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ABSTRACT  

In this paper  heat conduction equation for an eccentric spherical annulus 

with the inner surface kept at a constant temperature and the outer surface 

subjected to convection is solved analytically. Eccentric problem domain is 

first transformed into a concentric domain via formulating the problem in 

Bispherical coordinates system. Since an analytical Green’s function for the 

heat conduction equation in Bispherical coordinates for an eccentric sphere 

subject to boundary condition of third type cannot be found, an analytical 

Green's function obtained for Dirichlet boundary condition is employed in 

the solution. Utilizing this Green's function yields a boundary integral 

equation (BIE) for the unknown normal derivative of the surface 

temperature distribution. The resulting BIE is solved analytically using 

method of moments. The method has been applied to heat generating 

eccentric spherical annuli and results are compared to the simulation results 

of Fluent CFD code. A very good agreement was observed in temperature 

distribution computations for various geometrical configurations and a wide 

range of Biot number. Variation of heat dissipation with radii and 

eccentricity ratios are studied and a very good agreement with FLUENT has 

been observed. 

Keywords: Eccentric sphere, Heat conduction, Boundary integral equation, 

Green's function 

1. Introduction 

 Heat conduction in concentric a spherical annulus with or without heat generation is the 

subject of standard heat transfer textbooks and well-developed. Interested readers may refer to the 

textbook by Özisik [1] for the analytical solutions of linear heat conduction equation for concentric 

spherical annuli exposed to uniform boundary conditions of any kind and any functional form of space 

dependent heat generation rate. However, solving conduction equation analytically for an eccentric 

spherical annulus has inherent difficulties associated with employing a boundary fitting coordinate 

system and application of boundary conditions. Bispherical Coordinates is a convenient orthogonal 

coordinates system which fits both boundaries of an eccentric spherical annulus and allows application 

of first type boundary conditions directly. For example, conduction equation for two adjacent spheres 

without heat generation located at any distance from each other was solved analytically by Alassar and 

Alminshawy [2] in Bispherical coordinates. They solved steady state axisymmetric heat conduction 

equation for two isothermal spheres at different temperatures (first type boundary conditions) with 
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different radii. Alassar [3] solved the conduction equation analytically for an eccentric spherical 

annulus with first type boundary conditions and uniform heat generation rate.  The solution was the 

superposition of solutions in Bispherical coordinates of R-separable Laplace equation and a particular 

solution. It was limited to the azimuthally symmetrical two dimensional problems and to the uniform 

heat generation rate and could not be applied to a general spatially varying heat generated three 

dimensional eccentric annuli. Since Helmholtz differential equation is not separable or R-separable in 

Bispherical coordinates system [4] the conduction equation could not be solved for an eccentric 

spherical annulus with heat generation in Bispherical coordinates using standard techniques such as 

eigenfunction expansion or related methods. Yilmazer and Kocar [5] obtained an exact solution using 

Green’s function method to the three dimensional conduction equation through an eccentric spherical 

annulus with constant surface temperatures and with space dependent heat generation. 

While there are several studies as illustrated above on heat conduction through concentric and 

eccentric spheres, a literature survey reveals that there is not an exact solution to the conduction 

equation in a spherical annulus cooled convectively (third type boundary condition) at one or two 

boundaries. In a recent paper, the authors of this paper developed a new analytical approach based on 

Green’s function method to arrive at a boundary integral equation (BIE) for 2D steady heat conduction 

equation in an eccentric cylindrical annulus whose inner boundary was isothermal and outer boundary 

was subjected to convection [6]. Since an analytical Green’s function to the conduction equation in 

bipolar coordinates for an eccentric cylindrical annulus subject to boundary condition(s) of third type 

could not be found, the problem was treated as a second type boundary value problem.The method is 

based on developing a BIE in Bipolar coordinates for the outer surface temperature distribution using 

the analytical Green’s function obtained for second type boundary condition. The resulting boundary 

integral eguation was solved by method of moments, referred to as boundary integral moment method 

(BIMM), producing very accurate results. 

In  this study BIMM is applied in Bispherical Coordinates to solve heat conduction equation 

analytically in heat generating 3D eccentric spherical annuli  whose inner surface is kept at a constant 

temperature and outer surface is subjected to the convection. Instead of treating the problem as a 

second type boundary value problem as in previous cylindrical annulus conduction problem [6], the 

eccentric spherical annulus conduction problem is handled as a first type boundary value problem 

yielding a BIE for the unknown normal derivative of outer boundary temperature which is solved by 

the method of moments. BIMM solution proposed in this study which is based on Green's function 

approach introduces an unknown BIE for the normal derivative of the surface temperature making 

analytical solution much more involved. The method is applied for a wide range of heat generation 

ranges and Biot numbers and for various geometrical configurations, i.e., eccentricity and radii ratios. 

The results of temperature distribution and heat transfer calculations are compared with the simulation 

results obtained from CFD code Fluent [7]. 

2. Definition of the Problem 

 Consider an eccentric spherical annulus with inner surface kept isothermal at temperature 
iT  

and outer surface cooled convectively by a coolant at an ambient temperatureT
. Steady state heat 

conduction equation for the annulus is as follows: 

2 0
q

T
k

                                                                       (1a) 
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 on the inner surfaceiT T                                                   (1b) 

( ) on the outer surface
T

k h T T
n




  


                                          (1c) 

where  
2  is the Laplacian, q is the volumetric heat generation rate (W/m

3
), k  is the thermal 

conductivity (W/(m.K)),  h is convection coefficient (W/(m
2
.K)), n is outward normal, and T

 is the 

ambient coolant temperature (K).  Among the known orthogonal coordinates systems it is the 

Bispherical coordinates for which it is possible to express both boundaries of the eccentric annulus 

with only one coordinates parameter [4, 8, and 9]. 

If radii of the inner and outer spheres are denoted by  and i or r , respectively, and center to 

center distance or eccentricity by e  then a Bispherical coordinates system could be specified by using 

eq. (3) corresponding to the two eccentric constant-  spheres lying along the z-axis 

1 1=sinh  and =sinhi o

i o

a a

r r
  

                                                        (2) 

where 

( )( )( )( )

2

i o i o i o i oe r r e r r e r r e r r
a

e

       
                                         (3) 

 The conduction problem defined by eqs.(1) for the convectively cooled eccentric annulus 

could be expressed in Bispherical coordinates system as follows 

2

3 2 2

1 1
sin ( , , ) ( , , ) 0

sin sin

h
h h Q

h



 



      
      

       
        

         

          (4a) 

with the dimensionless boundary conditions 

( , , ) 1 at = i                                                                     (4b) 

( , , )
( , , ) at o

o

a
Bi

n r

  
    


   


                                                

 
(4c)

 

where Biot number is defined as /oBi hr k and 

1 sin
,

cosh cos cosh cos

h h
h h h

a a

 

  



   
    

 
                                        (5) 

are normalized scale factors of the Bispherical Coordinates System. 

3. Boundary Integral Moment Method (BIMM) Solution 

 If the inner and outer surfaces of the annulus are denoted by 
iS  and 

oS then the 

dimensionless conduction equation defined by eqs. (12) has the following  Green’s function solution 

( , , )

i oV S S

G G
Q GdV G dS G dS

n n n n
  

   

      
                    

                      (6) 

where ( / ) ( , , / , , )G G G          r r  is the Green’s function and the prime shows the 

computational domain. Green’s function satisfies the following equations: 
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2

3 2 2

1 1
sin ( / ) ( ) 0

sin sin

h
h h G

h



 



 
      

       
         

         

r r r r                 (7a) 

( , , / , , ) 0 at iG                                                                (7b) 

( , , / , , )
( , , / , , ) at o

o

G a
Bi G

n r

     
       

  
    

                                    
(7c) 

where Dirac’s Delta Function could be expressed in Bispherical coordinates as 

*

0

( ) ( ) ( ) ( )
( ) ( , ) ( , )m m

m

Y Y
h h h h h h     

           
    



 

      
     r r                    (8) 

 Since Helmholtz equation in Bispherical coordinates is neither separable nor R-separable [4], 

it is not possible to find an analytical expression in Bispherical coordinates for the Green’s function of 

an eccentric spherical annulus with boundary condition of third kind, i.e. convective boundary 

condition in our problem. However, the original problem described by eqs. (7) with third type 

boundary condition could be transformed into a problem with a first type boundary condition as 

follows
 

 
2

3 2 2

1 1
sin ( , , ) ( , , ) 0

sin sin

h
h h Q

h



 



      
      

       
        

         

               (9a) 

with dimensionless boundary conditions  

( , , ) 1 at = i                                                              (9b) 

( , , ) 1 ( , , )
( , , )  at 

o

o o
o

r r

aBi n aBi h  

     
    




 
    

 
                          

 
(9c)

 

where the normal derivative of the temperature distribution
1 ( , , ) /

o

h  
   


    on the outer 

boundary is assumed to be known as a priori. Similarly, Green’s function satisfies 

 
2

3 2 2

1 1
sin ( / ) ( ) 0

sin sin

h
h h G

h



 



 
      

       
         

         

r r r r                (10a) 

( , , / , , ) 0 at iG                                                                (10b) 

( , , / , , ) 0 at oG                                                               
 
(10c) 

 Green’s function described by eqs.(10) for eccentric spheres in Bispherical coordinates is 

derived in [5, 10 ] as follows: 

1/2 1/2 *

0

( , , / , , )

(cosh cos ) (cosh cos )    ( , ) ( , ) ( , )m m

m

G

Y Y g

     

         


 

   

                     

(11a) 

where
mY are spherical harmonics functions and 

*mY is the complex conjugate of 
mY , ( , )g   is the 

radial part of the Green’s function given by  
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   
 

   
 

1

2

2sinh ( 1 / 2)( ) sinh ( 1 / 2)( )
( , )   ;  

(2 1)sinh ( 1 / 2)( )
( , )

2sinh ( 1 / 2)( ) sinh ( 1 / 2)( )
( , )   ;  

(2 1)sinh ( 1 / 2)( )

i o

o i

i o

o i

g

g

g

   
   

 
 

   
   

 

    
  

  
  

      
   

              (11b) 

It should be noted the factor a in the denominator of 1( , )g    and 2 ( , )g    in Ref. [5] is dismissed in 

eq. (11b). Because the scale factors are normalized by factor a in the present discussion distinctly from 

the derivation in Ref. [5]. Introducing Green's function given by eqs.(11) and boundary conditions 

(9b), (9c), (10b) and (10c) into eq. (6) we get 

 
 

 
 

( 1/2)1/2

0

1/2 *

,

0

( , , )

sinh ( 1 / 2)( )
( , , ) 2(cosh cos ) (cos )

sinh ( 1 / 2)( )

sinh ( 1 / 2)( )
(cosh cos ) ( , )

sinh ( 1 / 2)( )

io

o i

i mo
m

m o i

S P e

r
Y

aBi



  

 
     

 

 
    

 


 





 



 
  

 

 
 

 





            (12a) 

where we denoted 

( , , )

V

Q GdV S   


                                                            (12b) 

and the moments ,m are defined as 

2

1/2

,

0 0

( , , )
(cosh cos ) sin ( , )

o

m

m o Y d d

 

 

  
       




  
      

                (12c) 

Taking moment of both sides of eq. (12a) by operating 

2

1/2

0 0

(.)
(cosh cos ) sin ( , )

o

m

o Y d d

 

 

      





     

                                 (13) 

a linear sytem of infinite number of unknown moments ,m could be obtained.  Truncating the series 

solution as 0,1,2,...,L and , 1,... 1,0,1,..., 1,m        for the dimensionless temperature 

given by eq. (12a), this linear system becomes 

 
 

 

, , ,

0

1 ,

, , ,

( 1/2)

,

0

sinh
(1 )

2

( 1/ 2)cosh ( 1/ 2)( )
cosh ( 1) 2

sinh ( 1/ 2)( ) 3

2 (2 1)
cosh

sinh ( 1/ 2)( )
i

L
o o

m m m

m

o i m m mo
o m m

o i

m o

o i

r

aBi

r
I

aBi

S e



  

  
  

 


 

 

 

 

 

  


 

 








   
        


 

 



 0,

, 0, ,2
3

m

m I





  

 
  

 

              (14) 

where 0,1,2,...,  and , 1,...,0,... 1, .m           Here, ,

,

m mI


 and 0,

,

mI


  are integrals involving 

triple products of spherical harmonics functions and they could be calculated from [8] 
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31 2

1 2 3

2

0 0

31 231 21 2 2

1 2 3

( , ) ( , ) ( , )sin

(2 1)(2 1)(2 1)

0 0 04

mm mY Y Y d d

m m m

 

        



    
   

  

 
                            (15) 

where 
31 2

1 2 3m m m

 
 
 

 is Wigner 3-j symbol. Using eqs. (12b) and (13) the moments ,mS    could more 

explicitly be expressed for a given dimensionless heat generation rate distribution ( , , )Q      as 

follows: 

1 ,

, , , , , ,

0

1
( ) ( ) cosh ( 1) 2

2 3

m m m m m

m o m m o o m m

m

S h h I


      


 

      

 

         
   

         (16a) 

where 

2

5/2

0 0

( , , )
( ) sin ( , ) ( , )

(cosh cos )

i

o

m mQ
h Y g d d d

 



  
        

 

  
      

                        (16b) 

3.1. Heat Transfer Rate 

 Let us define as in ref.[5] the following dimensionless heat transfer rate 

   
 

22

2 2

0 0 0 0 0

( )

(4 ) ( ) / 4

o

o

S

i

h T T dS
a

Q Bi h h d d
k r T T r r

 

 

 

 
 



 


  

    
    


                       (17)                                                 

Introducing the expression for   given by eq. (12a) into eq. (17), Q  becomes 

( 1/2) 0

,0

0 0

1
2 1 ( ( ))

2

o

o

aBi
Q e h

r

  



 



                                      (18) 

where the moments ,0 are obtained from the solution of the linear system given by eq. (14) and 
0 ( )oh  is calculated from the expression given by eq. (16b). 

4. An Application for Uniform Source Distribution 

 In this section, the method developed is applied for uniform source distribution. Temperature 

distributions and dimensionless heat transfer rates for various dimensionless source strengths and a 

wide range of Biot number are calculated. Comparisons of the analytical results are made with the 

simulation results of CFD code Fluent. 

 Fluent was used to solve energy conservation equation in 3D domain by a second order 

discretization scheme. In the first sequence of computations, radii ratio is fixed as 
0 / 5.0ir r  and 

eccentricity ratio is changed as / ie r  1.0,2.0, and 3.0, respectively. The residual is set as 
111 10  for 

energy equation. Computational domain is discretized with the mesh numbers 207000, 250000, and 

290000 for / ie r  1.0, 2.0, 3.0 and 4.0,  respectively. In the second set of computations, eccentricity 

ratio is fixed as / 0.5ie r  and radii ratio is changed as / 2.0, 3.0, 4.0 and 5.0o ir r  , respectively. 

Computational domain is discretized with the mesh numbers 157000, 221000, 425000, 730000 for 

/o ir r  2.0,3.0,4.0, and 5.0, respectively. The quadrilateral mesh elements were used for all the cases. 
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The inner boundary is set as constant temperature boundary while convective boundary condition is 

applied at outer boundary. The numerical value of the heat transfer coefficient is derived from the Bi 

number of the interested case. The CFD calculations are done on an AMD 3.0 GHz computer having a 

4 GB memory. Decrease in the Biot number and increase in the absolute value of the heat generation 

resulted in increase of simulation time and number of iterations. 

4.1. Temperature Distribution 

 The dimensionless temperature distribution in the eccentric sphere for a space dependent 

source distribution is expressed by eq. (12a). For a constant dimensionless heat generation rate Q , the 

( , , )S    defined by eq. (12b) could be calculated as 

1/2 *

0

( , , ) (cosh cos ) ( , ) ( )m m

m

S Y h       


 

                                 (19) 

where the function ( )mh  defined by eq. (16b) is obtained as 

 
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( 1/2) ( 1/2)

4 2 (2 1)
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
 

       

 

   


 

      

 

                                 (20) 

 The unknown moments ,m in eq. (12a) could be found by solving the linear system of 

equations given by Eqs. (14)-(16) in which the function ( )mh  takes the form specified by eq. (20) for 

uniform heat generation and this completes the solution. 

4.1.1. Effect of Source Strength on Temperature Distribution 

 It is first aimed at observing the effect of source strength on temperature distribution. For this 

purpose temperature distribution is calculated along the centerline AB  on yz plane of outer sphere as 

shown in fig. 1. Variation of temperature along the line  AB  is depicted in fig. 2 for various constant 

heat generation rates: 50, 25,0,25 and 50Q     for a geometrical configuration / 5.0,o ir r   

/ 2.0ie r  . The y coordinate along the  AB  line which extends from  0, , cotho or a  to 

 0, , cotho or a   is non-dimensionalized as  * / / 2y y AB  where *y  extends from 1  to 1. It 

should be noted that ,  and i or r e  do not define the geometrical configuration themselves. Instead the 

radii ratio /o ir r  and eccentricity ratio / ie r are the parameters identifying geometrical configuration. 

Namely, irrespective of the values of , ,  and o ir r e , dimensionless temperature is merely a function of 

these dimensionless ratios. Biot number is assigned as 5.0 in all cases. Perfect agreement with CFD 

results are observed in all computations. The dips in the temperature observed at the middle of  AB

for every heat generation rate is because of isothermal boundary condition exposed on the inner 

surface of the annulus, i.e., unit dimensionless temperature. Symmetrical temperature distributions are 

observed on both sides of the middle point 
1O where heat generation spans comparatively larger 

volumes than the lateral sides yielding local maxima on both sides of 
1O . As noticed from fig. 2, 

similar symmetrical-like distribution occurs in terms of source strengths with different parities, 

namely, constantQ   . Slight deviation from the symmetry arises from the additive contribution of 

the inner boundary condition to the temperature distribution for heat source case 0Q  . On the 
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contrary, this boundary condition plays an decreasing role on the absolute value of the dimensionless 

temperature for heat sink cases 0Q  . 

 

Figure 1. The lines  AB  and  CD  through which dimensionless temperatures are plotted. 

 

Figure 2. Variation of the dimensionless temperature along the line  AB  by dimensionless 

position *y  for various dimensionless heat generation rates ( / 5, / 2, 5.0)o i ir r e r Bi    

4.1.2. Effect of Biot Number on Temperature Distribution 

 Fig. 3 shows how temperature distribution varies along the line  AB for various values of Biot 

number as 5,10,15,  and 50Bi  . Geometrical configuration for all Biot numbers is kept as

/ 5.0, / 2.0o i ir r e r   and dimensionless heat generation rate is chosen as 50.0Q  . It could be 

noticed from fig. 3 that for the higher Bi numbers the more effective cooling is observed and lower 

temperature values are obtained throughout the line  AB  as expected. It could also be noticed from 

fig. 3 that there exists a complete consistency between BIMM and CFD results. 
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Figure 3. Variation of the dimensionless temperature along the line  AB  by dimensionless 

position *y  for various Biot numbers ( / 5, / 2, 50.0)o i ir r e r Q    

4.1.3. Effect of Eccentricity on Temperature Distribution 

 To evaluate the effect of eccentricity on temperature distribution, radii ratio is set at 

5.0o ir r   and various eccentricity ratios as  
ie r  1.0,2.0,2.5, and 3.0 are used in computations.  

Dimensionless heat generation rate is chosen as 50.0Q  . Variation of temperature distribution along 

the line  AB  is depicted in fig. 4.  As seen from the fig. 4 BIMM results and CFD results are in a very 

good agreement. It could be noticed from the figure that as the eccentricity is increased the effect of 

inner boundary condition on temperature distribution along the line  AB  diminishes since inner 

boundary of the annulus becomes more and more separated from the centerline  AB . Hence, the 

governing factor turns out to be the dimensionless heat generation rate not the inner boundary 

condition for larger eccentricities. When eccentricity is increased high temperature sites become more 

widespread since a relatively larger heat generating volume in the upper part is formed where total 

heat generation rate is comparably larger than more concentric cases. It should also be stated that the 

crescent geometrical configuration (
o ie r r  ) does not yield in convergent results, since the two foci 

used to describe coordinates in Bispherical coordinates system overlap in this case. 

 

Figure 4. Variation of the dimensionless temperature through the line  AB  by dimensionless 

position *y for various eccentricity ratios ( 5.0)o ir r   
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4.1.4. Effect of Radii Ratio on Temperature Distribution 

 In this part, eccentricity ratio is fixed at 0.5ie r  to evaluate the effect of radii ratio on 

temperature distribution. For this purpose, computations are done for the radii ratios 
o ir r 

2.0,3.0,4.0, and 5.0 with 50.0Q  and 5.0Bi  .  Temperature distribution along the line  CD  is 

shown in fig. 5 for various radii ratios selected.  It could be seen from the fig. 5 that BIMM results and 

CFD results agree very well. Since the line CD is tangent to the top of the inner boundary of the 

annulus dimensionless temperature takes the value of unity at the middle of the  CD  line as seen 

from the figure.  For the fixed / 0.5ie r   the dimensionless eccentricities become 

   0/ / / 1i ie r r r     0.50, 0.25, 0.167 and 0.125, respectively, for the radii ratios used in 

computations as /o ir r  2.0, 3.0,  4.0, and 5.0, respectively. Fig. 5 shows that dimensionless 

temperature becomes larger for larger radii ratios and consequently for larger dimensionless 

eccentricities.  

 

Figure 5. Variation of the dimensionless temperature through the line  CD  by dimensionless 

position *y for various radii ratios ( 0.5, 50.0, 5.0)ie r Q Bi    

4.2. Heat Transfer Rate 

 In this part, the dimensionless heat transfer rates calculated using eq. (18) for different cases 

are compared with the Fluent CFD results. It could be noticed from eq. (20) that ( ) 0m

oh   for uniform 

heat generation rate. Hence, the dimensionless heat transfer rate given by eq. (18) takes the form 

( 1/2)

,0

0

1
2 1

2

oQ e
 




 



                                    (21) 

where the unknown moments ,0 are calculated solving (14)-(16) using eq. (20) 

 Tab. 1 tabulates computed dimensionless heat transfer (Q ) values for eccentricity ratios of 

1.0,2.0,  and 3.0ie r  . In computations for  each eccentricity ratio, radii ratio is fixed at 5.0o ir r  , 

dimensionless heat generation rate takes values 30, 15,0,15,30Q    , Biot number takes values 

0.2,0.6,2.0,6.0,10,and, 15.0Bi  .  As seen from the table , results of BIMM agree very well with 

FLUENT results for all range of parameters investigated. The maximum absolute relative error is less 

than 1% and even much less than 1% in the most of the calculations. Eccentricity ratios used in BIMM 

computations as / 1.0,  2.0 and 3.0ie r   correspond to the dimensionless eccentricity  values 

   0/ / / 1i ie r r r   , 0.25,0.50 and 0.75 , respectively. It could be noticed from the tables that the 
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dimensionless heat transfer rate for the same dimensionless heat generation rate and Biot number 

increases as  is increased. This is because of formation of larger temperature gradients when   is 

increased due to the reasons explained in Part 4.1.2. A considerably greater change of rate of heat 

transfer is observed for relatively smaller Bi  values ( 1Bi  ) than for the larger Bi  values ( 1Bi  ). 

When Bi  exceeds practical limits  ( 10)Bi   rate of change in the heat transfer rate is indiscriminable.  

Table 1. Dimensionless heat transfer rate Q  for various eccentricities ( 5.0)o ir r   

( 1.0)ie r   

Q -30 0 30 

Bi CFD BIMM 

% 

Diff. CFD BIMM 

% 

Diff. CFD BIMM 

% 

Diff. 

0.2 -0.651 -0.647 0.67 0.110 0.110 0.42 0.871 0.867 0.39 

0.6 -1.024 -1.019 0.45 0.174 0.175 0.64 1.372 1.370 0.17 

2.0 -1.280 -1.276 0.30 0.220 0.222 0.79 1.721 1.721 0.02 

6.0 -1.379 -1.375 0.25 0.239 0.241 0.85 1.857 1.858 0.04 

10.0 -1.400 -1.397 0.23 0.244 0.246 0.86 1.888 1.888 0.05 

15.0 -1.411 -1.408 0.23 0.246 0.248 0.87 1.903 1.904 0.06 

( 2.0)ie r   

Q -30 0 30 

Bi CFD BIMM 

% 

Diff. CFD BIMM 

% 

Diff. CFD BIMM 

% 

Diff. 

0.2 -4.255 -4.240 0.34 0.107 0.108 0.32 4.470 4.456 0.31 

0.6 -6.564 -6.552 0.19 0.171 0.171 0.47 6.906 6.895 0.16 

2.0 -8.123 -8.115 0.09 0.221 0.222 0.58 8.564 8.559 0.06 

6.0 -8.725 -8.721 0.06 0.245 0.246 0.63 9.214 9.213 0.02 

10.0 -8.858 -8.854 0.05 0.251 0.252 0.65 9.360 9.359 0.01 

15.0 -8.927 -8.923 0.04 0.254 0.255 0.65 9.435 9.434 0.01 

( 3.0)ie r   

Q -30 0 30 

Bi CFD BIMM 

% 

Diff. CFD BIMM 

% 

Diff. CFD BIMM 

% 

Diff. 

0.2 -21.661 -21.604 0.26 0.102 0.102 0.24 21.866 21.809 0.26 

0.6 -32.232 -32.198 0.10 0.162 0.162 0.38 32.555 32.523 0.10 

2.0 -39.053 -39.050 0.01 0.218 0.219 0.47 39.490 39.488 0.00 

6.0 -41.700 -41.711 0.03 0.255 0.257 0.51 42.211 42.224 0.03 

10.0 -42.296 -42.311 0.04 0.267 0.268 0.52 42.830 42.848 0.04 

15.0 -42.605 -42.623 0.04 0.274 0.275 0.52 43.152 43.174 0.05 

 

5. Conclusions 

 Heat conduction equation for an eccentric spherical annulus with heat generation whose inner 

surface is kept at a constant temperature and the outer surface is subjected to convection can be solved 

analytically using BIMM.  Stating the problem in a dimensionless form in Bispherical coordinates 

transforms it into a concentric annulus problem. Since Helmholtz equation is not separable or R-
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separable in Bispherical coordinates an analytical Green’s function to the conduction equation in 

Bispherical coordinates for an eccentric annulus subject to boundary condition(s) of third type 

(convection) is not possible. However, an analytical Green's function for the first type boundary 

conditions (given temperatures) on inner and outer boundaries can be obtained. Solution of the 

conduction equation with third type boundary condition on the outer surface could be expressed in 

terms of the unknown normal derivative of the outer surface temperature using the analytical Green's 

function obtained for the first type boundary condition.  The resulting equation is a Fredholm integral 

equation of the second kind with separable kernel for the unknown normal derivative of the outer 

surface temperature. Taking moment of this integral equation leads to a set of linear equations which 

can readily be solved. 

 It is also possible to obtain an analytical Green's function for the second type boundary 

condition on the outer surface of the eccentric spherical annulus whose inner surface is kept at a 

constant temperature or subjected to the constant heat flux.  Hence, the conduction equation with third 

type boundary condition on the outer surface can also be solved analytically using BIMM. In this case, 

the analytical Green's function obtained for the second type boundary condition is to be used in the 

method.  The resulting equation for unknown outer surface temperature will again be a Fredholm 

integral equation of the same kind which can be solved by methods of moment. 

 The method has been applied to the eccentric spheres with various heat generation rates and 

for a wide range of Biot number and a perfect agreement has been observed when compared to the 

results of the CFD code Fluent. This exemplifies the robustness of the method and its applicability to 

the conduction problems where an analytical solution for the third type boundary condition are not 

accessible, but still Green's functions are obtainable for the first or second type boundary conditions. 
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