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ÖZET 

 

 

YATAK KATSAYISININ ZEMİNİN FİZİKSEL ÖZELLİKLERİNE VE 

KAYMA MUKAVEMETİ PARAMETRELERİNE GÖRE 

BELİRLENMESİ 

 

 

EMRE AYGIN 

 

 

Yüksek Lisans, İnşaat Mühendisliği Bölümü 

Tez Danışmanı: Doç. Dr. Berna UNUTMAZ 

Haziran 2019, 91 Sayfa 

 

 

Bu tez çalışmasında, literatürdeki yaygın olarak kullanılan ancak kısıtlı sayıdaki 

yaklaşımlardan farklı olarak, yatak katsayısı zeminin ve temelin fiziksel ya da 

mekanik özelliklerini gösteren parametrelere (Temel genişliği, uzunluğu, kalınlığı, 

Elastisite modülü, Poisson oranı vb.), indeks özelliklerini gösteren parametrelere 

(Sıkılık oranı, Özgül ağırlık, Birim hacim ağırlık vb.) ve kayma mukavemeti 

parametrelerine (İçsel sürtünme açısı, Kohezyon) bağlı bir fonksiyon olarak 

belirlenmeye çalışılacaktır. Zeminlerin yatak katsayısının belirlenmesi özellikle 

temel yapılarının tasarlanması aşamasında inşaat mühendislerinin karşılaştığı en 

önemli konulardan bir tanesi haline gelmektedir. Üst yapı ve temelin tasarımlarda 
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bir bütün olarak modellenerek analiz yapılması, çözümü karmaşık bir hale 

getirmekte ve tasarımcılara hem zaman hem de iş yükü açısından külfetler 

getirmektedir. Yukarıda sunulanlar doğrultusunda, elastik zemine oturan kiriş 

formundaki yapı elemanları, hem zemin parametrelerinin kontrol edilebildiği 

(PLAXIS) hem de edilemediği (SAP2000) nümerik programlarda ayrı ayrı 

modellenerek analiz edilmiştir. Bu analizlerden elde edilen sonuçlar karşılaştırılarak 

tutarlılık gözden geçirilmiş, sayısal sonuç olarak birbirine en çok yaklaşan modeller 

esas kabul edilmiştir. 

 
Bu aşamadan sonra, zeminin özelliklerini etkileyen parametreler PLAXIS programı 

üzerinden sırasıyla değiştirilmiş, parametresi değiştirilen her bir modelin 

sonuçlarına karşılık gelecek şekilde SAP programı üzerinden yatak katsayısı (yay 

sabiti) değeri değiştirilerek yakın sonuçların yakalanması için çaba sarf edilmiştir. 

Her iki programın verdiği sonuç çıktılarında, zemine oturan kirişin oturma değerleri 

yakalanması gereken birincil parametre olarak seçilmiştir. Değişen zemin 

parametrelerine karşılık gelen yatak katsayısı değerleri tabloya aktarılmıştır. Zemin 

parametreleri kullanılarak, yatak katsayısı değerinin birimsel bütünlüğüne dikkat 

edilerek bir formül oluşturulmuş, bu formülden ortaya çıkan yatak katsayısı 

değerleri, analizlerde kullanılan yatak katsayısı değeri ile grafik üzerinden 

kıyaslanmıştır. “Maksimum Olabilirlik Tahmini” yöntemi kullanılarak minimum 

sapma ile elde edilen formül optimize edilmeye çalışılmıştır. 

 
 
Anahtar Kelimeler: Zeminin kayma mukavemeti parametreleri, temelin geometrik 

özellikleri, yatak katsayısı 
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ABSTRACT 

 

 

DETERMINING THE SUBGRADE MODULUS ACCORDING TO 

PHYSICAL PROPERTIES AND SHEAR STRENGTH PARAMETERS 

OF SOIL 

 

 

EMRE AYGIN 

 

 

Degree of Master of Science, Department of Civil Engineering 

Supervisor Assoc. Prof. Berna UNUTMAZ 

June 2019, 91 pages 

 

 

In this thesis study; different from widely used but restricted number of existing 

approaches in the literature, subgrade reaction modulus is determined as a 

function of geometrical (width, thickness and length of foundation etc.), index 

(relative density, specific gravity, unit weight etc.), shear strength (cohesion, 

internal friction angle) or mechanical (Young’s Modulus, Poisson’s ratio etc.) 

properties of soil and foundation. Determining the subgrade reaction modulus has 

become one of the important issues at the phase of designing the foundation 

structures especially. Analyzing the superstructure and foundation structure as a 

whole complicates the solution and costs more time and effort. In accordance with 
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aforementioned issues; structural members such as beams resting on elastic soil 

has been modeled and analyzed separately in numerical softwares such as 

SAP2000 and PLAXIS. Results obtained from these analyses, have been 

compared, consistency has been sought and models that converge to each other 

as numerical results have been assumed as elementary models. 

 
A parametric study has been performed using different soil and foundation types in 

PLAXIS and the same models are tried to be modeled in SAP200 also. Among the 

outputs of PLAXIS and SAP, the maximum settlement value of beam resting on 

elastic soil has been chosen as the primary control parameter. Subgrade reaction 

modulus values corresponding to the different soil parameters have been 

transferred into tables. By taking into account the consistency of units, a formula 

has been proposed; subgrade reaction modulus values obtained from this formula 

has been compared with subgrade reaction modulus values that used in SAP 

analysis on a chart. By using “Maximum Likelihood Estimation” method, proposed 

formulation has been tried to be optimized.  

 
 
Keywords : Shear strength parameters of soil, geometrical properties of 

foundation, subgrade reaction modulus 
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1. INTRODUCTION 

 
 

Numerical modeling of soil-structure pair is one of the most troublesome issues in 

geotechnical engineering. Although soil does not show elastic behavior completely, 

by making an assumption in elastic limits, a solution has been tried to be put forth. 

The first approach is suggested by Winkler in 1867. According to Winkler’s theory, 

the behavior of subgrade soil on which a beam or mat foundation is resting can be 

represented by springs. In this approach, the output is the contact pressure-

settlement ratio and this ratio gives the spring constant called as “Subgrade 

Reaction Modulus”. Many researchers have contributed to this approach after 

Winkler (1867). While some of them have dealt with this issue as a mathematical 

problem, others have conducted field tests and have evaluated the results. 

 
In Turkey, Bowles’ (1997) approach (a theory based on bearing capacity obtained 

from field test results) has been accepted in recent years. However, in cases 

where bearing capacity is not provided or not calculated, accurately determination 

of the subgrade reaction modulus becomes a issue.  

 
The objective of this study is to determine the subgrade reaction modulus, 

independent from bearing capacity of soil (or equation) and providing practical and 

useful solution for designers. At the beginning, a beam whose dimensions are 

known has been modeled on (using both SAP and PLAXIS as numerical 

softwares) a generic soil profile. After a reference analysis, parametric study is 

conducted. A simplified equation to assess this spring constant has been proposed 

and conclusions have been evaluated. 

 
 

1.1 Scope of Thesis 

After this brief introduction, in Chapter 2, a comprehensive literature review is 

presented. Studies performed by many researchers have been submitted 

chronologically. This chapter contains equations, relations, figures, tables, results 

etc. from previous studies. 
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In Chapter 3, analytical models, encountered problems and some pre-results are 

presented. Until determining the correct model type, some problems have been 

encountered. By changing some geometrical and mechanical properties, more 

consistent results have been obtained.  

 
In Chapter 4, final results have been submitted. By taking the approaches 

mentioned in literature review part into consideration, results have been evaluated. 

A simplified formulation for calculating subgrade modulus is proposed in this 

chapter. 

 
In Chapter 5, summary and major conclusions of this study are presented.  
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2. LITERATURE REVIEW OF SUBGRADE MODULUS and 
WINKLER METHOD 

 
 
 

2.1 Previous Studies 

The analysis of the foundations placed on a flexible soil is based on the hypothesis 

that the reaction forces at each point of the foundation are proportional to the 

displacement at that point. Coefficient that describes the relation between 

displacement and forces is called as subgrade reaction modulus ‘k0’ (or ks some 

sources in literature). The basic method (Figure-2.1) about this approach was 

proposed by Winkler (1867).  Winkler’s model is based on assumption that infinite 

number of springs represents the soil behavior. Springs only affect the vertical 

displacement of the structure. Defining the closely-spaced springs is significant for 

continuity of deformation behavior of foundation.  

 

 

Figure-2. 1 Winker Model 

 
Winkler’s single parameter model has been suggested for solution of railroad 

tracks firstly. It’s a very simple, familiar and the oldest method. However, it does 

not give consistent results for practical purposes. Main disadvantage of this 

method is that shear stresses cannot be transferred. Because of this discontinuity, 

springs near to the foundation member give unrealistic displacement values as can 

be seen in Figure-2.2a, 2.2b and 2.2c 
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(a) Settlement Comparison of Winkler Model – In reality 

Continuous line : Point loaded system according to the Winkler Model 

Dashed line  : Point loaded system observed in reality 

 

 

(b) Distributed loaded system in Winker Model 

 

 

(c) Distributed loaded system observed in reality 

 
Figure-2. 2 Settlement behavior of Winkler Model & Real Case 

 
 

Due to the fact that the shear stresses are not transferred, stiffness changes occur 

at the edges of the foundation. The distribution of contact pressure in accordance 

with elastic continuum theory is illustrated in Figure-2.3. In order to model the 

behavior that appears here, more rigidity can be defined to the springs at the edge 

zone. 

 

 

Figure-2. 3 Distribution of contact pressure according to the elastic continuum  

 

In spite of this situation, a lot of designers prefer this method. Many researchers 

have dealt with solution of Winkler approach’s discontinuity problem. Filonenko-
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Borodich (1940), Hetenyi (1946), Pasternak (1954), Vlasov and Leontiev (1960) 

Kerr (1964) are some of them. Theories suggested by these researchers have two 

or more parameters. Multi-parameter models give more logical results than one-

parameter model. It has been realized that if second parameter is ignored, 

mechanical behavior of Pasternak’s model looks like the Winkler’s model.  

 
Filonenko-Borodich (1940) model has a flexible layer with tension force “T” (Pre-

tensioned) on the surface of the springs of Winkler model (Figure-2.4). Therefore, 

the deformation of soil demonstrates the continuous behavior under load 

conditions (Figure-2.5a,b,c). 

 

 

Figure-2. 4 Filonenko-Borodich Model (1940) 

 

 

Figure-2. 5 Deformation characteristics under various load conditions 

 
Hetenyi (1946) model has a flexible member (slab or beam) on the separated 

springs to provide the interaction between springs. 

 
Pasternak (1954) model has assumed that there is a shear layer on the spring 

members (Figure-2.6). This shear layer can only enable shear deformation, 

however this layer is also incompressible, thereby, and the mutual shear actions of 

spring members are arisen. 
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Figure-2. 6 Pasternak Subgrade Model 

 
Three complicated sets of partial differential equations enable another approach for 

semi-infinite continuum behavior of soil. Therefore, simplifying assumptions about 

displacements and/or stresses are provided in order to enable a precise and easy 

solution of the remaining equations. These methods are called as “simplified-

continuum models”. Vlasov and Leontiev (1966) adopted the simplified-continuum 

models based on variational principles and developed a two-parameter foundation 

model. In the model they developed, the foundation member was considered as an 

elastic layer and restrictions were applied by bringing the deformation in the 

foundation into a suitable mode shape. The two-parameter Vlasov model (Figure-

2.7) enables the effect of the omitted shear strain energy in the soil and shear 

forces obtained from surrounding soil by including an arbitrary parameter ‘γ’ to 

symbolize the vertical distribution of the deformation in the subgrade. Vlasov and 

Leontiev didn’t suggest any relation or equation in order to calculate the parameter 

“γ”. 

 

 

Figure-2. 7 Vlasov foundation model 
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The analytical solution under varied loading conditions has been developed for 

semi-infinite elastic continuum. The solution for point and distributed loading 

conditions has been proposed by ‘Boussinesq’ (1885). For derived approach, can 

be looked over to Timoshenko and Goodier (1970). On the other hand, subgrade 

model at lesser depths have not been defined sufficiently with semi-infinite space. 

By using ‘simplified continuum’, a solution with specific height (H) has been 

proposed by Reissner (1958). Elastic soil media is assumed as weightless in 

Reissner’s equation. 

 
Reissner’s (1958) relation in elastic media that represents the soil properties can 

be seen in Equation-2.1;  

 

q(x,y) –  
Gs * H²

12 * Es
 ∇²q(x,y) = 

Es

H
 w(x,y) –  

Gs * H

3
  ∇² w(x,y) 

Equation-2. 1 

 
Where; H: Height, Es: Modulus of elasticity of Soil, Gs: Shear Modulus of Soil 

 
 

Equation-2.1 explains the vertical force-settlement relationship for a simplified 

continuum. Kerr (1964) has developed a subgrade model with an equation on a 

similar form. Kerr’s model comprises two spring layers and an incompressible 

shear layer in between that two layer as can be seen in Figure-2.8. Each spring 

layer is characterized with its own stiffness ku, gs and kl (Horvath, 2002). 

 

 

Figure-2. 8 Kerr’s subgrade model 
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Kerr’s differential equation for the vertical force-settlement relation; 

 

q(x,y) –  
gs

ku + kl
 ∇²q(x,y) = 

ku * kl

 ku + kl
 w(x,y) –  

gs * ku

 ku + kl
  ∇² w(x,y) 

Equation-2. 2 

 
By comparing the equations Reissner and Kerr, the relations between the 

parameters are given in Equation 2.3a,b,c ; 

 
 

ku = 
4 * Es

H
   kl = 

4 * Es

3 * H
   gs = 

4 * Gs * H

9
  

(a)    (b)   (c) 

Equation-2. 3 

 
According to Horvath (2002), Kerr's model is not applicable to much commercial 

software. Kerr’s shear layer is structurally equivalent to a deformed, pre-tensioned 

membrane. Horvath has been suggested a modified Kerr’s model whose name is 

Modified Kerr-Reissner (MK-R). In the MK-R model, main approach is the same as 

in Kerr’s model, but the pre-tensioned membrane is used instead of the shear layer 

as might be seen in Figure-2.9 (Horvath, 2002); 

 

 

Figure-2. 9 MK-R model 

 

Mathematical expression of MK-R model is given in Equation-2.4; 

 

q(x,y) –  
T

ku + kl
 ∇²q(x,y) = 

ku * kl

 ku + kl
 w(x,y) –  

T * ku

 ku + kl
  ∇² w(x,y) 

Equation-2. 4 
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Spring stiffnesses are (kl and ku) same as the Equation-2.3. Pre-tension force ‘T’ in 

the Equation-2.4 is calculated as in Equation-2.5; 

 

T = 
4 * Gs * H

9
  

Equation-2. 5 

 
It should be noted that the analysis should include the secondary effects; otherwise 

the pre-tensioned membrane will not work appropriately. 

 
After a general review of the Winkler's theory and the spring assigning approach, 

‘Subgrade Reaction Modulus’ is the spring constant represents the elasticity of the 

soil, can be expressed in the Equation-2.6 as general; 

 

p

w
 = Constant = k 

Equation-2. 6 

 
 

Biot has evaluated the problem of determining the subgrade reaction modulus as 

an analytical approach. Biot’s (1937) theory is based on the hypothesis which 

assumes the beam (Figure-2.10) resting on top of a wall infinitely high and long 

can be considered as two-dimensional foundation. 

 

 

Figure-2. 10 Beam resting on infinite wall, in Biot’s approach 

 
 
After that first assumption, Biot has put forth the load, stress, fundamental length of 

beam and deflection (displacement)  equations as can be seen in Equation-2.7a,b 

and Equation-2.8a,b 
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Q = Q0 cosλx     
∂4F

 ∂x4  + 2 
∂4F

 ∂x² ∂y²  + 
∂4F

 ∂y4  = 0 

 

(a) Sinusoidal load per unit length  (b) Stress Components in the Foundation 

 
Equation-2. 7 Biot’s load and stress relations 

 

a = [
EbI

Eb
 ]½     EbI 

d4w

dx4   = P - Q 

 

(a) Fundamental Length    (b) Deflection 

 
Equation-2. 8 Biot’s length and deflection relations 

 
 

By defining the boundary conditions and taking some integrals, Biot has obtained 

maximum bending moment (Equation-2.9 and 2.11) and subgrade reaction 

modulus (Equation-2.10 and 2.12) value for both two-dimensional and three-

dimensional conditions. 

 

M(x) = Pa 
1

π
   

Equation-2. 9 Bending moment according to the two dimensional calculations 

 

 

 

Figure-2. 11 Bending moment curves according to the Biot’s relations 
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k = 0.710 [ 
Eb4

EbI
 ]½ E 

Equation-2. 10 Two-dimensional Subgrade reaction modulus formula 

 

 

M(x) = 
P

π
   

 

Equation-2. 11 Bending moment according to the three dimensional calculations 

 
 
In three-dimensional conditions, Poisson’s ratio has also been included into the 

calculations. It has been observed that in the Biot’s theory, equations for three-

dimensional conditions give more accurate results than equations for two-

dimensional conditions. Finally, Biot (1937) has proposed the equation for 

determining the subgrade reaction modulus according to his theory as presented in 

Equation-2.12; 

 

ks = 
0.95 Es

B(1-ν²)
  [ 

B4 Es

(1-νs
2)EI

 ]0.108 

Equation-2. 12 Three-dimensional Subgrade reaction modulus formula 

 
Wherein; 

 
Es : Modulus of elasticity of Soil 

E : Modulus of elasticity of Foundation 

I : Moment of Inertia of Foundation (around bending axis) 

B : Width of Foundation 

νs : Poisson Ratio of Soil 

 
Studies of Terzaghi (1955) determine the subgrade reaction modulus based on the 

field test results. A plate loading test has been conducted on site for plates whose 

dimensions are specific (1x1-ft square plate). Then, results are utilized for the 

purpose of obtaining the subgrade reaction modulus for any type of foundation. 
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Terzaghi suggested the unit values ‘ks1’ for subgrade reaction modulus. For 

cohesionless soils, ks1 values can be examined in Table-2.1; 

 
Table-2. 1 Suggested Unit Subgrade Reaction Modulus Values 'ks1' for sands 

 

 
 

If necessary, density-category of sand can be determined by conducting a SPT or 

another convenient test. It has been realized that the value ks1 for a beam whose 

width is 1ft approximately equal to the ks1 value for a square plate whose width is 

1ft. After determining the ks1 value, required ks value for a beam with ‘B’ ft. width 

can be calculated by means of Equation-2.13;  

 

ks = ks1 ( 
B+1

2 B
 )² 

Equation-2. 13 Subgrade reaction modulus for foundations resting on sand 

 
 

If the soil is composed of heavily pre-compressed clay, the value of ks1 increases  

with proportionally to the unconfined compressive strength of the clay 'qu'. For the 

pre-compressed clays, Terzaghi (1955) presented the ks1 values in the Table-2.2; 

 

Table-2. 2 Suggested Unit Subgrade Reaction Modulus Values 'ks1' for clays 
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Recommended formula by Terzaghi (1955) in order to determine the ‘ks’ value for 

pre-compressed (considered as stiff) clays can be seen in Equation-2.14; 

 

ks = ks1 ( 
1

B
 )² 

Equation-2. 14 Subgrade reaction modulus for foundations resting on stiff clay 

 
Terzaghi (1955) has adverted also horizontal subgrade reaction modulus for 

vertical piles, piers, sheet piles, anchored bulkheads and flexible diaphragms on 

his study. But in this paper, vertical subgrade reaction modulus has been examined 

only. 

 
Vesic’s (1961) studies on Subgrade Reaction Modulus are based on studies of Biot 

(1937). Vesic (1961) has obtained various conclusions by conducting detailed 

studies on analytical expressions such as integrals. Vesic also stated “the Winkler's 

approach is useful for beams resting on semi-infinite elastic soil. Any problem of 

bending of an infinite beam can be solved with a conventional analysis by using 

subgrade reaction modulus ks.” Vesic has suggested the Equation-2.15 for the 

Subgrade reaction Modulus; 

 

ks = 
0.65 Es

B (1 - νs
2)

  

Equation-2. 15 Vesic’s equation for Subgrade Reaction Modulus 

 
In his “Foundation Analysis and Design”, Bowles (1997) described the subgrade 

reaction modulus as in Equation-2.16; 

 

ks = 
Δσ

Δδ
  

Equation-2. 16 Main Equation of Subgrade Reaction Modulus 
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Δσ and Δδ corresponds increment of contact pressure and settlement changes 

respectively. Subgrade reaction modulus can be seen at Figure-2.12 (Hooke’s 

stress-strain relation chart). 

 

 

Figure-2. 12 Hooke’s Stress-Strain relation 

 
The bold curve in the graphic, can be obtained from plate load test outputs. Ks is 

defined as slope of secant line that cuts the curve two points: δ=0 and δ=0.0254m 

(or 25mm). It is laborious to obtain good results from plate load test except for 

small plates. Since larger plates (e.g. 450, 600 or 700 mm diameter) tend to be 

less rigid than smaller ones, steady settlement measurement is difficult to obtain in 

those. Using stacked plates (can be seen in Figure-2.13) makes all the system 

more rigid so that obtaining the σ – δ plot becomes easier. 

 

 

Figure-2. 13 Plate load test illustration 

 

Bowles (1997) stated that when the determining ks, used bending moments and 

computed soil pressures are not very sensitive. Since the mat (or footing etc) 
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rigidity is 10 or more times great than soil stiffness generally. By considering this 

situation, Bowles has suggested Equation-2.17a, b; 

 
For SI unit system  : ks = 40.(FS).qa (kN/m3) (a) 

For Fps unit system  : ks = 12.(FS).qa (k/ft3)  (b) 

 
Wherein, FS=Factor of Safety, qa=Allowable Bearing capacity 

 

Equation-2. 17 Bowles’ equation for Subgrade Reaction Modulus 

 
 

This equation comes from qa = qu / FS and settlement at the ultimate soil pressure 

is ΔH=0.0254m (or 1in) and ks = qu / ΔH. If ΔH would be assumed as 6,12, 20mm, 

the factor 40 (12 for Fps units) adjusts as 160, 83, 50 respectively (48, 24, 16 for 

Fps units). 

 
Bowles has proposed Table-2.3 for different types of soil. It should be noted that if 

calculated value is 2-3 times greater than the values at Table-2.3,  calculations 

should be reviewed for a potential mistake. If there is no mistake in the 

calculations, decide which value to use. Designer shouldn't use the average of the 

values given in Table-2.3. 

 
Table-2. 3 Subgrade Reaction modulus ‘ks’ for sandy soils 

 

 
Bowles has also submitted a solution method that uses the subgrade reaction 

modulus. Mat foundation area is divided into smaller areas that are called "mesh". 

Each intersection is point called as 'node' and springs are placed at nodes. In this 
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system, springs are independent of each other and uncoupled. Uncoupling means, 

the deflection of any spring is not affected by the adjacent one. Particular part of 

each divided area (mesh) contributes to the each spring which can be seen in 

Figure 2.14a, b. 

 

  

(a)       (b) 

Figure-2. 14 Spring coupling criteria 

 
 

If divided area is a triangle, one-third of the triangle area should be used at any 

corner node as can be seen in Figure 2.15; 

 

 

Figure-2. 15 Triangle mesh 

 
Some designers prefer using Finite Element Method rather than Winkler foundation 

(springs) due to the fact that the springs are uncoupled. However, there is not 

enough numerical examples that shows that Finite Element Method provides better 

solutions. According to Bowles, subgrade reaction modulus method is less time 

consuming and easier. Moreover, spring coupling can be implied as follows; 
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1.  “Edge springs can be defined as double-timed only under these conditions;” 

a. “The foundation is uniformly loaded” 

b. “There is only one at most two columns loads on foundation.” 

c. “The computed node soil pressures ‘q’ are in the range of mat load Σ(P/Am).” 

 ‘Am : Area of the Mat’. If there are large differences, do not double the edge springs.” 

 
2. “We can zone the mat area using softer springs in the innermost zone and 

transitioning to the outer edge. Use 1.5 to 2xks,interior for the edge nodes. 

 

3. “You shouldn’t both double the edge springs and zone the mat area for the 

same program execution. Use either one or the other, or simply use a constant 

ks beneath the entire foundation. It is recommended that method as follows:” 

a. “Make a trial run and obtain the node pressures” 

b. “Use these node pressures and compute the pressure increase at adjacent 

nodes.” 

 
Daloğlu and Vallabhan (2000) stated that when soil is stratified with different 

thicknesses, even if material properties maintain the same, an equivalent ks value 

that depends on layer thickness should be used. It should be noted that thickness 

and ks have inverse ratio. Thus, it has been emphasized that different material and 

dimensional properties of soil cause different ks values. These researchers have 

utilized non-dimensional parameters for the purpose of determining the value of 

subgrade reaction modulus for use in the Winkler model for the analysis of 

foundation members exposed to concentrated and uniformly distributed loads. To 

provide the compatibility, Poisson’s ratio has been used as a constant value, i.e.: 

ν=0.25. Researchers have not expected that this situation affect the results 

dramatically. Graphics that are related with this process are presented in the 

following sections. 

 
Daloğlu and Vallabhan (1997, 1999) have used their finite element model for 

evaluation of slabs resting on an elastic soil. In this approach, in order to modeling 

the soil, two parameters are necessary. For providing consistency, a number of 

iterations should be performed. This method is based on assumption that soil is a 
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finite media lying on hard, rigid material. The determining differential equations 

have been non-dimensionalized as below. Supposing the slab has a constant 

thickness at every point, the characteristic length ‘r’ is defined as in Equation-2.18: 

 

r =  

Equation-2. 18 Characteristic length of slab ‘r’ 

 
Where; D: Flexural rigidity of slab, H: Depth of the soil layer, Es: Modulus of elasticity of Soil 

 
The coordinate axes and the lateral deflection ‘w’ have been non-dimensionalized 

as; “X=x/r, Y=y/r, Z=z/r and W=w/r”. By using non-dimensional parameters, in 

Vlasov model, the field equation for foundation resting on elastic sub-soil is 

described in Equation-2.19; 

 

∇4W – 2Tn∇
2W + KnvW = Qn 

Equation-2. 19 Field equation for foundation resting on elastic soil (Vlasov) 

 

Wherein;   knv = 
kr4

D
 ;  2Tn = 

2tr2

D
 ;  Qn = 

qr3

D
 ; 

 
Knv : Non-dimensional subgrade reaction modulus (for the Vlasov model) 

Tn : Non-dimensional shear stiffness (for the Vlasov model) 

∇4  : Biharmonic operator 

∇2  : Laplace operator 

Qn : Distributed pressure on the slab 

t : soil-shear parameter in dimension 

q : Distributed load 

 
 
Graphics from studies of Daloğlu and Vallabhan (2000) is as follows; 
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Figure-2. 16 Non-dimensional subgrade reaction modulus for Winkler model 

 
 

 

(a) Centerline of foundation  (b) Edge of foundation 

 

 

(c) Quarter length of foundation 

 
Figure-2. 17 Variation of non-dimensional subgrade reaction modulus ‘Knw’ 
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( a ) Displacement      ( b ) Bending Moment 

 
Figure-2. 18 Comparison of results throughout centerline of the foundation for 

concentrated load at center zone (.H=1.524m.) 

 

      

(.a.) Settlement      (.b.) Bending Moment 

 
Figure-2. 19 Comparison of results throughout centerline of the foundation for 

concentrated load at center (H=6.098m) 

 
By using the non-dimensional parameter ‘Knv’ obtained from the Vlasov model, it 

has been mentioned about the non-dimensional Knw for the Winkler model in 

following paragraphs. After conducting the numerical analysis of the foundation by 

using Vlasov model, Knv value and maximum settlement at the center under the 

load has been calculated. By using this Knv, same slab has been analyzed at the 

Winkler model and corresponding value for the maximum settlement at the center 
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is calculated. An equivalent subgrade reaction modulus value for the Winkler 

model has been calculated by utilizing the proportion between the maximum 

settlement values from the two models (Foundation analysis in Vlasov and Winkler 

model). Foundation has been analyzed in the Winkler model by using the new 

subgrade reaction modulus until the maximum displacement differences obtained 

from the two models reach a negligible level. ‘Knw – H/r’ variation plot is given in 

Figure-2.16, variation of Knw along the slab is given in Figure-2.17. 

 
To summarize; 

i) The subgrade reaction modulus, ‘r’ (Equation-2.18) should be calculated at 

first. 

ii) Then, Knw values to be used in calculation of subgrade reaction modulus 

should be read in Figure-2.16 by using the H/r ratio. 

iii) Finally, subgrade reaction modulus can be calculated with Equation-2.20; 

 

k = 
Knw D

r4   

Equation-2. 20 Subgrade Reaction Modulus proposed by Daloğlu & Vallabhan 

(2000) 

 
Using the equation proposed by Daloğlu and Vallabhan (2000) provides less 

uncertainty to the engineer for defining the subgrade reaction modulus. Moreover, 

subgrade reaction modulus can be defined depending on the properties and the 

geometry of the foundation and that of the soil by using this method. Conclusions 

reached by authors (Daloğlu & Vallabhan, 2000) can be summarized as follows; 

 

 “If one uses a constant value of the modulus of subgrade reaction for a 

uniformly distributed load, the displacements are uniform and there are no 

bending moments and shear forces in the slab. In order to get realistic results, 

higher values of k have to be used closer to the edges of the slab.” 

 “The value of k depends on the depth of the soil layer.” 

 “Non-dimensional values of k are provided for different non-dimensional depths 

of the soil layer, from which equivalent values of k can be easily computed.” 
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Dutta and Roy (2002) have focused on soil, foundation and structure interaction 

and examined the approaches about these issues rather than suggesting a method 

for determining the subgrade reaction modulus. They have mentioned that the 

reaction of any structural system which includes more than one member is inter-

dependent all the time. For example, suppose a beam supported by three columns 

that have single footing as can be seen in Figure-2.20. Since higher load 

concentration on the central column, soil below it tends to settle more. However, 

edge columns tend to settle more as the central column by means of load transfer 

provided by beam. Therefore, values of force quantities or settlements etc. should 

be obtained from interactive analysis of the soil-structure foundation system. This 

example emphasizes that importance of soil-structure interaction. 

 

 

Figure-2. 20 Simple frame consisting with a beam and three columns 

 
According to the authors (Dutta & Roy), studies show that two-dimensional 

analyses have resulted in significant deviations in comparison with three-

dimensional analyses with regard to interaction effect. Another issue is the 

assumption that the structures are fixed at their footing. However, elasticity of 

footings (supports) affects the overall rigidity of structures and natural period of the 

system will increase. Hence, the seismic response of system changes considerably 

with natural period (spectral acceleration). It can be seen that if the soil-structure-

foundation interaction analysis is not performed, a completely misleading behavior 

can be obtained. It is generally encountered that the modeling of the superstructure 

and foundation are quite simple than that of the soil medium underneath. 
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Contact pressure distribution at the foundation-soil interface is a significant 

parameter. The change of this parameter depends on the foundation manner (rigid 

or flexible) and nature of soil media (clay or sand). Aim of the foundation design is 

to transfer the loads of the structure to the soil, therefore, the optimal foundation 

modeling is that wherein the distribution of contact pressure is simulated in a more 

realistic manner. Conclusions reached by Dutta & Roy (2002) have been 

summarized as following; 

 

 “To accurately estimate the design force quantities, the effect of soil–structure 

interaction is needed to be considered under the influence of both static and 

dynamic loading.” 

 “Winkler hypothesis, despite its obvious limitations, yields reasonable 

performance and it is very easy to exercise.” 

  “Modeling the system through discretization into a number of elements and 

assembling the same using the concept of finite element method has proved to 

be a very useful method, which should be employed for studying the effect of 

soil–structure interaction with rigor.” 

 “The effect of soil–structure interaction on dynamic behavior of structure may 

conveniently be analyzed using lumped parameter approach.” 

 

2.2 Concluding Remarks 

In this chapter, Winkler approach which is the main theory of this study is 

examined. Later studies based on the Winkler approach are also mentioned. In 

addition, some differential equations and soil-foundation models related with spring 

concept are presented. 
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3. NUMERICAL ANALYSIS 

 
 
 

3.1 Software Programs Used in the Study 

PLAXIS and SAP2000 softwares have been used in numerical analysis phase of 

this study. PLAXIS will be dealt with first. PLAXIS is a finite element software 

program used for creating models which analyze the deformation, stability and the 

water flow for various types of geotechnical applications. Real problems can be 

modeled either by a plane strain or an axisymmetric model. The program uses a 

practical graphical user interface that provides to the users quickly creates a 

geometry model and finite element mesh based on a representative vertical cross 

section of the situation at hand. 

 
The reason for choosing PLAXIS as the analysis program is that many properties 

of soil can be defined in this program. The other main reason of choosing the 

PLAXIS is this software computes the soil-foundation model by considering 

deformations and plastic properties of soil. Also, all effective stresses in soil media 

are compute by PLAXIS in different depths of soil by means of existence of 

meshes. Therefore, it is considered that a realistic soil-foundation analysis result 

will be obtained with PLAXIS software. Unit weights of soil (dry and saturated), 

permeability, void ratio, modulus of elasticity (Young’s modulus), Poisson’s ratio, 

shear modulus, cohesion and internal friction angle are some of definable 

properties of soil in PLAXIS. In order to suggest a simple and useful equation, also, 

since it is expected that mainly these properties affect the subgrade reaction 

modulus; only modulus of elasticity (Young’s modulus), Poisson’s ratio and shear 

strength parameters (c,) have been defined. 

 
PLAXIS uses finite element method to compute the deflections and internal forces 

of soil or plates. Due to this requirement, meshes should be generated in the 

model. Since PLAXIS can compute the stresses and strains in two-dimensional 

plane, the program inputs are inserted as there is a 1-meter width model into the 
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plane. While soil is defined in geometry lines, foundation members such as raft 

foundation or beam are defined as plate. Due to this situation, properties such as 

axial rigidity, flexural rigidity, thickness and Poisson’s ratio of plate are input 

parameters. PLAXIS provides possibility that choosing the material models such as 

‘Linear elastic’, ‘Mohr-coulomb’, ‘Soft soil model’, ‘Hardening soil model’, ‘Soft soil 

creep model’, ‘Jointed rock model’ and ‘User-defined model’. In this study, Mohr-

Coulomb model has been used. Mohr-Coulomb model is used as first 

approximation of soil behavior in general. Failure surface of this model based on 

Coulomb’s friction law to general states of stress. As mentioned before, for the 

purpose of obtaining a simple equation; water level and drainage conditions have 

not been included in the model. PLAXIS output data provide the deformed shape of 

soil or plate, settlement value, effective or total stresses of soil and internal forces 

such as axial force, shear force, bending moment in plate (or beam). Most 

important output is selected to be the settlement of the foundation in this study. 

 
SAP2000 is the second software that was utilized in this study. SAP2000 is a full-

featured program that can be used for the simplest problems or the most complex 

projects. In fact, this program has been used for super-structure design frequently. 

However, there are no properties to define the soil other than the springs that 

behaves elastically under loading. Behavior of defined spring reflects the Hooke’s 

law as can be examined in Figure-3.1 & Figure-3.2. 

 

 

Figure-3. 1 Hooke’s stress-strain plot 
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Figure-3. 2 Simple spring based on Hooke’s law 

 
Most important issue about springs defined in SAP2000 is the fact that the spring 

will remain in ‘Elastic limit’ according to Figure-3.1. Therefore, when load applied to 

the spring increases, the extension of the spring will increase infinitely. Due to this 

situation, some differences (which will be mentioned later) between PLAXIS and 

SAP2000 models will arise. Structural members can be defined as frame, tendon, 

cable, area sections or solids in SAP2000. In this study, frame section has been 

preferred. Increasing the number of springs, the system will behave more 

realistically. For the purpose of providing this, a single frame member has been 

divided into smaller sections. To provide the Winkler foundation conditions, springs 

should be assigned to each joint between frame sections. Subgrade reaction 

modulus has been input into the program as spring constant in proportion to area 

to be loaded of each member. Output values such as shear force, bending moment 

and settlement obtained from SAP2000 will be compared with the results of 

PLAXIS. 

 
The foundation member modeled in PLAXIS will be entered in the SAP2000 with 

the same geometric and material properties. Since the only parameter representing 

the soil that can be inserted in SAP2000 is spring constant, this value will be 

assumed as the value that gives the same settlement obtained from PLAXIS as a 

result of defined soil parameters. 
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3.2 Numerical Analyses 

Before starting the analysis step of this study, the geometrical and mechanical 

properties of soil and foundation member have been determined hypothetically. 

Since PLAXIS software analyses in the two-dimensional plane, for the purpose of 

obtaining consistent results in both PLAXIS and SAP2000 softwares, a beam 

whose dimensions are assumed before, has been preferred as foundation 

member. It can be expected that 1m-width beam member modeled in SAP2000 will 

correspond to the plate member in PLAXIS. 

 
Properties of soil and geometry of beam can be examined in Figure-3.3 and 

Figure-3.4. 100 kPa (kN/m²) uniformly distributed load has been chosen. As 

mentioned before, water table has not been considered in the soil medium. 

 

 

Figure-3. 3 Cross section of soil medium to be analyzed 

 
Soil has been considered as single homogeneous layer. Depth of soil (30m) as can 

be seen in Figure-3.3 has been considered appropriate for finite element solutions 

in PLAXIS. Soil parameters have been assumed as preliminary parameters, and at 

the further analysis steps these will be altered. Material and mechanical properties 

of beam have been submitted below as can be seen in Table-3.1 and Table-3.2. 
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Figure-3. 4 General view of beam to be analyzed 

 
 

Table-3. 1 Concrete Grades according to the Eurocode-2 

 

 
Concrete material of beam has been chosen as C30/37 according to Table-3.1. 

Steel rebar material of beam has been chosen as S420 according to Table-3.2. 

Although it is not expected that steel grade affect the behavior of beam, it was 

input for the purpose of SAP2000 can compute the model. 

 
Table-3. 2 Mechanical properties of steel rebar for structures (TS 708:2010) 
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At first, the PLAXIS analyses have been performed. Soil and beam properties 

mentioned before have been used in the analyses. Results of every individual 

analysis have been read and noted as can be seen in Figure-3.5 and Figure-3.6. 

 

 

Figure-3. 5 Deformed shape of soil and maximum displacement of foundation 

 
 

      

(a) Maximum shear force   (b) Maximum bending moment 

 

Figure-3. 6 Initial analysis results in PLAXIS 

 
Then, a beam with the same properties in the PLAXIS model has been modeled in 

SAP2000. Subgrade reaction modulus (spring constant) has initially been assumed 
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as 10000kN/m³ (1000ton/m³). Beam whose dimensions are 1m width, 1m 

thickness and 10m length has been divided into 10 section (length of each one is 

1m). Initially, dividing the beam into 10 sections has been chosen as random. 

According to the results of analyses, number of sections is changed. Due to the 

load area of each section is equal to the 1m² (1m length x 1m width = 1m²), each 

spring constant has been assigned as 10000kN/m (1m² x 10000kN/m³ = 

10000kN/m). By considering direction concept of SAP2000, spring constant have 

been input with a minus sign (-10000kN/m). After that first analysis in SAP2000; 

settlement, shear force and bending moment values have been obtained as can be 

seen in Table-3.3 and Table-3.4. 

 
Table-3. 3 Internal forces of beam after first analysis in SAP2000 

 

- Rows marked with yellow show maximum shear forces, 

- Rows marked with red show the maximum bending moments 
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Table-3. 4 Joint displacements of beam after first analysis in SAP2000 

 

- Rows marked with red show maximum joint displacements 

 
Due to the only one parameter can be input in SAP2000 as the parameter to 

represent the soil is spring constant, it’s expected that most important output data 

in terms of comparison is settlement (joint displacement). Accordingly, settlement 

results of initial analyses are compared firstly. Thus, as can be seen in Figure-3.5 

and Table-3.4, there is a divergence between settlement values in PLAXIS and 

SAP2000. Proportionally with difference between two models, spring constant 

(subgrade reaction modulus) has been revised as 6162 kN/m and settlement value 

has been obtained in second analysis at SAP2000 as can be examined in Table-

3.5. 

 
Table-3. 5 Joint displacements of beam after second analysis in SAP2000 

 

- Rows marked with red show maximum joint displacements 

 
By comparing Figure-3.5 and Table-3.5, it is observed that settlement values of 

both softwares have been approximated to each other. However, shear force and 
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bending moment diagrams of both softwares are quite varying as can be examined 

in Figure-3.6 and Figure-3.7. 

 

(a) Shear force diagram 

(b) Bending moment diagram 

 

Figure-3. 7 Internal force diagrams after second analysis in SAP2000 

 
By comparing the results obtained from these two different analyses; definitions 

such as support conditions, spring constants, divided frame sections, loads and 

directions have been reviewed and it has been tried to find the reason of 

dissimilarity between results of PLAXIS and SAP2000. Consequently, the beam 

has been divided into smaller sections (50 sections) in accordance with 

expressions in fifth paragraph of previous section (“3.1 Software programs used in 

the study”). Internal force diagrams of this analysis can be seen in Figure-3.8 as 

follows; 

 

 

(a) Shear force diagram 

 

(b) Bending moment diagram 

 
Figure-3. 8 Internal force diagrams after third step of analysis in SAP2000 

 
However, it has been observed that by repeating the analyses, similar shear force 

diagram with previous analysis was obtained. Unlike shear force diagram, bending 

moment diagram has showed similar form with the one in PLAXIS as can be seen 

in Figure-3.6b and Figure-3.8b. Dissimilarity between shear diagrams has not been 

accepted and model has been revised. At the next step, for the purpose of 
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obtaining a more accurate stress and deformation distribution, springs was 

changed with ‘links’, additionally start and end springs was removed in SAP2000 

model. Links are members that transmit the deflections, rotations or forces with 

specific damping ratio. With this aspect, they show similar behavior to springs. 

Also, since existence of more structural member (sections) leads to more time-

effort in analyzing process, beam was divided into 10 sections again for enable 

faster analysis process in SAP2000. After these modifications on the model and 

analysis, force diagrams have been obtained as can be seen in Figure-3.9; 

 

 

(a) Shear force diagram 

 

(b) Bending moment diagram 

 
Figure-3. 9 Internal force diagrams after fourth step of analysis in SAP2000 

 
As can be examined in Figure-3.6 and Figure-3.9, internal force diagram shapes of 

PLAXIS and SAP2000 has approximated to each other after fourth step of 

SAP2000 analysis. However, moment diagram of SAP2000 has remained at 

negative side. Since it is considered that there is no difference between springs 

and links as behavioral, links in last version (fourth step) of SAP2000 model have 

been changed with springs again, beam has been divided into 50 sections (to 

obtain more accurate results) and analysis has been repeated. After that, similar 

form with Figure-3.9 but more sensitive internal force diagrams have been obtained 

as can be seen in Figure-3.10; 
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(a) Shear force diagram 

 

(b) Bending moment diagram 

 

Figure-3. 10 Internal force diagrams after fifth step of analysis in SAP2000 

 
As explained in Chapter 2 (Literature review), according to the approaches which 

proposed by Winkler (1867) and Bowles (1997), edge springs with more rigidity 

can be defined in model. Considering this, to obtain similar results with PLAXIS, it 

has been decided to creating the spring zones with more rigidity at the edges of 

beam initially. Subsequently, in accordance with expressions in fifth paragraph of 

Section 3.1 (“…increasing the number of springs, the system will behave more 

realistically…”), the beam have been divided into more sections (100 sections) and 

number of springs was increased. Eventually, similar shapes of internal force 

diagrams with PLAXIS model were obtained after these modifications on SAP2000 

model. Internal force diagrams of this model can be seen in Figure-3.11. 

 
 

 

(a) Shear force diagram 

 

 

(b) Bending moment diagram 

 
Figure-3. 11 Internal force diagrams after sixth step of analysis in SAP2000 
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However, it is not clear how to determine the lengths and the stiffness of the spring 

zones. To determine the lengths and the spring constants of the spring zones, 

many other variation of last version of the SAP2000 model (6th step) with different 

spring zone lengths and different spring constants has been analyzed. Comparison 

of the results is given in Table-3.6 below; 

 
Table-3. 6 Comparison between initial PLAXIS model and SAP2000 models with 

different spring zones 

 

**There is no analysis/model in PLAXIS software with different spring zones. Spring 

zones was created in SAP2000 model for just obtain similar results with PLAXIS. The 

column “Results of initial PLAXIS model” in the table, added for the purpose of 

comparing with the SAP2000 results. 

 
In Table-3.6, models with minimal deviation are showed by rows marked with red. 

Fourth column of the table shows the proportion of subgrade reaction modulus 

(spring constant) to normal value of subgrade reaction modulus ‘ks’ in first zone, 

likewise fifth column shows the mentioned proportion in second zone. For instance; 

at the model in second row, spring constant is 150% (or 1.5 times) of normal value 

‘ks’ in first spring zone (thus, meaning is that: ks1 = 1.5ks). According to these 

results, it can be observed that results of model whose spring constant at the first 
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zone is 156% of normal value (ks1=1.56ks, ks2=1.28ks) has the most consistent 

deviation values. Because, although the deviations of the model in the second row 

(ks1 = 1.5ks and ks2 = 1.25ks) seem to be numerically less than the values of the 

model in the fifth row, differences between deviations of model at the fifth row 

(ks1=1.56ks) are less in comparison with model in the second row. Thus, it is 

recommended that spring zones should be created in accordance with model at 

the fifth row (ks1=1.56ks, ks2=1.28ks). 

 
Furthermore, it was tried to determine how many sections the beam (or foundation) 

should be divided into. In addition to previously mentioned SAP2000 model 

(consists of 100 sections), models which consist of 50 sections and 1000 sections 

have been created analyzed respectively. The internal forces-deformations outputs 

and the deviations from PLAXIS model of these SAP2000 models are given in 

Table-3.7; 

 
Table-3. 7 Comparison between PLAXIS and SAP2000 models with different 

number of sections 

 

 
As can be seen in table above, there is not too much difference between deviations 

from PLAXIS model of all SAP2000 models whose number of sections is different. 

However, the least deviations were obtained from model with 100 sections. 

Moreover, as can be seen in Figure-3.12 below, there is no difference between 

forms of internal force diagrams of SAP2000 models with different number of 

sections.  
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Figure-3. 12 Internal force diagrams of models with different number of sections 

 
 

It should be remembered that if there is more structural members (sections), time 

period of analysis is increased. In accordance with all of these situations, it is 

recommended that foundation member should be divided into sections which 

dimensions are 1% (100 sections) of own width (or length). Internal force diagrams 

of SAP2000 model (11th step of analysis) with ks1=1.56ks, ks2=1.28ks and 100 

sections are given in Figure-3.12; 
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(a) Shear force diagram with numerical values 

 

 

(b) Bending moment diagram with numerical values 

 
Figure-3. 13 Internal force diagrams of 11th version of SAP2000 model 

 
Additionally; maximum settlement, maximum shear force and bending moment 

values obtained from 11th analysis of SAP2000 model are given in tabular form as 

can be seen in Table-3.8 through Table-3.10; 
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Table-3. 8 Joint displacements of the 11th version of SAP2000 model 

 

- Blue line shows the maximum value. ‘U3’ means that joint displacement in vertical direction 

 
 

Table-3. 9 Shear forces of the 11th version of SAP2000 model 

 

- Blue line shows the maximum value. ‘V2’ means that shear force at beam section 
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Table-3. 10 Bending moments of the 11th version of SAP2000 model 

 

- Blue line shows the maximum values. ‘M3’ means that bending moment at beam section 

 
Due to the reasons explained previously, reference SAP2000 model which 

corresponds to the first PLAXIS model has been accepted as 11th version of 

SAP2000 model. 10% deviation of results between SAP2000 and PLAXIS models 

has been accepted as negligible (All results of the 11th version is given in Table-3.8 

through Table.3-10 and Figure.3-13). 

 
As mentioned before, initial PLAXIS model and 11th version of SAP2000 model 

have been assumed as equivalent. After this phase of analyses, parameters such 

as soil or geometrical properties of foundation was modified in PLAXIS and a 

SAP2000 model that corresponds to that was derived. At the commencement, 

derivations have been applied on model whose length is 10m and width & 

thickness are 1m and first parameter to be changed has been chosen as internal 

friction angle ‘’. Results of first derivation in PLAXIS are given in Table-3.11; 
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Table-3. 11 Results of different ‘’ values in PLAXIS (10m Length, 1m thickness) 

 

- Row marked with gray shows the initial input data 

 
However, after analysis of SAP2000 models that corresponds to PLAXIS models 

with different , it has been observed that deviations of the shear force and the 

bending moment are quite higher than the deviation of settlement values as can be 

seen in Table-3.12; 

 

Table-3. 12 Result comparison of PLAXIS and SAP in case  is variable 

 

- Row marked with yellow shows the results of reference model 

- Spring constant is obtained by formula ‘ks=Δσ/Δδ’ (pressure/displacement) in PLAXIS 

 
By observing Table-3.12, while spring constant value is changed, although 

settlement value has changed proportional with PLAXIS in SAP2000 models, shear 

force and bending moment has not been changed much. This situation has been 

interpreted as result of ratio between spring constants of different spring zones are 

not changed in SAP2000 models. In more detail, spring constant of first zone is 

1.56 times of normal value (middle zone) and spring constant of second zone is 

1.28 times of normal value (middle zone). Even if the spring constant value 

changes numerically, the proportion between the spring constants of the first and 

second zone and the central zone remains constant. Therefore, there is no change 

in rigidity between the first and second zones and the middle zone. It has been 
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considered that this situation leads to the shear forces and the bending moments 

remain as constant approximately. 

 
After this phase, deviations in shear force and bending moment have not been 

taken into consideration and analyses have been continued considering the 

consistency of settlement (joint displacement) values. Internal friction angle ‘’, 

cohesion ‘c’ and modulus of elasticity ‘E’ values have been altered on model 

whose dimensions of beam are Width=10m, Thickness=1m in PLAXIS. These 

analyses have been done according to the Poisson’s ratio of soil ‘ν’ equals to the 

0.3. All of these analyses have also been repeated according to the Poisson’s ratio 

‘ν=0.2’ and different dimensions of beam. A model corresponding to each 

settlement value in PLAXIS has been created and analyzed in SAP2000 with 

changing the spring constant (subgrade reaction modulus). Also, variation of 

settlement value as percentage between derived and reference models in PLAXIS 

has been tried to keep in SAP2000. The analysis results are provided in Table-3.13 

through Table-3.30. Spring constant is obtained by formula ‘ks = Δσ / Δδ’ 

(pressure/displacement) in PLAXIS software. 

 
 

Table-3. 13 Analysis results of the beam: B=10m, H=1m, ‘’ & ‘ν’ are variable 

 

Row marked with yellow shows the results of reference model for dimensions: B=10m, H=1m 
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Table-3. 14 Analysis results of the beam: B=10m, H=1m, ‘c’ & ‘ν’ are variable 

 

 
 
 

Table-3. 15 Analysis results of the beam: B=10m, H=1m, ‘E’ & ‘ν’ are variable 

 

 
 
 

Table-3. 16 Analysis results of the beam: B=10m, H=0.5m, ‘’ & ‘ν’ are variable 

 

Row marked with yellow shows the results of reference model for dimensions: B=10m, H=0.5m 
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Table-3. 17 Analysis results of the beam : B=10m, H=0.5m, ‘c’ & ‘ν’ are variable 

 

 
 
 

Table-3. 18 Analysis results of the beam: B=10m, H=0.5m, ‘E’ & ‘ν’ are variable 

 

 
 
 

Table-3. 19 Analysis results of the beam: B=5m, H=1m, ‘’ & ‘ν’ are variable 

 

Row marked with yellow shows the results of reference model for dimensions: B=10m, H=0.5m 
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Table-3. 20 Analysis results of the beam: B=5m, H=1m, ‘c’ & ‘ν’ are variable 

 

 
 
 

Table-3. 21 Analysis results of the beam: B=5m, H=1m, ‘E’ & ‘ν’ are variable 

 

 
 
 

Table-3. 22 Analysis results of the beam: B=5m, H=0.5m, ‘’ & ‘ν’ are variable 

 

Row marked with yellow shows the results of reference model for dimension of beam: B=10m, 

H=0.5m 
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Table-3. 23 Analysis results of the beam: B=5m, H=0.5m, ‘c’ & ‘ν’ are variable 

 

 
 
 

Table-3. 24 Analysis results of the beam: B=5m, H=0.5m, ‘E’ & ‘ν’ are variable 

 

 
 
 

Table-3. 25 Analysis results of the beam: B=20m, H=1m, ‘’ & ‘ν’ are variable 

 

Row marked with yellow shows the results of reference model for dimensions: B=10m, H=0.5m 
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Table-3. 26 Analysis results of the beam: B=20m, H=1m, ‘c’ & ‘ν’ are variable 

 

 
 
 

Table-3. 27 Analysis results of the beam: B=20m, H=1m, ‘E’ & ‘ν’ are variable 

 

 
 
 

Table-3. 28 Analysis results of the beam: B=20m, H=0.5m, ‘’ & ‘ν’ are variable 

 

Row marked with yellow shows the results of reference model for dimensions: B=10m, H=0.5m 
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Table-3. 29 Analysis results of the beam: B=20m, H=0.5m, ‘c’ & ‘ν’ are variable 

 

 
 
 

Table-3. 30 Analysis results of the beam: B=20m, H=0.5m, ‘E’ & ‘ν’ are variable 

 

 
The results of obtained from these analyses will be further discussed in Chapter 4. 

 
 

3.3 Concluding Remarks 

In this chapter, software programs used in this study are introduced firstly. 

Subsequently; material properties, soil properties and foundation member 

geometry to be modeled are stated. In addition, the first created PLAXIS and 

SAP2000 models and their comparisons with each other are mentioned. Finally, 

analysis results for beams with different geometries and soil properties are 

presented. Furthermore, 134 analyses were done in this study, 2 of them are 

ignored due to excessive deviation. Modulus of Elasticity ‘E’, internal friction angle 

of soil ‘ɸ’, cohesion ‘c’, Poisson’s ratio of soil ‘ν’, width of foundation ‘B’ and 

thickness of foundation ‘H’ are parameters which utilized in analyses. 
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4. DISCUSSION of RESULTS 

 

 

 

4.1 Modeling 

4.1.1 Modeling in SAP2000 

As mentioned in the previous chapter, three zones for subgrade reaction modulus 

were defined on the beam element in SAP2000 model. The length and spring 

constants of these zones have been determined according to the results of 

repetitive analyses. As previously explained, it was observed that SAP2000 

analyses conducted without defining zones, deformation shape of beam does not 

give consistent results and internal forces do not correspond to PLAXIS results as 

can be examined in Figure-4.1 and Table-4.1; 

 
 

 

(a) Deformed shape of beam without spring zones 

 

 

(b) Deformed shape of beam with spring zones 

 
Figure-4. 1 Deformed shapes of the beams with and without spring zones 

(Deformed shape of beams scaled up 300 times) 

 
 
 
 
 
 
 
 
 
 
 



50 
 

Table-4. 1 Results of SAP2000 models with different spring zones 

 

- Results of initial PLAXIS model given in Figure-3.5 & Figure-3.6 

- Rows marked with red show the conditions and results of the most consistent SAP2000 

models 

 
As can be seen in the figures and tables above, defining the spring zones with 

different stiffness properties at the edges of beam provides more consistent and 

accurate results. Therefore, it is recommended that spring zones should be defined 

at the edges of the beam. In this study, model whose length of the first and the 

second zone is 13% of total length of beam (model in fifth row at Table-4.1) has 

been preferred due to smaller deviations. Spring constant of the first and the 

second zones are 1.56 and 1.28 times of the middle zone respectively. Illustration 

of recommended spring zones can be examined in Figure-4.2; 
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Figure-4. 2 Zones with different subgrade reaction modulus (spring constant) 

 
 

4.1.2 Modeling in PLAXIS 

While modeling any type of geotechnical structure or soil in PLAXIS, they are 

divided into finite number of meshes. In general, defining finer meshes in finite 

element method, more realistic solutions can be obtained. Keeping all other 

parameters constant, results obtained from very coarse and medium mesh sizes 

are presented in Figure-4.3 through Figure-4.6; 

 

 

Figure-4. 3 Deformed shape of very coarse-grained soil medium 
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(a) 

 

 

(b) 

Figure-4. 4 Maximum internal forces (very coarse-grained model) 

 
 

 

Figure-4. 5 Deformed shape of medium grained soil medium 
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(a) 

 

 

(b) 

Figure-4. 6 Maximum internal forces in beam section (medium-grained model) 

 
 

As can be seen in foregoing figures, although settlement values do not vary too 

much, internal forces of plate (beam, foundation etc.) vary 20% ~ 25% 

approximately. In case internal forces have been assumed as reference, this 

situation may lead to mistakes. Consequently, dividing the soil into as much mesh 

as possible will give more realistic results. However, it should be remembered that 

the analyses will be more laborious and time consuming. 

 

4.2 Parameters Which Affect the Results 

4.2.1 Internal Friction Angle ‘’ 

The internal friction angle is one of the most critical parameters in terms of shear 

strength of the soil. It is a parameter that mostly represents granular soils such as 

sands and gravels. Angle of internal friction is represented by the slope of failure 

envelope in Mohr-Coulomb failure criterion graph as can be examined in Figure-

4.7; 
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Figure-4. 7 Mohr’s circle and failure envelope 

 
 
According to the results of the analyses, it is observed that the maximum 

settlement of the foundation member decreases significantly as the internal friction 

angle increases. Compared to the reference model, variation of the settlement 

value reaches up to 80-90% level. For the foundations of different geometry, the 

analysis results according to the cases where the Poisson’s ratio equals to the 0.2 

and 0.3 are presented in Table-4.2 through Table-4.7. Since effect of internal 

friction angle on spring constant is examined in only PLAXIS software in this 

chapter, only spring constant obtained from PLAXIS has been presented in tables 

below. 

 
 

Table-4. 2 Variation of settlement value if  is variable, ν=0.3 and B=10m 
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Table-4. 3 Variation of settlement value if  is variable, ν=0.3 and B=5m 

 

 
 
 

Table-4. 4 Variation of settlement value if  is variable, ν =0.3 and B=20m 

 

 
 
 

Table-4. 5 Variation of settlement value if  is variable, ν=0.2 and B=10m 
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Table-4. 6 Variation of settlement value if  is variable, ν=0.2 and B=5m 

 

 
 
 

Table-4. 7 Variation of settlement value if  is variable, ν=0.2 and B=20m 

 

 
 

Variation of settlement with respect to ‘’, ν is also given in Figure-4.8 and Figure-

4.9. These figures summarize the findings presented in the tables above. Some of 

the bending moment values in tables above are seemed with minus ‘ - ’ sign. It has 

been observed that decreasing the internal friction angle to a specific value (this 

value is ɸ=20° in performed analyses) causes the moment diagram to change 

direction. 
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Figure-4. 8 ‘’ – Settlement variation for ν=0.3 

 

 

Figure-4. 9 ‘’ – Settlement variation for ν=0.2 

 

As can be seen in tables and figures above, internal friction angle ‘’ affects the 

settlement values considerably. It can be concluded that ‘’ can be used as 

parameter that to determine the subgrade reaction modulus ‘ks’. 

 
 

4.2.2 Cohesion ‘c’ 

The other shear strength parameter that was used in this study is cohesion ‘c’. It is 

a parameter that mostly represents cohesive soils such as silts and clays. 

Cohesion is represented by vertical axis in Mohr-Coulomb failure criterion chart as 

showed previously (Figure-4.7). For different geometries and different Poisson’s 
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ratios (ν=0.2 and ν=0.3), analysis results of conditions where cohesion is a variable 

parameter are submitted in Table-4.8 and Table-4.9. Since effect of cohesion on 

spring constant is examined in only PLAXIS software in this chapter, only spring 

constant obtained from PLAXIS has been presented in tables below. 

 
 
 

Table-4. 8 Variation of settlement value if c is variable and ν=0.3 
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Table-4. 9 Variation of settlement value if c is variable and ν=0.2 

 

 
 

A graphical representation which shows the variation of settlement values with 

respect to cohesion is given in Figure-4.10 and Figure-4.11 as follows. 

 
 

 

Figure-4. 10 Cohesion – Settlement variation for ν=0.3 
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Figure-4. 11 Cohesion – Settlement variation for ν=0.2 

 
As can be seen in the previous tables, changing the cohesion value does not affect 

the results considerably. Considering this fact, cohesion value has not been 

included in the equation proposed as can be seen in following sections. 

 

4.2.3 Modulus of Elasticity ‘E’ (Young’s modulus) 

The most important soil parameter that defines the rigidity of soil is the modulus of 

elasticity ‘E’. This parameter is similar to the spring constant with this aspect. 

Modulus of elasticity is an indicator of a material’s stiffness or resistance to elastic 

deformation under loading. It is related with stress to strain along an axis or line. 

The basic principle is that, a material is exposed to elastic deformation when it is 

compressed or extended and returns to its original shape when the load is 

removed. More deformation occurs in an elastic material compared to a stiff 

material. In other words, a low modulus of elasticity value means solid is elastic; a 

high modulus of elasticity value means a solid is stiff. If we take a glance at 

Hooke's law and his stress-strain chart, we see that Modulus of elasticity (Young's 

modulus) of any material have resemblance to the spring constant. Therefore, it 

can be expected that modulus of elasticity affects the settlement value 

considerably. The results of the analysis where modulus of elasticity is variable 

have been presented in Table-4.10 through Table-4.15. Since effect of modulus of 

elasticity on spring constant is examined in only PLAXIS software in this chapter, 

only spring constant obtained from PLAXIS has been presented in tables below. 
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Table-4. 10 Variation of settlement value if E is variable, ν=0.3 and B=10m 

 

 
 

Table-4. 11 Variation of settlement value if E is variable, ν=0.3 and B=5m 

 

 

 
Table-4. 12 Variation of settlement value if E is variable, ν=0.3 and B=20m 
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Table-4. 13 Variation of settlement value if E is variable, ν=0.2 and B=10m 

 

 
 

Table-4. 14 Variation of settlement value if E is variable, ν=0.2 and B=5m 

 

 
 

Table-4. 15 Variation of settlement value if E is variable, ν=0.2 and B=20m 
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Modulus of elasticity and settlement variation is given in Figure-4.12 and Figure-

4.13. 

 

 

Figure-4. 12 Modulus of elasticity – settlement variation for ν=0.3 

 

 

Figure-4. 13 Modulus of elasticity – settlement variation for ν=0.2 

 
 

As can be seen in tables and figures above, there is a directly relationship between 

settlement and modulus of elasticity. It has been observed that Modulus of 

elasticity increases, settlement values decrease. Considering these conditions, 

using modulus of elasticity in equation to be proposed is highly recommended. 
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4.2.4 Poisson’s Ratio ‘ν’ 

Poisson's ratio defines the lateral deformation of any material under loading at axis 

perpendicular to the lateral axis. This parameter is significant for elastic properties 

and used for studying on load and deflection characteristics and effective for 

isotropic materials. Poisson’s Ratio is described as can be examined in Figure-

4.14; 

 

 

Figure-4. 14 Illustration of Poisson’s ratio definition 

 
 

All analysis results for Poisson’s ratio of ‘ ν = 0.3 ’ and ‘ ν = 0.2 ’ have been 

submitted in Table-4.16 through Table-4.18. Since effect of Poisson’s Ratio on 

spring constant is examined in only PLAXIS software in this chapter, only spring 

constant obtained from PLAXIS has been presented in tables below. 
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Table-4. 16 Analysis results for beam: B=10m and H=1m & 0.5m 

 

- Rows marked with yellow show the Reference models 
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Table-4. 17 Analysis results for beam: B=5m and H=1m & 0.5m 

 

- Rows marked with yellow show the Reference models 
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Table-4. 18 Analysis results for beam: B=20m and H=1m & 0.5m 

 

- Rows marked with yellow show the Reference models 

 
Poisson’s ratio and settlement variation can be seen in Figure-4.15 below. This 

relation is given for B=10m, H=1m beam. Similar relation has been observed for 

beams of different dimensions. 
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Figure-4. 15 Poisson’s ratio – Settlement variation for B=10m, H=1m beam 

 
 
As can be seen in tables and figure given above, in soil-foundation models whose 

Poisson’s ratio equals to 0.2 the settlement values are the higher. From Figure-

4.14, it can be concluded that the greater Poisson’s ratio value means the greater 

lateral strain or smaller linear strain value, likewise, smaller Poisson’s ratio value 

means the smaller lateral strain or the greater linear strain value. Therefore, in this 

respect, the results of analyses are consistent. It has been realized that Poisson’s 

ratio is crucial parameter in terms of stress-deformation characteristics and using in 

the equation to be proposed can be recommended. 

 

4.2.5 Geometric Properties of Foundation 

Width ‘B’ and thickness ‘H’ of foundation member has been dealt with as geometric 

property. In addition to the aforementioned parameters, geometric properties have 

been altered and analyses have been repeated. Geometric properties are 

considerable in terms of defining the flexural rigidity characteristics of foundation. 

Analysis results that consists the effect of geometric properties have been 

submitted in Table-4.19 through Table-4.21. Since effect of geometric properties 

on spring constant is examined in only PLAXIS software in this chapter, only spring 

constant obtained from PLAXIS has been presented in tables below. 
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Table-4. 19 Analysis results of B=5m, H=0.5m and B=5m, H=1m (ν=0.3) 

 

 
 
Except for some of internal forces, considerable difference has not been observed 

in analysis results between H=0.5m and H=1m beams given in table above. It can 

be concluded that thickness of beam could not lead too much change. 
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Table-4. 20 Analysis results of B=10m, H=0.5m and B=10m, H=1m (ν=0.3) 

 

 
 

It can be observed in the table given above that the settlement values decreases a 

bit in the model which beam thickness is 1m in comparison with the model which 

beam thickness is 0.5m. However, comparison in terms of internal forces between 

the same models, internal forces have increased considerably. The internal forces 

did not change much in the models with beam width of 5m. This situation can be 

interpreted as a result of rigidity of beam increased. Compared to the previous 

model (B=5m models, Table-4.19), with the effect of increasing beam width, the 

effect of increasing beam thickness became more noticeable. 
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Table-4. 21 Analysis results of B=20m, H=0.5m and B=20m, H=1m (ν=0.3) 

 

 
 
When the results of Table-4.21 compared with the results of Table-4.20; again, the 

settlement value of beams with a thickness of 1m is lower than that of beams with 

a thickness of 0.5m. However, the amount of this reduction was greater in 10m 

wide beams.  

 
As a summary; i) the increase in thickness did not cause a significant change in 5m 

wide beams, there was only a slight decrease in the settlement value of the 10m 

wide beams and ii) the internal forces increased significantly. In the 20m wide 

beams, the settlement value decreased slightly with increasing thickness, but this 

decrease was less than 10m wide beams and the internal forces increased 

excessively. A similar change was observed in models with a Poisson’s ratio of 0.2, 



72 
 

but the reduction in settlement values with increasing beam width was even less 

here as expected. 

 
Thickness of the beam ‘H’ and the settlement variation is given in Figure-4.16 

below for different soil parameters and 5m wide beam. In different thickness of 

beams, similar relation has been observed. 

 

 

Figure-4. 16 Thickness of beam – Settlement variation for 5m wide beam 
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The analysis results with Poisson's ratio is 0.2 are presented in Table-4.22 through 

Table-4.24; 

 
 

Table-4. 22 Analysis results of B=5m, H=0.5m and B=5m, H=1m (ν=0.2) 
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Table-4. 23 Analysis results of B=10m, H=0.5m and B=10m, H=1m (ν=0.2) 
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Table-4. 24 Analysis results of B=20m, H=0.5m and B=20m, H=1m (ν=0.2) 

 

 
The increase in thickness had a partial effect on beams of the same width, but this 

effect could not be interpreted completely as there was no linear change in the 

comparison of beams of different widths. When the beams of the same thicknesses 

are compared, the increase in width significantly leads to an increase in settlement 

values and internal forces. 

 
From these results, it can be concluded that the effect of beam thickness on 

settlement value is limited and the effect of beam width is higher. Internal forces 

are more affected by the dimensional changes of the beam compared to the 

settlement values. Consequently, both beam width and beam thickness are 

considered to be included in the equation to be proposed. 
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4.3 Final Results of Analyses 

As a summary all results obtained are presented in tabular form. How the formula 

is obtained will be described in the following sections. All tables can be examined 

in Table-4.25 through Table-4.30: 

 
Table-4. 25 Ultimate analysis results for B=10m, H=1m 

 

 
Table-4. 26 Ultimate analysis results for B=10m, H=0.5m 
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Table-4. 27 Ultimate analysis results for B=5m, H=1.0m 

 

 
 
 
 

Table-4. 28 Ultimate analysis results for B=5m, H=0.5m 
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Table-4. 29 Ultimate analysis results for B=20m, H=1.0m 

 

 
 
 
 

Table-4. 30 Ultimate analysis results for B=20m, H=0.5m 
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4.4 Simplified Procedure for Determining the Subgrade Reaction Modulus ‘ks’ 

As explained previously, analyses have been performed in PLAXIS and SAP2000 

to obtain the similar settlement values with different input parameters. In PLAXIS, 

the soil is defined with different parameters such as c, , E, ν etc., where the spring 

constant ks is the only parameter related with soil in SAP2000 analysis. By 

considering both the units and the relations in between the parameters and the 

settlement values obtained in the previous sections, i) E, ii) B and iii) ν can be 

selected to be used in the equation which will be used for determining ks. After 

defining these important input parameters, the second step is developing a limit 

state expression that captures these essential parameters. The limit state 

expression developed at this initial point is presented below in which 1,2,...,n are the 

unknown model coefficients and constants. 

 

ks = θ1 * 
E

B
  * (θ2 – ν) 

Equation-4. 1 Likelihood function for subgrade reaction modulus 

 
 

As part of maximum likelihood methodology, the  values are estimated which 

makes the likelihood function maximum. The Equation-4.1 then takes the form: 

 

ks = 0.854 * 
E

B
  * (1 – ν) 

Equation-4. 2 Preliminary equation for subgrade reaction modulus 

 
For comparison, the subgrade reaction modulus value obtained from the analyses 

and the formula are plotted in Figure-4.17. In this figure, the bold line shows 

kformula

kanalysis
  = 1 where the dashed lines are the 1:2 and 2:1 lines. 
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Figure-4. 17 “kformula – kanalysis” plot of Equation-4.2 

 
 
It can be seen from Figure-4.17, although some values correspond to each other, 

most of the values do not correspond to each other (kformula – kanalysis) which points 

out a modification in the equation should be proposed. In addition to this, the 

residual values which are calculated as “ Residual = ln ( 
kformula

kanalysis
   ) ” are also plotted 

against the variables of the equations. Residual values can be seen in Figure-4.18; 

 
 

 

Figure-4. 18 Residual values of Equation-4.2 (for Modulus of Elasticity) 
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As mentioned previously, more parameters are required for a better estimation of 

ks value. The tables 4.26 through 4.31 show that subgrade reaction modulus is 

directly proportional with Cohesion ‘c’, internal friction angle ‘’, modulus of 

elasticity ‘E’, thickness of beam ‘H’ parameters. Width of beam ‘B’ and Poisson’s 

ratio ‘ν’ parameters are in inversely proportional with subgrade reaction modulus. 

Accordingly, in a formula to be created as a fraction, directly proportional 

parameters should be placed in the numerator and inversely proportional 

parameters in the denominator as can be seen in Equation-4.3. It should be noted 

that using ‘’ as directly with own numerical value in the equation may lead to 

higher deviations, adding as a trigonometric expression will be more accurate 

probably. 

 

ks  ~  
c ,  , E , H

B , ν
  

Equation-4. 3 Approximate draft of subgrade reaction modulus formula 

 
Since it leads to more deviation at the previous attempt of the creating an equation, 

besides, due to the situation that it will be more accurately that inversely 

proportional parameters should be placed at denominator as mentioned in previous 

paragraph, expression of "( 1 – ν )" is placed at denominator. 

 

ks = θ1 * 
E

Bθ2 . (θ3 – ν)
  

Equation-4. 4 Second version of likelihood function for subgrade reaction modulus 

 
 
In accordance with the previous expressions, E is placed at numerator and B is 

placed at denominator. Using likelihood methodology, the Equation-4.4 then takes 

the form: 

 

ks = 0.146 * 
E

B0.445 . (1 – ν)
  

Equation-4. 5 Second version of the equation for subgrade reaction modulus 
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The comparison of the results obtained from this equation and the analysis is 

presented in Figure-4.19 and residual values is presented in Figure-4.20. Although 

this equation is a better approximation than the previous one, in order to include all 

parameters mentioned before and to obtain a more consistent equation, a further 

step is needed to modify the equation. 

 

 

Figure-4. 19 “kformula – kanalysis” plot of Equation-4.5 

 
 

 

Figure-4. 20 Residual values of Equation-4.5 (for Modulus of Elasticity) 

 
 

After testing many different alternatives, the best alternative was obtained as 

presented in Equation-4.6: 
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ks = 0.0383  *  
E

B0.447 . ( 1 - ν )
  * (1 + sin)2.96 * (1 + H)0,284 

Equation-4. 6 Final version of the equation for subgrade reaction modulus 

 
 
Power coefficients of ‘B’, ‘ɸ’ and ‘H’ are rounded up for practical using of the 

equation. The Equation-4.6 then takes the form; 

 

ks = 0.0383  *  
E

B0.45 . ( 1 - ν )
  * (1 + sin)3 * (1 + H)0,3 

Equation-4. 7 Proposed equation for determining the subgrade reaction modulus 

 

Similar to the above ones, the comparison of the calculated and the formula results 

is presented in Figure-4.21. Figure-4.22 through 4.27 show the residual plots. As 

these figures imply, there Is not a bias against any at the parameters used in the 

equation. 

 

 

Figure-4. 21 “kformula – kanalysis” plot of Equation-4.7 

 



84 
 

 

Figure-4. 22 Residual values of Equation-4.7 (for Modulus of Elasticity) 

 

 

Figure-4. 23 Residual values of Equation-4.7 (for Cohesion) 

 

 

Figure-4. 24 Residual values of Equation-4.7 (for Internal friction angle) 
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Figure-4. 25 Residual values of Equation-4.7 (for Poisson’s ratio) 

 
 

 

Figure-4. 26 Residual values of Equation-4.7 (for width of the foundation) 

 
 

 

Figure-4. 27 Residual values of Equation-4.7 (for thickness of the foundation) 
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4.5 Concluding Remarks 

In this chapter, the results of the analysis performed by two different numerical 

analysis softwares are presented. The variation in settlement values with changes 

in different soil and foundation parameters are presented in detail. Additionally, a 

simplified procedure for obtaining the soil subgrade modulus is developed within a 

probabilistic framework using properties of soil (E, , ν) and foundation (B, H). 

Resulting formula is presented in Equation-4.7. Final conclusions will be further 

mentioned in Chapter 5. 
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5. CONCLUSIONS 

 
 
 

Many researchers have studied on subgrade reaction modulus concept. These 

approaches are based on Winkler foundation model and soil-foundation interaction. 

When focusing on this concept, while some researchers used basic differential 

equations that related with this topic, others utilized the empirical conclusions. 

 
In this study, subgrade reaction modulus concept has been examined and 

numerical modeling has been carried out in accordance with the basic theory of 

Winkler approach. Generic soil and foundation properties are selected in numerical 

models performed in PLAXIS and SAP2000 softwares.  In the models analyzed 

using finite element method, different soil parameters and foundation properties 

have been used. In this parametric study, results are recorded for each case and 

compared to each other. The main objective was obtaining the similar (at most 

within 10% deviation range) settlement values in both of these two different 

platforms. 

 
After being satisfied with the results obtained from these two softwares, the next 

step is proposing a simplified equation using probabilistic methods. In this equation 

the main parameters to be included are selected to be the modulus of elasticity (E), 

internal friction angle () and Poisson’s ratio (ν) of the soil as well as the width (B) 

and height (H) of the foundation member.  Having tried many alternatives, the most 

accurate one becomes as follows which is also presented in Equation-4.7 given 

below; 

 

k = 0.0383  *  
E

B0.45 . ( 1 - ν )
  * (1 + sin)3 * (1 + H)0,3 

 

It is believed that this equation will contribute to determination of the subgrade 

reaction modulus using the basic and simple properties of soil and foundation 

which are calculated in preliminary design steps in each project and will simplify 
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design.  This equation is obtained as a result of many different parameters 

including E, ν, ϕ and geometrical parameters of foundation. Therefore, it is 

considered that the equation can be used for all soil types except for extreme 

conditions. 

 
However, to obtain a consistent and good result from this study, it should be 

ensured that the soil parameters are correctly determined. Inconsistent soil 

parameters can lead to misleading results. In addition, this study has been 

conducted under uniform loading conditions for elements of wide-use geometry 

such as foundation beam or raft foundation, and more extensive analyses may be 

required for extraordinary loading and different geometry conditions. 

 
The following conclusions were reached in this study; 

 While modeling foundations on structural analysis softwares, spring zones with 

different subgrade reaction modules should absolutely be defined at the edges 

of foundation. As a result of this study, two spring zones are proposed at the 

edges of foundations (beams in the model). The first zone is the first 13% of the 

total beam length at the beam ends. The second zone is the 13% of total length 

after the first zone. Width of foundation can be used instead of length for 

mat/raft foundations. 

 As can be seen in Table-4.1, if the spring zones are defined as 10% of the total 

length and if the spring constants of the first and second zones are 1.5 and 1.25 

times of the normal value respectively, reasonable results can be obtained. 

However, the results of this study reveals that defining the spring constants of 

the first and the second zones as 1.56 times and 1.28 times the normal value of 

subgrade reaction respectively will provides less differences between 

deviations from the PLAXIS model. Also, springs zones should be 13% of total 

width (or length) of foundation. Therefore, it is recommended to define the 

spring zones as shown in Figure-5.1; 
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Figure-5. 1 Spring zones recommended 

 

 Since the effect of cohesion ‘c’ on subgrade reaction modulus is very limited, it 

is not included in the proposed formula. 

 Width of foundation ‘B’, thickness of foundation ‘H’ and internal friction angle ‘’ 

are the parameters that affect the subgrade reaction modulus to a certain 

extent. In the equation where these parameters were not used, the values of 

the subgrade reaction modulus obtained from the formula and analysis showed 

more deviation from each other, while the consistency was increased with the 

addition of these parameters. Therefore, it is recommended that these 

parameters should include in the calculations. 

 It should be noted that proposed relation (Equation-4.7) is obtained under 

boundary conditions below; 

- Modulus of Elasticity ‘E’ : 40000 kPa ≤ E ≤ 200000 kPa 

- Internal friction angle ‘ɸ’ : 20° ≤ ɸ ≤ 35° 

- Cohesion ‘c’   : 5 kPa ≤ c ≤ 50 kPa 

- Poisson’s ratio ‘ν’  : 0.2 ≤ ν ≤ 0.3 

- Width of foundation ‘B’  : 5m ≤ B ≤ 20m 

- Thickness of foundation ‘H’ : 0.5m ≤ H ≤ 1.0m 

 It should be kept in mind that the results in this study are only obtained from 

numerical analysis and no validation with a real case has been performed. For 

this reason, the design engineers should use it with a great care and if a critical 

structure is to be designed, a detailed study should be performed instead of 

using this simplified approach.  
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