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Large DNA rearrangements account for about 8% of disease

mutations and are more common in duplicated genomic

regions, where they are difficult to detect. Autosomal

dominant polycystic kidney disease (ADPKD) is caused by

mutations in either PKD1 or PKD2. PKD1 is located in an

intrachromosomally duplicated region. A tuberous sclerosis

gene, TSC2, lies immediately adjacent to PKD1 and large

deletions can result in the PKD1/TSC2 contiguous gene

deletion syndrome. To rapidly identify large rearrangements,

a multiplex ligation-dependent probe amplification assay

was developed employing base-pair differences between

PKD1 and the six pseudogenes to generate PKD1-specific

probes. All changes in a set of 25 previously defined

deletions in PKD1, PKD2 and PKD1/TSC2 were detected by

this assay and we also found 14 new mutations at these loci.

About 4% of the ADPKD patients in the CRISP study were

found to have gross rearrangements, and these accounted

for about a third of base-pair mutation negative families.

Sensitivity of the assay showed that about 40% of PKD1/TSC

contiguous gene deletion syndrome families contained

mosaic cases. Characterization of a family found to be mosaic

for a PKD1 deletion is discussed here to illustrate family risk

and donor selection considerations. Our assay improves

detection levels and the reliability of molecular testing of

patients with ADPKD.

Kidney International advance online publication, 24 September 2008;

doi:10.1038/ki.2008.485
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Autosomal dominant polycystic kidney disease (ADPKD) is a
common cause of end-stage renal disease (ESRD) due to
progressive cyst development and enlargement.1 ADPKD is
genetically heterogeneous with PKD1 (46 exons; 16p13.3)
accounting for B85% of cases and PKD2 (15 exons; 4q21)
B15%.2–5 Immediately adjacent to PKD1 lies TSC2, the most
common gene for tuberous sclerosis (TSC), a dominantly
inherited disorder characterized by the development of
benign hamartomas in multiple organs and often resulting
in mental retardation/behavioral problems.6 The majority of
PKD1 (B40 kb, encoding exons 1–33) lies in a genomic
region that is intrachromosomally, segmentally duplicated
with six variously rearranged PKD1-like pseudogenes
(PKD1P1-P6) located in 16p13.1.2,7 As PKD1P1-P6 have
99% sequence similarity to PKD1, protocols utilizing the rare
mismatches with PKD1 have been required to specifically
amplify PKD1 for mutation analysis.8

Base-pair screening strategies have identified mutations in
B87% of ADPKD patients, including the well-characterized
Consortium for Radiological Imaging Studies of PKD
(CRISP) population.5 The majority of mutations are
predicted to truncate the protein, but a quarter are missense.
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& 2008 International Society of Nephrology

Received 1 May 2008; revised 30 June 2008; accepted 8 July 2008

Correspondence: Peter C. Harris, Division of Nephrology and Hypertension,

Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA.

E-mail: harris.peter@mayo.edu

Kidney International 1



Analysis by field inversion gel electrophoresis revealed that
2–3% of PKD1 mutations are large deletions that remove one
to multiple exons,2,5,9 a lower level than the 8% estimated for
mutations genome wide.10 One PKD2 deletion and several
cases with additional phenotypes removing larger regions
have been described.11,12 Large PKD1 deletions that also
disrupt the adjacent TSC2 gene result in a contiguous gene
syndrome (CGS) with a distinctive phenotype of early onset
PKD plus various manifestations of TSC.13–20 Approximately
50 PKD1/TSC2 deletion patients have been described with an
average age of 20 years at ESRD.18 However, some PKD1/
TSC2-CGS patients have milder renal disease and one factor
associated with a variable phenotype is mosaicism (only
some cells harbor the deletion as the mutation occurred early
in development), noted in 10 cases.15,18

The difficulty of screening for large rearrangements by gel
and fluorescence in situ hybridization methods may under-
estimate the level of ADPKD deletion mutations. Multiplex
ligation-dependent probe amplification (MLPA) is a recently
developed, highly quantitative method that allows detection of
deletions or duplications of exons and has been used to detect
large rearrangements in a range of human diseases, including
TSC.15,21,22 MLPA utilizes two tagged primers that lie
immediately adjacent in the genome that can only serve as a
PCR template once they are ligated. This method has the
advantage of speed and high-throughput compared to conven-
tional deletion/duplication detection methods. We describe here
an assay utilizing FlexMAP beads and the Luminex instrument
to screen the ADPKD genes and PKD1/TSC2-CGS cases and
characterize the large rearrangements detected.

RESULTS
Assay design

MLPA probes were designed to assay for gross deletions/
duplications to PKD1, PKD2, and PKD1/TSC2, including
flanking regions. Nine probes were located in the single copy
exons of PKD1 (exons 34–46); one in each of the PKD2 exons,
plus two flanking probes (total region B120 kb); six in TSC2;
and ten in genes flanking PKD1/TSC2, six up to 150 kb
centromeric to PKD1, and four up to 80 kb telomeric to
TSC2 (total region 320 kb; see Figure 1 and Supplementary
Table S1 for details). In the duplicated region of PKD1 (exons
1–33), 12 exonic probes plus one to IVS2 were designed. To
obtain locus specificity, the 30 end of the short MLPA probe
was positioned at a mismatch with all the PKD1P1-P6
pseudogenes (see Supplementary Table S1). Two probes
within the single copy area 1–1.5 kb 50 to PKD1 exon 1 were
also developed. In all assays, four probes to autosomal genes
elsewhere in the genome and an X-chromosomal marker,
DMD, were employed as controls; males showed an B50%
decrease in signal associated with the presence of just one X
chromosome (Figure 2).

Characterization of known deletions

To test the specificity of the probes, especially those in the
duplicated part of PKD1, DNA from a total of 18 PKD1/

TSC2-CGS families18 were analyzed by MLPA (See Table 1
and Figure 1 for details). Cases 8, 11, 12, 14, and 16 are
illustrated (Figure 2) and, as expected, all (except 16) showed
deletion of both PKD1 and TSC2 with one (12) also deleted
for SLC9A3R2, 50 to TSC2. Several others (8, 11, and 14)
removed one or more genes 50 to PKD1. Previous analysis of
case 16 showed that it removed just 84 bp at the 30 end of the
TSC2-coding region, but did not delete the exon 41 MLPA
probe.18 All 18 cases showed complete correspondence
between the MLPA-defined-deleted region and the previous
gel and fluorescence in situ hybridization-based analysis
(except in sample 20; see below).

To further test the assay, six ADPKD cases with known
intragenic PKD1 deletions were analyzed. All deletions were
confirmed with at least one MLPA probe showing the
expected reduction in signal in the appropriate area (Figures
3 and 4 and Table 1). For PKD2, DNA from a patient with a
large deletion of 4q21.1-21.3, including PKD2,12 showed
the expected signal reduction for all probes (Figure 5).

Previous studies showed that a significant proportion of
PKD1/TSC2-CGS cases were somatic mosaics;18 a particular
challenge to detection by MLPA. Previously defined mosaic
cases (19, 20, and 22) showed a reduction of copy number in
the deleted area significantly less than the 50% associated with
deletion in every cell (see Figure 6, ‘Materials and Methods’,
and Table 1 for details). Interestingly, the deletion in case 20
was found to extend further centromeric than previously
defined (Figures 1 and 6),18 whereas two other previously
described non-mosaic deletions (4 and 6) were found to be
mosaics (Table 1). Two previously defined familial cases where
a mosaic parent transmitted the deletion to their offspring were
also analyzed. In family 7, the mosaic deletion in the mother
(M7) was detected, but the low level of deleted cells in F13 was
not clearly visible from the MLPA analysis.

A family with a PKD1 mosaic mutation

Further analysis of the previously characterized 9.2 kb
deletion in family 3011575 confirmed the deletion in a
sibling (R1502; Figure 3b), but surprisingly, the deletion was
not detected in the father (F301157) by MLPA despite him
having clear ADPKD with ESRD at 55 years. Amplification
across the breakpoint identified a 1.7 kb deletion-specific
fragment in the proband and at a much lower level in the
father (Table 1). Southern analysis with a 30 PKD1 probe
showed the breakpoint product present at a low level in the
father. These results indicate that F301157 is a somatic
mosaic with B15% of cells harboring the deletion in
leukocyte DNA. This is consistent with F301157 having a
de novo change, with no known PKD in his parents or his
seven siblings.

Novel ADPKD mutations

To determine the frequency of large DNA rearrangements in
typical ADPKD, the CRISP cohort was analyzed. After
sequence analysis, no mutations were defined in 26 families,
whereas a further 53 had nondefinite mutations (mainly
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missense).5 All 79 cases were screened by MPLA and 4 new
cases from the mutation negative group revealed large
rearrangements (four large deletions had also previously
been defined; Table 1 and Figures 3 and 45). A 21 kb deletion
detected in 493328 was fully characterized by amplification
across the breakpoint and sequencing (Table 1 and Figures 3a
and 4). A deletion of 48–87 kb in 407132 removed exons 1–21
of PKD1, plus the flanking gene, RAB26. In family 100009,
two probes immediately 50 to exon 1 were deleted in three
affected family members (Figure 7a). To confirm that the
mutation disrupted the gene, field inversion gel electro-
phoresis showed a B2.5 kb deletion of an exon 1 containing
genomic fragment (Figure 7a) that was not detected with an
exon 1 probe (SM3). Case 259940 showed increased signal
with the exon 18 MLPA probe and long range (LR)-PCR

revealed a slightly larger product characterized as a 246 bp
duplication of IVS17 and including 119 bp of exon 18 (Table 1
and Figure 7b). The total frequency of large rearrangements in
the CRISP population was therefore 8 of 202 (4%).

Screening further base-pair mutation-negative ADPKD
samples revealed three additional deletions. In M143, a
1.5–7 kb deletion was found in two affected sisters (Figure
7c). In M29, a deletion removing PKD1 exons 1–15 and
extending 50 of the gene to include at least E4F1 (a region of
120–175 kb) was defined. The deletion was confirmed in three
affected family members by MLPA (Figure 7d) and other
methods (see Table 1 and Figures 1 and 4 for details).

Screening of PKD2 revealed an intragenic deletion of exon
5 in family M363 that was confirmed by LR-PCR (Table 1,
Figure 5).
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Figure 1 | Diagram showing the defined regions deleted in patients with the PKD1/TSC2-CGS. Upper part of the map shows:
hybridization probes (open boxes); the SM6 microsatellite; relevant restriction sites for EcoRI (E), BamHI (B) and NruI (N); and centromeric
(cen) and telomeric (tel) directions. Lower map shows the positions of PKD1, TSC2, and flanking genes in 16p13.3; transcribed telomeric
above the line, and centromeric below; plus positions of MLPA probes (red arrowheads; tagged genes are in red). The intron/exon structures
of PKD1 and TSC2 are shown at the bottom with positions of MLPA probes and the duplicated region of PKD1 indicated with a light blue
bar. The deleted region detected by MLPA for each subject is shown in red (or green for the newly described cases) and in black for previous
gel-based analyses (Table 1). The family identifier and the best estimate of the size of the deleted region is indicated. Mosaic cases are
italicized. The large deletion in M29 that just has an ADPKD phenotype is shown at the top (blue for the MLPA analysis).
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Novel PKD1/TSC2 contiguous gene deletions

MLPA analysis of patients with tuberous sclerosis and severe
PKD revealed seven new CGS cases (see Figure 1 and Table 1
for details):

P467 had childhood seizures, mild mental retardation and
an atrial rhabdomyoma. Cystic kidneys were not diagnosed
until 31 years, but he had ESRD following a left nephrectomy
at 33 years. Original gel-based screening did not detect a
deletion but MLPA showed a large deletion of 4240 kb,
removing the entire PKD1 and TSC2 genes (Figure 2). In
retrospect, the negative gel results were due to deletion of all
tested probes.

P484 had facial angiofibromas, hypopigmented macules,
and a hepatic angiomyolipoma with PKD detected by
ultrasound at 12 years. At 30 years, she had a left
nephrectomy because of serious bleeding, and a serum
creatinine¼ 1.3 mg/100 ml. MLPA revealed a deletion of
100–120 kb (Figure 2).

P455 presented at 2 years with seizures and behavioral
problems and had massively cystic kidneys and hypertension.
MLPA revealed a deletion removing PKD1 exons 23–46 and 30

TSC2 to exon 30 (Figure 2).

P973 was diagnosed with PKD and TSC at 5 years, and at
11 years the kidneys were significantly enlarged (13.5 and
14.5 cm), but with normal function. MLPA indicated a
deletion removing PKD1 exons 34–46 and at least TSC2 exon
41 (Figure 2).

Novel mosaic CGS cases

P974 developed multiple cortical tubers, seizures, and
enlarged kidneys at less than 1 year. Her present serum
creatinine¼ 0.76 mg/100 ml at 14 years. MLPA showed a
mosaic deletion of PKD1 exons 25–46 and all of TSC2. Gel
analysis confirmed a mosaic deletion of B60 kb (Figure 6a
and b).

M214 was diagnosed at 6 months with enlarged kidneys,
which were decompressed. TSC was diagnosed at 13 years
with facial angiofibromas and by 23 years renal angiomyo-
lipoma developed that required embolization. Her present
serum creatinine¼ 1.5 mg/100 ml at 43 years. MLPA detected
a mosaic deletion of 40–55 kb (Figure 6a).

P444 had hyperechogenic, enlarged kidneys detected in
utero and TSC diagnosed by the detection of cerebral
hamartomas. At 12 years, she is hypertensive with enlarged
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kidneys (17 and 15.5 cm) but normal function (serum
creatinine¼ 0.68 mg/100 ml). MLPA detected an 8–14 kb
mosaic deletion (Figure 6a).

DISCUSSION

We have developed an MLPA assay to rapidly screen for large
rearrangements causing ADPKD and the PKD1/TSC2-CGS,
improving diagnostics for these disorders. Samples can
readily be assayed in a 96-well plate format with results
available within 2 days, in contrast to labor intensive gel or
fluorescence in situ hybridization analysis. The screen covers
genomic regions around PKD2 (120 kb) and PKD1/TSC2
(320 kb), with a probe density of one per 1.4 kb in the
compact PKD1 gene (except IVS1), and one per exon in
PKD2. This probe density is likely to detect the vast majority
of large deletion mutations; smaller changes to PKD1 are
generally evident as altered LR-PCR products.5 The utility of
the assay was shown by detection and defining 25 previously
detected deletions, plus characterizing six new PKD1, one
PKD2, and seven PKD1/TSC2 mutations. During the
preparation of this paper a similar MLPA scheme for PKD1
was described, but no intragenic deletions were detected.23

A single-mismatch between PKD1 and the six PKD1-
pseudogenes was sufficient for locus specificity when the
mismatch was placed adjacent to the ligation site at the 30 end
of the short probe. This mismatch presumably destabilized
annealing of the short probe so that ligation could not occur.
The MLPA system employed here has distinct advantages

over other described methods. In particular, the Luminex
Flex-Map bead system allows a higher level of multiplexing
than capillary electrophoresis systems; 88 different probes can
be utilized in one assay.

In all tested cases where more than one adjacent MLPA
probe had reduced signal, LR-PCR or gel methods identified
a deletion. However, in three cases signal reduction for a
single probe was associated with a rare base-pair change:
PKD1:8681_8688del9 (2894delANS), exon 23; PKD1:11186A-
-C (H3729P), exon 39 and TSC2:4767G-A (P1589P),
exon 36. The 8681del9 deletion was previously described as a
rare polymorphic deletion removing a duplication that has
occurred since PKD1 and the PKD1P1-P6 diverged.5 This
difference was used to generate the exon 23-specific probe
(Supplementary Table S1). The substitutions 11186A-C and
the 4767G-A lay at the �2 position of the PKD1:exon 39
short probe and the �1 position of the TSC2:exon 36 short
probe, respectively. These cases illustrate that rare single
nucleotide polymorphisms (SNPs) can disrupt ligation and
amplification and, therefore, signal difference associated with
just one MLPA probe needs to be tested by LR-PCR and
sequencing.

In common with other CGS cases, all the newly described
cases had TSC with significant renal cystic disease.15,18

Although in our original report we stressed the infantile
presentation in non-mosaic cases,18 others have highlighted
cases where PKD was only evident much later.19 The four
non-mosaic cases had moderately severe cystic disease

Table 1 | Details of deletions/duplications of study patients

MPLA dataa Mosaicismb

ID tyc cen flank cen del tel del tel flank Size (kb)d confe Y/N % P Ref f

A. PKD1/TSC2 – CGS
2 del PKD1:501.0 PKD1:EX5 TSC2:EX24 TSC2:EX15 57–68 PF; FH N 14,18

3 del GBL CASKIN1 SLC9A3R2 ZNF598 150–165 PF; FH N 14,18

4 del PKD1:EX18 PKD1:EX21 TSC2:EX30 TSC2:EX24 29 PF; FH Y 49 o0.01 14,18

6 del E4F1 GBL TSC2:EX24 TSC2:EX15 145–170 PF; FH Y 72 o0.01 14,18

7 del CASKIN1 TRAF7 TSC2:EX30 TSC2:EX24 95–107 PF; FH N 18

M7 del CASKIN1 TRAF7 TSC2:EX30 TSC2:EX24 95–107 PF; FH Y 33 o0.01 18

8 del GBL CASKIN1 TSC2:EX24 TSC2:EX15 120–145 PF; FH N 18

9 del PKD1:EX29 PKD1:EX34 TSC2:EX30 TSC2:EX24 20–25 PF N 18

11 del GBL CASKIN1 TSC2:EX4 SLC9A3R2 145–165 PF; FH N 18

12 del PKD1:EX21 PKD1:EX23 SLC9A3R2 ZNF598 B75 PF; FH N 18

13 del PKD1:EX29 PKD1:EX34 TSC2:EX36 TSC2:EX30 12–18 PF N 18

F13 del ND ND ND ND 12–18 PF; GE Y B15g NS 18

14 del TRAF7 RAB26 TSC2:EX36 TSC2:EX30 76–89 PF; FH N 18

15 del PKD1:501.0 PKD1:EX5 TSC2:EX36 TSC2:EX30 41–46 PF; FH N 18

16 del PKD1:EX11 PKD1:EX13 PKD1:EX46 TSC2:EX41h 31 PF; LP N 18

17 del PKD1:EX46h TSC2:EX41 TSC2:EX41 TSC2:EX36 1.1 PF, GE N 18

19 del E4F1 GBL TSC2:EX4 SLC9A3R2 175–195 PF; FH Y 53 o0.01 18

20 del PKD1:EX7 PKD1:EX11 TSC2:EX36 TSC2:EX30 35–40 PF; FH Y 26 o0.01 18

22 del RAB26 PKD1:50 1.0 TSC2:EX15 TSC2:EX4 85–95 PF; FH Y 47 o0.01 18

77-4 del PKD1:EX15(2) PKD1:EX15(3) RNF151 ND B2100 PF; FH N 2

M214 del PKD1:EX13 PKD1:EX15(1) TSC2:EX24 TSC2:EX15 40–55 N Y 28 o0.01 N
P444 del PKD1:EX36 PKD1:EX38 TSC2:EX36 TSC2:EX30 8–14 N Y 48 o0.01 N
P455 del PKD1:EX21 PKD1:EX23 TSC2:EX30 TSC2:EX24 B30 PF N N
P467 del E4F1 GBL RFN151 ND 4240 N N N
P484 del PKD1:EX29 PKD1:EX34 ZNF598 TBL3 100–120 N N N
P973 del PKD1:EX29 PKD1:EX34 TSC2:EX41 TSC2:EX36 B15 PF N N
P974 del PKD1:EX23 PKD1:EX25 TSC2:EX4 SLC9A3R2 B60 PF Y 30 o0.01 N
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(resulting in ESRD at 33 years in P467), but the diagnosis was
not always made during infancy; at 2, 5, 12 or 31 years.
Interestingly, in the three mosaic cases, PKD was always
diagnosed before 1 year, showing the severity of cystic disease
and penetrance of the mutation (at least in leukocyte DNA)
does not always strongly correlate.

The MLPA assay will be useful in all TSC patients with
significant renal cystic disease to differentiate CGS cases from
those with TSC and PKD inherited as separate gene
mutations.24,25 Approximately 60% of TSC cases are de novo;
80% due to TSC2 mutation,26 and practically all described
CGS cases are de novo or inherited from a mosaic case.18

Previously, mosaicism has been found to be commonly
associated with large TSC deletions,15,18 a finding echoed
here in the CGS. Mosaic cases were readily detected by the
MLPA assay (except where the deleted allele was present in
o20% cells) and represented three of seven new cases; 40%
of all PKD1/TSC2 deletion families had a mosaic case (Table 1
and Figure 1). Identifying mosaicism is important for
determining risk in siblings of the patient.

This study determined that the level of large rearrange-
ments causing typical ADPKD is B4%, a little higher than
estimates from gel-based studies,9 and included the first
duplication. These numbers somewhat underestimate total
PKD1 deletions as those that also disrupt TSC2 have the CGS
phenotype. One PKD2 single exon deletion was found,
indicating that these mutations are also relatively rare.
Although the level of large PKD1 or PKD2 rearrangements
is relatively low, 31% of sequence determined mutation
negative cases had large deletions, indicating that MLPA
would be a useful addition to any clinical, mutation-based
test. It is worth noting that the four new large rearrangements
found in CRISP were from the mutation negative group, not
those with likely missense changes,5 increasing the prob-
ability that the missense changes are truly pathogenic. This
assay will also prove useful for screening for somatic loss of
heterozygosity in cyst lining cells.27

All previously described large deletions in typical ADPKD
were intragenic;2,5,9 however, in this study two deletions
extended centromeric to PKD1. One (407132) removed at

MPLA dataa Mosaicismb

ID tyc cen flank cen del tel del tel flank Size (kb)d confe Y/N % P Designation Reff

B. PKD1
P95 del PKD1:EX34 PKD1:EX37 PKD1:EX46 TSC2:EX41 5.5 FG, NB, RP N IVS34_EX46

del5.5 kb

2

P98 del PKD1:EX29 PKD1:EX34 PKD1:EX34 PKD1:EX36 2 FG, RP, NB N IVS30_IVS34
del2 kb

2

100001 del PKD1:EX13 PKD1:EX15(1) PKD1:EX15(1) PKD1:EX15(2) 1.076 LS, S N 3815_4890
del1076

5

120395 del PKD1:EX7 PKD1:EX11 PKD1:EX15(2) PKD1:EX15(3) 5.604 FG, LS N 2200_5946
del5604;insAC

5

301157 del PKD1:EX25 PKD1:EX29 PKD1:EX38 PKD1:EX39 9.214 FG, LS, S N IVS26-243_IVS38-13
del9214

5

F301157 del ND ND ND ND 9.214 LS Y 15g NS IVS26-243_
IVS38-13del9214

N

393936 del PKD1:EX23 PKD1:EX25 PKD1:EX29 PKD1:EX34 3.065 FG, LS, S N IVS24-28_IVS30+
48del3065

5

M29 del ABCA3 E4F1 PKD1:EX15(3) PKD1:EX18 120–175 FG, S N N
M143 del PKD1:EX15(3) PKD1:EX18 PKD1:EX21 PKD1:EX23 1.2–7.5 S N N
100009 del RAB26 PKD1:501.5 PKD1:501.0 PKD1:IVS2 B2.5 FG, S N N
259940 dup PKD1:EX15(3) PKD1:EX18 PKD1:EX18 PKD1:EX21 0.246 LS N IVS17+1_7328

dup246
N

407132 del TRAF7 RAB26 PKD1:EX21 PKD1:EX23 48–87 N N N
493328 del PKD1:EX11 PKD1:EX13 PKD1:EX34 PKD1:EX36 21 LS N IVS11+357_IVS34+

1992del21 kb
N

C. PKD2
P964 del ND ABCG2 SAPP1 ND ND FH; Cy N 12

M363 del PKD2:EX6 PKD2:EX5 PKD2:EX5 PKD2:EX4 5.722 LS N IVS4+452_IVS5-965
del5722

N

cen, centromeric; conf, confirmation; Cy, cytogenetics; del, deleted; dup, duplication; flank, flanking; FH: FISH, fluorescence in situ hybridization; GE, gel electrophoresis; LP: LR-
PCR, long range PCR; LS, LR-PCR and sequencing; N, none; ND, not determined; N, no; PF: PFGE, pulsed field gel electrophoresis; S, segregation demonstration; tel, telomeric;
ty, type; Y, yes; NS, not significant; NB, northern blotting; FG, field inversion gel electrophoresis; RP, RT-PCR.
aClosest MLPA probes flanking the gene and deleted on the centromeric and telomeric side: ND.
bMosaicism: YN; % of cells with deleted allele; P-value, significance that MLPA detected deletion was different from full or no deletion: NS.
cType of rearrangement: del/dup.
dSize of deletion: ND.
eConfirmation of the del/dup: PF; FH; conventional GE; LP; LS; N; S; Cy; FG; NB; RP.
fReference (ref); Novel (N).
gEstimated from gel analysis.
hExon disrupted but 30 to MLPA probe.

Table 1 | Continued
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least the closest flanking gene, RAB26. In the second (M29),
the deletion extended 100–150 kb centromeric from PKD1
and disrupted up to 10 genes (Figure 1). This is a family with
a sibship of 15, 7 of whom are known to have ADPKD
(Figure 7c); however, no unusual clinical features were noted.
This is significant because the M29 deletion extends further
centromeric than any in the PKD1/TSC2-CGS cases.
Previously, a CGS case with a B280 kb deletion, probably
disrupting up to ABCA3, had craniofacial and limb
abnormalities (acrofacial dysostosis), which is not character-
istic of TSC.28 This phenotype may be due to disruption of
ABCA3 or other genes (RNPS1, DCI, or DNASE1L2) deleted

in the published case but not disrupted in M29. Recessive
mutations to ABCA3 are associated with severe neonatal
surfactant deficiency,29 but there is no reported heterozygous
phenotype. None of the other implicated genes have been
associated with a disease phenotype. Fine mapping of both
mutations by modifying the MLPA assay may help to
understand acrofacial dysostosis possibly associated with this
region.

The renal disease severity of large PKD1 deletion cases as a
group (or families individually) was unremarkable. For
instance, the average age at ESRD was 55.7 years, similar to
the PKD1 average. Family 100009, with exon 1 deleted, had
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Figure 3 | Analysis 2 PKD1 deletion mutations. (a) MLPA data showing PKD1 deletion cases (colors and markings as indicated for Figure 2).
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three cases with large renal volumes (42,800 ml), in the top
5% of the age-corrected CRISP volumes.30 However, two
other family members had average (or even below average)
volumes, probably indicating that genetic modifiers rather
than allelic effects have the greatest influence on the severity
of renal disease.31

Three of the twelve PKD1 large rearrangement families
were molecularly proven to have de novo mutations. One
consequence of a significant level of de novo mutations, by
analogy with TSC and the PKD1/TSC2-CGS, is that a
significant level of mosaic cases may be expected. One such
case was detected in F301157. Recently, the first case of
mosaicism in ADPKD was described.32 Diagnosing mosai-
cism is important as it may have prognostic implications;

although F301157 developed ESRD at 55 years even though
the deleted allele was rare in leukocyte DNA (but presumably
more common in the kidney). Furthermore, mosaicism is
important to consider when determining the risk of
transmission to children and the probability that siblings
will be affected. In particular, it can be a confounding factor
when screening for a living renal donor in offspring from the
mosaic case.32

MATERIALS AND METHODS
Sample collection and DNA isolation
The study was approved by relevant Institutional Review Boards and
Ethics Committees, and participants gave informed consent. Clinical
and family records were reviewed to collect a full clinical history.
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DNA was isolated from blood samples with the Puregene DNA
Purification System (Gentra Systems; Minneapolis, MN, USA).
Details of new and previously published cases are summarized in
Table 1. Field inversion gel electrophoresis and pulsed field gel
electrophoresis employed liquid and agarose block DNA, respec-
tively, as previously described.2,6,18 Details of probes and micro-
satellites employed, as illustrated in Figure 1, and a comprehensive
restriction map of the area, have previously been described.2,6,18,33

Methods for LR-PCR have been described8 and primer sequences are
available on request.

MLPA probe design
Two adjacent gene-specific oligo probes were designed within
regions of target genes without known SNPs (Supplementary
Table S1).34,35 The short probe had 24–30 bp of complementary
sequence 50 appended with a universal forward primer (50-acattttgct

gccggtca-30); and the long probe had 40–50 bp of complementary
sequence 50-phosphorylated and 30 appended with complementary
Luminex (Luminex Corporation; Austin, TX, USA) FlexMAP bead
sequence and a universal reverse primer (50-gtcctttgtcgatactgg-30).
All probes were synthesized by Integrated DNA Technologies
(Coralville, IA, USA); short and long probe scale/purification was
100 nmol/HPLC and 250 nmol/PAGE, respectively.

Due to the presence of six PKD1-pseudogenes (PKD1P1-P6),
PKD1 versus PKD1P1-P6 mismatches were identified to design
PKD1 exons 1–33-specific probes. MacVector (MacVector Inc.; Cary,
NC, USA) was used to establish ClustalW sequence alignments.
Localization of a single base-pair mismatch at the ligation site (the
extreme 30 end) of the short probe, and clustering of any other
available mismatches to the remainder of the short probe, resulted
in PKD1-specific MLPA probes (Supplementary Table S1 for probe
details and positions of mismatches).
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MLPA probe hybridization, ligation, and PCR reactions
For hybridization, a mix containing 2.5 fmol/ml of each probe was
prepared in 1� Tris-EDTA (TE; Fisher Scientific; Fair Lawn, NJ,
USA). Genomic DNA (400 ng) was denatured at 95 1C for 5 min,
cooled to 25 1C and a solution of 1.5 ml MLPA probe mix and 1.5 ml

of Ligase-65 MLPA Buffer (MRC Holland; Amsterdam, the Nether-
lands) added and hybridized at 60 1C for 16–24 h.

The ligation reaction mix contained: 25 ml of water; 3 ml of
Ligase-65 Buffer A; 3 ml of Ligase-65 Buffer B; and 1 ml of Ligase-65
(MRC Holland). The ligation solution (32 ml) was added to the DNA
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reaction tube, incubated at 54 1C for 15 min., followed by a 95 1C
enzyme denaturation, 5 min, and 4 1C cooling, 5 min.

PCR amplification of the ligated probes employed the mix:
27.5ml water; 1.5 ml of 50 mM MgCl2; 4 ml dNTPs (2.5 mM each;
Invitrogen Corporation, Carlsbad, CA, USA); 0.25ml each F-/R-
universal primer (20 mM; Integrated DNA Technologies); and 1 ml
Platinum Taq Polymerase (Invitrogen). The MLPA ligation product
(10ml) was added to 40 ml of the PCR mix and amplification
employed the following program: 95 1C, 5 min: 23 cycles of 95 1C,
30 s; 60 1C, 30 s; 72 1C, 30 s; 72 1C, 20 min; and 4 1C, 5 min.

Luminex FlexMAP bead hybridization and analysis
The Luminex FlexMAP technology employs flow cytometry and
color-coded microspheres to rapidly identify up to 88 different
samples (in this case MLPA probes) in one assay. A Luminex
FlexMAP bead mix corresponding to the MLPA probes to be
analyzed was prepared by mixing the FlexMAP beads (Luminex;
part no. L100-Uxxx-01, xxx¼ bead no.: 001–099; 2000 beads per
DNA sample) with 40 ml per DNA sample of 1� tetramethylam-
monium chloride (Sigma-Aldrich; St Louis, MO, USA).

The PCR reaction mixture (10 ml) was added to 40 ml of the
FlexMAP bead mix and hybridized at 37 1C for 1 h. A 250 ml
tetramethylammonium chloride solution containing 2 ml of Strepta-
vidin, R-Phycoerythrin (Invitrogen) was prepared; 25 ml of this
solution was aliquoted, along with 50 ml of the FlexMAP bead
hybridization mixture, to a flow cytometer 96-well analysis plate
(Luminex). The samples were hybridized at 37 1C for 1 h in the dark
and analyzed using a Luminex-100 flow cytometer.

The resulting data were deconvoluted according to relative copy
number versus both the external control genes as well as a wild-type
normal control female sample using the GeneMarker software
(Softgenetics, LLC; State College, PA, USA). The ‘normal’ signal
copy number threshold was set at 2.0±0.4. An X-linked control
gene (versus wild-type normal control male sample), as well as
multiple gene-specific (PKD1, PKD2, and PKD1/TSC2) character-
ized deletion samples, was utilized as internal controls to confirm
the specificity of the MLPA probes. MLPA probe gene copy numbers
were exported to Excel (Microsoft Corporation; Redmond, WA,
USA) and reported as copy number vs gene probe histograms.

Assessing mosaicism
The means and standard deviations (s.d.) of probe variability were
determined for the normal and deleted regions and limits set at 3� s.d.
of the moving average using the method of quality control charts.36

Deletions with a mean value for the deleted region falling outside of
these 3� s.d. limits (P¼ 0.01) were considered to be mosaics and the
percentage of cells with the deleted allele is shown in Table 1.
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