Crystal Structure of 1-[2-[6-(4-Methoxyphenyl)-3(2*H*)-pyridazinone-2-yl]acetyl]-4-(2-pyridyl)piperazine

Şebnem Kandil İNGEÇ,*[†] Hüseyin SOYLU,* Engin KENDİ,** Deniz S. DOĞRUER,*** and M. Fethi ŞAHİN***

*Gazi University, Gazi Education Faculty, Physics Department, 06500 Besevler, Ankara, Turkey **Hacettepe University, Department of Engineering Physics, 06532, Beytepe, Ankara, Turkey ***Gazi University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 06330, Hipodrum, Ankara, Turkey

(Received October 12, 1999; Accepted March 1, 2000)

Piperazine and its derivatives form an important class of organic compounds with pharmacological applications.¹ The title compound (Fig. 1) has analgesic activity. This compound was synthesized to evaluate for analgesic activity. First, 0.01 mol of [6-(4-methoxyphenyl)-3(2H)-pyridazinone-2-yl]acetic acid in 40 ml of dichloromethane at 0°C (ice-bath) was treated with triethylamine (3 ml) and 0.01 mol of ethyl chloroformate. After stirring the reaction mixture at 0°C for 15 min, 0.011 mol of 1-(2-pyridyl)piperazine was added to this solution. The final mixture was stirred at 0 – 25°C for 24 h, evaporated to dryness, then treated with acetone. All of the solid materials were

A perspective view of the title molecule, (I), showing the atom-numbering scheme is presented in Fig. 2. Table 1 gives the crystal and experimental data. The final coordinates and

Table 1 Crystal and experimental data

Formula: $C_{22}H_{23}N_5O_3$					
Formula weight $= 405.45$					
Crystal system: triclinic					
Space group: P-1	Z = 2				
a = 9.475(1)Å	$\alpha = 75.92(2)^{\circ}$				
b = 10.389(3)Å	$\beta = 68.57(1)^{\circ}$				
c = 11.267(2)Å	$\gamma = 87.25(2)^{\circ}$				
V = 1000.3(4)Å ³	•				
$D_{\rm x} = 1.346 \ {\rm g/cm^3}$					
μ (Cu K _a) = 0.754 mm ⁻¹					
T = 295 K					
Color: white					
$F(0\ 0\ 0) = 428$					
Crystal size = $0.18 \times 0.36 \times 0.40$ mm					
Radiation = 1.5418 Å (Cu K _{α})					
$\theta_{\rm max} = 74.23^{\circ}$					
R = 0.0591					
wR = 0.1506					
No. of reflections used $= 2992$					
No. of parameters $= 309$					
Goodness-of-fit = 1.137					
$(\Delta/\sigma)_{\rm max} = 0.03$					
$(\Delta \rho)_{\rm max} = 0.31 \text{ e}\text{\AA}^{-3}$					
$(\Delta \rho)_{\rm min} = -0.22 \ {\rm e}{\rm \AA}^{-3}$					
Measurements: Enraf-Nonius CAD-4 diffractometer					
Refinement: full matrix least-squares (SHELXL-97)					
Program system: CAD-4 EXPRESS software					
Structure determination: SHELXS-97					
Treatment of hydrogen atoms: mixed					

Fig. 1 Chemical structure.

Fig. 2 Perspective view of the molecular structure of the title compound with the atom numbering scheme. The displacement ellipsoids are plotted at the 50% probability level.

[†] To whom correspondence should be addressed.

Table 3 Selected bond distances (Å), angles (°) and torsion angles (°)

Table 2 Final coordinates and equivalent anisotropic thermal parameters for non-hydrogen atoms

Atom	x	у	Z	$U_{ m eq}\!/{ m \AA}^2$
C1	0,6855(6)	0,9409(6)	-0.2226(5)	0.095(1)
C2	0.7519(5)	1.0645(5)	-0.2579(4)	0.085(1)
C3	0,7960(5)	1.1014(4)	-0.1689(4)	0.079(1)
C4	0,6657(5)	0,8573(4)	-0.1023(4)	0.082(1)
C5	0.7123(4)	0.8996(3)	-0.0161(3)	0.0629(8)
C6	0,7200(4)	0.8800(4)	0.2001(3)	0.0682(9)
C7	0.7173(4)	0.7803(4)	0.3227(3)	0.0688(9)
C8	0.5743(5)	0.7147(4)	0.1606(4)	0.0710(9)
C9	0,5696(5)	0.6225(4)	0.2873(3)	0.075(1)
C10	0.4605(4)	0,6970(3)	0.4902(3)	0.0598(8)
C11	0.4869(4)	0.7752(4)	0,5803(3)	0.0614(8)
C12	0.2393(4)	0.8687(3)	0.6562(3)	0.0630(8)
C13	0.0970(4)	0.8589(4)	0.7640(4)	0.0699(9)
C14	0.0750(4)	0.7756(4)	0,8809(3)	0.0674(9)
C15	0.1947(3)	0.6940(3)	0.8994(3)	0.0542(7)
C16	0.1790(4)	0.6042(3)	1.0282(3)	0.0551(7)
C17	0.0392(4)	0.5595(4)	1.1241(3)	0.0654(8)
C18	0.0258(4)	0.4749(4)	1.2453(3)	0.072(1)
C19	0.1544(4)	0.4351(4)	1.2703(3)	0,0673(9)
C20	0.2964(4)	0.4790(4)	1.1764(3)	0.0707(9)
C21	0.3073(4)	0.5632(4)	1.0570(3)	0.0664(9)
C22	0.0175(6)	0.2931(7)	1.4792(5)	0.129(3)
N1	0.7782(4)	1.0217(3)	-0.0495(3)	0.0771(9)
N2	0.6989(3)	0.8155(3)	0.1047(3)	0.0642(7)
N3	0.5791(4)	0.6965(3)	0,3791(3)	0.0699(8)
N4	0.3441(3)	0.7829(3)	0.6860(2)	0.0585(7)
N5	0.3248(3)	0.6965(3)	0.8032(2)	0.0554(6)
01	0.3420(3)	0.6343(3)	0.5236(2)	0.0778(8)
O2	0.2722(3)	0.9448(3)	0.5468(2)	0.0793(8)
O3	0.1565(3)	0.3510(4)	1.3837(3)	0.091(1)

 $U_{\rm eq} = (1/3) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* (\boldsymbol{a}_i \cdot \boldsymbol{a}_j).$

equivalent thermal parameters for non-hydrogen atoms are given in Table 2; selected bond distances and angles are given in Table 3. The bond lengths and angles are comparable to those observed in related compounds.¹⁻³ Piperazine is a non-planar six-membered ring containing four C and two N atoms. The piperazine ring adopts a chair conformation with the N2 and N3 atoms deviating by 0.270(3) and -0.161(3)Å, respectively, on opposite sides of the least-squares plane through C6, C7, C8 and C9.

The pyridazine, phenyl and pyridyl rings are planar within the experimental error. The piperazine ring makes dihedral angles of $11.6(3)^{\circ}$, $79.0(1)^{\circ}$ and $57.2(1)^{\circ}$ with the pyridyl, pyridazine and phenyl rings, respectively. The methoxy group are almost coplanar with the aromatic rings, as shown by a torsion angle of $-174.6(5)^{\circ}$ for C20-C19-O3-C22. The dihedral angle between this plane and the plane defined by N1-C1-C2-C3-C4-C5 is $63.4(1)^{\circ}$. The dihedral angle between the pyridazine ring and methoxyphenyl group is $21.9(2)^{\circ}$.

())))	1 252(5)	05 NI	1 247(5)
C5 N1	1,333(3)	C5 N1	1.347(3)
C5 N2	1,392(4)	C0 N2	1.4/1(3) 1.452(5)
C0 U7	1.304(5)	C7 N3	1.455(5)
C8 N2	1,404(5)		1.500(5)
C9 N3	1.459(5)		1.212(4)
CIU N3	1,343(4)		1.536(5)
CII N4	1.454(4)	C12 N4	1.381(5)
	1.435(5)		1.338(5)
CI4 CI5	1.429(5)	CIS NS	1.306(4)
CIS C16	1.482(4)	C16 C17	1.381(4)
C18 C19	1.371(5)	C19 O3	1.368(4)
C22 03	1.407(5)	N4 N5	1.359(3)
~ ~ ~	04 101 1/0	C 2 C 2	61 117 170
	121.1(4)	C3 C2	CI = 117.1(4)
N2 C6	C/ 111.8(3)	C/ N3	C9 110.9(3)
	CTT 120.6(3)	N4 C11	C10 109.5(3)
O2 C12	C13 126.2(3)	CI4 C13	C12 121.3(3)
C17 C16	C21 117.5(3)	C16 C17	C18 121.7(3)
C15 N5	N4 117.5(3)	C19 C18	C17 119.4(3)
C5 N1	C3 118.7(4)	C19 O3	C22 118.1(3)
		~ ~ ~ ~	
N3 CIO CII	N4 171.9(3)	02 C12 C	13 C14 -177.5(4)
N5 C15 C16	C17 -158.9(3)	C17 C18 C	19 O3 -178.8(4)
O3 C19 C20) C21 179.1(4)	N2 C5 N	I C3 177.6(3)
N1 C5 N2	C8 154.0(3)	NI C5 N	2 C6 16.1(4)
C4 C5 N2	C8 -28.9(5)	C7 C6 N	2 C5 -174.9(3)
O1 C10 N3	C7 171.6(3)	C11 C10 N	3 C7 -12.8(5)
O1 C10 N3	C9 2.5(5)	C11 C10 N	3 C9 178.2(3)
O2 C12 N4	N5 178.1(3)	C10 C11 N	4 N5 101.1(3)
C18 C19 O3	C22 4.6(7)	C20 C19 O	3 C22 -174.6(5)

Acknowledgements

The authors wish to acknowledge the purchase of a CAD4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

- S. B. Majumder, M. Mukherjee, G. K. Patra, D. Datta, and M. Helliwel, *Acta Crystallogr.*, **1999**, *C55*, 668.
- 2. G. Mairesse, J. C. Boiven, D. J. Thomas, J. P. Bonte, and D. Lesieur, *Acta Crystallogr.*, **1987**, *C43*, 2128.
- 3. D. P. Elder, I. A. Selby, R. O. Gould, and P. Taylor, *Acta Crystallogr.*, **1992**, *C48*, 871.
- 4. G. M. Sheldrick, SHELXS-97. Program for the Solution of Crystal Structures, **1997**, Univ. of Göttingen, Germany.
- G. M. Sheldrick, SHELXL-97. Program for the Refinement of Crystal Structures, 1997, Univ. of Göttingen, Germany.