# metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Diagua(isonicotinamide- $\kappa N^1$ )-(4-methoxybenzoato- $\kappa^2 O.O'$ )-(4-methoxybenzoato-*kO*)cobalt(II)

# Tuncer Hökelek,<sup>a</sup>\* Yasemin Süzen,<sup>b</sup> Barıs Tercan,<sup>c</sup> Erdinc Tenlik<sup>d</sup> and Hacali Necefoğlu<sup>d</sup>

<sup>a</sup>Department of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, <sup>b</sup>Department of Chemistry, Faculty of Science, Anadolu University, 26470 Yenibağlar, Eskişehir, Turkey, <sup>c</sup>Department of Physics, Karabük University, 78050 Karabük, Turkey, and <sup>d</sup>Department of Chemistry, Kafkas University, 63100 Kars, Turkey

Correspondence e-mail: merzifon@hacettepe.edu.tr

Received 3 June 2010; accepted 8 June 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.022; wR factor = 0.050; data-to-parameter ratio = 14.5.

In the title complex,  $[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2]$ , the Co<sup>II</sup> atom is coordinated by three O atoms from two 4methoxybenzoate ligands, which act in different modes, viz. monodentate and bidentate, two water molecules and one N atom of the isonicotinamide ligand in a distorted octahedral geometry. The monodentate-coordinated carboxylate group is involved in an intramolecular  $O-H \cdots O$  hydrogen bond with the coordinated water molecule. In the crystal structure, intermolecular O-H···O and N-H···O hydrogen bonds link the molecules into layers parallel to the *ab* plane. The crystal packing is further stabilized by weak C-H···O hydrogen bonds and  $\pi$ - $\pi$  interactions indicated by the short distance of 3.6181 (8) Å between the centroids of the benzene and pyridine rings of neighbouring molecules.

### **Related literature**

For general background to niacin and the nicotinic acid derivative N.N-diethylnicotinamide, see: Krishnamachari (1974) and Bigoli et al. (1972), respectively. For related structures, see: Greenaway et al. (1984); Hökelek et al. (2009a,b,c,d); Necefoğlu et al. (2010).



# **Experimental**

Crystal data [Co(C<sub>8</sub>H<sub>7</sub>O<sub>3</sub>)<sub>2</sub>(C<sub>6</sub>H<sub>6</sub>N<sub>2</sub>O)(H<sub>2</sub>O)<sub>2</sub>]  $M_r = 519.36$ Monoclinic, P2 a = 8.2666 (2) Å b = 6.8055 (2) Å c = 20.5415 (4) Å  $\beta = 99.808$  (2)

#### Data collection

Bruker Kappa APEXII CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005)  $T_{\min} = 0.739, \ T_{\max} = 0.791$ 

### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.022$  $wR(F^2) = 0.050$ S = 1.014838 reflections 333 parameters H atoms treated by a mixture of

independent and constrained refinement

### Table 1

Mo  $K\alpha$  radiation  $\mu = 0.81 \text{ mm}^{-1}$ T = 100 K $0.39 \times 0.32 \times 0.28 \text{ mm}$ 

V = 1138.74 (5) Å<sup>3</sup>

Z = 2

11263 measured reflections 4838 independent reflections 4597 reflections with  $I > 2\sigma(I)$  $R_{\rm int} = 0.020$ 

 $\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1761 Friedel pairs Flack parameter: 0.015 (7)

| Hydrogen-bond | geometry | (À, ' | °). |
|---------------|----------|-------|-----|
|---------------|----------|-------|-----|

| $D - H \cdot \cdot \cdot A$       | D-H        | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------|------------|-------------------------|--------------|--------------------------------------|
| $N2-H2A\cdots O2^{i}$             | 0.79 (3)   | 2.11 (3)                | 2.877 (2)    | 164.0 (17)                           |
| $N2-H2B\cdots O1^{ii}$            | 0.91 (3)   | 2.16 (3)                | 3.050 (2)    | 167 (2)                              |
| O8−H81···O4                       | 0.83 (3)   | 1.84 (3)                | 2.6577 (17)  | 167 (3)                              |
| O8−H82···O7 <sup>iii</sup>        | 0.89 (2)   | 1.86 (3)                | 2.7427 (16)  | 172 (2)                              |
| O9−H91···O6 <sup>iv</sup>         | 0.786 (19) | 2.078 (19)              | 2.8384 (16)  | 163 (2)                              |
| $O9-H92 \cdot \cdot \cdot O4^{v}$ | 0.91 (3)   | 1.72 (3)                | 2.6307 (18)  | 174.1 (15)                           |
| $C8-H8A\cdots O7^{vi}$            | 0.96       | 2.53                    | 3.466 (2)    | 166                                  |
| $C16-H16B\cdots O4^{vii}$         | 0.96       | 2.52                    | 3.4752 (18)  | 171                                  |

Symmetry codes: (i) x + 1, y, z; (ii) x + 1, y + 1, z; (iii) x - 1, y - 1, z; (iv) x - 1, y + 1, z; (v) x, y + 1, z; (vi)  $-x + 2, y - \frac{3}{2}, -z + 2$ ; (vii)  $-x + 2, y - \frac{1}{2}, -z + 1$ .

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of the diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2727).

### References

- Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Greenaway, F. T., Pazeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). *Inorg. Chim. Acta*, **93**, 67–71.
- Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1037–m1038.
- Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627–m628.
- Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m651–m652.
- Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365-m1366.
- Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.
- Necefoğlu, H., Çimen, E., Tercan, B., Süzen, Y. & Hökelek, T. (2010). *Acta Cryst.* E66, m392–m393.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# supporting information

Acta Cryst. (2010). E66, m784-m785 [doi:10.1107/S160053681002194X]

# Diaqua(isonicotinamide- $\kappa N^1$ )(4-methoxybenzoato- $\kappa^2 O, O'$ )(4-methoxybenzoato- $\kappa O$ )cobalt(II)

# Tuncer Hökelek, Yasemin Süzen, Barış Tercan, Erdinç Tenlik and Hacali Necefoğlu

# S1. Comment

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative *N*,*N*-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli *et al.*, 1972), the title compound has been synthesized. Herein we report its crystal structure.

The title compound, (I), is a monomeric complex, where the Co<sup>II</sup> ion is surrounded by two methoxybenzoate (MB) anions, one isonicotinamide (INA) ligand and two coordinated water molecules. One of the MB anions acts as a bidentate ligand, while the other is monodentate. The structures of similar complexes ,  $[Mn(C_9H_{10}NO_2)_2(C_6H_6N_2O)(H_2O)_2]$  (II) (Hökelek *et al.*, 2009*a*),  $[Co(C_9H_{10}NO_2)_2(C_6H_6N_2O)(H_2O)_2]$  (III) (Hökelek *et al.*, 2009*b*),

 $[Cd(C_8H_7O_2)_2(C_6H_6N_2O)_2(H_2O)]$ .H<sub>2</sub>O (IV) (Necefoğlu *et al.*, 2010),  $[Zn(C_9H_{10}NO_2)_2(C_6H_6N_2O)(H_2O)_2]$  (V) (Hökelek *et al.*, 2009*c*) and  $[Zn(C_8H_8NO_2)_2(C_6H_6N_2O)_2]$ .H<sub>2</sub>O (VI) (Hökelek *et al.*, 2009d) have also been determined.

In (I) (Fig. 1), the four O atoms (O1, O2, O5 and O9) in the equatorial plane around the Co1 form a highly distorted square-planar arrangement, while the distorted octahedral coordination geometry is completed by the N atom (N1) of INA ligand and the O atom (O8) of the second water molecule in the axial positions. The average Co—O bond length is 2.1171 (12) Å and the Co atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O4/C9/O5) by -0.0061 (2) Å and -0.5367 (2) Å, respectively. The dihedral angle between the planar carboxylate groups and the adjacent benzene rings A (C2—C7) and B (C9—C14) are 12.12 (12)° and 9.26 (13)°, respectively, while those between rings A, B and C (N1/C17—C21) are A/B = 78.18 (4), A/C = 74.20 (5) and B/C = 6.23 (5)°. The intramolecular O—H…O hydrogen bond (Table 1) between the monodentate-coordinated carboxyl group and a coordinated water molecule results in a six-membered ring D (Co1/O4/O5/O8/C9/H81) adopting envelope conformation, with atom Co1 displaced by -0.5481 (2) Å from the plane of the other ring atoms. In (I), the O1—Co1—O2 angle is 60.32 (4)°. The corresponding O—M—O (where *M* is a metal) angles are 54.71 (4)° in (IV), 60.03 (6)° in (V), 59.02 (8)° in (VI) and 55.2 (1)° in [Cu(Asp)<sub>2</sub>(py)<sub>2</sub>] (where Asp is acetylsalicylate and py is pyridine) [(VII); Greenaway *et al.*, 1984].

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to *ab* plane. The crystal packing is further stabilized by the weak C—H···O hydrogen bonds (Table 1). The  $\pi$ - $\pi$  contact between the benzene and pyridine rings, Cg2— $Cg3^i$  [symmetry code: (i) x, y + 1, z, where Cg2 and Cg3 are the centroids of the rings B (C9—C14) and C (N1/C17—C21), respectively] may also stabilize the structure, with centroid-centroid distance of 3.6181 (8) Å.

# S2. Experimental

The title compound was prepared by the reaction of  $CoSO_4.7H_2O$  (2.81 g, 10 mmol) in  $H_2O$  (50 ml) and INA (2.44 g, 20 mmol) in  $H_2O$  (50 ml) with sodium 4-methoxybenzoate (3.48 g, 20 mmol) in  $H_2O$  (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving brown single crystals.

## **S3. Refinement**

Atoms H81, H82, H91, H92 (for water molecules) and H2A, H2B (for NH<sub>2</sub>) were located in difference Fourier maps and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with  $U_{iso}(H) = 1.2-1.5U_{eq}(C)$ .



# Figure 1

The molecular structure of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Dashed line indicates the hydrogen-bonding.

# Diaqua(isonicotinamide- $\kappa N^1$ )(4-methoxybenzoato- $\kappa^2 O, O'$ )(4-methoxybenzoato- $\kappa O$ )cobalt(II)

| Crystal data                            |                                                       |
|-----------------------------------------|-------------------------------------------------------|
| $[Co(C_8H_7O_3)_2(C_6H_6N_2O)(H_2O)_2]$ | F(000) = 538                                          |
| $M_r = 519.36$                          | $D_{\rm x} = 1.515 { m Mg} { m m}^{-3}$               |
| Monoclinic, $P2_1$                      | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: P 2yb                      | Cell parameters from 6882 reflections                 |
| a = 8.2666 (2)  Å                       | $\theta = 2.5 - 28.4^{\circ}$                         |
| b = 6.8055 (2) Å                        | $\mu = 0.81 \text{ mm}^{-1}$                          |
| c = 20.5415 (4) Å                       | T = 100  K                                            |
| $\beta = 99.808 \ (2)^{\circ}$          | Block, brown                                          |
| V = 1138.74 (5) Å <sup>3</sup>          | $0.39 \times 0.32 \times 0.28 \text{ mm}$             |
| Z = 2                                   |                                                       |

Data collection

| Bruker Kappa APEXII CCD area-detector<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>$\varphi$ and $\omega$ scans<br>Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2005)<br>$T_{\min} = 0.739, T_{\max} = 0.791$ | 11263 measured reflections<br>4838 independent reflections<br>4597 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.020$<br>$\theta_{max} = 28.4^{\circ}, \ \theta_{min} = 1.0^{\circ}$<br>$h = -11 \rightarrow 9$<br>$k = -8 \rightarrow 9$<br>$l = -27 \rightarrow 27$                                                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Least-squares matrix: full<br>$R[F^2 > 2\sigma(F^2)] = 0.022$<br>$wR(F^2) = 0.050$<br>S = 1.01<br>4838 reflections<br>333 parameters<br>Primary atom site location: structure-invariant<br>direct methods<br>Secondary atom site location: difference Fourier<br>map          | neighbouring sites<br>H atoms treated by a mixture of independent<br>and constrained refinement<br>$w = 1/[\sigma^2(F_o^2) + (0.0215P)^2]$<br>where $P = (F_o^2 + 2F_c^2)/3$<br>$(\Delta/\sigma)_{max} = 0.003$<br>$\Delta\rho_{max} = 0.29$ e Å <sup>-3</sup><br>$\Delta\rho_{min} = -0.24$ e Å <sup>-3</sup><br>Absolute structure: Flack (1983), 1761 Friedel<br>pairs<br>Absolute structure parameter: 0.015 (7) |

# Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| Col | 0.83963 (2)  | 0.92738 (3)  | 0.717117 (8) | 0.01106 (5)                 |  |
| 01  | 0.87439 (13) | 0.72789 (18) | 0.79844 (5)  | 0.0132 (2)                  |  |
| O2  | 0.75818 (13) | 1.01182 (18) | 0.81134 (5)  | 0.0145 (2)                  |  |
| O3  | 0.68768 (15) | 0.5746 (2)   | 1.08004 (5)  | 0.0212 (3)                  |  |
| O4  | 0.78237 (13) | 0.51498 (18) | 0.63163 (5)  | 0.0156 (2)                  |  |
| 05  | 0.95880 (13) | 0.76378 (18) | 0.65605 (5)  | 0.0146 (2)                  |  |
| O6  | 1.43741 (13) | 0.13627 (18) | 0.56391 (5)  | 0.0160 (2)                  |  |
| O7  | 1.44482 (14) | 1.65456 (18) | 0.77779 (5)  | 0.0160 (2)                  |  |
| 08  | 0.60930 (14) | 0.78883 (19) | 0.68139 (6)  | 0.0147 (2)                  |  |
| H81 | 0.652 (3)    | 0.692 (4)    | 0.6668 (10)  | 0.024 (6)*                  |  |
| H82 | 0.564 (3)    | 0.750 (4)    | 0.7153 (12)  | 0.052 (7)*                  |  |
| 09  | 0.72143 (15) | 1.1511 (2)   | 0.66328 (6)  | 0.0177 (3)                  |  |
| H91 | 0.639 (2)    | 1.126 (4)    | 0.6396 (10)  | 0.024 (6)*                  |  |
| H92 | 0.749 (2)    | 1.277 (4)    | 0.6543 (9)   | 0.021 (5)*                  |  |
| N1  | 1.05301 (16) | 1.0966 (2)   | 0.74674 (6)  | 0.0127 (3)                  |  |
|     |              |              |              |                             |  |

| N2   | 1.62169 (17) | 1.4016 (3)  | 0.79899 (7) | 0.0175 (3) |
|------|--------------|-------------|-------------|------------|
| H2A  | 1.643 (2)    | 1.290 (4)   | 0.8055 (9)  | 0.015 (5)* |
| H2B  | 1.708 (3)    | 1.486 (4)   | 0.8026 (10) | 0.033 (6)* |
| C1   | 0.80942 (19) | 0.8473 (3)  | 0.83434 (7) | 0.0130 (3) |
| C2   | 0.79173 (19) | 0.7843 (3)  | 0.90221 (7) | 0.0140 (3) |
| C3   | 0.86387 (19) | 0.6109 (3)  | 0.92813 (7) | 0.0172 (3) |
| H3   | 0.9323       | 0.5420      | 0.9046      | 0.021*     |
| C4   | 0.8362 (2)   | 0.5378 (3)  | 0.98853 (7) | 0.0190 (4) |
| H4   | 0.8862       | 0.4220      | 1.0056      | 0.023*     |
| C5   | 0.7328 (2)   | 0.6403 (3)  | 1.02288 (7) | 0.0172 (4) |
| C6   | 0.6650 (2)   | 0.8189 (3)  | 0.99909 (8) | 0.0200 (4) |
| H6   | 0.6001       | 0.8901      | 1.0235      | 0.024*     |
| C7   | 0.69427 (19) | 0.8905 (3)  | 0.93914 (7) | 0.0172 (4) |
| H7   | 0.6489       | 1.0099      | 0.9233      | 0.021*     |
| C8   | 0.7330 (2)   | 0.3780 (3)  | 1.10016 (8) | 0.0238 (4) |
| H8A  | 0.6763       | 0.3397      | 1.1352      | 0.036*     |
| H8B  | 0.8493       | 0.3718      | 1.1154      | 0.036*     |
| H8C  | 0.7038       | 0.2906      | 1.0633      | 0.036*     |
| С9   | 0.92278 (19) | 0.5941 (2)  | 0.63394 (7) | 0.0125 (3) |
| C10  | 1.05374 (18) | 0.4757 (2)  | 0.60954 (7) | 0.0122 (4) |
| C11  | 1.0197 (2)   | 0.2936 (3)  | 0.57978 (7) | 0.0160 (3) |
| H11  | 0.9117       | 0.2493      | 0.5716      | 0.019*     |
| C12  | 1.14209 (19) | 0.1759 (3)  | 0.56200 (7) | 0.0160 (3) |
| H12  | 1.1168       | 0.0551      | 0.5416      | 0.019*     |
| C13  | 1.30388 (19) | 0.2427 (3)  | 0.57528 (7) | 0.0135 (3) |
| C14  | 1.33919 (17) | 0.4281 (3)  | 0.60267 (6) | 0.0160 (3) |
| H14  | 1.4464       | 0.4749      | 0.6093      | 0.019*     |
| C15  | 1.2158 (2)   | 0.5421 (3)  | 0.61986 (7) | 0.0148 (3) |
| H15  | 1.2406       | 0.6651      | 0.6386      | 0.018*     |
| C16  | 1.4086 (2)   | -0.0503 (3) | 0.53119 (7) | 0.0191 (4) |
| H16A | 1.5118       | -0.1095     | 0.5271      | 0.029*     |
| H16B | 1.3448       | -0.0312     | 0.4880      | 0.029*     |
| H16C | 1.3501       | -0.1347     | 0.5566      | 0.029*     |
| C17  | 1.20276 (19) | 1.0299 (3)  | 0.74076 (7) | 0.0156 (3) |
| H17  | 1.2125       | 0.9018      | 0.7261      | 0.019*     |
| C18  | 1.34326 (19) | 1.1433 (3)  | 0.75550 (7) | 0.0143 (3) |
| H18  | 1.4452       | 1.0910      | 0.7518      | 0.017*     |
| C19  | 1.32986 (18) | 1.3358 (2)  | 0.77577 (7) | 0.0119 (3) |
| C20  | 1.17472 (17) | 1.4047 (3)  | 0.78314 (6) | 0.0132 (3) |
| H20  | 1.1614       | 1.5323      | 0.7975      | 0.016*     |
| C21  | 1.04258 (19) | 1.2809 (3)  | 0.76878 (7) | 0.0145 (3) |
| H21  | 0.9402       | 1.3273      | 0.7746      | 0.017*     |
| C22  | 1.47067 (19) | 1.4762 (2)  | 0.78517 (7) | 0.0135 (3) |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$     | $U^{33}$    | $U^{12}$      | $U^{13}$    | U <sup>23</sup> |
|-----|-------------|--------------|-------------|---------------|-------------|-----------------|
| Col | 0.00979 (9) | 0.00942 (10) | 0.01397 (8) | -0.00058 (10) | 0.00201 (6) | -0.00009 (9)    |

# supporting information

| 01  | 0.0127 (5) | 0.0116 (6)  | 0.0158 (5) | 0.0014 (5)  | 0.0036 (4)  | -0.0003 (4) |
|-----|------------|-------------|------------|-------------|-------------|-------------|
| O2  | 0.0120 (6) | 0.0131 (6)  | 0.0190 (5) | 0.0013 (5)  | 0.0042 (4)  | 0.0016 (5)  |
| 03  | 0.0236 (7) | 0.0243 (8)  | 0.0170 (5) | 0.0001 (6)  | 0.0068 (5)  | 0.0039 (5)  |
| O4  | 0.0115 (5) | 0.0136 (6)  | 0.0223 (5) | -0.0021 (5) | 0.0046 (4)  | -0.0018 (5) |
| 05  | 0.0133 (5) | 0.0123 (6)  | 0.0191 (5) | -0.0025 (5) | 0.0051 (4)  | -0.0027 (5) |
| 06  | 0.0133 (5) | 0.0146 (7)  | 0.0201 (5) | 0.0021 (5)  | 0.0033 (4)  | -0.0031 (5) |
| O7  | 0.0144 (6) | 0.0106 (6)  | 0.0237 (5) | 0.0000 (5)  | 0.0057 (4)  | -0.0008(5)  |
| 08  | 0.0124 (6) | 0.0125 (7)  | 0.0192 (5) | -0.0017 (5) | 0.0029 (4)  | -0.0006 (5) |
| 09  | 0.0139 (6) | 0.0125 (7)  | 0.0246 (6) | -0.0031 (5) | -0.0029 (5) | 0.0033 (5)  |
| N1  | 0.0124 (6) | 0.0120 (7)  | 0.0137 (5) | -0.0005 (6) | 0.0024 (5)  | 0.0007 (5)  |
| N2  | 0.0111 (6) | 0.0087 (9)  | 0.0324 (7) | -0.0007 (6) | 0.0029 (5)  | -0.0019 (7) |
| C1  | 0.0066 (7) | 0.0138 (8)  | 0.0178 (7) | -0.0038 (6) | 0.0000 (6)  | -0.0006 (6) |
| C2  | 0.0121 (7) | 0.0141 (9)  | 0.0153 (6) | -0.0031 (7) | 0.0010 (5)  | 0.0003 (6)  |
| C3  | 0.0148 (8) | 0.0194 (10) | 0.0174 (7) | 0.0026 (7)  | 0.0031 (6)  | -0.0007 (7) |
| C4  | 0.0178 (8) | 0.0183 (10) | 0.0202 (7) | 0.0026 (7)  | 0.0015 (6)  | 0.0033 (7)  |
| C5  | 0.0148 (8) | 0.0226 (10) | 0.0139 (6) | -0.0037 (7) | 0.0019 (6)  | 0.0004 (6)  |
| C6  | 0.0211 (9) | 0.0204 (10) | 0.0201 (7) | 0.0019 (7)  | 0.0076 (6)  | -0.0029 (7) |
| C7  | 0.0174 (7) | 0.0140 (11) | 0.0206 (7) | -0.0004 (7) | 0.0042 (6)  | -0.0006 (6) |
| C8  | 0.0236 (9) | 0.0289 (13) | 0.0188 (7) | -0.0002 (8) | 0.0030 (6)  | 0.0080 (7)  |
| C9  | 0.0140 (8) | 0.0123 (9)  | 0.0112 (6) | 0.0002 (6)  | 0.0017 (6)  | 0.0016 (6)  |
| C10 | 0.0117 (7) | 0.0137 (10) | 0.0115 (6) | 0.0007 (6)  | 0.0025 (5)  | 0.0023 (5)  |
| C11 | 0.0116 (8) | 0.0175 (9)  | 0.0189 (7) | -0.0026 (7) | 0.0025 (6)  | -0.0010 (7) |
| C12 | 0.0167 (8) | 0.0138 (9)  | 0.0174 (7) | -0.0025 (7) | 0.0029 (6)  | -0.0037 (6) |
| C13 | 0.0150 (8) | 0.0143 (9)  | 0.0116 (6) | 0.0008 (7)  | 0.0031 (5)  | 0.0004 (6)  |
| C14 | 0.0126 (6) | 0.0170 (8)  | 0.0187 (6) | -0.0038 (9) | 0.0034 (5)  | -0.0018 (8) |
| C15 | 0.0175 (8) | 0.0120 (9)  | 0.0151 (6) | -0.0023 (7) | 0.0031 (6)  | -0.0033 (6) |
| C16 | 0.0222 (8) | 0.0158 (10) | 0.0191 (6) | 0.0021 (8)  | 0.0035 (6)  | -0.0044 (7) |
| C17 | 0.0151 (8) | 0.0119 (9)  | 0.0198 (7) | 0.0013 (7)  | 0.0030 (6)  | -0.0024 (6) |
| C18 | 0.0101 (7) | 0.0135 (9)  | 0.0200 (7) | 0.0021 (7)  | 0.0047 (6)  | -0.0011 (6) |
| C19 | 0.0121 (7) | 0.0126 (8)  | 0.0116 (6) | -0.0016 (6) | 0.0031 (5)  | 0.0008 (6)  |
| C20 | 0.0139 (7) | 0.0089 (10) | 0.0175 (6) | 0.0032 (7)  | 0.0048 (5)  | -0.0019 (6) |
| C21 | 0.0122 (8) | 0.0142 (9)  | 0.0178 (7) | 0.0008 (7)  | 0.0047 (6)  | -0.0010 (6) |
| C22 | 0.0136 (7) | 0.0136 (10) | 0.0145 (6) | -0.0018 (6) | 0.0052 (5)  | -0.0022 (5) |

# Geometric parameters (Å, °)

| Co1-01 | 2.1338 (11) | C6—C5   | 1.392 (3) |  |
|--------|-------------|---------|-----------|--|
| Co1—O2 | 2.2301 (11) | С6—Н6   | 0.9300    |  |
| Co105  | 2.0506 (11) | C7—C6   | 1.383 (2) |  |
| Co1—O8 | 2.1394 (12) | С7—Н7   | 0.9300    |  |
| Co1—O9 | 2.0317 (13) | C8—H8A  | 0.9600    |  |
| Co1—N1 | 2.1077 (13) | C8—H8B  | 0.9600    |  |
| 01—C1  | 1.276 (2)   | C8—H8C  | 0.9600    |  |
| O2—C1  | 1.260 (2)   | С10—С9  | 1.502 (2) |  |
| O3—C5  | 1.3662 (19) | C10—C11 | 1.389 (2) |  |
| O3—C8  | 1.431 (2)   | C10—C15 | 1.395 (2) |  |
| О4—С9  | 1.2729 (19) | C11—H11 | 0.9300    |  |
| О5—С9  | 1.258 (2)   | C12—C11 | 1.387 (2) |  |
|        |             |         |           |  |

| 0( 012                            | 1 2720 (10)               | C12 C12                           | 1 205 (2)                |
|-----------------------------------|---------------------------|-----------------------------------|--------------------------|
| 06-013                            | 1.3/30 (19)               | C12-C13                           | 1.395 (2)                |
| O6—C16                            | 1.437 (2)                 | С12—Н12                           | 0.9300                   |
| O7—C22                            | 1.237 (2)                 | C14—C13                           | 1.392 (3)                |
| O8—H81                            | 0.83 (2)                  | C14—C15                           | 1.375 (2)                |
| O8—H82                            | 0.89 (3)                  | C14—H14                           | 0.9300                   |
| O9—H91                            | 0.79 (2)                  | С15—Н15                           | 0.9300                   |
| O9—H92                            | 0.91 (2)                  | C16—H16A                          | 0.9600                   |
| N1-C17                            | 1.344 (2)                 | C16—H16B                          | 0.9600                   |
| N1-C21                            | 1.342(2)                  | C16—H16C                          | 0.9600                   |
| N2C22                             | 1.312(2)<br>1.333(2)      | C17-C18                           | 1.385(2)                 |
| N2 H2A                            | 1.333(2)                  | C17 H17                           | 0.0300                   |
| N2 U2D                            | 0.79(2)                   | $C_{12}$ $H_{12}$                 | 0.9300                   |
|                                   | 0.91(2)                   |                                   | 0.9300                   |
|                                   | 1.489 (2)                 |                                   | 1.385 (2)                |
| C2—C3                             | 1.387 (2)                 | C19—C20                           | 1.398 (2)                |
| C2—C7                             | 1.398 (2)                 | C20—H20                           | 0.9300                   |
| C3—C4                             | 1.392 (2)                 | C21—C20                           | 1.371 (2)                |
| С3—Н3                             | 0.9300                    | C21—H21                           | 0.9300                   |
| C4—H4                             | 0.9300                    | C22—C19                           | 1.493 (2)                |
| C5—C4                             | 1.386 (2)                 |                                   |                          |
|                                   |                           |                                   |                          |
| O1—Co1—O2                         | 60.32 (4)                 | С6—С7—Н7                          | 119.8                    |
| 01—Co1—O8                         | 88.94 (4)                 | O3—C8—H8A                         | 109.5                    |
| $05-C_01-01$                      | 96 83 (4)                 | 03—C8—H8B                         | 109.5                    |
| $05-C_{0}1-02$                    | 156 69 (4)                | $O_3 - C_8 - H_8C$                | 109.5                    |
| 05  Col 02                        | 130.07(4)                 |                                   | 109.5                    |
| 05 Col N1                         | 92.47(5)                  |                                   | 109.5                    |
| 03 - 01 - 01                      | 90.44 (3)                 |                                   | 109.5                    |
| 08-01-02                          | 91.04 (5)                 | $H\delta B = C\delta = H\delta C$ | 109.5                    |
| 09-01-01                          | 153.01 (5)                | 04                                | 117.72 (14)              |
| 09—Co1—O2                         | 95.22 (5)                 | 05-09-04                          | 124.05 (14)              |
| 09—Co1—O5                         | 108.09 (5)                | O5—C9—C10                         | 118.23 (13)              |
| O9—Co1—O8                         | 79.99 (5)                 | C11—C10—C9                        | 121.43 (14)              |
| O9—Co1—N1                         | 92.80 (5)                 | C11—C10—C15                       | 118.24 (15)              |
| N1—Co1—O1                         | 97.30 (5)                 | C15—C10—C9                        | 120.23 (14)              |
| N1—Co1—O2                         | 88.29 (5)                 | C10-C11-H11                       | 119.1                    |
| N1—Co1—O8                         | 172.76 (5)                | C12—C11—C10                       | 121.90 (15)              |
| C1                                | 91.92 (10)                | C12—C11—H11                       | 119.1                    |
| C1-O2-Co1                         | 87.97 (10)                | C11—C12—C13                       | 118.61 (16)              |
| $C_{5}-C_{8}$                     | 117 25 (14)               | C11—C12—H12                       | 120.7                    |
| C9-05-C01                         | 127.62 (10)               | $C_{13}$ $C_{12}$ $H_{12}$        | 120.7                    |
| $C_{13} - 06 - C_{16}$            | 127.02(10)<br>118 14 (12) | 06-C13-C14                        | 120.7<br>115.31(13)      |
| $C_{21} = 00 = 00$                | 110.14(12)                | 06 - C13 - C12                    | 113.51(15)<br>124.54(15) |
| $C_{01} = 08 = 182$               | 95.0(15)                  | 00-013-012                        | 124.34(13)               |
| $U_0 = U_0 = U_0 = U_0$           | 109.5 (15)                | C12 - C12 - C12                   | 120.15 (15)              |
| $H\delta I = O\delta = H\delta I$ | 108 (2)                   | C13—C14—H14                       | 119.9                    |
| Co1—O9—H91                        | 117.3 (17)                | C15—C14—C13                       | 120.10 (14)              |
| Co1—O9—H92                        | 134.2 (12)                | C15—C14—H14                       | 119.9                    |
| H91—O9—H92                        | 108 (2)                   | C10—C15—H15                       | 119.6                    |
| C17—N1—Co1                        | 121.84 (11)               | C14—C15—C10                       | 120.90 (16)              |
| C21—N1—Co1                        | 120.64 (11)               | C14—C15—H15                       | 119.6                    |
|                                   |                           |                                   |                          |

| C21—N1—C17    | 117.40 (14)  | O6—C16—H16A     | 109.5        |
|---------------|--------------|-----------------|--------------|
| C22—N2—H2A    | 125.4 (14)   | O6—C16—H16B     | 109.5        |
| C22—N2—H2B    | 118.0 (14)   | O6—C16—H16C     | 109.5        |
| H2A—N2—H2B    | 117 (2)      | H16A—C16—H16B   | 109.5        |
| O1—C1—C2      | 118.41 (15)  | H16A—C16—H16C   | 109.5        |
| O2—C1—O1      | 119.79 (14)  | H16B—C16—H16C   | 109.5        |
| O2—C1—C2      | 121.77 (15)  | N1—C17—C18      | 122.89 (16)  |
| C3—C2—C7      | 118.77 (14)  | N1—C17—H17      | 118.6        |
| C3—C2—C1      | 120.01 (15)  | С18—С17—Н17     | 118.6        |
| C7—C2—C1      | 121.09 (15)  | C17—C18—H18     | 120.5        |
| C2—C3—C4      | 121.42 (16)  | C19—C18—C17     | 119.09 (15)  |
| С2—С3—Н3      | 119.3        | С19—С18—Н18     | 120.5        |
| С4—С3—Н3      | 119.3        | C18—C19—C20     | 118.15 (15)  |
| C3—C4—H4      | 120.6        | C18—C19—C22     | 122.94 (15)  |
| C5—C4—C3      | 118.90 (17)  | C20—C19—C22     | 118.75 (15)  |
| C5—C4—H4      | 120.6        | С19—С20—Н20     | 120.6        |
| 03-C5-C4      | 123.71 (17)  | C21—C20—C19     | 118.87 (17)  |
| 03-C5-C6      | 115.79 (15)  | C21—C20—H20     | 120.6        |
| C4—C5—C6      | 120.49 (15)  | N1—C21—C20      | 123.53 (15)  |
| C7—C6—C5      | 119.92 (16)  | N1—C21—H21      | 118.2        |
| C7—C6—H6      | 120.0        | C20—C21—H21     | 118.2        |
| С5—С6—Н6      | 120.0        | 07—C22—N2       | 122.40 (15)  |
| C2—C7—H7      | 119.8        | 07-C22-C19      | 119.83 (14)  |
| C6-C7-C2      | 120.36 (16)  | N2-C22-C19      | 117.72 (15)  |
|               |              |                 |              |
| O2—Co1—O1—C1  | 0.09 (8)     | C7—C2—C1—O2     | 10.6 (2)     |
| O5—Co1—O1—C1  | 175.24 (9)   | C3—C2—C1—O1     | 8.3 (2)      |
| O8—Co1—O1—C1  | -92.40 (9)   | C7—C2—C1—O1     | -167.51 (14) |
| O9—Co1—O1—C1  | -27.20 (15)  | C1—C2—C3—C4     | -173.46 (15) |
| N1—Co1—O1—C1  | 83.91 (9)    | C7—C2—C3—C4     | 2.4 (2)      |
| O1—Co1—O2—C1  | -0.10 (8)    | C1—C2—C7—C6     | 173.09 (15)  |
| O5—Co1—O2—C1  | -12.36 (15)  | C3—C2—C7—C6     | -2.8(2)      |
| O8—Co1—O2—C1  | 87.75 (9)    | C2—C3—C4—C5     | 0.7 (3)      |
| O9—Co1—O2—C1  | 167.84 (9)   | O3—C5—C4—C3     | 175.05 (15)  |
| N1—Co1—O2—C1  | -99.50 (9)   | C6—C5—C4—C3     | -3.5 (2)     |
| O1—Co1—O5—C9  | 60.93 (12)   | C7—C6—C5—O3     | -175.47 (15) |
| O2—Co1—O5—C9  | 71.64 (17)   | C7—C6—C5—C4     | 3.2 (2)      |
| O8—Co1—O5—C9  | -28.29 (12)  | C2—C7—C6—C5     | 0.0 (2)      |
| O9—Co1—O5—C9  | -108.57 (12) | C11—C10—C9—O4   | 5.9 (2)      |
| N1—Co1—O5—C9  | 158.34 (12)  | C11—C10—C9—O5   | -174.93 (13) |
| O1—Co1—N1—C17 | 75.29 (12)   | C15—C10—C9—O4   | -170.39 (13) |
| O1—Co1—N1—C21 | -108.72 (11) | C15—C10—C9—O5   | 8.8 (2)      |
| O2—Co1—N1—C17 | 135.07 (12)  | C9-C10-C11-C12  | -174.61 (14) |
| O2-Co1-N1-C21 | -48.93 (11)  | C15—C10—C11—C12 | 1.7 (2)      |
| O5-Co1-N1-C17 | -21.65 (12)  | C9—C10—C15—C14  | 174.66 (14)  |
| O5-Co1-N1-C21 | 154.35 (11)  | C11—C10—C15—C14 | -1.7 (2)     |
| O9—Co1—N1—C17 | -129.79 (12) | C13—C12—C11—C10 | 0.8 (2)      |
| O9—Co1—N1—C21 | 46.21 (12)   | C11—C12—C13—O6  | 175.92 (14)  |
|               |              | • •             | ()           |

| (3 - (1) - (1) - (1)) = -(1) (3 - (1) - (1)) = -(1) (3 - (1) - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -(1) (3 - (1)) = -( | Co1-O1-C1-O2 $Co1-O2-C1-O2$ $Co1-O2-C1-O1$ $Co1-O2-C1-C2$ $C8-O3-C5-C4$ $C8-O3-C5-C6$ $Co1-O5-C9-O4$ $Co1-O5-C9-C10$ $C16-O6-C13-C12$ $C16-O6-C13-C14$ $Co1-N1-C17-C18$ $C21-N1-C17-C18$ $Co1-N1-C21-C20$ $C17-N1-C21-C20$ $C3-C2-C1-O2$ | $\begin{array}{c} -0.17 (14) \\ 177.95 (12) \\ 0.16 (14) \\ -177.89 (13) \\ -8.5 (2) \\ 170.10 (14) \\ 19.3 (2) \\ -159.84 (9) \\ 5.3 (2) \\ -175.44 (13) \\ 175.31 (11) \\ -0.8 (2) \\ -173.91 (11) \\ 2.3 (2) \\ -173 63 (14) \end{array}$ | C11—C12—C13—C14<br>C15—C14—C13—O6<br>C15—C14—C13—C12<br>C13—C14—C15—C10<br>N1—C17—C18—C19<br>C20—C19—C18—C17<br>C22—C19—C18—C17<br>C18—C19—C20—C21<br>C22—C19—C20—C21<br>N1—C21—C20—C19<br>O7—C22—C19—C18<br>N2—C22—C19—C18<br>O7—C22—C19—C20<br>N2—C22—C19—C20 | $\begin{array}{c} -3.3 (2) \\ -175.95 (13) \\ 3.3 (2) \\ -0.8 (2) \\ -1.6 (2) \\ 2.6 (2) \\ -172.69 (13) \\ -1.3 (2) \\ 174.22 (13) \\ -1.2 (2) \\ 151.80 (15) \\ -25.7 (2) \\ -23.5 (2) \\ 158.99 (13) \end{array}$ |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Hydrogen-bond geometry (Å, °)

| D—H···A                                | <i>D</i> —Н | H···A      | $D \cdots A$ | <i>D</i> —H… <i>A</i> |
|----------------------------------------|-------------|------------|--------------|-----------------------|
| N2—H2A···O2 <sup>i</sup>               | 0.79 (3)    | 2.11 (3)   | 2.877 (2)    | 164.0 (17)            |
| N2—H2 $B$ ···O1 <sup>ii</sup>          | 0.91 (3)    | 2.16 (3)   | 3.050 (2)    | 167 (2)               |
| O8—H81…O4                              | 0.83 (3)    | 1.84 (3)   | 2.6577 (17)  | 167 (3)               |
| O8—H82···O7 <sup>iii</sup>             | 0.89 (2)    | 1.86 (3)   | 2.7427 (16)  | 172 (2)               |
| O9—H91…O6 <sup>iv</sup>                | 0.786 (19)  | 2.078 (19) | 2.8384 (16)  | 163 (2)               |
| O9—H92…O4 <sup>v</sup>                 | 0.91 (3)    | 1.72 (3)   | 2.6307 (18)  | 174.1 (15)            |
| C8—H8A····O7 <sup>vi</sup>             | 0.96        | 2.53       | 3.466 (2)    | 166                   |
| C16—H16 <i>B</i> ····O4 <sup>vii</sup> | 0.96        | 2.52       | 3.4752 (18)  | 171                   |

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*+1, *y*+1, *z*; (iii) *x*-1, *y*-1, *z*; (iv) *x*-1, *y*+1, *z*; (v) *x*, *y*+1, *z*; (vi) -*x*+2, *y*-3/2, -*z*+2; (vii) -*x*+2, *y*-1/2, -*z*+1.