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SPEG Interacts with Myotubularin, and Its
Deficiency Causes Centronuclear Myopathy
with Dilated Cardiomyopathy

Pankaj B. Agrawal,1,2,3,* Christopher R. Pierson,4 Mugdha Joshi,1,3 Xiaoli Liu,5 Gianina Ravenscroft,6

Behzad Moghadaszadeh,1,3 Tiffany Talabere,7 Marissa Viola,1 Lindsay C. Swanson,1,3 Göknur Halilo�glu,8

Beril Talim,9 Kyle S. Yau,6 Richard J.N. Allcock,10 Nigel G. Laing,6 Mark A. Perrella,5,11 and
Alan H. Beggs1,3,*

Centronuclear myopathies (CNMs) are characterized by muscle weakness and increased numbers of central nuclei within myofibers.

X-linked myotubular myopathy, the most common severe form of CNM, is caused by mutations in MTM1, encoding myotubularin

(MTM1), a lipid phosphatase. To increase our understanding of MTM1 function, we conducted a yeast two-hybrid screen to identify

MTM1-interacting proteins. Striated muscle preferentially expressed protein kinase (SPEG), the product of SPEG complex locus

(SPEG), was identified as an MTM1-interacting protein, confirmed by immunoprecipitation and immunofluorescence studies. SPEG

knockout has been previously associated with severe dilated cardiomyopathy in a mouse model. Using whole-exome sequencing, we

identified three unrelated CNM-affected probands, including two with documented dilated cardiomyopathy, carrying homozygous

or compound-heterozygous SPEG mutations. SPEG was markedly reduced or absent in two individuals whose muscle was available

for immunofluorescence and immunoblot studies. Examination of muscle samples from Speg-knockout mice revealed an increased

frequency of central nuclei, as seen in human subjects. SPEG localizes in a double line, flanking desmin over the Z lines, and is apparently

in alignment with the terminal cisternae of the sarcoplasmic reticulum. Examination of human and murine MTM1-deficient muscles

revealed similar abnormalities in staining patterns for both desmin and SPEG. Our results suggest that mutations in SPEG, encoding

SPEG, cause a CNM phenotype as a result of its interaction with MTM1. SPEG is present in cardiac muscle, where it plays a critical

role; therefore, individuals with SPEG mutations additionally present with dilated cardiomyopathy.
Congenital myopathies manifest early in life with varying

degrees of skeletal-muscle dysfunction and hypotonia and

are subclassified on the basis of histopathological find-

ings.1 Centronuclear myopathies (CNMs) are a common

subtype characterized by a large number of myofibers

with central nuclei in the absence of other diagnostic fea-

tures.1–3 Mutations in MTM1 (MIM 300415; encoding

myotubularin [MTM1]), DNM2 (MIM 602378; encoding

dynamin 2), BIN1 (MIM 601248; encoding bridging

integrator 1), RYR1 (MIM 180901; encoding ryanodine re-

ceptor 1), and TTN (MIM 188840; encoding titin) are

associated with 60%–80% of CNM cases; the rest have an

unknown genetic basis.4–8 Alterations in proteins encoded

by these genes, except for TTN, are postulated to affect the

assembly or function of triads, the specialized membrane

structures responsible for excitation-contraction (E-C)

coupling.6,8–12 X-linked centronuclear myopathy (MIM

310400), a severe and the most common type of CNM, is

characterized by congenital onset in boys and is associated

with MTM1 mutations. MTM1 encodes MTM1, a lipid
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phosphatase predominantly located at the junctional

sarcoplasmic reticulum (SR) of the muscle triads. This pro-

tein has a critical function in SR remodeling and promo-

tion of SR membrane curvature and is hence essential for

calcium homeostasis and E-C coupling.9,11,13

To better understand the molecular mechanisms of

MTM1 function, we used a yeast two-hybrid (Y2H) screen,

performed by Hybrigenics Services (Paris), to identify

MTM1-interacting proteins in a human adult and fetal

skeletal muscle library. Using full-length MTM1 as the

bait, we detected striated muscle preferentially expressed

protein kinase (SPEG) as an MTM1-interacting partner by

isolating six different overlapping clones encoding por-

tions of SPEG (Figure 1A). Aligning the sequences revealed

that MTM1 interacts with a region encompassing SPEG

amino acids 2,530–2,674, which includes one entire Ig-

like domain and ends just proximal to the second fibro-

nectin type III domain. To identify MTM1 regions that

interact with SPEG, we tested a peptide encompassing res-

idues 2,530–2,674 of human SPEG for interaction with
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Figure 1. SPEG Interacts with MTM1
(A) Schematic of the six different SPEG
Y2H prey clones that interacted with full-
length MTM1 bait; they are lined up under
the four alternative SPEG transcripts (indi-
cated on the left). The broken line indicates
that the 50 end of clone 1 was unknown.
(B) A schematic of MTM1 illustrates the
location of three major domains—PH-
GRAM (amino acids 34–149), phosphatase
(amino acids 162–486), and coiled coil
(amino acids 553–585)—above the map
of fragments used for deletion mapping
of the region responsible for interactions
with SPEG. Deletion analysis of MTM1
showed that the phosphatase and coiled-
coil domains together were necessary to
mediate the interaction with SPEG.
(C) SPEG and MTM1 coimmunoprecipi-
tated from C2C12 myotube lysates with
theuseof rabbitanti-SPEGgeneratedagainst
a FLAG-tagged APEG-1 fusion protein14 and
anti-MTM1 antibodies (r1947).15 Abbrevia-
tions are as follows: ly, total cell lysates; �,
no precipitating antibody; and þ, immu-
noprecipitated with ‘‘pull-down’’ antisera
(indicated at the top) prior to gel electropho-
resis and immunoblotting with indicated
antisera.
(D–F) Indirect immunofluorescenceanalysis
of SPEG (red, D), MTM1 (green, E), and a
merged image, including blue DAPI-stained
nuclei (F), with the use of rabbit anti-SPEG14

and mouse anti-MTM1 (1:80, HPA010008,
Sigma-Aldrich) antibodies revealed their
colocalization in human skeletal muscle.
The scale bar represents 50 mm.
various MTM1 fragments by using an interaction-domain-

mapping assay. Both full-length MTM1 and a fragment

containing residues 155–603, including the phosphatase

and coiled-coil domains, were confirmed to interact with

SPEG (Figure 1B). Interestingly, subfragments including

either the phosphatase or the coiled-coil domains alone

did not interact with SPEG, suggesting that the critical

binding region either overlaps the junction or might

include cooperative binding sites in both regions of

MTM1. In support of the Y2H data, full-length SPEG and

MTM1 coimmunoprecipitated with each other from differ-

entiated C2C12 myotube lysates with the use of either

anti-SPEG or anti-MTM1 antibodies (Figure 1C). In addi-

tion, double-label immunofluorescence experiments using

anti-SPEG and anti-MTM1 antibodies revealed apparent

colocalization of SPEG and MTM1 (Figures 1D–1F).16
The American Journal of Human G
Together, these data show that SPEG

most likely interacts with MTM1, sug-

gesting that it might play a critical

role in E-C coupling,9,11 cytoskeletal

organization,16 or other functional

roles17 of MTM1. Given these poten-

tial functional relationships, we hy-

pothesized that SPEG complex locus
(SPEG) is a candidate disease-associated gene for CNM sub-

jects without a known genetic basis.

In a parallel project, to identify additional genes

involved in CNM, we performed whole-exome sequencing

on DNAs from a cohort of 29 unrelated CNM individuals

without known gene mutations. These individuals were

enrolled under appropriate procedures followed in

accordance with the ethical standards of the responsible

committees on human experimentation (institutional

and national) and provided proper informed consent.8

DNA samples were enriched with exomic sequences with

the Illumina Exome Enrichment protocol, and captured

libraries were sequenced with the Illumina HiSeq 2000

platform. The reads were mapped to the human reference

genome (UCSC Genome Browser, hg19 assembly) with the

Burrows-Wheeler Aligner (version 0.5.8). SNPs and small
enetics 95, 218–226, August 7, 2014 219



Figure 2. Genetic and Molecular Find-
ings in Three Families Affected by SPEG
Mutations
(A) Pedigree of the three families carrying
SPEG mutations. Family 1 was consan-
guineous, whereas families 2 and 3 were
not. The probands were II:4 (P1) for family
1, II:1 (P2) for family 2, and II:4 (P3) for
family 3.
(B) Distribution of alterations across the
schematic of SPEG. Domains are also in-
dicated.
(C–E) Indirect immunofluorescence
analysis using rabbit anti-SPEG antibody
(NBP1-90134, Novus Biologicals) in mus-
cle-biopsy specimens from a representative
age-matched human control individual
(C) and probands P2 (II:4 from family 2,
D) and P3 (II:4 from family 3, E) showed
a loss of the striated pattern and a marked
and reproducible reduction of overall
SPEG staining in muscle from both sub-
jects.
(F) Immunoblot analysis using rabbit anti-
SPEG in muscle-biopsy specimens from
two unaffected control individuals and
subjects 2 and 3.14 Restaining the filter
with anti-desmin antibodies (1466-1, Epi-
tomics) confirmed adequate loading of
lanes and demonstrated robust levels of
desmin in these muscles.
indels were called with SAMtools (version 0.1.7) or

ANNOVAR. The annotated variants were filtered against

variants reported in 1000 Genomes and the NHLBI Exome

Sequencing Project (ESP) Exome Variant Server.

Remarkably, two CNM individuals carried potentially

pathogenic recessive variants in SPEG, located in chromo-

somal region 2q35 in humans and an excellent candidate

CNM-associated gene given our interaction studies with

MTM1. We reached out to our collaborators around the

world to find additional subjects carrying SPEGmutations.

The Australian group, led by Drs. Ravenscroft and Laing,

used whole-exome sequencing to identify a third subject

(enrolled after informed consent was approved by their

human experimentation institutional review board) car-

rying recessive SPEG mutations. All these variants were
220 The American Journal of Human Genetics 95, 218–226, August 7, 2014
confirmed via Sanger sequencing.

None of the SPEGmutations were pre-

sent in the NHLBI ESP Exome Variant

Server or 1000 Genomes.

One of the three affected families

was consanguineous; pedigrees are

shown in Figure 2A, and clinical

and molecular findings are summa-

rized in Table 1. A newborn (II:4 or

P1) from family 1 (Figure 2A) was

born at term gestation to consan-

guineous parents in Turkey and died

at 3 weeks of age of apparently severe

muscle weakness. She had insuffi-
cient respiratory efforts, needed tube feeding, and was

severely hypotonic with bilateral hip contractures. Other

relevant clinical findings included a narrow and high-

arched palate, microstomia, and retromicrognathia. She

did not undergo a cardiac evaluation. Her serum creatine

kinase level was 280 IU/l (normal range is 0–300 IU/l).

Family history was significant for the prior death of two

female siblings, each at 2 days of age, but one male sibling

is alive and well. In exon 30 of SPEG, she carried a homo-

zygous nonsense variant (c.6697C>T [p.Gln2233*]; Re-

fSeq accession number NM_005876.4, hg19) predicted

to truncate SPEG. The father and the only surviving sib-

ling were heterozygous for the change, whereas the

mother and a first cousin of the father declined to enroll

in the study.



Table 1. Molecular and Clinicopathological Findings in Individuals Carrying SPEG Mutations

Subject

P1 P2 P3

Sex female female male

Current age died at 3 weeks of life 6 years 1.5 years

SPEG exons exon 30 exons 18 and 13 exons 10 and 35

Allele 1 (maternal) c.6697C>T (p.Gln2233*) c.4276C>T (p.Arg1426*) c.2915_2916delCCinsA (p.Ala972Aspfs*79)

Allele 2 (paternal) c.6697C>T (p.Gln2233*) c.3709_3715þ29del36 (p.Thr1237Serfs*46) c.8270G>T (p.Gly2757Val)

Clinical
information

full-term, breech delivery;
consanguineous parents; died of
severe muscle weakness; family
history of two female siblings
who died at 2 days old

severe hypotonia since birth; needed
tracheostomy; 24 hr mechanical ventilation;
gastrostomy; dilated cardiomyopathy;
congestive cardiac failure in neonatal age
was treated with digoxin and captopril

hypotonia since birth; dilated
cardiomyopathy and nephrolithiasis;
orogastric feeds; no assisted ventilation

Biopsy findings marked increase in myofibers
with central nuclei; few
necklace fibers

hypotrophic myofibers; marked increase in
central nuclei

myopathic changes; variation in fiber size
that was more prominent in some fascicles;
increased central nuclei in hypotrophic
fibers; predominant type 1 fibers
Individual II:1 (P2) from family 2 (Figure 2A) was

compound heterozygous for two SPEG variants, a frame-

shift (c.3709_3715þ29del36 [p.Thr1237Serfs*46]) and a

nonsense change (c.4276C>T [p.Arg1426*]); both parents

carried one variant each. A tracheostomy was performed

when she was 1 year old, and a gastrostomy tube was

placed early in life. Now alive at 6 years of age, she

continues to need ventilatory and feeding support via tra-

cheostomy and gastrostomy tubes. She has proximal mus-

cle weakness, ophthalmoplegia, and facial weakness. Her

motor milestones are grossly delayed, given that she sat

unsupported at 2.5 years of age and is currently unable

to walk unsupported. She wears bilateral ankle foot or-

thotics. Other findings include bifid uvula, a high-arched

palate, and retrognathia. Her serum creatine kinase level

was 22 IU/l. An initial echocardiogram at 6 days of age

was normal, but a subsequent study at 2 months of age

demonstrated a dilated left ventricle with moderate to se-

vere depression of systolic function, diastolic dysfunction

of both left and right ventricles, and mild mitral and

tricuspid valve insufficiency. In the neonatal period, she

was started on digoxin, furosemide, carvedilol, and capto-

pril to support her cardiac function, and over the next few

months, she required increased dosages of several of these

drugs and close monitoring by the cardiology team with

serial echocardiograms. Remarkably, her echo findings

improved over time and by 1 year of age revealed normal

ventricular function. Her cardiac medications were discon-

tinued at 2.5 years of age.

Individual II:4 (P3) from family 3 (Figure 2A) is a

19-month-old Turkish boy with no known consanguinity

and was born at 36 weeks of gestation by cesarean section

for fetal bradycardia. He stayed in the neonatal intensive-

care unit for 2 weeks for cyanosis and respiratory difficulty

but was not placed on assisted ventilation. He was noted

to be very hypotonic, and echocardiography at 1 month of

age showed dilated cardiomyopathy. Family history was sig-
The Amer
nificant for the previous demise of a 40-day-old sibling who

had respiratory insufficiency (no cardiac evaluationwas per-

formed) anda very similar presentation according to the par-

ents. He has delayed motor milestones: head control was

achieved at 16months, andunsupported sittingwas reached

at 18 months of age. He has antigravity movements of both

the upper and lower extremities. He breathes independently

but continues to require nasogastric feeds. He has a history

of frequent pulmonary and urinary-tract infections. He has

mild facial weakness, a high-arched palate, axial hypotonia,

and absent deep tendon reflexes. His serum creatine kinase

level was within normal limits at 106 IU/l. He is currently

being treated with captopril, digoxin, furosemide, and

carnitine for decreased left ventricular function, dilated car-

diomyopathy, andmitral insufficiency.He is compoundhet-

erozygous for a frameshift variant (c.2915_2916delCCinsA

[p.Ala972Aspfs*79]) and a missense mutation (c.8270G>T

[p.Gly2757Val]) in SPEG, and each segregated appropriately

from the parents. The missense mutation was predicted

to be pathogenic by several software programs, including

SIFT (deleterious, 0.002), PROVEAN (deleterious, �6.23),

PolyPhen-2 (probably damaging, 1.00), and MutationTaster

(disease causing, 1.0).

Histopathologically, all three probands were diagnosed

with CNM prior to enrollment in this study. Their muscle

biopsies revealed numerous small myofibers with central

nuclei (Figures 3A, 3C, and 3D). In P1 (II:4 from family 1

in Figure 2A), subsarcolemmal ringed and central dense

areas, so-called ‘‘necklace fibers,’’ were identified on oxida-

tive staining (NADH tetrazolium reductase) (Figure 3B).

To evaluate whether the SPEGmutations were associated

with altered SPEG abundance and/or localization, we per-

formed immunofluorescence analyses on skeletal-muscle

specimens available from P2 (II:4 from family 2 in Figure 2)

and P3 (II:4 from family 3 in Figure 2A) and an age-

matched control individual by using anti-SPEG antibody.

As predicted from the nature of the mutations, compared
ican Journal of Human Genetics 95, 218–226, August 7, 2014 221



Figure 3. Histopathological Findings in Human Subjects and a
Mouse Model of SPEG Deficiency
(A–D) Light microscopic findings in muscle-biopsy specimens
from human probands P1 (A and B), P2 (II:4 from family 2 in
Figure 2, C), and P3 (II:4 from family 3 in Figure 2, D) included
increased central nuclei on hematoxylin and eosin (H&E) staining
(arrows in A, C, and D) and subsarcolemmal ringed and central
dense areas, also called necklace fibers (arrows and inset, with
NADH tetrazolium reductase staining, in B).
(E and F) Histopathological and ultrastructural findings in skeletal
muscles from SPEG-deficient and wild-type (WT) littermate mice.
H&E staining of paraspinal muscles revealed higher numbers of
central nuclei (arrows) in 1-day-old SPEG-deficient mice (F) than
in WT controls (E).
(G and H) Transmission electron microscopic findings in skeletal-
muscle (quadriceps) specimens obtained from Speg-KO (H) and
WT littermate (G) mice. Several centrally placed nuclei were pre-
sent in the specimen from a Speg-KO mouse (arrows, H), and in
comparison, peripherally located nuclei were seen in the control
mouse (arrows, G). Scale bars represent 4 mm.
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to muscle from the unaffected control individual

(Figure 2C), muscle fibers from both P2 (II:1 from family

2 in Figure 2A) and P3 (II:4 from family 3 in Figure 2A)

showed reduced or absent SPEG staining (Figures 2D and

2E). To further confirm this finding, we performed immu-

noblotting experiments by using anti-SPEG antibody and

anti-desmin as a control. Compared to muscle from the

age-matched control individual (Figure 2F), muscle from

individuals P2 (II:1 from family 2 in Figure 2) and P3 (II:4

from family 3 in Figure 2) showed a marked reduction or

absence of both major isoforms, SPEGa and SPEGb.

The murine SPEG has four isoforms (SPEGa, SPEGb,

aortic peg [APEG], and brain peg [BPEG]) derived from

two transcription start sites and alternative splicing.14

SPEGa and SPEGb are both found in striated muscles,

APEG is predominantly present in vascular tissues, and

BPEG is found in the brain and aorta.18 The two largest iso-

forms, SPEGa and SPEGb, share homology with myosin

light-chain kinase (MLCK) family members, which include

titin, twitchin, obscurin, kalirin, trio, and death-associated

protein kinases. SPEG has unique homology with obscurin

given that both contain two tandemly arranged serine/

threonine kinase (MLCK) domains.18,19 They also contain

immunoglobulin and fibronectin domains that are

characteristic of theMLCK family. SPEGa is predominantly

present during skeletal-muscle differentiation, whereas

both SPEGa and SPEGb are present in neonatal cardiomyo-

cytes during maturation and differentiation.14 All the mu-

tations identified in our three CNM kindreds are predicted

to disrupt both SPEGa and SPEGb but are distal to the 30 ter-
minus of both APEG1 and BPEG (Figure 2B).

Deletion of Speg common exons 8–10 in mice (i.e., Speg

knockout [KO]) led to dilation of both atria and ventricles

by embryonic day 18.5, and cardiac myofibril degeneration

and marked reduction of cardiac function led to death by

postnatal day 2.18 At least two of our three affected individ-

uals exhibited significant cardiac dysfunction. Although a

respiratory cause for this cannot be ruled out, the early onset

in P2 (II:1 from family 2 in Figure 2) and P3 (II:4 from family

3 in Figure 2) and the improving cardiac function in P2 (II:1

from family 2 in Figure 2) in the context of continued respi-

ratory compromise, in addition to our knowledge of the se-

vere mouse cardiac phenotype and SPEG expression in the

heart, but not the lungs, suggest that these individuals suf-

fered from a primary cardiomyopathy.

Because of the early lethality, the previousmurine studies

focused on cardiac manifestations of the newborn Speg-KO

mice. Given the significant degree of skeletal-muscle weak-

ness in our affected individuals, we have now more care-

fully evaluated the effects of SPEG deficiency on skeletal

muscles in these animals. Hematoxylin and eosin staining

of multiple muscle groups revealed a significantly higher

mean number of myofibers with central nuclei in six Speg-

KO mice (8.5 5 1.3%, range 5.32%–12.6%, Figure 3F)

than in three wild-type (WT) littermate controls (2.2 5

0.8%, range 0.95%–3.09%, Figure 3E) (p ¼ 0.015). Electron

microscopy revealed similar findings—a higher number of
, 2014



Figure 4. SPEG Localization in Normal
Skeletal Muscle
(A) Ultrathin sections from frozen WT
mouse quadriceps muscle were coimmu-
nostained with mouse monoclonal anti-
a-actinin-2 (clone EA-53, Sigma), mouse
monoclonal anti-myosin heavy chain fast
(clone MY-32, Sigma), mouse monoclonal
anti-dihydropyridine receptor (DHPR,
clone D218, Sigma), mouse monoclonal
anti-sarcoplasmic reticulum Ca2þATPase
(SERCA, clone IIH11, Sigma), and rabbit
anti-SPEG14 (indicated). As seen in the
merged images, SPEG staining partially
overlapped with a-actinin depending on
the plane of section and did not colocalize
with myosin but did colocalize with both
DHPR and SERCA.
(B) Longitudinal sections from frozen
human quadriceps muscles were coimmu-
nostained with monoclonal mouse anti-
human desmin (clone D33, Dako), mouse
monoclonal anti-rabbit triadin (clone GE
4.90, Abcam), and rabbit anti-SPEG14

(indicated). SPEG appeared as a doublet
over the myofibrils and flanking desmin,
which is found between Z lines. SPEG
largely colocalized with triadin, which is
found at the junctional SR. Scale bars
represent 7 mm.
central nuclei lined up within myofibers of Speg-KO mice

(Figure 3H) than in those of WT littermate controls

(Figure 3G). Overall, the mouse model of SPEG deficiency

resembles human SPEG-mutation-positive subjects who

present with increased central nuclei within the skeletal

myofibers and both skeletal and dilated cardiac

myopathies.

Our observation that SPEG and MTM1 colocalize on

longitudinal sections of myofibers (Figures 1D–1F) is

consistent with previously published data that murine

SPEG appears to localize over Z lines with desmin, another

MTM1-interacting protein.14,16 BecauseMTM1 is known to

be a component of the junctional SR at the triads, immedi-
The American Journal of Human G
ately flanking the Z lines, where it

plays a role in E-C coupling through

promotion of proper SR and T-tubule

morphology,9,11,15we performed dou-

ble-label immunolocalization experi-

ments for SPEG inmurine and human

skeletal muscle by using additional

antibodies against proteins represen-

tative of various parts of the myofib-

ers. Ultrathin transverse sections of

quadriceps muscles exhibited SPEG

immunofluorescence in a reticular

staining pattern around the periphery

of the myofibrils; this immunofluo-

rescence colocalized with dihydropyr-

idine receptors and the SR Ca2þ

ATPase (SERCA) (Figure 4A), both of
which are present in the SR. Examination in glancing sec-

tions showed that it did not colocalize with myosin and

only partially overlapped with the Z line protein a-acti-

nin-2 (Figure 4A), consistent with localization around,

but not within, themyofibrils. Upon examination of longi-

tudinal sections, SPEG staining appeared as a double band

flanking desmin,which appeared as a series of dots between

the Z lines, and significantly overlapping staining for tria-

din, a protein found in the terminal cisternae of the SR

(Figure 4B).

A major role of MTM1 is most likely related to the regula-

tion of phosphatidylinositol 3-monophosphate levels and

control of membrane curvature of the SR.11 However,
enetics 95, 218–226, August 7, 2014 223



Figure 5. Analysis of SPEG and Desmin Distribution in MTM1-Deficient Skeletal Muscles
Representative indirect immunofluorescence images for SPEG (rabbit anti-SPEG,14 green) and desmin (clone D33, red) in skeletal-muscle
specimens from an unaffected control individual (top row), a boy with X-linked myotubular myopathy due to an MTM1 mutation
(second row), a WTmouse (third row), and anMtm1-KO mouse (bottom row). Merged images, including nuclei stained blue, are shown
on the right. Note the abnormal clumping and accumulations of colocalized SPEG and desmin in theMTM1-deficientmuscles. The scale
bar represents 100 mm.
MTM1 also has significant non-phosphatase-dependent ac-

tivities, including desmin binding,16 given that the phos-

phatase-dead MTM1 p.Cys375Ser mutant in Mtm1-null

mice improves muscle function and restores localization

of nuclei, triad alignment, and organization of the desmin

intermediate filament network.20 MTM1 deficiency leads

to disruption of the MTM1-desmin complex, causing

abnormal organization of desmin-containing intermediate

filaments.WeexaminedSPEG localizationandorganization

in MTM1-deficient muscles from human subjects with my-

otubularmyopathyandmicewithanMtm1-KOmutation.21

Remarkably, both SPEG and desmin exhibited identical-ap-

pearing abnormalities in the MTM1-deficient muscles, sug-

gesting that MTM1 exerts similar activities on both of these
224 The American Journal of Human Genetics 95, 218–226, August 7
proteins (Figure 5). It is interesting to note that the human

desmin- and SPEG-encoding genes are tandemly arrayed

within 8.3 kb of each other under the control of a common

locus control region,22 suggesting evolutionary pressure to

coordinately regulate these two proteins. Further, obscurin,

the only other MLCK protein with two tandem MLCK

domains, is thought to link the SR to sarcomeres, and ob-

scurin-deficient mice display increased centralized nuclei

in skeletal muscles as a sign of myopathy.23 Together with

our present observations of a SPEG-MTM1 interaction in

the region of the junctional SR, the known roles of desmin

andobscurin in linking or aligning the triads and SR, respec-

tively, to the sarcomere suggest a central role for this com-

plex in SR organization, as well as nuclear and organelle
, 2014



positioning in skeletal muscle. In summary, SPEG is a stri-

ated muscle protein that interacts with MTM1 and is local-

ized to the SR region in myofibers, and SPEG dysfunction

is associated with CNM and cardiomyopathy in at least

two of three affected individuals with SPEGmutations.
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