
ALTERNATIVE DIGITAL SIGNATURE SCHEMES

IN BLOCKCHAIN

BLOK ZİNCİRDE

ALTERNATİF DİJİTAL İMZA ŞEMALARI

FAHRETTİN YAVUZYİĞİT

ASSOC. PROF. DR. OĞUZ YAYLA

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Mathematics

2019

To the memory of my mother Kamile YAVUZYİĞİT

ABSTRACT

ALTERNATIVE DIGITAL SIGNATURE SCHEMES IN

BLOCKCHAIN

Fahrettin YAVUZYİĞİT

Master of Science, Department of Mathematics

Supervisor: Assoc. Prof. Dr. Oğuz YAYLA

June 2019, 51 pages

This thesis is a study on authentication methods of Bitcoin ecosystem which is an application

of blockchain. Firstly, the facilities given by Bitcoin along with its security requirements are

examined from a perspective that can be used in place of today’s banking system. Bitcoin

ecosystem is a use case of blockchain and its current transaction authentication methods are

well studied in the literature, and based on this, the questions are raised, "Could the common

account and the proxy concepts of banking services also be possible in Bitcoin?". Many

researches say that there are solutions based on bilinear pairings commonly, accountable

subgroup multi-signature and delectable credentials schemes. These schemas are studied in

this thesis. As a first alternative, accountable subgroup multi-signature (ASM) constructed

from Boneh – Lynn – Shacham (BLS) signature schemes gives us the opportunity of the

public key aggregation mechanism. In this way, it can be possible that more than one user

sign the same message jointly and only one public key is needed to verify the signature. This

approach allows lots of savings in storage of public keys in transaction scripts and that is

quite convenient to implement in Bitcoin. For the second alternative, delectable credentials

signature schema renders possibility that someone can give her signing authority to another.

Delegatable credentials can do this with a structure that is built on Groth and Schnorr signa-

ture schemes. Furthermore, the suggested delectable credential schema in this thesis is able

to store in secret or disclosed within the signature. This property is included in the usage

scenarios about need of delegation for individuals.

i

Keywords: Block Chain, Bitcoin, transaction, authentication, multi signature, accountable

subgroup multi signature, delegatable credentials.

ii

ÖZET

BLOK ZİNCİRDE ALTERNAFİT DİJİTAL İMZA ŞEMALARI

Fahrettin YAVUZYİĞİT

Yüksek Lisans, Matematik Bölümü

Tez Danışmanı: Doç. Dr. Oğuz Yayla

Haziran 2019, 51 sayfa

Bu tez, bir blok zincir uygulaması olan Bitcoin ekosisteminin kimlik doğrulama yöntemleri

üzerine bir araştırmadır. İlk olarak, bugünün bankacılık sistemi yerine kullanılabilmesi bakış

açısıyla, güvenlik gereksinimlerinin yanı sıra Bitcoinin sağladığı olanaklar sorgulanmıştır.

Bir blok zincir uygulaması örneği olan Blockchain ve kendisine ait mevcut kimlik doğru-

lama metotları araştırılmış, elde edilen bilgiler üzerinden "Bankacılık hizmetlerinde bulunan

ortak hesap ve vekalet kavramları aynı zamanda Bitcoin de mümkün müdür?" sorusu ortaya

atılmıştır. Cevap olabilecek birçok araştırma arasından, en yeni çalışmalardan olması ve or-

tak şekilde bilinear parings kullanıyor olmaları sebebiyle hesap verebilir altgrup çoklu imza

ve devredilebilir yetki şemaları detaylı şekilde araştırılmıştır. İlk öneri olarak, hesap vere-

bilir altgrup çoklu imza yöntemi, açık anahtarların birleştirilmesine olanak sağlayan Boneh

– Lynn – Shacham (BLS) imzalama şeması üzerine inşa edilmiştir. Bu sayede birden fazla

kullanıcının aynı mesajı ortak şekilde imzalaması ve bu imzanın yalnız bir açık anahtar ile

doğrulanması mümkün olabilmektedir. Bu yaklaşım, işlemler içinde açık anahtarların sak-

lanmasında tasarruf sağlamaya ve Bitcoin’e uyarlanmasının oldukça kolay olmasını sağla-

maktadır. İkincisi için çözüm olarak, delege edilebilir kimlikli imzalama yöntemi birinin

sahip olduğu imzalama yetkisini bir başkasına devredebilmesine olanak sağlamaktadır. Delege

edilebilir kimlik bu olanığı Groth ve Schnorr imzalama yapıları üzerine kurulan bir yapı ile

gerçekleştirebilmektedir. Aynı zamanda bu tezde yer alan delege edilebilir kimlik şeması

kullanıcı özbilgilerini açıkta veya gizli şekilde saklayabilmektedir. Bu özellik, tezimizin

bireysel delegasyon ihtiyacı üzerindeki kullanım örneğine dahil edilmiştir.

iii

Anahtar Kelimeler: Blok zincir, Bitcoin, işlem, kimlik doğrulama, çoklu imza, hesap vere-

bilir altgrup çoklu imzalama, delege edilebilir kimlik.

iv

ACKNOWLEDGEMENT

First of all, I would like to express my sincere gratitude to my supervisor Assoc. Prof. Dr.

Oğuz YAYLA for his invaluable suggestions, motivation, patience, and continuous support

in this thesis. His guidance helped me in all the time of research and writing of this thesis.

Besides my supervisor, I would like to thank the rest of my thesis committee: Prof. Dr. Evrim

AKALAN, Assoc. Prof. Dr. Murat CENK, Assoc. Prof. Dr. Sedat AKLEYLEK and As-

sist. Prof. Dr. Adnan ÖZSOY for their encouragement, insightful comments.

I would like to my special thank to my teacher dear Prof. Dr. Haşmet GÜRÇAY for always

believing and supporting me from bachelor to master degree.

Also, I’m grateful that my wife and daughter are in my life and with me in this process.

Thank you.

Fahrettin YAVUZYİĞİT

June 2019, Ankara

v

TABLE OF CONTENTS

Page

ABSTRACT . i

ÖZET . iii

ACKNOWLEDGEMENT . v

TABLE OF CONTENTS . vi

NOTATIONS . x

1 INTRODUCTION . 1

1.1 Motivation for Writing This Thesis . 1

1.2 Previous Works . 1

1.3 An Application of Blockchain, Bitcoin . 2

1.4 Suggestions for Bitcoin Transaction Authentication 3

1.5 Outline of The Thesis . 4

2 BLOCKCHAIN . 5

2.1 Bitcoin . 6

2.2 Block Structure . 7

2.3 Transaction Structure . 8

2.4 Transaction Scripts . 9

2.4.1 Pay To Public Key (P2PK) . 10

2.4.2 Pay To Public Key Hash (P2PKH) . 12

2.4.3 Multisig (M-of-N Multi-Signature) . 14

3 ACCOUNTABLE SUBGROUP MULTI-SIGNATURE 16

3.1 Bilinear Groups and Pairing Based Cryptography 16

3.2 Construction of ASM Schema . 18

3.3 Proof-of-Possession . 21

3.4 Accountable-Subgroup Scheme with PoPs . 22

3.5 Application ASM to Bitcoin . 23

4 DELEGATABLE CREDENTIALS WITH HIDEABLE ATTRIBUTES 25

4.1 Practical Delegatable Anonymous Credentials System 26

4.2 Signature Schemes . 26

4.2.1 Groth Structure-Preserving Signature Schema 27

4.2.2 Sibling Signatures . 28

vi

4.2.3 Constructing Sibling Signatures. 29

4.3 Construction for Delegatable Credentials . 30

4.4 Application of Delegatable Credentials to Bitcoin 33

5 CONCLUSION . 35

REFERENCES . 37

APPENDIX . 41

CURRICULUM VITAE . 51

vii

FIGURES

Figure 2.1. Converting public key to Bitcoin address 7

Figure 2.2. Structure of a block . 7

Figure 2.3. Structure of the header . 8

Figure 2.4. Structure of a transaction . 8

Figure 2.5. Structure of a transaction output . 9

Figure 2.6. The transaction input structure . 10

Figure 2.7. The unlocking and locking script combination 10

Figure 2.8. The P2PK script flow . 11

Figure 2.9. The P2PKH script flow . 13

Figure 2.10. The m-of-n multisig script flow . 15

Figure 4.1. The delegation chart . 30

viii

LISTINGS

1 The Magma Codes of ASM Example . 41

2 The Magma Codes of ASM with PoPs Example 45

3 The pseudocode of presenting . 49

4 The pseudocode of verifying . 50

ix

NOTATIONS AND ACRONYMS

Notations
Z Integers

G Bilinear group generator

G Cyclic group

e Bilinear map

F Finite field

H Hash algorithm

$ Randomly generated

Acronyms
SHA-256 Secure Hash Algorithm with 256 bit version

RIPEMD-160 RACE Integrity Primitives Evaluation Message Diges with 160 bit

OP_CHECKSIG Operator that checks the signature validity

OP_DU Operator that duplicates the top stack element

OP_EQUAL Operator that checks either top two stack elements are equal

OP_HASH160 Operator that calculates SHA-256 + RIPEMD-160 hash

OP_0 Operator that pushes an empty array to the stack

OP_CHECKMULTISIG Operator that checks the signatures validity

ASM Accountable Subgroup Multi-Signatures

x

1 INTRODUCTION

1.1 Motivation for Writing This Thesis

Commercial relations, started with barter economy, have been continuing through banking

system that is most commonly used today. But in a globalized world, Bitcoin, a new payment

method brought by developing techniques and technologies in addition to different needs,

has a potential to replace the banking system we know. Although Bitcoin is currently only

a payment instrument, it may assume other functions in the banking system or come other

similar systems in the future.

The current Bitcoin system, used as a payment method, hosts some of the opportunities that

are accepted in the banking system. For example, Multi-signature, which allows Bitcoin

transactions to be signed by multiple users, corresponds to the common account in banking

system. In this thesis, studies on using Multisig, that is a type of transaction scripts, more

effectively and efficiently are examined. Also, the delegatable credential, which may be a

candidate as a signing method in Bitcoin system because of being equivalent to the transac-

tions carried out by proxy in banking, is studied.

1.2 Previous Works

Most used one of transaction scripts in Bitcoin ecosystem, even if Multisig can compress

the signature value, storing all public keys still take the major size in transactions. Multi-

signatures have been worked on different mathematical bases e.g. on RSA [19, 20], discrete

logarithm problem [21, 22, 5, 23, 6], parings [24, 25, 3], and lattices [26]. To reduce trans-

action sizes, the aggregating public-key algorithm has been clearly handled only in [6] and

[3]. The "public-key aggregation" is named firstly in the work of Maxwell [6]. With the

public-key aggregation, it can be enough that only the aggregated value of all public keys is

stored in transaction instead of them separately. According to [6], in signing stage, there is

a need for two tour of transmission between all signers. But one round of transmission can

be enough by [3]. With the name of "Accountable subgroup multi-signatures (ASM)", this

approach was firstly worked by Micali, Ohta and Reyzin [5]. In addition to not having key

1

aggregation algorithm, it bases on discrete logarithm problem and constructed from [18].

Boneh, Drijvers and Neven [3] take it to the next level via adding key aggregation and using

parings further.

There are some works on delegatable anonymous credentials [27, 28, 29, 30]. Chase and

Lysyanskaya [29] uses generic zero-knowledge proofs. By this approach, the size must grow

exponentially by the number of delegators. Therefore, this complexity limits the delegation

process and using this method practically is not possible. "Hierarchical group signatures" by

Trolin and Wikström [31] are an addition to the group signatures. This methods gives the

opportunity that includes a hierarchy of group managers. Users can sign a message for the

group with the credential of any managers. This property can be considered as a "delegatable

credentials". But, it differs from the suggested one in this thesis, because users are able to

do as a manager or as a user, not both of them, as only one. And, the managers can disclose

the signers in contrary to the anonymity.

1.3 An Application of Blockchain, Bitcoin

Blockchain is a kind of data structure. It can store data and connects one to another by link-

ing. To link the blocks, hash algorithm SHA-256 which is a cryptographic, namely mathe-

matical, method is used. Informally, lets think three number of blocks (Block-X, Block-Y,

Block-Z). The hash value of whole Block-X is stored in the Block-Y, and using the same,

whole Block-Y’s hash value is stored in the Block-Z. In this way, Block-X is linked to Block-

Y and Block-Y is linked to Block-Z. If there is an any change in Block-X, because of that it

results in change of Block-X’s hash value, Block-Y, which holds the hash of Block-X, will

also be altered. Likewise, any change in Block-Y affects Block-Z. In a situation where there

is a huge number of blocks, altering must be done from first changed block to the last one

and this process may be almost impossible in some specific hashing conditions.

Bitcoin ecosystem bases on this limitation. The blocks store data about the information that

an amount of Bitcoin have been transferred someone to another by the name of "transaction".

With the unchangeable data structure property, Bitcoin ecosystem gives an assurance to users

about keeping their assets. But there is another issue, which is authenticating transactions.

It may be more important that an amount of transaction is spent or transferred by real owner

2

than storing it safely. To authenticate transactions, another cryptographic method, digital

signing, is used. Unlike the general usage of digital sign, the ownership of a digital asset in

Bitcoin is not proved via signed by owner of asset, merely it must be signed by the previous

owner and new owner’s public key must be stored in it. To illustrate this, the paper check

example can be given. Using paper check payment method, signer is not owner of the money

currently, owner is whose name has been written on “Pay to the order of” field. In Bitcoin

system, to spend amount of Bitcoin, owner must give a valid signature that is signed using

the private key matching the public key which is stored in previous transaction. This ap-

proach allows two benefits, privacy and decentralization of authentication process. Because

of that no-one knows whose transaction specific public key is, privacy of Bitcoin ownership

is provided. And, there is not any need for certificate authority, so Bitcoin transactions are

decentralized. There is an only assurance for reliance the Bitcoin system. That is strong and

efficient transaction signing and validation mechanism. Bitcoin ecosystem has many kinds

of transaction authentication standards. Some of those are "Pay To Public Key (P2PK)",

"Pay To Public Key Hash (P2PKH)" and "Multisig".

1.4 Suggestions for Bitcoin Transaction Authentication

Multisig is used for multi-ownership of Bitcoin amount or extra security needs by adding

another factor of authentication like Bitcoin wallet etc. in case of stolen individuals’ private

keys. Multisig has a bulky structure. It is described in Section 2.4.3 in detail. From this

point, "Accountable Subgroup Multi-Signature (ASM)" is a potential solution for improving

multi-signature need of Bitcoin. Rather than having necessity of keeping all public keys in

Multisig, ASM gives the opportunity that only one aggregated key which is the combination

of all signers’ public key can be enough to store in transaction. This gives a lot of data

and computational saving. In addition, accountability property of ASM provides another

security need. Owing to this property, all group members are responsible for the transactions

signed by a subgroup. In this way, the possibility of other group members repudiating the

transactions, committed by the subgroup of users, is eliminated.

The suggested ASM schema in [3] is constructed from "Boneh – Lynn – Shacham (BLS)"

signature scheme [17] which is based on bilinear pairings. ASM schema has additional two

3

stages "Key Aggregation" and "Group Setup" to common signing protocols. With Key Ag-

gregation stage, the aggregated public key ”apk” is generated. In Group Setup, for all group

members, the membership keys ”mki” obtained from all members’ public and secure key

are generated. So, the accountability is provided because the membership keys are needed

in Signing stage.

Delegatable credentials is the suggestion that is not currently in Bitcoin ecosystem but can

be a solution to diversity needs of Bitcoin transaction authentications. As an example, to

visualize a need, let a firm make their payments through the Bitcoin. If the firm’s pay-

ments is needed to be done by more than one person, payment processes must be divided

to departments or employers. To do this, the firm either should share the Bitcoin confiden-

tial information like secret key and/or wallet ID and password or authorize the responsible

persons via delegating the owner’s credential.

The suggested schema [16] has four stages "Setup", "Delegate", "Present" and "Verify".

Setup is used for parameter generation, Delegate stage is for delegate the credential owned

to another user, Present is signing a massage or etc. by a delegate and generates the signature

by the name "attribute token" in this schema, Verify is matching the signature and message

with the attribute token value and only first delegator’s public key, described in detail in

Section 4.3. To the schema, any wanted attributes - e.g. name, gender, age, working position,

authority level etc. - of all delegates can be stored into attribute token or they can be hidden.

In this work, Groth and Schonorr signatures are combined and this combination is used with

sibling signature method, a new method first given in [16]

1.5 Outline of The Thesis

The rest of the thesis is organized as follows. In Chapter 2, the concept of blockchain is

introduced and Bitcoin ecosystem , a case study of blockchain, is briefly described up to

the transactions stage in a view of how its transaction authentication mechanisms work. In

Chapter 3, accountable subgroup multi-signature schema, which is a suggestion instead of

Bitcoin multi-signature, is given in detail. In Chapter 4, as a new authentication mechanism

that is likely to be included in Bitcoin ecosystem, delegatable credentials with concealable

attributes is suggested. Finally, the conclusions are included in Chapter 5.

4

2 BLOCKCHAIN

The blockchain is a data structure that is ordered and linked list of blocks. Blocks are linked

back each one referring to the previous one. In this way, the linked blocks create a chain,

that is why we call it blockchain. The blockchain data can be stored in a file like a simple

text file and also in a database. The blockchain can be considered as a stack that is left to

right, with blocks linked to top of next one and the initial block being the base of chain. In

blockchain terminology, “height” means the number of blocks from the initial block, and

“top” (or “tip”) is the most recent block.

In blockchain structure, the identifier of each block is its hash value, generated using crypto-

graphic hash algorithm SHA256 and stored in the header of the block. Besides, every block

refers the previous one, with the name of parent block, and the block header also has the par-

ent block hash. Connecting every block to its predecessor with hash values creates a chain,

that goes back the initial block.

It is possible that there can be more than one block whose parent’s hash value is same.

Namely, a block can possess more than one child. However, having only one parent hash

value field, there can be only one parent block. If a block has multiple children, that is

known as blockchain “fork,” which comes accidentally when different miners connects one

each new block to the same almost meanwhile. Finally, only one block is accepted as a part

of the chain and hence the fork situation is eliminated.

Since the predecessor block hash is stored in the block header, it affects the hash value of

current block. This means that if predecessor’s hash value changes, the child’s hash value

also changes. Altering the any value of parent block causes to change the predecessor’s hash.

The predecessor’s changed hash requires to change the previous block link of the successor

which is the hash value of it. This also results in the successor’s hash to alter, which requires

a change in the link of the two-next successor, which in order altering it, and so on. This

cascade effect ensures that when a block has many followers, it cannot be altered without

recalculation of all successor blocks. This needs huge computational power, so being a long

chain of blocks gives us the unreversibility property of the blockchain, that is one of the most

important properties of blockchain’s security [1].

5

2.1 Bitcoin

Having the most common usage in this area, Bitcoin is an application of blockchain. Blocks

are used for storing Bitcoin transactions that contains the information about sent amount of

Bitcoin from someone to someone. Bitcoin is a cryptocurrency ecosystem on its own. It

gives much opportunity to use money in a different way that we did ever. To illustrate, lets

see the similarity of Bitcoin transactions to banking checks. The Bitcoin address is for the

receiver identification, the beneficiary in banking terms, that is written on “Pay to the order

of”. The checks do not require a specific account, it can be the name of a bank account

holder, corporations, institutions, or even cash. The Bitcoin transaction usage is similar, the

Bitcoin address gives the bitcoin ecosystem flexibility. A Bitcoin address represents whose

the public key is.

Bitcoin Addresses

The Bitcoin address is a string value which is a character set, and it is used for receiving

money. Bitcoin addresses are generated from public keys. A Bitcoin address looks like:

19WVyUJ75rboXZymdgQdx3HENYWK7fsLpE.

Bitcoin address is generated from the signer’s public key using cryptographic hash functions.

In many stage, the hash functions are also needed. For example, they are also in script

addresses, and mining process etc. "Secure Hash Algorithm (SHA)" and "RACE Integrity

Primitives Evaluation Message Digest (RIPEMD)", especially SHA-256 and RIPEMD-160,

are used to generate the Bitcoin addresses.

With public key pk, first it is calculated using the SHA-256 and then the RIPEMD-160 of

the first result:

A = RIPEMD-160(SHA-256(pk))

Bitcoin addresses are generally encoded the format Base58Check (“Base58 and Base58Check

Encoding”), that contains 58 number of characters and a check-sum to guarantee ease of

spelling. Figure 2.1 gives the conversion in a chart.

6

Figure 2.1: Converting public key to Bitcoin address

Example 2.1. bitcoin’s Base58 alphabet

123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz

2.2 Block Structure

In the blockchain, a block contains data structure of collected transactions as a ledger, which

is kept public. Specifically, a block consists of a header including metadata about the block,

and a transactions list that occupies the majority of block size. Figure 2.2 shows the block

structure.

Figure 2.2: Structure of a block

7

Block Header

The block header has three kinds of metadata. First, a previous block hash field, which

connects the block to the predecessor. The second is for difficulty, timestamp, and nonce

fields which are required in the mining process. The third one is "the Merkle tree root", that

is a structure and is to digest the transactions in a block. Figure 2.3 shows the content of a

block header.

Figure 2.3: Structure of the header

2.3 Transaction Structure

A transaction is an information which records a transfer of Bitcoin amount from the source,

named input, to the destination, named output. Any kind of account is not used in generating

the input or output, only Bitcoin address is required personally. Bitcoins are locked with a

Bitcoin address that only person, owner or who knows it, be able to unlock. Figure 2.4 shows

the fields in a transaction.

Figure 2.4: Structure of a transaction

8

Transaction Outputs

Bitcoin transactions has outputs and they are stored in Bitcoin ecosystem. Pretty much of

all outputs create spendable Bitcoin called unspent transaction outputs (UTXO). The whole

network recognizes them and the owner can spend in later transactions. When transferring

Bitcoin to someone, the "unspent transaction output (UTXO)" is registered to receivers Bit-

coin address and ready to a next transfer.

A transaction output consists of two parts listed below.

• An amount of transferred bitcoin.

• A locking script that locks this amount and concern us fundamentally in this thesis.

Figure 2.5: Structure of a transaction output

Transaction Inputs

Transaction input is the pointer which links between the current transaction and previous

UTXO. It points to UTXO by reference to the transaction hash and sequence number where

the UTXO is recorded in the blockchain. In addition, the transaction input includes unlocking

script that meets the locking script. The unlocking script is generally a proof of the signature

ownership. Figure 2.3 shows the structure of a transaction input.

2.4 Transaction Scripts

When a new transaction is broadcast to the network to be included in the blockchain, each

node, aware of the transaction, validates it by evaluating the challenge and response scripts.

Most common three types of transaction scripts are below.

9

Figure 2.6: The transaction input structure

Script Construction (Lock + Unlock)

The validation of Bitcoin transaction process depends on two types of scripts, locking and

unlocking. A locking script is a hypothec on output, and it sets the conditions that must be

met to spend the output when spending an amount of bitcoin.

An unlocking script is to meet the conditions placed on an output by a locking script and

allows the output to be spent. Unlocking scripts are part of every transaction input, and

mostly they include a digital signature generated with the user’s private key.

Figure 2.7: The unlocking and locking script combination

2.4.1 Pay To Public Key (P2PK)

Pay-to-public-key is a simpler form of a Bitcoin payment than other methods. A pay-to-

public-key locking script is handled as:

<Public Key of A> OP_CHECKSIG

10

OP_CHECKSIG is an ECDSA signature verification procedure to check whether the signa-

ture of a user A is valid for a given public key in a transaction locking script.

The unlocking script is a simple signature:

<Signature by Private Key of A>

The combined script, to be validated, is:

<Signature by Private Key of A> <Public Key of A> OP_CHECKSIG

It is computationally hard to obtain the private key from the public key in an acceptable

time period. So the public key is safely used as an address for receiving Bitcoin payments.

In P2PK script template, public keys are called P2PK addresses. But nowadays, to ensure

better security P2PK addresses are left in place to P2PKH addresses [1, 2].

Figure 2.8: The P2PK script flow

11

2.4.2 Pay To Public Key Hash (P2PKH)

The most common type of transaction script in the Bitcoin network is P2PKH script tem-

plate. It’s locking script contains a public key hash instead of a plain public key as a Bitcoin

address. Therefore, the public key must be presented to unlock amount of Bitcoin and also a

digital signature created by the corresponding private key.

To illustrate P2PKH script template with an example, let Alice pay to Bob’s Cafe. Alice

made a payment of 0.015 Bitcoin to the Bitcoin address of the cafe. The locking script of

transaction output would be like:

OP_DUP OP_HASH160 <Cafe Public Key Hash> OP_EQUAL OP_CHECKSIG

Cafe Public Key Hash is the Bitcoin address of the cafe. The unlocking script corresponding

to the locking script is:

<Cafe Signature> <Cafe Public Key>

The validation script is as given below

<Cafe Signature> <Cafe Public Key> OP_DUP

OP_HASH160 <Cafe Public Key Hash> OP_EQUAL OP_CHECKSIG

This combined script’s execution results TRUE if the unlocking script matches the conditions

set by the locking script. In particular, the result will be TRUE if the unlocking script has a

valid signature generated by the cafe’s private key that corresponds to the public key hash set

as a hypothec. Figure 2.9 shows a step-by-step execution of the combined script to validate

the transaction [1, 2].

12

Figure 2.9: The P2PKH script flow

13

2.4.3 Multisig (M-of-N Multi-Signature)

In multi-signature script template, to release the hypothec, N public keys are recorded in the

locking script and at least M of N must match the corresponding signatures. This is also

called as an M-of-N scheme, where N is the total number of keys and M is the threshold

value of signatures required for validation.

To illustrate multi-signature script template with an example, a 2-of-3 multi-signature re-

quires that three public keys are listed as signers group, to create a valid transaction to spend

an amount of bitcoin, at least two of which must be used to create signatures. Standard mul-

tisignature scripts may have some limitation, e.g. at most 15 listed public keys, meaning you

can use maximum 15-participants group of signers. The maximum number can be adjusted

according to improvement in computational power in time.

The general form of a locking script setting an M-of-N multi-signature condition is:

M <Public Key 1> <Public Key 2> ...<Public Key N> N OP_CHECKMULTISIG

where N is the total number of public keys and M is the value that minimum number of

signatures is required to spend the output. For example, in a 2-of-3 multi-signature, the

locking script is:

2 <Public Key A> <Public Key B> <Public Key C> 3 OP_CHECKMULTISIG

The corresponding unlocking script that contains two signatures is:

OP_0 <Signature B> <Signature C>

or the other two-combination of signatures associated with declared three public keys. Hence,

the validation script is:

OP_0 <Signature B> <Signature C> 2

<Public Key A> <Public Key B> <Public Key C> 3 OP_CHECKMULTISIG

14

If two signatures in the unlocking script match the two of three public keys in the locking

script, combined validation script will result TRUE [1, 2].

Figure 2.10: The m-of-n multisig script flow

15

3 ACCOUNTABLE SUBGROUP MULTI-SIGNATURE

Micali, Ohta, and Reyzin [5] defined an accountable-subgroup multisignature (ASM) scheme

where any subset S of a group of PK, where PK is the set of the public keys of the signers, can

create a valid multisignature that can be verified by the public keys of signers in the subset.

To determine whether the subset S is authorized to sign on behalf of PK in a more strictly

way, an established access rule can be added into ASM scheme. For example, setting |S| ≥ t

as a condition, the ASM scheme gets the threshold signature property that authentication can

be done by a minimum number of signers.

Initially, a description of the set S of signers in the group PK is necessary for verification

of an ASM scheme. Verification procedure is based on a compact aggregate public key and

signature [3, 6]. In ASM scheme, the aggregate public key can be generated from the public

keys of signers publicly, on the other hand, a membership key which is specific to the group

required to sign messages on behalf of the group PK. The group-specific membership key is

generated via a onetime group setup.

3.1 Bilinear Groups and Pairing Based Cryptography

Let G be a bilinear group generator that takes as an input a security parameter 1K and out-

puts the descriptions of multiplicative groups Λ = (q,G1,G2,Gt, e, g1, g2) where G1, G2 are

groups of prime order q, and and Gt be another cyclic group of order q written multiplica-

tively, a bilinear map e : G1 ×G2 → Gt , and g1 and g2 are generators of the groups G1 and

G2, respectively. For later use, it is denoted that Λ∗ = (q,G1,G2,Gt, e). If the bilinear map

e is a paring, it has the following properties [10, 14]:

Bilinearity

∀a, b ∈ F∗q, ∀P ∈ G1, Q ∈ G2 : e
(
P a, Qb

)
= e (P,Q)ab

Non-degeneracy

e 6= 1

Computability

There exists an efficient algorithm to compute e.

16

As a usage example of bilinear pairings and to construct ASM [3], lets look BLS [17] signa-

ture schema. In addition to bilinear paring requirements, H0 : M→ G1 is a hash function.

BLS works as:

• Key generation: Select a sk $←− Zq randomly and return (pk, sk) where pk ← gsk2 ∈

G2.

• Sign(sk,m): Return σ ← H0(m)sk ∈ G1.

• Verify(pk,m, σ): If e(σ, g2)
?
= e(H0(m), pk) return "true", else "false"

In BLS schema, there also can be a simple signature aggregation. Given (pki,mi, σi) for

i = 1, . . . , n, signatures σ1, . . . , σn ∈ G1 can be converted by aggregating them like:

σ ← σ1, . . . , σn ∈ G1

To verify the aggregated signature σ ∈ G1:

e(σ, g2)
?
= e(H0(m1), pk1) . . . e(H0(mn), pkn).

All (pki,mi) for i = 1, . . . , n are needed to verify. As a trick, if all messages are chosen the

same (m1 = · · · = mn), verification is downgraded on only two pairings:

e(σ, g2)
?
= e(H0(m1), pk1 . . . pkn).

Hence, the aggregated public key concept is born apk := pk1 . . . pkn ∈ G2.

The rogue public-key attack.

The signature aggregation in BLS is not so secure, it needs to be improved. See Section

3.4. To illustrate its weakness, lets look at the attack scenario: "an attacker registers a rogue

public key pk2 := gα2 · (pk1)−1 ∈ G2, where pk1 ∈ G2 is a public key of some unsuspecting

user Bob, and α $←− Zq is chosen by the attacker. The attacker can then claim that both he

and Bob signed some message m ∈M by presenting the aggregate signature σ := H0(m)α.

17

This signature verifies as an aggregate of two signatures, one from pk1 and one from pk2,

because

e(σ, g2) = e(H0(m)α, g2) = e(H0(m), gα2) = e(H0(m), pk1 · pk2).

Hence, this σ satisfies. In effect, the attacker committed Bob to the message m, without Bob

ever signing m." [3]

3.2 Construction of ASM Schema

As first defined in [4], an ASM schema which is based on Schnorr signature [18] consists

of the algorithms: parameter generation (Pg), key generation (Kg), group setup (GSetup),

Sign, key aggregation (KAg), and verification (Vf). The notation par $←− Pg is for common

parameters generation, (pk, sk)
$←− Kg(par) is for key generation, mk ←− -GSetup(sk, PK)

is for generating membership key where PK = {pk1, . . . , pkn} is a group of signers. Let

each signer in PK be assigned a computable index i ∈ {1, . . . , |PK|}, for example the

index of pk in a sorted list of PK. A subgroup S ⊆ {1, . . . , |PK|} signs a message m with

the interactive algoritim σ ←− Sign(par, PK, S, sk,mk,m). Getting the public keys of

PK, key aggregation algorithm generates the aggregated public key apk [7]. The algorithm

Vf(par, apk, S,m, σ) verifies the signature [3].

With this construction strengthened with BLS schema [17], ASM scheme needs all signers,

during group setup, join to multisignatures on the aggregate public key and the index of every

signer, such that the i-th signer in PK has a “membership key” which is a multi-signature on

(apk, i). In other words, an accountable-subgroup multi-signature consists of the aggregation

of the individual signers’ signatures and their membership keys and the aggregate public key

of the subgroup S. To verify a signed message by a subgroup S, it can be checked that

the signature is a valid aggregate signature where the aggregate public key of the subgroup

signed the message and the membership keys corresponding to S [3].

The scheme uses hash functions H0 : {0, 1}∗ → G1, H1 : {0, 1}∗ → Zq, and H2 : {0, 1}∗ →

G1 [8].

Parameters Generation. The bilinear group is set up by Pg(κ) function and also it returns

18

parameters

par ← (q,G1,G2,Gt, e, g1, g2)← G(κ).

Key Generation. Algorithm Kg(par) function gets sk $←− Zq randomly, generates pk ←

g2
sk, and returns (pk, sk).

Key Aggregation. KAg({pk1, . . . , pkn}) gets public key values of all signers and returns

apk ←
n∏
i=1

pki
H1(pki,{pk1,...,pkn}) .

Group Setup. At first, GSetup(ski,PK = {pk1, . . . , pkn}) checks whether pki ∈ PK and i

is the index of pki in PK. Signer i computes the aggregate public key

apk ← KAg(PK) and ai ← H1(pki,PK).

Then, he sends

µj,i = H2(apk, j)
ai.ski to signer j (j 6= i) publicly.

After receiving µi,j from all other signers j 6= i, they compute

µi,i ← H2(apk, i)
ai.ski

and return the membership key

mki ←
n∏
j=1

µi,j.

And hence, if all signers behave honestly, this equation must be done

e(mki, g2)
?
= e(H2(apk, i), apk) .

In other words, mki is a valid multi-signature on the message H2(apk, i) by all n parties.

Signing. Sign(par,PK, S, ski,mki,m) generates apk ← KAg(PK) and

si ← H0(apk,m)ski .mki ,

19

and sends (pki, si) to a member of S or external one to join them, who generates

pk ←
∏
j∈S

pkj , s←
∏
j∈S

sj ,

and returns the value σ := (pk, s) as the multisignature. Note that we use the set S at signing

step, because it isn’t fixed. Thus, the set S has not to be same for every signing.

Verification. Vf(par, apk, S,m, σ) evaluates σ as (pk, s) and returns TRUE if and only if

e(H0(apk,m), pk).e(
∏
j∈S

H2(apk, j), apk)
?
= e(s, g2)

and also returns the information whether S is an authorized set of signers.

Now, we prove the accuracy of the system. Under the condition that all members of S are

honest in the group setup and and signing stages, and for

pk = g2
∑

i∈S ski , apk = g2
∑

i=1,...,n ai.pki ,

s = H0(apk,m)
∑

i∈S ski .
∏
i∈S

H2(apk, i)
∑

j∈1,...,n aj .skj ,

equation array below holds:

e(s, g2) = e(H0(apk,m)
∑

i∈S ski .
∏
i∈S

H2(apk, i)
∑

j∈1,...,n aj .skj , g2)

= e(H0(apk,m), pk) . e(
∏
i∈S

H2(apk, i), g2
∑

j∈1,...,n aj .skj)

= e(H0(apk,m), pk) . e(
∏
i∈S

H2(apk, i), apk)

Example 3.1. To illustrate this schema with an example, the elliptic curve E of the form

E : y2 = x3 + 18

20

over the finite field Fp, where

p = 2497857711095780713403056606399151275099020724723

is used. The cyclic subgroupsG1 andG2 generated from g1 and g2 respectively having prime

order

q = 2497857711095780713403055025937917618634473494829

in the elliptic curve group are generated. As the base for the ASM schema, lets choose

Weil pairing as our bilinear map, and H0, H1 and H2 as simple toy hash functions that

are constructed from only the first component of selected points. All other parameters are in

Appendix Listing 1. Because of selected groups being additive, we transform the formulation

for compliance.

We choose 5 potential signers and 3-user subgroup of them, and their the secure-private

key pairs as (ski, pki) over G2 manually. The µi,j values of all signers 2-combination are

generated from their secure-private key pairs, indexes and the aggregated public key apk.

Thanks to the membership keys mki, which will be used in signing stage, are generated from

µ values gathered from other signers, when our subgroup signs a message, the others are

also responsible for the signature. Hence, the accountability is provided.

To sign a messagem, with calculating si values and adding all these values with also adding

public keys of our subgroup among themselves, the signature is generated. Finally, to verify

the signature, we check this equation:

Weilpairing(H0(apk,m), pk).Weilpairing(
∏
j∈S

H2(apk, j), apk)
?
= Weilpairing(s, g2).

Entire calculation in Magma code is in Appendix Listing 1.

3.3 Proof-of-Possession

Rogue-key attack explained in Section 3.1 can be prevented by letting signers add a so-

called proof of possession (PoP) to their public keys, which is simply a signature on their

own public key [9].

21

The proof of possessions gives us some advantages on the ASM scheme. The aggregate pub-

lic keys are simply calculated values of multiplication or hash of the signers keys. Also, its

security proofs avoid forking, efficient for high security needs, and shorter key and signature

sizes for physical constraint.

3.4 Accountable-Subgroup Scheme with PoPs

To integrate PoPs, key structure is like y ← gsk2 , π ← H3(y)x, H3 : {0, 1}∗ → Zq as a new

hash, and pk ← (y, π), also key aggregation differs in that the aggregate of a set of keys

PK = {(y1, π1), . . . , (yn, πn)} in addition to the product Y ←
∏n

i=1 yi, it has the hash of

public keys h ← H3(PK). The aggregate public key is a pair apk ← (Y, h). The reason

to use hash is, when evaluating H2(apk, i), to consider whether i is the index of the target

signer in the set PK for which apk is the aggregate public key. Before aggregating, for

completeness, first it may be needed to test that:

e(H3(yi), yi)
?
= e(πi, g2) for i = 1, . . . , n.

GSetup(ski,PK = pk1, . . . , pkn) calculates

apk = (Y, h)← KAg(par,PK)

and sends

µj,i = H2(apk, j)
ski to signer j.

Receiving µj,i from all other signers j 6= i, signer i calculates

µj,i ← H2(apk, j)
ski

and returns the membership key

mki ←
n∏
j=1

µi,j.

If any signer is not malicious, it must be equal

e(mki, g2) = e(H2(apk, i), Y).

22

Signing and verification stages are same as pure ASM scheme, except the product of public

keys y ←
∏

j∈S yj instead of pk ←
∏

j∈S pkj [3].

Example 3.2. Now we add the proof of possession mechanism to Example 3.1. Most of the

parameters and the scenario being the same as the previous example, H3 is additionally a

new toy hash function generated from the second component of points. To prevent from an

attackers presenting a fake signature, we choose a x value randomly from the field Fp and

we generate an additional (y, π) pair over the value x instead of pk which corresponds to

sk.

Singing stage is like the previous example. Only the difference, (yi, pii) values are used

instead of public keys of signers pki, and y is for pk with the same calculation. To verify the

signature we check now this equation:

Weilpairing(H0(apk,m), Y).Weilpairing(
∏
j∈S

H2(apk, j), apk)
?
= Weilpairing(s, g2).

The Magma codes for this example is presented in Appendix Listing 2.

3.5 Application ASM to Bitcoin

To implement ASM schema in Bitcoin transaction scripts, aggrageted public key can be

used like a Bitcoin address. We can illustrate the possible application with script language.

Instead of the locking script in Multisig (M-of-N schema)

M <Public Key 1> <Public Key 2> ...<Public Key N> N OP_CHECKMULTISIG

and the unlocking script

OP_0 <Signature n1> ...<Signature nM>,

the possible locking script in ASM schema should be like

<Agg. Public Key> OP_CHECKASM

23

and the unlocking script in ASM

OP_0 <S> <Common Signature of S>

where S is the subgroup of signers and <S> is a short string of signers’ indexes.

As can be seen from the comparison, the size and computation cost can be saved owing to

ASM schema aggregation property.

24

4 DELEGATABLE CREDENTIALS WITH HIDEABLE ATTRIBUTES

Requirements on data security and privacy are getting more important. In today’s technology

mathematical tools are widely used for providing this. Privacy-preserving attribute-based

credentials (PABCs) [15] allow us to authenticate to a transaction submission service using

only necessary and sufficient information.

PABCs is a set of attributes certified to a person. When presenting her credentials, user gen-

erates a zero-knowledge proof of possession of a credential named token. When generating

a token, user can choose which attribute to be disclosed or not. To verify the token only the

issuer’s public key is required. Even with having strong privacy features, in some scenar-

ios, PABCs can cause disclosing information about the issuer such as age, gender, location,

organization, business unit etc.

"For instance, consider governmental issued certificates such as drivers licenses, which are

typically issued by a local authority whose issuing keys are then certified by a regional au-

thority, etc. So there is a hierarchy of at least two levels if not more. Thus, when a user

presents her drivers license to prove her age, the local issuer’s public key will reveal her

place of residence, which, together with other attributes such as the user’s age, might help

to identify the user. As another example consider a (permissioned) blockchain. Such a sys-

tem is run by multiple organizations that issue certificates (possibly containing attributes) to

parties that are allowed to submit transactions. By the nature of blockchain, transactions are

public or at least viewable by many blockchain members. Recorded transactions are often

very sensitive, in particular when they pertain to financial or medical data and thus require

protection, including the identity of the transaction originator. Again, issuing credential in

a permissioned blockchain is a hierarchical process, typically consisting of two levels, a

(possibly distributed) root authority, the first level consisting of CAs by the different organi-

zations running the blockchain, and the second level being users who are allowed to submit

transactions." [10]

Practical delegatable anonymous credentials [16] can be used for solving this issue. This

method gives us to an opportunity to delegate a user credential to another user, also delegated

user can delegate his likewise. In this way, unwanted attributes can be hidden since only

initial (root) user’s public key is needed for verification.

25

4.1 Practical Delegatable Anonymous Credentials System

The root delegator (issuer) generates a signing and a verification key pair. User A, who gets

delegation from issuer, also generates a key pair, public and private. User A sends the public

key to the issuer. The issuer signs the public key and attributes of user A and sends the

signature back.

User A can also delegate her credential to a user B via signing the public key freshly gen-

erated by B and attributes using his private key (A’s sk). A sends this signature with his

credential acquired from the issuer and attributes to B. At the end, B has two signatures with

the corresponding attribute sets, credential public key of A and her own public and private

key.

By the same way above, user B can delegate his credential to another user or sign a mes-

sage by generating the presentation token. The presentation token is a non-interactive zero-

knowledge (NIZK) proof of possession of the signatures and the corresponding public keys

from the delegation chain which does not disclose their values [11, 10]. Preferably the sign-

ing attributes can be disclosed using NIZK. To verificate the token, only the public key of

issuer is required, thus, A and B with their unwanted attributes can be hidden.

4.2 Signature Schemes

We define Sig as a digital signature scheme that is a set of PPT (probabilistic polynomial-

time) algorithms Sig = (Setup,Gen, Sign,Verify):

Sig.Setup(1K)
$−→ sp : The setup algorithm gets an input value K as a security parameter

and generates a public system parameters sp which is specific to message spaceM.

Sig.Gen(sp)
$−→ (sk, vk) : The key generation algorithm gets sp and generates a key pair

public and secret key (pk, sk).

Sig.Sign(sk,m)
$−→ σ : The signing algorithm gets sk and a messagem ∈M and generates

a signature σ.

26

Sig.Verify(vk,m, σ)
$−→ 1/0 : The verification algorithm gets vk, the message m and the

signature σ, validate it if it is true returns 1 or if it is false returns 0 according to the inputs.

Construction for delegatable credentials is built from the structure-preserving [12] signature

schemes. A signature scheme Sig over a bilinear group Λ generated by G(1K), that outputs

system parameters Λ = (q,G1,G2,Gt, e, g1, g2), is said to be structure preserving if:

(1) the verification key vk comes from the group parameters and group elements in G1 and

G2 ;

(2) the messages and the signatures comes from group elements in G1 and G2,

(3) the verification algorithm evaluates membership G1 and G2 and pairing product equations

as: ∏
i

∏
j

e(gi, hj)
aij = 1Gt ,

where a11, a12, . . . ∈ Zq are constants, g1, h1, · · · ∈ {G1,G2}∗ are group elements appearing

in the group parameters, verification key, messages, and signatures.

4.2.1 Groth Structure-Preserving Signature Schema

We shortly give the structure-preserving signature scheme of Groth [13] in this section. The

original scheme supports signing blocks of messages in a form of “matrix”, whereas we

provide a simplified versions for “vectors” of messages. Let a message be a vector of group

elements of length n : ~m = (m1, . . . ,mn). The notation Groth1 is for signing messages in

G1 with a public key in G2, on the other hand Groth2 is for signing in G2 with a public key

in G1. The description of the Groth2 scheme is below, Groth1 is defined similarly.

Groth2.Setup : Let Λ∗ = (q,G1,G2,Gt, e) and yi
$←− G2 for i = 1, . . . , n. Return parame-

ters sp = (Λ∗, {yi}i=1,...,n).

Groth2.Gen(sp) : Choose random v
$←− Zq and set V $←− gv1 . Return key pair pk = V as

public and sk = v as secret.

27

Groth2.Sign(sk; ~m) : To sign message ~m ∈ Gn
2 choose random r

$←− Z∗q and set

R← gr1 S ← (y1 · gv2)
1
r Ti ← (yvi ·mi)

1
r .

Return signature σ = (R, S, T1, . . . , Tn).

Groth2.Verify(vk, σ, ~m) : Get message ~m ∈ Gn
2 and signature σ = (R, S, T1, ..., Tn) ∈

G1 ×Gn+1
2 , return 1 iff

e(R, S) = e(g1, y1)e(V, g2) ∧
n∧
i=1

e(R, Ti) = e(V, yi)e(g1,mi)

for any j ∈ {1, . . . , n}

e(R, S) = e(gr1, (y1 · gv2)
1
r) e(R, Tj) = e(V, yj)e(g1,mj)

= e(g1, (y1 · gv2)) = e(gr1, (y
v
j ·mj)

1
r)

= e(g1, y1)e(g1, g
v
2) ∧ = e(g1, (y

v
j ·mj))

= e(g1, y1)e(g
v
1 , g2) = e(g1, y

v
j)e(g1,mj)

= e(g1, y1)e(V, g2) = e(gv1 , yj)e(g1,mj)

= e(V, yj)e(g1,mj)

Groth2.Rand(σ) : To randomize signature σ = (R, S, T1, . . . , Tn), pick r′ $←− Zq and set

R
′ ← Rr

′

S
′ ← S

1

r
′ T

′ ← T
1

r
′ .

Return randomized signature σ′
= (R

′
, S

′
, T

′
1, . . . , T

′
n).

4.2.2 Sibling Signatures

Sibling signature scheme provides one key pair to use two different signing algorithms, each

with a dedicated verification algorithm [10]. In the construction, this will allow a user to

hold a single key pair to be able to use for both presentation and delegation of a credential.

28

A sibling signature scheme consists of six algorithms, Setup, Gen, Sign1, Sign2, Verify1,

Verify2.

Sib.Setup(1K)
$−→ sp : The setup algorithm gets a security parameter and returns public

system parameters that also specify two message spacesM1 andM2.

Sib.Gen(sp)
$−→ (sk, pk) : The key generation algorithm gets the system parameters and

returns a key pair: secret and public (sk, pk).

Sib.Sign1(sk,m)
$−→ σ : The signing algorithm gets sk and a message m ∈ M1 and gener-

ates a signature σ .

Sib.Sign2(sk,m)
$−→ σ: The signing algorithm gets sk and a message m ∈ M2 and gener-

ates a signature σ.

Sib.Verify1(vk,m, σ) → 1, 0 : The verification algorithm gets pk, the message m and the

signature σ, validate it if it is true returns 1 or if it is false returns 0 according to the inputs.

Sib.Verify2(vk,m, σ) → 1, 0: The verification algorithm gets pk, the message m and the

signature σ, validate it if it is true returns 1 or if it is false returns 0 according to the inputs.

4.2.3 Constructing Sibling Signatures.

Setting the public key pk as (pk1, pk2) and the signing key as sk = (sk1, sk2), a new sib-

ling signature can be easily constructed from two standard signature schemes and using one

signature scheme as Sign1 and Verify1 and the other as Sign2 and Verify2. Also, this con-

struction allows that securely share key material between the two algorithms.

Thus, it can be combined by Groth1 signatures and Schnorr-signatures together to form a

sibling signature scheme as notation SibGS1. SibGS1 uses only a single key pair and uses

the Setup and Gen algorithms of Groth1. Algorithm Sign1 comes from Groth1.Sign, and

Sign2 creates a Schnorr signature. In a same way, we can denote SibGS2 as the defined

Groth-Schnorr sibling signature where Groth2 instead of Groth1.

29

4.3 Construction for Delegatable Credentials

An issuer can delegate his credential to a user and the user can present the credential which

is acquired and also this can be verified. If we spouse the issuer is Level-0, the first stage

delegator is Level-1. And further, the user with Level-(i-1) is able to delegate his credential

to Level-i. The outcome of presenting a delegated credential like signing a message instead

of issuer is attribute token that can be verified by the private key of issuer and hiding any

attributes of delegators including identities. We now explain on a high level how a user

obtains a Level-1 credential and then that credential is delegated [10]. It is then easy to see

how a Level-L credential is delegated on Figure 4.1.

Figure 4.1: The delegation chart

First, the issuer generate a public and private (secret) key pair ipk, isk. The user to whom

the issuer wants to delegate Level-1 credential also generate a fresh key pair cpk1, csk1 and

sends the public one to the issuer. The issuer signs the cpk1 with the attributes a1 and sends

the signature σ1 back to user u1. In this way, the Level-1 credential cred1 which contains σ1,

~a1 and key pair csk1, cpk1 is established.

The user u1 owned cred1 can also delegate his credential another user u2 with Level-2. Like

first delegation process, u2 creates fresh key pair csk2, cpk2 and send cpk2 to u1. After

signing cpk2 and ~a2, u1 send back to u2. This time, Level-2 credential cred2 consists of

30

signatures σ1, σ2, attributes ~a1, ~a2, keys cpk1, cpk2, csk2. u2 can prove that he has the

Level-2 credential with his secret key csk2.

Level-2 credential can be delegated the same way above and it can continue so on. Because

of not sharing the private keys no one present or delegate another level of credential.

With present stage any delegator can prove his possession of all credential and hide the

selected attributes from the signature. The proof and also the signature of a message is

called as attribute token, which can be verified by the issuer public key [10].

Construction

For delegation process, we use Groth-Schnorr sibling signatures SibGS introduced in pre-

vious chapter. Groth signature scheme uses bilinear group Λ = (q,G1,G2,Gt, e, g1, g2).

Recall that Groth1 signs messages in G1 with a public key in G2, while Groth2 signs mes-

sages in G2 with a public key in G1. Therefore, we set Level-2n to SibGS1 and Level-2n+1

to SibGS2. This means that A2n = G1 and A2n+1 = G2.

Also, SibGS1 requires y1,1, . . . , y1,n+1 ∈ G1 as parameters, where n is the maximum number

of attributes signed at an odd level (n = maxi=1,3,...(ni)), and SibGS2 requires y2,1, . . . , y2,n+1 ∈

G2, for n the maximum number of attributes signed at an even level (n = maxi=2,4,...(ni)).

Let issuer be I and users be ui. They can delegate, present and verify the credentials via four

stage; Setup, Delegate, Present, Verify [10]. The method is described in a protocol way as

below;

Setup : After receiving (SETUP, sid, < ni >i):

• Check sid = I, sid′ for some sid′

• Run (ipk, isk)← SibGS2.Gen(1K) and let cpk0 ← ipk

• Output (SETUPDONE, sid)

Delegate : Any user ui with Level-(L− 1) can delegate to another user uj with Level-L. uj

31

can select which attributes are disclosed or hidden.

• Input(Delegate, sid, ssid, a1, . . . , aL, uj) to user ui with ~aL ∈ AnL
L .

• IfL = 1, ui only check sid = (I, sid′
). Else ui search that cred = (< σi, ~ai, cpki >

L−1
i=1

, cskL−1) in Lcread.

• Send (sid, ssid,~a1, . . . ,~aL) to uj .

• After receiving (sid, ssid,~a1, . . . ,~aL) by uj from ui, uj generates fresh key pair (cpkL, cskL)←

SibGS(L mod 2).Gen(1K).

• Send cpkL to ui.

• After receiving cpkL, ui computes σL ← SibGS(L mod 2).Sig1(cskL−1; cpkL, ~aL)

and sends back < σi, cpki >
L
i=1 to uj .

• After receiving< σi, cpki >
L
i=1, uj verifies SibGS(i−1 mod 2).Verify1(cski−1, σi, cpki,~ai)

for i = 1, . . . , L and stores cred← (< σi, ~ai, cpki >
L
i=1, cskL) in Lcred

• Output (DELEGATE, sid, ssid, ~a1, . . . , ~aL, ui)

Present : A user can present his credential via signing a message and proving his posses-

sion. All attributes are described by ~a1, . . . , ~aL, ui and ~ai = ai,1, . . . ai,n ∈ A. Let D be the

set of disclosed attributes, hence ~ai ∈ A/D are hidden attributes.

• After receiving (Present, sid,m, ~a1, . . . , ~aL) with ~ai ∈ Ani
i for i = 1, . . . , L

• Look up cred = (< σi,
~a
′
i, cpki >

L
i=1, cskL) in Lcred shuch that ai � a

′
i for i =

1, . . . , L. If there is no such a credential, then abort.

• Create the attribute token by proving possession of the credential:

at← NIZK/Present {(σ1, . . . , σL, cpk1, . . . , cpkL, 〈a′i,j〉i 6∈D, tag) :
L∧

i=1,3

· · · 1 = SibGS1.Verify1(cpki−1, σi, cpki, a
′
i,1, . . . , a

′
i,nl

)

L∧
i=2,4

. . . 1 = SibGS2.Verify1(cpki−1, σi, cpki, a
′
i,1, . . . , a

′
i,ni

)

32

∧ 1 =SibGSb.Verify2(cpkL, tag, m)}

Detailed computation is given in Appendix Listing 3.

• Output (TOKEN, sid, at).

Verify : Receiving (Verify, sid, at,m, ~a1, . . . , ~aL)

• Verify at with respect to m and ~a1, . . . , ~aL). If it is valid set f ← 1 else f ← 0.

• Output (Verified, sid, f).

Detailed computation is in Appendix Listing 4.

4.4 Application of Delegatable Credentials to Bitcoin

Application delegatable credentials to Bitcoin ecosystem might be for two aims. First, as

a facility, someone can delegate another to spend a Bitcoin amount individually. With the

property of keeping attribute values, the issuer can set some conditions to limit or control the

spendings, like the condition of maximum payments by the position of the delegate which

also is able to be stored in his credentials.

Second, as an additional security measure, delegatable credentials can be used in a certifi-

cate authority structure suggested in [10]. It may be needed especially for a private block

chain. Let there be a membership service in this private block chain. It provides credentials

to members. This structure is used for permitting transactions, authentication, controlling

access, cancelling credentials, and auditing transactions. But, by the nature of delegatable

credentials, there is a security and privacy vulnerabilities, because transactions can be track-

able. Fortunately, hideable property of [10] can solve this issue.

For the first usage suggestion, implementation delegatable credentials schema in Bitcoin can

also be illustrated with script language. The possible locking script in delegatable credentials

schema should be like

<Attribute Conditions> <Issuer Public Key> OP_CHECKDELEGATABLE

33

and the unlocking script

OP_0 <Attribute Token>

where <Attribute Conditions> is a set of rules that the issuer has set to limit the later

spendings and <Attribute Token> is a kind of signature which is signed by a delegate.

34

5 CONCLUSION

In this thesis, the transaction authentication mechanisms in a blockchain, especially in Bit-

coin ecosystem, and two alternatives are presented.

Firstly, the topics of existing structure of blockchain concept, Bitcoin, its transaction scripts

and most used authentication schemes are introduced. In addition to the necessity of pro-

tecting the Bitcoin assets, which is so valuable and equivalent to money, and must be kept

safely, it is determined that the transactions need to be carried out effectively.

With discovering ineffective use, Accountable Subgroup Multi-Signature (ASM) is proposed

instead of Multisig transaction script which is a kind of multi-signature schema. After first

concept of ASM schema [5], it is improved by [3] to adding the capability of key aggre-

gation to the schema using the pairing-based cryptography. Therefore, implementing ASM

to the Bitcoin ecosystem can reduce the transaction size and computational effort through

aggregating public keys and also make transactions more secure.

And also discovering a gap in Bitcoin usage about transferring the spending authority to

someone else, The Delegatible Credential cryptosystem can be a solution to this. The sug-

gested schema in [16] is also based on bilinear pairings. It gives the opportunity that the

public key of issuer who is the first delegator is sufficient to verify the signature that is signed

by any further delegate. It allows someone to spend another’s Bitcoin amount with a dele-

gated credential. At the same time, it is thought that the ability to maintain the user-specific

attribute values can also create authorisation control mechanism via keeping user’s authori-

sation level in an attribute and checking it at the signing stage, like how much a delegate be

able to spend etc.

Although this approach has good facilities, it is not in Bitcoins transaction scripts currently.

On the other hand, it brings along a difficulty to implement. Because the public keys of the all

previous delegators is included in the signature, called attribute token in [16]. Like Multisig

script, all public keys is not stored in locking scripts, but must be stored in unlocking script

which includes the signature.

As a future work, the size issue of Delegatible Credentials schema in [16] can be overcome

with developing a combined or aggregated public key structure like ASM schema. In this

35

way, Delegatible Credentials is likely to add Bitcoin transaction scripts. For ASM schema,

in order to add more authorization capabilities, it is considered that attributes can be included

in Group Setup and Signing stage.

36

References

[1] A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocurrencies, O’Reilly

Media, Inc., 2014.

[2] S. Vijayakumaran, An Introduction to Bitcoin, October 2017.

[3] D. Boneh, M. Drijvers, and G. Neven, Compact multi-signatures for smaller blockchains,

International Conference on the Theory and Application of Cryptology and Information

Security. Springer, Cham, 2018.

[4] M. Bellare, G. Neven, Multi-signatures in the plain public-key model and a general fork-

ing lemma, In: Juels, A., Wright, R.N., Vimercati, S. (eds.) ACM CCS 06: 13th Confer-

ence on Computer and Communications Security. pp. 390–399. ACM Press, Alexandria,

Virginia, USA (Oct 30 – Nov 3, 2006).

[5] S. Micali, K. Ohta, L. Reyzin, Accountable-subgroup multisignatures: Extended ab-

stract. In: ACM CCS 01: 8th Conference on Computer and Communications Security.

pp. 245–254. ACM Press, Philadelphia, PA, USA (Nov 5–8, 2001).

[6] G. Maxwell,A. Poelstra, Y. Seurin, P. Wuille, Simple schnorr multi-signatures with ap-

plications to bitcoin. Cryptology ePrint Archive, Report 2018/068 (2018).

[7] D. Boneh, B. Lynn, H. Shacham, Short signatures from the Weil pairing. In: Boyd, C.

(ed.) Advances in Cryptology – ASIACRYPT 2001. Lecture Notes in Computer Science,

vol. 2248, pp. 514–532. Springer, Heidelberg, Germany, Gold Coast, Australia (2001).

[8] A. Budroni, F. Pintore, Efficient hash maps to G2 on BLS curves. Cryptology ePrint

Archive, Report 2017/419 (2017).

[9] T. Ristenpart, S. Yilek, The power of proofs-of-possession: Securing multiparty signa-

tures against rogue-key attacks. In: Naor, M. (ed.) Advances in Cryptology – EURO-

CRYPT 2007. Lecture Notes in Computer Science, vol. 4515, pp. 228–245. Springer,

Heidelberg, Germany, Barcelona, Spain (May 20–24, 2007).

[10] J. Camenisch, M. Drijvers, M. Dubovitskaya, Practical UC-secure delegatable creden-

tials with attributes and their application to blockchain, Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communications Security. ACM, 2017.

37

[11] J. Camenisch, A. Kiayias, and M. Yung, On the Portability of Generalized Schnorr

Proofs. In EUROCRYPT 2009 (LNCS), Antoine Joux (Ed.), Vol. 5479. Springer, Heidel-

berg, 425–442 2009.

[12] M. Abe, G. Fuchsbauer, J. Groth, K. Haralambiev, M. Ohkubo, Structure-Preserving

Signatures and Commitments to Group Elements. In CRYPTO 2010 (LNCS), Tal Rabin

(Ed.), Vol. 6223. Springer, Heidelberg, 209–236, 2010.

[13] J. Groth, Efficient Fully Structure-Preserving Signatures for Large Messages, In ASI-

ACRYPT 2015, Part I (LNCS), Tetsu Iwata and Jung Hee Cheon (Eds.), Vol. 9452.

Springer, Heidelberg, 239–259, 2015.

[14] Wikipedia, Pairing-based cryptography, https://en.wikipedia.org/wiki/Pairing-

based_cryptography (Accessed: June 27, 2019).

[15] J. Camenisch, M. Dubovitskaya, R. R. Enderlein, A. Lehmann, G. Neven, C. Paquin, F.-

S. Preiss, Concepts and languages for privacy-preserving attribute-based authentication,

J. Inf. Sec. Appl. 19, 1 , 25–44, (2014).

[16] Camenisch, Jan, Manu Drijvers, and Maria Dubovitskaya. "Practical UC-secure del-

egatable credentials with attributes and their application to blockchain." Proceedings of

the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM,

2017.

[17] Boneh, Dan, Ben Lynn, and Hovav Shacham. "Short signatures from the Weil pairing."

International Conference on the Theory and Application of Cryptology and Information

Security. Springer, Berlin, Heidelberg, 2001.

[18] C.-P. Schnorr, Efficient signature generation by smart cards, Journal of cryptology 4.3,

161-174, 1991.

[19] K. Itakura, K. Nakamura, A public-key cryptosystem suitable for digital multisigna-

tures, Tech. rep., NEC Research and Development, 1983.

[20] S. Park, K. Kim, D. Won, Two efficient RSA multisignature schemes, In: Han, Y.,

Okamoto, T., Qing, S. (eds.) ICICS 97: 1st International Conference on Information and

Communication Security. Lecture Notes in Computer Science, vol. 1334, pp. 217-222.

Springer, Heidelberg, Germany, Beijing, China (Nov 11-14, 1997).

38

[21] L. Harn, Group-oriented (t, n) threshold digital signature scheme and digital multisig-

nature. IEE Proceedings-Computers and Digital Techniques 141(5), 307-313 (1994).

[22] K. Ohta, T. Okamoto, Multi-signature schemes secure against active insider attacks.

IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sci-

ences 82(1), 21-31 (1999).

[23] C. Ma, J. Weng, Y. Li, R. Deng, Efficient discrete logarithm based multisignature

scheme in the plain public key model. Designs, Codes and Cryptography 54(2), 121-133

(2010).

[24] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, B. Waters, Sequential aggregate signatures

and multisignatures without random oracles. In: Vaudenay, S. (ed.) Advances in Cryptol-

ogy - EUROCRYPT 2006. Lecture Notes in Computer Science, vol. 4004, pp. 465-485.

Springer, Heidelberg, Germany, St. Petersburg, Russia (May 28 - Jun 1, 2006).

[25] A. Boldyreva, C. Gentry, A. O’Neill, D.H. Yum, Ordered multisignatures and identity-

based sequential aggregate signatures, with applications to secure routing. In: Ning, P.,

di Vimercati, S.D.C., Syverson, P.F. (eds.) ACM CCS 07: 14th Conference on Computer

and Communications Security. pp. 276-285. ACM Press, Alexandria, Virginia, USA (Oct

28-31, 2007).

[26] R.E. Bansarkhani, J. Sturm, An efficient lattice-based multisignature scheme with ap-

plications to bitcoins. In: Foresti, S., Persiano, G. (eds.) CANS 16: 15th International

Conference on Cryptology and Network Security. Lecture Notes in Computer Science,

vol. 10052, pp. 140-155. Springer, Heidelberg, Germany, Milan, Italy (Nov 14-16, 2016).

[27] M. Belenkiy, J. Camenisch, M. Chase, M. Kohlweiss, A. Lysyanskaya, H. Shacham,

Randomizable Proofs and Delegatable Anonymous Credentials. In CRYPTO 2009

(LNCS), Shai Halevi (Ed.), Vol. 5677. Springer, Heidelberg, 108–125, 2009.

[28] M. Chase, M. Kohlweiss, A. Lysyanskaya, S. Meiklejohn, Malleable Signatures: Com-

plex Unary Transformations and Delegatable Anonymous Credentials, Cryptology ePrint

Archive, Report 2013/179, (2013).

[29] M. Chase, A. Lysyanskaya, On Signatures of Knowledge. In CRYPTO 2006 (LNCS),

Cynthia Dwork (Ed.), Vol. 4117. Springer, Heidelberg, 78–96, 2006.

39

[30] G, Fuchsbauer, Commuting Signatures and Verifable Encryption. In EUROCRYPT

2011 (LNCS), Kenneth G. Paterson (Ed.), Vol. 6632. Springer, Heidelberg, 224–245,

2011.

[31] M. Trolin and D. Wikström, Hierarchical Group Signatures. In ICALP 2005 (LNCS),

Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi, and Moti Yung

(Eds.), Vol. 3580. Springer, Heidelberg, 446–458, 2005.

[32] W. Bosma, J. J. Cannon, C. Fieker, A. Steel (eds.), Handbook of Magma functions,

Edition 2.16, 5017 pages, (2010).

40

APPENDIX

Listing 1: The Magma Codes of ASM Example

//−−−−−−−−Begin P a r a m e t e r G e n e r a t i o n Stage−−−−−−−−//

> Zs<s > := Po lynomia lR ing (I n t e g e r s ()) ;

> ps := 36∗ s ^4 + 36∗ s ^3 + 24∗ s ^2 + 6∗ s + 1 ;

> ns := 36∗ s ^4 + 36∗ s ^3 + 18∗ s ^2 + 6∗ s + 1 ;

> z := 513235038556; / / a r b i t r a r y i n i t i a l v a l u e

> r e p e a t

> z := z +1;

> p := E v a l u a t e (ps , z) ;

> q := E v a l u a t e (ns , z) ;

> u n t i l I s P r o b a b l e P r i m e (p) and I s P r o b a b l e P r i m e (q) ;

> p :

2497857711095780713403056606399151275099020724723

> q ;

2497857711095780713403055025937917618634473494829

> Fp := F i n i t e F i e l d (p) ;

> b := Fp ! 0 ;

> r e p e a t

> r e p e a t b := b + 1 ; u n t i l I s S q u a r e (b + 1) ;

> y := SquareRoot (b + 1) ;

> E := E l l i p t i c C u r v e ([Fp ! 0 , b]) ;

> G := E ! [1 , y] ;

> u n t i l I s Z e r o (q∗G) ;

> E ;

E l l i p t i c Curve d e f i n e d by y ^2 = x ^3 + 18 ove r

GF(2497857711095780713403056606399151275099020724723)

> t := p + 1 − q ;

> k := 1 2 ; / / s e c u r i t y m u l t i p l i e r

41

> Fpk := GF(p , k) ;

> N := R e s u l t a n t (s ^k − 1 , s ^2 − t ∗ s + p) ; / / number o f p o i n t s ove r b i g f i e l d

> Cofac := N d i v q ^ 2 ;

> g1 := E (Fpk) !G;

> g2 := Cofac ∗Random (E (Fpk)) ; / / g2 has o r d e r q now

//−−−−−−−−End of P a r a m e t e r G e n e r a t i o n Stage−−−−−−−−−−//

> H0:= f u n c t i o n (apk ,m, g1)

> r e t u r n ((I n t e g e r s () ! (E l t s e q (apk [1]) [1])) +m)∗ g1 ;

> end f u n c t i o n ;

> H1:= f u n c t i o n (pk , pkS , q)

> r e t u r n I n t e g e r s () ! (E l t s e q (pk [1]) [1] ∗ E l t s e q (pkS [1]) [1]) mod q ;

> end f u n c t i o n ;

> H2:= f u n c t i o n (apk , i , g2)

> r e t u r n ((I n t e g e r s () ! (E l t s e q (apk [2]) [1])) + i)∗ g1 ;

> end f u n c t i o n ;

//−−−−−−−−Begin Key G e n e r a t i o n Stage−−−−−−−−−−−−−−//

> sk1 : = 1 1 ;

> pk1 := sk1 ∗g2 ;

> sk2 : = 1 3 ;

> pk2 := sk2 ∗g2 ;

> sk3 : = 1 5 ;

> pk3 := sk3 ∗g2 ;

> sk4 : = 1 7 ;

> pk4 := sk4 ∗g2 ;

> sk5 : = 1 9 ;

> pk5 := sk5 ∗g2 ;

//−−−−−−−−End Key G e n e r a t i o n Stage−−−−−−−−−−−−−−−−//

//−−−−−−−−Begin Group Se tup Stage−−−−−−−−−−−−−−−−−//

> a1 :=H1 (pk1 , pk1+pk2+pk3+pk4+pk5 , q) ;

42

> a2 :=H1 (pk2 , pk1+pk2+pk3+pk4+pk5 , q) ;

> a3 :=H1 (pk3 , pk1+pk2+pk3+pk4+pk5 , q) ;

> a4 :=H1 (pk4 , pk1+pk2+pk3+pk4+pk5 , q) ;

> a5 :=H1 (pk5 , pk1+pk2+pk3+pk4+pk5 , q) ;

> apk := a1∗pk1+a2∗pk2+a3∗pk3+a4∗pk4+a5∗pk5 ;

> mu11 := (a1∗ sk1)∗H2 (apk , 1 , g1) ;

> mu12 := (a2∗ sk2)∗H2 (apk , 1 , g1) ;

> mu13 := (a3∗ sk3)∗H2 (apk , 1 , g1) ;

> mu14 := (a4∗ sk4)∗H2 (apk , 1 , g1) ;

> mu15 := (a5∗ sk5)∗H2 (apk , 1 , g1) ;

> mu21 := (a1∗ sk1)∗H2 (apk , 2 , g1) ;

> mu22 := (a2∗ sk2)∗H2 (apk , 2 , g1) ;

> mu23 := (a3∗ sk3)∗H2 (apk , 2 , g1) ;

> mu24 := (a4∗ sk4)∗H2 (apk , 2 , g1) ;

> mu25 := (a5∗ sk5)∗H2 (apk , 2 , g1) ;

> mu31 := (a1∗ sk1)∗H2 (apk , 3 , g1) ;

> mu32 := (a2∗ sk2)∗H2 (apk , 3 , g1) ;

> mu33 := (a3∗ sk3)∗H2 (apk , 3 , g1) ;

> mu34 := (a4∗ sk4)∗H2 (apk , 3 , g1) ;

> mu35 := (a5∗ sk5)∗H2 (apk , 3 , g1) ;

> mu41 := (a1∗ sk1)∗H2 (apk , 4 , g1) ;

> mu42 := (a2∗ sk2)∗H2 (apk , 4 , g1) ;

> mu43 := (a3∗ sk3)∗H2 (apk , 4 , g1) ;

> mu44 := (a4∗ sk4)∗H2 (apk , 4 , g1) ;

> mu45 := (a5∗ sk5)∗H2 (apk , 4 , g1) ;

> mu51 := (a1∗ sk1)∗H2 (apk , 5 , g1) ;

> mu52 := (a2∗ sk2)∗H2 (apk , 5 , g1) ;

> mu53 := (a3∗ sk3)∗H2 (apk , 5 , g1) ;

> mu54 := (a4∗ sk4)∗H2 (apk , 5 , g1) ;

> mu55 := (a5∗ sk5)∗H2 (apk , 5 , g1) ;

> mk1 := mu11+mu12+mu13+mu14+mu15 ;

> mk2 := mu21+mu22+mu23+mu24+mu25 ;

> mk3 := mu31+mu32+mu33+mu34+mu35 ;

> mk4 := mu41+mu42+mu43+mu44+mu45 ;

> mk5 := mu51+mu52+mu53+mu54+mu55 ;

43

> W e i l P a i r i n g (mk1 , g2 , q) eq W e i l P a i r i n g (H2 (apk , 1 , g1) , apk , q) ;

t r u e

> W e i l P a i r i n g (mk2 , g2 , q) eq W e i l P a i r i n g (H2 (apk , 2 , g1) , apk , q) ;

t r u e

> W e i l P a i r i n g (mk3 , g2 , q) eq W e i l P a i r i n g (H2 (apk , 3 , g1) , apk , q) ;

t r u e

> W e i l P a i r i n g (mk4 , g2 , q) eq W e i l P a i r i n g (H2 (apk , 4 , g1) , apk , q) ;

t r u e

> W e i l P a i r i n g (mk5 , g2 , q) eq W e i l P a i r i n g (H2 (apk , 5 , g1) , apk , q) ;

t r u e

//−−−−−−−−End Group Se tup Stage−−−−−−−−−−−−−−−−−−−//

//−−−−−−−−Begin S i g n i n g Stage−−−−−−−−−−−−−−−−−−−−−//

> m: = 1 2 3 4 5 ;

> s2 := (sk2 ∗H0 (apk ,m, g1)) + mk2 ;

> s3 := (sk3 ∗H0 (apk ,m, g1)) + mk3 ;

> s5 := (sk5 ∗H0 (apk ,m, g1)) + mk5 ;

> pk := pk2+pk3+pk5 ;

> s := s2+s3+s5 ;

//−−−−−−−−End S i g n i n g Stage−−−−−−−−−−−−−−−−−−−−−−−//

//−−−−−−−−Begin V e r i f i c a t i o n Stage−−−−−−−−−−−−−−−−//

> W e i l P a i r i n g (H0 (apk ,m, g1) , pk , q)

∗W e i l P a i r i n g (H2 (apk , 2 , g1)+H2 (apk , 3 , g1)+H2 (apk , 5 , g1) , apk , q)

eq W e i l P a i r i n g (s , g2 , q)

t r u e

//−−−−−−−−End V e r i f i c a t i o n Stage−−−−−−−−−−−−−−−−−−//

44

Listing 2: The Magma Codes of ASM with PoPs Example

//−−−−−−−−Begin P a r a m e t e r G e n e r a t i o n Stage−−−−−−−−//

> Zs<s > := Po lynomia lR ing (I n t e g e r s ()) ;

> ps := 36∗ s ^4 + 36∗ s ^3 + 24∗ s ^2 + 6∗ s + 1 ;

> ns := 36∗ s ^4 + 36∗ s ^3 + 18∗ s ^2 + 6∗ s + 1 ;

> z := 513235038556; / / a r b i t r a r y i n i t i a l v a l u e

> r e p e a t

> z := z +1;

> p := E v a l u a t e (ps , z) ;

> q := E v a l u a t e (ns , z) ;

> u n t i l I s P r o b a b l e P r i m e (p) and I s P r o b a b l e P r i m e (q) ;

> p :

2497857711095780713403056606399151275099020724723

> q ;

2497857711095780713403055025937917618634473494829

> Fp := F i n i t e F i e l d (p) ;

> b := Fp ! 0 ;

> r e p e a t

> r e p e a t b := b + 1 ; u n t i l I s S q u a r e (b + 1) ;

> y := SquareRoot (b + 1) ;

> E := E l l i p t i c C u r v e ([Fp ! 0 , b]) ;

> G := E ! [1 , y] ;

> u n t i l I s Z e r o (q∗G) ;

> E ;

E l l i p t i c Curve d e f i n e d by y ^2 = x ^3 + 18 ove r

GF(2497857711095780713403056606399151275099020724723)

> t := p + 1 − q ;

> k := 1 2 ; / / s e c u r i t y m u l t i p l i e r

> Fpk := GF(p , k) ;

> N := R e s u l t a n t (s ^k − 1 , s ^2 − t ∗ s + p) ; / / number o f p o i n t s ove r b i g f i e l d

> Cofac := N d i v q ^ 2 ;

45

> g1 := E (Fpk) !G;

> g2 := Cofac ∗Random (E (Fpk)) ; / / g2 has o r d e r q now

//−−−−−−−−End P a r a m e t e r G e n e r a t i o n Stage−−−−−−−−−−//

> H0:= f u n c t i o n (apk ,m, g1)

> r e t u r n ((I n t e g e r s () ! (E l t s e q (apk [1]) [1])) +m)∗ g1 ;

> end f u n c t i o n ;

> H1:= f u n c t i o n (pk , pkS , q)

> r e t u r n I n t e g e r s () ! (E l t s e q (pk [1]) [1] ∗ E l t s e q (pkS [1]) [1]) mod q ;

> end f u n c t i o n ;

> H2:= f u n c t i o n (apk , i , g2)

> r e t u r n ((I n t e g e r s () ! (E l t s e q (apk [2]) [1])) + i)∗ g1 ;

> end f u n c t i o n ;

> H3:= f u n c t i o n (y , q)

> r e t u r n ((I n t e g e r s () ! (E l t s e q (y [3]) [1]))) mod q ;

> end f u n c t i o n ;

//−−−−−−−−Begin Key G e n e r a t i o n Stage−−−−−−−−−−−−−−//

> sk1 : = 1 1 ;

> x1 : = 2 0 ;

> y1 := sk1 ∗g2 ;

> p i 1 := x1∗H3 (y1 , q) ;

> sk2 : = 1 3 ;

> x2 : = 2 2 ;

> y2 := sk2 ∗g2 ;

> p i 2 := x2∗H3 (y2 , q) ;

> sk3 : = 1 5 ;

> x3 : = 2 4 ;

> y3 := sk3 ∗g2 ;

> p i 3 := x3∗H3 (y3 , q) ;

> sk4 : = 1 7 ;

> x4 : = 2 6 ;

46

> y4 := sk4 ∗g2 ;

> p i 4 := x4∗H3 (y4 , q) ;

> sk5 : = 1 9 ;

> x5 : = 2 8 ;

> y5 := sk5 ∗g2 ;

> p i 5 := x5∗H3 (y5 , q) ;

//−−−−−−−−End Key G e n e r a t i o n Stage−−−−−−−−−−−−−−−−//

//−−−−−−−−Begin Group Se tup Stage−−−−−−−−−−−−−−−−−//

> Y:= y1+y2+y3+y4+y5 ;

> h :=H3 (p i 1 ∗y1+ p i 2 ∗y2+ p i 3 ∗y3+ p i 4 ∗y4+ p i 5 ∗y5 , q) ;

> apk := h∗Y;

> mu11 := sk1 ∗H2 (apk , 1 , g1) ;

> mu12 := sk2 ∗H2 (apk , 1 , g1) ;

> mu13 := sk3 ∗H2 (apk , 1 , g1) ;

> mu14 := sk4 ∗H2 (apk , 1 , g1) ;

> mu15 := sk5 ∗H2 (apk , 1 , g1) ;

> mu21 := sk1 ∗H2 (apk , 2 , g1) ;

> mu22 := sk2 ∗H2 (apk , 2 , g1) ;

> mu23 := sk3 ∗H2 (apk , 2 , g1) ;

> mu24 := sk4 ∗H2 (apk , 2 , g1) ;

> mu25 := sk5 ∗H2 (apk , 2 , g1) ;

> mu31 := sk1 ∗H2 (apk , 3 , g1) ;

> mu32 := sk2 ∗H2 (apk , 3 , g1) ;

> mu33 := sk3 ∗H2 (apk , 3 , g1) ;

> mu34 := sk4 ∗H2 (apk , 3 , g1) ;

> mu35 := sk5 ∗H2 (apk , 3 , g1) ;

> mu41 := sk1 ∗H2 (apk , 4 , g1) ;

> mu42 := sk2 ∗H2 (apk , 4 , g1) ;

> mu43 := sk3 ∗H2 (apk , 4 , g1) ;

> mu44 := sk4 ∗H2 (apk , 4 , g1) ;

> mu45 := sk5 ∗H2 (apk , 4 , g1) ;

> mu51 := sk1 ∗H2 (apk , 5 , g1) ;

> mu52 := sk2 ∗H2 (apk , 5 , g1) ;

> mu53 := sk3 ∗H2 (apk , 5 , g1) ;

> mu54 := sk4 ∗H2 (apk , 5 , g1) ;

47

> mu55 := sk5 ∗H2 (apk , 5 , g1) ;

> mk1 := mu11+mu12+mu13+mu14+mu15 ;

> mk2 := mu21+mu22+mu23+mu24+mu25 ;

> mk3 := mu31+mu32+mu33+mu34+mu35 ;

> mk4 := mu41+mu42+mu43+mu44+mu45 ;

> mk5 := mu51+mu52+mu53+mu54+mu55 ;

> W e i l P a i r i n g (mk1 , g2 , q) eq W e i l P a i r i n g (H2 (apk , 1 , g1) , Y, q) ;

t r u e

> W e i l P a i r i n g (mk2 , g2 , q) eq W e i l P a i r i n g (H2 (apk , 2 , g1) , Y, q) ;

t r u e

> W e i l P a i r i n g (mk3 , g2 , q) eq W e i l P a i r i n g (H2 (apk , 3 , g1) , Y, q) ;

t r u e

> W e i l P a i r i n g (mk4 , g2 , q) eq W e i l P a i r i n g (H2 (apk , 4 , g1) , Y, q) ;

t r u e

> W e i l P a i r i n g (mk5 , g2 , q) eq W e i l P a i r i n g (H2 (apk , 5 , g1) , Y, q) ;

t r u e

//−−−−−−−−End Group Se tup Stage−−−−−−−−−−−−−−−−−−−//

//−−−−−−−−Begin S i g n i n g Stage−−−−−−−−−−−−−−−−−−−−−//

> m: = 1 2 3 4 5 ;

> s2 := (sk2 ∗H0 (apk ,m, g1)) + mk2 ;

> s3 := (sk3 ∗H0 (apk ,m, g1)) + mk3 ;

> s5 := (sk5 ∗H0 (apk ,m, g1)) + mk5 ;

> y := y2+y3+y5 ;

> s := s2+s3+s5 ;

//−−−−−−−−End S i g n i n g Stage−−−−−−−−−−−−−−−−−−−−−−−//

//−−−−−−−−Begin V e r i f i c a t i o n Stage−−−−−−−−−−−−−−−−//

> W e i l P a i r i n g (H0 (apk ,m, g1) , y , q)

∗W e i l P a i r i n g (H2 (apk , 2 , g1)+H2 (apk , 3 , g1)+H2 (apk , 5 , g1) , apk , q)

eq W e i l P a i r i n g (s , g2 , q)

t r u e

//−−−−−−−−End V e r i f i c a t i o n Stage−−−−−−−−−−−−−−−−−−//

48

Listing 3: The pseudocode of presenting

49

Listing 4: The pseudocode of verifying

50

CURRICULUM VITAE

Credentials

Name, Surname : Fahrettin YAVUZYİĞİT

Place of Birth : İstanbul, 1982

Marital Status : Married

E-mail : fahrettinyavuzyigit@gmail.com

Education

High School : 1996-1999 Kaya Bayazitoğlu High School

BSc. : 2000-2007 Hacettepe University, Faculty of Science, Department of

Mathematics

MSc. : 2007-2019 Hacettepe University, Institute of Graduate Studies in Science,

Department of Mathematics

Foreign Languages

English

Work Experience

2008- Information Systems Senior Controller, T. Halk Bankası A.Ş.

51

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	NOTATIONS
	INTRODUCTION
	Motivation for Writing This Thesis
	Previous Works
	An Application of Blockchain, Bitcoin
	Suggestions for Bitcoin Transaction Authentication
	Outline of The Thesis

	BLOCKCHAIN
	Bitcoin
	Block Structure
	Transaction Structure
	Transaction Scripts
	Pay To Public Key (P2PK)
	Pay To Public Key Hash (P2PKH)
	Multisig (M-of-N Multi-Signature)

	ACCOUNTABLE SUBGROUP MULTI-SIGNATURE
	Bilinear Groups and Pairing Based Cryptography
	Construction of ASM Schema
	Proof-of-Possession
	Accountable-Subgroup Scheme with PoPs
	Application ASM to Bitcoin

	DELEGATABLE CREDENTIALS WITH HIDEABLE ATTRIBUTES
	Practical Delegatable Anonymous Credentials System
	Signature Schemes
	Groth Structure-Preserving Signature Schema
	Sibling Signatures
	Constructing Sibling Signatures.

	Construction for Delegatable Credentials
	Application of Delegatable Credentials to Bitcoin

	CONCLUSION
	REFERENCES
	APPENDIX
	CURRICULUM VITAE

