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Abstract: The multilayer perceptron model has been suggested as an alternative
to conventional approaches, and can accurately forecast time series. Additionally,
several novel artificial neural network models have been proposed as alternatives to
the multilayer perceptron model, which have used (for example) the generalized-
mean, geometric mean, and multiplicative neuron models. Although all of these
artificial neural network models can produce successful forecasts, their aggregation
functions mean that they are negatively affected by outliers. In this study, we
propose a new multilayer, feed forward neural network model, which is a robust
model that uses the trimmed mean neuron model. Its aggregation function does not
depend on outliers. We trained this multilayer, feed forward neural network using
modified particle swarm optimization. We applied the proposed method to three
well-known time series, and our results suggest that it produces superior forecasts
when compared with similar methods.
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1. Introduction

Forecasting refers to the process of making an inference related to the future using
available knowledge. It is important to the economy and policies of countries.
Conventional forecasting models may not be adequate because they require various
assumptions. Artificial neural networks (ANNs) do not require the conventional
time series assumptions, and have been used extensively and successfully as an
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alternative to conventional approaches. Some ANNs that used different neuron
models were proposed in [2, 12, 15, 16, 29]. Although there are many types of
ANNS for forecasting, multilayer perceptrons (MLPs) are used the most frequently.
They were proposed in [18].

When solving real-life problems using a standard ANN such as an MLP, we need
many neurons [22]. A neuron with higher order statistics can produce a superior
neural network with comparatively less neurons [22]. Higher order neural networks
were proposed in [4, 6, 8, 23, 25]. These neurons have been shown to improve
the computational power and generalization. However, they are difficult to train
because of a combinatorial explosion of the higher order term as the number of
inputs to the neuron increases [22]. Additionally, outliers negatively affect MLPs, as
shown in [7, 30]. There are various ANN models such as the multilayer feed forward
model (MFF), which is based on the generalized-mean neuron model (GMN, [28]),
geometric mean neuron model (G-MN, [22]), and the single multiplicative neuron
model (SMN, [27]).

There are also many other studies that produced good results in the presence of
outliers. In [9], an M-estimator as an evaluation function for training an ANN was
used. Robust training algorithms based on least median squares were proposed in
[5, 19]. A robust, feed forward, back propagation algorithm was developed for an
ANN in [24]. In [26], an approach based on the robust adaptive training of feed
forward neural networks was presented. New robust forecasting models for ANNs
were proposed in [14] and a robust learning algorithm was developed in [20]. In
[1], a robust ANN based on the median neuron model was proposed. Moreover, a
robust, feed forward, and recurrent neural network model was presented in [17].

The aggregation functions of most of these models are negatively affected by
outliers because they are based on the mean. This means that the predictions do
not represent the general characteristic features of the data and that the predictions
tend to outliers. Although, the proposed ANN methods in [1] that is based on the
median neuron model provides to avoid this problem, because each of neurons uses
fifty percent of its inputs, there are an information loss in their ANN model. This
situation can affect the performance of model, negatively.

In this study, we propose a new, multilayer, feed forward neural network called
the multilayer feed forward network with trimmed mean neuron model (TMNM-
MFF). In our method, the aggregation function is not affected by outliers. Using
TMNM, an outlier input does not cause an outlier output. On the contrary median
neuron model, TMNM uses the trimmed mean of values that are generated by
multiplication inputs and weights. Therefore TMNM benefits from most of inputs
information. We used modified particle swarm optimization (MPSO) to train the
model.

The remainder of this paper is organized as follows. In Section 2, we briefly
summarize the MPSO method that was used to train the TMNM-MFF. We intro-
duce TMNM in Section 3. Section 4 contains a description of the TMNM-MFF
architecture and its training algorithm. In Section 5, we give the results of applying
the TMNM-MFF method to three well-known time series. Finally, we discuss our
conclusions in Section 6.
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2. DModified particle swarm optimization algorithm

Particle swarm optimization (PSO) is a heuristic algorithm that was first proposed
in [11]. Tts distinguishing feature is that it simultaneously examines different points
in different regions of the solution space to find the global optimum solution. This
feature means that it avoids local optimum traps. In this study, we used the
modified PSO method to train the TMNM-MFF. This MPSO algorithm has a
time-varying inertia weight, as in [21]. In a similar way, the algorithm also has a
time-varying acceleration coefficient, as in [13].
Algorithm 1. Modified particle swarm optimization.

Step 1. Randomly determine the positions of each k-th, (k = 1,2, ..., pn) particle,
and store them in vector

Xk:{I}f,I]2€7"',.Ts},k':l,Q,"‘,pn, (1)

where z¥,i = 1,2,--- | d represents the i-th position of the k-th particle, pn is the
number of particles in a swarm, and d is the position. And also determine the
maximum number of iterations (tmax) -

Step 2. Randomly determine the velocities, and store them in a vector
Vk:{U]f,U§7"',’Us},k'zl,27"',pn. (2)

Step 3. According to the evaluation function, determine the PP®s* and GPest
particles using

pPest = (phoph, o ph) k=1,2,- ,pn (3)
and
G = (pgy,pga, "+ +P9a) » @

where PPt stores the positions corresponding to the k-th particle’s best indi-
vidual performance, and GP** represents the best particle so far, according to the
evaluation function.

Step 4. Let ¢; and cy represent the cognitive and social coefficients, respec-
tively, and w be the inertia parameter. Let [cif,c1i], [c2:,cor] and [wy,ws] be
intervals that include possible values for ¢y, ¢, and w, respectively. In addition,
c1; and ciy (c1; > c1yp) are initial and final values of cognitive coefficient, co; and
caf (c2i < coy) are initial and final values of social coefficient. For each iteration,
calculate these parameters using

a1 = (e — 1) + 14, (5)
c2 = (caf —c2) + co4, (6)
max
and
tmax -t
w=(w2—w1)t7+w17 (7)
max
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where t.x is the maximum number of iterations, and ¢ is the current iteration.

Step 5. Update the velocities and positions using

vf:’c'll = [w X v;d + ¢y xrand; X (pi.q — 2i.q) + c2 X randg X (pg.a — :ci7d)] (8)
and
x’;‘gl =Ziq+ vfjil, (9)

where rand; and randy are random values in the interval [0, 1].

Step 6. Repeat Steps 3-5 until reaching a predetermined maximum number of
iterations (tmax)-

3. Trimmed mean neuron model (TMNM)

The first ANN model was proposed in [15]. Many different neuron models have been
suggested since then. Additionally, the MLP neurons can have different aggregation
functions such as

N
net (z;,w;) = ijxj—i—wo , (10)
j=1

where N is the number of input signals, z; (j = 1,2,..., N) are the input signals,
and w; (j = 0,1,2,...,N) are the weights. The neuron model represented by
Eq. (10) is affected by input signals that have outliers, because its aggregation
function is based on addition. Moreover, although many different models have
been proposed (such as GMN and G-MN), they are affected by outliers because
their aggregation functions are based on the mean. This means that the forecasts
do not agree with the general structure of the data and tend towards outliers. The
objective of this study was to overcome this problem. For this purpose, we proposed
a TMNM aggregation function, which is based on the trimmed mean (trimmean)
and is not affected by outliers. When training the ANN, some of the smallest and
largest values of w;z; and wy (the input signals and weights) are ignored at a
certain rate. We determine which weighted input signals should be ignored using

percent

k= (N +1) =,

(11)

where N represents the number of input signals, and percent is a user-defined rate.
Suppose that we have data with 19 observations (input signals), and, for example,
take percent to be 10/100. Then,

("%00)

k=20t =1. (12)

This means that we ignore the smallest and largest of the weighted input signals.
The value of k is rounded to the nearest integer, if necessary. The TMNM model
with these properties is shown in Fig. 1.
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Fig. 1 Trimmed mean neuron model.
In Fig. 1, y is the output signal and f is the activation function. The aggregation
function value (net) is calculated using
net = Trimmean (wyzjwexa, . .., WNTN,Wp). (13)

Therefore, outlier inputs do not affect the aggregation function.

4. Multilayer feed forward network with trimmed
mean neuron model (TMNM-MFF)

The TMNM-MFF proposed in this study is a feed forward ANN that uses TMNM.
Its architecture for IV inputs and M neurons in the hidden layer is given in Fig. 2.

Way .

Xy

LN ]

Xy

Output Layer

Inputs Hidden Layer

Fig. 2 The TMNM-MFF architecture.
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In Fig. 2, the input is x = [21,22,...,2n] and the output is [y]. If W}, is a
weight that connects the i-th hidden neuron with the j-th input and wy,, is the
bias of the i-th hidden neuron, the activation value of the i-th hidden neuron is

nety, = Trimmean (wp,, X1, Wh;y T2y« « s Whyn TNy Whyo) s = 1,2, ..., M (14)
The nonlinear transformation performed by each of the M neurons is
yn, = [ (netp,),i=1,2,..., M, (15)

where f denotes a sigmoid function, w,, is the weight that connects the i-th neuron
of the hidden layer to a neuron in the output layer, and wo, is the bias of the
corresponding output layer neuron. Similarly, the output of the neuron in the
output layer is determined by

net = Trimmean (Wo, Yh, WooYhas - - - s Wors Yhars WOo )s (16)

and
y = f (net) (17)

We trained the TMNM-MFF using MPSO. The positions of a particle in MPSO
are the TMNM-MFF weights. The structure of a particle is given in Fig. 3.

Whiy | 7| Whan | Whig | eoe | Whan | " | Whnn | Who | Wou | " | Wou | Wo,

\_ A J
Y Y
Input - Hidden Layer Hidden - Output Layer
Weights Weights

Fig. 3 The structure of an MPSO particle used to train the TMNM-MFF.

In the MPSO algorithm, we used the mean square error (MSE) criterion as the
evaluation function, which is defined as

MSE = !

=l

T
Z (output, — target,)?, (18)
t=1

where T is the number of training samples.
Algorithm 2. The TMNM-MFF algorithm.

Step 1. Determine the PSO parameters and the maximum number of iterations
(tmax)~

We calculate the parameters that direct the modified PSO algorithm (pn, vm,
C14s C1f, C2i, C2f, W1, and wy) as described previously.

In the implementations of this study, these values were taken as pn = 30,
vm =1, ci; = 3, c1f = 2, c3; = 2, cay = 3, w1 = 0.4, wy = 0.8, and the maximum
number of iterations was determined as 100.
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Step 2. Determine the initial positions and velocities.

Randomly generate the initial positions (uniformly distributed between (0,1))
and velocities (uniformly distributed between (—vm,vm)) of each particle in the
swarm.

In order to avoid too large step sizes, velocities can be limited. Different strate-
gies to initialize velocities can be identified in the literature such as zero velocities,
uniform random values within the domain of the optimization problem, and small
uniform random values. We prefer to use initial velocities sampled from a uniform
distribution within the domain of the problem. However, the best clamping thresh-
old referred to as vm, is problem dependent. In the implementations of this study,
vm was taken as 1.

Step 3. Compute the values of the evaluation function.

We used the MSE given in Eq. (18) as the evaluation function.

Step 4. Determine PPest; (k=1,2,---,p) and GP*t according to the evaluation
function values from the previous step.

PPest) is a vector that contains the positions corresponding to the k-th particle’s
best individual performance, and GP** is the best particle (i.e., it has the best
evaluation function value) found to date.

Step 5. Update the parameters.

The updated values of the cognitive coefficient ¢;, the social coefficient co, and
the inertia parameter w are calculated using Egs. (5)—(7).

Step 6. Calculate the new positions and velocities.

We compute the new velocities and positions using Eqs. (8) and (9) respectively.
If we have not reached the maximum number of iterations, go to Step 3; otherwise,
go to Step 7.

Step 7. Determine the optimal solution.

The elements of G are taken as the optimal weighting values of the TMNM-
MFF.

5. Applications of TMNM-MFF

We used three well-known, real-time series to analyze the performance of the
TMNM-MFF. These time series contain monthly sulfur dioxide measurements from
the Ankara capitol of Turkey (ANSO), Box-Jenkins gas furnace data [3], and Aus-
tralian beer consumption data. The inputs contain lagged variables of related time
series, which are used to analyze TMNM-MFF and other ANNs.

To compare the forecasts, we used the root mean square error (RMSE), mean
absolute percentage error (MAPE), and median absolute percentage error (MdAPE).
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They are defined as

T 1/2
;:1 (yt - Qt)2
MSE= &L 1
RMS 7 , (19)
L=y — 9
MAPE = = > | Z2—2| 100, 20
and .
MAAPE = Median | 2% | x 100, (21)
Yt

where 3, is the actual value, ¢, is the predicted value, and T is the number of data.

5.1 Monthly sulfur dioxide measurements for Ankara

The first data set contains measurements of the amount of sulfur dioxide (SO3) in
the air. The data were recorded in Ankara, Turkey, between 1994 and 2006 (see
Fig. 4). The last 10 observations of the time series were used for testing, as in
previous studies. In this application, we carried out two different analyses using
the original time series and the time series with outliers obtained by replacing an
original observation with values 5 and 10 times the maximum observation in the
data. The aim of this experiment was to show that TMNM-MFF produces superior
forecasts regardless if the data contain outliers.

J

Fig. 4 Time series data containing the amount of SOs in Ankara.

First, we forecasted the original ANSO data using the seasonal autoregressive
integrated moving average method (SARIMA), Winter’s multiplicative exponential
smoothing method (WMES), and a MLP. We compared the results with those
from the proposed TMNM-MFF method. For both the ANN models, we varied
the number of neurons in the input layer between 1 and 12, because the period
of the time series was 12. Additionally, we did not let the number of neurons in
the hidden layer exceed the number of inputs. In other words, we considered 144
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different architectures for both of the ANN models. For all these architectures, the
RMSE values and some statistics are given in Tabs. I and II. These results show
that the results obtained from the TMNM-MFF are consistent.

Second, we analyzed the differences in the results obtained from the best MLP
and TMNM-MFF methods, for the data with outliers. The results are summarized
in Tab. IV.

The results in Tabs. IIT and IV demonstrate that, although the MLP and
TMNM-MFF methods produced similar results when there were no outliers, the
TMNM-MFF produced superior results for both the training and test sets when
there were outliers.

5.2 Box-Jenkins gas furnace data

We also analyzed the Box-Jenkins gas furnace data [3]. In this data set, x(t) is the
gas flow rate and y(t) is the CO5 concentration. We modeled the furnace output as
a function of the output y(t—1) and input z(t—4). We trained the models using 146
samples, and used 150 samples as the test set.There were five neurons in the hidden
layer. The results obtained from TMNM-MFF and some different ANN models are
given in Table V. The back propagation single multiplicative neuron model (BP-
SMN) and MLP (2x2x1) results were taken from [21], and the results of the particle
swarm optimization-single multiplicative neuron model (PSO-SMN), cooperative
random learning particle swarm optimization-single multiplicative neuron model
(CRPSO-SMN), and genetic algorithm-single multiplicative neuron model (GA-
SMN) were taken from [31].

Fig. 5 plots the real observations and forecasts obtained from the TMNM-
MFF method. According to this graph, the forecasts obtained from the proposed
approach are very accurate.

4 N
= e e Target ==« Qutput

«:.'_:EE’
-t
-
e
g:_,:‘

- /

Fig. 5 Forecasts of the proposed TMNM-MFF for the Box-Jenkins gas furnace
data.

Our results suggest that the proposed method produces better forecasts (in the

absence of outliers) than the SMNs trained by various algorithms and the MLP.
According to Fig. 5, our forecasts are a good match to the real observations.
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SARIMA WMES MLP TMNM-MFF
(1,1,0)(0,1,1)  (Trend-Seasonal) Best Architecture: TMNM-MFF Best
(12-1-1) Architecture: (12-5-1)
RMSE 9.6249 7.1062 3.7402 3.6298
MAPE 0.2336 0.2204 0.0995 0.1148
MdJAPE 0.1931 0.2478 0.0898 0.1075

Tab. III Results obtained for the ANSO test data using other methods.

MLP TMNM-MFF
Best Architecture: 12-3-1  Best Architecture: 12-5-1
Train Test Train Test
Five multiple outlier RMSE 56.0856 17.2534 19.3009 11.3851
Ten multiple outlier RMSE 28.9453 17.2549 19.4028 13.5803

Tab. IV Results of the best methods for the data with outliers.

BP-SMN PSO-SMN CRPSO-SMN GA-SMN MLP TMNM-MFF

Train  0.0400 0.0400 0.0400 0.0400  0.0906 0.0214

RMSE Test 0.0424 0.0436 0.0424 0.0424  0.1503 0.0392

Tab. V Performance comparison of different methods applied to the Box-Jenkins
gas furnace data.

We also applied the method to a dataset with outliers. First, we replaced the
10-th observation with a value 10 times the size of the maximum. The RMSE values
obtained for this new time series are given in Tab. VI. It is clear that the MLP
was negatively affected by this outlier, and that TMNM-MFF produced superior
forecasts.

MLP TMNM-MFF

Train 0.2706 0.0814
Test  0.2612 0.0051

RMSE

Tab. VI Performance comparison for the Box-Jenkins gas furnace data with an
outlier.

5.3 Australian beer consumption data

Finally, we applied the proposed method to Australian beer consumption data [10].
The time series contains 148 quarterly observations from 1956 to 1994. The first
132 observations were used for training, and the last 16 observations were used
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for testing. We compared the proposed method with the WMES, SARIMA, radial
basis neural network (R-ANN), MLP, PSO-SMN, Elman neural network (E-ANN),
and multiplicative seasonal artificial neural network (MS-ANN) techniques in terms
of RMSE criteria for test data. The results are given in Tab. VII.

WMES SARIMA R-ANN PSO-SMN MLP E-ANN MS-ANN TMNM-MFF

RMSE 53.3295 47.0367 41.7000 26.7831 24.1052 22.6581 22.1700 21.0623

Tab. VII Performance comparison of different techniques applied to the Australian
beer consumption for test data.

Fig. 6 plots the real observations and forecasts obtained from the TMNM-MFF.
According to this graph, the forecasts obtained from the proposed approach are
very accurate.
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Fig. 6 Forecasts of the TMNM-MFF for the Australian beer consumption data.

We also analyzed this dataset after adding an outlier, as with the other datasets.
We replaced the 10-th observation with a value 10 times the maximum. The
RMSE values for this new time series are given in Tab. VIII. It is clear that the
MLP was negatively affected by the outlier, and that the TMNM-MFF produced
superior forecasts. Although MLP performs better than TMNM-MFF in case of
training, this is an expected result because the outlier was injected the training
set of data. This situation shows that the predictions of TMNM-MFF for training
set approached the outlier less than MLP. That is, TMNM-MFF was less affected
by outlier than MLP and the obtained results for test set of data support this
phenomenon.

6. Conclusions
Many ANN models have been proposed as an alternative to the MLP, and there

are many different neuron models. Although all these ANNs can successfully fore-
cast time series, they are negatively affected by outliers because their aggregation
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MLP TMNM-MFF

Train 493.1830 503.7322
Test  60.5499 56.1878

RMSE

Tab. VIII Performance comparison for the Australian beer consumption data with
an outlier.

functions are the same as MLPs.

In this study, we proposed a new neuron model that uses TMNM as an aggre-
gation function, and developed the TMNM-MFF based on this new neuron model.
TMNM is insensitive to outliers in the inputs and prevents outliers in the outputs.
We used MPSO to train various ANN models, and applied the proposed model to
three real-time series.

Our results suggest that TMNM-MFF is more effective than SMNs with differ-
ent training algorithms and MLPs. This is particularly true when the data contain
outliers.

The obtained findings from this study can be utilized in the future studies,
from different viewpoints. On the one hand, the proposed trimmed mean neuron
model can be used in the other type of ANNs such as SMN, E-ANN and R-ANN
to search the performance of them, on the other side, different artificial intelligent
optimization techniques such as genetic algorithm, artificial bee colony algorithm
and differential evaluation algorithm can be used in the training of ANNs.
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