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May 2019, 138 pages

Earth rotation parameters (ERP): polar motion coordinates and Universal Time (UT1) have
a significant impact basically on the terrestrial and celestial reference system relations, orbit
determination, and deep-space navigation. Very Long Baseline Interferometry (VLBI) is the
only space-based geodetic technique that can monitor both Earth rotation parameters and
nutation offsets simultaneously. International VLBI Service for Geodesy and Astrometry
(IVS) organizes VLBI observations for 1-2 hours or 24 hours called as Intensive or Stan-
dard sessions, respectively. Intensive sessions are carried out for UT1 determination only by
2-3 VLBI stations on a daily basis. However, Standard sessions, that are suitable for mon-
itoring Earth rotation parameters, are performed by 5-8 VLBI stations twice a week. IVS
suggests a parametrization for UT1 determination from the analysis of Intensive sessions
that contain 15-55 observations. In fact, the estimation of the tropospheric delay in short
time intervals during the Intensive session analysis is not possible due to few observations.
In order to increase the accuracy of UT1 determination from the analysis of the Intensive ses-
sions, troposphere signal delays and troposphere gradients derived from the analysis of the
Global Navigation Satellite Systems (GNSS) observations are involved in the analysis of the
VLBI Intensive sessions between 2008 and 2018 in this study. Statistical comparisons show
that length-of-day (LOD) values obtained from the proposed analysis strategies of this thesis
(NewUT1) are 2-3µs/day more accurate than those of IVS standard analysis. NewUT1 series
are daily updated at Hacettepe University servers for the use of researchers globally. On the
other hand, the major reason for ERP variations at semi-diurnal and diurnal periods is ocean
tides. International Earth Rotation and Reference System Service (IERS) recommended a
model for predicting these variations derived from geodynamical models nearly twenty-five
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years ago. However, the International Association for Geodesy (IAG) propounded the neces-
sity for the development of a new model based on the state-of-the-art space/satellite geodetic
techniques. For this reason, the other research objective of this thesis is modeling the sub-
daily ERP variations due to ocean tides by analyzing the VLBI Standard sessions between
2000 and 2018. For this purpose, time series of ERP are decomposed into sine and cosine
functions at tidal periods using least squares (LS), singular value decomposition (SVD), and
complex demodulation (CD) solution methods. Estimated tidal amplitudes from different
solution methods are compared with those of IERS model and also between each other using
the metrics of phasors, Fourier transform, and time series. Amplitudes estimated from least
squares method have the best agreement with those of IERS recommended model. Further-
more, tidal amplitude estimation software with a graphical user interface called TIDEST is
developed in the MATLAB environment in order to provide easy-use for the estimation of
tidal amplitudes from ERP time series within the study.

Keywords: Very Long Baseline Interferometry (VLBI), Earth Rotation Parameters (ERP),
Troposphere Signal Delay, Precise Point Positioning (PPP), Singular Value Decomposition,
Complex Demodulation, Least Squares, Universal Time (UT1), Global Navigation Satellite
Systems (GNSS)
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ÖZET

VLBI İLE GÜN-İÇİ PERİYOTLARDA İZLENEN KUTUP
GEZİNMESİ VE EVRENSEL ZAMANIN (UT1) DOĞRULUK

DEĞERLENDİRMESİ

Mehmet Fikret ÖCAL

Yüksek Lisans, Geomatik Mühendisliği Bölümü
Tez Danışmanı: Dr. Öğr. Üyesi Kamil TEKE

Mayıs 2019, 138 sayfa

Kutup gezinmesi koordinatları ve Evrensel Zamanı (UT1) içeren Yer dönme parametreleri
(ERP), temel olarak yersel ve göksel referans sistemleri arasındaki ilişki, yörünge belir-
leme ve derin-uzay navigasyonu üzerinde önemli bir etkiye sahiptir. Çok Uzun Baz En-
terferometresi (VLBI) hem Yer dönme parametreleri hem de nutasyon ofsetlerini eş zamanlı
izleyebilen tek uzay-tabanlı jeodezik tekniktir. Uluslararası Jeodezi ve Astrometri için VLBI
Servisi (IVS) 1-2 saatlik veya 24 saatlik, sırasıyla yoğun ve standart oturumlar adı verilen,
VLBI gözlemlerini organize eder. Yoğun oturumlar UT1 belirlenmesi amacıyla 2-3 VLBI is-
tasyonu ile günlük olarak gerçekleştirilirler. Bununla birlikte, Yer dönme parametreleri’nin
izlenmesine uygun olan standart oturumlar, 5-8 VLBI istasyonu ile haftada iki defa icra
edilirler. IVS, 15-55 gözlem içeren yoğun oturumların analizinden UT1 belirlenmesi için
bir analiz parametrizasyonu önermiştir. Esasen yoğun oturumların analizi sırasında tro-
posfer gecikmeleri’nin kısa zaman aralıklarında kestirimi az sayıda ölçü olması sebebiyle
mümkün değildir. Bu çalışma kapsamında, yoğun oturumların analizinden UT1 belirleme
doğruluğunun artırılabilmesi için, Küresel Navigasyon Uydu Sistemleri (GNSS) gözlem-
lerinin analizinden elde edilen troposfer sinyal gecikmeleri ve troposfer gradyanlarının 2008-
2018 yılları arasındaki VLBI yoğun oturumlarının analizlerine dahil edilmiştir. İstatistiksel
karşılaştırmalar, bu tezde önerilen analiz stratejisi ile elde edilen gün-uzunluğu (LOD) değer-
lerinin (YeniUT1), IVS standart analizindekilere göre 2-3µs/gün daha doğru olduğunu göster-
miştir. YeniUT1 serileri, Hacettepe Üniversitesi sunucularında dünya çapındaki araştırmacı-
ların kullanımı için günlük olarak güncellenmektedir. Diğer yandan, ERP’nin yarı-günlük
ve günlük periyotlardaki değişimlerin en büyük sebebi okyanus gel-gitleridir. Uluslararası
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Yer Dönme ve Referans Sistemleri Servisi (IERS) bu değişim- lerin tahmin edilmesi için,
yirmibeş yıl önce jeodinamik modellerden türetilen bir model önermiştir. Fakat, Ulus-
lararası Jeodezi Birliği (IAG) modern uzay/uydu jeodezisi tekniklerine dayanan yeni bir
model geliştirilmesinin gerekliliğini ileri sürmüştür. Bu sebeple, bu tezin diğer bir hedefi,
okyanus gel-gitleri kaynaklı gün-içi, ERP değişimlerini 2000-2018 yılları arasındaki VLBI
standart oturumlarının anali ile modellenmesidir. Bu amaçla, ERP zaman serileri, en küçük
kareler (LS), tekil değer ayrışımı (SVD) ve kompleks demodülasyon (CD) çözüm metodları
kullanılarak gel-gitsel periyotlardaki sinüs ve kosinüs fonksiyonlarına ayrıştırılmıştır. Farklı
metodlar ile kestirilen gel-gitsel genlikler, IERS modeli genlikleri ve birbirleri arasında,
fazör, Fourier transformu ve zaman serileri metrikleri ile karşılaştırılmıştır. En küçük kareler
metodu ile kestirilen genlikler, IERS önerilen modelininkileri ile en iyi uyuma sahiptir.
Buna ek olarak, ERP zaman serilerinden gel-gitsel genlik kestirimi için TIDEST adı verilen,
bir grafik kullanıcı arayüzü ile gel-gitsel genlik kestirimi yazılımı, bu çalışma kapsamında
MATLAB ortamında geliştirilmiştir.

Keywords: Çok Uzun Baz Enterferometrisi (VLBI), Yer Dönme Parametreleri (ERP), Tro-
posfer Sinyal Gecikmesi, Hassas Nokta Konumlama (PPP), Tekil Değer Ayrışımı, Kompleks
Demodülasyon, En Küçük Kareler, Evrensel Zaman (UT1), Kürsel Navigasyon Uydu Sis-
temleri (GNSS)
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1. INTRODUCTION

1.1. Background

The relation between Earth-fixed, equatorial, three-dimensional, Cartesian coordinate system
(terrestrial reference system, TRS, e.g. Altamimi et al. 2016) and space-fixed, equatorial,
three-dimensional, Cartesian coordinate system (celestial reference system, CRS, e.g. Fey,
Gordon and Jacobs 2009) are expressed using Earth orientation parameters (EOP). These
parameters are polar motion coordinates (xp, yp), nutation offsets (X , Y ), and ∆UT1. Polar
motion coordinates are the positions of celestial intermediate pole (CIP) in a crust-fixed
coordinate system. On the other hand, nutation offsets indicate space-fixed coordinates of
CIP. Lastly, ∆UT1 = UT1−UTC is described as a daily, absolute phase angle of the Earth
rotation w.r.t. space about CIP. Furthermore, polar motion coordinates and ∆UT1 are all
named as Earth rotation parameters (ERP). The Earth orientation parameters are required for
the determination of the orbital motion of satellites and planets, and studies related to deep
space navigation, and positioning. Thus, precise determination of these parameters ensures
a notable impact on research fields of space and Earth sciences.

International Earth Rotation and Reference System Service (IERS) is responsible for moni-
toring EOP. Polar motion coordinates are provided by the International services of the Global
Navigation Satellite Systems (GNSS), Satellite/Lunar Laser Ranging (SLR/LLR), Doppler
Orbitography and Radiopositioning Integrated by Satellite (DORIS), and Very Long Baseline
Interferometry (VLBI) to the IERS. Earth orientation center (EOC) of IERS updates Earth
rotation parameter series (e.g. IERS 14 C04, Bizouard et al. 2018) achieved from inter-
technique combinations of daily or weekly normal equation systems of all space geodetic
techniques.

Several important studies focusing on modeling and theory of ERP may be given as Yo-
der, Williams and Parke (1981); Wahr and Bergen (1986); Moritz and Mueller (1987); Chao
et al. (1991); Ray et al. (1994); Kantha, Stewart and Desai (1998); Defraigne and Smits
(1999); Gross (2009) in chronological order. They presented that Earth rotation parameters
are oscillating because of fluctuations of the Earth’s angular momentum on account of the
tidal movements of Earth’s fluid envelope i.e. oceans and atmosphere. Furthermore, estima-
tions of the EOP from GNSS and VLBI observations carried out by Robertson et al. (1985);
Rothacher et al. (1999); Sovers, Fanselow and Jacobs (1998); Steigenberger et al. (2011)
show that the estimation errors of these parameters are about 100-150 µas and 5-10 µs, for
polar motion and UT1-UTC, respectively.
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VLBI (Schuh and Behrend, 2012) observes radio-waves emitted from distant galaxies (5-7
billion light years away from our galaxy) so-called quasars (quasi-stellar radio sources). De-
tails about the observation model of this technique may be found in Sovers, Fanselow and
Jacobs (1998); Teke et al. (2012); Schuh and Böhm (2013). VLBI is fundamental and unique
space geodetic technique that can monitor the full set of EOP simultaneously. In other words,
monitoring long term variations of ∆UT1 and nutation offsets can only be performed via the
VLBI technique. Because of the high correlation between GNSS satellite orbital parameters
with these parameters, GNSS technique could not be used for determination of ∆UT1 and
nutation offsets (Rothacher et al., 1999). However, besides VLBI, Length-of-Day (LOD),
which is a derivative of ∆UT1 w.r.t. time, can be monitored by GNSS, SLR/LLR, and
DORIS. International VLBI Service for Geodesy and Astrometry (IVS, Schuh and Behrend
2009) is organizing VLBI observations for 1 to 2 hours long named as Intensive sessions,
24-hours Standard sessions (rapid turn-around), and 24-hours long, 15-days continuously
campaigns (CONT). Due to the fact that ∆UT1 is the most rapidly changing parameter
among EOP (Luzum and Nothnagel, 2010), VLBI Intensive sessions containing 15-55 ob-
servations are carried out for monitoring UT1 on a daily basis. Besides, 24-hours Standard
VLBI sessions are performed for every Mondays and Thursdays and suitable for ERP deter-
mination. Additionally, CONT campaigns are carried out for discovering the cutting edge
VLBI observations.

1.2. Research Objectives

This thesis comprises two major research objectives. First one is to increase Universal Time
(UT1) estimation accuracy of the VLBI Intensive sessions by incorporating troposphere sig-
nal delays estimated from GNSS PPP method into the analysis as suggested by Teke et al.
(2015). The troposphere is one of the largest and rapidly changing error sources in the space
geodetic techniques’ observations. For several geodetic observatory sites, VLBI and GNSS
receivers are co-located. The International GNSS Service (IGS, Dow, Neilan and Rizos
2009) is offering troposphere zenith signal delays and troposphere gradients derived from
GNSS observations in 5-min intervals for every day. Using this troposphere delay obtained
from co-located GNSS stations in the analysis of the VLBI Intensive sessions would ex-
pected to increase the accuracy of UT1 determination owing to the lack of observations in
the Intensive sessions. Duration of the observation is limiting factor for the estimation accu-
racy of Intensive sessions. In other words, as the number of estimated parameters increases,
the estimation accuracy of particular parameters would be decreased for these sessions with
fewer observations. In addition to this, for the parameter estimation of VLBI observation,
choosing a priori values of the estimated parameters properly has a significant effect on the
estimation accuracy of the parameters. Thus, reduction of GNSS derived troposphere delays
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and gradients from VLBI observations in the analysis would increase the determination ac-
curacy of the UT1. The latency of the IGS troposphere products is approximately 3-weeks.
In order to decrease this latency to a few days, similar troposphere products are derived from
GNSS PPP solutions using Bernese GNSS Software (Dach et al., 2015) in the context of this
thesis.

The second objective of this thesis is exhibiting an alternative and better model for the high-
frequency (sub-daily) Earth rotation parameter variations caused by ocean tides as a replace-
ment of IERS 2010 recommended model. The major reason for sub-daily ERP variations is
ocean tides (Moritz and Mueller, 1987). IERS 2010 conventions (Petit and Luzum, 2010)
presents a sub-daily ERP variations model that is used as a priori values of ERP consisting
of 41 diurnal and 30 semi-diurnal tidal constituents. This model was put forward by Ray
et al. (1994) using ocean dynamics in the absence of state-of-the-art space/satellite geodetic
techniques. International Association of Geodesy (IAG) recommended replacing this model
using modern techniques, while several works exhibit discrepancy of the model such as Nils-
son, Böhm and Schuh (2010); Artz et al. (2010) from VLBI observations and Rothacher et al.
(2001); Desai and Sibois (2016) from GNSS observations. These works were performed us-
ing least squares technique so as to find amplitudes of tidal constituents. On the other hand,
Böhm, Brzeziński and Schuh (2012) estimated the model amplitudes using complex demod-
ulation method. Similar to the least squares, singular value decomposition is considered to
be used in the estimation of these amplitudes. Consequently, the second aim of this thesis
is to produce a better sub-daily ERP variations model as a replacement of the IERS recom-
mended model using these three parameter estimation techniques individually. That would
give a chance to compare the methods with each other. Besides, a software with a graphical
user interface, that is capable for estimating such a model from ERP time series using these
three parameter estimation methods, was designed in the MATLAB environment as another
output of this thesis.

1.3. Thesis Outline

This thesis composed of nine chapters.

Chapter 2 briefly describes time and space reference systems, the transformation between
space reference systems i.e. ITRF and GCRS based on two different conventions of IAU,
and variations in the Earth’s rotation. This chapter establishes a foundation for the thesis
outline.

Chapter 3 consists least squares parameter estimation method used in space/satellite geodetic
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techniques as well as constraining parameters, free network solution and global solution.
Moreover, brief foundations for parameter estimation methods proposed for tidal constituent
estimation from time series of Earth rotation parameters such as complex demodulation and
singular value decomposition are presented.

Chapter 4 is related to troposphere delay modeling. In this chapter, radio-wave propagation
in the neutral part of the atmosphere is introduced in detail in addition to various troposphere
mapping functions, and azimuthal asymmetric troposphere delay modeling.

Chapter 5 describes the Global Navigation Satellite Systems measurement principles solely
specific to GPS and GLONASS systems. Additionally, the precise point positioning tech-
nique (PPP) that is used for the troposphere delay estimation in this thesis, and PPP error
correction strategies are explained. Harmonic and linear motions of crust fixed points is also
introduced in this chapter.

Chapter 6 introduces observing models and data analysis of the Very Long Baseline Inter-
ferometry technique which is the fundamental space geodetic technique in the content of
this thesis. Basic delay model, gravitational, vacuum and geometric delays are described in
particular. Partial differentiation of the VLBI observation model w.r.t. the Earth orientation
parameters are also provided.

Chapter 7 presents the methodology and results of first research objective of this thesis as
increasing UT1 estimation accuracy of VLBI Intensive sessions via using GNSS troposphere
delays. Troposphere delay estimation from GNSS PPP technique using Bernese Software is
also presented.

Chapter 8 covers the methodology and results of the second research objective of this thesis
which aims estimation of tidal constituents of the ocean tides caused Earth’s rotation varia-
tions in sub-daily periods model from VLBI observations spread about 18 years of data from
the beginning of the 2000 till the end of 2018. Besides, tidal estimation software called as
TIDEST developed in this thesis work is explained in details.

Chapter 9 is the conclusions chapter that discuss the outcomes of two different research
objectives, final thought, and proposed future works.

4



2. EARTH ROTATION

2.1. Time Reference Systems

Accurate time references are important for GNSS as well as VLBI space geodetic tech-
niques due to their measurements of the signal travel time. In the ancient centuries, the only
motion of the Sun was used for time referencing. Nevertheless, time scales have become
more sophisticated, precise, well-defined and uniform as a result of technological progress.
Operational time references are given in Table (2.1). These are based on several periodic
processes related to celestial mechanics, Earth’s rotation, and atomic oscillations (Sanz Subi-
rana, Juan Zornoza and Hernández-Pajares, 2013).

Table 2.1: Operational time systems.

Periodic Process Time

Earth’s rotation
Universal Time (UT0, UT1, UT2, UTR, UTS)

Greenwich Sidereal Time (Θ)

Atomic oscillators

International Atomic Time (TAI)

Coordinated Universal Time (UTC)

GNSS Reference Time

Relativity considered
Terrestrial Dynamic Time (TDT)

Barycentric Dynamic Time (TDB)

2.1.1. Sidereal Time Systems

The Earth’s rotation w.r.t. the Sun or the stars is a measure of time. Sidereal time is the hour
angle belongs to the vernal equinox in the celestial frame (McCarthy and Seidelmann, 2009).
However, nutation and precession lead to move of the vernal equinox. Thus, sidereal time is
not an exact measure of the rotation of the Earth. Figure (2.1) shows sidereal time systems.
Sidereal times are measured w.r.t. either the true vernal equinox or the mean vernal equinox.
True vernal equinox is the intersection of the true ecliptic and the true equator at the date.
Apparent sidereal time is effected by both nutation and precession as periodic variations due
to motion of the true equinox at the observation epoch. However, mean vernal equinox is
only under influence of precession.
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• GAST (ΘG): Greenwich Ap-
parent (True) Sidereal Time

• LAST: Local Apparent (True)
Sidereal Time

• GMST (θG): Greenwich
Mean Sidereal Time

• LMST: Local Mean Sidereal
Time

• Eq.E: Equation of Equinox

• Λ: East longitude of local ob-
server

Figure 2.1: Illustration of sidereal time scales.

Time passing between two sequenced transits of the equinox is called a sidereal day. How-
ever, solar (universal) time is measured w.r.t. the Sun. Hence, the solar day is longer com-
pared to the sidereal day by approximately 3m56.s4 based on Earth’s orbital motion for the
one-day duration. In fact, universal time (UT0) is measured as hour angle along the celestial
equator from the lower transit of the Greenwich meridian to the hour circle of the mean Sun
using optical astronomical techniques without considering polar motion corrections. Either
sidereal or solar time is not uniform because of the variable Earth’s angular velocity. Tidal
excitation on Earth mass balance results in fluctuations of these time scales. For this rea-
son, UT0 is not usable for modern applications due to its low accuracy. Besides, UT1 is
improved and widely used types of universal time defined as daily absolute rotation phase
angle of the Earth w.r.t. space around the celestial intermediate pole (CIP) determined using
VLBI (Schuh and Behrend, 2012) space geodetic technique considering polar motion. UT2,
UTR, and UTS are achieved via reducing zonal tidal harmonics on periods of seasons, less
than 35-days, and between 5-days and 18.6 years from UT1, respectively. UT1 is used for
space-based navigation and positioning purposes due to the fact that UT1 is one of the five
Earth orientation parameters (EOP) that define the kinematic relation between terrestrial and
celestial reference frames. The conversion between universal time (UT1) and Greenwich
mean sidereal time (GMST) may be performed as given below (Seeber, 2003)

θG = 1.0027379093 UT1 + 6h41m50s.54841

+ 8640184s.812866 Tu + 0s.093104 T 2
u − 6s.2× 10−6 T 3

u

(2.1)

where Tu is time span in Julian centuries from the fundamental epoch (J2000.0) to the ob-
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servation day at 0h UT (Seidelmann, 1992).

2.1.2. Dynamic Time Systems

Dynamic time systems are based on planetary movements in the solar system. There are
several dynamic time systems such as ephemeris time (ET), terrestrial time (TT), TDT, TDB.
Ephemeris time was derived from motion of the Earth on its orbit around the Sun using
Lunar observations. The basic idea behind ET was inventing uniform time scale to replace
with time scales based on variable rotation of the Earth. However, it is no longer in use,
TDT and TT were recommended instead of ET in order to use in the ephemerides. TDB
was the relativistic equivalent of ephemeris time for planetary ephemerides calculations. See
Seidelmann and Fukushima (1992) for more information.

2.1.3. Atomic Time Systems

Due to the non-uniform nature of universal time scales (e.g. UT0, UT1, UT2, etc.), TAI
was defined in order to obtain a uniform time scale. Difference between TAI and UT is
continuously changing. Therefore, UTC another atomic time scale, was established to keep
this difference less than 0.9 seconds. In order to remain difference within 0.9 seconds, leap
seconds have been introduced to UTC. Monitoring the universal time as well as determi-
nation of leap second are performed by IERS. UTC is estimated by distributed globally on
geoid about 65 different laboratories from about 250 atomic clocks and hydrogen masers.
See Lewandowski et al. (2006) for realizations of UTC such as UTC(SU) from Russia.
The relation between several time scales are given in following equations (Sanz Subirana,
Juan Zornoza and Hernández-Pajares, 2013)

TAI = UTC + 1s × n

TAI = TDT − 32s.184

∆UT1 = UT1− UTC

|∆UT1| < 0s.9

(2.2)

where n denotes the number of leap seconds for the epoch of interest (e.g. n=37 by 1 Jan
2017). GPS time is another atomic time system started when leap seconds was 19s. Thus,
GPS − UTC = n − 19s. There are also time systems belong to other navigation satellite
systems. Glonass Time is maintained in order to keep fluctuations w.r.t. UTC(SU) less than
1 milli-second.
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2.2. Space Reference Systems

Coordinates of an object on Earth or in space should be stated in a well-defined reference
system in order for precise measurement of distance towards this object. Thus, objects on
Earth or in space are defined in terrestrial and celestial reference systems, respectively.

2.2.1. Terrestrial Reference System (TRS)

The terrestrial reference system is defined conventionally as an Earth-centered, Earth-fixed
(ECEF), 3-dimensional, equatorial, Cartesian coordinate system as shown in Figure (2.2).
The origin of the TRS is the centre of mass of the Earth. XTRS is the intersection of
the mean zero (Greenwich) meridian with the equatorial plane. ZTRS is in the direction
of the conventional terrestrial pole (CTP). YTRS is orthogonal to the XTRS and ZTRS in
right-handed, 3-dimensional coordinate system. The realization of TRS so-called terres-
trial reference frame (TRF) contains coordinates of several points on Earth called as refer-
ence points. ITRF (ITRF2005, Altamimi et al. 2007, ITRF2008, Altamimi, Collilieux and
Métivier 2011, ITRF2014, Altamimi et al. 2016, etc.) are TRF realizations performed fre-
quently by the IERS consisting of coordinates of crust-fixed geodetic reference points of
several space geodetic techniques (e.g. VLBI, GNSS, SLR/LLR and DORIS). The realiza-
tion is performed with inter and intra-technique combinations of these techniques in normal
equation level due to each technique has its own advantage for determination of scale, trans-
lation, and rotation of estimated TRF w.r.t. the a priori. By conventions, rotation of the
axes of the estimated TRF should be aligned to those of a priori TRF through using NNR
condition equations.

2.2.2. Celestial Reference System (CRS)

The celestial reference system is a quasi-inertial, 3-dimensional, equatorial Cartesian, space-
fixed coordinate system defined conventionally as shown in Figure (2.2). CRS has its origin
at barycentre of the Solar system (Solar system’s centre of mass). The ZCRS axis is orthogo-
nal to mean equatorial plane of the fundamental (J2000.0) epoch. The XCRS axis is towards
to mean vernal equinox of the fundamental epoch. The YCRS axis is orthogonal to others in
right-handed, 3-dimensional coordinate system (Petit and Luzum, 2010). Realization of the
CRS is so-called as international celestial reference frame (ICRF1, Ma et al. 1998, ICRF2
Fey, Gordon and Jacobs 2009, ICRF3 Charlot et al. 2018) performed with the observations
of VLBI containing precise coordinates (angular positions) of Quasi-Stellar Radio Sources
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Figure 2.2: Space reference systems: Geocentric celestial reference system (left), geocentric terres-
trial reference system (right).

(Quasars) in space. International Astronomical Union (IAU) defined the mean equinox and
equator of the fundamental epoch in IAU1976 precession (Lieske et al., 1977) and IAU1980
nutation (Wahr, 1981b; Seidelmann, 1982) models. Thereafter, IAU resolutions in 2000 pre-
sented an enhanced CRS concept covering relativistic effects that splits CRS into barycentric
celestial reference system (BCRS) and geocentric celestial reference system (GCRS). The
origin of the BCRS is the centre of the mass of the Solar system as provided in IAU 2000A
nutation (Mathews, Herring and Buffett, 2002) and IAU 2006 precession (Capitaine, Wallace
and Chapront, 2003) models (Petit and Luzum, 2010). By convention, rotation of the axes of
estimated CRF (e.g. ICRF3 Charlot et al. 2018) should be aligned to those of a priori CRF
(e.g. ICRF2 Fey, Gordon and Jacobs 2009) through using NNR condition equations on the
coordinates of defining sources.

2.3. Transformation Between TRS and CRS

Transformation of the coordinates between TRS and CRS are performed using EOP. These
parameters correspond to the forced rotation, free rotation terms of Earth’s orientation. The
movement of Earth’s axis of rotation in space w.r.t. space-fixed quasars contains a periodic
component with 18.6-years period so-called nutation and secular component with 26000-
years period named as precession. The Earth’s rotation axis w.r.t. Earth’s crust called po-
lar motion. The free motion periods of polar motion is about 430 sidereal days so-called
Chandler wobble and an annual term. There are two conventions of IERS defining these
transforms named as Equinox-based (IAU 1976/1980 resolutions), and CIO-based (IAU
2000/2006 resolutions).
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2.3.1. Equinox Based Conventions

The transformation of a quasar’s coordinate from TRS to CRS as illustrated in Figure (2.3)
may be carried out for epoch t using following equation (McCarthy, 1996; Sanz Subirana,
Juan Zornoza and Hernández-Pajares, 2013)

[CRS] = P(t) N(t) RS(t) RM(t) [TRS], (2.3)

and its inverse transform can be performed using e.g. below equation

[TRS] = RT
M(t) RT

S (t) NT(t) PT(t) [CRS]. (2.4)

Here,

• [CRS] is the vector of position defined in the CRS,

• [TRS] is the vector of position defined in the TRS,

• P denotes the matrix of the precession for epoch of transformation consisting the pre-
cession angles ζA, θA, and zA (Lieske et al., 1977) as given below

P(t) = R3(ζA) R2(−θA) R3(zA) (2.5)

• N denotes the matrix of the nutation for epoch of transformation containing nutation
angles εA, ∆ψ, and ∆ε (Wahr, 1981b; Seidelmann, 1982) as follows

N(t) = R1(−εA) R3(∆ψ) R1(εA + ∆ε) (2.6)

• RM denotes the rotation matrix corresponding to polar motion for epoch of trans-
formation uses polar coordinates of celestial ephemeris pole in terrestrial reference
system (xp, yp) (see Figure 2.4) as given below

RM(t) = R1(yp) R2(xp) (2.7)

• RS denotes the matrix of the rotation corresponding Earth’s rotation around the celes-
tial ephemeris pole for epoch of transformation using Greenwich Apperent Sidereal
Time (GAST: ΘG = θG + Eq.E = θG + ∆ψ cos(εA)) as follows

RS(t) = R3(−ΘG) (2.8)
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Figure 2.4: Polar motion coordinates: xp and yp.

2.3.2. CIO Based Conventions

CIO-based coordinate tranformation between celestial and terrestrial reference systems is
based on IAU 2000A nutation (Mathews, Herring and Buffett, 2002) and IAU 2006 preces-
sion (Capitaine, Wallace and Chapront, 2003) models. Detailed information about transfor-
mation may be found in Wallace and Capitaine (2006) and Petit and Luzum (2010). Trans-
formation from TRS to geocentric CRS is carried out as given below

[GCRS] = Q(t) R(t) W(t) [ITRS], (2.9)

and its inverse transform can be e.g. performed as follows

[ITRS] = WT(t) RT(t) QT(t) [GCRS] (2.10)
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where,

• [GCRS] is the coordinate vector defined in the GCRS,

• [ITRS] is the coordinate vector defined in the ITRS,

• Q denotes the matrix of the precession-nutation for epoch of transformation consisting
spherical (polar) coordinates of the celestial intermediate pole in the GCRS (E and d)
and CIO locator (s), which relates celestial intermediate system to geocentric CRS, as
given below

Q(t) = R3(−E) R2(−d) R3(E) R3(s), (2.11)

• R denotes the matrix of the rotation corresponding Earth Rotation Angle (ERA) be-
tween the celestial intermediate origin (CIO) and the terrestrial intermediate origin
(TIO) on the celestial intermediate pole (CIP) equator, which relates terrestrial inter-
mediate system and celestial intermediate system, as follows

R(t) = R3(−ERA), (2.12)

• W denotes the matrix corresponding polar motion (coordinates of celestial interme-
diate pole, CIP, in the TRS: xp, yp) and TIO locator (s′) for epoch of transformation,
which relates terrestrial intermediate system to TRS, as given in following equation

W(t) = R3(−s′) R2(xp) R1(yp). (2.13)

Detailed information on CIO-based transformation may be acquired in IERS conventions
2010.

2.4. Tidal Variations in Earth Rotation

2.4.1. Tidal Variations of ERP Caused by the Ocean Tides

On account of preserving angular momentum, mass redistribution (e.g. ocean tides) within
the Earth and external torques applied on that system lead to vary both axis of rotation and
rotation speed of the Earth (Munk and Macdonald, 1960). While the axial component of
variations is leading to change the Earth rotation rate, the non-axial component is causing
oscillations of the axis of rotation. The wobbling of rotation axis involves both polar motion
and nutation. The distinction between polar motion and nutation was propounded at IERS
2010 conventions so that motions having frequencies within ±0.5 cycles per sidereal day
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Table 2.2: IERS coefficients of high frequency variations in Earth rotation because of ocean tides for
principle diurnal and semi-diurnal tides (Petit and Luzum, 2010).

Tide Delanunay coefficients Period xp yp ∆UT1

γ l l′ F D Ω (day) Ak Bk A′k B′k A′′k B′′k

Q1 1 -1 0 -2 0 -2 1.1195148 6.2 26.3 -26.3 6.2 5.12 -2.50

O1 1 0 0 -2 0 -2 1.0758059 48.8 132.9 -132.9 48.8 16.02 12.07

P1 1 0 0 -2 2 -2 1.0027454 26.1 51.2 -51.2 26.1 5.51 -3.10

K1 1 0 0 0 0 0 0.9972696 -77.5 -151.7 151.7 -77.5 -17.62 8.55

N2 2 -1 0 -2 0 -2 0.5274312 -56.9 -12.9 11.1 32.9 -3.79 -1.56

M2 2 0 0 -2 0 -2 0.5175251 -330.2 -27.0 37.6 195.9 -16.19 -7.25

S2 2 0 0 -2 2 -2 0.5000000 -144.1 63.6 59.2 86.6 -7.55 -0.16

K2 2 0 0 0 0 0 0.4986348 -38.5 19.1 17.7 23.1 -2.10 0.04

(cpsd) at celestial reference frame are accepted as nutation. Instead of this, at the terrestrial
frame, nutation is counted on as a motion at frequencies between −1.5 and −0.5 cpsd. The
difference for the viewing reference frames is the Earth’s mean rotation rate (see Gross 2015
for more details ).

The most remarkable physical reason for the sub-daily variations at the Earth rotation pa-
rameters (ERP) is ocean tides (Moritz and Mueller, 1987; Chao et al., 1996). The aforesaid
physical excitation on polar motion and ∆UT1 are modeled as harmonic functions with 71
tidal constituents, each having amplitudes, frequencies and phases based on previous work
of Ray et al. (1994) at IERS conventions. The model comprises sine and cosine amplitudes,
and arguments to calculate phase of harmonics at t instant for each of the 41 diurnal and
30 semi-diurnal tides (see Table 2.2 for significant tides). The phase at t epoch may be
designated as

ξk(t) =
6∑
j=1

akjαj(t) (2.14)

where akj is corresponding coefficient for kth tide and jth fundamental (astronomical) argu-
ment, and αj(t) is the jth fundamental argument for t instant measured as Julian centuries
after J2000 standard epoch (01.01.2000 12 UT) in terrestrial time (TT). These fundamental
arguments were explained by Simon et al. (1994) and Petit and Luzum (2010).

The polar motion coordinates (xp, yp) and ∆UT1 are determined with previously mentioned
phase angle of harmonics, ξk(t), and amplitudes, Ak, Bk, A′k, B

′
k, A

′′
k, B

′′
k as

xp(t) =
71∑
k=1

[
Ak sin(ξk(t)) +Bk cos(ξk(t))

]
(2.15)
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yp(t) =
71∑
k=1

[
A′k sin(ξk(t)) +B′k cos(ξk(t))

]
(2.16)

∆UT1(t) =
71∑
k=1

[
A′′k sin(ξk(t)) +B′′k cos(ξk(t))

]
. (2.17)

The IERS model for sub-daily ERP because of ocean tides is now outdated. This is be-
cause number of tides and their amplitudes at the model were specified with geodynamic
models in the absence of modern space geodetic techniques. As expressed in Chapter (3),
estimation accuracy of any parameter is directly related to how its a priori value close to real
value. Thus, revision of the present model is essentially important for achievement of cur-
rent VLBI accuracy perspective (Artz et al., 2010; Nilsson, Böhm and Schuh, 2010; Nilsson
et al., 2014). The great reference for estimation of model parameters from GNSS observa-
tions was exhibited by Desai and Sibois (2016). The accuracy of polar motion estimation
is directly proportionate to volume of global polyhedron constructed by observing stations
(Rothacher et al., 1999; Malkin, 2009). Due to the fact that, GNSS station network is huge,
globally distributed and continuously working, polar motion estimation accuracy of GNSS
technique is higher compared to VLBI. But, only VLBI observations are sensitive to ∆UT1,
and equatorial baselines can determine this parameter with high precision.

Prograde and Retrograde Polar Motions

In sub-daily time periods, orientation of the Earth rotation axis moves both clock-wise and
counter way. Motions at positive frequencies are named as prograde motions in which move-
ments of celestial intermediate pole (CIP) in Terrestrial reference frame (TRF) are in the
same direction of Earth’s rotation (counter clock-wise), whereas clock-wise movements of
CIP in TRF are so-called as retrograde motions (negative frequencies). Decomposition of
movement into prograde and retrogade parts may be carried out with Leonhard Euler formu-
lae as (Weir, Hass and Heil, 2014)

Ak cos(ξk(t)) = Ak
eiξk(t) + e−iξk(t)

2
, (2.18)

Ak sin(ξk(t)) = Ak
eiξk(t) − e−iξk(t)

2i
(2.19)

where i is the unit imaginary number, coefficient of eiξk(t) term belongs to prograde polar
motion, and likewise coefficient of e−iξk(t) term represents retrograde polar motion. While
tides with 24-hours periods induce only prograde motion, 12-hours period tides excite both
prograde and retrograde motions.
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2.4.2. Long Periodic Tidal Variations of Polar Motion

Polar motion variations due to tidal excitation also occur between 9-days and 18.6-years
periods so-called long periods (Petit and Luzum, 2010). Polar motion may be calculated as
given below

~p(t) = px(t)− ipy(t) = Ape
iφpeiα(t) + Are

iφre−iα(t) (2.20)

where Ap, Ar denote prograde and retrograde amplitudes, and φp, φr represent prograde
and retrograde phase terms, respectively. These corrections are arising from the long-period
ocean tide effect modeled as spherical harmonics by Dickman and Nam (1995); Dickman
and Gross (2010).

2.4.3. Zonal Tides of Earth’s rotation

Yoder, Williams and Parke (1981) put forward the zonal tides of universal time (UT1),
length-of-day (∆), and Earth’s rotation velocity (ω). Tidal potential of the Moon and the Sun
contain zonal component parallel to equator. The zonal tide model containing 62 tidal har-
monics having periods between 5.64-days to 18.6-years was developed by Yoder, Williams
and Parke (1981); Wahr and Bergen (1986); Kantha, Stewart and Desai (1998); Defraigne
and Smits (1999). In order to obtain the a priori values of UT1, zonal tides should also be
considered (Petit and Luzum, 2010). The model values are given in Table (2.3) for several
tides which have greatest amplitudes. UT2, UTS, and UTR are universal time scales obtained
by reduction of several zonal tides from UT1 series of e.g. IERS 14 C04. If seasonal or all
zonal tides are removed from UT1, obtained universal time is UT2 or UTS, respectively.
Besides, UTR is achieved from reduction of zonal tides with periods less than 35-days from
UT1. The phase angle of the kth tide at epoch t is found as below

ξk(t) =
5∑
j=1

akjαj(t) (2.21)

where αj(t) is jth astronomical argument, and akj is Delaunay coefficient for kth tide and
jth astronomical argument. Time epoch t is measured in terrestrial time frame as Julian
centuries elapsed from fundamental epoch (J2000.0).

The tidal variations of UT1, LOD (∆), and Earth’s rotation velocity (ω) due to zonal tides
may be computed as

δUT1(t) =
62∑
k=1

[
Ck sin(ξk(t)) +Dk cos(ξk(t))

]
(2.22)
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Table 2.3: IERS coefficients of zonal tides for ∆UT1 shown only for particular tides (Petit and
Luzum, 2010). The periods are approximate values, and positive and negative signs of
the period indicate the prograde and retrograde motions, respectively.

Delaunay coefficients Period δUT1 (10−4s) δ∆ (10−5s) δω (10−14rad/s)

l l′ F D Ω (days) Ck Dk C ′k D′k C ′′k D′′k

1 0 2 0 2 9.13 -0.9926 0.0000 6.8291 0.0000 -5.7637 0.0000

0 0 2 0 1 13.63 -3.1873 0.2010 14.6890 0.9266 -12.3974 -0.7820

0 0 2 0 2 13.66 -7.8468 0.5320 36.0910 2.4469 -30.4606 -2.0652

1 0 0 0 0 27.56 -8.4046 0.2500 19.1647 0.5701 -16.1749 -0.481

0 0 2 -2 2 182.62 -49.7174 0.4330 17.1056 0.1490 -14.4370 -0.1257

0 1 0 0 0 365.26 -15.8887 0.1530 2.7332 0.0263 -2.3068 -0.0222

0 0 0 0 2 -3399.19 7.8998 0.0000 0.1460 0.0000 -0.1232 0.0000

0 0 0 0 1 -6798.38 -1617.2681 0.0000 -14.9471 0.0000 12.6153 0.0000

δ∆(t) =
62∑
k=1

[
C ′k sin(ξk(t)) +D′k cos(ξk(t))

]
(2.23)

δω(t) =
62∑
k=1

[
C ′′k sin(ξk(t)) +D′′k cos(ξk(t))

]
. (2.24)

where Ck, Dk, C ′k, D′k, C ′′k , and D′′k are model amplitudes given in Table (2.3).
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3.PARAMETER ESTIMATION METHODS

3.1. Least Squares (LS) Adjustments

3.1.1. Gauss-Markov Model

Least squares method is a tool for adjustments of indirect observations when there are more
observations than unknowns. In order to characterize the behavior of any natural event,
mathematical model ψ(x) and model parameters x should be designated. A model can be
constructed in quite a few ways, due to the fact that the purpose of a certain model may vary
according to point of view. Then, the composed model substitutes the physical phenomena
as an approximation of it (Hirvonen, 1971). The functional model and the stochastic model
are two components of the mathematical model. While the deterministic (non-random) prop-
erties of physical events are represented with the functional model, probabilistic (random)
properties of it are expressed by the stochastic model. The functional model involves un-
known parameters x, observations Li and the post-fit residuals of the observations vi as
follows.

ψi(x) = Li + vi (3.1)

Observation errors may be assumed to overlay on Normal distribution curve with zero mean
and constant variance if functional model describes the physical events acting on observa-
tion sufficiently. The stochastic part of the mathematical model is exhibited with a variance-
covariance matrix of the observations Kll which is formed with the standard errors of ob-
servations mi and the correlation coefficient between observations rij . The stochastic model
i.e. the variance-covariance matrix of observations can be formed as follows:

Kll =



m2
1 r12m1m2 r13m1m3 · · · r1nm1mn

r21m1m2 m2
2 r23m2m3 · · · r2nm2mn

...
...

...
...

rn1m1mn rn2m2mn rn3m3mn · · · m2
n


. (3.2)

Using variance-covariance matrix, cofactor matrix Qll can be formed as stated below.

Qll =
Kll

s20
(3.3)
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The apriori variance factor s0 is a measure of statistically distribution of observations around
its expected value. For solving under-determined systems with least squares, the exact so-
lution may not exists or there is infinitely many solutions exists that minimum norm solu-
tion may find one of them. Least squares may find a unique set of model parameters for
over-determined systems which have the number of observations greater than the number of
unknowns. Every portion of the data set will most probably indicate different models one to
another owing to the errors which act on observations variously. Thus, there is no solution
that will fit whole observations simultaneously. Least squares method finds the best fitting
mathematical model parameters to observations by minimizing the sum of the residuals’
squares that are the differences between calculated observations from mathematical model
and real observations.

min

[
n∑
i=1

v2i pi

]
= min[v21 p1 + v22 p2 + · · ·+ v2n pn] (3.4)

Gauss-Markov model is valid for the linear mathematical functions. For the non-linear func-
tion ψ(x), Taylor series expansion should be applied for linearizing function around a priori
values of unknown parameters x0 with zero and first-order terms

vi =
∑
j

∂ψi
∂xj

(xj − x0j)− (Li − ψi(x0)) (3.5)

where jth reduced unknown parameter δxj is difference between the estimated value of jth

unknown parameter xj and a priori value of it x0j . Higher order term is neglected due to
linearity rule of Gauss-Markov theorem. The functional model with u unknown parameters
and n observations is as follows

v1

v2

...

vn


=



(∂ψ1

∂x1
) (∂ψ1

∂x2
) · · · (∂ψ1

∂xu
)

(∂ψ2

∂x1
) (∂ψ2

∂x2
) · · · (∂ψ2

∂xu
)

...
...

...
...

(∂ψn
∂x1

) (∂ψn
∂x2

) · · · (∂ψn
∂xu

)





δx1

δx2

...

δxu


−



l1

l2

...

ln


(3.6)

where li is called as reduced observation

li = Li − ψi(x0). (3.7)

The functional model in matrix form can be expressed with the residuals vector of observa-
tions v, the Jacobian (design) matrix A, the reduced unknown parameter vector δx and the
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reduced observation vector l as follows

v = Aδx− l. (3.8)

To solve linearized equation system given in Equation (3.8), criterion for weighted and corre-
lated observations in Equation (3.9) should satisfy (Koch, 1988; Öztürk and Serbetçi, 1989,
1992; Brockmann, 1997; Wolf and Ghilani, 1997; Niemeier, 2002; Teke, 2011).

vTQ−ll v = vTPv = minimum (3.9)

vTPv = (Aδx− l)TP (Aδx− l) = (δxTAT − lT )P (Aδx− l)

= δxTATPAδx− δxTATPl − lTPAδx+ lTPl

(3.10)

vTPv = δxTATPAδx− 2lTPAδx+ lTPl (3.11)

To find the variables that make Equation (3.11) minimum, partial derivatives w.r.t. to the
vector δx should be applied to both side of Equation (3.11) and then set to zero.

∂(vTPv) = δxTATPA∂x+ ∂xTATPAδx− 2lTPA∂x = 0T∂x (3.12)

Owing to the fact that ∂dxTATPAδx and δxTATPA∂x are scalar values and ∂xTATPAδx =

δxTATPA∂x, Equation (3.13) is obtained as

∂(vTPv) = 2δxTATPA∂x− 2lTPA∂x = 0T∂x

∂(vTPv) = 2(δxTATPA− lTPA)∂x = 0T∂x

(3.13)

Then Equation (3.14) called as normal equations system that satisfies the LS condition stated
in Equation (3.9) is acquired by transposing the each side of the Equation (3.13).

ATPAδx− ATPAl = 0. (3.14)

Adding the correction of unknown parameters vector δx, to the a priori values unknown
parameters vector x0 provides the total estimated value of unknown parameters vector x as
shown in Equation (3.15)

x = x0 + δx

x = x0 + (ATPA)−ATPl

(3.15)
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The right hand side vector of the normal equation system b, and the normal equation matrix
N can be demonstrated with the Equations (3.16) and (3.17)

N = ATPA (3.16)

b = ATPl (3.17)

Then, correction vector of unknown parameters can be inferred from equation below.

δx = N−b (3.18)

For weighted observations , the a posteriori standard deviation of unit weight is derived as

m0 =

√∑
pv2

r
=

√
vTPv

n− u
(3.19)

where
∑
pv2 is the sum of squares of weighted observation residuals and its matrix form

vTPv and r denotes degrees of freedom in other words redundant measurements of the ad-
justment.

3.1.2. Constraining Parameters

Constraining parameters is used in least squares adjustment for more than one reasons. If
observations (measurements) is paused for certain period of time, estimated parameters at
these epochs would be incorrect values. This data gaps are common in sessions of the space
geodetic techniques e.g. hardware failures. The use of relative constraints limits the oscilla-
tion of the estimated value from the actual value even if there is no observation in estimation
epoch. Even for systems with huge number of observations than unknowns, linearly depen-
dent set of equations may lead to singularity. Some geodetic networks are not sensitive to
certain earth related parameters that construct linearly dependent equations. On the other
hands, for under-determined systems, there is more unknown parameters than observations.
Thus, least squares adjustments will not find a solution without constraining parameters. If
there is a prior knowledge about system parameter that will not indicate meaningful change
during observation period, this parameter should be constrained to its a priori value to over-
come propagating other parameters error into this parameter. In least squares adjustment
method, constraint equations can be formed as follows

vc = Hδx− h (3.20)
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where H is design matrix of pseudo-observations (constraint equations), h is reduced obser-
vation vector of the constraints, vc is the residuals vector. Normal equation for the pseudo-
observations is derived from least squares adjustment method as follows under the condition
of minimization of the squares of weighted pseudo-observational residuals (min[

∑
v2c pc])

HTPcHδx = HTPch (3.21)

where Pc indicates pseudo-observation’s weight matrix. Imposing the constraints at normal
equation level can be represented as

(ATPA+HTPcH)δx = ATPl +HTPch. (3.22)

Sum of coefficient matrix of normal equations for observations (N ) with those of the pseudo-
observations (Nc) constrained normal equation matrix (Nt) is setup as

Nt = ATPA+HTPcH = N +Nc (3.23)

Right hand side vector of the constrained normal equation system is formed as follows

bt = ATPl +HTPch = b+ bc. (3.24)

The residuals of the constrained unknown parameter vector can be written as

δx = N−t bt. (3.25)

Then, the total constrained unknown parameter vector is formed as

xc = x0 + δx = x0 +N−t bt. (3.26)

A posteriori standard deviation of the constrained adjustment can be derived as follows

m0c =

√
vTPv + vTc Pcvc
n+ nc − u

(3.27)

where nc denotes the number of constraint equations (pseudo-observations). There are two
types of constrains that are mostly applied to the geodetic parameters, absolute and relative.
For absolute constraint, parameter may be constrained to a desired value. Then, design
matrix of pseudo-observations that contains relations between parameters will not be formed.
Afterwards, the functional model in matrix form will be

vc = δx− h. (3.28)
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If the desired values are constrained as a priori values of the parameters, all the elements of
the reduced observation vector for constraints, h will be zero. The other constraint type is
relative constraints that arranges relationship between the estimates of two adjacent param-
eters.

3.1.3. Free Network Solution

Datum is the reference used for defining any coordinate system. In other words, for three
dimensional cartesian coordinate systems, datum specifies the orientation and the origin of
coordinate system. In a geodetic networks containing several observing stations, indepen-
dent of geodetic technique, measurements do not contain information about full set of datum
parameters. For unique definition of station coordinates, in a three dimensional networks, at
least 7 datum parameters should be a priori defined. This datum definition may be based on
some station coordinates by assuming their a priori coordinates x0, y0, z0 as stationary and
held as fixed in adjustments. This method utilizes absolute constrains on station coordinates
by fixing them to their a priori values. This method causes large errors on several station
coordinates of which locations are far from the fixed ones. Another way of datum definition
is constraining a priori coordinates of some stations with no-net-translation (NNT), no-net-
scale (NNS), and no-net-rotation (NNR) condition equations. NNT condition is limiting the
change of origins between a priori and estimated coordinate systems. Variations of direction
of axes and scale factor between the coordinate systems can be determined by NNR and
NNS conditions, respectively. Applying these three condition equations i.e., NNT, NNR,
and NNS will set free the a priori coordinates of stations to move but instead minimize the
sum of the squares of estimated station coordinate corrections of whole network. This con-
dition equations can be provided by 7 parameters Helmert transformation (Helmert, 1872;
Rao and Mitra, 1971; Prongle and Rayner, 1971; Pelzer, 1974). Helmert transformation in-
volves translation vector [Tx Ty Tz]

T stating the variations of the origin in x, y, z directions
respectively, rotation matrix R and scale factor µ as

X

Y

Z

 = (1 + µ)R


X0

Y0

Z0

+


Tx

Ty

Tz

 . (3.29)

Rotation matrix comprises the orientations around the 3st, 2st, and 1st axes of which positive
rotation angles in counter-clockwise directions. In fact, rotation angles between estimated
and a priori coordinate systems are very small in geodetic applications. Then, using Taylor
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series expansion about the zero the rotation matrix can be rearranged as follows

R =


1 γ −β

−γ 1 α

β −α 1

 . (3.30)

After substituting the rotation matrixR given in Equation (3.30) into the Equation (3.29) and
rearranging equations, following equation

X1

Y1

Z1

X2

Y2

Z2

...



=



X01

Y01

Z01

X02

Y02

Z02

...



+



1 0 0 X01 0 −Z01 Y01

0 1 0 Y01 Z01 0 −X01

0 0 1 Z01 −Y01 X01 0

1 0 0 X02 0 −Z02 Y02

0 1 0 Y02 Z02 0 −X02

0 0 1 Z02 −Y02 X02 0

· · ·





TX

TY

TZ

µ

α

β

γ



(3.31)

can be derived and its matrix representation is as follows

X = X0 +Bζ. (3.32)

The unknown transformation parameters ζ can be derived as

ζ = B−(X −X0) (3.33)

Helmert transformation parameters in ζ vector needed to be zero to fulfill the NNT, NNR,
and NNS conditions of the free network solution,

ζ = B−(X −X0) = 0. (3.34)

The acquired design matrix B can be assumed to be the Jacobian matrix of the constrain
equations as follows

H = B+ = (BTB)−BT , (3.35)
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and the reduced observation vector for the constraints will be a zero vector (h = 0). The free
network solution where the constraints are imposed in normal equation level is as follows

(ATPA+HTPcH)δx = ATPl, (3.36)

where Pc denotes the weight matrix of the constraint equations.

There is one more way of performing the free network solution as applied on coordinate
estimates via imposing condition equations to the normal equation system. In this way,
normal equation matrix includes the condition equations B, the unknown parameters of the
condition equations δxc, the constants vector of the condition equations bc (zero vector) and
ATPA involving the relative and absolute constraint as follows ATPA B

BT 0


 δx

δxc

 =

 ATPl

bc

 (3.37)

and its another representation is
Nt δxt = bt (3.38)

whereNt and bt are the datum conditions imposed coefficients matrix and constants vector of
normal equations, respectively (Wolf and Ghilani, 1997; Öztürk and Serbetçi, 1992; Thaller,
2008; Teke, 2011).

3.1.4. Combination (Global Solution) of Several Parameters at Normal Equation Level

LS estimation creates a normal equation system matrix for every observing sessions which
are performed within predefined time intervals. In order to estimate specific parameters
from the observations of more than one session by stacking the normal equation system
matrices, pre-elimination of certain parameters will overcome hardware related processing
issues caused by handling huge matrix operations. It is a basic procedure so as to reduce
the dimensions of the normal equation system while keeping influences of the reduced pa-
rameters on entire estimation. That means, the reduced parameters implicitly remain in the
normal equation system. Pre-reduction procedure is not analogues to fixing parameters to
their a priori values by removing belonging lines from the normal equation system. In other
words, estimation of this parameters from the normal equation system will not be possible
after elimination but their effects on the other (remaining) parameters will not be changed.
If the reduced parameters are assumed as being in δx1. These reduced parameters somehow
should be re-ordered at the top of unknown parameters vector. Thus, desired parameters to
be estimated will be located at the bottom of the unknown parameters vector and called as
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δx2. The normal equation system with the corresponding sub-matrices will be as follows, N11 N12

N21 N22


 δx1

δx2

 =

 b1

b2

 . (3.39)

After matrix multiplication,

N11 δx1 +N12 δx2 = b1

N21 δx1 +N22 δx2 = b2

(3.40)

are found. Solving the first of Equation (3.40) for δx1,

δx1 = N−11 (b1 −N12 δx2) (3.41)

and using of δx1 in the second of Equation (3.40) forms

N21 (N−11(b1 −N12 δx2)) +N22 δx2 = b2. (3.42)

Solving Equation (3.42) for δx2 yields

(N22 −N21N
−
11N12)δx2 = b2 −N21N

−
11b1

Nr δx2 = br

(3.43)

where Nr is the coefficients matrix and br the constants vector of normal equations after
parameter reduction applied,

Nr = N22 −N21N
−
11N12

br = b2 −N21N
−
11b1

vTPv = lTPl − δxT br = · · · = lTPl − bT1N−11b1 − δxT2 br.

(3.44)

Combination of several normal equation systems is possible for both batch and sequential
methods. In both method, estimated parameters would be under the influence of combined
normal equation system (Helmert, 1872). Batch method utilizes observing series for defined
period altogether. Sequential method updates its estimate by processing every new observa-
tion. The sequential method converges the estimates of the batch processing (Brockmann,
1997). Parameter pre-reduction procedure helps for stacking of observing sessions together
by reducing the dimensions of the normal equation systems. Stacking with batch method in-
volves Jacobian matrices A and weight matrices of independent sessions (zero off-diagonal
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elements) P as

A =



A1

A2

...

Ak


, P =



P1 0 · · · 0

0 P2 · · · 0

...
... . . . ...

0 0 · · · Pk


(3.45)

and estimation equation
ATPAδx2 = ATPl. (3.46)

Then, unknown combined parameters δx2 may be found as

(AT1 P1A1 + AT2 P2A2 + · · ·+ ATkPkAk)δx2 = AT1 P1l1 + AT2 P2l2 + · · ·+ ATkPklk

(Nr1 +Nr2 + · · ·+Nrk)δx2 = br1 + br2 + · · ·+ brk.

(3.47)

3.2. Singular Value Decomposition

Singular value decomposition (SVD) is another method for solving Equation (3.48). The
design matrix A is not square matrix for space geodetic techniques. For this reason, solving
this equation is not possible with simple inversion. Instead, pseudo-inverse of design matrix,
A+, should be found in order to acquire corrections of parameters, δx, from reduced obser-
vations vector, l. The SVD is very handy tool when the design matrix is rank-deficient. The
decomposition procedure so-called factorization is applied in the inverse solution method,
SVD to the functional model given below

Aδx = l. (3.48)

The SVD preserves information of the original matrix after decomposition. Following equa-
tions will be convenient for over-determined systems, as well as, they can be derived also for
under-determined systems. Key advantage of SVD is that providing robust solution in order
for linear least squares problems (Golub and Van Loan, 1996; Alter, Brown and Botstein,
2000; Strang, 2006; Haykin, 2014).

For design matrixA[n×u] where n and u are the amount of observations (rows), and unknown

26



parameters (columns), respectively. Decomposition is executed as

A = UΣV T (3.49)

where columns of U[n×n] unitary matrix are left singular vectors of A, columns of V[u×u]
matrix containing orthonormal properties of A are right singular vectors of A, and elements
of Σ[n×u] diagonal matrix are called as singular values of A. So as to compute U orthog-
onal matrix, the eigen-vectors corresponding to largest eigen-values of AAT that construct
columns of U is found via solving following equation:

|AAT − λI| = 0 (3.50)

where I is identity matrix, λ is a scalar value. Similarly, the eigen-vectors of ATA construct
V orthogonal matrix. The Σ matrix containing singular values, σi, is as follows

Σ =



σ1 0 . . . 0 0 . . . 0

0 σ2 . . . 0 0 . . . 0

...
... . . . ...

...

0 0 . . . σr 0 . . . 0

0 0 . . . 0 0 . . . 0

...
... . . . ...

0 0 . . . 0 0 . . . 0



(3.51)

where r is rank of A matrix, σi values are sorted as σ1 ≥ σ2 ≥ · · · ≥ σu, and values of σi for
i > r are zero (σr+1 = σr+2 = · · · = σu = 0). Under the condition of minimize ||Aδx− l||,
the pseudo-inverse of design matrix A is specified as

A+ = (ATA)−AT . (3.52)

If Equation (3.49) is substituted with A, pseudo-inverse is obtained as follows

A+ = [(UΣV T )T (UΣV T )]− (UΣV T )T

= [(V ΣTUT ) (UΣV T )]− (V ΣTUT ).

(3.53)
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It is known that for orthogonal matrix UTU = In×n, therefore equation becomes as follows

A+ = [V ΣTΣV T )]−(V ΣTUT )

= [(V T )− (ΣTΣ)− V −](V ΣTUT ).

(3.54)

Similarly, V TV = In×n and V − = V T are also hold for orthogonal matrix V , consequently,
A+ to be simplified as below

A+ = V (ΣTΣ)−ΣTUT (3.55)

where Σ+ = (ΣTΣ)−ΣT is pseudo-inverse of Σ

A+ = V Σ+UT . (3.56)

Then, estimated parameter vector δx is assigned as

δx = V Σ+UT l. (3.57)

3.3. Complex Demodulation

The complex demodulation is an elementary technique for time series analysis. By means of
Fourier analysis, it is proved that any time series may be expressed with sufficiently much
sinusoidal functions (Oppenheim, Willsky and Nawab, 1997). In addition to this, ampli-
tudes and phases of these sinusoidal functions can be found with complex demodulation
if prior knowledge of the frequency of these functions is held. Although, the concept of
modulation/demodulation is in the scope of communication systems, time series analysis
studies take advantage of such a tool. Complex demodulation is known as the equivalent of
heterodyne detectors (Choi et al., 1986; Gasquet and Wootton, 1997). For the purpose of ex-
tracting amplitudes of sinusoidal waves from time series, the least squares and singular value
decomposition techniques are often used. But, these tools apportion residuals (e.g. noises
or meaningful geodynamic signals) among all estimated parameters. Another difference of
complex demodulation from linear equation system solutions is that every sinusoidal ampli-
tude are estimated individually in contrast to simultaneous estimation in LS and SVD. As
a result, complex demodulation is more robust when frequencies of harmonics are so close
to each other and noise is high. But, least squares and singular value decomposition can fit
any kind of equation to time series. The comprehensive foundation in the theory of complex
demodulation may be found in Hasan (1983); Bloomfield (2000).
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Consider a time series of x(t),

x(t) = Adc + Ac cos(2πfct) (3.58)

where Adc represents offset component of signal, Ac is the amplitude of sinusoidal function
which have frequency fc. The complex demodulation is performed via multiplying the time
series x(t) with the complex exponential at frequency f as given below:

y(t) = x(t)ei2πft = Adc e
i2πft +

Ac
2

[ei2πfct + e−i2πfct] ei2πft

= Adc e
i2πft +

Ac
2

[ei2π(f+fc)t + ei2π(f−fc)t].

(3.59)

Choosing f ' fc is the crucial factor for acquiring amplitudes properly. Then, low-pass-filter
(LPF) is applied to the y(t) as given,

LPF [y(t)] =
Ac
2
ei2π(f−fc)t (3.60)

where cut-off frequency and frequency response of LPF should be chosen so as to pass only
desired signal without distorting its amplitude. Consequently, high frequency components
of demodulated signal are removed. Thereafter, magnitude of filtered signal will be equal to
half of amplitude as stated below

|LPF [y(t)]| = Ac
2
. (3.61)

If the sufficiently narrow-band low-pass filter is applied, complex demodulation captures am-
plitude of sinusoidal signal only for the desired frequency. It is similar to Fourier transform,
nevertheless, it does not take the Fourier transform place, due to the fact that bandwidth of
the oscillation should be known prior to estimation.
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4. TROPOSPHERE DELAYS

4.1. Radio-wave Propagation in Neutral Atmosphere

The Earth is surrounded by the gaseous envelope named as the Earth’s atmosphere which
stays close to the Earth owing to the gravity. %99 of the mass of the atmosphere concentrate
up to ∼10-km height from sea level. The atmosphere consists of different constituents, that
may be investigated under three fundamental parts: water substance, dry air, and aerosols
(Iribarne and Godson, 1973). While an electromagnetic wave emitted from source such as
artificial satellite or galaxy in space to the Earth, after entering Earth’s atmosphere, firstly it is
effected by free electrons exist in the ionosphere, then electrically neutral part of atmosphere
called as troposphere. For analysis of observations of space/satellite based geodetic tech-
niques i.e. VLBI, GNSS, DORIS, modeling of electromagnetic radio-wave propagation is
important. The effects of the charged particles in ionosphere on radio-wave may be removed
pretty well via utilizing dual-frequency radio-wave length observations because ionosphere
is a dispersive medium where the propagation velocity of a radio-wave changes by its fre-
quency. However, impacts of non-dispersive (frequency-independent) part of the atmosphere
could not be removed from dual-frequency observations. Moreover, spatio-temporal varia-
tion of the troposphere water vapor content, cause radio-wave signals to delay ranging from
5 to 35 cm in zenith direction, is very high. Thus, modeling the propagation of electro-
magnetic radio-waves through troposphere is necessary to quantify the delay of the signal
along he path of the observations. For a neutral (source free) and non-conducting medium,
Maxwell’s equations describing propagation of electromagnetic waves are (Cheng, 1989;
Jackson, 1999)

∇ · (ε ~E) = 0, (4.1)

∇ · ~B = 0, (4.2)

∇× ~E = −∂
~B

∂t
, (4.3)

∇× ~B = µε
∂ ~E

∂t
, (4.4)

where ε denotes medium’s electric permittivity, and µ indicates medium’s magnetic perme-
ability medium, ~E is the electric field, and ~B is the magnetic field. For small spatio-temporal
variations in ε and µ, the vector Laplacian of the electric field may be assumed as follows
(Böhm and Schuh, 2013)

∇2 ~E = µε
∂2 ~E

∂t2
. (4.5)
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The phase velocity of the electromagnetic wave in medium with properties of propagation
medium ε and µ is

vp =
1
√
µε
, (4.6)

and free space velocity of electromagnetic wave is

c =
1

√
µ0ε0

(4.7)

where ε0 denotes free-space electric permittivityand µ0 are the electric permittivity, and mag-
netic permeability in free space, respectively. Then, n called as the refractive index is defined
as (Bleaney and Bleaney, 1978)

n =
c

vp
=

√
µε

√
µ0ε0

=
√
µrεr (4.8)

where εr and µr are relative permittivity and relative permeability of medium relative to
the vacuum respectively. In fact, for absorptive materials, refractive index, ñ, is a complex
number. Imaginary part of ñ corresponds to the coefficient of absorption (Mendes, 1999).
With exception of water vapor line (22.235 GHz) and oxygen line (60 GHz), on the radio-
wave frequency spectrum, the refraction effects are dependent on the real part of refractive
index only. So refractivity is not frequency dependent for operating frequencies of space
geodetic techniques. Refractive index n in the Earth’s neutral atmosphere is approximately
one, then using refractivity N instead of recractive index is more convenient (Böhm and
Schuh, 2013). Refractivity may be derived from refractive index as

N = (n− 1) · 106. (4.9)

Radio wave propagation speed (phase speed) slows down with the increasing of refractive
index. The water vapor (wet constituents) and dry air quantities are changing in both space
and time, then refractive index varies in every portion of medium wave traveling in it. This
causes a deviation of wave’s propagation path from a straight line as a consequence of least
time principle of Fermat (Born and Wolf, 1975). Arrival time of a radio signal may be
delayed compared to propagation in vacuum environment by retardation and bending effects
caused by troposphere ingredients. Figure 4.1 shows the shortest paths in terms of time (S)
and in terms of length (G) (Böhm and Schuh, 2013). While, the wave in vacuum would
propagate through straight line, G, in neutral atmosphere, the wave propagates through the
curve, S. The electromagnetic path length which is longer than G (geometric length) may
be found as

L =

∫
S

n(s)ds. (4.10)
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Figure 4.1: Ray bending in the neutral part of the atmosphere.

The geometric length, G, defined for vacuum environment may be stated as

G =

∫
vac

ds. (4.11)

The geometric length of actual wave propagation path in neutral atmosphere, S, is defined as

S =

∫
S

ds. (4.12)

The propagation delay owing to the neutral atmosphere, ∆L, which is difference of geomet-
ric path length from electromagnetic path length:

∆L = L−G. (4.13)

Slant path delay may be handled for analysis of geodetic observations in two ways. Firstly,
slant total delay derived from observations of other techniques may be reduced from obser-
vations. The other way is estimation of delay caused by troposphere. In order to estimate any
variable properly from linearized least square estimation (see Chapter 3 for more details), a
priori value of this variable should be close to its actual value. Therefore, modeling the tro-
posphere is necessary for estimation of slant total delay. Using Equations (4.10) and (4.11)
in Equation (4.13), by adding and subtracting Equation (4.12),

∆L =

∫
S

n(s)ds−
∫
S

ds+

∫
S

ds−G, (4.14)

∆L =

∫
S

[n(s)− 1]ds+

∫
S

ds−
∫
vac

ds = 10−6
∫
S

N(s)ds+ S −G. (4.15)
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If the refractivity N(s) is separated into two parts: hydrostatic refractivity, Nh(s) and wet
refractivity, Nw(s), then slant path delay

∆L = 10−6
∫
S

Nh(s)ds+ 10−6
∫
S

Nw(s)ds+ S −G. (4.16)

In general, excess path delay caused by bending effect, S − G, is included to hydrostatic
delay via hydrostatic mapping function (see Subsection 4.2) (Böhm and Schuh, 2013) Under
the assumptions of refractivity is not frequency dependent, and there is no water constituents
in liquid phase, refractivity N is as follows

N = k1
pd
T
Z−1d + k2

pw
T
Z−1w + k3

pw
T 2
Z−1w . (4.17)

where dry air pressure, pd, water vapor pressure, pw, temperature, T , dry air compressiblity
factor Zd, and water vapor compressiblity factor Zw (Böhm and Schuh, 2013). The con-
stants k1, k2 and k3 are emprically determined from several laboratory experiments. These
constants are varying with atmospheric substance concentrations. Details of determination
of the constants may be found in Rüeger (2002a,b). k1 ≈ 77.6 K

hPa
, k2 ≈ 70.4 K

hPa
, and

k3 ≈ 375000 K2

hPa
. Another representation of Equation (4.17) is

N = k1
R

Md

ρ+ k′2
pw
T
Z−1w + k3

pw
T 2
Z−1w . (4.18)

where R is the universal gas constant, Mw is the molar mass of water vapor, Md is the molar
mass of dry air, k′2 = k2 − k1Mw

Md
, and ρ = ρd + ρw is sum of dry air density ρd and water

vapor density ρw. Then, the hydrosatatic refractivity Nh and wet refractivity Nw may be
seperated from total refractivity N as

Nh = k1
R

Md

ρ, (4.19)

Nw = k′2
pw
T
Z−1w + k3

pw
T 2
Z−1w . (4.20)

For expressing delays in zenith direction instead of direction of observation, the zenith hy-
drostatic delay, ∆Lzh, and the zenith wet delay, ∆Lzw, may be found as

∆Lzh = 10−6
∫ ∞
h0

Nh(z)dz, (4.21)

∆Lzw = 10−6
∫ ∞
h0

Nw(z)dz (4.22)
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where h0 is the site altitude. ∆Lzh is derived by Saastamoinen (1972, 1973), and refined by
Davis et al. (1985) as

∆Lzh =
0.0022768 · p0

1− 0.00266 · cos(2ϕ0)− 0.28 · 10−6h0
(4.23)

where p0 is total pressure in hPa at receiving station which has orthometric height, h0, and
latitude, ϕ0. Because of the high spatio-temporal variation of water vapor, modeling the wet
part of the zenith delay is more challenging than the hydrostatic delay. The water vapor
quantity and Earth’s surface temperature may not be representative for higher altitudes.

4.2. Troposphere Mapping Functions

Azimuthal symmetry assumption refers that delays are only depends on elevation angle. That
means, there is no azimuthal variation in terms of zenith delay. This approach is described
as (Davis et al., 1985)

∆L(ε) = ∆Lzh ·mh(ε) + ∆Lzw ·mw(ε) (4.24)

where ε is elevation angle defined in vacuum,mh(ε) andmw(ε) are hydrostatic and wet map-
ping functions respectively. In fact, mapping functions are providing a ratio of the delays in
the observation direction to the delays in the direction of zenith. Proposed azimuthal sym-
metric model only consider wet and dry delays in the direction of observations to find slant
total delays. Troposphere mapping functions are not only used for relating slant and zenith
delays but also their partial derivatives are involved in least square estimation as design ma-
trices (Böhm and Schuh, 2013). A simple model for mapping function is m(ε) = 1/sin(ε)

for planar troposphere assumption. For elevation angle higher than 20o, this mapping func-
tion is sufficiently accurate. But at lower elevation angles, bending is extremely problematic,
then more accurate mapping functions are needed. So as to increase precision of mapping
function, continuous fractional terms are added to simple model as follows,

m(ε) =
1

sin(ε) +
a

sin(ε) +
b

sin(ε) +
c

sin(ε) + · · ·

(4.25)

where a, b, c, · · · coefficients were determined with standard atmosphere data by Marini
(1972). But real weather conditions were not considered. Chao (1974) used tan(ε) in-
stead of second sin(ε) term in order to provide m(ε) = 1 in zenith direction, and obtained
a and b coefficients from standard atmosphere. Additional constant, c, was used, and all
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the coefficients were specified as a function of ray traced temperature, water vapor and total
peressures by Davis et al. (1985) in addition to perspective of Chao (1974). Herring (1992a)
improved continued fraction form for both hydrostatic and wet mapping functions as

m(ε) =

1 +
a

1 +
b

1 + c

sin(ε) +
a

sin(ε) +
b

sin(ε) + c

(4.26)

where a, b, and c coefficients were obtained from radiosonde data as functions of height,
latitude, and the temperature at receiving site. The Niell Mapping Functions (NMF) (Niell,
1996) and the Isobaric Mapping Functions (IMF) (Niell, 2000) also used this form.
For determination of NMF continued fraction form coefficients (a, b, and c) for both hydro-
static and wet mapping functions, standard atmosphere models were used. The coefficients
are functions of height, latitude, and day-of-year. Validation of the NMF coefficients were
done with radiosonde data during 1992. The NMF does not require meteorological parame-
ters at receiving station. Thus, the NMF is easy to use for analysis of observations done by
GNSS sites without meteorological sensor (Böhm and Schuh, 2013).
Numerical weather models were firstly used by Niell (2000) for determination of the IMF.
While, b and c coefficients of Equation (4.26) were specified with using empirical func-
tions, data provided by Schubert, Rood and Pfaendtner (1993) were used to find out a coeffi-
cients. The IMF hydrostatic (IMFh) coefficients were determined as the functions at 200hPa
pressure level. For the IMF wet (IMFw), relative humidity, temperature, and pressure are
needed. Some conceptual and practical restrictions for IMFw computation led Böhm and
Schuh (2004) to generate the Vienna Mapping Functions (VMF).

Vienna Mapping Functions (VMF)

The VMF was developed in order to eliminate shortcomings of the IMF wet by Böhm
and Schuh (2004) considering bending effect and applying vertical interpolation to weather
model, e.g. European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim
(Böhm and Schuh, 2013). It is based on directly ray tracing through numerical weather
models (NMW) in the place of taking intermediate steps. For the VMF wet (VMFw) b and
c coefficients were obtained from the IMFw. Besides, the VMF hydrostatic b and c co-
efficients were acquired from the NMFh. The VMF is named as the ”fast” approach due
to the fact that a coefficients of Equation (4.26) is designated with simple inversion of the
fraction form with best available coefficients b and c, and mapping function value (m(ε) =

(Slant Total Delay)/(Zenith Total Delay)) from only one ray tracing at ε = 3.3o initial
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angle of elevation as

a = − m(ε) · sin(ε)− 1

m(ε)

sin(ε) +
b

sin(ε) + c

− 1

1 +
b

1 + c

. (4.27)

The Vienna Mapping Functions 1 (VMF1) (Böhm, Werl and Schuh, 2006) is called as succes-
sor of the VMF (Böhm and Schuh, 2004). The VMF1 b and c coefficients were updated every
6 hours from the 40-years re-analysis data (ERA-40, Uppala et al. 2005) of ECMWF con-
taining temperature, water vapor pressure, and total pressure at profiles of 23 pressurelevels
between 1000hPa to 1hPa. The ch can be calculated using Table (4.1) as

ch = c0 +

((
cos

(
doy − 28

365.25
· 2π + ψ

)
+ 1

)
· c11

2
+ c10

)
· (1− cos(θ)). (4.28)

Table 4.1: Parameteres for computation
of the c coefficient of the VMF1 hydrostatic.

Hemisphere c0 c10 c11 ψ

Northern 0.062 0.001 0.005 0

Southern 0.062 0.002 0.007 π

Determination of the a coefficients is the same as VMF ”fast” approach via simple inversion
given in Equation (4.27) (Böhm, Werl and Schuh, 2006; Böhm and Schuh, 2013). Validation
of the VMF1 was done with ”rigorous” approach which involves all the coefficients of VMF1
estimated in a least squares adjustment method with ray tracing using ten different initial
angles of elevation at GPS and VLBI stations starting from station height. The latest version
of the Vienna mapping functions is the VMF3 developed by Landskron and Böhm (2018)
using ray-tracer delays called as RADIATE (Hofmeister and Böhm, 2017), that is based on
ray-tracing method (Hobiger et al., 2008), for calculations of Equation (4.26) coefficients.
The VMF3 is significantly improved version of its predecessor, the VMF1. In development
of the VMF3, empiric natures of previous VMFs were conserved for assigning of b and c
coefficients. As a numerical weather model ECMWF ERA-Interim (Dee et al., 2011) that
succeeds the ERA-40 used in VMF1, which is ten years monthly means from 2001 to 2010,
and available as 1o x 1o horizontal resolution, were used. The ERA-Interim has 37 pressure
levels, and 25 of its were used for VMF3. The b and c coefficients were deduced from
seasonal fit formula using mean value (A0), amplitudes for annual variations (A1, B1), and
semi-annual variations (A2, B2) of the coefficient to be calculated (bw, bh, cw, and ch) as
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(Lagler et al., 2013; Böhm et al., 2015)

r(t) = A0 + A1 cos

(
doy

365.25
2π

)
+B1 sin

(
doy

365.25
2π

)
+

A2 cos

(
doy

365.25
4π

)
+B2 sin

(
doy

365.25
4π

) (4.29)

where doy denotes day-of-year. Then, aw and ah coefficients were estimated using least
squares adjustment using ray-traced delays over seven (outgoing) angles of elevation starting
from 3o.

Global Mapping Functions (GMF)

The GMF proposed by Böhm et al. (2006) is easy to use and global version of the discrete
mapping functions (IMF, Niell (2000), VMF ”fast”, Böhm and Schuh (2004), VMF1, Böhm,
Werl and Schuh (2006), VMF3, Landskron and Böhm (2018). The GMF has the coeffi-
cients that were acquired from spherical harmonics expansion of the VMF1 (Böhm, Werl
and Schuh, 2006) on a global grid. The GMF is replacement for the analysis of observa-
tions done by station where the discrete mapping functions are not available. The GMF
takes longitude dependence into account with refined continued fraction form according to
the NMF (Niell, 1996). To determine wet and hydrostatic a coefficients, ECMWF ERA-40
(Uppala et al., 2005) global grids for the time interval between September 1999 and August
2002 containing montly mean profiles for temperature, pressure, and humidity were applied
to the same procedures as the VMF1 determination with the same b and c coefficients of
the VMF1. Then, the wet and hydrostatic a coefficients for 36 months were obtained at the
312 grid points. Height corrections mentioned by Niell (1996) were applied to reduce the
hydrostatic coefficients to mean sea level. The a coefficients time series for hydrostatic and
wet mapping functions for each of grid points were assigned as

a = a0 + A · cos

(
doy − 28

365.25
· 2π
)

(4.30)

whereA is the annual amplitudes, a0 is the mean values. The phase reference of this equation
is 28th day of the year for consistency with the NMF (Niell, 1996). Then, in least squares
adjustments, spherical harmonic coefficients expansions were done up to order and degree 9
for both the hydrostatic and wet amplitudes A and the mean values a0 as seen in Equation
(4.31) for only a0.

a0 =
9∑

n=0

n∑
m=0

Pnm(sinθ)(Anm cos(mλ) + (Bnm sin(mλ)). (4.31)
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where Pnm are the Associate Legendre Functions of the deree n and order m, θ denotes
the geocentric co-latitude, and λ is the longitude. The GMF may be computed with height,
longitude, latitude, and day-of-year similar to the NMF.

4.3. Troposphere Gradients

The previously mentioned azimuthal symmetry perspective basically suggested by Marini
(1972); Chao (1974) is based on the assumption, that neutral atmosphere involves spher-
ical shell slices with uniform refractive index. Height of the troposphere varies from the
poles to the equator that changes the troposphere path length according to angle of azimuth
(MacMillan and Ma, 1997). Troposhere gradients modeling is required for each of space-
based geodetic techniques. For GNSS observations, Bar-Sever, Kroger and Borjesson (1998)
shows that gradient modeling improves the estimation accuracy and precision. Troposphere
zenith delays and station heights are highly correlated (Rothacher, 2002). As a consequence,
any deficiency in troposphere modeling would propagate to height component as well as
to all of the components of the station coordinates. The slant total delay was expressed as a
sum of hydrostatic delay, wet delay, and gradient delays by MacMillan (1995) which follows
previous model put forward by Davis et al. (1985, 1993) as

∆L(α, ε) = ∆Lzh ·mh(ε) + ∆Lzw ·mw(ε) +mg(ε)[Gncos(α) +Gesin(α)], (4.32)

mg(ε) = mh,w(ε)cot(ε) (4.33)

where α and ε are the angles of the azimuth (horizontal angle from geodetic North to obser-
vation direction) and the elevation, respectively. mh(ε) and mw(ε) are hydrostatic and wet
mapping functions, Gn and Ge are north and east troposphere gradients. Chen and Herring
(1997) proposed another gradient model as

mg(ε) =
1

sin(ε) tan(ε) + C
(4.34)

where,C is assigned as 0.0031 for hydrostatic part (H=6.5km), 0.0007 for wet part (H=1.5km)
from C = 3H/Re formula derived with integration where Re is radius of the Earth. Herring
(1992a) suggests to use C = 0.0032 for total gradient estimation. Niell (2001) obtain hydro-
static gradients from 200hPa pressure level tilting. Interpreting the gradients as illustrated
in Figure (4.2) by tilting the mapping function can be done under the assumptions of flat
atmosphere (m(ε) = 1/ sin(ε)), and tilting angle β is infinitesimal thus path delay through
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zenith direction remains the same (Rothacher et al., 1998). The tilting angle β causes deflec-
tion of the path delay through zenith direction which is then called as gradient G. Resulting
gradient model is the same as the model by MacMillan (1995). Estimation of the gradi-
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Figure 4.2: Tilted mapping function under the assumption of horizontally stratified atmosphere
(Böhm and Schuh, 2013).

ents during the analysis of space geodetic techniques is important. For estimation without
constraints, a priori gradient usage is not required in the analysis of sessions with enough
observations to estimate all parameters simultaneously (e.g. over-determined system, see
Chapter 3). Although there are many important studies related to the troposphere, because
of the rapid spatio-temporal variations of especially wet contents, the troposphere is still the
largest source of error in the observations of space/satellite based geodetic techniques.
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5. GLOBAL NAVIGATION SATELLITE SYSTEMS (GNSS)

5.1. GNSS Fundamentals

The GNSS are one-way (space-to-earth) passive ranging systems (Hofmann-Wellenhof, Licht-
enegger and Wasle, 2008). The GNSS are widely used for navigation, time transfer, and
positioning purposes. There are several satellite-based navigation systems (see Table 5.1)
available having either global or regional coverage with quite a lot of satellites orbiting the
Earth (United Nations, 2010). Each satellite transmits signals towards the Earth continu-
ously containing information for computation of receivers position. There are also few more
regional satellite-based navigation systems such as founded by Japan and India alongside
Galileo and BeiDou, which are currently regional but will be global by the year 2020. In the
scope of this thesis, only the Global Positioning System (GPS) and the Global Navigation
Satellite System (GLONASS) are considered because of their global coverage.

Table 5.1: Coverage of major GNSS.

System Owner - Operator Coverage

GPS United States - Department of Defense (DOD) Global

GLONASS Russian Federation - Federal Space Agency (ROSCOSMOS) Global

Galileo European Union - European GNSS Agency (GSA) Regional

BeiDou China - National Space Administration (CNSA) Regional

GPS

The GPS is the first fully operational space-borne global radio-positioning system (Sanz Subi-
rana, Juan Zornoza and Hernández-Pajares, 2013). The key idea behind the development of
the GPS was military force enhancement, however, they have been opened for public use
with some restrictions after a while. During the last 20 years, scientific and commercial usage
of the GPS has grown up. The GPS satellites are placed into 6 different orbital planes, each
plane nominally consisting of 4 unequally spaced satellites (Hofmann-Wellenhof, Lichteneg-
ger and Wasle, 2008; Dach et al., 2015). The number of the operational satellite is currently
32 (U.S. Naval Observatory, 2019) and changing due to the existence of few backup satel-
lites but always more than 24 to guarantee at least 4 satellites needed for positioning are
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available for any point on the Earth. Orbits of the GPS have inclination 55o according to
the equator, and altitude above the Earth surface about 20 200 kilometers. Therefore, orbital
periods of the satellites are approximately half a sidereal day (≈ 11h58m), that means al-
most the same satellite constellations are repeated twice a day. The transmitters of the GPS
space segment devices send navigation messages from right-hand circular polarized anten-
nas with three different carrier signals derived from reference crystal oscillator operating at
f0 = 10.23 MHz. These carriers are L1, L2, and L5 with wavelengths λ1 ≈ 19.0 cm,
λ2 ≈ 24.4 cm, and λ5 ≈ 25.5 cm respectively, and each owns allocated bandwidth of 24
MHz (see Table (5.2)). The coarse/acquisition (C/A) code, C(t), the precision code (P),
P (t), and navigation message, D(t) are modulated with Binary Phase Shift Keying (BPSK)
onto carriers as (Baueršı́ma, 1982; Ávila Rodrı́guez, 2008)

L1 = ac C(t) D(t) sin(2πf1t) + ap P (t) D(t) cos(2πf1t), (5.1)

L2 = bp P (t) cos(2πf2t) (5.2)

where ap, ac, and bp are the signal amplitudes relevant to signal power. The precision, C/A,
and navigation message codes are carried to user with L1 signal which is received by most
of commercial devices (e.g. mobile phones). However, L2 signal consists of only precise
code. Devices receiving both L1 and L2 signals are mostly sophisticated equipment enabling
ionosphere effect elimination. The GPS satellites operate with the Code Division Multiple
Access (CDMA) method using orthogonal codes in order to prevent interference between
different satellite signals transmitted with the same carrier frequency. Modernization of the
GPS have been started with placing Block IIR-M satellites into orbit. New generation satel-
lites are enabled to transmit new carrier frequency called as L5, improved L2 containing C/A
code and navigation message, and few more codes (e.g. M: Military, L2C: Civilian).

Table 5.2: The GPS satellite signal constituents.

Signal Frequency (MHz)
Base frequency f0 = 10.230

Carrier L1 f1 = 1 575.420 (154× f0)
Carrier L2 f2 = 1 227.600 (120× f0)
Carrier L5 f5 = 1 176.450 (115× f0)

P Code 10.230 (f0)

C/A Code 1.023 (f0/10)

L2C Code 0.5115 (f0/20)

Navigation Message 50 · 10−6 (f0/204600)
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GLONASS

The GLONASS is another space-borne radio-navigation system operated and maintained by
the Russian Federation space agency. There are 24 satellites orbiting the Earth on 3 orbits
having an inclination of 64.8o according to the equator and separated by 120o in the plane of
the equator. Each of the orbits contains the same number of satellites spaced equally at an or-
bital height of 19 130 kilometers. Thus, orbital period is approximately ≈ 11h15m44s. Con-
sequently, in contrast to the GPS ground track repeating once a sidereal day, a GLONASS
satellite pass through the same path every eight sidereal days. In order to use a wave propa-
gation medium called as communication channel by different satellites simultaneously, Fre-
quency Division Multiple Access (FDMA) method is utilized in the GLONASS satellites. In
contrast to CDMA used in the GPS which averting interference with orthogonal codes, the
different carrier frequency is allocated for every satellite in FDMA. The frequency bands for
L1 and L2 signals are f1 and f2 respectively, and may be found as

f1(l) = 1602 + l × 9/16 = (2848 + l)× 9/16 MHz (5.3)

f2(l) = 1246 + l × 7/16 = (2848 + l)× 7/16 MHz (5.4)

where l = −7, ..., 6. The antipodal satellites in the same orbit are transmitting on the same
frequency (e.g. same k). Similar to the GPS, navigation message, C/A code and the precision
code (P) are modulated using the BPSK modulation technique onto carrier frequencies and
transmitted from right-hand circular polarized antennas. For free of charge usage, L1 and
L2 bands are providing standard accuracy signals. The high-accurate service is also sent
via the same frequency bands consisting of precise signals for only authorized or military
users without encryption. During the upgrade of the GLONASS with K1 generation, new
frequency called as L3 operating with CDMA took its place in orbit (Urlichich et al., 2011;
Povalyaev, 2013). It is planned to transmit also L1 and L2 bands with both FDMA and
CDMA techniques in the near future.

Table 5.3: The GLONASS satellite signal constituents.

Signal Frequency (MHz)
Carrier L1 1598.0625− 1605.3750

Carrier L2 1242.9375− 1248.6250

Carrier L3 1202.025

P Code 0.511

C/A Code 5.110
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5.2. GNSS Observations

Propagation duration between emission instant of signal from phase center of satellite an-
tenna and reception instant at phase center of receiver antenna is called as travel time ∆T ,
and it is the basic observable of the GNSS technique (Sanz Subirana, Juan Zornoza and
Hernández-Pajares, 2013). For methodology of extraction of both code pseudo-range and
carrier phase observations from received signal, Tsui (2000) and Borre et al. (2007) present
detailed foundations.

Code Pseudo-range

Travel time ∆T can be extracted via processing ranging codes in the GNSS signals. This
process is correlation between received code and codes generated by receiver, which are
exact replica of satellites’ codes, in order to find maximum correlation. The observed travel
time ∆T is then multiplied with speed of the light c so as to find apparent range (pseudo-
range). The geometric-range or true-range differs from pseudo-range due to the error sources
(e.g. asynchronous clocks, atmospheric effects, instrumental errors, etc.). Clock readings of
the satellite (tsat) and the receiver (trcv) are in two different time scales. Thus, pseudo-range
for the P code at the carrier frequency f may be attained as

Pf = c[trcv(T2)− tsat(T1)] (5.5)

where trcv(T2) is the reception time measured with receiver clock, tsat(T1) is the emission
time measured with satellite clock, c is the light speed in vacuum. Pseudo-range for sth

satellite and frequency f may be expanded as

P s
f = ρs + c(dtrcv − dtsat) + T sr + αfSTEC +Kf,rcv −Ksat

f + εf (5.6)

where

• ρs is distance from sth satellite to receiver,

• dtrcv, receiver clock error,

• dtsat, satellite clock error,

• T sr is the non-dispersive troposphere delay through the wave path from sth satellite to
receiver (see Chapter 4),
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• αfSTEC is the ionospheric delay, αf is frequency-dependent delay per unit electron
density. STEC is total electron content in the direction of observation.,

• Kf,rcv andKsat
f are frequency-dependent instrumental delays caused by hardware elec-

tronics of receiver and satellite respectively,

• εf is the noise term containing un-modeled parts of the observed signal.

Carrier Phase

Another ranging method used in GNSS is carrier phase measurement achieved from phase
difference of received signal carrier with its replica generated by receiver. Carrier phase
measurement has more accuracy compared to those of code measurement. Carrier phase
measurement consists of fractional part of the carrier phase. However, unknown number of
full cycle carrier wave is ambiguity term. Then, the model of the carrier phase measurement
is stated as

φsf = ρs + c(dtrcv − dtsat) + T sr − αfSTEC + kf,rcv − ksatf + λsfN
s
f + εf (5.7)

where N s
f is the ambiguity, λsf the wavelength, kf,rcv and ksatf instrumental delays belong

to receiver and satellite respectively, and εf the noise. The other terms are similar to those
in the code pseudo-range measurements. It should be noticed that ionospheric delay term
has opposite sign compared to code pseudo-range measurement due to fact that ionosphere
causes group delay and phase advance (Misra and Enge, 2011).

5.3. Precise Point Positioning (PPP) Technique

Determination of receiver position can be realized with several different techniques such
as those with single receiver and more than one receivers (relative positioning). Precise
point positioning is a single receiver technique suggested by Zumberge et al. (1997) in order
to decrease computational burden of processing observations of hundreds of receivers with
utilizing precise clock and orbit as a priori information. Enhancement of PPP was proposed
by Kouba and Héroux (2001) with taking into consideration minor effects in addition to
those with significant impacts. These minor effects were stated in three part as the altitude of
satellite, displacement of site, and consistency of used data and conventions. PPP approach
aims minimizing positioning error via processing ionosphere-free linear combinations of
the observations of two different frequencies introducing high accurate prior values of error
sources. Ionosphere-free combination eliminates the first-order ionosphere delay (≈ %99.9)

44



derived for code and phase observations as (Sanz Subirana, Juan Zornoza and Hernández-
Pajares, 2013)

P s
c =

f 2
1P

s
1 − f 2

2P
s
2

f 2
1 − f 2

2

, (5.8)

φsc =
f 2
1φ

s
1 − f 2

2φ
s
2

f 2
1 − f 2

2

. (5.9)

where, P s
1 , P

s
2 and φs1, φ

s
2 are code and phase observations from sth satellite in the f1 and f2

frequencies respectively. On account of CDMA method so as to distinguish different satellite
signals used in the GPS, carrier frequencies f1 and f2 are the same for all satellites. Conse-
quently, ionosphere-free equations are belong to the GPS L1 and L2 observations for the sake
of simplicity and following derivations are based on the GPS observations only. However,
same strategy may be applied for those of the GLONASS satellites by taking FDMA signal
structure with various frequencies into account. After placing Equations (5.6) and (5.7) into
Equations (5.8) and (5.9) respectively for f = 1, 2, ionosphere-free combinations are found
as

P s
c = ρs + c(dtrcv − dtsat) + T sr +Kc,rcv −Ksat

c + εc, (5.10)

φsc = ρs + c(dtrcv − dtsat) + T sr + kc,rcv − ksatc + λscN
s
c + εc (5.11)

where Kc,rcv, Ksat
c , kc,rcv and ksatc are receiver and satellite hardware biases of ionosphere-

free combined code and phase equations, and λscN
s
c is the ambiguity term of combined phase

observation. For simplicity, hardware biases may be included by satellite and receiver clock
error, and integer ambiguity term are became floating ambiguity term via involving hardware
biases as (Shi and Gao, 2014)

c d̃trcv = c dtrcv +Kc,rcv, c d̃t
sat

= c dtsat +Ksat
c ,

c d̂trcv = c dtrcv + kc,rcv, c d̂t
sat

= c dtsat + ksatc ,

(5.12)

λscF
s = λscN

s
c +Ksat

c −Kc,rcv + kc,rcv − ksatc . (5.13)

Then, simplified forms of Equations (5.10) and (5.11) on account of Equations (5.12) and
(5.13), and taking T sr = M · ZTD may be derived as

fP = ρs + c(d̃trcv − d̃t
sat

) +M · ZTD + εc − P s
c , (5.14)

fφ = ρs + c(d̃trcv − d̃t
sat

) +M · ZTD + λscF
s + εc − φsc (5.15)

where M is the troposphere mapping function basically, and ZTD is the total delay in the
zenith direction resulting from neutral atmosphere (see Chapter 4). The geometric distance
between reference points (phase centers of antennas) of satellite (Xsat, Y sat, Zsat) and re-
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ceiver (Xrcv, Yrcv, Zrcv) may be calculated as

ρs =
√

(Xsat −Xrcv)2 + (Y sat − Yrcv)2 + (Zsat − Zrcv)2. (5.16)

As seen in Equation (5.16), geometric distance is not linear. However, for least squares es-
timation (see Chapter 3), equations should be linearized to introduce

∑
pv2 = min i.e. the

condition of providing the weighted sum of squared-residuals of observations to be mini-
mum. Then, Taylor series expansion up to first-order term should be applied around a priori
values of the unknown parameters so as to approximate the non-linear equations in linear
form. The functional model in matrix notation is stated as

v = Aδx− l (5.17)

where v is the residual vector of observations, A is design matrix containing linearized equa-
tions of observations, δx is the reduced unknown parameter vector, and l is the reduced
observation (observed minus computed) vector. The reduced observations vector may be
formed with a priori values of satellite clock off-set dtsat, troposphere delay term T sr (0) as

l =

 P s
c − ρs(0) + c dtsat − T sr (0)

φsc − ρs(0) + c dtsat − T sr (0)

 . (5.18)

The unknown parameters are x = δx + x0 sum of a priori parameters vector x0 and correc-
tions of a priori parameters vector, and these parameters are given as

x = [Xrcv, Yrcv, Zrcv, cd̃trcv, ZTD, λ
s
cF

s]T . (5.19)

The design matrix or Jakobian matrix of the observations containing partial derivatives of
code and phase observations w.r.t. estimated parameters may be derived as

A =

 ∂(fP )
∂Xrcv

∂(fP )
∂Yrcv

∂(fP )
∂Zrcv

∂(fP )

∂cd̃trcv

∂(fP )
∂ZTD

∂(fP )
∂λscF

s

∂(fφ)

∂Xrcv

∂(fφ)

∂Yrcv

∂(fφ)

∂Zrcv

∂(fφ)

∂cd̃trcv

∂(fφ)

∂ZTD

∂(fφ)

∂λscF
s

 . (5.20)

After partial derivatives, design matrix is found as

A =

 Xrcv(0)−Xsat

ρs(0)
Yrcv(0)−Y sat

ρs(0)
Zrcv(0)−Zsat

ρs(0)
1 M 0

Xrcv(0)−Xsat

ρs(0)
Yrcv(0)−Y sat

ρs(0)
Zrcv(0)−Zsat

ρs(0)
1 M 1

 . (5.21)
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Then, estimation of corrections of unknown parameters may be performed with weighted
least squares adjustment with W weighting of observations as follows

δx = (ATWA)−1ATW l. (5.22)

5.4. Error Corrections for PPP

Ranging errors of GNSS observations arise from satellite, receiver or propagation medium.
All these error sources must be modeled, reduced or estimated for accurate positioning in the
way that Zumberge et al. (1997) put forward and afterward detailed by Kouba and Héroux
(2001). Based on ionosphere-free combined dual frequency code and phase observations,
the ionospheric delay is admitted as removed. Moreover, troposphere modeling including
troposphere mapping functions and gradients was reviewed in detail at Chapter (4). The most
common approach is reducing a priori hydrostatic delay from observations and estimating
wet part. The rest of the error sources will be examined in upcoming passages.

5.4.1. Satellite Orbit and Clocks

Instantaneous positions of GNSS satellites are dispatched via broadcast ephemeris messages
for the purpose of estimating unknown receiver position from known satellite positions.
However, the accuracy of orbit assessed from the broadcast message does not satisfy the
necessity of precise positioning on account of one of the major error sources is satellite or-
bit. Alongside orbital corrections, satellite clock is another significant error source even if
clock correction polynomial constants (offset a0, drift a1, drift rate a2) offered in broadcast
ephemeris are used as given in Equation (5.23). As a result, the strength of the PPP approach
comes from primary employment of satellite orbit and clock precise products acquired from
the global network instead of the broadcast message during the estimation as recommended
by Kouba and Héroux (2001).

δ̃tsat = a0 + a1(t− t0) + a2(t− t0)2. (5.23)

IGS (Dow, Neilan and Rizos, 2009) is civilian organization established for producing GNSS
derived products (e.g. satellite orbit, clock, atmosphere delays) from analyzing observations
of more than 500 participating GNSS stations around the world (see current IGS network:
IGS 2019a). IGS serves orbit and clock products for free of charge with various accuracy
and latency criterions as seen in Table (5.4) (IGS, 2019b).
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Table 5.4: The IGS orbit and clock products.

System Type
Accuracy

Latency
Sample

(RMS) Interval

GPS

Broadcast
Orbit 100 cm

Real time Daily
Clock 5 ns

Ultra-Rapid Orbit 5 cm
Real time 15 min

(predicted half) Clock 3 ns

Ultra-Rapid Orbit 3 cm
3-9 hours 15 min

(observed half) Clock 150 ps

Rapid
Orbit 2.5 cm

17-41 hours
15 min

Clock 75 ps 5 min

Final
Orbit 2.5 cm

12-18 days
15 min

Clock 75 ps 30 sec

GLONASS Final Orbit 3 cm 12-18 days 15 min

5.4.2. Receiver Clocks

On board satellite circuits built up with precious atomic clocks put forward very precise
time reference. But unfortunately, budget constraints for ground receivers induce to inte-
grate cheaper oscillator circuits into receiving structures for timing generation. Receiver
clock correction is mostly estimated along with other parameters (e.g. station coordinates,
troposphere delay, etc) as given in Equation (5.19).

5.4.3. Relativistic Effects

GNSS observations suffer from relativistic effects in two ways basically: clock error and
signal path error. Propagation time of emitted radio wave from the GNSS satellite is mea-
sured as a difference of clocks on satellite and ground receiver. Keeping satellite and receiver
clocks synchronize is vital for precise distance measurement. Although state of the art GNSS
satellites are built up with highly accurate and stable clocks, relativistic clock corrections
must be applied in addition to clock corrections done with the coefficients in either broad-
cast message or clock solution files served by the IGS (Kouba, 2004). The relativistic clock
correction may be investigated as a sum of constant correction ∆tcon and periodic correction
∆tper as follows

∆trel = ∆tcon + ∆tper. (5.24)
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The constant relativistic effects have an impact on nominal frequency because of both or-
bital speed of satellite (special relativity) and gravitational attractions on satellite (general
relativity) as,

∆f

f0
=
f − f0
f0

=
v2

2c2
+

∆U

c2
. (5.25)

where v is the relative velocity of satellite clock according to receiver clock, c is vacuum
speed of the light, and ∆U is the gravitational potential difference between orbit of satellite
and the geoid. For satellites of GPS, ∆f/f0 = 446.47 · 10−12.

Strictly speaking, effect of General Relativity is leading faster elapse of satellite clocks in
proportional to altitude. Nevertheless, due to Special relativity, as orbital velocity of satellite
increases, on board clock slows down. The periodic part in Equation (5.24) is arising from
the orbital eccentricity of the satellite. This effect also contains orbital perturbations. Posi-
tion vector ~r and velocity vector ~v of the satellite at transmission instant determines clock
correction due to eccentricity as defined in following equation (Ashby, 2003)

∆tecc = 2
~r · ~v
c2

. (5.26)

Path range error due to relativity so-called Shapiro time delay should be considered for pre-
cise positioning purposes so as to improve accuracy for a few centimeters. This effect directly
delays GNSS radio wave by space-time dilation. Path error may be derived as

∆ρrel = 2
µ

c2
ln
rsat + rrcv + rsatrcv

rsat + rrcv − rsatrcv

. (5.27)

Here, µ indicated gravitational constant of the Earth, rrcv and rsat denote geometric dis-
tances of the receiver and satellite respectively, and rsatrcv is the distance between receiver and
satellite.

5.4.4. Antenna Phase Center

The instantaneous phase center of an antenna changes with frequency and direction of trans-
mission/reception. In order to define coordinates of satellite and receiver, reference points
are defined on the device. The fixed point for the satellite is its center of mass; nonetheless,
the antenna reference point of the receiver (ARP) is defined and marked by the manufacturer.
Variations between actual phase centers and reference points should be taken into consider-
ation for precise positioning (Kouba and Héroux, 2001). The instantaneous satellite antenna
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phase center ~XAPC is found as

~XAPC = ~XM −
−−−→
PCO −

−−−→
PCV (5.28)

where ~XM is the center of mass of the satellite, which is referred as satellite coordinate in
precise orbit.

−−−→
PCO is mean phase center called as phase center offset, and

−−−→
PCV defines

variations of real phase center for particular frequency and signal direction from
−−−→
PCO. Pub-

licly available values of PCO and PCV for satellites may be downloaded in ANTEX format
from IGS (Schmid et al., 2016).

Similarly, true phase center for receiver suffer from antenna phase pattern and phyiscal pro-
tector so-called radome on antenna. Calibration for various antenna and radome pairs are
carried out with anechoic chamber or robot (Dach et al., 2015).

5.4.5. Phase Wind-up

In order for high precision positioning, the wind-up effect at carrier phase observation, which
is due to circular polarized radio wave, should be considered. During the orbital motion of
GNSS satellites, they keep rotate for gaining maximum energy from the sun. This motion
leads phase variation thereby mistake for range measurement. The phase wind-up correction
for crossed dipole antenna may be calculated as (Wu et al., 1993)

∆φ = δφ+ 2Nπ (5.29)

where fractional piece of a period δφ is found using unit vector from satellite to receiver,
ρ̂ and effective dipoles for satellite and receiver labeled as d′ and d as given in following
equation

δφ = sign(ρ̂ (d′ × d)) arccos

(
d′ · d
|d′| |d|

)
(5.30)

and integerN , which is initially treated as zero, may be calculated via rounding to the nearest
integer as

N =

⌊
∆φprev − δφ

2π

⌉
(5.31)

where ∆φprev is previous phase correction value. The effective dipoles are obtained as

d′ = x̂′ − ρ̂ (ρ̂ · x̂′) + ρ̂× ŷ′

d = x̂− ρ̂ (ρ̂ · x̂) + ρ̂× ŷ
(5.32)

where unit vectors of local receiver (x̂, ŷ, ẑ), and unit vectors of satellite body (x̂′, ŷ′, ẑ′)
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5.4.6. Differential Code Biases

Hardware related delays for satellite and receiver are called as differential code biases (DCB)
so that every type of transmitter/receiver circuits have its own DCB. While, biases cause
group delays for code observations, their effects on phase observations are perceived as gath-
ered into ambiguity parameter. These biases must be regarded for single frequency receivers
as well as dual frequency observations’ linear combination (ionosphere-free). (Leandro, Lan-
gley and Santos, 2007; Montenbruck and Hauschild, 2013). Despite satellite circuit based
delays are needed to be corrected with proper DCB values, delays due to receiver circuits
are handled while receiver clock are being estimated because of DCB error propagation into
clock parameters. For this purpose, some GNSS agencies are producing DCB corrections
for monthly periods (Schaer, 2012).

5.4.7. Displacements of Crust-fixed Reference Points

Solid Earth Tides

Gravitational forces due to the Moon and the Sun are driving the solid Earth to move in tidal
periods as well as permanently. Tidal frequency and geographic location specific Love and
Shida numbers scale a spherical harmonic expansion to represent site displacement (Wahr,
1981a). In IERS 2010 conventions (Petit and Luzum, 2010), crust-fixed point displacement
is calculated with firstly degree: 2 and degree: 3 tides followed by Love and Shida numbers
frequency dependence. Tides with degree: 2 causes displacement as given below:

∆−→r =
3∑
j=2

GMjR
4
e

GM⊕R3
j

{
h2 r̂

(
3(R̂j · r̂)2 − 1

2

)
+ 3 l2 (R̂j · r̂)

[
R̂j − (R̂j · r̂) r̂

]}
(5.33)

where GM⊕, GM2 and GM3 are the gravitational parameters belong to the Earth, the Moon
and the Sun respectively. R̂2 andR2 are unit vector and its magnitude, which are defined from
the geocenter and to the Moon; besides R̂3 and R3 are defined between the geocenter and the
Sun. Re is equatorial radius of the Earth. Between geocenter and station, unit vector r̂ and its
magnitude r are established. Degree:2 Love and Shida numbers are h2 and l2 respectively.
Nominal values of these numbers are corrected using station latitude as follows:

h2 = 0.6078− 0.0006 [(3 sin2 (ϕ)− 1)/2] (5.34)

and
l2 = 0.0847 + 0.0002 [(3 sin2 (ϕ)− 1)/2]. (5.35)
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where ϕ is station geocentric latitude. Degree:3 caused displacement is given as

∆−→r =
3∑
j=2

GMjR
5
e

GM⊕R4
j

{
h3 r̂

(
5(R̂j · r̂)3 − 3(R̂j · r̂)

2

)
+l3 (

15(R̂j · r̂)2 − 3

2
)
[
R̂j−(R̂j·r̂) r̂

]}
.

(5.36)
Here, contribution of the Sun is insignificant (Petit and Luzum, 2010). The time invari-
ant part of the tidal displacement so-called permanent deformation in radial and transverse
components, r and t, respectively may be calculated as

r = [−0.1206 + 0.0001 P2(sinϕ)] P2(sinϕ), (5.37)

t = [−0.0252− 0.0001 P2(sinϕ)] (sinϕ). (5.38)

Ocean and Hydrology Loading

The displacement at the station caused by loading effects of the ocean tides is another signif-
icant crust movement mostly occurs in coastal zones. In order for inland areas as well, ocean
tidal loading (OTL) effects should be considered. The mass redistribution at the ocean in-
duced by the celestial bodies gravitational attractions cause loading effects at sub-daily, daily,
fortnightly, monthly, semi-annual periods. So as to compute ocean tidal loading induced site
displacements, following equation is provided as (Scherneck, 1999; Petit and Luzum, 2010)

∆c =
11∑
j=1

fjAcj cos(ωjt+ λj + uj − Φcj) (5.39)

where corresponding 11 tides are M2, S2, K2 and N2 in semi-diurnal periods, O1, K1, P1

and Q1 in diurnal periods, and Mmf , Mm and Msa in periods from 2 weeks to 6 months.
fj and uj are the modulation effect of the longitude of lunar node. λj represents the as-
tronomical argument for t=0 h, and ωj is the angular velocity. The station specific Acj and
Φcj components are site specific amplitude and phase as w.r.t. Greenwich, respectively, and
they are derived from ocean tide model (e.g. FES2004, see Lyard et al. 2006). Besides tidal
variations, non-tidal ocean loading arising from sea surface height and water column density
changes is another important reason for site displacement, which causes errors at clock cor-
rections and zenith wet delay estimation by error propagation (Vey et al., 2002). Unlike tidal
variations, non-tidal part is still un-modeled.

Another site displacement due to annual variations of surface water storage (e.g. snow, ice,
soil moisture, ground water, etc.) is not negligible and reaches up to 30 mm in vertical
component (Schuh et al., 2003).
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Tidal and Non-tidal Atmosphere Loading

Variations at atmosphere heat induce oscillations of surface pressure. Response of the Earth
for pressure change from reference values is site displacement (vanDam, Blewitt and Heflin,
1994; Petrov and Boy, 2004; Petit and Luzum, 2010). The tidal and non-tidal movements
caused by atmosphere loading do exist. In contrast to ocean loading, non-tidal part of at-
mosphere loading has much more influence compared to tidal part. The tidal part consists
of diurnal tide called as S1 and semi-diurnal S2 tide. The tidal vertical displacement model
established by Ray and Ponte (2003). Sub-daily model (tidal) is derived to calculate dis-
placements caused by S1 and S2 from global surface pressures of the ECMWF. These dis-
placements in up, east and north directions (n, e, u) are found as

∆(u, e, n)S1 = Ad1(u, e, n) cos(ω1T ) +Bd1(u, e, n) sin(ω1T ), (5.40)

∆(u, e, n)S2 = Ad2(u, e, n) cos(ω2T ) +Bd2(u, e, n) sin(ω2T ) (5.41)

where Ad1, Ad2, Bd1 and Bd2 are amplitudes of model, T is Universal Time (UT1) in days,
and ω1, ω2 are frequencies of the model. Site specific amplitudes (Ad1, Ad2, Bd1, Bd2) are
determined with Green’s function global convolution sum with pressure mass coefficients.

Pole Tides

Instantaneous Earth rotation axis w.r.t. the crust is varying with time, that is leading defor-
mations up to several cm (Petit and Luzum, 2010). The pole tide correction is needed for
high precision positioning as well. The latitude correction ∆ϕ, the longitude correction ∆λ

and the height corrections ∆r are expressed as

∆ϕ = −9 cos (2ϕ) [(Xp −Xp) cosλ− (Yp − Y p) sinλ],

∆λ = 9 cosϕ [(Xp −Xp) sinλ+ (Yp − Y p) cosλ],

∆r = −33 sin 2ϕ [(Xp −Xp) cosλ− (Yp − Y p) sinλ]

(5.42)

where ϕ is latitude, and λ indicates longitude of station, (Xp − Xp) and (Yp − Y p) denote
the pole coordinate variation from the mean pole (Xp, Y p)

Tectonic Plate Motion

Tectonic plates are continuously moving, that changes the crust-fixed station coordinates
(Dach et al., 2015). This effect is considered by shifting station coordinates from reference
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epoch, which is the time reference (estimation epoch) of the initial coordinates of geodetic
control stations, to the epoch of observation by using corresponding station’s linear veloci-
ties. Mentioned site specific velocities are available for IGS stations, and may be computed
for stations without velocity information with model provided by DeMets et al. (1994)
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6. VERY LONG BASELINE INTERFEROMETRY (VLBI)

6.1. VLBI Delay Model

VLBI is a space-based geodetic technique that receives radio-waves emitted from bright and
distant galaxies called as quasar (quasi-stellar radio source) by multiple radio telescopes.
VLBI utilizes huge parabolic reflector antennas located around the Earth continents to collect
radio signals reaching on it. The measurement principle of VLBI is based on arrival time
differences of signals received by two or more antennas (Figure 6.1).

baseline (b)

c

w
a
ve

fro
n
t (k)

Quasar

Figure 6.1: VLBI observation principle.

This technique made many important contribution to global geodesy, geophysics, astrome-
try and astrophysics (Sovers, Fanselow and Jacobs, 1998; Campbell, 2000; Kellermann and
Moran, 2001; Schlüter and Behrend, 2007; Teke, 2011; Teke et al., 2012; Schuh and Behrend,
2012; Schuh and Böhm, 2013). VLBI is the unique technique for determination of the space-
fixed reference frame (i.e. ICRF2, Fey, Gordon and Jacobs 2009) that contains quasar’s
angular positions. Besides, Global VLBI network has a significant role on precise deter-
mination of the crust-fixed reference stations position named as terrestrial reference frame
(i.e. ITRF14, Altamimi et al. 2016) by monitoring variations of Earth orientation. State-of-
the-art VLBI equipment has sub-centimeter accuracy for determination of intercontinental
baselines (Schlüter and Behrend, 2007). VLBI is the fundamental and unique technique for
estimation of the full set of Earth orientation parameters. Accurate determination of celestial
and terrestrial reference frames have an essential role in space missions, atmospheric stud-
ies, oceanic level monitoring and improvements of other geodetic techniques such as GNSS,
DORIS, SLR/LLR. Besides scientific contributions as well as, technological and technical
progress of VLBI are contributing to navigation and positioning in space and on Earth.
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IVS is responsible for arranging VLBI observing sessions by the participation of stations
around the Earth. During the VLBI session with multiple antennas, different subsets of an-
tennas may observe various sources. The VLBI antennas are able to slew ranging from a
few seconds to a few minutes for observing different sources (Sovers, Fanselow and Jacobs,
1998). If at least two VLBI antennas are steered to the direction of a quasar and captured
the signal, it is called as a scan. The scan contains valuable information about Earth orien-
tation, the position of quasars and the position of receiving antennas. The principle of VLBI
is straightforward. Extra-galactic radio sources (quasars) distributed on the sky are emitting
signals in radio-wave frequency bands. Current VLBI receivers are sensitive to electro-
magnetic radio waves at 2.2-2.4 GHz (S-band) and 8.2-8.95 GHz (X-band). According to
VLBI2010 prospective, this limited bandwidth should be expanded to four-band receivers
operating up to 14 GHz (Petrachenko et al., 2009). This radiation arrives on Earth as a pla-
nar wave. VLBI antenna receives and records the signal, then marks the signal with time-tag
using very precise and stable hydrogen maser clock. Soon after, these data are sent to the
correlators located in the USA, in Germany, and in Japan for a cross-correlation process.

Extraction of τ from recorded signals by VLBI antennas involve correlation procedure.
For two antenna voltages represented as V1(t) and V2(t) varying with time t, then cross-
correlation function

R(τ) =
1

T

∫ T

0

V1(t) · V ∗2 (t− τ) · dt (6.1)

should be maximized in order to find out the group delay τ over time interval T . Note that
asterisk denotes the complex conjugate. Due to rotation of the Earth, VLBI observation
around X band (8.4 GHz) is effected by Doppler shifts. This leads to oscillation at these fre-
quencies up to several kilohertz if it is not ’counter-rotated’ (Sovers, Fanselow and Jacobs,
1998). Phases and amplitudes are determined in parallel for every 1-2 s ωi while correlator
computer is processing for 14 frequency channels. During the post-correlation stage, correc-
tion for the phase calibration and fitting the group delay τgd, the phase φ0 and the phase rate
τ ′pd to the phase samples φ(ωi, tj) from the different frequency channels ωi and times tj are
applied. The phase-derived observables are specified (for circular frequency ω and phase φ)
from a bi-linear Least-squares fit to the measured phases φ(ω, t) from (Sovers, Fanselow and
Jacobs, 1998)

φ(ω, t) = φ0(ω0, t0) +
dφ

dω
(ω − ω0) +

dφ

dt
(t− t0) (6.2)

where the group delay τgd, the phase delay τpd and phase delay rate τ ′pd are extracted as
follows

τgd =
dφ

dω
, τpd =

φ0

ω0

, τ ′pd =
1

ω0

φ

dt
. (6.3)

To emphasize: phase delay, phase delay rate, group delay and amplitude are the products
of the interferometer. For geodetic purposes, the group delay rate τ ′gd should not be used
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due to its low accuracy. Instead, group delay ambiguity resolution needs the group delay
rate in a first solution step (Schuh and Böhm, 2013). Amplitudes are not commonly used
for geodetic and astrometric purposes of VLBI data analysis (Sovers, Fanselow and Jacobs,
1998). The phase delay is providing high accuracy on very short baselines (Herring, 1992b;
Petrov, 1999). The phase ambiguities are not solved for long baselines yet. The group delay
is now fundamental observable of geodetic VLBI. The group delay resolution

στ =
1

2π
· 1

SNR ·Beff

(6.4)

where SNR is the signal-to-noise-ratio, and Beff is the root-mean-square (RMS) spanned
bandwith (Rogers, 1970). Besides, SNR changes according to the digital loss factor η, the
correlation amplitude ρ0, the recorded bandwidth B and the coherent integration time T
(Takahashi et al., 2000) as

SNR = η · ρ0 ·
√

2 ·B · T . (6.5)

The VLBI delay model for geodetic parameter estimation can be simply stated as,

− c · τ = ~b · ~k + ∆τretarded baseline + ∆τclock + ∆τtrop + ∆τiono + · · · (6.6)

where

• c is the velocity of light in vacuum environment,

• ~k is the unit source vector that is the wavefront propagation direction in BCRS,

• ~b is the baseline vector defined TRS,

• ∆τretarded baseline is the delay correction owing to the fact that the radio-wave reaches to
the first antenna before the second one. The instantaneous position of the second VLBI
antenna is changed by Earth rotation in GCRS during the wave is traveling (Cohen and
Shaffer, 1971),

• ∆τclock is the delay correction caused by asynchronous atomic clocks of stations (τclk1−
τclk2),

• ∆τtrop is the delay correction due to troposphere (τtrop1 − τtrop2),

• ∆τiono is the delay correction due to ionosphere (τiono1 − τiono2).

The present-day VLBI delay model is exhibited by IERS Conventions named as ”consen-
sus model” developed from five different relativistic delay models combination (Petit and
Luzum, 2010). Positions of VLBI antennas are defined in the ITRS which is Earth-fixed and
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Earth-centered Cartesian coordinate system. However, quasar positions given in the ICRF
catalogue are defined in a space-fixed coordinate system called as BCRS. The origin of the
BCRS is the centre of the mass of the Solar system. Another celestial coordinate system is
the GCRS which has its origin at the centre of the mass of the Earth. The calculated delay is
the arrival time difference of receiving antenna 2, t2, and receiving antenna 1, t1 in GCRS.
VLBI atomic clocks synchronized to UTC. For the calculation of the tidal effects (e.g. solid
Earth tide, ocean tidal loading, pole tide, non-tidal and tidal atmosphere loading) so as to
correct the a priori ITRS catalogue coordinates of VLBI antennas, UTC time scale should
be converted to the terrestrial time (TT) scale. Most of the geodynamical models require
terrestrial time TT for calculation. From definition: TT − TAI = 32.184 seconds and
TAI − UTC = leap seconds (Petit and Luzum, 2010). For the observation epoch, t1 that
is defined in terrestrial time scale and units of MJD may be written as

TT = t1 + (32.184 + leap seconds)/86400. (6.7)

Then, Julian centuries since standard epoch (J2000, 01.01.2000, 12 UT) in TT time frame
for t1 is found

t = (TT − 51544.5)/36525. (6.8)

ITRS coordinates of the antenna at that scan epoch are (XITRS). Then, it can be transformed
to GCRS at observation epoch with the transformation matrices Q(t), R(t) and W (t) as

XGCRS = Q(t) ·R(t) ·W (t) ·XITRS. (6.9)

• The Wobble matrix, W (t) is based on the motion of CIP position in TRS (polar mo-
tion),

• The rotation matrix, R(t) is based Earth rotation around the pole,

• The Nutation/precession matrix, Q(t) is based on the motion of the CIP position in the
GCRS.

The Wobble matrix, W (t) may be expressed as

W (t) = R3(s
′) ·R2(xp) ·R1(yp), (6.10)

where xp and yp are ITRS coordinates of CIP. The rotation matrices R1, R2 and R3 describes
rotation around 1st, 2nd and 3rd axes, respectively in positive angle. s′ is the position of TIO
on the instantaneous CIP equator which corresponds to the definition of the non-rotating
origin (NRO) in the ITRS at epoch t. TIO locater, s′ is not effected by the variations of
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polar motion with small amplitudes (i.e. sub-daily variations). Then, it can be calculated
with mean amplitudes of the annual and Chandler (∼433 days period) wobbles as follows
(Capitaine, Guinot and Souchay, 1986; Lambert and Bizouard, 2002)

s′ = −47 · 10−6 · t. (6.11)

Rotation matrix involves rotation of Earth around the axis of CIP given as

R(t) = R3(−θ(tu)) (6.12)

where θ denotes the Earth Rotation Angle (ERA) also called as stellar angle which is the
angle observed from CIO to TIO on the CIP equator. Then, the θ can be calculated from

θ(tu) = 2π (0.7790572732640 + 1.00273781191135448 · (tUT1 − 54544.5)) (6.13)

where constants are arising from Capitaine, Guinot and McCarthy (2000). tUT1 is Universal
Time at the epoch of observation defined in MJD time frame may be found as

tUT1 = t1 + ∆UT1/86400. (6.14)

The nutation/precession matrix involving the motion of the CIP in the GCRS may be revealed
as

Q(t) = R3(−E) ·R2(−d) ·R3(E) ·R3(s) (6.15)

where E and d values are found using the CIP coordinates in GCRS as follows:

E = arctan
Y

X
, (6.16)

d = arccos (
√

1−X2 + Y 2), (6.17)

and the s called as CIO locator is denoting the position of the CIO on the CIP equator
which corresponds to definition of the non-rotating origin (NRO) in the GCRS when the
CIP is moving according to the GCRS under the effects of nutation and precession, from the
standard epoch to the epoch of interest t1 as (Capitaine, Guinot and McCarthy, 2000; Petit
and Luzum, 2010)

s = s0 −
XY

2
. (6.18)
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6.1.1. Gravitational Delay

As stated in General Relativity Theory (GRT), an electromagnetic wave propagating through
a gravitational potential is retarded according to its travel time through field-free space (Ein-
stein, 1916). Not only time delay but also diverging from straight-line path occurs by gravita-
tional attraction (Shapiro, 1964, 1967). Electromagnetic wave emitted from quasar is under
the effect of gravity before received. Thus, gravitational delay corrections must be applied
to observations of VLBI a priori to the parameter estimation (Sovers, Fanselow and Jacobs,
1998). Following derivations are based on Sovers, Fanselow and Jacobs (1998); Kopeikin
and Schafer (1999); Petit and Luzum (2010). Assuming arrival time for station 1, t1 is the
time reference for the observation, and it is converted to appropriate time system for using
in geometric model calculations. Then, the barycentric coordinates (station vectors) ~Xi(t1)

for the receiving antenna
~Xi(t1) = ~X⊕(t1) + ~xi(t1), (6.19)

where t1 is the arrival time of the radio signal for the first receiver, ~X⊕(t1) is the barycentric
coordinates (radius vector) of the geocenter, and ~xi(t1) is the GCRS coordinates (radius
vector) of the ith receiver. Then, in order to compute ~RiJ which is the vector from the Moon,
the Sun and each of other planets apart from Earth to receivers 1 and 2, the time t1J when
the wave is propagating near to the J th gravitating body can be calculated with

t1J = t1 −
~K( ~XJ(t1)− ~X1(t1))

c
, (6.20)

where ~XJ defining the barycentric coordinate of the J th gravitating body can be calculated
using the barycentric velocity of the J th gravitating body ~VJ as

~XJ(t1J) = ~XJ(t1) + ~VJ(t1J − t1) (6.21)

and ~K is the barycentric unit source vector

~K =

[
cos δ cosα cos δ sinα sin δ

]
, (6.22)

where α is right ascension and δ is declination of source defined in the BCRS without grav-
itational and aberrational bending. Then, the vector from the J th gravitating body to the
antenna 1 and 2 respectively as

~R1J(t1) = ~X1(t1)− ~XJ(t1J)

~R2J = ~X2(t1)−
~V⊕
c

( ~K ·~b)− ~XJ(t1J)

(6.23)
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where ~V⊕ is the velocity of the geocenter according to barycenter, c is velocity of light in
vacuum, and ~b is the baseline vector when the signal is received by the first antenna. The
differential Barycentric Coordinate Time (TCB) gravitational delay for J th gravitating body
may be stated as

∆TgravJ = (1 + γ)
µJ
c3

ln
|~R1J |+ ~K · ~R1J

|~R2J |+ ~K · ~R2J

, (6.24)

where γ light deflection parameter may be assumed as unity in GRT (Sovers, Fanselow and
Jacobs, 1998; Schuh and Böhm, 2013), and µJ is the standard gravitational parameter which
can be determined via space geodetic missions with higher precision than determination
of gravitational constant G and the rest or invariant mass of the J th gravitating body MJ .
Relation between these parameters may be stated as

µJ = GMJ . (6.25)

In similar manner, gravitational delay owing to the Earth

∆Tgrav⊕ = (1 + γ)
GM⊕
c3

ln
|~x1|+ ~K · ~x1
|~x2|+ ~K · ~x2

, (6.26)

where ~xi is coordinates of the ith receiver at epoch t1 in the GCRS, and M⊕ is the invariant
mass of the Earth (Kopeikin and Schafer, 1999; Petit and Luzum, 2010). Consequently, sum
of all gravitational delays caused by the Earth and other gravitating bodies

∆Tgrav =
∑
j

∆TgravJ . (6.27)

Higher order terms of relativistic time delay should be taken into account for the rays that
are passing close to massive bodies especially the Sun and Jupiter. As described by Richter
and Matzner (1983) and Hellings (1986), the ray path bending by the gravitating body J is
the largest correction that can be found as

δTgrav,J =
4G2M2

J

c5

~b · ( ~N1J + ~K)

(|~R1J |+ ~R1J · ~K)2
, (6.28)

and it should be added to the sum in Equation (6.27). ~N1J is the unit vector between the J th

gravitating body and the first antenna.
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6.1.2. Geometric and Vacuum Delays

The vacuum delay in the barycentric frame may be found with approximation up to sufficient
level as (Petit and Luzum, 2010)

T2 − T1 = −1

c
~K · ( ~X2(T2)− ~X1(T1)) + ∆Tgrav. (6.29)

Then, transformation from T2−T1 to t2−t1 which is actually transformation from barycentric
to geocentric time may be performed by applying the relativistic transformations. Consid-
ering gravitational delay but ignoring the atmospheric bending and the atmospheric delay,
the total vacuum delay in geocentric coordinate time (TCG) between arrival times of the
second receiver tv2 and the first receiver tv1 (Kopeikin, 1990; Eubanks, 1991; Shahid-Saless,
Hellings and Ashby, 1991; Soffel et al., 1991; Treuhaft and Thomas, 1991; Sovers and Ja-
cobs, 1994).

tv2 − tv1 =
∆Tgrav −

~K·~b
c

[1− (1+γ)·U
c2
− |~V⊕|

2

2c2
− ~V⊕·~ω2

c2
]− ~V⊕·~b

c2
(1 + ~K · ~V⊕/2c)

1 +
~K·(~V⊕+~ω2)

c

, (6.30)

where ωi is the velocity of the ith receiver according to geocenter, and the gravitational
potential at the center of the Earth U may be expressed as

U =
GM�

|~R⊕�|
, (6.31)

where M� is the invariant mass of the Sun, and the ~R⊕� is the vector from the Sun to
the geocenter. Planetary ephemerides are proving the vectors ~X⊕, ~V⊕, ~XJ , ~VJ used for
gravitational and vacuum delay calculations. Geometric and propagation delays are the parts
of total delay. The geometric delay part is stated as

tg2 − tg1 = tv2 − tv1 + δtatm1

~K(~ω2 − ~ω1)

c
, (6.32)

where δtatm1 is the hydrostatic delay at receiver 1 for the observation epoch t1 (Teke, 2011)

δtatm1 =
∆L

st(1)
h (t1) ·mst(1)

h (ε, t1)

c
, (6.33)

where ∆L
st(1)
h (t1) is the dry troposphere delay at the zenith direction at receiver 1 for epoch

t1, ε denotes the elevation angle, and mh is the dry mapping function. Then, adding the
propagation delay leads to total delay as

t2 − t1 = tv2 − tv1 + (δtatm1 − δtatm2) + δtatm1

~K(~ω2 − ~ω1)

c
. (6.34)

62



6.2. VLBI Data Analysis

6.2.1. Partial Differentiation of the VLBI Delay

Partial differentiation of the VLBI time delay is procedure of VLBI data analysis as explained
in Böhm et al. (2012); Teke (2011); Böhm et al. (2018). In order to derive equations simpler,
a basic VLBI delay model

τ = ~K ·Q ·R ·W ·~b (6.35)

is used . The source vector ~K is defined in BCRS, and baseline vector ~b is defined in TRF.
This model does not contain gravitational delays, Lorentz transformation between GCRS and
BCRS, and retarded baseline corrections. Polar motion components xp and yp are defined
as the coordinate of the CIP in TRF along the Greenwich meridian and 270◦ east longitude
respectively. The partial differentiation of the basic VLBI delay model w.r.t. xp:

∂τ

∂xp
= ~K ·Q ·R · ∂W

∂xp
·~b, (6.36)

where

∂W

∂xp
= R3(s

′) ·


− sinxp 0 − cosxp

0 0 0

cosxp 0 − sinxp

 ·R1(yp). (6.37)

The partial differentiation of the delay model w.r.t. yp:

∂τ

∂yp
= ~K ·Q ·R · ∂W

∂yp
·~b, (6.38)

where

∂W

∂yp
= R3(s

′) ·R2(xp) ·


0 0 0

0 − sin yp cosyp

0 − cos yp − sin yp

 . (6.39)

The partial differentiation of the delay model w.r.t. Earth rotation phase, UT1, is:

∂τ

∂(UT1)
= ~K ·Q · ∂R

∂(−θ)
· ∂(−θ)
∂(UT1)

·W ·~b, (6.40)
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where

∂R

∂(−θ)
=


− sin (−θ) cos(−θ) 0

− cos (−θ) −sin(−θ) 0

0 0 0

 , (6.41)

and
∂(−θ)
∂(UT1)

= −ak = −1.00273781191135448. (6.42)

The partial differentiation of the delay model w.r.t. the CIP coordinate X in CRF is:

∂τ

∂X
= ~K · ∂Q

∂X
·R ·W ·~b, (6.43)

where the nutation/precession matrix Q involving the motion of the celestial intermediate
pole in CRS contains four matrices as given in Equation (6.15). Then, its partial differentia-
tion w.r.t. the X as

∂Q
∂X

= ∂R3(−E)
∂(−E)

· ∂(−E)
∂X
·R2(−d) ·R3(E) ·R3(s)

+R3(−E) · ∂R2(−d)
∂(−d) ·

∂(−d)
∂X
·R3(E) ·R3(s)

+R3(−E) ·R2(−d) · ∂R3(E)
∂E

· ∂E
∂X
·R3(s)

+R3(−E) ·R2(−d) ·R3(E) · ∂R3(s)
∂s
· ∂s
∂X
.

(6.44)

Equations (6.16, 6.17, and 6.18) are giving the formulae of E, d, and s. Then, their partial
differentiations w.r.t. X are given as

∂(−E)

∂X
=

Y

X2 + Y 2
, (6.45)

∂(−d)

∂X
=

X√
1− (X2 + Y 2)

√
X2 + Y 2

, (6.46)

∂s

∂X
=
−Y
2
. (6.47)

The partial differentiation of the delay model w.r.t. the CIP coordinate Y in CRF is:

∂τ

∂Y
= ~K · ∂Q

∂Y
·R ·W ·~b, (6.48)
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where
∂Q
∂Y

= ∂R3(−E)
∂(−E)

· ∂(−E)
∂Y
·R2(−d) ·R3(E) ·R3(s)

+R3(−E) · ∂R2(−d)
∂(−d) ·

∂(−d)
∂Y
·R3(E) ·R3(s)

+R3(−E) ·R2(−d) · ∂R3(E)
∂E

· ∂E
∂Y
·R3(s)

+R3(−E) ·R2(−d) ·R3(E) · ∂R3(s)
∂s
· ∂s
∂Y
.

(6.49)

In Equation (6.49),
∂(−E)

∂Y
=

−X
X2 + Y 2

, (6.50)

∂(−d)

∂Y
=

Y√
1− (X2 + Y 2)

√
X2 + Y 2

, (6.51)

∂s

∂Y
=
−X

2
. (6.52)

The partial differentiation of the delay model w.r.t. α right ascension of the source

∂τ

∂α
=
∂ ~K

∂α
·Q ·R ·W ·~b, (6.53)

where
∂ ~K

∂α
=

[
− cos δ sinα cos δ cosα 0

]
. (6.54)

The partial differentiation of the delay model w.r.t. declination of the source

∂τ

∂δ
=
∂ ~K

∂δ
·Q ·R ·W ·~b, (6.55)

where
∂ ~K

∂δ
=

[
− sin δ cosα − sin δ sinα cos δ

]
. (6.56)

The partial differentiation of the delay model w.r.t. the first antenna’s X coordinate in TRF:

∂τ

∂Xst1

= ~K ·Q ·R ·W · ∂~b

∂Xst1

, (6.57)

where

∂~b
∂Xst1

=


1

0

0

 . (6.58)

65



6.2.2. PWLO Functions for Parameter Estimation in Sub-daily Periods

In VLBI analysis; troposphere gradients, troposphere delays, Earth orientation parameters,
station and source coordinates, clocks, and others may be estimated as piecewise linear off-
set functions for sub-daily estimation intervals (Teke et al., 2009; Teke, 2011). Estimating
offsets for UTC integer hours may be done from the initial offset and rates as piece-wise
linear offset function

xi = x1 +
t− t1
t2 − t1

(x2 − x1) (6.59)

where x1 and x2 are estimated at defined t1 and t2 epochs respectively, and xi is the estimate
at the observation epoch t as illustrated in Figure 6.2. The partial differentiation of the delay

x
1 x2xi

t
2

t1 t 

Figure 6.2: Piece-wise linear offset functions (Teke, 2011).

model with respect to an parameter to be estimated, xi at the observation epoch t may be
performed as

∂τ(t)

∂x1
=
∂τ(t)

∂xi
· ∂xi
∂x1

, (6.60)

∂τ(t)

∂x2
=
∂τ(t)

∂xi
· ∂xi
∂x2

. (6.61)

The partial differentiation of Equation (6.59) with respect to offsets x1 and x2 may be per-
formed as

∂xi
∂x1

= [1− t− tj
tj+1 − tj

], (6.62)

∂xi
∂x2

= [
t− tj
tj+1 − tj

]. (6.63)

It should be noticed that the observation epoch t should be between the estimation epochs
i.e. tj and tj+1 for PWLO functions.
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7. UT1 MONITORING WITH VLBI INTENSIVE SESSIONS

UT1 is one of the five EOP which are used for transformation between CRF and TRF (see
Chapter 2). Accurate determination of the EOP is necessary for navigation purposes both
in space and on the Earth. The main and only technique for UT1 determination is VLBI.
The main objective of this chapter is to improve the VLBI estimation accuracy of UT1 using
several approaches. For this purpose,the series of New UT1 parameter, with an improved
accuracy relative to those produced by the IVS Intensive standard analysis, was estimated by
means of assimilating the troposphere zenith delays, and troposphere gradients from GNSS
in the analysis of Intensive sessions (Intensives).

7.1. GNSS Troposphere Delays and Gradients

The IGS, (Dow, Neilan and Rizos, 2009) is providing GNSS derived troposphere delays
from 01.01.2008 till now with three weeks latency from IGS FTP archives (e.g. CDDIS:
Greenbelt USA). In the content of this thesis, troposphere products of stations at Table (7.1)
are downloaded with Linux shell scripts automatically every day. Then, these troposphere
related files are converted into a suitable format that the VLBI analysis software can read.
VLBI Intensives and the stations joining these sessions are given below.

• INT1 sessions: Wettzell (Germany)-Kokee Park (Hawaii Island, USA)

• INT2 sessions: Wettzell (Germany)-Tsukuba or Ishioka (Japan)

• INT3 sessions: Wettzell (Germany)-Ny Alesund (Norway)-Tsukuba or Ishioka (Japan)

IGS troposphere zenith signal delays and gradients have been determined as 5-min intervals
from the analysis of the observations of more than 350 GNSS stations around the world
with PPP technique (Zumberge et al., 1997) using Bernese software (Dach et al., 2015) by
the GNSS analysis centre, United States Naval Observatory (USNO) every day from July
of 2011. In this analysis, Earth orientation parameters, satellite orbits, clock corrections of
satellite and receiver are fixed to IGS final combined values (IGS, 2019b). ZHD are cal-
culated with hydrostatic NMF (Niell, 1996), and reduced from the observations. ZWD are
estimated using the GMF (Böhm et al., 2006). The observations are restricted to those ob-
served with an elevation angle greater than 7◦ (Byram, Hackman and Tracey, 2011). Between
January of 2008 and July of 2011, these troposphere products were produced using Gipsy-
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Table 7.1: Geodetic co-located sites of VLBI and GNSS stations, and their ITRF2008 ellip-
soidal heights, horizontal distances and height differences.

Co-
located

site

Latitude
(◦)

Country VLBI
antenna
height

(m)

GNSS
station
name

VLBI-
GNSS

horizon-
tal dist.

(m)

GNSS
antenna
height

(m)

VLBI-
GNSS
height

diff. (m)

Ny-Alesund 78.9 Norway 87.3
nya1 106 84.2 3.1

nyal 112 83.7 3.6

Wettzell 49.1 Germany 669.1
wtzr 139 666.1 3.0

wtza 137 666.0 3.1

Tsukuba 36.1 Japan 84.7 tskb 302 67.3 17.4

Kokee 22.1 USA 1176.6 kokb 45 1167.4 9.2

Oasis GNSS Software (Webb and Zumberge, 1995) with a similar analysis parameterization
and strategy by NASA Jet Propulsion Laboratory (JPL) (Byun and Bar-Sever, 2009).

The same troposphere signal delays as produced by USNO were generated from the GNSS
PPP observation model using Bernese GNSS Software (Dach et al., 2015) for only GNSS
sites co-located with VLBI stations, in the scope of this thesis independent to IGS. The
GNSS observations were re-weighted according to elevation angle towards satellites for tro-
posphere estimation using PPP method. Station coordinates were acquired from ITRF2014
coordinates and ITRF2014 velocity corrections for observation epochs. Clock corrections
for satellites and receivers were reduced from observations using final solutions of CODE
analysis center. Satellite coordinates were fixed to the interpolated values to each observation
epoch of precise ephemeris coordinates of CODE analysis center. EOP were fixed to final
products of CODE in accordance with IAU2000/2006 precession-nutation model. Displace-
ments of stations coordinates due to ocean tidal loading were corrected using the FES2004
model (Lyard et al., 2006). Besides, displacements owing to atmosphere tidal loading ef-
fect were calculated using Ray and Ponte (2003) model, and a priori reduced from station
coordinates. Troposphere mapping function was VMF1 (Böhm, Werl and Schuh, 2006). In
station-specific troposphere estimation parametrization, troposphere delays were estimated
using VMF1 for 15 minutes intervals with 10 centimeter after 15 minutes, using relative
loose constraints. In addition to this, the estimation of troposphere gradients was carried out
using Chen and Herring (1997) gradient model for 30 minutes intervals with 1 centimeter
after 30 minutes, with loose relative constraints. Consequently, troposphere signal delays
were obtained as SINEX files.
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Figure 7.1: VLBI stations participating in IVS-R1 and -R4 sessions (black squares) as well as In-
tensives (red dots). INT1, INT2, and INT3 baseline vectors are given with purple, blue
(dashed) and red lines, respectively.

7.2. IVS Intensive and Standard Sessions

IVS is responsible for organizing the VLBI observations. Intensives (INT1, INT2, and INT3)
are carried out for 1-2 hours in order for UT1 determination on a daily basis owing to reg-
ularly UT1 determination for each day. UT1 obtained by IVS analysis centers from the
analysis of the Intensives is the necessary parameter used for space-based navigation and or-
bit determination studies, and continuously presented to the Earth and space science users by
the IERS for free of charge. In contrast to ”Standard sessions” performed for 24-hours with
in general more than six VLBI antennas, ”Intensives” are executed using 2-3 stations for 1-2
hours duration due to financial and operational difficulties. INT1 sessions are realized for
weekdays between 18:30-19:30 UT with radio telescopes at Wettzell (Germany) and Kokee
Park (Hawaii islands, USA) since 1984. In addition to this, INT2 sessions take up 1-2 hours
long measurement at 7:30 UT on Saturdays and Sundays with Tsukuba or Ishioka (Japan)
and Wettzell (Germany) baseline since 2002. Besides, on Mondays, INT3 sessions are held
with the participation of Tsukuba or Ishioka (Japan), Wettzell (Germany) and Ny-Alesund
(Norway) radio telescopes. On the other hand, 24-hours long Standard sessions so-called
”Rapid turnaround” are operated for Mondays (R1) and Thursdays (R4) for Earth orienta-
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tion parameters (EOP) monitoring. Figure (7.1) shows that the VLBI stations observing for
”Intensive” and ”Standard sessions”.

So as to enhance the precision of the VLBI measurements of Intensives to the UT1 parameter,
the long baseline vectors connecting the radio telescopes are selected close to the equatorial
plane and east-west extension (Nothnagel and Schnell, 2008; Nilsson, Böhm and Schuh,
2011). The baseline lengths of Intensives satisfying the UT1 determination requirements are
8445 km and 10357 km for Wettzell-Tsukuba and Wettzell-Kokee baselines, respectively.
After the correlation of observations, Intensives are published in 1 week at the latest via FTP
servers of IVS analysis centers (Schuh and Behrend, 2012).

7.3. Analysis of the VLBI Intensive Sessions

Both the Intensive and Standard sessions were analyzed with VieVS VLBI and satellite soft-
ware (Böhm et al., 2018) developed by the Vienna Institute of Technology. Analysis of the
VLBI observations with several analysis strategies was carried out between 2008 and 2018.
Firstly, IVS standard analysis of the Intensives (Analysis-1) were performed. In the context
of the Analysis-1, for 1-hour VLBI session with two radio telescope, a troposphere signal
delay per station (two parameters), clock synchronization corrections between atomic clocks
of VLBI stations as one offset and one linear trend (two parameters), and UT1 offset (one
parameter) are estimated. Apart from these parameters, coordinates of radio telescopes in
TRF needed for analysis of observations, CRF coordinates of Quasars, polar motion coordi-
nates and nutation offsets are fixed to their a priori values. The errors between the exact and
a priori values of these parameters are propagated into UT1 parameters according to their
correlations with UT1. The received signal in S (2.15-2.35 GHz) and X (8.0-8.8 GHz) bands
by VLBI antennas are delayed by the ionosphere. VLBI correlators establish the ionosphere
delay as a linear combination of VLBI signal delays in S and X bands. The observation
files contain ionosphere delays through the signal paths for every observation. As a result
of this, ionosphere signal delays were not modeled in the analysis, instead, they were re-
duced from observations before the parameter estimation. Analysis-1 has the same analysis
strategy and parameterization as the standard analysis of IVS. UT1 values obtained from
Analysis-1 is so-called ”StandardUT1(A1)”. In the context of this thesis, two new analysis
method: ”Analysis-2” and ”Analysis-3” are performed and suggested to use in addition to
the Analysis-1.

Analysis-2 was carried out via reducing the external GNSS troposphere gradients from VLBI
observations a priori to the estimation. Troposphere ZWD estimation was also included in
Analysis-2 as one ZWD per VLBI antenna. Troposphere ZHD were calculated from Equa-
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tion (4.23) (Saastamoinen, 1972) using in-situ total pressures and ellipsoidal latitudes of sta-
tions, then reduced from observations before parameter estimation. In order to subtract tro-
posphere north and east gradients from VLBI measurements, gradients acquired from GNSS
observations were interpolated (linearly) to the VLBI observations epochs, and azimuthal
asymmetric troposphere delays were calculated using Davis et al. (1985, 1993) azimuthal
asymmetric troposphere delay model and Chen and Herring (1997) troposphere gradient
mapping function as given in Equations (4.32), (4.34). Here, we used IGS (IGS, 2019b) 5-
min interval troposphere north and east gradients. To summarize, in Analysis-2: In addition
to Analysis-1 which estimates a troposphere zenith wet delay per VLBI antenna, north and
east troposphere gradients derived from GNSS were pre-reduced from VLBI observations.
The estimated UT1 with Analysis-2 is called as NewUT1(A2).

Analysis-3 is another approach as an alternative to Analysis-1 and Analysis-2. In this per-
spective, after the GNSS troposphere gradients are reduced from the VLBI observations,
corrections to a priori gradients are estimated in the analysis of the Intensives. In other
words, we estimated troposphere east-west, Ge, and north-south, Gn gradients as correc-
tions to those a priori gradients for each station of the Intensives. It is anticipated that az-
imuthal asymmetric troposphere delays are reduced from the observations pretty well with
Analysis-3. NewUT1(A3) is obtained with Analysis-3. In the Analysis-2 and Analysis-3,
the troposphere gradients estimated from observations of International GNSS Service (IGS,
Dow, Neilan and Rizos 2009) stations which are given in Table (7.1) co-located with VLBI
stations were used.

StandardUT1(A1), NewUT1(A2), and NewUT1(A3) achieved from the analysis of the In-
tensives with Analysis-1, Analysis-2, and Analysis-3, respectively should be compared to
reference UT1 values so as to find out the accuracy of analysis methods. UT1 reference se-
ries should be more accurate than those obtained from Intensives. UT1 determination from
24-hours R1 and R4 sessions is much more accurate than Intensives derived from IVS stan-
dard analysis. While the accuracy of UT1 estimation from R1 and R4 sessions are∼ 1−2µs,
it becomes ∼ 15 − 20µs for Intensives (Schuh and Behrend, 2012). Hence, UT1 reference
values were obtained from R1 and R4 observations for investigation of the accuracy of UT1
determination from Intensives with Analysis-1, Analysis-2, and Analysis-3.

The reference UT1 series is estimated using piecewise linear offset functions (Teke et al.,
2009) without any absolute or relative constraint. Nutation offsets are fixed to IAU2006
precession-nutation model (Petit and Luzum, 2010) plus IERS 14 C04 Earth orientation pa-
rameters (EOP) series (Bizouard et al., 2018) corrections. Polar motion coordinates (xp, yp)
were estimated as one offset per session while their a priori values are IERS 14 C04 series
plus high-frequency (diurnal and semi-diurnal) polar motion variations (Petit and Luzum,

71



2010). Hourly estimates of UT1 were performed using piecewise linear offsets with a priori
values: IERS 14 C04 series plus high-frequency UT1 variations (Petit and Luzum, 2010).
Daily corrections to the ITRF2014 (Altamimi et al., 2016) coordinates of Earth-fixed sta-
tions, and ICRF2 (Fey, Gordon and Jacobs, 2009) coordinates of space-fixed quasars were
estimated through imposing datum conditions: NNT/NNR for TRF and NNR for CRF. Dis-
placements of crust-fixed stations were calculated with models: Solid Earth tides (Petit and
Luzum, 2010), ocean tidal loading (Lyard et al., 2006), pole tides (Petit and Luzum, 2010),
atmosphere loading (Petrov and Boy, 2004) besides TRF coordinate linear velocity correc-
tions due to plate tectonics per observation epoch. Troposphere ZWD were estimated hourly.
Troposphere gradients were estimated as 6-hourly piecewise linear offsets using Davis et al.
(1985, 1993) troposphere model. In the troposphere model, VMF1 (Vienna Mapping Func-
tion, Böhm, Werl and Schuh 2006) was used for azimuthal symmetric delays, and Chen and
Herring (1997) gradient mapping function was used for azimuthal asymmetric delays. Iono-
sphere delays determined during correlation of VLBI observations were reduced from signal
delays of each observation before parameter estimation. Clock errors at VLBI telescopes
were estimated as coefficients of quadratic polynomials, and reduced from observations be-
fore the adjustment.
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7.4. Comparisons of Universal Time Estimates from Intensive Sessions

UT1 estimates from Intensives (INT1, INT2, and INT3) were compared to those obtained
from the analysis of R1 and R4 (reference UT1 series) from the beginning of 2008 till July of
2018. We eliminated estimates of StandardUT1(A1) series with formal uncertainties greater
than 50 µs. Estimations corresponding to the estimation epoch that we eliminated for Stan-
dardUT1(A1) were also removed from the NewUT1(A2), and NewUT1(A3) series. Thus,
StandardUT1(A1), NewUT1(A2), and NewUT1(A3) series were obtained in 3030 epochs as
plotted in Figure (7.2).
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Figure 7.2: Time series of NewUT1(A2) and NewUT1(A3) estimated from in order of Analysis-2
and Analysis-3 with respect to IVS standard analysis: StandardUT1(A1). The analyzed
sessions are INT1, INT2, and INT3.

To investigate the impact on the UT1 estimation accuracy of the new analysis strategies
proposed in this thesis (Analysis-2 and Analysis-3) compared to the IVS standard analysis
(Analysis-1), differences of NewUT1(A2) and NewUT1(A3) obtained from the analysis of
INT1 session carried out on weekdays from the StandardUT1(A1) were acquired.

Weighted mean (WMk
j ) as well as weighted root-mean-square error (WRMSkj ) of differ-

ence vector between kth and jth series were calculated from Equations (7.1), (7.2) given
below,
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WMk
j =

∑n
i=1

UT1Analysis−j,i − UT1Analysis−k,i
σ2
UT1Analysis−j,i

+ σ2
UT1Analysis−k,i∑n

i=1

1

σ2
UT1Analysis−j,i

+ σ2
UT1Analysis−k,i

(7.1)

and

WRMSkj =

√√√√√√√√
∑n

i=1

(UT1Analysis−j,i − UT1Analysis−k,i −WMk
j )2

σ2
UT1Analysis−j,i

+ σ2
UT1Analysis−k,i∑n

i=1

1

σ2
UT1Analysis−j,i

+ σ2
UT1Analysis−k,i

(7.2)

where n is the number of estimation in series, UT1Analysis−j,i is the estimated UT1 repre-
sented with indices i. As previously stated, Analysis-1, Analysis-2, and Analysis-3 denote
StandartUT1(A1), NewUT1(A2), and NewUT1(A3), respectively. σUT1Analysis−j,i is the for-
mal uncertainties of UT1Analysis−j,i. These WM and WRMS values of difference vector
between NewUT1 series and StandartUT1 are given in Table (7.2).

Table 7.2: WRMS of differences of UT1 estimates from INT1, INT2 and INT3 sessions. Median of
formal uncertainties of UT1 estimates are given in square brackets (such as [NewUT1(A2)
— StandardUT1(A1)]).

Analysis (3030 UT1 pairs) WRMS of UT1 differences in µs

NewUT1(A2)-StandardUT1(A1) ±11.7 [10.6 | 10.7]

NewUT1(A3)-StandardUT1(A1) ±17.3 [16.5 | 10.7]

WRMS values given in table show that NewUT1(A2) is more close to the IVS standard solu-
tion (StandardUT1(A1)) than NewUT1(A3). Comparing the UT1 estimates of Intensives do
not indicate whether the accuracy of UT1 estimates is increasing or not. However, that shows
meaningful changes in UT1 estimates from Intensives via various analysis strategies. As pre-
viously mentioned in the context of this thesis, hourly UT1 piece-wise linear offsets were es-
timated from 24-hours long R1 and R4 sessions. Besides, one UT1 offset at the midpoint of
session duration was estimated from Intensives for each of 1-hour long observations. While
UT1 estimates of R1 and R4 sessions were being interpolated to UT1 estimation epochs
of Intensives, UT1-TAI values were used via reducing leap seconds (UTC − TAI = −37s

since 01.01.2017) from UT1 estimates in order to prevent a large gap (1s) as shown in Figure
(7.3).

In our comparisons, UT1 estimates of R1 and R4 sessions were linearly interpolated to UT1
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Figure 7.3: UT1 estimates of R1, R4 Standard sessions and INT1, INT2, INT3 Intensives from the
beginning of 2008 till July of 2018. Formal errors of StandardUT1(A1) is in 10×ms to
be seen better.

estimation epochs of Intensives, if only the time interval between epochs of UT1 estimates of
Standard and Intensives is less than 1 hour. Thence, the differences between UT1 estimates
of Intensive and Standard session were obtained as seen in Figure (7.4). UT1 estimates of
Intensive and Standard sessions with formal uncertainties less than 50µs and 20µs respec-
tively were considered for comparison (total 548 UT1 differences) as given in Figure (7.4)
and Table (7.3).

The derivation of UT1 with respect to time so-called Length-of-Day (LOD) is more accu-
rately determined by GNSS compared to VLBI (Rothacher et al., 1999; Steigenberger et al.,
2006; Dow, Neilan and Rizos, 2009). GNSS LOD estimates at 12 UT were achieved in daily
resolution between the beginning of 2008 to July of 2018 from the IGS analysis centers such
as ESA/ESOC, Germany; NASA/JPL, the USA; NOAA/NGS. LOD values were calculated
from UT1 estimates of all Intensives (INT1, INT2, INT3) using following formulae

LOD(t) =
UT1(t1)− UT1(t2)

t2 − t1
× 1day

t =
t1 + t2

2
(t2 − t1 < 1.2day)

(7.3)
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Figure 7.4: UT1 estimates from the analysis of INT1 sessions with respect to estimates of R1, R4
sessions.

where t1 and t2 are UT1 estimation epochs of sequenced Intensives and t denotes epoch of
LOD which is the midpoint of t1 and t2. In order to calculate LOD, UT1 estimates were used
if their formal uncertainties are less than 50µs, and the difference between adjacent epochs
is less than 1.2 days. Differentiation with respect to time is a linear approach. Then, if
UT1 values with consecutive estimation epochs with much more than the 1-day time interval
between them are used, LOD values would not straightly be determined accurately. That
is the reason for the maximum allowed time interval between adjacent epochs is less than
1.2 days. Daily LOD estimates of IGS analysis centers at 12 UT were linearly interpolated
to the estimation epochs of LOD obtained from the analysis of Intensives, and differences of
these series were achieved such as LODStandard(A1) − LODIGS(ESA) or LODNewUT1(A2) −

Table 7.3: WRMS of differences of UT1 estimates from INT1 sessions and from R1 and R4 sessions.

Analysis
WRMS of UT1 differences in µs

INT1 Sessions (548 UT1 pairs)

StandardUT1(A1)-R1R4 ±38.0

NewUT1(A2)-R1R4 ±37.7

NewUT1(A3)-R1R4 ±38.8
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Figure 7.5: Length-of-Day (LOD) estimated from Intensives and ESA/ESOC IGS analysis center,
and their differences from the beginning of 2008 till July of 2018.

LODIGS(ESA). Agreement between GNSS and VLBI estimated LOD series were presented
with WRMS of differences as given in Table (7.4).

Table 7.4: WRMS of differences of LOD estimates of analysis centers (ESA(ESOC), NASA(JPL)
and NOAA(NGS)) and INT1 sessions in µs/day. Analysis-1, Analysis-2 and Analysis-3
series are in the same epochs (1610 values considered).

StandardUT1(A1) NewUT1(A2) NewUT1(A3)

ESA/ESSOC ± 34.2 ± 31.6 ± 33.7

NASA/JPL ± 36.9 ± 34.1 ± 36.2

NOAA/NGS ± 37.6 ± 35.6 ± 36.6
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WRMS of differences between LOD series calculated from NewUT1(A2) estimates and
LOD series of IGS analysis centers (ESA/ESOC, NASA/JPL, and NOAA/NGS) are 2 −
3µs/day less than those of StandardUT1(A1). Besides, Analysis-3 is also 1µs/day com-
pared to the IVS standard solution (Table 7.4).

While formal uncertainties of LOD estimation of one offset from 24-hours long R1 and
R4 observations are about 15µs/day, IGS stations covering the world with more than 400
stations can determine LOD with formal uncertainties 10µs/day (Rothacher et al., 1999;
Steigenberger et al., 2006; Nilsson, Böhm and Schuh, 2011). Considering these, LOD series
from NewUT1(A2) obtained from Analysis-2 is more accurate (2 − 3µs/day) than IVS
standard analysis. In other words, introducing GNSS derived troposphere east and north
gradients into the analysis of the Intensives is increasing the accuracy about (2 − 3µs/day)
over 10-years UT1 series. Analysis-3 also increases the accuracy of (1µs/day).

The daily updated Universal Time (UT1) series have been produced automatically in the con-
tent of this thesis is available online: http://vlbi.hacettepe.edu.tr/en/menu/
tubitak_3501_115y244-20
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8. SUB-DAILY ERP ESTIMATION FROM VLBI OBSERVATIONS

The IERS2010 conventions (Petit and Luzum, 2010) suggested to use the model of high-
frequency harmonic variations of Earth rotation parameters (ERP) caused by ocean tides (see
Chapter 2). This model was generated by Ray et al. (1994) more than twenty-five years ago
based on ocean dynamics when the observations of the space geodetic techniques were not
enough to estimate such a model. International Association of Geodesy (IAG) propounded
that this model should be updated with the new amplitudes. This chapter aims to estimate a
better model for sub-daily ERP variations due to ocean tides as a replacement of the IERS
recommended model.

8.1. Analysis Parametrization

IVS (Schlüter and Behrend, 2007; Schuh and Behrend, 2009) is responsible for schedul-
ing and carrying out VLBI sessions. Observing program consists of so-called ”master” for
24−hours (standard) and∼ 1−hour (intensive) sessions. Among all sessions the Standard

sessions are considered for this part of the thesis due to the fact that Intensive sessions are
carried out with 2 or 3 radio telescopes that can record 15-55 epochs. Since, estimation of
polar motion coordinates requires globally distributed observing network, only 24 − hours
sessions (e.g. R1, R4, CONT; see up-to-date observing program: IVS 2019) with mini-
mum 6 VLBI stations between 2000-2018 years were analyzed (see Table 8.1). Figure (8.1)
shows the stations that participated many sessions and meet our selection criteria. CONT
observations are performed per 3− years intervals for 15−days continuously with the con-
tribution of 10 ∼ 17 stations in order to test the maximum capability of the modern VLBI
technique. Due to operational restrictions, continuous VLBI observations are not feasible
for every day and by every VLBI station in contrast to GNSS. Instead, IVS-R1 and IVS-
R4 sessions so-called rapid turnaround are conducted twice per week, i.e. on Monday and
Thursday, respectively (Lambert and Gontier, 2006). Some of the other sessions are either
executed in regional networks or planned for testing purposes such as the deployment of new
devices or techniques.

In this part of the thesis, the Earth rotation parameters xp, yp and ∆UT1 from VLBI observa-
tions are estimated using VieVS (Böhm et al., 2018) which utilizes classical Gauss-Markov
least squares method. In the first run, we found and eliminated sessions that are not suitable
for ERP estimation with criterion chi2 > 4 and wrms > 2 (weighted root-mean-square er-
ror). Moreover, we applied a ”normal outlier test” with the threshold value of 3 ·m0 ·

√
Qvv
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Figure 8.1: VLBI stations participating to 24-hours sessions between 2000-2018.

in VieVS for remaining 2171 sessions. Here,
√
Qvv denotes the co-factor matrix of post-fit

observational residuals (Qvv = Qll − A Qxx A
T ). The remaining observations of which

post-fit corrections are smaller than three times of their standard errors (|v| = 3mv).

We analyzed every session separately, then we obtained ERP estimates for 1-hour intervals as
piecewise linear offsets (Teke et al., 2009). Estimation of polar motion with nutation in sub-
daily periods is not possible due to their high correlations in sub-daily revolution (Thaller
et al., 2007). In order to overcome this problem, Artz et al. (2010) recommended using
accurately estimated nutation offsets as a priori values and fixing nutation during sub-daily
polar motion estimation. For this reason, we fixed values of nutation offsets to International
Astronomical Union (IAU) 2006 precession-nutation model (Petit and Luzum, 2010) plus
IERS 14 C04 series (Bizouard et al., 2018) corrections.

All participating stations to the sessions have atomic clocks that are labeling time instant to
the received signals. The clock of one station (reference station) is assumed to be correct in
the analysis. Synchronization errors between the clock of reference station and others were
estimated within pre-adjustment as coefficients of quadratic polynomials for 60-min inter-
vals, and then reduced from observations. We used Davis et al. (1985, 1993) model, which
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is widely used for all space and satellite-based geodetic techniques, for modeling the tropo-
sphere delay. Based on in-situ total surface pressure sensors and station latitude, hydrostatic
delays along the zenith path were calculated (Saastamoinen, 1973) and reduced from obser-
vations after mapping with VMF3. To deal with the zenith wet delays, the design matrix
formed with wet troposphere mapping functions as the partials was used for the estimation
of ZWD as 60-min intervals. VMF3, Landskron and Böhm 2018 was preferred for map-
ping the troposphere delay in zenith to the observation direction. North and east troposphere
gradients were estimated for 6-hour intervals.

A priori TRF catalog containing station coordinates and velocities was chosen as ITRF14
(Altamimi et al., 2016). We imposed NNT and NNR condition equations for the estimation
of station daily coordinates so that translations and rotations between the estimated and the
a priori TRF are derived as zero. The a priori quasar coordinates were fixed to ICRF2 (Fey,
Gordon and Jacobs, 2009). Displacement of crust-fixed points due to geodynamical effects
were reduced from antenna coordinates before adjustment according to the models counseled
in the IERS2010 conventions (Petit and Luzum, 2010) (see Section 5.4.7). These displace-
ments are caused by solid Earth tides (Petit and Luzum, 2010), ocean tidal loading (Lyard
et al., 2006), atmosphere pressure loading (Petrov and Boy, 2004), and pole tides (Petit and
Luzum, 2010) (see Section 5.4.7).

In this study, the IERS2010 model was not applied a priori because we want to see this
effect on ERP. ERP were hourly estimated without introducing any condition or constraint
equations. After we got hourly ERP offset estimates for each day separately, sessions were
put together chronologically. First and last estimates of sessions have large formal errors that
means they are inaccurate estimates due to lack of observation within the estimation interval.
Then, we removed first and last estimates of all sessions. The last outlier removal procedure
at estimated parameter level was fulfilled via removing all ERP hourly estimates having for-
mal errors greater than three times of median of formal errors of all estimates. An overview
on the ERP time series as obtained with the procedure mentioned above is summarized in
Table (8.1). Then, the ERP time series decomposed into tidal constituents as proposed in the
IERS2010 model via utilizing the following sinusoidal amplitude estimation methods: least
squares, singular value decomposition and complex demodulation (see Chapter 3).

Table 8.1: ERP estimation overview.

Duration of session 24-hours

Time period 05.01.2000 - 04.08.2018

Minimum stations per session 6

Number of sessions 2171
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Table 8.2: Observation periods of latest four IVS-CONT campaigns.

Campaign First observation Last observation Number of stations

name (00:00:00 UTC) (23:59:59 UTC) participated

CONT08 AUG 12, 2008 AUG 26, 2008 10

CONT11 SEP 15, 2011 SEP 29, 2011 14

CONT14 MAY 6, 2014 MAY 20, 2014 17

CONT17 NOV 28, 2017 DEC 12, 2017 14 (per legacies)

Numbers of estimation epochs xp : 37 697, yp : 37 697, ∆UT1: 43 891

Medians of formal errors xp : 234.2 (µas), yp : 258.8 (µas), ∆UT1: 14.3 (µs)

8.2. Results of VLBI Analysis

Analysis of VLBI observations was carried out for 24 − hour (Standard) sessions from the
beginning of 2000 to the end of 2018. This time interval covers IVS-CONT campaigns
(see Table 8.2 for most recent ones) held for 15−days continuously observing with 10 ∼ 17

VLBI stations alongside IVS-R1 and -R4 sessions performed with at least 6 stations on Mon-
days and Thursdays. ERP estimation intervals were adjusted to 1− hour due to the fact that
sub-daily tidal constituent amplitude estimation requires many sub-daily estimations. But,
decreasing 1−hour to shorter intervals is decreasing xp, yp, and ∆UT1 estimation accuracy
since some of the VLBI stations may be out-of-service that distort network geometry for
a certain period of time. Estimation accuracy of xp and yp increase with the expansion of
the volume of global polyhedron built by VLBI stations. In addition to this, the equatorial
projection of baselines is directly proportional to ∆UT1 determination accuracy. Sessions
analyzed satisfy these criteria mostly. Medians of formal errors for xp, yp and ∆UT1 esti-
mates are found as 234.2 µas, 258.8 µas, and 14.3 µs, respectively. This may indicate that
∆UT1 determination accuracy of the VLBI technique is more than those for xp and yp (e.g.
258.8µas > 234.2µas > 14.3µs × 15 = 214.5µas). Outlier detection and removal at the
observation and at the parameter level (post-analysis) was carried out. By this approach, we
basically aimed to unveil geophysical signals by means of removing unwanted noises. Thus,
our ERP estimates are dedicated to be convenient to estimate the amplitudes of sub-daily
ERP variations caused by the ocean tides.

A statistical comparison of the hourly ERP series between the model and VLBI observations
during IVS-CONT campaigns is shown in Table (8.3). The plots of concerning time series
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and Fourier transform of these series are shown in Figure (8.3) and (8.4) respectively. Even if
the IERS model is not up-to-date, it demonstrates the average impact of ocean tides on ERP
variations. Because, every abrupt change in ERP estimates with respect to the IERS2010
model may not be geophysically meaningful signals. We examined the Fourier transform
plots that show the IERS2010 model and estimated ERP series that are mostly well-matched
during CONT11. The Fourier plots are good metrics for investigation of the amplitudes of
tidal constituents in frequency domain. The Fourier transform of polar motion coordinates
(xp− iyp) shows prograde and retrograde parts at positive and negative periods, respectively.
Prograde parts of these plots have a good agreement with the IERS model. By contrast,
estimated retrograde polar motions have deviated about 50 − 150 µas from the IERS2010
model for periods between −16 and −24 − hours. The IERS2010 conventions (Petit and
Luzum, 2010) stated that motions having periods between −16 and −48 − hours should
be incorporated in nutation. Actually, Fourier plot of polar motion coordinates should not
consist peaks at diurnal retrograde periods if the a priori nutation offsets are fixed to well-
estimated values as recommended by Artz et al. (2010). Thence, we fixed the a priori nutation
to IAU2006 precession-nutation model plus IERS 14 C04 series corrections in the VLBI
analysis that is consistent with the IERS2010 conventions. However, it is seen at Fourier
plots that nutation parameters propagated into polar motion coordinates. Another reason of
the differences of estimated xp and yp w.r.t. the IERS2010 model would be network geometry
as previously referred. In general, IVS-CONT campaigns were performed with similar VLBI
stations for every realization. But in fact, IVS-CONT08, and -CONT14 campaigns do not
have stations at Australia, southern side of South America, respectively. Besides, CONT17
campaigns were organized as two different legacies (networks), and legacy-1 does not cover
stations at North America and the southern side of South America (TIGOCONC). These lack
of stations may limit the accuracy of ERP determination. The Fourier transforms of polar
motion and ∆UT1 for whole duration between starting of 2000 and end of 2018 are not
possible because of unevenly spaced epochs of estimates. There is no observation carried
out by IVS except Mondays and Thursdays in general. Hence, we only investigated evenly
spaced epochs of CONT campaigns by means of Fourier transform.

Table 8.3: Means and standard deviations of the hourly xp, yp and ∆UT1 series estimated from
VLBI observations with respect to the IERS2010 model during the last four IVS-CONT
campaigns.

Campaign xp in µas yp in µas ∆UT1 in µs

CONT08(VLBI−IERS2010) -50.2 ± 349.4 -15.0 ± 347.4 -2.2 ± 14.4

CONT11(VLBI−IERS2010) -1.5 ± 185.1 -79.7 ± 179.5 -6.6 ± 13.1

CONT14(VLBI−IERS2010) 66.6 ± 185.0 37.6 ± 209.8 -2.6 ± 14.8

CONT17(VLBI−IERS2010) 246.0 ± 291.3 -137.2 ± 346.9 -24.0 ± 20.3
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8.3. TIDEST - Tidal Constituent Estimation Software

TIDEST is a software built for amplitude estimation of tidal constituents from ERP se-
ries developed in the MATLAB (2018) programming language (back-end) and its extension
GUIDE graphical user interface design tool (front-end) in the content of this thesis. Basi-
cally, TIDEST provides following options with a graphical user interface as shown in Figure
(8.2):

• Observed ERP series
xp, yp and ∆UT1 time series with their formal errors in a ”.mat” file should be im-
ported via pop-up file browser menu into TIDEST for tidal amplitudes estimation. The
time series may be either residuals w.r.t. an a priori series or total values.

• Daily ERP series to reduce from observations (the total values of ERP) a priori to the
parameter estimation
If imported ERP are the total values, TIDEST reduces total ERP series w.r.t. a daily
a priori ERP series before the parameter estimation. The daily a priori ERP series
are interpolated to the epochs of daily ERP series with either Lagrange (Abramowitz
and Stegun, 2013) or linear interpolation methods. The IERS daily ERP series should
be up-to-date in the subroutine of TIDEST software. The daily ERP series can be
imported from e.g.
- IERS 14 C04
- from any series formatted as a text file including blank spaced columns.

• Handle outliers
Handling outlier at parameter level is performed in TIDEST as well. In order for detec-
tion of outliers in xp, yp, and ∆UT1 time series, TIDEST is looking for observations
with formal errors greater than three times of the median of formal (standard) errors.
Then, specified outliers are written in a text file to book keep. Elimination of outliers
is executed for those in the text file in the second run. For further runs, the same outlier
detection criterion is applied, after initial outliers are eliminated, then outliers can be
appended to the text file again in a second run. The options of outlier handling tool are
given below.
- skip outlier handling
- eliminate outliers
- detect and eliminate outliers

• Apriori high-frequency ERP model
Tides that are not estimated will be fixed to the a priori ERP model and reduced from
ERP time series a priori to the amplitude estimation.
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• Estimation method
The following three estimation methods are available in TIDEST already. The details
about the estimation method were given in Chapter (3)
- least squares
- singular value decomposition
- complex demodulation

• Selection of the type of tides to be estimated
The user is allowed to choose tides to be estimated simultaneously from following op-
tions.
- all tides
- 8 major tides
- 41 diurnal tides
- 30 semi-diurnal tides
- manual tide selection

• Processing
The ”Estimate!” button is saving the selections as a ”.mat” file for later use, and writing
amplitudes of tidal constituents to a text file. If some of the tides are fixed to the a priori
model, the amplitudes of these tides are written in a text file and taken from the model.
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Figure 8.2: Graphical user interface of TIDEST software.

86



-1500

-500

0

500

1500

-1500

-500

0

500

1500

-150

-100

-50

0

50

100

VLBI IERS2010

Figure 8.3: Hourly time series of xp, yp in µas and ∆UT1 in µs from the VLBI observations and the IERS2010 model during last four IVS-CONT campaigns.
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8.4. Tidal Amplitude Estimation

Estimation of tidal amplitudes means that in principle modeling physical impact on Earth
rotation using sine and cosine components. The previous works for modeling the high-
frequency ERP variations due to ocean tides may be referred to Rothacher et al. (2001); Artz,
Tesmer née Böckmann and Nothnagel (2011); Böhm, Brzeziński and Schuh (2012); Desai
and Sibois (2016). We used three different estimation methods for extracting the amplitude
from the time series of xp, yp, and ∆UT1: Least squares (LS), singular value decomposition
(SVD) and complex demodulation (CD).

The least squares is a remarkable tool for equation fitting (estimating the parameters) by
minimizing the sum of the weighted squares of post-fit observational residuals. The least
squares estimation method is explicated at Chapter (3). The method may be simply applied to
tidal constituents estimation from ERP time series by fitting aforesaid sub-daily ERP model
in Chapter (2). Here, matrices are exemplified for xp only, but also setup for yp as well as
∆UT1 with appropriate coefficients in the thesis work. The functional model for 71 tidal
constituents and n observations each having sine and cosine amplitudes, Ak and Bk is as
follows

xp(t1)

xp(t2)

...

xp(tn)


=



sin(ξ1(t1)) cos(ξ1(t1)) · · · cos(ξ71(t1))

sin(ξ2(t2)) cos(ξ1(t2)) · · · cos(ξ71(t2))

...
...

...
...

sin(ξ1(tn)) cos(ξ1(tn)) · · · cos(ξ71(tn))


·



A1

B1

...

B71


(8.1)

and its matrix notation is
l = A x (8.2)

where l is a time series of ERP, A is the design matrix containing sine and cosine values, x
is the coefficients matrix. Under the condition of minimize ||Ax− l||2, estimated parameter
vector x is derived as below

x = (ATA)−AT l, (8.3)

The singular value decomposition (SVD) is an alternative technique in order to find solution
of Equation (8.2). Details about derivations can be found in Chapter (3). Similar to LS
solution, Moore-Penrose inverse of design matrix should be acquired but in a way as shown
below

A+ = V Σ+UT . (8.4)
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Then, the vector containing amplitudes x can be derived as given

x = V Σ+UT l. (8.5)

Estimated polar motion components (xp, yp) and ∆UT1 are under influences of sub-daily
tides as well as instrumentation and estimation noises. Each of the tidal constituent was
defined with a tidal frequency and an amplitude. In order to extract amplitude of a particular
tide from the time series of polar motion and ∆UT1 estimates, complex demodulation was
suggested by Böhm, Brzeziński and Schuh (2012); Brzeziński (2012); Brzeziński and Böhm
(2012). Derivation of Ak and Bk amplitudes are shown as follows

Ak = Re[LPF [xp(t)e
iξk(t)]]

Bk = Im[LPF [xp(t)e
iξk(t)]]

(8.6)

where unit imaginary number i =
√
−1, Re denotes real, and Im refers imaginary part of

complex number. LPF is low-pass-filter allows passing only the low frequency component
of the signal.

Estimated amplitudes and estimation errors of all 71 tides of sub-daily ERP variations due to
ocean tides from the least squares, singular value decomposition and complex demodulation
solutions alongside those derived from the IERS2010 model are given in Tables (8.4, 8.5,
8.6, 8.7, 8.8, and 8.9) for diurnal and semi-diurnal xp, yp and ∆UT1, respectively. How-
ever, estimation error could not be provided for complex demodulation method owing to its
mathematical basis. The major tides which have the greatest impacts on total movement are
thought to be properly estimated for all ERP by all three methods. In the meantime, it should
be stated that S1 tide (period = 0.9999999) and its nearest tide (period = 1.0000001) are
closest tides in terms of their periods among all tidal constituents, and the estimation error
is so high for these tides. This indicates that the solutions used can not de-correlate these
neighboring tides from the time series due to Rayleigh criterion (Foreman, 1977). Simul-
taneous estimations of all tides, from the estimation methods of least squares and singular
value decomposition, were failed for these closest tides as seen in Tables (8.4, 8.5, 8.6, 8.7,
8.8, and 8.9). However, complex demodulation put forward better estimation for these tides
due to the disjoint estimation for each of tides. The IERS2010 model values will not remain
permanent for several decades. Therefore, our amplitude estimates can be used as a replace-
ment of the IERS sub-daily ERP model, even though they differ from the IERS2010 model
for several tides. On the other hand, estimated tidal amplitudes of this thesis needed to be
validated somehow. However, its decided to put the validation of the results out of the scope
of this thesis. Nevertheless, the level of agreement between the IERS2010 model and our
results is investigated.
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Table 8.4: Estimated amplitudes for kth diurnal tide of xp in µas.

Tide Period IERS2010 Least Squares Singular Value Decomposition Complex Demodulation

(days) Ak Bk Ak Bk Ak Bk Ak Bk

1.2113611 -0.05 0.94 -2.89 ± 2.25 4.67 ± 2.26 -3.71 ± 2.94 -1.25 ± 2.94 -1.35 -1.05

1.1671262 0.06 0.64 -1.83 ± 2.29 6.94 ± 2.31 -0.60 ± 2.95 2.34 ± 2.95 -0.84 1.04

2Q1 1.1669259 0.30 3.42 -6.66 ± 2.28 1.55 ± 2.31 -3.79 ± 2.94 0.41 ± 2.97 -2.24 4.39

1.1605476 0.08 0.78 2.87 ± 2.29 4.30 ± 2.28 2.47 ± 2.95 4.96 ± 2.94 2.56 2.39

σ1 1.1603495 0.46 4.15 3.81 ± 2.30 2.50 ± 2.29 -0.44 ± 2.95 8.23 ± 2.95 2.38 8.13

1.1196993 1.19 4.96 -7.32 ± 2.30 15.73 ± 2.30 -0.39 ± 2.94 15.40 ± 2.95 -1.91 17.73

Q1 1.1195148 6.24 26.31 4.10 ± 2.30 32.90 ± 2.30 6.62 ± 2.95 18.89 ± 2.94 4.92 16.06

1.1136429 0.24 0.94 5.39 ± 2.30 -2.08 ± 2.30 3.92 ± 2.94 -2.22 ± 2.95 3.64 -0.20

RO1 1.1134606 1.28 4.99 2.51 ± 2.30 -2.53 ± 2.30 -0.50 ± 2.94 -2.53 ± 2.95 -2.76 -3.89

1.0761465 -0.28 -0.77 -8.35 ± 2.38 10.95 ± 2.38 -5.68 ± 2.96 16.13 ± 2.97 4.70 18.65

1.0759762 9.22 25.06 14.78 ± 2.33 15.64 ± 2.33 9.13 ± 2.95 17.14 ± 2.95 4.30 18.95

O1 1.0758059 48.82 132.91 68.24 ± 2.35 127.97 ± 2.35 67.08 ± 2.96 108.11 ± 2.97 60.05 105.79

1.0750901 -0.32 -0.86 5.81 ± 2.34 10.10 ± 2.32 2.67 ± 2.95 4.71 ± 2.95 2.57 1.30

TO1 1.0695055 -0.66 -1.72 -1.17 ± 2.28 4.60 ± 2.28 -3.74 ± 2.94 6.87 ± 2.95 -1.24 12.57

1.0406147 -0.42 -0.92 0.79 ± 2.28 4.15 ± 2.29 2.27 ± 2.95 -1.01 ± 2.95 1.34 1.97

1.0355395 -0.30 -0.64 5.34 ± 2.35 -5.95 ± 2.35 7.06 ± 2.95 -5.18 ± 2.95 7.98 -9.00

1.0353817 -1.61 -3.46 -3.17 ± 2.33 -7.81 ± 2.33 -4.51 ± 2.96 0.44 ± 2.95 -5.80 -1.74

M1 1.0347187 -4.48 -9.61 0.21 ± 2.32 -3.62 ± 2.32 -2.49 ± 2.95 -2.74 ± 2.95 -2.11 2.59

1.0345612 -0.90 -1.93 -2.32 ± 2.35 -0.88 ± 2.35 0.60 ± 2.95 1.22 ± 2.95 4.08 2.19

χ1 1.0295447 -0.86 -1.81 2.26 ± 2.30 9.27 ± 2.31 8.33 ± 2.95 5.95 ± 2.95 9.35 5.46
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Tide Period IERS2010 Least Squares Singular Value Decomposition Complex Demodulation

(days) Ak Bk Ak Bk Ak Bk Ak Bk

π1 1.0055058 1.54 3.03 11.38 ± 2.32 0.60 ± 2.32 8.11 ± 2.96 -0.70 ± 2.95 5.68 0.31

1.0028933 -0.29 -0.58 -5.21 ± 2.32 0.73 ± 2.32 -1.03 ± 2.95 0.73 ± 2.95 -5.67 -7.17

P1 1.0027454 26.13 51.25 19.99 ± 2.34 41.44 ± 2.34 19.97 ± 2.95 33.04 ± 2.95 17.09 25.08

1.0000001 -0.22 -0.42 1374.84 ± 783.69 3910.88 ± 753.35 1786.24 ± 965.78 2643.07 ± 947.08 -1.77 6.17

S1 0.9999999 -0.61 -1.20 2958.85 ± 782.73 2900.34 ± 754.35 2766.26 ± 969.28 1583.09 ± 943.51 -1.11 -6.29

0.9974159 1.54 3.00 12.90 ± 2.39 -8.35 ± 2.37 12.46 ± 2.99 1.92 ± 2.98 14.09 -0.51

K1 0.9972696 -77.48 -151.74 -72.72 ± 2.34 -153.14 ± 2.47 -70.85 ± 2.96 -142.85 ± 2.98 -67.59 -134.17

0.9971233 -10.52 -20.56 -28.00 ± 2.38 -24.81 ± 2.36 -15.90 ± 2.97 -27.93 ± 2.96 -22.21 -19.67

0.9969771 0.23 0.44 -12.95 ± 2.37 8.47 ± 2.36 -12.92 ± 2.97 10.67 ± 2.97 -11.42 -5.37

ψ1 0.9945541 -0.61 -1.19 -13.67 ± 2.31 1.19 ± 2.33 -10.96 ± 2.95 -0.17 ± 2.95 -13.90 -0.15

φ1 0.9918532 -1.09 -2.11 -1.80 ± 2.32 -15.25 ± 2.32 -5.57 ± 2.95 -11.25 ± 2.95 -10.90 -14.88

TT1 0.9669565 -0.69 -1.43 2.47 ± 2.28 5.70 ± 2.29 -2.51 ± 2.95 2.95 ± 2.94 -1.13 4.76

J1 0.9624365 -3.46 -7.28 -8.62 ± 2.29 4.17 ± 2.29 -6.84 ± 2.95 4.15 ± 2.94 -5.82 3.45

0.9623003 -0.69 -1.44 3.77 ± 2.32 -9.26 ± 2.31 0.35 ± 2.95 -14.74 ± 2.95 -3.02 -11.58

So1 0.9341741 -0.37 -1.06 -3.82 ± 2.28 -1.56 ± 2.28 0.49 ± 2.95 4.87 ± 2.95 -0.27 7.16

0.9299547 -0.17 -0.51 -6.14 ± 2.32 -3.28 ± 2.33 -5.19 ± 2.95 -1.28 ± 2.96 -0.35 -9.16

Oo1 0.9294198 -1.10 -3.42 -0.42 ± 2.33 -6.63 ± 2.34 -6.54 ± 2.96 -11.62 ± 2.96 -3.16 -10.24

0.9292927 -0.70 -2.19 -7.87 ± 2.31 -7.42 ± 2.31 -1.13 ± 2.95 -8.20 ± 2.95 -3.14 -9.74

0.9291657 -0.15 -0.46 -3.50 ± 2.36 3.27 ± 2.37 -0.41 ± 2.96 0.82 ± 2.97 1.23 -2.58

ν1 0.8990932 -0.03 -0.59 -0.38 ± 2.29 -4.94 ± 2.29 -2.64 ± 2.95 -5.82 ± 2.96 -4.21 -4.92

0.8989743 -0.02 -0.38 -4.02 ± 2.28 -8.83 ± 2.29 -0.50 ± 2.94 -1.45 ± 2.95 -0.24 -0.89
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Table 8.5: Estimated amplitudes for kth semi-diurnal tide of xp in µas.

Tide Period IERS2010 Least Squares Singular Value Decomposition Complex Demodulation

(days) Ak Bk Ak Bk Ak Bk Ak Bk

0.5484264 -0.49 -0.04 0.04 ± 2.25 -6.87 ± 2.25 -1.79 ± 2.94 -3.04 ± 2.94 -3.20 -0.97

0.5469695 -1.33 -0.17 -0.89 ± 2.24 1.07 ± 2.23 -0.53 ± 2.94 1.59 ± 2.94 2.77 3.56

2N2 0.5377239 -6.08 -1.61 -7.00 ± 2.28 2.76 ± 2.28 -11.90 ± 2.96 -0.49 ± 2.96 -12.42 4.51

µ2 0.5363232 -7.59 -2.05 -9.19 ± 2.26 -5.16 ± 2.25 -10.44 ± 2.93 -5.23 ± 2.94 -10.50 -1.30

0.5355369 -0.52 -0.14 -2.59 ± 2.25 -0.50 ± 2.26 -1.21 ± 2.94 -2.04 ± 2.94 1.33 -4.58

0.5281939 0.47 0.11 0.03 ± 2.28 -3.15 ± 2.28 -1.34 ± 2.94 -1.92 ± 2.94 1.60 -3.13

0.5274721 2.12 0.49 3.80 ± 2.30 0.29 ± 2.30 3.08 ± 2.94 0.29 ± 2.94 3.00 -7.67

N2 0.5274312 -56.87 -12.93 -53.23 ± 2.28 -12.22 ± 2.29 -46.13 ± 2.94 -14.17 ± 2.94 -41.96 -11.87

0.5266707 -0.54 -0.12 -3.37 ± 2.27 -1.78 ± 2.28 -7.27 ± 2.95 0.09 ± 2.95 -6.41 2.91

ν2 0.5260835 -11.01 -2.40 -8.09 ± 2.29 -4.41 ± 2.28 -6.37 ± 2.94 -6.08 ± 2.94 -7.77 1.84

0.5253269 -0.51 -0.11 -0.42 ± 2.27 -1.72 ± 2.26 4.15 ± 2.94 -3.79 ± 2.93 5.26 -5.30

0.5188292 0.98 0.11 2.84 ± 2.28 1.18 ± 2.29 -0.36 ± 2.94 -2.57 ± 2.94 0.48 -9.35

0.5182593 1.13 0.11 2.08 ± 2.29 2.56 ± 2.28 -1.23 ± 2.94 4.50 ± 2.95 -1.57 8.96

0.5175645 12.32 1.00 22.88 ± 2.30 -1.97 ± 2.30 21.25 ± 2.94 -2.78 ± 2.94 21.77 -13.02

M2 0.5175251 -330.15 -26.96 -315.25 ± 2.28 -9.20 ± 2.27 -278.64 ± 2.94 -7.67 ± 2.93 -272.28 -5.40
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Tide Period IERS2010 Least Squares Singular Value Decomposition Complex Demodulation

(days) Ak Bk Ak Bk Ak Bk Ak Bk

0.5167928 -1.01 -0.07 -1.08 ± 2.29 -0.38 ± 2.29 -1.74 ± 2.94 0.52 ± 2.94 0.23 0.39

λ2 0.5092406 2.47 -0.28 2.13 ± 2.26 1.06 ± 2.27 7.55 ± 2.94 -2.81 ± 2.94 8.76 -4.95

L2 0.5079842 9.40 -1.44 10.43 ± 2.28 -1.63 ± 2.28 12.87 ± 2.94 3.47 ± 2.94 13.00 4.14

0.5078245 -2.35 0.37 -3.43 ± 2.30 1.30 ± 2.30 -6.84 ± 2.94 1.34 ± 2.95 -9.03 -5.11

0.5077866 -1.04 0.17 -0.77 ± 2.31 -3.92 ± 2.32 1.09 ± 2.95 1.87 ± 2.96 -2.94 0.46

T2 0.5006854 -8.51 3.50 -7.31 ± 2.28 5.58 ± 2.30 -5.32 ± 2.94 7.09 ± 2.95 -5.77 15.71

S2 0.5000000 -144.13 63.56 -133.65 ± 2.22 73.63 ± 2.33 -120.45 ± 2.91 71.09 ± 2.98 -121.94 63.55

R2 0.4993165 1.19 -0.56 3.96 ± 2.28 1.76 ± 2.28 1.96 ± 2.95 -1.54 ± 2.95 -1.33 4.49

0.4986714 0.49 -0.25 2.16 ± 2.33 -1.46 ± 2.32 6.58 ± 2.96 0.47 ± 2.97 4.84 0.23

K2 0.4986348 -38.48 19.14 -41.03 ± 2.37 17.33 ± 2.35 -36.98 ± 2.96 11.85 ± 2.96 -43.62 10.62

0.4985982 -11.44 5.75 -5.14 ± 2.34 0.57 ± 2.34 -7.57 ± 2.96 -1.93 ± 2.96 -12.19 -0.74

0.4985616 -1.24 0.63 -0.71 ± 2.32 3.62 ± 2.32 4.92 ± 2.96 2.07 ± 2.96 -0.58 -1.70

0.4897717 -1.77 1.79 -4.36 ± 2.27 3.22 ± 2.28 -6.82 ± 2.94 3.38 ± 2.94 -8.49 2.09

0.4897365 -0.77 0.78 3.35 ± 2.28 1.13 ± 2.27 1.00 ± 2.95 -1.83 ± 2.94 1.88 -0.82

0.4810750 -0.33 0.62 0.97 ± 2.24 -0.47 ± 2.25 -0.25 ± 2.94 0.16 ± 2.94 -4.44 -2.15

94



Table 8.6: Estimated amplitudes for kth diurnal tide of yp in µas.

Tide Period IERS2010 Least Squares Singular Value Decomposition Complex Demodulation

(days) A′k B′k A′k B′k A′k B′k A′k B′k

1.2113611 -0.94 -0.05 -2.93 ± 2.36 2.14 ± 2.36 0.93 ± 3.10 5.23 ± 3.09 2.67 7.67

1.1671262 -0.64 0.06 -1.74 ± 2.40 -2.70 ± 2.41 -9.13 ± 3.10 -4.67 ± 3.10 -8.86 -1.25

2Q1 1.1669259 -3.42 0.30 -7.71 ± 2.39 6.60 ± 2.43 -6.48 ± 3.09 7.55 ± 3.12 -4.17 5.67

1.1605476 -0.78 0.08 -2.94 ± 2.39 -7.06 ± 2.40 0.66 ± 3.10 -12.23 ± 3.09 1.94 -12.98

σ1 1.1603495 -4.15 0.45 -2.53 ± 2.41 -2.39 ± 2.40 0.78 ± 3.10 -0.18 ± 3.10 0.14 0.71

1.1196993 -4.96 1.19 -3.24 ± 2.41 5.02 ± 2.42 4.50 ± 3.10 2.39 ± 3.10 3.08 -0.38

Q1 1.1195148 -26.31 6.23 -30.00 ± 2.40 6.12 ± 2.42 -33.99 ± 3.10 2.10 ± 3.09 -32.26 -0.37

1.1136429 -0.94 0.24 -1.30 ± 2.41 -2.18 ± 2.42 -5.56 ± 3.09 0.37 ± 3.10 -9.19 0.40

RO1 1.1134606 -4.99 1.28 -5.08 ± 2.41 -2.76 ± 2.42 -0.70 ± 3.10 6.84 ± 3.10 -1.67 6.07

1.0761465 0.77 -0.28 6.52 ± 2.48 5.67 ± 2.49 8.62 ± 3.12 2.20 ± 3.12 2.00 11.21

1.0759762 -25.06 9.22 -24.99 ± 2.44 1.91 ± 2.44 -15.12 ± 3.10 1.96 ± 3.10 -16.40 -1.31

O1 1.0758059 -132.90 48.82 -123.94 ± 2.46 53.86 ± 2.46 -104.70 ± 3.11 43.55 ± 3.12 -103.38 44.08

1.0750901 0.86 -0.32 12.15 ± 2.44 -6.94 ± 2.45 6.91 ± 3.11 -0.47 ± 3.11 6.62 -0.22

TO1 1.0695055 1.72 -0.66 7.96 ± 2.40 10.17 ± 2.40 6.70 ± 3.09 5.54 ± 3.10 1.83 6.97

1.0406147 0.92 -0.42 3.83 ± 2.41 -3.21 ± 2.42 -3.35 ± 3.10 -5.00 ± 3.10 -2.86 -5.47

1.0355395 0.64 -0.30 -0.84 ± 2.47 -0.61 ± 2.47 -4.26 ± 3.10 -8.68 ± 3.11 -0.07 -8.17

1.0353817 3.46 -1.61 -9.08 ± 2.44 8.04 ± 2.45 0.77 ± 3.11 7.53 ± 3.10 0.68 8.56

M1 1.0347187 9.61 -4.48 11.93 ± 2.43 0.85 ± 2.43 14.41 ± 3.10 8.58 ± 3.10 13.14 7.03

1.0345612 1.93 -0.90 3.45 ± 2.46 0.35 ± 2.47 -1.23 ± 3.11 -0.58 ± 3.10 0.20 4.33

χ1 1.0295447 1.81 -0.86 14.55 ± 2.43 -2.28 ± 2.42 8.79 ± 3.10 -4.58 ± 3.10 8.52 -4.61
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Tide Period IERS2010 Least Squares Singular Value Decomposition Complex Demodulation

(days) A′k B′k A′k B′k A′k B′k A′k B′k

π1 1.0055058 -3.03 1.54 -5.31 ± 2.44 -5.78 ± 2.46 -5.75 ± 3.11 -1.72 ± 3.11 -5.26 -3.22

1.0028933 0.58 -0.29 6.15 ± 2.44 -0.44 ± 2.45 8.39 ± 3.10 -2.60 ± 3.10 10.31 -9.17

P1 1.0027454 -51.25 26.13 -42.57 ± 2.44 32.00 ± 2.49 -37.60 ± 3.10 29.19 ± 3.11 -32.59 19.45

1.0000001 0.42 -0.22 1245.96 ± 831.43 155.43 ± 792.76 910.26 ± 1015.45 784.91 ± 995.78 -16.46 -19.88

S1 0.9999999 1.20 -0.61 1210.66 ± 833.63 -392.96 ± 790.42 1185.38 ± 1019.13 319.56 ± 992.03 23.56 10.57

0.9974159 -3.00 1.54 -5.89 ± 2.48 -3.36 ± 2.50 -4.93 ± 3.14 -5.17 ± 3.14 -1.98 -0.33

K1 0.9972696 151.74 -77.48 144.85 ± 2.58 -116.98 ± 2.48 122.94 ± 3.12 -104.46 ± 3.13 121.38 -101.29

0.9971233 20.56 -10.52 8.42 ± 2.47 -1.53 ± 2.49 3.08 ± 3.12 -7.28 ± 3.12 -0.87 -12.39

0.9969771 -0.44 0.23 9.31 ± 2.47 10.59 ± 2.49 9.28 ± 3.12 10.56 ± 3.12 23.00 10.57

ψ1 0.9945541 1.19 -0.61 -2.22 ± 2.45 8.49 ± 2.44 -4.47 ± 3.11 4.69 ± 3.10 -5.93 5.96

φ1 0.9918532 2.11 -1.09 -11.77 ± 2.44 2.67 ± 2.46 -5.57 ± 3.10 5.79 ± 3.10 -3.39 -1.70

TT1 0.9669565 1.43 -0.69 4.68 ± 2.40 -5.38 ± 2.40 5.30 ± 3.10 -0.34 ± 3.10 2.08 -0.59

J1 0.9624365 7.28 -3.46 19.06 ± 2.40 -6.37 ± 2.40 4.80 ± 3.10 -8.52 ± 3.09 1.49 -8.19

0.9623003 1.44 -0.69 -4.77 ± 2.43 -2.39 ± 2.43 -6.37 ± 3.10 3.05 ± 3.10 -6.85 -0.82

So1 0.9341741 1.06 -0.37 1.39 ± 2.40 4.89 ± 2.40 9.22 ± 3.10 1.55 ± 3.10 14.01 4.29

0.9299547 0.51 -0.17 -1.57 ± 2.43 5.06 ± 2.43 -2.98 ± 3.10 8.45 ± 3.11 -3.93 6.60

Oo1 0.9294198 3.42 -1.09 -7.44 ± 2.45 -7.14 ± 2.45 -11.76 ± 3.11 -1.04 ± 3.11 -6.90 -1.10

0.9292927 2.19 -0.70 3.10 ± 2.43 -1.08 ± 2.43 3.92 ± 3.10 1.81 ± 3.10 4.45 3.88

0.9291657 0.46 -0.15 10.10 ± 2.47 1.87 ± 2.47 10.83 ± 3.12 5.33 ± 3.12 8.31 3.92

ν1 0.8990932 0.59 -0.03 -1.85 ± 2.40 -2.89 ± 2.40 -0.24 ± 3.10 -3.93 ± 3.11 1.08 -4.83

0.8989743 0.38 -0.02 -13.96 ± 2.40 -1.66 ± 2.39 -2.58 ± 3.10 -3.24 ± 3.10 -3.74 -1.99
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Table 8.7: Estimated amplitudes for kth semi-diurnal tide of yp in µas.

Tide Period IERS2010 Least Squares Singular Value Decomposition Complex Demodulation

(days) A′k B′k A′k B′k A′k B′k A′k B′k

0.5484264 0.63 0.24 -0.87 ± 2.35 8.17 ± 2.35 3.87 ± 3.09 8.29 ± 3.09 2.53 8.59

0.5469695 1.53 0.68 0.12 ± 2.34 4.30 ± 2.34 -5.20 ± 3.09 -1.15 ± 3.09 -4.70 -3.11

2N2 0.5377239 3.13 3.35 8.44 ± 2.39 5.47 ± 2.40 5.14 ± 3.11 5.94 ± 3.11 3.51 2.45

µ2 0.5363232 3.44 4.23 -1.43 ± 2.36 8.78 ± 2.36 -0.78 ± 3.09 6.11 ± 3.10 1.44 5.63

0.5355369 0.22 0.29 4.98 ± 2.37 1.73 ± 2.37 2.96 ± 3.09 1.71 ± 3.09 -0.05 1.18

0.5281939 -0.10 -0.27 -3.36 ± 2.40 4.73 ± 2.41 0.47 ± 3.09 4.07 ± 3.10 -0.66 1.63

0.5274721 -0.41 -1.23 -0.57 ± 2.41 -3.28 ± 2.41 1.96 ± 3.09 -0.29 ± 3.10 -1.46 2.39

N2 0.5274312 11.15 32.88 6.22 ± 2.39 30.87 ± 2.40 5.43 ± 3.09 25.52 ± 3.09 5.81 23.43

0.5266707 0.10 0.31 0.32 ± 2.39 0.44 ± 2.40 -2.50 ± 3.10 3.74 ± 3.11 -2.57 2.63

ν2 0.5260835 1.89 6.41 1.95 ± 2.41 2.97 ± 2.40 2.60 ± 3.10 0.03 ± 3.09 4.62 -2.17

0.5253269 0.08 0.30 -5.54 ± 2.38 -1.76 ± 2.38 -9.17 ± 3.09 -2.67 ± 3.08 -9.80 -2.12

0.5188292 -0.11 -0.58 0.52 ± 2.41 -2.90 ± 2.41 3.02 ± 3.09 -0.09 ± 3.10 -2.21 -0.21

0.5182593 -0.13 -0.67 1.20 ± 2.40 1.81 ± 2.41 0.06 ± 3.10 7.69 ± 3.10 -1.65 11.32

0.5175645 -1.41 -7.31 -10.48 ± 2.41 -14.84 ± 2.41 -7.76 ± 3.09 -17.26 ± 3.09 -12.15 -16.36

M2 0.5175251 37.58 195.92 53.92 ± 2.38 184.10 ± 2.38 47.35 ± 3.10 159.41 ± 3.08 45.36 158.61
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Tide Period IERS2010 Least Squares Singular Value Decomposition Complex Demodulation

(days) A′k B′k A′k B′k A′k B′k A′k B′k

0.5167928 0.11 0.60 -5.04 ± 2.42 3.93 ± 2.42 -2.74 ± 3.09 6.87 ± 3.09 -3.88 7.03

λ2 0.5092406 -0.44 -1.48 6.26 ± 2.38 -2.77 ± 2.38 1.99 ± 3.09 0.37 ± 3.09 0.10 0.91

L2 0.5079842 -1.88 -5.65 2.45 ± 2.38 -6.20 ± 2.38 0.86 ± 3.09 -2.72 ± 3.10 0.28 -3.61

0.5078245 0.47 1.41 3.58 ± 2.42 -0.48 ± 2.41 3.47 ± 3.10 -0.97 ± 3.10 2.08 0.74

0.5077866 0.21 0.62 5.86 ± 2.42 0.07 ± 2.42 5.25 ± 3.11 -0.15 ± 3.11 5.20 2.78

T2 0.5006854 3.29 5.11 5.62 ± 2.41 3.73 ± 2.42 1.88 ± 3.09 0.57 ± 3.10 4.13 3.09

S2 0.5000000 59.23 86.56 72.94 ± 2.34 80.78 ± 2.45 62.89 ± 3.06 66.40 ± 3.13 63.41 65.88

R2 0.4993165 -0.52 -0.72 -3.53 ± 2.39 -3.31 ± 2.41 -4.36 ± 3.10 -7.08 ± 3.10 -9.18 -0.01

0.4986714 -0.23 -0.29 -0.05 ± 2.44 -2.60 ± 2.43 0.93 ± 3.11 -4.05 ± 3.12 1.38 -1.45

K2 0.4986348 17.72 23.11 15.48 ± 2.48 19.36 ± 2.47 16.00 ± 3.11 13.11 ± 3.12 19.45 17.59

0.4985982 5.32 6.87 11.66 ± 2.45 2.52 ± 2.45 5.89 ± 3.11 4.19 ± 3.11 6.92 7.62

0.4985616 0.58 0.75 6.31 ± 2.43 1.33 ± 2.43 3.01 ± 3.11 1.76 ± 3.11 2.31 4.85

0.4897717 1.71 1.04 -1.98 ± 2.38 0.29 ± 2.38 -0.97 ± 3.09 0.20 ± 3.10 -0.83 1.56

0.4897365 0.75 0.45 -3.56 ± 2.38 -0.64 ± 2.39 -5.05 ± 3.10 2.15 ± 3.09 -4.20 1.00

0.4810750 0.65 0.19 5.58 ± 2.35 -1.15 ± 2.36 5.28 ± 3.09 0.20 ± 3.09 6.27 3.15
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Table 8.8: Estimated amplitudes for kth diurnal tide of ∆UT1 in µs.

Tide Period IERS2010 Least Squares Singular Value Decomposition Complex Demodulation

(days) A′′k B′′k A′′k B′′k A′′k B′′k A′′k B′′k

1.2113611 0.40 -0.08 0.22 ± 0.14 -0.37 ± 0.14 0.03 ± 0.21 0.07 ± 0.21 0.23 -0.21

1.1671262 0.20 -0.06 0.83 ± 0.15 0.08 ± 0.15 0.54 ± 0.21 0.12 ± 0.21 0.41 0.21

2Q1 1.1669259 1.03 -0.31 1.41 ± 0.15 0.57 ± 0.15 1.52 ± 0.21 0.49 ± 0.21 1.37 0.38

1.1605476 0.22 -0.07 0.13 ± 0.15 0.04 ± 0.14 0.08 ± 0.21 0.44 ± 0.21 -0.03 0.28

σ1 1.1603495 1.19 -0.39 0.62 ± 0.15 -0.22 ± 0.14 0.70 ± 0.21 -0.12 ± 0.21 1.01 -0.15

1.1196993 0.97 -0.47 0.95 ± 0.15 -0.78 ± 0.15 0.69 ± 0.21 -0.79 ± 0.21 1.37 -0.64

Q1 1.1195148 5.12 -2.50 5.56 ± 0.15 -3.17 ± 0.15 5.48 ± 0.21 -2.51 ± 0.21 5.29 -2.52

1.1136429 0.17 -0.09 -0.12 ± 0.15 -0.38 ± 0.15 -0.13 ± 0.21 -0.05 ± 0.21 0.21 -0.04

RO1 1.1134606 0.91 -0.47 1.01 ± 0.15 -0.33 ± 0.15 0.76 ± 0.21 -0.36 ± 0.21 0.59 -0.28

1.0761465 -0.09 0.07 -0.29 ± 0.15 0.13 ± 0.15 -0.32 ± 0.21 -0.34 ± 0.21 0.04 -2.07

1.0759762 3.02 -2.28 3.40 ± 0.15 -2.59 ± 0.15 3.16 ± 0.21 -2.40 ± 0.21 3.87 -1.66

O1 1.0758059 16.02 -12.07 17.25 ± 0.15 -13.01 ± 0.15 16.73 ± 0.21 -12.46 ± 0.21 16.53 -12.21

1.0750901 -0.10 0.08 -0.15 ± 0.15 0.05 ± 0.15 -0.37 ± 0.21 0.06 ± 0.21 -0.53 0.13

TO1 1.0695055 -0.19 0.15 0.53 ± 0.15 0.31 ± 0.15 0.30 ± 0.21 0.56 ± 0.21 0.68 0.11

1.0406147 -0.08 0.07 -0.22 ± 0.15 0.71 ± 0.15 0.13 ± 0.21 0.64 ± 0.21 0.16 0.85

1.0355395 -0.06 0.05 -0.28 ± 0.15 -0.12 ± 0.15 -0.38 ± 0.21 -0.09 ± 0.21 -1.08 -0.09

1.0353817 -0.31 0.27 -0.81 ± 0.15 0.38 ± 0.15 -0.95 ± 0.21 0.28 ± 0.21 -0.90 0.37

M1 1.0347187 -0.86 0.75 -1.05 ± 0.15 0.38 ± 0.15 -0.90 ± 0.21 0.37 ± 0.21 -0.74 0.49

1.0345612 -0.17 0.15 -0.60 ± 0.15 -0.10 ± 0.15 -0.56 ± 0.21 -0.10 ± 0.21 -0.36 -0.81

χ1 1.0295447 -0.16 0.14 -0.39 ± 0.15 -0.06 ± 0.15 -0.54 ± 0.21 -0.11 ± 0.21 -0.29 -0.08
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Tide Period IERS2010 Least Squares Singular Value Decomposition Complex Demodulation

(days) A′′k B′′k A′′k B′′k A′′k B′′k A′′k B′′k

π1 1.0055058 0.32 -0.19 0.25 ± 0.15 -0.32 ± 0.15 0.19 ± 0.21 -0.35 ± 0.21 0.27 -0.06

1.0028933 -0.06 0.04 -0.28 ± 0.15 -0.04 ± 0.15 -0.15 ± 0.21 -0.04 ± 0.21 -0.62 0.61

P1 1.0027454 5.51 -3.10 5.77 ± 0.15 -3.70 ± 0.15 5.59 ± 0.21 -3.39 ± 0.21 5.49 -2.89

1.0000001 -0.05 0.03 -63.11 ± 51.26 138.21 ± 48.84 -58.66 ± 69.38 136.79 ± 68.30 0.30 0.70

S1 0.9999999 -0.13 0.07 3.52 ± 51.13 151.13 ± 48.97 7.40 ± 69.54 147.89 ± 68.13 -0.58 -0.49

0.9974159 0.35 -0.17 0.49 ± 0.15 -0.02 ± 0.15 0.47 ± 0.21 0.28 ± 0.21 -0.09 -0.18

K1 0.9972696 -17.62 8.55 -17.36 ± 0.15 8.78 ± 0.15 -16.39 ± 0.21 8.87 ± 0.21 -15.98 8.60

0.9971233 -2.39 1.16 -2.50 ± 0.15 1.20 ± 0.15 -2.32 ± 0.21 1.15 ± 0.21 -1.81 2.18

0.9969771 0.05 -0.03 0.28 ± 0.15 -0.01 ± 0.15 -0.08 ± 0.21 -0.01 ± 0.21 -1.64 -0.41

ψ1 0.9945541 -0.14 0.07 -0.02 ± 0.15 0.16 ± 0.15 -0.07 ± 0.21 0.21 ± 0.21 -0.18 -0.01

φ1 0.9918532 -0.27 0.11 -0.45 ± 0.15 0.07 ± 0.15 -0.68 ± 0.21 0.42 ± 0.21 -1.00 0.71

TT1 0.9669565 -0.29 0.04 -0.08 ± 0.15 0.19 ± 0.15 -0.20 ± 0.21 0.05 ± 0.21 0.17 0.17

J1 0.9624365 -1.61 0.19 -1.19 ± 0.14 0.79 ± 0.14 -1.02 ± 0.21 0.80 ± 0.21 -0.91 0.57

0.9623003 -0.32 0.04 -0.05 ± 0.15 0.15 ± 0.15 -0.02 ± 0.21 -0.20 ± 0.21 -0.26 0.17

So1 0.9341741 -0.41 -0.01 -0.09 ± 0.15 0.23 ± 0.15 0.10 ± 0.21 0.19 ± 0.21 -0.47 0.21

0.9299547 -0.21 -0.01 -0.11 ± 0.15 -0.03 ± 0.15 -0.12 ± 0.21 0.19 ± 0.21 -0.07 -0.08

Oo1 0.9294198 -1.44 -0.04 -0.64 ± 0.15 0.82 ± 0.15 -0.62 ± 0.21 0.48 ± 0.21 -0.91 0.39

0.9292927 -0.92 -0.02 -0.68 ± 0.15 0.33 ± 0.15 -0.71 ± 0.21 0.53 ± 0.21 -0.72 0.69

0.9291657 -0.19 -0.01 -0.18 ± 0.15 0.43 ± 0.15 -0.31 ± 0.21 0.16 ± 0.21 -0.33 0.22

ν1 0.8990932 -0.40 -0.02 -0.24 ± 0.14 0.53 ± 0.14 -0.37 ± 0.21 0.56 ± 0.21 -0.23 0.72

0.8989743 -0.25 -0.01 -0.07 ± 0.14 0.27 ± 0.14 -0.12 ± 0.21 0.31 ± 0.21 0.23 0.19
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Table 8.9: Estimated amplitudes for kth semi-diurnal tide of ∆UT1 in µs.

Tide Period IERS2010 Least Squares Singular Value Decomposition Complex Demodulation

(days) A′′k B′′k A′′k B′′k A′′k B′′k A′′k B′′k

0.5484264 -0.09 -0.01 0.03 ± 0.14 0.17 ± 0.14 0.05 ± 0.21 0.22 ± 0.21 0.33 0.38

0.5469695 -0.22 -0.03 -0.03 ± 0.14 -0.01 ± 0.14 -0.23 ± 0.21 -0.28 ± 0.21 -0.35 -0.24

2N2 0.5377239 -0.64 -0.18 -0.94 ± 0.15 -0.52 ± 0.15 -0.81 ± 0.21 -0.74 ± 0.21 -0.54 -0.28

µ2 0.5363232 -0.74 -0.22 -0.56 ± 0.14 -1.00 ± 0.14 -0.66 ± 0.21 -1.05 ± 0.21 -0.88 -1.17

0.5355369 -0.05 -0.01 -0.02 ± 0.14 0.06 ± 0.14 -0.21 ± 0.21 -0.04 ± 0.21 -0.10 -0.08

0.5281939 0.03 0.01 0.00 ± 0.15 0.19 ± 0.15 -0.12 ± 0.21 0.01 ± 0.21 0.16 -0.25

0.5274721 0.14 0.06 0.24 ± 0.15 0.01 ± 0.15 0.16 ± 0.21 0.26 ± 0.21 0.28 -0.25

N2 0.5274312 -3.79 -1.56 -4.08 ± 0.14 -1.45 ± 0.14 -3.97 ± 0.21 -1.36 ± 0.21 -3.97 -1.19

0.5266707 -0.04 -0.01 -0.18 ± 0.14 -0.10 ± 0.14 -0.43 ± 0.21 -0.35 ± 0.21 -0.56 -0.15

ν2 0.5260835 -0.70 -0.30 -0.46 ± 0.15 -0.29 ± 0.15 -0.50 ± 0.21 -0.23 ± 0.21 -0.57 0.17

0.5253269 -0.03 -0.01 -0.08 ± 0.15 -0.07 ± 0.14 -0.20 ± 0.21 -0.16 ± 0.21 -0.29 -0.25

0.5188292 0.05 0.02 0.03 ± 0.15 -0.11 ± 0.15 -0.14 ± 0.21 0.05 ± 0.21 0.30 -0.42

0.5182593 0.06 0.03 -0.26 ± 0.15 -0.29 ± 0.15 -0.27 ± 0.21 -0.42 ± 0.21 0.01 -1.08

0.5175645 0.60 0.27 0.78 ± 0.15 0.16 ± 0.15 0.67 ± 0.21 0.35 ± 0.21 0.77 -0.42

M2 0.5175251 -16.20 -7.14 -17.30 ± 0.14 -7.91 ± 0.14 -16.51 ± 0.21 -7.80 ± 0.21 -16.36 -7.83
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Tide Period IERS2010 Least Squares Singular Value Decomposition Complex Demodulation

(days) A′′k B′′k A′′k B′′k A′′k B′′k A′′k B′′k

0.5167928 -0.05 -0.02 0.42 ± 0.15 -0.05 ± 0.15 0.34 ± 0.21 0.22 ± 0.21 0.44 0.30

λ2 0.5092406 0.11 0.03 0.17 ± 0.14 0.12 ± 0.15 0.19 ± 0.21 0.06 ± 0.21 0.25 0.03

L2 0.5079842 0.42 0.12 0.35 ± 0.14 0.41 ± 0.14 0.41 ± 0.21 0.34 ± 0.21 0.54 0.14

0.5078245 -0.11 -0.03 -0.15 ± 0.15 -0.02 ± 0.15 0.03 ± 0.21 -0.12 ± 0.21 0.06 -0.15

0.5077866 -0.05 -0.01 0.02 ± 0.15 -0.07 ± 0.15 -0.10 ± 0.21 0.01 ± 0.21 -0.38 -0.14

T2 0.5006854 -0.44 -0.02 -0.41 ± 0.15 0.03 ± 0.15 -0.49 ± 0.21 0.02 ± 0.21 -0.57 -0.25

S2 0.5000000 -7.55 -0.16 -8.06 ± 0.14 -0.65 ± 0.15 -7.44 ± 0.21 -0.93 ± 0.21 -7.87 -0.99

R2 0.4993165 0.06 0.00 -0.08 ± 0.15 -0.10 ± 0.15 -0.12 ± 0.21 0.33 ± 0.21 0.12 0.01

0.4986714 0.03 -0.00 0.18 ± 0.15 0.11 ± 0.15 0.07 ± 0.21 0.13 ± 0.21 -0.20 -0.18

K2 0.4986348 -2.10 0.04 -2.76 ± 0.15 -0.07 ± 0.15 -2.88 ± 0.21 -0.04 ± 0.21 -3.29 -0.38

0.4985982 -0.63 0.01 -0.86 ± 0.15 0.14 ± 0.15 -1.03 ± 0.21 0.04 ± 0.21 -1.38 -0.14

0.4985616 -0.07 0.00 0.12 ± 0.15 0.25 ± 0.15 -0.09 ± 0.21 0.32 ± 0.21 -0.33 -0.02

0.4897717 -0.15 0.04 -0.14 ± 0.14 -0.16 ± 0.14 -0.11 ± 0.21 -0.12 ± 0.21 -0.30 -0.19

0.4897365 -0.06 0.02 -0.08 ± 0.14 0.14 ± 0.14 0.10 ± 0.21 0.13 ± 0.21 0.19 0.37

0.4810750 -0.05 0.02 0.16 ± 0.14 -0.04 ± 0.14 0.20 ± 0.21 -0.02 ± 0.21 -0.01 -0.17
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8.5. Comparisons of Tidal Amplitude Estimates from Standard VLBI Sessions

It is difficult to determine how accurate the estimated amplitudes are. In fact, estimation er-
rors of any amplitude may not represent its contribution to modeling the ocean tides caused
ERP variations. Hence, we investigated the agreement of the estimated amplitudes using the
metrics of time series, Fourier transforms, and phasor plots. For these evaluations, we calcu-
lated the time series of xp, yp and ∆UT1 at 1 − hour intervals through using the estimated
amplitudes from least squares, singular value decomposition, and complex demodulation so-
lutions as well as IERS2010 model covering the time period between the beginning of 2000
and the end of 2018. The mean values of the difference vectors between our estimates and
those of IERS model are zero for six difference vector combinations. Agreement of two
time series can be deduced from the standard deviations of the difference vectors that are
shown in Figure (8.5). The most agreed series are those derived from complex demodulation
and singular value decomposition for xp and yp, and for ∆UT1. Least squares and singular
value decomposition shows the best agreement. The most different series are derived from
complex demodulation and the IERS2010 model for all ERP. Strictly speaking, agreement
of time series is not a criteria for the accuracy of the estimates.
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Figure 8.5: Comparisons of the hourly ERP series derived from the IERS2010 model (M), least
squares (LS), singular value decomposition (SVD), and complex demodulation (CD)
during 2000-2018 based on the metric of standard deviations of the series differences.
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The time series are shown in Figure (8.6) for first 60 − days of the 2010 year, and also
Figure (8.7) shows that the time series derived from estimated amplitudes with respect to the
IERS2010 model. Although, a few model amplitudes which might not be correct for some
tides (e.g. S1 and adjacent tide), time series calculated from the estimated models agree well
to those of IERS model. That may demonstrate that our estimates would enhance sub-daily
ERP variations model.

Figure (8.8) shows phasor plots of major (principle) tides. Phasor plots were drawn for each
of the major tides estimated by the solutions of least square, singular value decomposition
and complex demodulation besides those predictions of IERS2010 model. The phasor plots
were obtained from the coefficients of polar motion coordinates (xp − iyp) by an expansion
of Euler formulae as follows,

P cos
k + iP sin

k = (−Bk + A′k + iAk + iB′k)/2

Rcos
k + iRsin

k = (−Bk − A′k − iAk + iB′k)/2

(8.7)

where, Ak, Bk, A′k, and B′k, given in Tables (8.4, 8.5, 8.6, and 8.7), are coefficients of kth

tide for xp and yp, respectively. P cos
k , P sin

k , Rcos
k , and Rsin

k are cosine and sine coefficients of
prograde (P) and retrograde (R) motions for kth tide, respectively. i denotes unit imaginary
number i =

√
−1. Its seen that P1 and Q1 tides have similar amplitudes for all methods, and

O1 and K1 are well-matched for SVD and CD methods in diurnal prograde motion. But, it
should be noted that O1 and K1 have larger amplitudes than Q1 and P1. Since the diurnal
tides do not excite retrograde polar motion, it is not shown in phasor plots. Semi-diurnal tides
induce prograde polar motion as well as retrograde. While N2 and S2 have alikeness among
all techniques in prograde motion, N2 and K2 are matching with the IERS2010 model. One
more comparison for phasor plots was done with the differences of least squares, singu-
lar value decomposition and complex demodulation from the IERS2010 model as shown
in Figure (8.9). The least squares technique estimated amplitudes of major tides closest to
the IERS2010 model, and complex demodulation estimates most deviated from the model.
These deviations are in the order of 10 − 20µas, 5 − 10µas, and 10 − 50µas for diurnal
prograde, semi-diurnal prograde, and semi-diurnal retrograde motions, respectively. If esti-
mated amplitudes are considered, M2 and its adjacent tide (with period of 0.5175645 cpsd)
may not be estimated properly due to their high correlation. Our estimates for this adjacent
tides are about two times larger to those of IERS2010 model for polar motion coordinates.

We could plot the Fourier transform for the duration 2000-2018 because our time series de-
rived from the estimated amplitudes are evenly distributed. Figure (8.10) and (8.11) show
Fourier transforms of time series derived from estimated amplitudes by three methods with
respect to the IERS2010 model for polar motion coordinates (xp − iyp) and ∆UT1, re-
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spectively. Although, diurnal tides of xp and yp are canceled out each other for retrograde
motion (e.g. Ak = B′k, and Bk = −A′k for diurnal tides), in these plots, all three techniques
estimated the diurnal retrograde motion as about 10− 20 µas. We set free the estimated am-
plitudes without any constraint, and estimation of amplitudes for xp and yp were performed
separately, although this motion is composed by both polar motion components. The Fourier
transform plots of ∆UT1 are also given for three methods. The peak differences are less
than 1µs for all methods, and SVD shows the best agreement with the IERS2010 model.

Besides, Figure (8.12) shows Fourier transform of the same difference vectors focused to
diurnal prograde, semi-diurnal prograde and semi-diurnal retrograde tides for polar motion
coordinates (xp − iyp), respectively.

Complex demodulation estimates of K1 and P1 are the most diverged ones from the model
in diurnal motion about 20 − 25 µas. Although, prograde motion of K2 and M2 estimates
from complex demodulation solution are the highest peaks (8− 10 µas), in retrograde part,
K2 difference is the smallest with respect to the IERS model.

The more focused plots of ∆UT1 are given in Figure (8.13). Even if the differences are of
K1 and O1 are low for LS and SVD methods, they have the highest peaks for CD method
in diurnal tides. Similarly, in semi-diurnal tides K2 and S2 differences are highest for CD,
whereas, M2 has large difference w.r.t. IERS model for LS method.
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Figure 8.6: Hourly time series of xp, yp in µas and ∆UT1 in µs calculated using the IERS2010 model and the models estimated from least squares, singular
value decomposition, and complex demodulation over a duration of two months.

106



-200

0

200

-200

0

200

0 30 60
-10

0

15

Least Squares Singular Value Decomposition Complex Demodulation

Figure 8.7: Hourly time series of xp, yp in µas and ∆UT1 in µs calculated using the models estimated from least squares, singular value decomposition, and
complex demodulation with respect to the IERS2010 model over a duration of two months.
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Figure 8.8: Phasor plots of the major tides estimated from VLBI observations between 2000-
2018: Diurnal prograde (upper-left plot), semi-diurnal prograde (middle-left plot), semi-
diurnal retrograde (lower-left plot), and the modulus of the diurnal prograde, semi-
diurnal prograde and semi-diurnal retrograde phasor vectors are shown in upper-right,
middle-right and lower-right plots, respectively.
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Figure 8.9: Phasor plots of the major tides estimated from VLBI observations with respect to the
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(lower) plots of Fourier transforms of the hourly xp − iyp time series between 2000-
2018 derived from estimated amplitudes using least squares, singular value decompo-
sition and complex demodulation with respect to the IERS2010 model.
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Figure 8.13: Diurnal (upper), semi-diurnal (lower) plots of Fourier transforms of the hourly ∆UT1
time series between 2000-2018 derived from the estimated amplitudes using least
squares, singular value decomposition and complex demodulation with respect to the
IERS2010 model.
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9. CONCLUSIONS AND RECOMMENDATIONS

The accurate estimation of EOP has a significant contribution to space, atmosphere and Earth
sciences. These parameters are monitored with several space/satellite geodetic techniques
i.e. GNSS, DORIS, SLR/LLR, and VLBI, and concerning products are provided to IERS.
This thesis covers monitoring ERP with VLBI observations. The works established in this
thesis are actually two distinct parts. It is better to interpret the conclusion and recommen-
dations for each of the following research objectives:

• Accuracy improvement of UT1 monitored by VLBI Intensive sessions (see Chapter
7),

• Estimating a replacement of IERS recommended model for sub-daily ERP variations
caused by ocean tides from the analyses of VLBI Standard sessions (see Chapter 8).

9.1. Conclusions

• Conclusions from accuracy improvement of UT1 monitored by VLBI Intensive ses-
sions

The most rapidly changing parameter among the ERP is UT1, that can be monitored by
VLBI space geodetic technique only. The VLBI sessions performed for UT1 determination
purposes is called as Intensive. In the standard analysis of the VLBI sessions proposed by
IVS, whose UT1 estimates are named as StandardUT1(A1) in this thesis, troposphere signal
delays in proper time resolution and troposphere gradients are not involved in the estimation
process due to the lack of observations of this sessions.

In this study, the troposphere delays obtained from the observations of the GNSS receivers
co-located with VLBI stations by IGS were used in the analysis of the VLBI Intensives with
two different analyses called as NewUT1(A2) and NewUT2(A3). The length-of-day (LOD)
values were calculated from StandardUT1(A1), NewUT1(A2) and NewUT1(A3). These
LOD values were compared with LOD time series of IGS analysis centers using WRMS of
differences. LOD series derived from NewUT1(A2) and NewUT1(A3) are 2 − 3 µs/day

close to LOD values of IGS analysis centers compared to LOD obtained from Standar-
dUT1(A1). Thus, more accurate estimates of UT1 compared to IVS standard analysis were
produced. Considering the accuracy of UT1 determination from IVS Standard sessions (24-
hours) is about 1− 2 µs, advances in the accuracy of LOD at a level of 2− 3 µs/day would
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be a meaningful contribution.

As a product of this thesis, VLBI research group at Hacettepe University has gained the
ability of automatic processes of GNSS as well as VLBI observations. Two workstation
computers equipped with highly skilled hardware were dedicated to GNSS and VLBI pro-
cesses, separately. Besides, a network-attached storage (NAS) device was established on-
line as a repository of analysis outputs of space/satellite geodetic techniques and observa-
tion files. The last output for this part of the thesis is setting web service for publishing
UT1 results to the community of Earth and space sciences. This web service is being up-
dated regularly, daily and automatically after the results of UT1 is acquired at the web page
http://vlbi.hacettepe.edu.tr/en/menu/tubitak_3501_115y244-20

• Conclusions for estimating a replacement of IERS recommended model for sub-daily
ERP variations caused by ocean tides from the analyses of VLBI Standard sessions

The principal reason for ERP variations at sub-daily periods is ocean tides. The IERS model
with 71 sub-daily tidal constituents for prediction of this effect (Ray et al., 1994) can be
assumed as out-of-date. During the least square adjustment of the observations, due to the
usage of Taylor expansion of the non-linear observation model to get linearized form, a priori
values of any parameter should be as close as possible to the exact (expected) values for better
adjustment. Thus, it is declared by IAG that a model for sub-daily ERP variations due to
ocean tides should be developed with modern geodetic techniques for accuracy improvement.
Chapter (8) is dedicated to the estimation of a new model as an alternative of the IERS
model by examining the performances of several sinusoidal amplitude estimation methods
such as least squares (LS), singular value decomposition (SVD), and complex demodulation
(CD). Sinusoidal amplitude estimation methods are not a key factor only. In fact, the precise
estimation of the time series of ERP from space/satellite geodetic techniques has an impact
on this objective beyond the effect of the sinusoidal amplitude estimation methods. However,
each method has its own pros and cons.

In order to achieve time series of ERP (xp, yp, and ∆UT1), VLBI Standard sessions (24 −
hours) between 2000 and 2018 observed with at least 6 VLBI stations were analyzed. The
sessions with chi2 > 4 and wrms > 2 (weighted root-mean-square error) were not included
in the analysis. Nonetheless, outlier observations were removed before the time series were
estimated.

After time series of ERP were obtained, sinusoidal amplitude estimation methods were ap-
plied for each of the ERP, separately. Sine and cosine amplitudes of each of 71 tidal con-
stituents for each of xp, yp, and ∆UT1 parameters were derived using LS, SVD and CD
methods. LS and SVD methods are based on a simultaneous estimation of all amplitudes
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of all constituents. However, the CD method is operated for each of tidal constituents, in-
dividually. For this reason, any estimation errors at periods of particular tides would easily
propagate to the results of other tides in LS and SVD methods. On the other hand, esti-
mation with CD is restricting the propagation of the error of the certain tides to the others.
LS results are found to be more consistent with IERS model. However, strictly speaking, it
is not a measure of the accuracy of estimation that being close to the IERS model. A few
tides estimated with LS and SVD have very high amplitudes compared to those of IERS2010
model. Besides, in general it could be inferred that the results of LS and SVD methods are
in a good agreement.

Excepting sinusoidal amplitude estimation methods, there is one more criterion in the mod-
eling of such variations that is spectral distances of adjacent tides. Rayleigh criterion (Fore-
man, 1977) for discrimination of two adjacent peaks states that ∆f = |f1 − f2| = 1/T

is enough for ”just” resolved peaks. Here, f1 and f2 denote frequencies of neighboring
peaks, and T is the duration of the time series. This criterion becomes ∆f = 3/2T for
”well” resolved peaks. In our particular observation period of 18 − years, the maximum
allowed spectral spacing between two adjacent peaks is 0.00022 − cycle/sidereal day for
well-resolved peaks. That means separation of S1 tide from its neighbor requires 7500000
days of observation which is neither possible nor logical. As a consequence, de-correlation
of these adjacent tides is not probable with the approach of this thesis and any other quan-
titative approach. Moreover, the propagation of tidal amplitudes into other tides may not be
prevented due to the Rayleigh criterion.

9.2. Recommendations

For the objective of UT1 accuracy improvement, followings are suggested for further studies:

• So as to test the limits of UT1 determination accuracy of VLBI Intensive sessions when
using external troposphere delays and gradients, different analysis parametrizations of
GNSS PPP estimation should be tried. However, usage of troposphere delays and
gradients shared by IGS are limiting the mobility of the estimation paradigm. Thus,
the derivation of the troposphere products should be executed using a GNSS analysis
software by employing different combinations of such parameters: e.g. troposphere
mapping functions, troposphere models, a priori hydrostatic delays.

• Bernese software (Dach et al., 2015) is one of the cutting edge GNSS analysis soft-
ware. However, its computation power reveals when the double-difference solution is
carried out with observations of the hundreds of stations. In order for PPP solution,
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several basic subroutines, that may provide the estimation of troposphere spending less
effort, should be written. This also ensures keeping all estimation procedure under the
control.

• Analysis of the GNSS observations in order to derive troposphere is limited to the
observations of the GPS and GLONASS for this study. In fact, taking the observations
of the other GNSS i.e. Galileo and BeiDou, that will gain global coverage by 2020,
would increase the estimation accuracy of the troposphere as well as UT1.

• The automatization of the procedure till the publishing at the Web site is executed in
Linux shell scripts, and the troposphere estimation related algorithms were written in
MATLAB environment. Although Linux shell scripts are running in parallel, subrou-
tines written in MATLAB are designed to work on a core of processor only. This
is a time-consuming process increasing the computation burden of a single central
processing unit (CPU). It is better to convert existing software from MATLAB into
faster programming languages like C/C++ or Python using parallel and the graphical
processing unit (GPU) programming. Although, this suggestion will not affect the es-
timation accuracy, it would enable to try various strategies in less time. Thus, it will
eventually contribute to accuracy in an indirect way.

For the modeling of the sub-daily ERP variations due to ocean tides, the forthcoming studies
should consider the following remarks:

• The time interval for the VLBI analysis was chosen between 2000-2018. In fact, ex-
panding this time interval from the beginning of the VLBI observations to the present
would be beneficial providing the earlier VLBI sessions should be analyzed more care-
fully.

• It is exhibited by Rothacher et al. (1999) and Malkin (2009) that GNSS technique is
able to estimate more accurate polar motion coordinates than VLBI. Besides, other
space/satellite techniques such as DORIS and SLR/LLR are also able to estimate these
parameters. Then, only the amplitudes of the model belong to the polar motion coor-
dinates may be estimated from an inter-technique combination of these techniques.

• The principal and only technique of determination of UT1 is VLBI. But, in order to
expand the duration as well as the number of sessions in this interval, VLBI Inten-
sive sessions alongside Standard sessions should be analyzed for estimation of model
amplitudes for only UT1.

• The other parameter estimation methods that are usable for sinusoidal amplitude esti-
mation such as recursive least squares, Kalman filter, Discrete Fourier transform, and
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artificial neural networks should be utilized for the estimation of the tidal amplitudes
of the model. As epochs of the time series increases, the volume of variables (e.g.
weight matrix of LS method) at the random access memory (RAM) of computer is
strikingly increasing. For this reason, batch processing techniques are struggling with
computer resource management. It is better to use sequential methods to overcome
this issue.

• For evaluation of the acquired model for sub-daily ERP variations, baseline length
repeatability should be an objective criteria (metric) instead of comparing them with
the IERS recommended model.

• A robust method for de-correlating polar motion coordinates from nutation offsets
should be investigated. Because, estimation of nutation offset is not possible due to its
high correlation with polar motion in sub-daily periods.
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Böhm, J., Werl, B., Schuh, H., Troposphere mapping functions for GPS and
Very Long Baseline Interferometry from European Center for Medium-Range
Weather Forecasts operational analysis data, Journal of Geophysical Research,
Vol. 111 (2006) B02406.
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niques, in F. Sansò, C. Hwang, C.K. Shum, J. Li (Eds.), Satellite Altimetry for
Geodesy, Geophysics and Oceanography, Springer Berlin Heidelberg, Berlin,
Germany, 2003, Vol. 126, pp. 123–132, ISBN 978-3-642-62329-5 978-3-642-
18861-9, doi:10.1007/978-3-642-18861-9 15.

Seeber, G., Satellite geodesy, 2nd ed., Walter de Gruyter, Berlin, Germany, 2003,
ISBN 978-3-11-017549-3.

Seidelmann, P.K., 1980 IAU Theory of Nutation: The final report of the IAU Working
Group on Nutation, Celestial Mechanics, Vol. 27 (1982) 1 79–106, doi:10.
1007/BF01228952.

Seidelmann, P.K. (Ed.), Explanatory supplement to the Astronomical almanac, rev.
ed., University Science Books, Mill Valley, California, USA, 1992, ISBN 978-
0-935702-68-2.

Seidelmann, P.K., Fukushima, T., Why new time scales?, Astronomy & Astrophysics,
Vol. 265 (1992) 833–838.

Shahid-Saless, B., Hellings, R.W., Ashby, N., A picosecond accuracy relativistic
VLBI model via Fermi normal coordinates, Geophysical Research Letters,
Vol. 18 (1991) 6 1139–1142, doi:10.1029/91GL01187.

Shapiro, I.I., Fourth Test of General Relativity, Physical Review Letters, Vol. 13
(1964) 26 789–791, doi:10.1103/PhysRevLett.13.789.

131



Shapiro, I.I., New Method for the Detection of Light Deflection by Solar Gravity,
Science, Vol. 157 (1967) 3790 806–808, doi:10.1126/science.157.3790.806.

Shi, J., Gao, Y., A comparison of three PPP integer ambiguity resolution methods,
GPS Solutions, Vol. 18 (2014) 4 519–528, doi:10.1007/s10291-013-0348-2.

Simon, J.L., Bretagnon, P., Chapront, J., Chapront-Touzé, M., Francou, G., Laskar,
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