 1,2),

abbreviated as (τi, τ j)-FU, if for each A ⊂ X and each x ∈ Cli(A) there is a sequence (an)n∈N in A which τ j-converges to x.

Theorem 8. Let (X, τ1, τ2) be a d-separable bispace such that τ1 � τ2 , (X, τ1) is dense-in-itself, and (X, τ2) is Hausdorff. If X is
(τ1, τ2)-FU, then X is M(τ1,τ2)-separable.

Proof. Let A = {an: n ∈ N} be a countable d-dense subset of X and let 〈Dn: n ∈ N〉 be a sequence of τ1-dense subsets
of X . Take any a ∈ A. From a ∈ Cl1(X \ {a}) it follows that there is a sequence (xn)n∈N in X \ {a} which τ2-converges to a.
Further, for each n ∈ N, xn ∈ Cl1(Dn) and thus there is a sequence yn = (yn,m)m∈N in Dn τ2-converging to xn . Clearly,
a ∈ Cl2(

⋃
n∈N

yn) and so a ∈ Cl1(
⋃

n∈N
yn). There is a sequence z = (zm)m∈N in

⋃
n∈N

yn τ2-converging to a. For each n the
intersection yn ∩ z = Fn ⊂ Dn is finite because yn and z τ2-converge to different points in the Hausdorff space (X, τ2). Since
a ∈ Cl2({zm: m ∈ N}) and z = ⋃

n∈N
Fn we have a ∈ Cl2(

⋃
n∈N

Fn). This means that X has countable (τ1, τ2)-fan tightness at
each point a ∈ A.

Let N = M1 ∪ M2 ∪ · · · , where Mi , i ∈ N are infinite, pairwise disjoint. Fix n ∈ N. Apply the fact that X has count-
able (τ1, τ2)-fan tightness at an to the sequence 〈Dm: m ∈ Mn〉 and find finite sets F n

m ⊂ Dm , m ∈ Mn , such that
an ∈ Cl2(

⋃
m∈Mn

F n
m). Then the sets F n

m , m ∈ Mn , n ∈ N testify that X is M(τ1,τ2)-separable because A ⊂ Cl2(
⋃

n∈N

⋃
m∈Mn

F n
m)

and A is d-dense in X . �
The following theorem, which is a bitopological version of [9, Prop. 4.1], gives an interesting implication. Recall that a

bispace (X, τ1, τ2) is (τi, τ j)-Pytkeev (i �= j; i, j = 1,2) [12] (see also [17]) if for each A ⊂ X and each x ∈ Cli(A) \ A there
are infinite sets Bn ⊂ A, n ∈ N, such that each τ j -neighbourhood of x contains some Bn .



Lj.D.R. Kočinac, S. Özçağ / Topology and its Applications 158 (2011) 1471–1477 1475
Theorem 9. Let (X, τ1, τ2), τ1 � τ2 , be a d-separable (τ1, τ2)-Pytkeev bispace. If X is M(τ1,τ2)-separable, then it is R(τ1,τ2)-separable.

Proof. Fix a d-dense subset A = {an: n ∈ N} of X . Let 〈Dn: n ∈ N〉 be a sequence of τ1-dense subsets of X . Let N = M1 ∪
M2 ∪ · · · be a partition of N into infinite subsets. For each n ∈ N consider the sequence 〈Dm: m ∈ Mn〉. Since X is M(τ1,τ2)-
separable, there are finite sets Fm ⊂ Dm , m ∈ Mn , such that Yn := ⋃

m∈Mn
Fm is τ2-dense in X . Let K1 = {n ∈ N: an ∈ Yn}

and K2 = N \ K1. For each n ∈ K2 we have an ∈ Cl1(Yn) \ Yn and since X is (τ1, τ2)-Pytkeev there are infinite sets Bn,k ⊂ Yn ,
k ∈ N, such that each τ2-neighbourhood of x contains some Bn,k . Clearly, each Bn,k intersects infinitely many (finite) sets
Fm , say Fm1 , . . . , Fmk . Pick a point xn,mk ∈ Bn,k ∩ Fmk ⊂ Dmk . Let

zn =
{

an, if n ∈ K1;
xn,mk , if n ∈ K2, k ∈ N.

Then {zn: n ∈ N} is τ2-dense in X , i.e. the sequence 〈zn: n ∈ N〉 witnesses for 〈Dn: n ∈ N〉 that X is R(τ1,τ2)-separable. �
5. Bitopological H- and GN-separability

A bispace (X, τ1, τ2) has the selectively (τi, τ j)-Reznichenko property (i �= j; i, j = 1,2), if for each sequence 〈An: n ∈ N〉
of subsets of X and each point x ∈ ⋂

n∈N
Cli(An) there are finite, pairwise disjoint sets Bn ⊂ An , n ∈ N, such that each

τ j-neighbourhood of x intersects Bn for all but finitely many n.
This notion was introduced in [12]. If we do not require Bn ’s to be disjoint, one obtains the notion of weak selectively

(τi, τ j)-Reznichenko property (compare with [18,21]).

Theorem 10. For a Tychonoff space X with countable base the following are equivalent:

(1) (C(X), τp, τk) is H(τk,τp)-separable;
(2) For each sequence 〈Un: n ∈ N〉 of k-covers of X there is a sequence 〈Vn: n ∈ N〉 of finite sets such that for each n, Vn ⊂ Un and

each finite set F ⊂ X is contained in an element of Vn for all but finitely many n ∈ N.

Proof. (1) ⇒ (2): Let 〈Un: n ∈ N〉 be a sequence of k-covers of X . For every n ∈ N let

An = {
f ∈ Ck(X): there is U ∈ Un, f (X \ U ) = {1}}.

Each An is dense in (C(X), τk). By (1) there are finite sets Bn ⊂ An , n ∈ N, such that each τp-open set intersects Bn for all
but finitely many n. Let Vn , n ∈ N, be the family of sets U f ∈ Un , f ∈ Bn , such that f (X \ U f ) = {1}. We prove that the
sequence 〈Vn: n ∈ N〉 witnesses that X satisfies (2).

Let E be a finite subset of X . Then W = W (E, (−1,1)) is an open set in (C(X), τp) and thus it meets Bm for each m
bigger than some m0; pick fm ∈ W ∩ Bm , m > m0. Then for each m > m0, E ⊂ U fm ∈ Vm , as required in (2).

(2) ⇒ (1): We divide the proof into two parts.

Claim 1. C(X) has the weak selectively (τk, τp)-Reznichenko property.

Let 〈An: n ∈ N〉 be a sequence of subsets of C(X) whose τk-closures contain 0. For every compact set K ⊂ X and every
m ∈ N the τk-neighborhood W (0, K ,1/m) of 0 intersects each An . It follows that for each n ∈ N there exists a function
f K ,n,m ∈ An satisfying | f K ,n,m(x)| < 1/m for each x ∈ K . For each n set

Un,m = {
f ←(−1/m,1/m): m ∈ N, f ∈ An

}
.

(We can view the indices m,n in Un,m as ϕ(m,n) for some bijection ϕ : N
2 → N.) We claim that for each n,m ∈ N, each

compact subset of X is contained in an element of Un,m . Indeed, if C is a compact subset of X , then there is fC,n,m ∈
W (0, C,1/m) ∩ An . Hence | fC,n,m(x)| < 1/m for each x ∈ C . This means C ⊂ f ←

C,n,m(−1/m,1/m) ∈ Un,m .
Put M = {m ∈ N: X ∈ Un,m for some n ∈ N}.

Case 1. M is infinite.
There are m1 < m2 < · · · in M and (the corresponding) n1,n2, . . . in N such that f ←

Ki ,ni ,mi
(−1/mi,1/mi) = X for all i ∈ N

and some compact sets Ki ⊂ X . Let W (0, F , ε) be a τp-neighbourhood of 0. Pick mk such that 1/mk < ε. For every mi > mk
we have f Ki ,ni ,mi (x) ∈ (−1/mi,1/mi) for each x ∈ X and so f Ki ,ni ,mi ∈ W (0, F ,1/mi) ⊂ W (0, F , ε). This means that the
sequence ( f Ki ,ni ,mi : i ∈ N) τp-converges to 0, hence C(X) has the weak selectively (τk, τp)-Reznichenko property at 0.

Case 2. M is finite.
There is m0 ∈ N such that for each m � m0 and each n ∈ N, the set Un,m is a k-cover of X . Without loss of generality

one may suppose m0 = 1. Further, we can consider only k-covers Un,n , n ∈ N. By (2) choose for each n ∈ N a finite set
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Vn,n ⊂ Un,n so that each finite subset F of X belongs to some V ∈ Vn,n for all but finitely many n. Choose the corresponding
functions f K V ,1/n,1/n , V ∈ Vn,n , and put Bn = { f K V ,1/n,1/n: V ∈ Vn,n}. Then each Bn is a finite subset of An . Let W (0, F ,1/i)
be a neighborhood of 0. Let n0 be such that i/n < 1/i and for each n > n0 there is Vn ∈ Vn,n containing F . Choose a
corresponding fn ∈ Bn . Since this can be done for all n > n0, we conclude that for all n > n0 we have fn ∈ W (0, F ,1/i), i.e.,
Bn ∩ W (0, F ,1/i) �= ∅ for all n > n0.

Claim 2. C(X) is H(τk,τp)-separable.

Since w(X) = ω, and τ1 � τ2, there is a countable d-dense subset A = {an: n ∈ N} of C(X). Let 〈Dn: n ∈ N〉 be a sequence
of dense subsets of (C(X), τk). Fix m ∈ N. Since am ∈ Clτk (Dn) for each n ∈ N, and C(X) has the weak selectively (τk, τp)-
Reznichenko property, there are finite sets Fn,m , such that for each n, Fn,m ⊂ Dn and each τp-neighbourhood of am intersects
all but finitely many Fn,m . For each n put Fn = ∪{Fn,m: m � n}. The sequence 〈Fn: n ∈ N〉 witnesses for 〈Dn: n ∈ N〉 that
C(X) is H(τk,τp)-separable. Indeed, let W be an open set in (C(X), τp). Then there is am ∈ W , hence W meets all but finitely
many Fn . �
Theorem 11. If C(X) is GN(τk,τp)-separable, then X satisfies Sfin(K,Ωgp).

Proof. Let 〈Un: n ∈ N〉 be a sequence of k-covers of X . As in the proof of Theorem 10 define dense sets An in (C(X), τk),
hence d-dense in C(X). Since C(X) is GN(τk,τp)-separable, there are fn ∈ An , n ∈ N, such that A = { fn: n ∈ N} is τp-groupable,

i.e. A = ⋃
m∈N

Bm , where each Bm = { f k1
m , . . . , f km

m } is a finite subset of A and each τp-open set meets all but finitely
many Bm . For each m ∈ N, let

Vm = {
Uki

m : f ki
m

(
X \ Uki

m
) = {1}, i � m

}
.

We prove that each finite subset of X is contained in some V ∈ Vm for all but finitely many m. Let F be a finite subset of X .

Then the τp-open set W (0, F ,1) intersects Bm for all m bigger than some m0 ∈ N. Let f
k j
m ∈ W (0, F ,1) ∩ Bm , m � m0. Then

F ⊂ U k j

m , m � m0. This means that X satisfies Sfin(K,Ωgp). �
From Theorems 4 and 11 we obtain

Theorem 12. If C(X) is GN(τk,τp)-separable, then X satisfies S1(K,Ω) and Sfin(K,Ωgp).

A direct consequence is the following assertion.

Corollary 13. If C(X) is GN(τk,τp)-separable, then C(X) is R(τk,τp)-separable as well as H(τk,τp)-separable.

6. Concluding remarks

It would be interesting to investigate relations between bitopological selective versions of separability and games which
naturally correspond to them (see [3] for M-separability in topological spaces). For example, we conjecture that the following
two assertions are not equivalent:

(1) TWO has a winning strategy in the game G1(Di, D j) (resp. G1(Di, D gr
j ));

(2) (X, τ1, τ2) is R(τi ,τ j)-separable (resp. GN(τi ,τ j)-separable).

Similarly for the H(τi ,τ j)-separability and the corresponding game.
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[12] Lj.D.R. Kočinac, The Reznichenko property and the Pytkeev property in hyperspaces, Acta Math. Hungar. 107 (2005) 225–233.
[13] Lj.D.R. Kočinac, Some covering properties in topological and uniform spaces, Proc. Steklov Inst. Math. 252 (2006) 122–137.
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