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Abstract

RNA sequencing (RNA-Seq) is a powerful technique for the gene-expression profiling of

organisms that uses the capabilities of next-generation sequencing technologies. Developing

gene-expression-based classification algorithms is an emerging powerful method for diagno-

sis, disease classification and monitoring at molecular level, as well as providing potential

markers of diseases. Most of the statistical methods proposed for the classification of gene-

expression data are either based on a continuous scale (eg. microarray data) or require a

normal distribution assumption. Hence, these methods cannot be directly applied to RNA-

Seq data since they violate both data structure and distributional assumptions. However, it is

possible to apply these algorithms with appropriate modifications to RNA-Seq data. One way

is to develop count-based classifiers, such as Poisson linear discriminant analysis and nega-

tive binomial linear discriminant analysis. Another way is to bring the data closer to microar-

rays and apply microarray-based classifiers. In this study, we compared several classifiers

including PLDA with and without power transformation, NBLDA, single SVM, bagging SVM

(bagSVM), classification and regression trees (CART), and random forests (RF). We also

examined the effect of several parameters such as overdispersion, sample size, number of

genes, number of classes, differential-expression rate, and the transformation method on

model performances. A comprehensive simulation study is conducted and the results are

compared with the results of two miRNA and two mRNA experimental datasets. The results

revealed that increasing the sample size, differential-expression rate and decreasing the dis-

persion parameter and number of groups lead to an increase in classification accuracy. Simi-

lar with differential-expression studies, the classification of RNA-Seq data requires careful

attention when handling data overdispersion. We conclude that, as a count-based classifier,

the power transformed PLDA and, as a microarray-based classifier, vst or rlog transformed

RF and SVM classifiers may be a good choice for classification. An R/BIOCONDUCTOR

package, MLSeq, is freely available at https://www.bioconductor.org/packages/release/bioc/

html/MLSeq.html.
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Introduction

Transcriptome sequencing (RNA-Seq), with the advent of high-throughput NGS technologies,

has become a popular experimental approach for generating a comprehensive catalog of pro-

tein-coding genes and non-coding RNAs and examining the transcriptional activity of

genomes. Furthermore, RNA-Seq is a promising tool with a remarkably wide range of applica-

tions such that (i) discovering novel transcripts, (ii) detecting/quantifying the spliced isoforms,

(iii) fusion detection and (iv) revealing sequence variations (e.g, SNPs, indels) [1]. In addition,

beyond these common applications, RNA-Seq can be a method of choice for gene-expression-

based classification to identify the significant transcripts, distinguishing biological samples

and predicting the outcomes from large-scale gene-expression data which can be generated in

a single run.This classification is widely used in medicine for diagnostic purposesand refers to

the detection of a small subset of genes that achieves the maximal predictive performance.

These genes are used afterwards for the classification of new observations into one ofthe dis-

ease classes (or tumor classes, cancer subtypes, cancer stage, etc.).

Microarray-based gene-expression classification has been widely used during the last

decades. Recently, RNA-Seq replaced microarrays as the technology of choice in quantifying

gene expression due to certain advantages such as providing less noisy data, detecting novel

transcripts and isoforms or not requiring prearranged transcripts of interest [2–5]. Although

microarray and RNA-Seq technologies can be used for measuring the expression levels of

genes, there are differences in the resulting gene-expression data. Microarray technology pro-

duces continuous data while it is obtained in dicrete scale from RNA-Seq technology, which

are related with the abundance of mRNA transcripts [6]. Hence, the algorithms which are pro-

posed for microarray-based gene-expression data cannot be directly applied to RNA-Seq data

since they violate both data structure and distributional assumptions. In addition, RNA-Seq

generates gene-expression data with overdispersion where the variance exceeds the mean [7].

One should take overdispersion into account since it has a significant effect on model perfor-

mances. Various studies have been conducted to deal with the overdispersion problem for the

differential-expression (DE) analysis of RNA-Seq data [8–12].

Several alternatives have been proposed for the classification and clustering of RNA-Seq

data. One alternative, perhaps the preferable option,is to use discrete probability distributions

(e.g. Poisson, negative binomial) for both classification and clustering tasks. Witten et al. [6]

proposed sparse Poisson linear discriminant analysis (PLDA) by extending the popular micro-

array classifier called the nearest shrunken centroids algorithm to discrete RNA-Seq data. The

authors also suggested applying a power transformation within PLDA algorithm in order to

handle overdispersion problem. Dong et al. [13], on the other hand, proposed negative bino-

mial linear discriminant analysis (NBLDA) by extending Poisson distribution to negative

binomial distribution. There are few methods based on discrete distributions compared to

those on continuous distributions. Hence, another choice may be to use some transformation

approaches (e.g. vst: variance stabilizing transformation, or rlog: regularized logarithmic trans-

formation) to bring RNA-seq samples closer to microarrays and apply microarray-based algo-

rithms for classification applications [7–9].

In this study, we applied algorithms based on both discrete and continuous distributions to

RNA-Seq data. The NBLDA and PLDA are appliedto discrete gene-expression data (i.e, no

transformation on counts), while support vector machines (SVM), bagging support vector

machines (bagSVM), random forests (RF) and classification and regression trees (CART) are

applied to transformed gene-expression data. A comprehensive simulation study is conducted

to measure the effect of several parameters on model performances, such as overdispersion,

sample size, number of genes, number of classes, DE rate and the transformation method.

RNA-Seq classification
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Four publicly available gene-expression datasetswere also analyzed and the results were com-

pared to the simulation results. An R/BIOCONDUCTOR package, called MLSeq, is developed

to analyze RNA-Seq data using the proposed algorithms in this paper.

Materials and methods

A workflow for RNA-Seq classification

Providing a comprehensive and easy-to-understand workflow for RNA-Seq studies and its related

algorithms helps researchers to find out the background of such studies. We outlined the count-

based classification pipeline for RNA-Seq data in Fig 1 for providing a quick snapshot view of han-

dling large-scale transcriptome data and establishing robust inferences by using well-known com-

puter-aided learning algorithms. NGS platforms generate millions of raw sequence reads along

with quality scores which correspond to each base-call. The very first step in RNA-Seq data analysis

is to assess the quality of the sequenced data for further analysis. A number of pre-processing steps

such as removal of the low-quality sequences, exclusion of the poor-quality reads with more than

five unknown bases and trimming the sequencing adapters and primers should be taken into con-

sideration to obtain a clean and ready to use RNA-Seq data for downstream analysis. Several tools/

packages such as FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), HTSeq

[14], R ShortRead package [15], PRINSEQ (http://edwards.sdsu.edu/cgi-bin/prinseq/prinseq.cgi),

FASTX Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) and QTrim [16] are available for quality

Fig 1. RNA-Seq classification workflow.

https://doi.org/10.1371/journal.pone.0182507.g001
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assessment and filtering. Following pre-processing steps, high-quality reads are aligned to a refer-

ence genome or transcriptome. The number of reads mapped to the reference genome is reported

to be linearly related to transcript abundance [6]. Hence, transcript quantification, which are calcu-

lated from the total number of mapped reads, is a prerequisite for further analysis. Splice-aware

aligners such as Tophat2 [17], MapSplice [18] or Star [19] can be preferred rather than unspliced

aligners (BWA, Bowtie, etc.) for aligning short reads. Number of mapped reads to each transcript

is counted after the alignment process is completed. This count matrix can be accomplished by

using several tools such as HTSeq [14], bedtools [20] and FeatureCounts [21]. The mapped counts

are used as the expression levels of corresponding genes and the obtained count matrix is trans-

ferred to following steps for downstream analysis. However, these counts cannot be directly used

for further analysis since there exists between sample differences in the count matrix. One should

normalize the counts to adjust between-sample differences using one of the proposed normaliza-

tion techniques. Although there are several methods in the literature, there is no standard or state-

of-art method for the normalization task. Some of the proposed methods, which are popular and

frequently used in RNA-Seq studies, are the deseq median ratio [8], trimmed mean of M values

(TMM) [22], reads per kilobase per million mapped reads (RPKM) [23] and quantile [24] meth-

ods. The normalized gene-expression data can be used for classification and/or clustering tasks. As

previously mentioned, there are two strategies for modeling RNA-seq data. Firstly, normalized

counts can be directly modeled using algorithms based on discrete distributions such as the PLDA

[6] and NBLDA [13]. Secondly, the counts are transformed to a continuous scale and microarray-

based classification and clustering algorithms are performed on the transformed gene-expression

data. Some of the popular transformation methods are vst [8], rlog [10] and voom [25]. Apart

from these approaches, power transformation is considered to decrease the dispersion of data

before applying the PLDA classifier [6].

The crucial steps of classification can be considered as feature selection, model fitting and vali-

dation. RNA-Seq data has a large dimensions, i.e there are a large number of genes in the count

data. In the feature selection step, we aim to work with an optimal subset of data in order to over-

come the curse of dimensionality. This process is also crucial to reduce the computational cost,

decrease noise, improve the accuracy for classification of phenotypes and work with more inter-

pretable features to better understand the domain [26]. As the number of variables increases, the

model becomes more complex and the classification results are more likely to be over/under-esti-

mated. Various feature selection methods have been reviewed in details and compared in [27].

After an optimal set of genes is selected, the next step is fitting the best classification model to the

RNA-Seq data. Several machine-learning algorithms are applied to training data to find the best

model which best discriminates cases among classes. Next, the trained model can be used to pre-

dict the class memberships of new biological samples. Some of the commonly used classifiers are

SVM, RF and other tree-based classifiers, artificial neural networks and k-nearest neighbors.

In many real life problems, it is possible to find classification algorithms which perform

well and perfectly classify training samples. However, it may perform poorly when classifying

new samples. This problem is called overfitting/overestimation as previously mentioned. This

problem arises during the model training steps. In order to overcome overfitting problem and

obtain generalized results, the appropriate model is selected by validating the selected model

on independent test samples. Holdout, k-fold cross-validation, leave-one-out cross-validation

and bootsrapping are among the recommended approaches for model validation.

Simulation study

Simulation setup. A comprehensive simulation study is conducted to investigate the

effect of several parameters. Gene-expression data are simulated under 864 different scenarios

RNA-Seq classification
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using a negative binomial model as follows:

Xijjyi ¼ k � NBðsigjdkj; �Þ ð1Þ

where, gj is the total number of mapped counts per gene (i.e, gene total), si is the number of

mapped counts per sample, dkj is the differential-expression parameter of the jth gene between

classes k and φ is the dispersion parameter. The datasets contain all possible combinations of

the following:

• different dispersion parameters such as φ = 0.01 (very slightly overdispersed), φ = 0.1 (sub-

stantially overdispersed), and φ = 1 (highly overdispersed);

• number of biological samples (n) changing as 40, 60, 80, 100;

• number of differentially-expressed genes (p’) as 25, 50, 75, 100;

• differentially expressed gene rates as (dkj) 1%, 5% and 10%;

• number of classes (k) as 2, 3 and 4;

• method of transformation as rlog and vst.

In the simulation setup, si and gj are distributed identically and independently. Simulated

datasets are generated using the CountDataSet function in the PoiClaClu package of R soft-

ware [28] and manipulated based on the details given above. The seed number for random

number generation is set to ‘10072013’ in all analysis steps.

Evaluation process. All datasets are initially simulated for p = 10,000 genes. Next, the data

are split into training (70%) and test sets (30%). All the model building processes are per-

formed on training datasets and model performances are evaluated in test sets.

Size factor estimation. The size factors are estimated using deseq median ratio approach

[10]. Let xij, the mapped read counts to jth gene for ith sample. Size factor of the ith sample (bsi)
can be estimated as below:

mi ¼ mediani

xij
ð
Qn

i¼1
xijÞ

1
n

( )

ð2Þ

bsi ¼
miPn
i¼1

mi
ð3Þ

Size factor of a test sample can be estimated using the same parameters as for the training

datasets. In more detail, the size factors of the test datasets are calculated based on the geomet-

ric means of the training data. Therefore, we guarantee that the training and test datasets are

in the same scale and homoscedastic to each other. Let, x� is a count vector of a new test obser-

vation, whose class label y� will be predicted. Size factor of the test sample (bs�) is estimated as

follows:

m� ¼ mediang

xg�
ð
Qn

i¼1
xgiÞ

1=n

( )

ð4Þ

bs� ¼
m�Pn
i¼1

mi
ð5Þ
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Dispersion function estimation. After size factor estimation, the datasets are transformed

using either rlog or vst transformation for the SVM, bagSVM, RF and CART algorithms. The

logarithmic transformation approach transforms the data into a less skewed distribution with

less extreme values as well; however, the genewise variances are still unstabilized [10]. In vst

transformation, a local dispersion function is fit to the training data. This function is frozen to

reapply for the test samples. In rlog transformation, the log fold changes of the counts for each

gene are regularized over an intercept. Rlog transformation is applied as follows:

rlogðqijÞ ¼ b0j þ bij ð6Þ

The dispersion function, beta prior variance and the intercept which are calculated from

the training data are stored and directly used for the test dataset. More details can be found in

DESeq2 paper [10].

Filtering. Next, we applied near-zero variance filtering to training data to filter the genes

with low counts. The effect of the filtered genes is eliminated for further analysis [29]. Genes

are filtered based on two criteria: (i) the frequency ratio of the most frequent value to the sec-

ond most frequent value is higher than 19 (95/5), and (ii) the ratio of the number of unique

values to the sample size is less than 10%. Filtered genes are removed from both the training

and test sets. Next, the DESeq2 method is applied to detect the most DE 25, 50, 75 and 100

genes [10]. The same genes are selected for both test and training sets.

Normalization and transformation. After selecting the DE genes, training data are nor-

malized with the estimated size factors to adjust sample specific differences [10]. After normal-

ization, the datasets are transformed with the estimated dispersion functions using either rlog

or vst transformation for the SVM, bagSVM, RF and CART algorithms. The normalized count

datasets are directly used for the PLDA and NBLDA algorithms since both algorithms use dis-

crete probability distributions to fit the models. Although the NBLDA takes overdispersion

into account, the PLDA does not estimate the overdispersion parameter. Hence it assumes

that there is no overdispersion in the data. Witten [6] suggested the use of power transforma-

tion on the raw counts when there is slight to moderate overdispersion in the data. Power

transformation is useful to remove overdispersion in the data in such cases. However, one

should explicitly estimate and consider overdispersion when data are highly overdispersed. In

this paper, we performed power transformation for slightly or moderately overdispersed data.

The results are given under PLDA2.

Model building. After the normalization and transformation processes, the parameters of

each classifier are optimized to avoid overfitting and underfitting. A five-fold cross-validation

is applied to the training data and the parameters that achieve the highest accuracy rate are

selected as optimal parameters. Cross-validation folds are fixed for each classifier to make the

results comparable. Each classifier is fitted with the optimal parameters. Fitted models are used

in the test datasets for prediction and performance evaluation. The sample sizes are very low

relative to the number of genes since we mimic the real datasets. Thus, the model perfor-

mances may vary depending on the split ratio of the training and test sets. To overcome this

limitation, we repeated the entire process 50 times and summarized the results in a single sta-

tistic, i.e. accuracy rates.

Application to real datasets

In addition to the simulated data, four real datasets, including both miRNA and mRNA data-

sets were also used as real life examples (Table 1).

Cervical dataset. The cervical dataset is an miRNA sequencing dataset obtained from

[30]. miRNAs are small non-coding RNA molecules with an average length of 21–23 bp. These

RNA-Seq classification
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small molecules regulate the gene expression levels. The objective of this study was to identify

the novel miRNAs and detect the differentially expressed ones between normal and tumor cer-

vical tissue samples. For this purpose, 58 small RNA libraries are constructed (29 with tumor

and 29 without tumor). Among the29 tumor samples, 21 were diagnosed as squamous cell car-

cinoma, 6 of them were adenocarcinomas and 2 were unclassified. In our analysis, we used the

gene-expression levels of 714 miRNAs belonging to 58 human cervical tissue samples.

Alzheimer dataset. This dataset is another miRNA dataset provided by Leidinger et al.

[31]. The authors aimed to discover potential miRNAs from blood in diagnosing Alzheimer

and related neurological diseases. For this purpose, the authors obtained gene-expression data

from 48 Alzheimer patients who were evaluated after undergoing some tests and 22 age-

matched control samples. RNA sequencing is performed using an Illumina HiSeq2000 plat-

form. The miRNAs with less than 50 counts in each group are filtered. We used the data

including 416 miRNA read counts of 70 samples, where 48 Alzheimer and 22 control samples

are considered as two separate classes for classification.

Renal cell cancer dataset. The renal cell cancer (RCC) dataset is an RNA-Seq provided by

The Cancer Genome Atlas (TCGA) [32]. The TCGA is a comprehensive community resource

platform for researchers to explore, download, and analyze datasets. RCC data contain 20,531

known human RNA transcript counts belonging to 1,020 RCC samples. These RNA-Seq data

include 606 kidney renal papillary cell (KIRP), 323 kidney renal clear cell (KIRC) and 91 kid-

ney chromophobe carcinoma (KICH) samples. These three classes are known as the most

common subtypes of RCC and treated as three separate classes in our analysis [33].

Lung cancer dataset. Lung cancer is another RNA-Seq dataset provided by the TCGA

platform. This dataset contains the read counts of 20,531 transcripts of 1,128 samples. Samples

are separated into two distinct subclasses. These subclasses are lung adenocarcinoma (LUAD)

and lung squamous cell with carcinoma (LUSC) with 576 and 552 class sizes, respectively.

These two classes are used as class labels in our analysis.

Evaluation process. Real datasets are analyzed using similar procedures to those in the

simulation study. Model building is performed on the training set (70%) and the test set (30%)

is used to evaluate model performance. Size factors and dispersion functions are estimated for

training datasets. Similar to the simulation experiments, the size factors and dispersion func-

tions of test datasets are directly estimated from the training data to make them in the same

scale and homoscedastic to each other. Near-zero variance filtering is applied to the training set.

Filtered genes are also removed from the test set. The renal cell and lung cancer datasets include

20,531 features which dramatically increase the computational cost. Hence, we initially selected

5,000 genes with the highest variances to eliminate the effect of non-informative mRNAs and

decrease the computational cost. All of the miRNAs are used in the model building process for

the cervical and Alzheimer datasets. Differential expression was performed on the training data

using the DESeq2 method and genes are ranked from the most significant to the least significant

with increasing number of genes in steps of 25 up to 250 genes. The differentially expressed

genes selected in the training data are also selected in the test datasets. Differentially expressed

genes in the training data are normalized using the median ratio approach and transformed

Table 1. Description of real RNA-Seq datasets used in this study.

Dataset Number of groups Sample size Number of features

Cervical cancer [39] 2 58 (29 cervical cancer, 29 control) 714 miRNAs

Alzheimer [40] 2 70 (48 Alzheimer, 22 control) 416 miRNAs

Renal cell cancer [41] 3 1,020 (606 KIRP, 323 KIRC, 91 KICH) 20,531 mRNAs

Lung cancer [41] 2 1,128 (576 LUAD, 552 LUSC) 20,531 mRNAs

https://doi.org/10.1371/journal.pone.0182507.t001
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using either the vst or rlog approaches. Since the sample sizes of the cervical and Alzheimer

miRNA datasets are relatively small, the entire process is applied 50 times. The other model

building processes applied are similar tothose in the simulation study.

Implementation of classifiers

Both simulated and real data are modeled using support vector machines (SVM), bagging sup-

port vector machines (bagSVM), random forests (RF), classification and regression trees

(CART), Poisson linear discriminant analysis without power transformaton (PLDA1), Poisson

linear discriminant analysis with power transformaton (PLDA2) and negative binomial linear

discriminant analysis (NBLDA). In this section, we will summarize the background and use of

each method.

SVM. SVM is among popular classification methods based on the statistical learning the-

ory [34]. It has attracted great attention because of its strong mathematical background, learn-

ing capability, good generalization ability and wide range of application area such as

computational biology, text classification, image segmentation and cancer classification

[34,35]. SVM is capable of linear/nonlinear classification and deals with high-dimensional

data.

Let xi denotes the training data points, w denotes the weight vector and b denotes the bias

term.The decision function that correctly classifies the data points by their true class labels in a

linearly separable space is represented as follows:

fw;b ¼ signðw:xi þ bÞ i ¼ 1; 2; . . . ; n ð7Þ

In a binary classification, the SVM aims to find an optimal separating hyperplane in the fea-

ture space which maximizes the margin and minimizes the misclassification rate by choosing

the optimum value of w and b in Eq (7). When the cases are not linearly separable, “slack vari-

ables” {ξ1,. . .,ξn}, a penalty term which is proposed by Cortes and Vapnik [36] can be used to

allow misclassified data points where ξi> 0. In most of theclassification problems, the separa-

tion surface is not linear. In this case, the SVM uses an implicit mapping F of the input vectors

to a high-dimensional space defined by a kernel function (K(x,y) = F(xi)F(xj)) and the linear

classification then applied in this high-dimensional space. Some of the most widely used kernel

functions are linear: K(x,y) = xixj, polynomial: K(x,y) = (xixj + 1)d, radial basis function: K(x,y) =

exp (−γkxi−xjk2) and sigmoidal: K(x,y) = tanh(k(xixj) − c) where c is a constant, d is the degree

and γ> 0 is sometimes parametrized as γ = 1/2σ2. Normalized and transformed (either using

vst or rlog) datasets are used as input to the SVM classifier. The radial basis kernel function is

used in the analysis.

bagSVM. bagSVM is a bootstrap ensemble extension of SVM which creates individuals

for its ensemble by training each SVM classifier on a random subset of the training set. For a

given data set, k random bootstrap samples are drawn with replacement. SVM classifiers are

trained independently on each randomly selected subsets and aggregated via an aggregation

technique.A test set is predicted on each of the SVM classifiers and the predicted class labels

are determined using aggregated results likely in training sets. Normalized and transformed

datasets are used as input to the bagSVM classifier. The number of bootstrap samples were set

to 101 since small changes were observed over this number.

CART. CART, which was introduced by Breiman [37], is one of the most popular tree

classifiers with a wide range of applications. It uses the Gini index, which maximizes the

decrease in impurity at each node, to find the optimal path. If p(i|j) is the probability of class i
at node j, the Gini index is calculated using the equation 1 − ∑ip2(i|j). It is possible to obtain

very large CART trees in large data sets, i.e very large number of genes and samples. When

RNA-Seq classification
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CART grows a maximal tree, this tree is pruned upward to get a decreasing sequence of sub-

trees. Furthermore, pruning is preferred to overcome overfitting problem. The optimal tree

that has the lowest misclassification rate is selected using a cross-validation.The assignment of

each terminal node to a class is performed by choosing the class that minimizes the resubstitu-

tion estimate of the misclassification probability [37, 38]. Normalized and transformed data-

sets are used as input to the CART classifier.

RF. An RF is a collection of many CART trees combined by averaging the predictions of

individual trees in the forest [39]. RF aims to combine many weak classifiers to produce a sig-

nificantly better and strong classifier. First, training set is generated by drawing a bootstrap

sample from the original data. This bootstrap sample includes 2/3 of the original data. The

remaining partisused as a test set to predict the out-of-bag error of the classification. A subset

of features are randomly selected at each node and the best split is used to split the correspond-

ing nodes. If there are m features, for example, mtry out of m features is randomly selected at

each node while growing the forest. Different splitting criterias can be used such as the Gini

index, information gain and node impurity. The value of mtry is approximately equal to either
ffiffiffi
m
p

2
,
ffiffiffiffi
m
p

or 2
ffiffiffiffi
m
p

and is constant during the forest growing. Unlike CART, an unpruned tree is

grown for each of the bootstrap samples. Finally, class labels of new cases are predicted by

aggregating (i.e. majority voting) the predictions fromall trees [40, 41]. Normalized and trans-

formed datasets are used as input to the RF classifier. The number of trees was set to 500 in the

analysis.

PLDA1 and PLDA2. Let X be an n × p matrix of the sequencing data where n is the num-

ber of observations and p is the number of features. For sequencing data, Xij indicates the total

number of reads mapping to gene j in observation i. The observed counts are fitted to the Pois-

son log-linear model as given in Eq (8),

Xij � PoissonðNijÞ; Nij ¼ sigj ð8Þ

where si is the total number of reads per sample and gj is the total number of reads per region

of interest. For RNA-seq data, Eq (8) can be extended as follows:

Xijjyi ¼ k � PoissonðNijdjkÞ; Nij ¼ sigj ð9Þ

where yi 2 {1,. . .,K} is the class label of the ith observation. The d1j,. . .,dKj terms allow the jth

feature to be differentially expressed between classes.

Let (xi,yi), i = 1,. . .,n be a training set and x� ¼ ðX�
1
; . . . ;X�pÞ

T
be a test set. A new sample x�

is assigned to one of the classes with highest probability(or discrimination score) using the

Bayes’ rule as follows:

Pðy� ¼ kjx�Þ / fkðx
�Þpk ð10Þ

where y� denotes the unknown class label, fk is the probability density of an observation in

class k and πk is the prior probability that an observation belongs to class k. If fk is a Gaussian

density with a class-specific mean and common variance, then a standard LDA is used to

assign a new observation to the class [42]. When the model uses class-specific mean and a

common diagonal matrix, then diagonal LDA is used for the classification [43]. However, the

normality and common covariance matrix assumptions are not appropriate for sequencing

data. Witten [6] assumes that the data follow a Poisson model as given in Eq (11),

Xijjyi ¼ k � PoissonðNijdkjÞ; Nij ¼ sigj ð11Þ

where yi is the class of the ith observation and the features are independent. Eq (9) specifies

RNA-Seq classification
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that X�j jy
� ¼ k � Poissonðs�gjdkjÞ. First,

logPð dy� ¼ kjx�Þ ¼ logbf kðx
�Þ þ logbpk þ c ¼

Pp
j¼1

X�j logcdkj � s�
Pp

j¼1
bg jlogbdkj þ logbpk þ c0 ð12Þ

where c and c0 are constants and do not depend on the class label. A new observation is

assigned to one of the classes for which Eq (12) is the largest [6].

Normalized count data are used as input to the PLDA1 classifier. After normalization, a

power transformation (X0ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xij þ 3=8

q
) is applied to reduce the overdispersion effect and

make genes have constant variance. These normalized and power transformed datasets are

used as input to the PLDA2 classifier. To optimize the tuning parameter, a grid search (30

searches) is applied and the sparsest model with the highest accuracy rates is selected for

classification.

NBLDA. Dong et al. [13] generalized the PLDA using an extra dispersion parameter (φ)

of negative binomial distribution and called the method negative binomial linear discriminant

analysis (NBLDA). This extra dispersion parameter is estimated using a shrinkage approach

detailed in [44]. A new test observation will be assigned to its class based on the following

NBLDA discriminating function:

logPð dy� ¼ kjx�Þ ¼
Xp

j¼1

X�j ½logcdkj � logð1þ s�bg jdkj�jÞ�

�
Pp

j¼1
�
� 1

j logð1þ s�bg jdkj�jÞ þ logbpk þ c0
ð13Þ

As the dispersion decreases, NBLDA approximates to PLDA. More details on NBLDA can

be found in [13].

Evaluation criteria. To validate each classifier model, five-fold cross-validation is used. It

is repeated 10 times and accuracy rates are calculated to evaluate the performance of each

model. Cross-validation folds are fixed for all classifiers to make the results comparable to each

other. Accuracy rates are calculated as (TP + TN)/n based on the confusion matrices of test set

class labels and test set predictions. For multiclass scenarios, these measures are calculated via

the one-versus-all approach. Since, the class sizes are unbalanced in the Alzheimer and renal

cell cancer datasets, accuracies are balanced using the following formula: (Sensitivity + Specific-
ity)/2.

MLSeq R/BIOCONDUCTOR package

We presented an R package in the BIOCONDUCTOR network for classification of the RNA-

seq data. The MLSeq package accepts gene expression data which can be obtained from feature

counting tools (e.g. HTSeq [14], bedtools [20] and FeatureCounts [21] etc.). It also has the abil-

ity to normalize and transform the gene-expression data. Finally, data are fitted to the selected

model such as SVM, bagSVM, RF and CART. Users can access the MLSeq package from

https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html.

Results and discussion

Genewise dispersion parameters are estimated for each classifier usingthe method of moments.

Distribution of the estimated overdispersions is given in Fig 2. It is seen from the figure that

the cervical and Alzheimer miRNA datasets are very highly overdispersed (φ>1), while the

lung and renal cell cancer datasets are substantially overdispersed. The simulation results for

k = 2 and k = 3, dkj = 10% for rlog transformations are given in Fig 3 and Fig 4. All other
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simulation results are given in http://www.biosoft.hacettepe.edu.tr/MLSeqSupplementary/ and

the S1 File. Results for real datasets are given in Fig 5.

Effect of simulation parameters

Since combining each significant gene on class conditions is equivalent to combining their

predictive abilities, an increased number of differentially expressed genes leads to an increase

in the classification accuracy (Fig 2 and Fig 3). Similarly, in most scenarios, working with

Fig 2. Genewise dispersion estimations for real datasets.

https://doi.org/10.1371/journal.pone.0182507.g002

Fig 3. Simulation results for k = 2, dkj = 10%, transformation: rlog. Figure shows the performance results

of classifiers with changing parameters of sample size (n), number of genes (p) and type of dispersion (φ =

0.01: very slight, φ = 0.1: substantial, φ = 1: very high).

https://doi.org/10.1371/journal.pone.0182507.g003
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more samples and genes has a positive impact on the overall model accuracies. This relation-

ship between the number of genes and accuracy is mostly available when dkj = 10%. Likewise,

classification accuracies slightly increase in real datasets since increasing the number of genes

leads to an increase in the probability of a differentially expressed gene being included in the

classification model. However, this may not be true for all cases. Since, the classification accu-

racy may decrease from certain point as more genes were included in the model. Since,

increasing the number of genes will lead to an increase in the model complexity, we expect

that the classification error of test samples will be reduced. For the PLDA classifier, a high

number of selected genes provides alternative options for the lasso shrinkage method to test

more genes in classification models. The RF algorithm builds trees with the bagging approach.

As the number of genes increases, the RF algorithm uses more genes and may perform better

to specify the optimal tree. Increasing the sample size, on the other hand, improves the dis-

crimination power and classification accuracy. Conversely, overall accuracies decrease as the

number of classes increases. This is due to the fact that the probability of misclassifying an

observation may arise depending on the complexity of the model. As the number of classes

increases, the samples become less likely to be linearly (or non-linearly) separable.

Effect of dispersion on classification accuracies

The overall performance of each model increases as the data become less dispersed. Decreasing

the dispersion parameter makes a significant contribution to classification accuracy, as expected,

even for the same data and the same scenario. This is more obvious when k = 2 and dkj = 10%. As

the data become more spread out (i.e, increasing overdispersion), the variance increases; thus, we

need more samples to better learn from data and achieve the same discrimination power. When

we stabilize the sample size and increase the dispersion parameter, this leads to a decrease in the

discrimination power and classification accuracies. Nagalakshmi et al. [7] reported that using bio-

logical replicates instead of technical replicates leads to an increase in the dispersion of the data.

Based on this idea, increasing the biological variance of the observations results in an increase in

the dispersion, which decreases the discrimination power. In DE studies of RNA-Seq data, over-

dispersion is one of the major problems to be carefully handled. Many studies are available in the

literature which focus onthe overdispersion problem [9–10, 25, 45–46]. When we look at the clas-

sification accuracy results, overdispersion alsoseems to be a major challenge in classification stud-

ies. Unless we work with technical replicates, RNA-Seq data are overdispersed and the mapped

Fig 4. Simulation results for k = 3, dkj = 10%, transformation: rlog. Figure shows the performance results

of classifiers with changing parameters of sample size (n), number of genes (p) and type of dispersion (φ =

0.01: very slight, φ = 0.1: substantial, φ = 1: very high).

https://doi.org/10.1371/journal.pone.0182507.g004
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Fig 5. Results obtained from real datasets. Figure shows the performance results of classifiers for datasets

with changing number of most significant number of genes. Note that PLDA and NBLDA methods are not

performed on the transformed data. However, the results for both transformed and non-transformed data are

given in the same figure for the comparison purpose.

https://doi.org/10.1371/journal.pone.0182507.g005
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counts from different biological replicates on the same gene have variance exceeding the mean

[7]. This overdispersion can be seen in other studies [9, 46–49]. In conclusion, the results of our

study revealed that overdispersion has a significant and negative effect on classification accuracies

and should be taken into account before model building.

Microarray-based classifiers and transformation effect on classification

accuracies

Hundreds of microarray-based classifiers have been developed and are able to work in large p
and small n settings. However, technological improvements make RNA-Seqa state-of-the-art

approach for quantified transcriptomics. Currently, much of these microarray-based classifiers

cannot be directly applied to RNA-Seq data because of the discrete nature of RNA-Seq data.

Microarray data consist of the continuous log-intensities of probes while RNA-Seq data consist

of the discrete and overdispersed mapped read counts of sequencing technologies. The results

of this study revealed that, transforming the RNA-Seq data and bringing them hierarchically

closer tomicroarrays (e.g. through rlog and vst) might be a suitable approach to make the

microarray-based classifier applicable for RNA-Seq data.

Witten et al. [6] stated that the normalization strategy has little impact on classification per-

formance but may be important in differential expression analysis. However, data transforma-

tion has a direct effect on classification results since it changes the underlying distribution of the

data. In this study, we used deseq normalization with vst and rlog transformations and obtained

satisfactory classification performances. Love et al. [10] reported that vst transformation does

not consider the size factors during transformation. However, in both simulated and real data-

sets, there were no substantial differences between rlog and vst transformation approaches in

terms of classification accuracies. Both transformations can be applied to RNA-Seq data.

Power transformed PLDA and other count-based classifiers

Without transformation, the PLDA seemed to perform well in very slightly overdispersed

datasets. This can be seen in both simulated and real datasets. For instance, in the renal cell

carcinoma dataset, the dispersion parameter is very low and the data seem to follow Poisson

distribution. In this case, the overdispersion is negligible and no power transformation is

needed. Hence, PLDA1 and PLDA2 show similar performances (Fig 5). However, the perfor-

mance of this method decreases when the data become more overdispersed. The reason is that

the PLDA classifies the data assuming that the underlying distribution is Poisson even though

it should be negative binomial. Although the Poisson distribution assumption might be valid

after power transformation for moderately overdispersed data, it is invalid for highly overdis-

persed data. Therefore, based on the results for both simulated and real datasets, we suggest

that this transformation is very useful and should be applied for moderately overdispersed

data before building the model.When power transformation fails, one should use negative

binomial distribution rather than Poisson distribution. The NBLDA extends this classifier

using a negative binomial model. We expect that the NBLDA should give better predictive per-

formances compared to the PLDA. However, the classification accuracy of this method is not

as high that of the PLDA with power transformation. This might be for several reasons. First,

the NBLDA algorithm is not sparse. Hence, it uses more features than the PLDA; as a result of

overdispersion, even these genes are not differentially expressed among classes. Second, there

are several methods for estimating the overdispersion parameter. The selected method for

overdispersion estimation might be another reason for lower predictive accuracy. In conclu-

sion, novel or improved count-based classifiers are still needed for accurate and robust classifi-

cation of RNA-Seq data.

RNA-Seq classification
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In lung cancer dataset, the odd behavior of PLDA may appear based on its own built-in var-

iable selection algorithm. In this data set, when PLDA is able to select some of the features in

the classification task, it gives higher classification accuracy. However, if this algorithm was

not able to select any feature in the discrimination, it classifies all the observations into first

class. Hence the accuracy is the ratio of the samples in the corresponding class. However,

when PLDA is used with power transformation, the accuracy of the model significantly

increases and the variable selection algorithm works well in most of the model fitting process.

Overall performances of classifiers

In simulated datasets, the power transformed PLDA was found to be the best classifier. The RF

and NBLDA performed in a moderately similar manner. On the other hand, the SVM and

bagSVM had the highest classification accuracies in real datasets. The PLDA2, RF and NBLDA

give comparable and high classification accuracies, but they are lower than SVM and bagSVM.

These slight differences may arise from the differences between negative binomial distribution,

which is used in the simulation settings, and the exact distributions of real RNA-Seq data. In

real datasets, SVM and bagSVM classifiers display their classification abilities. Moreover, it can

be seen from the simulated and real datasets that the performance of the bagSVM classifier

increases as the sample size increases. A possible explanation for such an observation is that

the bagSVM uses the bootstrap technique and trains better models in datasets with a high

number of samples. We also observed that PLDA2 and NBLDA performed more accurate in

cervical and alzheimer datasets. Similar with the simulation results, we can say that these two

algorithms are more efficient in highly overdispersed datasets. The performances of CART

and PLDA1 were found to be lower than those of the other classifiers. This result is consistent

with the results of simulated data.

All assessments in this study are made based on the classification accuracies. Another

important measure may be the sparsity of classifiers. Since we included mostly the non-sparse

classifiers in this study, we will leave the effect of the dispersion parameter on sparsity as a

topic for further research.

Conclusions

A considerable amount of evidence collected from genome-wide gene-expression studies sug-

gests that the identification and comparison of differentially expressed genes have been a

promising approach for diagnosis and prognosis purposes. Although microarray-based gene-

expression studies have been widely used for discovering potential biomarkers related to dis-

ease status [50–53], it has limitations in terms of novel transcript discovery and abundance

estimation with a large dynamic range. Thus, one choice is to utilize the power of RNA-Seq

techniques in the analysis of the transcriptome for diagnostic classification to overcome the

limitations of microarray-based experiment. As mentioned in earlier sections, working with

less noisy data may improve the predictive performance of classifiers and novel transcripts

may be discovered as a new biomarker in the studied disease or phenotypes.

Hundreds of studies have been published on microarray-based classification. The goal of

these studies was to develop or adapt novel approaches to identify a small subset of genes and

predict the class labels of a new observation. This has particular importance in biomedical

studies for the molecular diagnosis of diseases. In this study, we demonstrated how researchers

can classify the RNA-Seq data which is the state-of-the-art technique for the quantification of

gene expression. We conducted a comprehensive simulation study and also used four real

experimental miRNA/mRNA datasets.
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Besides RNA-Seq’s advantages over microarrays, the gene-expression data from RNA-Seq

are overdispersed due to inherent variability. This overdispersion seemed to be a drawback for

differential expression studies of RNA-Seq data. In this study, we showed that this overdisper-

sion is also a drawback for classification studies since an increase in the variance will lead to a

decrease in the discrimination power. We reached the conclusion that three solutions are avail-

able to handle the classification of overdispersed RNA-Seq data: (i) increasing the sample size,

(ii) transforming the data to bring RNA-Seq data hierarchically closer to microarrays usingvar-

iance stabilizers, e.g. vst and rlog transformations and (iii) using count-based classifiers such

as the PLDA2 and NBLDA. Our simulation study revealed that both microarray-based classifi-

ers after rlog/vst transformations and count-based classifiers (that deal with overdispersion)

can be efficiently used for the classification of RNA-Seq data.

To make an overall assessment for the performances of classifiers, the PLDA after a power

transformation may be a good choice as a count-based classifier. Furthermore, its sparsity

seems to be an advantage for researchers. However, further studies are needed. Surprisingly,

the performance of the NBLDA was not satisfactory as a count-based classifier. Dong et al.

[13] reported that the NBLDA performs better than the PLDA in moderate and highly overdis-

persed data. However, these comparisons were made with the same number of genes. Our

analyses were performed based on the sparse PLDA classifiers where the best subset of genes is

used in classification. The sparse PLDA classifier after a power transformation performed

more accurately in all dispersion settings. We believe that extending the NBLDA algorithm

into a sparse classifier may improve its classification performance by selecting the most signifi-

cant genomic features.

Moreover, an alternative option may be to bring the data closer to microarrays and use

microarray-based classifiers. Our results revealed that the RF, SVM and bagSVM may give

accurate results after an rlog or vst transformation. Moreover, the efficiency of the bagSVM is

improved markedly with increasing sample size.

We conclude that data with less overdispersion, highly differentially expressed genes, a

lower number of groups and large sample size may improve the accuracy of the classifiers.

Finally, we developed an R/BIOCONDUCTOR package, called MLSeq, for the classification of

RNA-Seq data. This package can be accessed and downloaded through https://www.

bioconductor.org/packages/release/bioc/html/MLSeq.html.
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