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In this work, we look into the problem of recognizing two-person interactions in videos. Our method inte-
grates multiple visual features in a weakly supervised manner by utilizing an embedding-based multiple
instance learning framework. In our proposed method, first, several visual features that capture the shape
andmotion of the interacting people are extracted from each detected person region in a video. Then, two-
person visual descriptors are formed. Since the relative spatial locations of interacting people are likely to
complement the visual descriptors, we propose to use spatial multiple instance embedding, which implic-
itly incorporates the distances between people into the multiple instance learning process. Experimental
results on two benchmark datasets validate that using two-person visual descriptors together with spatial
multiple instance learning offers an effective way for inferring the type of the interaction.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction matter in distinguishing the underlying interaction patterns. This
Human activity and interaction recognition remain as an open
challenge for computer vision research. Recent years have wit-
nessed quite a number of studies and progression made in this
area, especially for the problem of human action/activity recogni-
tion. Recent reviews on this topic include [35,50,1]. However, there
is still a large room for improvement, especially for the recognition
of activities and interactions in unconstrained videos.

In thiswork,we look into theproblemof recognizing interactions
that take place between two people. We believe that a model devel-
oped for two-person interaction recognition can serve as a primitive
for more complex recognition systems that involve multiple people
and/or collective interactions. It also has thepotential to bedeployed
in complex systems ranging from surveillance applications to human–
computer interfaces for content-based video retrieval.

There are subtle differences between human interactions and
singleton activities. For the recognition of singleton activities, the
focus is on the body parts of a single person and the related
spatio-temporal patterns in general. On the contrary, human–
human interactions involve detailed analysis of two people: the
proximity, respective positions and poses of interacting people all
paper looks into this area, and investigates the use of a number of
cues to capture the characteristics of two-person interactions.

In this work, we cast the problem of human–human interaction
recognition in a weakly supervised setting. The main reason for
this choice of formulation is that designing a fully-supervised sys-
tem is a very cumbersome task which requires annotating every
frame of interaction on a large number of videos. We assume that
for each video sequence, the only available supervision is the inter-
action class label. We do not have the information where in the
sequence the interaction takes place, i.e. the start and the end of
the interactions are not marked. In addition, there may be multiple
people in a video, where some of them are not involved in any
interaction. Such presence of unrelated frames and uninvolved
people add a remarkable amount of noise to the problem. Our goal
is to be able to distinguish ongoing interactions in the videos in
spite of such noise.

In order to deal with such presence of noise, we propose to
jointly leverage visual and spatial characteristics of human interac-
tions within a multiple-instance learning (MIL) framework. An out-
line of the proposed approach is illustrated in Fig. 1. In our
proposed framework, first, the bounding boxes and the tracks of
the people within a video are extracted using off-the-shelf person
detectors and tracking methods. Then, in each frame, two-person
pairs are formed by pairing each person region with another per-
son region. We extract multiple two-person shape and motion
descriptors from these pairs. Later on, these two-person descriptors
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Fig. 1. Our proposed framework for human–human interaction recognition.
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become the candidate instances within the MIL bags that are pro-
cessed in the learning phase. We incorporate the spatial distances
between people into the MIL framework by modifying Multiple-
Instance Learning via Embedded Instance Selection (MILES) [7] to
include two multiplicative spatial kernels. We demonstrate that
using two spatial kernels is more suited to the problem, giving
the flexibility of modeling variances of spatial distances.

Our contributions in this paper are twofold:

� Instead of using regular single person features, we propose to
use two-person descriptors. We show that for recognizing
two-person interactions, these descriptors are more effective
than their singleton counterparts.

� We propose a embedding based representation that jointly
incorporates the appearances and relative spatial positions of
the visual interaction elements. We show that this proposed
MIL embedding captures the nature of the two-person interac-
tions more accurately.

We evaluate our algorithm on two benchmark datasets for two-
person interactions: UT-Interactions [40] and TV Interactions [34]
datasets. Our experimental results confirm that the proposed MIL
framework obtains state-of-the-art recognition performance, and
at the same time, qualitative evaluations show that it offers a sim-
ple and interpretable model.

The rest of the paper is organized as follows. In Section 2, we
review the existing literature on human interaction recognition. In
Section 3, first, we present the visual feature extraction step and
then give the details of the proposed spatial multi-instance embed-
ding for human interaction recognition. Section4 includes the quan-
titative and qualitative experimental results, and Section 5 presents
brief discussions together with potential future directions.

2. Related work

While there is a large body of literature on human action/
activity recognition, such as [25,41,48,44], the problem of
recognizing human interactions is a relatively less studied topic
in computer vision. Related work on human interaction recogni-
tion typically addresses one of the following two interaction
types: (i) human–object interactions, and (ii) human–human
interactions. Prior work on human–object interaction include
simultaneous object and action recognition using probabilistic
models [18], extraction of distinctive feature groups [52], bag-
of-features and part-based representations [11], weakly super-
vised learning [37]. In this work, we basically focus on the prob-
lem of recognizing human–human interactions, specifically two-
person interactions.

Two-person interaction recognition: In one of the earliest studies
on two-person interaction recognition, Datta et al. [10] focus on
the problem of person-to-person violence recognition and uses
motion trajectory information. Park and Aggarwal [32] propose
to simultaneously segment and track multiple body parts of inter-
acting humans in videos. Ryoo and Aggarwal [39] looks at the
matching of local spatio-temporal features which are known to
have good performance on atomic action recognition.

Initial attempts [10,32,39] heavily depend on the successes of
low level processes such as background subtraction. Such low level
processes are likely to fail in the complex settings of the unstruc-
tured real world video footage coming from TV shows and
YouTube. In this respect, the study of Patron-Perez et al. [34,33]
is different. They target at the recognition of two-person interac-
tions such as hand shake, high five that are extracted from TV
shows with cluttered backgrounds and introduce a person-
centered descriptor which exploits head orientations for the recog-
nition of two-person interactions. Patron-Perez et al. [34] claim
that face orientations contain important cues for inferring the type
of the action since two people face to each other when they are in
interaction. Fathi et al. [13] also consider faces and their locations
for recognizing social interactions in egocentric videos. Marin-
Jimenez et al.[29] determine whether people are looking at each
other by considering eyeline match between people. In our work,
we also make use of features extracted around face regions and
upper body for aiding two-person interaction recognition, and
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we show that our spatial embedding based representation is more
suited for this problem.

In their recent work Zhang et al. [56] propose bag-of-phrases
approach for activity recognition, in which the visual phrases are
constructed via the identification of co-occurring space–time
points, which in turn can be used for interaction recognition. On
the other hand, Kong et al. [23] proposes to use higher level fea-
tures such as attributes and build interactive phrase models.
Vahdat et al. [45] utilizes a graphical model of key pose sequences
for interaction matching. Gaidon et al. [16] propose to use cluster-
trees of tracklets. Marin-Jimenez et al. [27] proposes to use audio
features, as well as visual features for interaction recognition.
While audio features can be useful, in this work, we focus solely
on visual features, and show that without the need for complex
models, our simple framework of two-person based visual features
coupled with spatial multiple instance embedding proves to be an
effective way for two-person interaction recognition.

Yang et al. [51] have focused on how people interact in still
images. Their method is closely related to visual phrase approach
[42]. Their claim is that complex interactions can be modeled as
a single representation and a joint model of body poses is proposed
by focusing personal space in between.

Recently, Hoai and Zisserman [20] have demonstrated the effect
of accurate upper body detection and the use of human-focused
dense trajectories for interaction recognition. In this paper, our
experiments also show that accurate upper body detection can
be a helpful cue for recognizing ongoing interactions, even using
with simple visual features.

Recognition of people interactions on videos paired with depth
information is also been recently explored. van Gemeren et al. [17]
introduce a new dataset that involve only two interactions, taken
in controlled settings with Kinect assistance. In their work, stan-
dard HOG and poselet representations are used for interaction
recognition, whilst utilizing the joint locations acquired from
depth information in training. Yun et al. [54] also devise the under-
lying features based on the joint locations estimated from the
depth data. On the contrary, our proposed framework is targeted
at working without any depth information, in uncontrolled video
settings.

Recognition of group activities has also emerged as another line
of work. Lan et al. [24] focus on employing a structured SVM
framework to capture the structure of group activities, while
Choi and Savarese [8] propose a graphical model based framework
to jointly track and recognize collective activities. Turn-taking
activities has also been studied [36] by means of learning the struc-
ture of the causal graphs.

Multiple instance learning: Multiple instance learning (MIL) has
been a topic of interest in machine learning community, due to
its desirable properties of weak supervision. Earliest attempts at
this problem propose probabilistic approaches and define a
Diverse Density framework [30]. The k-NN classifier has been
adapted for MIL by defining the distance between bags [49].
Later on, kernel methods have also been adapted to work with
MI data such as [4,19]; a complete review on such approaches is
available in [12]. More recently, algorithms that involve boosting
[55], embedding the data into a different feature space [7], or treat-
ing the data in bags as graphs [57] have been proposed. A broad
review on multiple instance classification can be found in the
recent survey of Amores [3].

MIL paradigm is attractive for computer vision research due to
the difficulties in obtaining fully supervised systems. Besides other
domains such as scene, object recognition and tracking [26,5], MIL
has been used in the categorization of singleton human actions in
[2,22,43]. Prabhakar and Rehg [36] use multiple instance learning
to infer the labels of causal sets which temporally co-occur in
turn-taking interactions. Yun et al. [54] focus on interaction
recognition on depth and motion capture data and propose to
use high-dimensional body-pose features with MILBoost [55]
algorithm.

In the context of object recognition, spatial embedding of local
features has been exploited. In [21], the Euclidean distance
between x–y coordinates of the SIFT points extracted around object
regions has been used with a single spatial kernel. On the contrary,
we encode the relative face and body positions of interacting peo-
ple, rather than embedding the absolute spatial positions of local
low-level features, and show with experiments that this represen-
tation is quite effective for human–human interaction recognition.
3. Proposed approach

Our proposed approach is a simple, interpretable and effective
method which is formulated in a weakly supervised setting and
thus is able to work in the presence of noise. In this section, we first
describe our representation of visual features, which are extracted
over pairs of people. Then, we give the details of our proposed spa-
tial instance embedding MIL formulation.
3.1. Two-person features

Facial features can be important cues for recognizing human–
human interactions since people typically look at each other while
interacting. Similarly, body poses and relative positions of the peo-
ple can carry strong cues as well. Based on these observations, we
extract multiple visual features from the face and body regions of
people. These multiple features are selected such that they are
likely to be complementary to each other for recognition.
Moreover, these features are mostly selected because they are
standard, non-complex and easy to extract. We omit the calcula-
tion of more complex features (such as dense trajectories [47]) in
order to demonstrate the effectiveness of the proposed framework.
In the following paragraphs, we give the details of the visual fea-
tures that we use in our learning framework.

Histogram of oriented gradients: Histogram of Oriented Gradients
(HOG) [9] descriptor has been successfully used in person detec-
tion and action recognition tasks, see e.g. [9,14,25]. A building
block of HOG descriptor is orientation histograms extracted in local
spatial regions called HOG cells. The HOG descriptor of a region is
obtained essentially by concatenating local groups of HOG cell
descriptors into HOG blocks and concatenating the normalized
HOG block descriptors. In our approach, we use HOG features in
order to encode both the facial features and body poses. More pre-
cisely, we extract facial descriptors (HOGface) by resizing each face
region into 96� 96 pixels and extract body-pose descriptors
(HOGbody) by resizing person detection region into 128� 128 pixels.
In both cases, we use HOG cells of size 8� 8 pixels and 2� 2 HOG
blocks. In order to obtain two-person interaction descriptors, we
concatenate HOG descriptors of each person region. We refer to
the resulting face and body descriptors as HOG2Pface and
HOG2Pbody, respectively.

Histogram of optical flow: We expect motion features to be com-
plementary to the shape features for interaction recognition. In
order to account for motion information, we extract Histogram of
Optical Flow (HOF) [25] features from person regions in each frame.
Optical flow of each frame is extracted using a simple block match-
ing algorithm and HOFs are formed using four major orientations
located in 3� 3 spatial grid over each ROI. Similar to HOGs, a
two-person HOF descriptor (HOF2Pbody) is obtained by concatenat-
ing individual HOF features. Note that, we extract HOF descriptors
on the body regions only since typically there is no relationship
between face motions and human interactions or the relationship
is too subtle to exploit.
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Relative distance: People interact in many ways and these inter-
actions show a large amount of variability. While interacting, peo-
ple keep a certain distance to each other based on the interaction
type. In order to capture this information and include it in our
framework, we encode spatial relations of people for body
(relbody) and face (relface) regions in each frame. First, we calcu-
late the Euclidean distance between the individuals based on the x
and y coordinates of the body (and face) regions. In order to obtain
scale invariance, we normalize these distances with respect to the
heights of the person (and face) regions. The relative distance
features (denoted as rel2Pface and rel2Pbody) are then the con-
catenation of these relative distances.

Finally, a practical problem is that person detector sometimes
fails to localize a second person in a frame. In these cases, we rep-
resent the missing detection by averaging the descriptors and spa-
tial coordinates of the corresponding person over all frames. To be
more specific, if only one person is detected in a frame, we always
assume that it is the first person. To calculate features of the sec-
ond person, if it is a training video, we take the average over all
second-person features in all videos of the training set. During test-
ing, if a person detection is missing, we only consider the video
being processed and simply take the average of all person features
in that particular test video.
3.2. Multiple instance learning for interaction recognition

In the traditional fully supervised learning, the learning proce-
dure works over instances xi and their individual corresponding
labels yi. In this setting, the label of each instance should be avail-
able in the training phase. In our problem, we do not have the
explicit information about on which frames of the video the inter-
action occurs. Interactions can occur somewhere in the video
sequence; and in some videos, there may be other irrelevant
actions besides the labeled interaction. Therefore, each video is
weakly labeled in the sense that interaction class is the only label
provided for the whole sequence.

This case is particularly suitable for multiple instance learning
(MIL). MIL operates over bags of instances, as opposed to working
on single instances, where each bag Bi is composed of multiple
instances xij. A bag Bi is labeled as positive, if at least one of the
instances xij within the bag is known to be positive, whereas it is
labeled as negative, if all the instances are known to be negative.
This form of learning is referred as weakly supervised, since the
labels for the individual instances (in our case, individual frames)
are not available, and only the labels of the bags are given.

Bag construction: During training, each video is considered as a
bag of instances and associated with an interaction class label.
Each instance is represented by a two-person feature vector.
Fig. 2 illustrates our bag formation scheme. For each person pair
in a frame (as shown in Fig. 2(a)), a two-person descriptor is
extracted and added as an instance to the corresponding MIL
bag. We assume that at least one pair of people within a video
involves the target interaction, so that the MI positivity require-
ment is obtained.

This MIL formulation implicitly covers the case when there are
more than two people per frame. In our formulation, each pair of
people is treated as an instance in the MIL bag. More precisely, tak-
ing each person as a reference, we match the reference person with
each one of the remaining person regions to its right in order to
extract our two-person based feature vectors. We repeat this pro-
cedure until all left-to-right ordered pairs are included in the bag.
See Fig. 2(b) for an illustration.

For each positive training video, the corresponding MIL bag is
formed using the aforementioned procedure. Negative bags are
formed in a similar fashion, using a uniformly sampled portion
from the videos of the remaining interactions, and/or videos that
do not contain any interaction.

3.2.1. Spatial multiple instance embedding for interaction modeling
In order to model the spatial relationships between interacting

people more efficiently, we propose to use a variant of the Multiple
Instance Learning with Embedded Instance Selection [7] (MILES)
algorithm. Our proposed framework includes an extension of the
original MILES algorithm to include relative spatial distances in
the embedding step. By infusing the relative distances within the
embedding itself via multiplicative kernels, we can easily and nat-
urally represent the spatial relationships between interacting peo-
ple, and this information proves to be very useful for recognition of
the interactions.

More specifically, we first embed the original feature space x to
the instance domain. In this embedding, each multi-instance bag B
is represented by its similarity to each concept instance ck in the
training bags. The set of concept instances is denoted by
C ¼ fck : k ¼ 1; . . . ;Ng. Each concept instance ck, which can also
be considered as a reference point for a target concept, corresponds
to a MIL embedding dimension. Therefore, the cardinality of the set
C defines the dimensionality of the embedding vectors.

The set of concept instances, C can be obtained in a number of
ways. In practice, the most prominent two approaches are (i)
aggregation of the complete set of instances in the dataset, or (ii)
utilization of the output of an intermediate clustering step. In
our case, we use all the instances extracted from the training
videos as the set of concept instances for embedding.

The original formulation of MILES [7] depends only on the
visual feature similarity, where the similarity sð�Þ between a bag
Bi and a concept instance ck 2 C is given by

sðck;BiÞ ¼ max
j

/featðxij; ckÞ
� �

: ð1Þ

Here, /featðxij; ckÞ is the similarity between feature vectors, defined
as

/featðxij; ckÞ ¼ exp �Dðxij; ckÞ
r

� �
; ð2Þ

where Dð�Þ measures the similarity between a concept instance ck
and a bag instance xij. In our experiments, we use simple
Euclidean distance as Dð�Þ.

As discussed in Section 3.1, spatial relations between people can
provide important additional information about human interac-
tions. In order to incorporate such relationships into the learning
framework, we modify this formulation and add two multiplicative
spatial kernels. More precisely, the similarity between an instance
and a bag is modified to

sðck;BiÞ ¼ max
j

/featðxij; ckÞ/spx
ðxij; ckÞ/spy

ðxij; ckÞ
� �

; ð3Þ

where /spx ðxij; ckÞ is the spatial closeness between a concept
instance ck and a bag instance xij over the x coordinate and
/spy

ðxij; ckÞ is the corresponding spatial closeness over the y coordi-

nate. Replacing h for xij and b for ck for shorthand, spatial kernel
/spx

ðh;bÞ is defined as follows:

/spx
ðh;bÞ ¼ exp � dxðp1; ohÞ � dxðq1; obÞ

�� �� dxðp2; ohÞ � dxðq2; obÞ
�� ��
rx

� �
;

ð4Þ
where h ¼ fp1; p2g;b ¼ fq1; q2g;p1 and p2 are the first and second
person in the bag instance xij; q1 and q2 are the first and second per-
son in the concept instance ck. oh represents the middle point of two
people in xij and ob represents the middle point of two people in ck
respectively. dxð�Þ measures the distance in x dimension.



(a) two-person (b) multi-person

Fig. 2. Example multiple instance bag creation for videos with (a) two-person and (b) multi-person. This figure is best viewed in color. Color blue shows the frames with no-
interaction, and green shows the presence of the interaction. In two-person case, features extracted from each person region are concatenated and added to the MIL bag as an
instance. When multiple people are present in the scene, person regions are paired with eachother and each pair is accounted as a candidate MIL instance. Note that, the
presence of multiple people is likely to cause many negative instances in the MIL bags. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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By replacing dxð�Þ in Eq. (4) by dyð�Þ, which corresponds to the
distance in y dimension, we get the second spatial kernel
/spy

ðxij; ckÞ in Eq. (3). Both dxð�Þ and dyð�Þ are normalized with

respect to the related person bounding box size. rx and ry are
the bandwidth parameters that adjust the sensitivity of the mea-
sure to the spatial differences and in the experiments, these
parameters are selected using cross-validation over the training
set.

Eq. (3) allows us to consider the similarity between feature vec-
tors of two-person regions and relative distances of two interacting
people in both x and y dimensions together. In this formulation, we
consider x and y coordinates separately, rather than having a single
distance measure. This nuance is crucial, the relative vertical and
horizontal distances may contain important characteristics for
each interaction. Therefore, having distinct spatial kernels is neces-
sary to capture such distinguishing properties. Our preliminary
experiments also validate this observation; having two separate
kernels produce more accurate results.

In the end, each bag can be represented in terms of its similar-
ities to each of the target concepts. The corresponding mapped rep-

resentation mðBf
i Þ becomes

mðBiÞ ¼ ½sðc1;BiÞ; sðc2;BiÞ; . . . ; sðcN ;BiÞ�T ð5Þ

and the final classification is performed over this embedded space.
Table 1
Comparison between singleton features and 2P features on TV Interactions dataset. In
this table, Average Precision (AP) values are reported. The classifiers are learned using
the regular MILES with no spatial embedding. The combination of the individual
features are done via a linear SVM. Bold values indicate the highest AP scores for each
individual interaction class.

Feature Handshake Highfive Hug Kiss Avg

HOGbody 53.69 43.74 50.67 56.15 51.06
HOGface 52.30 57.13 63.05 58.93 57.85
HOFbody 44.28 44.35 35.48 36.75 40.21
3.2.2. Classification
After the embedding step, an L2-regularized SVM [6] with RBF

kernel is trained over the mapped representations mðBÞ for build-
ing multiple instance classifiers. Separate classifiers are learnt for
each of the two-person descriptors HOG2Pface;HOG2Pbody and
HOF2Pbody, respectively.

The final classification is achieved via a second linear SVM layer
learned over the response vector of the individual feature classi-
fiers. This final layer of linear SVM provides the late fusion of the
different features and helps to compensate the differences in
model biases.
relbody 52.40 49.45 48.47 36.81 46.78
relface 52.70 51.42 49.69 46.79 50.15

All 56.57 55.00 64.11 53.29 57.24

HOG2Pbody 63.08 52.06 62.24 68.64 64.32
HOG2Pface 58.11 63.60 74.13 75.97 66.15
HOF2Pbody 59.90 63.99 49.64 49.25 59.47
rel2Pbody 55.73 53.54 66.53 56.92 61.39
rel2Pface 54.40 54.01 67.73 61.37 62.50

All2P 61.77 63.97 72.73 76.36 68.71
4. Experiments

4.1. Datasets and experimental setup

In order to evaluate the performance of our method, we use two
benchmark datasets available for human interaction recognition:
These are UT-Interactions [40] dataset and TV Interactions [34]
dataset.
UT-Interactions [40] dataset consists of 20 videos, where each
video contains six different interactions between two people.
These interactions are hand shaking, hugging, kicking, pointing,
punching and pushing, and are performed by 10 different actors.
There are two sets of videos, where Set 1 is composed of 10 video
sequences taken on a parking lot and Set 2 is composed of 10 video
sequence taken on a lawn in a windy day. In this dataset, the videos
have relatively stable backgrounds, with a resolution of 720 * 480,
at a rate of 30 fps. The height of a person is about 200 pixels. In our
experiments, we use the segmented version of Set 1 and Set 2 to
compare our method’s recognition performance with the existing
works. We follow the same testing routine of [40], which involves
10-fold leave-one-out cross-validation. As a preprocessing step, we
deploy the Felzenszwalb et al.’s person detector [14] and use
meanshift tracking to aid in localizing people in frames with no
detection.

The second dataset is the more realistic ‘‘TV Interactions” data-
set collected by Patron-Perez et al. [34]. This dataset consists of 300
videos extracted from different TV shows. The dataset contains
four interactions: hand shake, high five, hug and kiss (50 videos
for each class) and negative examples (100 videos) which do not
contain any of the four interactions. It is a quite challenging dataset
with changing camera viewpoints, varying scales, etc. The lengths
of the video clips range between 30 and 600 frames. In this dataset,
the upper body bounding boxes of the people and interaction
labels are provided for each frame. We follow the same evaluation
methodology of [34], applying cross-validation using the two splits



Table 2
Average Precision (AP) on TV Interactions dataset with 2P features. Bold values
indicate the highest AP scores for each individual interaction class.

Method Feature hs hf h k Avg

Negatives excluded
MIL embedding All2P 61.77 63.97 72.73 76.36 68.71
[21] All2P 60.50 63.33 81.83 74.93 70.15

Our method HOG2Pbody 66.90 69.99 77.50 74.48 72.22
HOG2Pface 63.57 66.47 87.06 84.18 75.32
HOF2Pbody 67.72 69.61 69.62 55.60 65.64

Our method All2P 68.57 70.03 83.68 80.13 75.60

Negatives included
MIL embedding All2P 47.83 51.48 83.29 77.10 64.93
[21] All2P 48.74 54.07 83.56 66.28 63.16

Our method HOG2Pbody 49.81 52.29 83.51 67.30 63.23
HOG2Pface 41.87 57.90 86.92 82.94 67.41
HOF2Pbody 53.61 48.99 71.57 49.11 55.82

Our method All2P 50.13 61.28 88.69 69.70 67.45
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of the data. There are two evaluation schemes that [34] considered,
where the first scheme excludes the negative data, and the second
includes negative data in training and testing. We report the
results for both of these settings.

During experiments, all the parameters are selected using
cross-validation over the training set and the results are reported
at the sequence level.
Fig. 3. Ranking results for the TV-Interactions dataset (negatives not included). (a) The re
the result of the proposed framework with HOG2Pbody;HOG2Pface and HOF2Pbody features
right column displays the false positives with their ranks in the list. Note that the
interpretation of the references to color in this figure legend, the reader is referred to th
4.2. Performance of individual features

We first evaluate the performance of the individual features on
the TV Interactions dataset [34]. For the five types of singleton fea-
tures, we first employ the standard MIL embedding. The instance
embedding representation of MILES considers only the low-level
feature similarity, and we train an L2-regularized SVM with RBF
kernel for each visual feature. For the combination of these classi-
fiers, we use the same late fusion scheme described above.

Average Precision (AP) values obtained using individual fea-
tures are shown in Table 1. HOGface has the best singleton perfor-
mance among others, followed by HOGbody. For hand shake class
HOGbody has the best performance, and for the remaining interac-
tions HOGface feature provides the best performance. These results
demonstrate that shape features are very informative for inferring
the type of the interaction. The high performance of HOGface is not
surprising, since most of the interactions occur closer to the facial
area. This also coincides with the claims of [34] on the importance
of exploiting the visual features extracted around the head region.
We observe that, in this dataset HOFface features are not that reli-
able, showing promising performance only for high five and hand-
shake actions. This may be due to the existing camera motion in
this dataset.

As it can be seen from Table 1, relative distance features have
also good performance. This observation suggests that the relative
spatial locations of people can provide useful information and
encourages to further investigate these features. The sixth row of
Table 1 is the performance when these singleton feature classifiers
sult of the MILES algorithm of using HOGbody;HOGface and HOFbody features, and (b) is
. Left column displays the true positives based on their ranking in the retrieval, and
green bounding boxes show the ground truth annotations for this dataset. (For
e web version of this article.)



Table 3
Classification accuracies of spatial embedding on UT-Interactions dataset. Bold values
indicate the highest AP scores for each individual interaction class. The overall
accuracy is 93.3%.

Feature hs h k po pun pus Avg

SET1
HOG2Pbody 100 100 90 100 70 90 91.67
HOG2Pface 100 100 90 100 80 90 93.33
HOF2Pbody 90 100 90 100 50 90 86.67

All2P 100 100 90 100 80 100 95.00

SET2
HOG2Pbody 100 100 60 100 80 90 88.33
HOG2Pface 100 100 50 100 90 90 88.33
HOF2Pbody 90 100 70 100 70 50 80.00

All2P 100 100 70 100 90 90 91.67
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are combined via the final layer of linear SVM. Surprisingly, combi-
nation of the singleton visual features does not offer much of a per-
formance difference in this case, and features extracted around the
upper body region seem to be dominant in recognition.

A more interesting observation from Table 1 is that, recognition
performance significantly improves if two-person (2P) features are
used. HOG2Pface achieves the best performance amongst 2P
Fig. 4. The contributions of individual frames to the classification using our approach. In
kiss classes (two rows for each). Note that the green and blue bounding boxes show the gr
bottom right corner of each frame and the positively contributing instances with respec
missed (e.g. frame in second row first column for high five interaction), overall, our algori
interpretation of the references to color in this figure legend, the reader is referred to th
features and the combination of all 2P features provides a slight
increase over HOG2Pface. Compared to singleton features, this
noticeable increase in performance suggests that using 2P features
can be a fruitful direction to explore for human interaction
recognition.
4.3. Performance of spatial embedding

Next, we look at the performance of the proposed framework
based on spatial embedding. Instead of using relative distance fea-
tures as a separate feature, these distances are incorporated into
the embedding procedure. Table 2 shows the results. We observe
that encoding spatial information via the proposed kernels to the
instance embedding procedure increases the performance for all
three feature types. HOG2Pface feature has the best performance
among others, and especially for hug and kiss interactions the per-
formance gain is noticeable. For these interactions, spatial kernels
are shown to be especially useful. Overall, the best results are
achieved using spatial embedding with all 2P features.

In Table 2, we also compare our approach with the spatial
encoding approach of [21] that uses a single spatial kernel that
computes the direct Euclidean distance between features for
embedding. As it can be seen, our method outperforms this naive
this figure, from top to bottom, the videos belong to hand shake, high five, hug and
ound truth annotations for this dataset. The contribution scores are displayed on the
t to each target interaction are marked with green. While some in-class frames are
thm is quite successful in discriminating the frames related to each interaction. (For
e web version of this article.)



Fig. 5. The contributions of individual frames to the classification using our approach on UT-Interactions dataset [40]. In this figure, from top to bottom, the videos belong to
hand shake, hug, kick, punch and push classes, from SET1 and SET2 divisions of the dataset. The yellow bounding boxes show the person tracks that are acquired
automatically via person detection and meanshift tracking. The contribution scores are displayed on the bottom right corner of each frame and the instances with positive
contribution scores for each target interaction are marked with green. As it can be observed, while there are some confusions, overall, our algorithm is quite successful in
discriminating the frames related to each interaction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 6. The effect of the presence of noise. Having a multiple-instance based nature,
the proposed framework is not much affected by the amount of noise, aka the
people regions that are not involved in any type of interactions, in the video.

Table 4
The AP comparison of different MI-based methods using All2P features on TV
Interactions dataset. The highest AP score for each individual interaction class is
shown in bold.

Method hs hf h k Avg

mi-Graph [57] 60.01 50.73 64.24 68.59 60.89
MILES [7] 61.77 63.97 72.73 76.36 68.71
milBoost [55] 62.32 67.84 76.72 73.97 70.21
Our method 68.57 70.03 83.68 80.13 75.60
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spatial encoding, showing that the proposed embedding is more
effective for two-person interaction recognition problem.

In Fig. 3, some qualitative examples are given for the rankings
obtained using different methods. Fig. 3(a) shows the ranking
results for the baseline standard MIL Embedding (MILES) when
using with the regular singleton HOGbody;HOGface and HOFbody fea-
tures. Fig. 3(b) shows results for Spatial Embedding with
HOG2Pbody;HOG2Pface and HOF2Pbody features. We observe that
the top three high ranking videos are relevant for all interactions
regardless of the choice of method. We observe that our proposed
framework tend to retrieve more relevant results higher in the list;
the false positive with the highest rank for high five action has rank
9 for our method (rank 4 for MILES), and for kiss action the highest
ranked false positive has rank 13 (rank 4 for MILES) respectively.

Table 3 shows the performance of the proposed approach on
UT-Interactions dataset. Similar to the previous findings, the best
performance is achieved with the combination of all features
within the spatial embedding framework. Overall, the achieved
accuracy on this dataset is 93.3%.

One of the strengths of the proposed approach is its ease for
interpretation. Fig. 4 illustrates this property. In this figure, exam-
ple frames from the test videos of TV Interactions dataset [34] are
shown, with their contribution scores overlaid. The positively con-
tributing instances to the classification of the target interaction are
framed in green. As it can be seen, our approach successfully dis-
criminates the frames of the target interaction and offers a rough
localization of the interaction within the sequence. Similarly,
Fig. 5 includes example frames from UT-Interactions dataset [40]
with overlaid contribution scores that are output by our method.
For both of the datasets, the contribution scores usually increase
as the target interaction takes place within the sequence, whereas
they are usually lower for frames with no interaction.



Table 5
Comparison to the state-of-the art on ‘‘TV Interactions” dataset [34]. Average
Precisions are reported for the two separate testing schemes (negatives included and
excluded). In this table, l-type represents the localization type of the person regions.
For each setting, the best classification performance is shown in bold.

Method l-type hs hf h k Avg

Negatives excluded
Patron-Perez et al. [34] Manual 57.83 51.08 71.16 76.54 64.15
Yu et al. [53] Auto – – – – 66.16
Our method Manual 68.57 70.03 83.68 80.13 75.60

Negatives included
Patron-Perez et al. [34] Auto 35.17 25.39 37.69 32.50 32.76
Patron-Perez et al. [33] Auto 39.35 45.82 46.99 37.60 42.44
Marin-Jimenez et al. [28] Auto – – – – 39.23
Gaidon et al. [15] Auto – – – – 55.6
Patron-Perez et al. [33] Manual 41.32 43.06 66.08 68.57 54.76
Patron-Perez et al. [34] Manual 45.30 45.07 62.00 70.58 55.74
Yu et al. [53] Auto – – – – 55.95
Hoai et al. [20] Auto 55.8 60.2 60.8 48.2 56.3
Our method Auto 52.74 44.77 84.33 61.43 60.81
Gaidon et al. [16] Auto – – – – 62.4
Our method Manual 50.13 61.28 88.69 69.70 67.45
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To test our two-person descriptor’s robustness to flip, we con-
ducted a small set of experiments. We take the training set of
UT-Interactions as it is, whereas we mirror flip the test set and
evaluate the trained models on the flipped test set. As expected,
we observe no change for the symmetric interactions, i.e. interac-
tions done by the two people simultaneously such as handshaking.
For the asymmetric actions, such as kicking and punching, we
observed a slight degradation in performance where the average
accuracy dropped from 93.3% to 90%. While this is a reasonable
amount of performance loss, it suggests a possible bias in the data-
set. When we investigate the reason behind this loss, we see that
especially in SET 1 of UT-Interactions dataset the asymmetric
interactions have an imbalanced distribution of examples, where
the main actor of the interaction (e.g. the puncher in the punching
action) tend to be on a particular side (e.g. left/right). This bias can
be eliminated by mirror-flipping all the dataset. However, since
this would double the size of the training data and the existing
works that report results on this dataset do not use such flipping,
we also omit it for the sake of fair comparison.

A limitation of our method is its dependency on the proper
extraction of person regions. While the MIL setting tolerates some
amount of noise and the presence of multiple people, it requires at
least some representative cases of the interacting people regions to
be within the bag of instances. Otherwise, the constructed bags
will violate MIL positivity constraint and this is likely to lower
the recognition performance. In order to evaluate the performance
of the proposed method with respect to the presence of noise, we
conduct the following experiment using TV-Interactions dataset:
Table 6
Comparison to the state-of-the art on ‘‘UT-Interactions” dataset [40]. Best classification p
higher than the best results reported for this dataset so far (92.5 [56]).

Data Method Handshake Hug

SET1 BoW [56] 70 80
Waltisberg et al. [46] 50 100
Mukherjee et al. [31] 85 85
Raptis and Sigal [38] 100 100
Vahdat et al. [45] 90 100
Zhang et al. [56] 100 100
Our method 100 100

SET2 BoW [56] 70 70
Waltisberg et al. [46] 70 90
Raptis and Sigal [38] – –
Vahdat et al. [45] 80 100
Zhang et al. [56] 80 100
Our method 100 100
We first run our classification method on the bounding boxes that
involve an interaction and we achieve a mAP of 84.61%. This case
can be referred as no noise situation, where all the instances
belong to one of the existing interactions. Then, we gradually add
to the instance space bounding boxes of additional people that
are not involved in any interaction. The change of the recognition
performance (mAP) with respect to changing amounts of noise is
presented in Fig. 6. As it can be seen, the effect of the noise over
the recognition performance is quite minor, and the presented
method is able to achieve quite competent results even in the pres-
ence of 90% noise, achieving 69.3% mAP.

4.4. Comparison to state-of-the-art

We first compare our proposed method to some of the existing
Multiple Instance methods. For this purpose, two frequently used
Multiple Instance Learning algorithms, [55,57], are applied over
the same set of all person features All2P on the TV Interactions
dataset. The results are shown in Table 4. While MI-graph [57] per-
forms poorly for this problem, the MILBoost algorithm performs
comparably with the MILES algorithm. Overall, the best perfor-
mance is achieved with the proposed spatial embedding
framework.

We then compare our method to the state-of-the-art in the lit-
erature. The results on TV Interactions dataset are given in Table 5
and results on UT-Interactions dataset are given in Table 6, respec-
tively. For TV Interactions dataset, the reported methods in the lit-
erature either use the manually annotated bounding boxes, or they
automatically detect and track the person regions within the video
frames. We report the performance of our method for both of these
cases (denoted by l-type in Table 5). For automatic tracks, we use
the automatic track generation method of [34]. For UT-
Interactions data, we generated person tracks automatically via
utilizing a person detector [14] first, and then using meanshift
tracking over the detections to acquire more solid person tracks.

In TV Interactions dataset (Table 5), we observe that our
method is able to produce quite successful results both using man-
ual and automatic tracks. It is on par with [16] when provided
bounding boxes are not used. It should be noted that the approach
of [16] relies on the powerful and computationally expensive fea-
ture extraction mechanism of dense trajectories [48], whereas we
use simpler features. When such additional computational burden
is not a problem, our method can as well benefit from using more
advanced features. Our method achieves the state-of-the-art
recognition performance when manual person annotations are
used. Note that, for the manual localization case, even if the person
bounding boxes are provided, there may be irrelevant people in the
scene who are not involved in any interactions and this situation
still introduces a significant amount of noise.
erformance in each set of the dataset is shown in bold. Overall performance is 93.3,

Kick Point Punch Push AVG

90 100 50 70 77
100 100 70 80 83
95 85 75 95 86.7
90 100 80 90 93.3
90 90 90 100 93

100 90 90 90 95
90 100 80 100 95

80 80 70 70 73
100 100 80 40 80

– – – – –
100 100 70 90 90
100 80 90 90 90
70 100 90 90 91.67



72 F. Sener, N. Ikizler-Cinbis / J. Vis. Commun. Image R. 32 (2015) 63–73
In UT-Interactions dataset, our method achieves on par or better
results compared to the state-of-the-art (Table 6). In the literature,
the best reported result on this dataset is 92.5% by Zhang et al. [56]
and our method achieves an accuracy of 93.3%.
5. Conclusion

In this study, we propose a multiple instance learning (MIL)
based approach for two-person interaction recognition in videos.
Our method involves extracting multiple visual features from per-
son regions and leveraging them in a simple form to construct two-
person descriptors. Experimental results show that using two-
person descriptors yields promising results. In this context, to
demonstrate the effectiveness of the proposed MIL framework,
we basically rely on simple features (such as HOG and HOF) and
even with these simple features, our recognition rates are on par
or better than the state-of-the-art on the two well-established
human interaction benchmark datasets. Nevertheless, our pro-
posed framework is easily extendible to include more sophisti-
cated features and the recognition rates are likely to benefit from
further exploration of such futures.

Another contribution is the introduction of a novel way for
incorporating the spatial distances between interacting people to
the multiple instance learning. We embed the spatial distances
via multiplicative spatial kernels. Our results show that better
recognition rates are obtainable by using spatial information in
conjunction with the two-person descriptors in the proposed MIL
framework.

Future work includes the exploration of different features that
may further aid in recognition of everyday interactions. Early
fusion techniques, together with Multiple Kernel Learning (MKL)
approaches can be explored in the search for better feature combi-
nations. Possible extensions of the proposed method can be devel-
oped to handle group interactions or collective actions as well.
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