Crystal Structure of 2-Dibenzoylmethyl Benzimidazole

Sema Öztürk,*† Mehmet Akkurt,* Mehmet Sönmez,** and Semra İde***

*Department of Physics, Faculty of Arts and Sciences, Erciyes University, Kayseri-38039, Turkey

(Received September 22, 2000; Accepted June 15, 2001)

Many substituted benzimidazoles are currently used in the treatment of various infections caused by fungi, bacteria, nematodes and viruses.¹ The benzimidazole ring is included in biologically active substances and in a variety of clinically useful drugs such as Omeprazole, Astemizole, Emedastine difumarate, and Cyanocobalamine.² In particular, during the last decade, the antiallergic and antihistaminic activity of the benzimidazoles has received much attention.³

The title compound was prepared by the reaction of dibenzoylacetic acid-*N*-carboxymethylamide and *o*-phenylenediamine. Measured amounts (0.650 g of dibenzoylacetic acid-*N*-carboxymethylamide and 0.220 g of *o*-phenylenediamine) were joined in 30 ml of xylene. This

Table 1 Crystal and experimental data

Formula: $C_{22}H_{16}N_2O_2$ Formula weight = 340.37Crystal system: monoclinic Space group: $P2_{1}/c$ (No. 14); Z = 4a = 7.7837(6)Å b = 6.3635(5)Å $\beta = 90.490(3)^{\circ}$ c = 33.440(1)Å V = 1656.2(2)Å³ $D_x = 1.365 \text{ g/cm}^3$ $\mu(\text{Cu K}_{\alpha}) = 7.11 \text{ cm}^{-1}$ T = 295 K $F(0\ 0\ 0) = 712$ Crystal size = $0.80 \times 0.40 \times 0.10$ mm Radiation: Cu K_{α} R = 0.073Rw = 0.297No. of unique data measured = 2810No. of observed data with $[I \ge 2\sigma(I)] = 1620$ No. of parameters = 237Goodness-of-fit = 2.6 $(\Delta \rho)_{\text{max}} = 0.45 \text{ eÅ}^{-3}$ $(\Delta \rho)_{\min} = -0.41 \text{ eÅ}^{-3}$ Measurements: Enraf Nonius CAD-4 diffractometer Structure determination: SIR92 Treatment of hydrogen atoms: geometric calculation Refinement: full matrix least-squares SHELXL93

E-mail: ozturk@erciyes.edu.tr

mixture was heated in a reflux for 4 h. After the solvent was removed from the rotovapor, the precipitate so formed was recrystallized from absolute ethanol (Fig. 1).

The product shows a *keto-enol* tautomery. In this study, we describe the single crystal structure analysis of the title compound with a *keto-*form in solid phase. A summary of the key crystallographic information is given in Table 1. The atomic coordinates and equivalent isotropic displacement parameters for non-hydrogen atoms are listed in Table 2, and

Fig. 1 Synthesis pathway of the title compound.

Table 2 Final atomic coordinates and equivalent isotropic thermal displacement parameters for non-hydrogen atoms

Atom	x	y	z	$U_{ m eq}$			
09	0.408(2)	-0.021(2)	0.4213(3)	0.082(4)			
010	0.475(2)	0.599(2)	0.3479(3)	0.088(4)			
N1	0.584(2)	0.280(2)	0.4527(4)	0.077(4)			
N2	0.608(2)	0.576(2)	0.4195(3)	0.067(3)			
C1	0.677(2)	0.418(2)	0.4777(4)	0.069(4)			
C2	0.743(2)	0.395(3)	0.5141(4)	0.072(4)			
C3	0.830(2)	0.565(3)	0.5324(5)	0.074(4)			
C4	0.849(2)	0.752(3)	0.5110(5)	0.081(5)			
C5	0.780(2)	0.772(2)	0.4723(4)	0.069(4)			
C6	0.696(2)	0.604(2)	0.4555(4)	0.057(4)			
C7	0.541(2)	0.383(2)	0.4178(4)	0.064(4)			
C8	0.434(2)	0.434(2)	0.3876(4)	0.058(4)			
C9	0.350(2)	0.350(2)	0.3958(4)	0.064(4)			
C90	0.168(2)	0.168(2)	0.3793(4)	0.067(4)			
C91	0.048(2)	0.048(2)	0.3692(4)	0.069(4)			
C92	-0.113(2)	-0.113(2)	0.3594(4)	0.068(4)			
C93	-0.167(2)	-0.167(2)	0.3572(4)	0.082(5)			
C94	-0.046(2)	-0.046(2)	0.3674(5)	0.081(5)			
C95	0.111(2)	0.111(2)	0.3775(4)	0.067(4)			
C10	0.422(2)	0.422(2)	0.3490(4)	0.062(4)			
C100	0.352(2)	0.352(2)	0.3136(4)	0.069(4)			
C101	0.253(2)	0.253(2)	0.2875(5)	0.087(5)			
C102	0.192(3)	0.192(3)	0.2506(5)	0.096(6)			
C103	0.230(3)	0.230(3)	0.2401(6)	0.108(7)			
C104	0.332(3)	0.332(3)	0.2647(5)	0.089(5)			
C105	0.391(2)	0.391(2)	0.3017(5)	0.073(4)			

 $\overline{U_{\text{eq}} = (1/3) \sum_{i} \sum_{j} U_{ij} a_i^* a_j^* (\boldsymbol{a}_i \cdot \boldsymbol{a}_j)}.$

^{**}Department of Chemistry, Faculty of Arts and Sciences, Yüzüncü Yıl University, Van-65080, Turkey

^{***}Department of Physics Engineering, Faculty of Engineering, Hacettepe University, Beytepe, Ankara-06532, Turkey

[†] To whom correspondence should be addressed.

Table 3 Bond lengths (Å), bond and torsion angles (°)

rable 3 Bolla le	8 (), .	ond and torsion angles (<u> </u>
09 — C9	1.24(2)	C9 — C90	1.55(2)
010 C10	1.21(2)	C90 C95	1.40(2)
N1 C7	1.37(2)	C90 — C91	1.41(2)
N1 C1	1.41(2)	C91 — C92	1.33(2)
N2 C7	1.34(2)	C92 C93	1.37(2)
N2 — C6	1.39(2)	C93 C94	1.40(2)
C1 — C2	1.32(2)	C94 — C95	1.29(2)
C1 — C6	1.41(2)	C10 — C100	1.41(2)
C2 — C3	1.41(2)	C100 — C101	1.36(2)
C3 — C4	1.40(2)	C100 — C105	1.49(2)
C4 — C5	1.40(2)	C101 — C102	1.39(2)
C5 C6	1.37(2)	C102 C103	1.36(3)
C7 — C8	1.42(2)	C103 — C104	1.38(2)
C8 — C9	1.42(2)	C104 C105	1.38(2)
C8 — C10	1.52(2)		
C7 — N1 — C1	109(1)	C8 — C9 — C90	121(1)
C7 — N2 — C6	110(1)	C95 — C90 — C91	118(2)
C2 C1 N1	132(2)	C95 — C90 — C9	118(1)
C2 — C1 — C6	122(1)	C91 — C90 — C9	124(1)
N1 — C1 — C6	105(1)	C92 — C91 — C90	121(2)
C1 — C2 — C3	120(1)	C91 — C92 — C93	122(2)
C4 — C3 — C2	119(1)	C92 — C93 — C94	116(2)
C3 — C4 — C5	121(2)	C95 C94 C93	124(2)
C6 — C5 — C4	119(1)	C94 — C95 — C90	119(2)
C5 — C6 — N2	133(1)	010 — C10 — C100	118(1)
C5 — C6 — C1	119(1)	010 — C10 — C8	120(1)
N2 C6 C1	107(1)	C100 C10 C8	122(1)
N2 C7 N1	108(1)	C101 — C100 — C10	123(2)
N2 C7 C8	128(1)	C101 — C100 — C105	116(2)
N1 — C7 — C8	124(1)	C10 — C100 — C105	121(1)
C7 — C8 — C9	118(1)	C100 — C101 — C102	125(2)
C7 — C8 — C10	116(1)	C103 — C102 — C101	118(2)
C9 — C8 — C10	126(1)	C102 — C103 — C104	120(2)
09 — C9 — C8	121(1)	C105 — C104 — C103	124(2)
09 — C9 — C90	117(1)	C104 — C105 — C100	117(1)

bond lengths and bond angles are given in Table 3. Figure 2 represents the molecular structure of the title compound.

In the title compound, N1–C7 and N2–C7 bond lengths are very close to N1–C1 [1.35(1)Å] and N2–C1 [1.32(1)Å] bond lengths in the bis(methyl-3-ethyl-benzimidazolidine-2-ylium) tetrafluoroborate. N1–C7 bond length [1.37(2)Å] is longer than N2–C7 bond length [1.34(2)Å], the corresponding values, in 1-ethyl-3-methylbenzimidazole-2-thione, 1.364(5) and 1.349(5)Å, in 2-(3-methoxy-2-hydroxyphenyl)benzimidazole, are 1.371(4) and 1.325(5)Å; and in 1-(phenylmethyl)-2-(4-methoxyphenylmethyl)-1H-benzimidazole-5-carboxylic acid, 1.365(4) and 1.331(4)Å, respectively. The benzimidazole ring system is almost planar, with a dihedral angle of 2.1(5) between the imidazole and benzene ring planes. The angles N2–C7–C8 = 128(1) and N1–C7–C8 = 124(1)° are almost symmetric.

The structure is stabilized by one intra and two intermolecular hydrogen bonds, which are given in Table 4. For a structure analysis, $U_{\rm eq}$ normally has values about 0.05 Ų at room temperature. The high $U_{\rm eq}$ values for some atoms in Table 2 may indicate a low quality of the investigated crystal.

Table 4 Possible hydrogen bond lengths (Å) and angles (°)

D–H···A	D–H (Å)	H···A (Å)	D···A (Å)	D–H···A ($^{\circ}$)
H2—H2N09 [±]	0.86(2)	2.56(2)	3.00(2)	113(1)
N2—H2N010	0.86(2)	2.07(2)	2.61(2)	120(1)
C2H2O9 ⁱⁱ	0.93(3)	2.57(2)	3.43(2)	154(2)

Equivalent positions: [i=x, 1+y, z; ii=1-x, 1-y, -z].

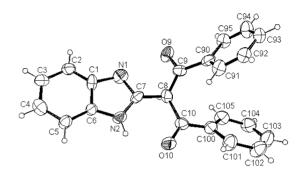


Fig. 2 ORTEP view of the title compound showing the labeling of the non-H atoms. Thermal ellipsoids are shown at the 30% probability level.

Acknowledgements

The authors wish to acknowledge the purchase of the CAD-4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

- W. B. Pratt, "Chemotherapy of Infection", 1977, Oxford University Press, New York.
- 2. H. Göker and U. Abbasoğlu, *Arch. Pharm.* [Weinheim], **1995**, *328*, 425.
- 3. S. Özbey, E. Kendi, H. Göker, and M. Tunçbilek, *J. Chem. Crsytallogr.*, **1998**, 28, 461.
- A. Aydın, H. Soylu, B. Güneş, M. Akkurt, F. Ercan, H. Küçükbay, and E. Çetinkaya, Z. Kristallogr., 1998, 213, 473.
- Ş. K. İngeç, H. Soylu, H. Küçükbay, F. Ercan, and M. Akkurt, *Anal. Sci.*, **1999**, *15*, 927.
- Y. Elerman and M. Kabak, Acta Crystallogr., 1997, C53, 372
- S. Özbey, S. İde, and E. Kendi, J. Mol. Struct., 1998, 23, 442.