Crystal Structure of 1-[2-[6-(4-Methoxyphenyl)-3(2H)-pyridazinone-2-yl]acetyl]-4-(2-pyridyl)piperazine

Şebnem Kandil İngeç,** Hüseyin Soylu,* Engin Kendi,**
Deniz S. Doğruer,*** and M. Fethi Şahin***
*Gazi University, Gazi Education Faculty, Physics Department, 06500 Besevler, Ankara, Turkey
**Hacettepe University, Department of Engineering Physics, 06532, Beytepe, Ankara, Turkey
***Gazi University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, 06330, Hipodrum, Ankara, Turkey

(Received October 12, 1999; Accepted March 1, 2000)

Abstract

Piperazine and its derivatives form an important class of organic

 compounds with pharmacological applications. ${ }^{1}$ The title compound (Fig. 1) has analgesic activity. This compound was synthesized to evaluate for analgesic activity. First, 0.01 mol of [6-(4-methoxyphenyl)-3(2H)-pyridazinone-2-yl]acetic acid in 40 ml of dichloromethane at $0^{\circ} \mathrm{C}$ (ice-bath) was treated with triethylamine (3 ml) and 0.01 mol of ethyl chloroformate. After stirring the reaction mixture at $0^{\circ} \mathrm{C}$ for $15 \mathrm{~min}, 0.011 \mathrm{~mol}$ of 1 -(2-pyridyl)piperazine was added to this solution. The final mixture was stirred at $0-25^{\circ} \mathrm{C}$ for 24 h , evaporated to dryness, then treated with acetone. All of the solid materials were
(1)

Fig. 1 Chemical structure.

Fig. 2 Perspective view of the molecular structure of the title compound with the atom numbering scheme. The displacement ellipsoids are plotted at the 50% probability level.

[^0]washed first with $1 \% \mathrm{NaOH}$ and then with water, and then dried and crystallized from appropriate solvents. The structure was solved by direct methods by the use of SHELXS-974 and refined by full-matrix least-squares methods with anisotropic temperature factors for non-H atoms by using SHELXL-97. ${ }^{5}$ Atoms H2, H3, H4, H7, H9, H13, H14, H18, H20 and H22 were located geometrically, the other H atoms were obtained by difference Fourier syntheses and refined isotropically. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded.
A perspective view of the title molecule, (I), showing the atom-numbering scheme is presented in Fig. 2. Table 1 gives the crystal and experimental data. The final coordinates and

Table 1 Crystal and experimental data

[^1]Table 2 Final coordinates and equivalent anisotropic thermal parameters for non-hydrogen atoms

Atom	x	y	z	

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i} * a_{j} *\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}\right)$.
equivalent thermal parameters for non-hydrogen atoms are given in Table 2; selected bond distances and angles are given in Table 3. The bond lengths and angles are comparable to those observed in related compounds. ${ }^{1-3}$ Piperazine is a nonplanar six-membered ring containing four C and two N atoms. The piperazine ring adopts a chair conformation with the N2 and N3 atoms deviating by $0.270(3)$ and $-0.161(3) \AA$, respectively, on opposite sides of the least-squares plane through C6, C7, C8 and C9.
The pyridazine, phenyl and pyridyl rings are planar within the experimental error. The piperazine ring makes dihedral angles of $11.6(3)^{\circ}, 79.0(1)^{\circ}$ and $57.2(1)^{\circ}$ with the pyridyl, pyridazine and phenyl rings, respectively. The methoxy group are almost coplanar with the aromatic rings, as shown by a torsion angle of $-174.6(5)^{\circ}$ for C20-C19-O3-C22. The dihedral angle between this plane and the plane defined by N1-C1-C2-C3-C4-C5 is $63.4(1)^{\circ}$. The dihedral angle between the pyridazine ring and methoxyphenyl group is $21.9(2)^{\circ}$.

Table 3 Selected bond distances (\AA), angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$

C3	N1		$1.353(5)$		C5	N1		1.347(5)	
C5	N2		1.392(4)		C6	N2		1.471(5)	
C6	C7		$1.504(5)$		C7	N3		$1.453(5)$	
C8	N2		1.464(5)		C8	C9		$1.500(5)$	
C9	N3		$1.459(5)$		C10	O1		$1.212(4)$	
C10	N3		1.343(4)		C10	C11		$1.536(5)$	
C11	N4		1.454(4)		C12	N4		1.381 (5)	
C 12	C13		$1.435(5)$		C13	C14		1.338(5)	
C14	C15		$1.429(5)$		C15	N5		$1.306(4)$	
C 15	C16		$1.482(4)$		C16	C17		1.381(4)	
C18	C19		1.371(5)		C19	O3		1.368 (4)	
C22	O3		$1.407(5)$		N4	N5		1.359(3)	
C2	C		C4	121.1(4)	C3	C2		C1	117.1(4)
N2	C6		C7	$111.8(3)$	C7	N3		C9	$110.9(3)$
O1	C		C11	$120.6(3)$	N4	Cl		C10	$109.5(3)$
O2	C		C13	126.2(3)	C14	C1		C12	121.3 (3)
C 17	C1		C21	$117.5(3)$	C16	C 1		C18	121.7(3)
C15	N5		N4	$117.5(3)$	C19	C1		C17	$119.4(3)$
C5	N		C3	118.7(4)	C19	O3		C22	118.1 (3)
N3	C10	C11	N4	171.9(3)	O 2	C12	C13	C14	-177.5(4)
N5	C15	C16	C17	-158.9(3)	C 17	C18	C19	03	-178.8(4)
03	C19	C20	C21	179.1(4)	N2	C5	N1	C3	177.6(3)
N1	C5	N2	C8	154.0(3)	N1	C5	N2	C6	16.1(4)
C4	C 5	N2	C8	-28.9(5)	C7	C6	N2	C5	-174.9(3)
01	C10	N3	C7	171.6 (3)	C11	C10	N3	C7	-12.8(5)
01	C10	N3	C9	2.5(5)	C11	C10	N3	C9	$178.2(3)$
O 2	C12	N4	N5	178.1(3)	C10	C11	N4	N5	101.1(3)
C18	C19	O3	C22	4.6(7)	C20	C19	03	C22	-174.6(5)

Acknowledgements

The authors wish to acknowledge the purchase of a CAD4 diffractometer under Grant DPT/TBAG1 of the Scientific and Technical Research Council of Turkey.

References

1. S. B. Majumder, M. Mukherjee, G. K. Patra, D. Datta, and M. Helliwel, Acta Crystallogr., 1999, C55, 668.
2. G. Mairesse, J. C. Boiven, D. J. Thomas, J. P. Bonte, and D. Lesieur, Acta Crystallogr., 1987, C43, 2128.
3. D. P. Elder, I. A. Selby, R. O. Gould, and P. Taylor, Acta Crystallogr., 1992, C48, 871.
4. G. M. Sheldrick, SHELXS-97. Program for the Solution of Crystal Structures, 1997, Univ. of Göttingen, Germany.
5. G. M. Sheldrick, SHELXL-97. Program for the Refinement of Crystal Structures, 1997, Univ. of Göttingen, Germany.

[^0]: ${ }^{\dagger}$ To whom correspondence should be addressed.

[^1]: Formula: $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{3}$
 Formula weight $=405.45$
 Crystal system: triclinic
 Space group: $P-1 \quad Z=2$
 $a=9.475(1) \AA \quad \alpha=75.92(2)^{\circ}$
 $b=10.389(3) \AA \quad \beta=68.57(1)^{\circ}$
 $c=11.267(2) \AA \quad \gamma=87.25(2)^{\circ}$
 $V=1000.3(4) \AA^{3}$
 $D_{\mathrm{x}}=1.346 \mathrm{~g} / \mathrm{cm}^{3}$
 $\mu\left(\mathrm{Cu} \mathrm{K}_{\alpha}\right)=0.754 \mathrm{~mm}^{-1}$
 $T=295 \mathrm{~K}$
 Color: white
 $\mathrm{F}(000)=428$
 Crystal size $=0.18 \times 0.36 \times 0.40 \mathrm{~mm}$
 Radiation $=1.5418 \AA\left(\mathrm{Cu} \mathrm{K}_{\alpha}\right)$
 $\theta_{\text {max }}=74.23^{\circ}$
 $R=0.0591$
 $w R=0.1506$
 No. of reflections used $=2992$
 No. of parameters $=309$
 Goodness-of-fit $=1.137$
 $(\Delta / \sigma)_{\text {max }}=0.03$
 $(\Delta \rho)_{\max }=0.31 \mathrm{e}^{-3}$
 $(\Delta \rho)_{\text {min }}=-0.22 \mathrm{e}^{-3}$
 Measurements: Enraf-Nonius CAD-4 diffractometer
 Refinement: full matrix least-squares (SHELXL-97)
 Program system: CAD-4 EXPRESS software
 Structure determination: SHELXS-97
 Treatment of hydrogen atoms: mixed

