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Tez Danışmanı: Prof. Dr. Hüseyin TATLIDİL

Mart 2018, 130 sayfa

Finansal risk yönetimi, finansal kuruluşların yatırımlarını garanti altına almaları ve

meydana gelebilecek olası kayıpları karşılayabilmeleri açısından oldukça önem arz eden

bir konudur. Son yıllarda, beklenmedik ve sıra dışı olaylara bağlı olarak meydana

gelen aşırı fiyat dalgalanmaları finansal risk yönetim sistemlerinin gözden geçirilmesi

gerçeğini ortaya koymuştur. Finansal anlamda risk, ilgili yatırımın belirli bir zaman

periyodundaki maksimum kayıp miktarı olarak tanımlanabilir. Riske Maruz Değer

(RMD), yatırımın riskini değerlendirmek ve ölçmek için kullanılan bir risk ölçüsüdür.

Birçok RMD modeli, finansal getirilerin normal dağıldığı varsayımı altında önerilmiştir.

Finansal getiri serilerinin karakteristik özellikleri incelendiğinde, normal dağılıma göre

daha kalın kuyruklu yapıya sahip oldukları ve genellikle sola çarpık oldukları görülmektedir.

Diğer önemli bir özellikleri ise normal dağılıma göre basıklık değerleri daha yüksektir.

Bu nedenle, normal dağılım varsayımına dayanan RMD modelleri ile elde edilen risk

öngörü değerleri, gerçek piyasa riskinin altında kalmaktadır. Birçok çalışmada, kalın

kuyruklu yapıyı ve çarpıklığı modelleyebilecek dağılımlardan yararlanılarak RMD mod-

ellerinin finansal risk öngörü başarıları arttırılmaya çalışılmıştır.

Tez çalışmasında, Genelleştirilmiş Otoregresif Koşullu Değişen Varyans modelleri önerilen
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yeni dağılımlar altında tanımlanmış ve RMD öngörü değerleri elde edilmiştir. Model-

lerin örneklem dışı öngörü performansları geriye dönük testler ve kayıp fonksiyonları ile

değerlendirilmiştir. BİST-100, Nikkei-225, S&P-500 ve Nasdaq-100 indeksleri üzerine

yapılan beş farklı uygulama ile modellerinin öngörü performansları karşılaştırılmış ve

önerilen modellerin diğer modellere karşı olan üstünlükleri değerlendirilmiştir.

Anahtar Kelimeler: GARCH modelleri; Riske Maruz Değer; Geriye Dönük Test;

Kayıp Fonksiyonları; Simülasyon; Finansal Risk.
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ABSTRACT

THE IMPORTANCE OF FAT-TAILED AND SKEWED

DISTRIBUTIONS IN MODELING VALUE-AT-RISK

Emrah ALTUN

Doctor of Philosophy, Department of Statistics

Supervisor: Prof. Dr. Hüseyin TATLIDİL

March 2018, 130 pages

Most of the Value-at-Risk models assume that financial returns are normally dis-

tributed, despite the fact that they are commonly known to be left skewed, fat-tailed

and excess kurtosis. Forecasting Value-at-Risk with misspecified model leads to the

underestimation or overestimation of the true Value-at-Risk. This study proposes new

conditional models to forecast the daily Value-at-Risk by employing the new fat-tailed

and skewed distributions to GARCH models. Empirical results show that the fat-tailed

and skewed distributions provide superior fit to the conditional distribution of the log-

returns among others. Backtesting methodology and loss functions are used to compare

the out-of-sample performance of Value-at-Risk models. We conclude that the effects

of skewness and fat-tails are more important than only the effect of the fat-tails on

accuracy of Value-at-Risk forecasts.

Keywords: GARCH models; Value-at-Risk; Backtesting; Loss functions; Simulation;

Financial Risk.
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1. INTRODUCTION

The Basel Committee on Banking Supervision (BCBS) is a committee of banking

supervisory authorities. The main role of BCBS is to provide recommendations on

banking regulations about credit, market and operational risks. The BCBS develops

the fundamentals of risk management system for financial institutions. The BCBCS

enforces the financial institutions to have an enough capital to meet the obligations and

absorbs the unexpected and unpredictable losses. It is clear that financial risk man-

agement is an essential task for the financial institutions. Financial risk management

plays an critical role for financial institutions to guarantee the investments against to

unpredictable events. In the last decade, whole world has been faced with the extra

ordinary events. Therefore, it is obvious that more reliable financial risk management

systems are needed to be developed.

The simple method to measure the risk is the evaluation of losses when the prices of

the portfolio assets fall down. The risk for portfolio represents the maximum loss of

an investor over a defined time period and specified probability level. The Value-at-

Risk (VaR) is a common risk measure to quantify the risk of investment. The VaR

is generally used by banks to determine the potential losses in their portfolios. The

BCBS makes the usage of internal financial risk models for VaR forecasts possible

for financial institutions. Hence, VaR is a essential market risk management tool for

financial institutions. Therefore, researchers and academics show great interest to

develop new approaches to forecast VaR.

Approaches to VaR can be investigated in three categories. These are parametric ap-

proaches, semi-parametric approaches and non-parametric approaches. The RiskmetricsTM

model, introduced by Morgan [1], can be viewed as the first parametric approach to

VaR. Morgan [1] assumed that financial returns are normally distributed despite the

fact they are commonly skewed and far away from the normal distribution. Therefore,

RiskmetricsTM model causes underestimated VaR forecasts.

The contributions to parametric VaR models have been done with two different ap-

1



proaches by researchers. First approach is to introduce more accurate volatility model

to capture volatility dynamics of financial returns. The second approach is to search

more flexible distributions to model the financial returns more accurately. Here, the

goal of this study is match up with the second one.

The Filtered Historical Simulation (FHS), introduced by [2] and [3], is the most used

non-parametric VaR model. The FHS model can be viewed as a hybrid model combin-

ing the historical simulation and generalized autoregressive conditional heterocedastic-

ity (GARCH) models. The most used semi-parametric VaR models consist of condi-

tional and unconditional methods based on the Extreme Value Theory (EVT). These

two models are examined comprehensively throughout the study.

In this thesis study, the most important and commonly used VaR models are illus-

trated. The relative advantages and weaknesses of these models are discussed. Three

alternative flexible distributions are proposed and applied to GARCH models. The

role of innovation distribution for FHS model is discussed.

The rest of the study is organized as follows: The statistical properties of VaR measure

are presented in Section 2. The characteristic properties of financial return series

are examined in Section 3. The VaR models are given in Section 4 and this section

contains the contributions of the study to financial risk forecasting. The backtesting

methodology to compare the performance of VaR models is presented in Section 5.

Empirical results are given in Section 6. To demonstrate the usefulness of proposed

VaR models against to existing models, five real data applications are provided. Finally,

Section 7 contains the conclusion of the study.

1.1. Related Studies

In the last decade, there has been great interest from academics, researchers and finan-

cial institutions to develop more extensive financial risk models. The main reason of

this interest is based on the financial uncertainty, especially increased in recent years.

The more sophisticated risk models are needed to increase the accuracy of financial

risk forecasts.
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Despite the fact that asset returns have non-normal characteristics, the normal distri-

bution assumption is still widely used in financial risk models. It is widely documented

that the normal distribution assumption leads to underestimation or overestimation

for true market risk. Therefore, skewed and fat-tailed distributions should be used to

increase the accuracy of VaR models. Here, the studies related to VaR are examined

in three approaches: Parametric, semi-parametric and non-parametric approaches.

Parametric approaches

The studies on parametric approach are based on the distributional assumption on

innovation process of volatility models or related to different volatility models under the

same distributional assumption for innovation process. The performances of GARCH

type models specified under skewed and fat-tailed distributions were discussed in many

studies. The commonly used competitive distributions are Student-t, mixture normal,

generalized error distribution (GED), skewed generalized error distribution (SGED),

generalized-T (GT) and skewed generalized-T (SGT) distributions.

Angelidis et al. [4] discussed the GARCH models in forecasting daily VaR by means

of backtesting results. It is an important research article and cited over 400 times

by researchers. Angelidis et al. [4] considered only three distributions for innovation

process of GARCH models. They stated the following results: (i) the mean process

does not have a significant role for VaR forecast; (ii) The ARCH model yields the sat-

isfactory VaR forecasts when the innovation distribution is normal or generalized error

distribution; (iii) the leptokurtic distributions produce more accurate VaR forecasts

than normal distributions; (iv) the used sample size does not have an effect on the

performances of the models. These results confirmed that the flexible distributions are

needed to improve the forecasting ability of GARCH type models. It is obvious that

usage of more complex volatility models instead of GARCH model are not necessary.

The GED is a good choice to model excess kurtosis. However, this distribution is

not able to model the skewness. Therefore, Lee et al. [5] considered the SGED as

an innovation process of GARCH model. Lee et al. [5] compared the performance of
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GARCH model specified under SGED with normal distribution and concluded that

SGED produces more accurate VaR forecasts than normal distribution for both low

and high quantiles. It is an expected result due to the fact that normal distribution

assumption is an unrealistic assumption for financial returns.

For the first time, the SGT distribution was applied to GARCH models by Bali and

Theodossiou [6]. Bali and Theodossiou [6] concluded that GARCH model with SGT

innovation distribution produce more realistic VaR forecasts than GARCH-normal

model. The results of this paper are similar to results given in Lee et al. [5]. A

similar research was conducted by Lee and Su [7]. Lee and Su [7] concluded that SGT

distribution provides better VaR forecasts than normal and Student-t distributions.

The other important studies on parametric VaR models can be summarized as follows:

Venkataraman [8] and Zangari [9] used the mixture normal distribution in forecasting

VaR. Giot and Laurent [10] examined the performance of skew-T distribution in mod-

eling daily VaR. Giot and Laurent [10] concluded that forecasting VaR with skew-T

distribution yields more satisfactory results than other competitive models. Brooks

and Persand [11] emphasized that the VaR models which is not able to model asym-

metric effects for both volatility process and conditional return distribution produce

underestimated VaR forecasts.

Hung et al. [12] compared normal, Student-t and heavy-tailed (HT) distributions,

proposed by Politis [13], in terms of VaR accuracy. Hung et al. [12] concluded that

GARCH-HT model provides the most accuracate VaR forecasts for energy commodi-

ties. Dendramis et al. [14] suggested to use of parametric volatility models with skewed

distributions to increase the accuracy of VaR forecasts.

Braione and Scholtes [15] concluded that the skew-T distribution provides better VaR

forecasts than normal, Student-t and multivariate exponential power distributions.

Recently, Lyu et al. [16] examined the performance of GARCH model under eight

innovation distributions in terms of accuracy of VaR forecasts. Lyu et al. [16] concluded

that financial institutions take into consideration more flexible distributions in their

internal risk management system to increase the accuracy of their internal risk system.
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Semi-parametric approaches

One of the most important semi-parametric VaR approach is EVT. EVT is widely used

in modeling the tail distribution of financial returns instead of whole modeling of the

financial return distribution. EVT has increased its popularity in field of financial risk

management after the pioneer work of McNeil and Frey [17]. Note that their study

was cited over 1600 times by researchers.

McNeil and Frey [17] proposed two-stage model combining EVT with GARCH volatility

model. In literature, this model is also known as GARCH-EVT model. Gilli and Kellezi

[18], Chan and Gray [19], Onour [20] and Singh et al. [21] evaluated the performance

of GARCH-EVT in modeling daily VaR and compared the GARCH-EVT model with

well-known competitive models. Chan and Gray [19] evaluated the performance of

conditional EVT approach in forecasting the daily VaR in electricity market. Karmakar

[22] investigated the forecasting performance of GARCH- EVT model in Indian stock

market. Furió and Climent [23] compared the GARCH-EVT model with GARCH

models specified under normal and Student-t distributions. Furió and Climent [23]

concluded that the GARCH-EVT produce better VaR forecasts than other models.

Harmantzis et al. [24] concluded that EVT model outperforms to non fat-tailed models.

One of the important researches of this field was carried out by Altun and Tatlidil

[25]. Altun and Tatlidil [25] compared the GARCH-EVT model with GARCH models

specified under four innovation distributions: including normal, Student-t, GED and

SGED. Altun and Tatlidil [25] emphasized that conditional EVT approach provides

the most realistic VaR forecasts among others.

Non-parametric approaches

The Historical Simulation (HS) is the most traditional non-parametric VaR model. The

HS model assumes that the price movements repeat itself. Thus, the future distribution

of asset could be well-defined by the current returns.

The HS model has several advantages. For instance, HS model could be implemented

easily since it is a non-parametric model. Therefore, it does not depend on the dis-
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tributional assumption. However, the HS model has also several shortcomings. The

HS model ignores the time-varying volatility dynamics. In order to remove the lack

of HS model, FHS model was introduced ([2, 3]). The FHS model is a mixture of

HS and the GARCH models. Barone-Adesi and Giannopoulos [26] demonstrated the

usefulness of FHS model agains to the HS model. Kuester et al. [27] compared the

performance of various VaR models. Kuester et al. [27] concluded that GARCH-Skew-

T, GARCH-EVT approach and FHS model under skewed and fat-tailed distributions

produce the satisfactory VaR forecasts. Roy [28] estimated the daily VaR of Indian

capital market using the FHS model. Omari [29] compared the FHS, Exponentially

Weighted Moving Average (EWMA) and GARCH models in terms of accuracy of VaR

forecasts. Omari [29] demonstrated that GJR-GARCH with Student-t innovations and

FHS model with GARCH volatility specification performed competitively accurate in

estimating VaR forecasts for both standard and more extreme quantiles thereby gen-

erally out-performing all the other models under consideration.

1.2. Motivation and Contributions

When examined the recent studies on VaR models, it is clear that there is a great inter-

est to introduce more advanced risk models to increase the accuracy of VaR forecasts.

The most important component of parametric VaR models is the true quantile esti-

mation of financial return series. The financial return series have many characteristic

properties (see Section 5 for details) such as excess kurtosis and skewness, generally left

skewed. Therefore, the developed financial risk models have to take into consideration

both excess kurtosis and skewness properties.

The purpose of this thesis study is to introduce new parametric VaR models under the

new flexible distributions enable to model both excess kurtosis and skewness observed

in financial return series. This study consists of four research articles published or still

under consideration in journals. The research articles produced from this study are

given below:

1. Altun, E., Tatlidil H., Ozel, G. Conditional ASGT-GARCH approach to Value-

6



at-Risk, Iranian Journal of Science and Technology, Transactions A: Science,

DOI: https://doi.org/10.1007/s40995-018-0484-1.

2. Altun, E., Tatlidil H., Ozel, G., Nadarajah, S. Does the assumption on innovation

process play an important role for Filtered Historical Simulation model?, Journal

of Risk and Financial Management, DOI: https://doi.org/10.3390/jrfm11010007.

3. Altun, E., Tatlidil H., Ozel, G. Value-at-Risk Estimation with New Skew Exten-

sion of Generalized Normal Distribution, (Revision submitted).

4. Altun, E., Tatlidil H., Ozel, G., Nadarajah, S. A New Generalization of Skew-

T Distribution with Volatility Models, Journal of Statistical Computation and

Simulation, DOI: https://doi.org/10.1080/00949655.2018.1427240.

The contributions of above articles are given as follows: In the first article, GARCH

model with Alpha-Skew Generalized-T innovation distribution was introduced. The

VaR forecasting performance of GARCH model under Alpha-Skew Generalized-T dis-

tribution was compared with GARCH models specified under normal, Student-t, GED,

GT and SGT distributions. In the second article, whether the assumption on inno-

vation process plays an important role for FHS model was investigated. In the third

article, a new skew extension of generalized normal distribution was proposed with its

stochastic volatility model. Firstly, skew extension of generalized normal distribution

was proposed. Then, associated GARCH volatility model was introduced by means

of proposed distribution. In the fourth article, a new generalization of Skew-T dis-

tribution was proposed with its volatility models for both symmetric and asymmetric

GARCH models.

1.3. Future Work

The future works of this study can be given as follows: (i) the proposed models will be

extended to multivariate case; (ii) the developed computational codes will be published

as a R package; (iii) the novel backtesting method, taking into account the cost of excess

capital, will be proposed.
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2. RISK MEASURES

The VaR is the most popular risk measure to quantify the level of market risk. The

VaR measures and quantifies the maximum loss of asset over a defined time horizon

under defined confidence level. The VaR is defined as follows

V aRp = F−1(p), (2.1)

where F is the cumulative distribution function (cdf). The F−1 denotes the inverse of

F and p is the quantile value at which VaR is calculated.

The second formula of VaR is given by

V aRt = µ̂t + ĥtF
−1 (p) , (2.2)

where µ̂t and ĥt are the forecasts of conditional mean and standard deviation at time

t, respectively. Since the mean process is near to zero, it can be excluded. Then, the

VaR, with its simple form, can be re-defined as

V aRt = ĥtF
−1 (p) . (2.3)

It can be easily seen from Equation (2.3) that the main components of VaR are the

volatility and quantile estimation of financial returns. Therefore, to increase the accu-

racy of VaR forecasts, the flexible distributions, capture the both skewness and excess

kurtosis, have critical role.

The risk measure VaR has following shortcomings: VaR ignores the losses beyond the

VaR level. VaR does not hold the one of the properties of coherent risk measure (see,

Section 2.1. for details). For this reason, Artzner et al. [30] introduced the alternative

measure to VaR, named Expected Shortfall (ES). The ES, an expectation of losses

beyond the VaR level, is defined by
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ESp = E [Xt|Xt ≥ V aRt (X)] =
1

p

p∫
0

V aRt (X) dt. (2.4)

where 0 < p < 1. Figure 1 displays the VaR and ES under the standard normal

distribution.

Figure 1: The graphical representation of VaR and ES under standard normal distri-
bution

2.1. Properties of Coherent Risk Measure

Let χ and ω be the set of states and set of all risks, respectively. A risk measure γ (Y )

is a mapping function from ω to <.

The requried axioms of coherent risk measure, introduced by Artzner et al. [30], are

given below:

1. Translation Invariance: For all Y ∈ ω and k ∈ <,

γ (Y + k) = γ (Y )− k. (2.5)
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2. Sub-additivity: For Y1, Y2 ∈ ω,

γ (Y1 + Y2) ≤ γ (Y1) + γ (Y2) . (2.6)

3. Positive Homogeneity: For all Y ∈ ω and α > 0,

γ (α · Y ) = αγ (Y ) . (2.7)

4. Monotonicity: For Y1, Y2 ∈ ω and Y1 ≤ Y2,

γ (Y1) ≥ γ (Y2) . (2.8)

The first axiom represents that adding a risk-free amount to an investment, the risk

of position decreases by the value of amount. The second axiom reminds the diversifi-

cation. It means that investor can reduce the risk of investment by composing several

assets. The third axiom represents that if the exposure to current position doubles,

then the risk of investment increase as double. The fourth axiom represents that if

investing Y2 is more profitable than Y1, the risk of Y1 is higher than Y2.

These four axioms are called as properties of coherent risk measure. These axioms are

valid for ES measure; on the other hand, VaR does not hold the second axiom, ”sub-

additivity” property. Therefore, ES is always coherent risk measure. Hull [31] stated

that ES provides the benefits of diversification, but, since the VaR does not hold the

second axiom given above, VaR do not provides the benefits of diversification. Yamai

and Yoshiba [32] discussed the advantages/disadvantages of the ES over the VaR. The

main disadvantages of ES is that when the financial returns are fat-tailed, the forecast

error of ES is larger than that of VaR. This means that excess capital value of ES is

higher than that of VaR. Thus, if the commercial banks determine their positions with

ES measure, they have to hold more capital to meet the unexcepted losses. The other

disadvantages of ES is backtesting problem. It should be noted that Basel Committee

advises to institutions to replace the 99% VaR with a 97.5% ES. It verifies the results

10



of Yamai and Yoshiba [32].
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3. STYLIZED FACTS OF FINANCIAL RETURN SERIES

The one-period return for an asset is given by

Rt =

(
St − St−1

St−1

)
, (3.1)

where St is the closing price at time t. Then, the simple log-return is given by

Rt = log

(
St
St−1

)
. (3.2)

The financial returns have some characteristic properties. It is essential knowledge

to understand and model the financial returns. Cont [33] provides a comprehensive

study for stylized facts of financial returns. Based on the results given in Cont [33],

the stylized facts of financial return series can be summarized as below:

3.1. Autocorrelation

The financial returns generally do not display significant serial autocorrelation, espe-

cially for high frequency. Ljung-Box Q test can be used for checking the autocorrelation

problem. The null hypothesis is H0 : ρ1 = ρ2 = ... = ρp = 0. The correlation of order

j is given by

ρ̂i =

T∑
t=i+1

(rt − r̄) (rt−i − r̄)

T∑
t=i+1

(rt − r̄)2

, 0 ≤ i ≤ T − 1, (3.3)

Then, the test statistic of Ljung-Box Q is

Qp = T (T + 2)

p∑
i=1

ρ̂i
T − i

. (3.4)

where Qp is asymptotically distributed as χ2
p.
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3.2. Heteroskedasticity

Heteroskedasticity means that the variance of error term is not constant and it varies

across to time. Lagrange Multiplier (LM) test, introduced by Engle [34] and known as

ARCH-LM, can be used to test heteroskedasticity problem. The steps of ARCH-LM

test is given below.

1. The model is fitted to used data set and extract the residuals,

2. Run the below regression model using the extracted residuals in first step,

u2
t = α0 + α1u

2
t−1 + α2u

2
t−2.....+ αpu

2
t−p + vt. (3.5)

where u is the residual extracted from first step and obtain R2 value of above

regression model,

3. Compute T × R2. T × R2 is distributed as χ2
p. The null hypothesis, H0 : α0 =

α1 = ... = αp is that there is no ARCH affect. Note that T represents the number

of observations.

3.3. Heavy Tails or Fat Tails

The one of the most important properties of financial returns is fat-tail phenomena.

The financial return series exhibits fat-tailed structure. It means that the frequency

of extreme losses or gains is bigger than the represented by normal distribution. The

unconditional distribution of financial returns displays a power-law or Pareto type tails.

Therefore, it excludes the stable laws with infinite variance and the normal distribution.

3.4. Asymmetry or Skewness

The unconditional distribution of financial returns are generally skewed to left. It

means that the unpredictable extreme losses have more frequency than gains. Jarque-

Berra test can be used to test whether the used time series exhibits excess kurtosis and
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skewness. Jarque-Berra (JB) statistic is given by

JB = T

[
S2

6
+

(K − 3)2

24

]
. (3.6)

where S and K are skewness and kurtosis, respectively. JB statistic is asymptotically

distributed as χ2
2.

3.5. Volatility Clustering

It is well-known fact that the large losses or gains tend to be followed by another large

losses or gains. The high volatility events are generally clustered in time. This situation

is called as volatility clustering.

3.6. Conditional Heavy Tails

The volatility clustering can be solved by modeling the financial returns with GARCH

type models. On the other hand, even after modeling the returns with GARCH models,

the residuals may have still fat tails.

The stylized facts of financial returns summarize the main motivation of this study.

Since financial returns exhibit excess kurtosis and skewness (generally skewed to left),

new flexible distributions to model the stylized facts of financial returns with high

accuracy are still needed.
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4. VALUE-AT-RISK MODELS

The approaches to VaR could be investigated in three categories: (i) fully parametric

models approaches based on the stochastic volatility models; (ii) non-parametric ap-

proaches based on the HS methods and (iii) EVT approach based on the modeling of

the tails of return distribution. These models are investigated in following subsections.

4.1. Parametric Value-at-Risk Models

Volatility modeling is an important topic for econometrics. For the first time, Engle

[34] introduced the ARCH model. Then, Bollerslev [35] proposed the generalization

of ARCH model, called as GARCH model. ARCH and GARCH models do not en-

able to capture the asymmetric volatility dynamics in financial return series. For this

reason, asymmetric GARCH models were introduced. The most popular asymmet-

ric GARCH model, introduced by [36], is exponential GARCH (EGARCH) model.

EGARCH model provides an opportunity to take into account the effects of bad and

good news on volatility forecasting. Glosten et. al [37] introduced the GJR-GARCH

model. GJR-GARCH model has simplier mathematical form than EGARCH model.

Asymmetric power ARCH (apARCH) model, introduced by [38], can be viewed as third

popular asymmetric GARCH model. The apARCH model contains the GARCH and

GJR-GARCH models as its submodel. This property of apARCH model increases its

popularity. These are the most used asymmetric GARCH models. In this study, these

models are examined theoretically. According to previous studies given in Section 2, it

is clear that the asymmetric volatility models do not have critical impact on accuracy

of VaR forecasts and these models do not increase the forecasting accuracy of VaR

models. Here, the importance of distributional assumption on innovation process in

accuracy of VaR forecasts is investigated as main purpose of the study.

The definition of standard GARCH, GJR-GARCH, EGARCH and apARCH models

are given below:
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GARCH model

Let rt denotes the daily log-returns. The benchmark model, GARCH(1,1), is defined

as follows:

rt = mt + et,

et = εt ht, εt ∼ i.i.d.

h2
t = ω + γ1 e

2
t−1 + γ2h

2
t−1,

(4.1)

where mt and h2
t are the conditional mean and variance, respectively. The εt is the

innovation distribution with zero mean and unit variance. To ensure the positive

variance, ω > 0, γ1 > 0 and γ2 > 0 and for covariance stationarity γ1 + γ2 < 1. When

the parameter γ2 = 0, the GARCH model reduces to model of Engle [34]. Note that

when the γ1 + γ2 = 1, this model is called as Integrated GARCH (IGARCH) [39].

The unconditional variance of et is given by

V ar (et) = E (e2
t )− {E (et)}2

= E (e2
t )

= E (h2
t ε

2
t )

= E (h2
t )

= ω + γ1E
(
e2
t−1

)
+ γ2h

2
t−1

= ω + (γ1 + γ2)h2
t−1,

(4.2)

The et is stationary process. Therefore, it is easy to see that the unconditional variance

of et can be given as follows:

V ar (et) =
ω

1− γ1 − γ2

. (4.3)
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GJR-GARCH model

The GJR-GARCH(1,1) model is given by

h2
t = ω + γ1e

2
t−1 + γ3It−1e

2
t−1 + γ2h

2
t−1, (4.4)

where ω > 0, γ1 > 0, γ2 > 0 and γ1 + γ3 > 0. When the innovation distribution is

normal, γ1 + γ2 + 1
2
γ3 < 1 for covariance stationary. The parameter γ3 represents the

leverage effect. It−1 is an indicator function and It−1 = 1 for et−1 < 0, otherwise,

It−1 = 0. The parameter γ3 represents the asymmetry effect on volatility. The positive

γ3 parameter indicates that the bad news yields higher volatility than good news. Note

that when γ3 = 0, GJR-GARCH model reduces to model of Bollerslev [35].

The unconditional variance of et for GJR-GARCH models is given by

V ar (et) =
ω

1− γ1 − γ2 − κγ3

, (4.5)

where κ is

κ = E
(
It−1e

2
t−1

) 0∫
−∞

f (ε) dε. (4.6)

It is easy to see that κ = 1/2 for standard normal distribution.

EGARCH model

The other commonly used asymmetric volatility model, EGARCH(1,1), is given by

ln
(
h2
t

)
= ω + γ1

(
et−1

ht−1

)
+ γ2

[∣∣∣∣ et−1

ht−1

∣∣∣∣− E (∣∣∣∣ et−1

ht−1

∣∣∣∣)]+ γ3 ln
(
h2
t−1

)
, (4.7)

where γ1 represents the sign effect and γ2 represents the size effect of asymmetric

volatility. When the parameter γ1 < 0, the bad news has more effect than good news

on volatility. In EGARCH model, logarithmic transformation guarantees the non-

negative variance. Therefore, no need to be made additional restrictions on model

parameters. The expected value given in above equation is given by
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E

(∣∣∣∣ et−1

ht−1

∣∣∣∣) = E (|εt|) =

∞∫
−∞

|ε| f (ε) dε, (4.8)

where f (ε) is the standardized innovation distribution. The unconditional variance of

et for EGARCH model is given by

V ar (et) =
ω

1− γ3

. (4.9)

apARCH model

The apARCH model is given by

hδt = ω + γ1(|et−1| − γ2et−1)δ + γ3h
δ
t−1, (4.10)

where δ > 0, ω > 0, γ1 > 0, γ3 > 0 and −1 < γ2 < 1. The parameter γ2 is the leverage

parameter. The apARCH model of Ding et al. [38] contains the some important models

as its sub-models:

X When the parameter γ2 = 0 and δ = 2, apARCH model reduces to standard

GARCH.

X When the parameter δ = 2, apARCH model reduces to GJR-GARCH.

The unconditional variance of et for apARCH models is given by

V ar (et) =

(
ω

1− γ3 − γ1κ

)2/δ

, (4.11)

where κ is given by

κ = E(|ε| − γ2ε)
δ =

∞∫
−∞

(|ε| − γ2ε)
δf (ε) dε. (4.12)

The distributional assumption on innovation process of volatility models has critical ef-

fect on both accuracy of volatility and VaR forecasts. The rest of this section is devoted

to present GARCH models with well-known and newly defined flexible distributions.
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4.1.1. Normal Distribution

The log-likelihood (ll) function of the GARCH-N model is given by

`(ψ) = −0.5

(
T ln 2π +

T∑
t=1

lnh2
t +

T∑
t=1

ε2
t

)
. (4.13)

where ψ = (m,ω, γ1, γ2) denotes the parameter vector of the GARCH-N model.

The one-day-ahead VaR forecast of GARCH-N model is given by

V aRt+1 = m̂t+1 + F−1
p (εt)ĥt+1. (4.14)

where Fp
−1 is the quantile function (qf) of the normal distribution at the p level.

The qnorm function of R is used to obtain quantile estimation of standard normal

distribution.

4.1.2. RiskmetricsTM Model

EWMA model is an alternative volatility model and widely used by RiskmetricsTM

company. When the parameters of GARCH model γ1 + γ2 = 1, then GARCH model is

called as IGARCH model. The idea behind the EWMA model is based on the IGARCH

model. EWMA model is widey used by financial institutions because of its simple form

and software support. EWMA model, introduced by Morgan [1], is given by,

h2
t = λh2

t−1 + (1− λ) r2
t−1, (4.15)

where λ is exponential factor. RiskmetricsTM uses λ = 0.94 and λ = 0.97 for daily and

monthly returns, respectively, and uses last 75 data points for estimation of the model

parameters. The one-day-ahead VaR forecast of RiskmetricsTM model is given by

V aRt+1 = F−1
p (εt)ĥt+1. (4.16)

where Fp
−1 is qf of the normal distribution at the p level.
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4.1.3. Skew-Normal Distribution

The probability density function (pdf) of the skew-normal (SN) distribution, proposed

by Azzalini [40], is given by

f (x;λ) = 2φ (x) Φ (xλ) , x ∈ <, λ ∈ <, (4.17)

where φ (·) and Φ (·) are the pdf and cdf of standard normal distribution, respectively.

The additional parameter λ controls the skewness. Note that the SN distribution is

left-skewed for λ < 0, otherwise, it is right skewed. When λ = 0, the SN distribution

reduces to standard normal distribution. The raw moments of SN distribution are

given by

E
(
X2k+1

)
=

√
2

π

(2k + 1)!

2kk!

k∑
i=0

(−1)i

 k

i

 δ2i+1

2i+ 1
, (4.18)

where k = 0, 1, 2, . . . , n and δ = λ
/√

1 + λ2. The even moments of SN distribution are

equal to standard normal distribution.

The mean and variance of SN distribution is given by

E (X) =

√
2

π
δ, V ar (X) = 1− 2

π
δ2. (4.19)

Let ε = (X − µ)/σ, the random variable X can be expressed as X = εσ + µ. Thus,

the pdf of standardized SN distribution is given by

f (ε;λ) = 2σφ (εσ + µ) Φ ([εσ + µ]λ) , (4.20)

where µ and σ are given in (4.19), respectively. Using the standardized SN distribution,

the ll function of GARCH-SN model is given by

` (ψ) = T ln (2σ)+
T∑
t=1

ln (φ (εtσ + µ))+
T∑
t=1

ln (Φ ([εtσ + µ]λ))− 1

2

T∑
t=1

ln
(
h2
t

)
. (4.21)
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where ψ = (m,ω, γ1, γ2, λ) is the parameter vector of GARCH-SN model. The one-

day-ahead VaR forecast of GARCH-SN model is given by

V aRt+1 = m̂t+1 + Fp
−1(εt, λ)ĥt+1. (4.22)

where Fp
−1(εt, λ) is the qf of SN distribution at p level. The qsn function of R is used

to obtain quantile estimation of standardized SN distribution.

4.1.4. Student-t Distribution

To relax the assumption on innovations, Bollerslev [35, 41] proposed the GARCH model

with the Student-t innovations. According to Bollerslev [35], GARCH model with the

Student-t distribution yields more satisfactory results than the normal distribution.

The ll function of the GARCH-Student-t (GARCH-T) model is given by

`(ψ) = T
[
ln Γ

(
υ+1

2

)
− ln Γ

(
υ
2

)
− 1

2
ln [π(υ − 2)]

]
−1

2

T∑
t=1

[
lnh2

t + (1 + υ) ln
(

1 +
ε2t
υ−2

)] . (4.23)

where ψ = (m,ω, γ1, γ2, υ) denotes the parameter vector. The Γ(υ) is the gamma

function. The parameter υ is the tail-thickness parameter.

The one-day-ahead VaR forecast of GARCH-T model is given by

V aRt+1 = m̂t+1 + F−1
p (εt, υ)ĥt+1. (4.24)

where Fp
−1 (εt, υ) is the qf of Student-t distribution at the p level. The qt function of

R is used to obtain quantile estimation of standardized Student-t distribution.

4.1.5. Skew-T Distribution

The pdf of Skew-T (ST) distribution, introduced by [42], is given by

f (x;λ, υ) = 2t (x; υ)T

(√
1 + υ

x2 + υ
λx; υ + 1

)
, x ∈ <, (4.25)
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where t (·) and T (·) are the pdf and the cdf of Student-t distribution, respectively.

Here, parameter λ controls the skewness of the distribution and υ is the tail-thickness

parameter. When λ < 0, ST is skewed to left, otherwise, it is righted skewed. When

the parameter λ = 0, ST distribution reduces to Student-t distribution. The moments

of ST distribution are given by

E
(
Xk
)

=

(
υ
2

) k
2 Γ
(

(υ−k)
2

)
Γ
(
υ
2

) E
(
Zk
)
, (4.26)

where E
(
Zk
)

is the kth moment of SN distribution given in (4.18).

The mean and variance of ST distribution are, respectively, given by

E (X) =
( υπ )

1
2 Γ( (υ−1)

2 )
Γ(υ2 )

λ√
1+λ2 ,

V ar (X) =
(

υ
υ−2
− µ2

)
.

(4.27)

Let ε = (X − µ)/σ, the random variable X can be expressed as X = εσ + µ. Thus,

the pdf of standardized ST distribution is given by

f (ε;λ, υ) = 2σt ((εσ + µ) ; υ)T

(√
1 + υ

(εσ + µ)2 + υ
λ (εσ + µ) ; υ + 1

)
, υ > 2 (4.28)

where µ and σ are given in (4.27), respectively. The ll function of GARCH model with

the ST innovation distribution is given by

` (ψ) = T ln (2) + T ln (σ) +
T∑
t=1

ln [t ((εtσ + µ) ; υ)]

+
T∑
t=1

ln
[
T
(√

1+υ
(εtσ+µ)2+υ

λ (εtσ + µ) ; υ + 1
)]
− 1

2

T∑
t=1

ln (h2
t ).

(4.29)

where ψ = (m,ω, γ1, γ2, λ, υ) is the parameter vector. The one-day-ahead VaR forecast

of GARCH-ST model is given by

V aRt+1 = m̂t+1 + F−1
p (εt;λ, υ)ĥt+1. (4.30)
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where Fp
−1 (εt;λ, υ) is the qf of ST distribution at the p level. The qst function of R

is used to obtain quantile estimation of standard SN distribution.

4.1.6. Asymmetric Student-t Distribution

Zhu and Galbraith [43] proposed the asymmetric Student-t (AST) distribution. The

pdf of AST distribution is given by

f (x;α, υ1, υ2) =


α
α∗
K (υ1)

[
1 + 1

υ1

(
x

2α∗

)2
]−υ1+1

2
, x ≤ 0

1−α
1−α∗K (υ2)

[
1 + 1

υ2

(
x

2(1−α∗)

)2
]−υ2+1

2

, x > 0

(4.31)

where the parameter α ∈ (0, 1) controls the skewness of distribution, υ1 > 0 and

υ2 > 0 are the tail parameters for left and right tails, respectively, and K (υ) ≡

Γ ((υ + 1)/2)/[
√
πυΓ (υ/2)], α∗ = αK (υ1)/[αK (υ1) + (1− α)K (υ2)]. The AST dis-

tribution is an alternative generalization of Student-t distribution with two tail pa-

rameters and one skewness parameter. The tail parameters, υ1 and υ2, provide more

flexibility in tails of the distribution.

Let the random variable X follows AST distribution, the cdf and qf of AST distribution

are, respectively, given by,

F (x) = 2αFt

(
x ∧ 0

2α∗
; υ1

)
+ 2 (1− α)

[
Ft

(
x ∨ 0

2 (1− α∗)
; υ2

)
− 1

2

]
. (4.32)

F−1 (p) = 2α∗F−1
t

(p ∧ α
2α

; υ1

)
+ 2 (1− α)F−1

t

(
p ∨ α + 1− 2α

2 (1− α)
; υ2

)
. (4.33)

where p∧ α = min (p, a), p∨ α = max (p, a) and Ft (·; υ), F−1
t (·; υ) are cdf and inverse

cdf functions of Student-t distribution with parameter υ.

The mean and variance of AST distribution are, respectively, given by,

E (X) = 4

[
−αα∗υ1K (υ1)

υ1 − 1
+ (1− α) (1− α∗) υ2K (υ2)

υ2 − 1

]
. (4.34)
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V ar (X) = 4
[
α(α∗)2 υ1

υ1−2
+ (1− α) (1− α∗)2 υ2

υ2−2

]
−16B2

[
−(α∗)2 υ1

υ1−1
+ (1− α∗)2 υ2

υ2−1

]2

.
(4.35)

where B = αK (υ1) + (1− α)K (υ2) and K (·) is defined in (4.31).

Using the standardized AST distribution, the ll function of GARCH model with the

AST innovation distribution is given by

` (ψ) =
T∑
t=1

ln
(
σα
α∗

)
− υ1+1

2

T∑
t=1

ln
{
K (υ1)

[
1 + 1

υ1

(
εtσ+µ

2α∗

)2
]}

y≤µ/σ
T∑
t=1

ln
(
σ(1−α)
1−α∗

)
− υ2+1

2

T∑
t=1

ln

{
K (υ2)

[
1 + 1

υ2

(
εtσ+µ

2(1−α∗)

)2
]}

y>µ/σ

− 1
2

T∑
t=1

ln (h2
t ).

(4.36)

where µ and σ are given in (4.34) and (4.35), respectively. Here, ψ = (m,ω, γ1, γ2, α, υ1, υ2)

is the parameter vector.

The one-day-ahead VaR forecast of GARCH-AST model is given by

V aRt+1 = m̂t+1 + Fp
−1(εt, α, υ1, υ2)ĥt+1. (4.37)

where Fp
−1(εt, α, υ1, υ2) is the qf of AST distribution at p level. The quantile estimation

of AST distribution is obtained by using Equation (4.33).

4.1.7. Generalized Hyperbolic Skewed Student-t Distribution

The generalized hyperbolic skewed Student-t (GHST) is a limiting distribution of gen-

eralized hyberbolic (GH) distribution. The comprehensive properties of GHST distri-

bution with financial applications were given by Aas and Haff [44]. Firstly, we define

the pdf of GH distribution as

f (x;α, β, λ, µ, δ) =

(α2 − β2)Kλ−1/2

(
α
√
δ2 + (x− µ)2

)
exp (β (x− µ))

√
2παλ−1/2δλKλ

(
δ
√
α2 − β2

)(√
δ2 + (x− µ)2

)1/2−λ , (4.38)

where x ∈ < and Kj is the modified bessel function of the third kind of order j (see

Abramowitz and Stegun [45] for details). The parameters of the GH distribution hold
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the following conditions:

δ ≥ 0, |β| < α ifλ > 0

δ > 0, |β| < α ifλ = 0

δ > 0, |β| ≤ α ifλ < 0

(4.39)

Let λ = −υ/2 and α→ |β| in (4.38), the pdf of GHST distribution is given by

f (x; β, υ, µ, δ) =


2

1−υ
2 δυ |β|

υ+1
2 K(υ+1)/2

(√
β2(δ2+(x−µ)2)

)
exp(β(x−µ))

Γ(υ2 )
√
π
(√

δ2+(x−µ)2
)υ+1

2
, β 6= 0

Γ(υ+1
2 )

√
πδΓ(υ2 )

[
1 + (x−µ)2

δ2

]− (υ+1)
2
, β= 0

(4.40)

where µ ∈ < and δ > 0 are location and scale parameters, respecetively; β ∈ < and

υ > 0 are shape parameters. Note that when β = 0, GHST distribution is equal to

non-central Student-t distribution with mean µ and variance δ2/(υ − 2). The mean

and variance of GHST distribution are given by

E (X) = µ+ βδ2

υ−1

V ar(X) = 2β2δ4

(υ−2)(υ−4)
+ δ2

υ−2
.

(4.41)

As seen in (4.41), the variance of GHST distribution is valid for υ > 4. Note that skew-

ness and kurtosis of GHST distribution are only valid for υ > 6 and υ > 8, respectively.

The standardized GHST distribution can be obtained by following re-parametrization,

µ = − δβ
υ−2

δ2 = (υ−2)(υ−4)
4β2

(
−1 +

√
1 + 8β2

υ−4

)
(4.42)

Using the standardized GHST distribution, the ll function of GARCH-GHST model is

given by (for β 6= 0),
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` (ψ) = T ln

(
2

1−υ
2

(
(υ−2)(υ−4)

4β2

(
−1 +

√
1 + 8β2

υ−4

))υ/2

|β|
υ+1

2 1
Γ(υ/2)π

)

+
T∑
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ln

K(υ+1)/2


√√√√√√√√β2
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(υ−2)(υ−4)
4β2

(
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√
1 + 8β2

υ−4
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+

(
εt +

√
(υ−4)√
4(υ−2)

√
−1 +

√
1 + 8β2

υ−4

)2





+
T∑
t=1

β

(
εt +

√
(υ−4)√
4(υ−2)

√
−1 +

√
1 + 8β2

υ−4

)
− 1

2

T∑
t=1

ln
(
h2
t

)
−
(
υ+1

2

) T∑
t=1

ln


√√√√( (υ−2)(υ−4)

4β2

(
−1 +

√
1 + 8β2

υ−4

))
+

(
εt +

√
(υ−4)√
4(υ−2)

√
−1 +

√
1 + 8β2

υ−4

)2
.

(4.43)

where ψ = (m,ω, γ1, γ2, β, υ) is the parameter vector. The one-day-ahead VaR forecast

of GARCH-GHST model is given by

V aRt+1 = m̂t+1 + F−1
p (εt; β, υ)ĥt+1. (4.44)

where Fp
−1 (εt; β, υ) is the qf of GHST distribution at the p level. The qghyp function

of R is used to obtain quantile estimation of standard GHST distribution.

4.1.8. Normal Inverse Gaussian Distribution

When the parameter λ = −1/2, GH distribution reduces to Normal Inverse Gaussian

(NIG) distribution. NIG distribution is widely used in financial applications because

of its ability to model excess kurtosis and skewness. Forsberg and Bollerslev [46] intro-

duced the GARCH model under NIG innovation distribution to model the EUR/USD

exchange rates. More recently, Chen and Lu [47] have demonstrated that forecasting

VaR with NIG distribution yields more robust and accurate forecasts for daily time

horizon based on the empirical results obtained from real data and simulated data sets.

The pdf of NIG distribution is given by
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f (x;α, β, µ, δ) =

δα exp
(
δ
√
α2 − β2

)
exp (β (x− µ))K1

(
α
√
δ2 + (x− µ)2

)
π
√
δ2 + (x− µ)2

,

(4.45)

where x ∈ <, 0 ≤ |β| ≤ α, δ > 0, µ ∈ <. The parameters µ and δ are the location

and scale parameters, respectively; α and β parameters control the shape of NIG

distribution. When β = 0, the distribution is symmetric. The mean and variance of

NIG distribution are given by

E (X) = µ+ δ β
γ

V ar (X) = δ α
2

γ3 .
(4.46)

where γ =
√
α2 − β2. The standardized NIG distribution can be obtained by replacing

µ = −δ β
γ

and δ = γ3/α2. Then, the pdf of standardized NIG distribution with zero

mean and unit variance is given by

f (ε;α, β) =

γ3

α
exp

(
γ3

α2

√
α2 − β2

)
exp

(
β
(
ε+ γ2β

α2

))
K1

(
α

√(
γ3

α2

)2

+
(
ε+ γ2β

α2

)2
)

π

√(
γ3

α2

)2

+
(
ε+ γ2β

α2

)2
,

(4.47)

Using the standardized NIG distribution, the ll function of GARCH-NIG model is given

by

` (ψ) = T ln
(
γ3

απ

)
+ T

(
γ3

α2

√
α2 − β2

)
+ β

T∑
t=1

(
εt + γ2β

α2

)
− 1

2

T∑
t=1

ln (h2
t )

+
T∑
t=1

ln

(
K1

(
α

√(
γ3

α2

)2

+
(
εt + γ2β

α2

)2
))
−

T∑
t=1

ln

(√(
γ3

α2

)2

+
(
εt + γ2β

α2

)2
)
.

(4.48)

where ψ = (m,ω, γ1, γ2, α, β) is the parameter vector. The one-day-ahead VaR forecast

of GARCH-NIG model is given by

V aRt+1 = m̂t+1 + F−1
p (εt;α, β)ĥt+1. (4.49)
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where Fp
−1 (εt;α, β) is the qf of NIG distribution at the p level. The qnig function of

R is used to obtain quantile estimation of standard NIG distribution.

4.1.9. Generalized Error Distribution

Nelson [36] proposed the GED instead of assuming εt is normally distributed. Under

this specification, the ll function of GARCH-GED model is given by

`(ψ) =
T∑
t=1

[
ln
(κ

2

)
− 1

2

∣∣∣εt
δ

∣∣∣κ − (1 + κ−1) ln(2)− ln Γ

(
1

2

)
− 1

2
ln
(
h2
t

)]
, (4.50)

where ψ = (m,ω, γ1, γ2, κ) denotes the parameter vector, κ is tail-thickness parameter

and,

δ =

(
Γ
(

1
κ

)
2

2
κΓ
(

3
κ

)) 1
2

, (4.51)

When the parameter κ = 2, the GED reduces to standard normal distribution. When

κ < 2, GED has heavier tails than Gaussian distribution. The one-day-ahead VaR

forecast of GARCH-GED model is given by

V aRt+1 = m̂t+1 + Fp
−1(εt, κ)ĥt+1. (4.52)

where Fp
−1(εt, κ) is the qf of GED at p level. The qged function of R is used to obtain

quantile estimation of standardized GED distribution.

4.1.10. Skewed Generalized Error Distribution

The SGED provides an opportunity to model the skewness and kurtosis simultaneously.

Lee et al. [5] introduced the GARCH-SGED model and concluded that GARCH model

with SGED innovation process outperformed the GARCH-N model for all confidence

levels. The pdf of standardized SGED is given by

f(ε;κ, λ) = C exp

(
− |ε+ δ|κ

[1 + sign(ε+ δ)λ]κθκ

)
, ε ∈ < (4.53)
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where

C = κ
2θ

Γ
(

1
κ

)−1
, θ = Γ

(
1
κ

)0.5
Γ
(

3
κ

)0.5
S(λ)−1

S(λ) =
√

1 + 3λ2 − 4A2λ2, δ = 2λA
S(λ)

A = Γ
(

2
κ

)
Γ
(

1
κ

)−0.5
Γ
(

3
κ

)−0.5
,

(4.54)

where κ > 0 is the shape parameter, −1 < λ < 1 is skewness parameter. When the

parameters κ = 2 and λ = 0, SGED reduces to standard normal distribution. Note

that when the parameter λ = 0, SGED reduces to GED distribution. The ll function

of GARCH-SGED model is given by

`(ψ) = +T ln (C)−
T∑
t=1

(
|εt + δ|κ

[1 + sign (εt + δ)λ]κθκ

)
− 1

2

T∑
t=1

ln
(
h2
t

)
. (4.55)

where ψ = (m,ω, γ1, γ2, λ, κ) is the parameter vector. The one-day-ahead VaR forecast

of GARCH-SGED model is given by

V aRt+1 = m̂t+1 + Fp
−1(εt, κ, λ)ĥt+1. (4.56)

where Fp
−1(εt, κ, λ) is the qf of SGED at p level. The qsged function of R is used to

obtain quantile estimation of standardized SGED distribution.

4.1.11. Generalized-T Distribution

The GT distribution was introduced by McDonald and Newey [48]. The GT distri-

bution was employed to GARCH models by Bollerslev et al. [49]. The additional

flexibility of the GT distribution enables it to capture a variety of shapes at the peak

of the distribution as well as in the tails. The pdf of standardized GT distribution is

given by

f (ε;κ, υ) =
γκ

2υ1/κB (1/κ, υ)

(
1 +
|εγ|κ

υ

)−(υ+1/κ)

, ε ∈ < (4.57)

where

γ =

[
υ2/κΓ

(
3
κ

)
Γ
(
υ − 2

κ

)
Γ
(

1
κ

)
Γ (υ)

]1/2
. (4.58)
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GT distribution contains Student-t and GED distributions as its submodels. When κ =

2, GT distribution reduces to Student-t distribution. When υ → ∞, GT distribution

reduces to GED distribution. The ll function of GARCH-GT model is given by

` (ψ) = T ln (γκ)−T ln
(
2υ1/κB (1/κ, υ)

)
−1

2

T∑
t=1

ln
(
h2
t

)
−(υ + 1/κ)

T∑
t=1

ln

(
1 +
|εtγ|κ

υ

)
.

(4.59)

where ψ = (m,ω, γ1, γ2, υ, κ) denotes the parameter vector, B [·] is the beta function.

The one-day-ahead VaR forecast of GARCH-GT model is given by

V aRt+1 = m̂t+1 + Fp
−1(εt, κ, υ)ĥt+1. (4.60)

where Fp
−1(εt, κ, υ) is the qf of GT at p level. The qGT function of R is used to obtain

quantile estimation of standardized GT distribution.

4.1.12. Skewed Generalized-T Distribution

The SGT distribution was introduced by Theodossiou [50]. For the first time, SGT dis-

tribution was applied to GARCH models by Bali and Theodossiou [6]. The advantage

of SGT distribution over the GT distribution is to provide an opportunity to model

the skewness. The standardized SGT distribution is given by

f (ε; η, κ, υ) = C

(
1 +

|ε+m|κ

((υ + 1)/κ) (1 + sign (ε+m) η)κτκ

)−υ+1
κ

, ε ∈ < (4.61)

where

C = κ
2

(
υ+1
κ

)− 1
κB
(
υ
κ
, 1
κ

)−1
τ−1

τ = 1
/√

g − ρ2

m = ρτ

ρ = 2ηB
(
υ
κ
, 1
κ

)−1(υ+1
κ

) 1
κB
(
υ−1
κ
, 2
κ

)
g = (1 + 3η2)B

(
υ
κ
, 1
κ

)−1(υ+1
κ

) 2
κB
(
υ−2
κ
, 3
κ

)
(4.62)
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Here, the parameter −1 < η < 1 controls the skewness and the parameters κ > 0 and

υ > 0 control the kurtosis of SGT distribution. The ll function of GARCH model with

SGT innovation distribution is given by

` (ψ) = T ln (C)−
(
υ+1
κ

) T∑
t=1

ln
(

1 + |εt+m|κ
((υ+1)/κ)(1+sign(εt+m)η)κτκ

)
− 1

2

T∑
t=1

ln (h2
t )

. (4.63)

where ψ = (m,ω, γ1, γ2, η, κ, υ) denotes the parameter vector. The one-day-ahead VaR

forecast of GARCH-SGT model is given by

V aRt+1 = m̂t+1 + Fp
−1(εt, η, κ, υ)ĥt+1. (4.64)

where Fp
−1(εt, η, κ, υ) is the left quantile of SGT at p level. The qsgt function of R

is used to obtain quantile estimation of standardized SGT distribution. When η = 0,

GARCH-SGT model reduces to GARCH-GT model.

4.1.13. Alpha Skew Generalized-T Distribution

It is commonly known that the normality assumption is unrealistic for many cases

in real life problems. Therefore, researchers are interested to construct more flexible

distributions as alternative to normal distribution to model both skewness and kurtosis.

Acitas et al. [51] proposed the alpha skew generalized-T (ASGT) distribution which

is the new skew extension of GT distribution. ASGT distribution provides new op-

portunities to model both skewness and fat-tailed structure of the data sets in many

fields. Since the most of the financial time series possess skewness and leptokurtotic

properties, ASGT distribution can be good candidate to remove lack of modeling abil-

ity of many distributions in terms of VaR forecast. The main idea behind to ASGT

distribution is based on the alpha-skew normal (ASN) distribution. (see Elal-Olivero

[52] for details).
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The pdf of ASGT distribution is given by

fASGT (z;α, κ, υ) =
(1− αz)2 + 1

2 + α2c (κ, υ)

[
κ

2υ1/κB (1/κ, υ)

(
1 +
|z|κ

υ

)−(υ+1/κ)
]

︸ ︷︷ ︸
fGT (z;κ,υ)

, z ∈ < (4.65)

where κυ > 2, −∞ < α <∞ is skewness and uni-bimodality parameter and c (κ, υ) is

given by

c (κ, υ) =
υ2/κΓ

(
3
κ

)
Γ
(
υ − 2

κ

)
Γ
(

1
κ

)
Γ (υ)

(4.66)

When α = 0, it is clear that ASGT distribution reduces to GT distribution with param-

eters κ and υ. ASGT and GT are nested distributions. Therefore, some mathematical

properties of ASGT distribution can be obtained through GT distribution. The raw

moments of ASGT distribution are given by

µ2k = E
(
Z2k

)
= 1

2+α2c(κ,υ)

[
2υ2k/κΓ( 2k+1

κ )Γ(υ− 2k
κ )

Γ( 1
κ)Γ(υ)

+
α2υ(2k+2)/κΓ( 2k+3

κ )Γ(υ− 2k+2
κ )

Γ( 1
κ)Γ(υ)

]
, κυ > 2k + 2

µ2k−1 = E
(
Z2k−1

)
= 1

2+α2c(κ,υ)

[
−2αυ2k/κΓ( 2k+1

κ )Γ(υ− 2k
κ )

Γ( 1
κ)Γ(υ)

]
, κυ > 2k

(4.67)

where k ∈ Z+.

Figure 2 displays the location, spread and shape measures of ASGT distribution. Note

that equations of these measures can be found in Acitas et al. [51]. Based on these

plots, the following results are concluded for fixed parameter υ = 4: the parameter α

has more significant effect on mean, skewness and kurtosis measures than parameter κ;

when the parameter α increases, variance increases; when the parameter κ increases,

variance decreases.
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Figure 2: The plots for location, spread and shape measures of the ASGT distribution
for υ = 4

Here, GARCH-ASGT model is introduced by means of standardized ASGT distribu-

tion. Let ε = (Z − µ)/σ, the random variable Z can be expressed as Z = εσ + µ.

Thus, the pdf of standardized ASGT distribution is given by

f(ε;α, κ, υ) =
σ
[
(1− α (εσ + µ))2 + 1

]
2 + α2c (κ, υ)

[
κ

2υ1/κB (1/κ, υ)

(
1 +
|εσ + µ|κ

υ

)−(υ+1/κ)
]
,

(4.68)

where µ and σ are mean and standard deviation of ASGT distribution, respectively.

The mean and variance of ASGT distribution can be easily obtained in closed form

using Equation (4.67). The ll function of GARCH model with ASGT innovation dis-

tribution is given by

` (ψ) =
T∑
t=1

ln
[
σ(1− α (εtσ + µ))2 + 1

]
− T {2 + α2c (κ, υ)} − 1

2

T∑
t=1

ln (h2
t )

+
T∑
t=1

ln

[
κ

2υ1/κB(1/κ,υ)

(
1 + |εtσ+µ|κ

υ

)−(υ+1/κ)
]
.

(4.69)

where ψ = (m,ω, γ1, γ2, α, κ, υ) denotes the parameter vector. The one-day-ahead VaR

33



forecast of GARCH-ASGT model is given by

V aRt+1 = m̂t+1 + Fp
−1(εt, α, κ, υ)ĥt+1. (4.70)

where Fp
−1(εt, α, κ, υ) is the qf of ASGT at p level. The quantile estimation of ASGT

distribution can be obtained by means of numerical integration methods. The integrate

function of stats package of R software can be used. This function uses the globally

adaptive interval subdivision method in connection with extrapolation by Wynn’s Ep-

silon algorithm (see for details: Piessens et al. [53]). GARCH-ASGT model contains

the following models as its submodels:

X If α = 0, GARCH-ASGT reduces to GARCH-GT

X If α = 0 and υ →∞, GARCH-ASGT reduces to GARCH-GED

X If α = 0 and κ = 2, GARCH-ASGT reduces to GARCH-Student-t

X If α = 0, υ →∞ and κ = 2, GARCH-ASGT reduces to GARCH-N

4.1.14. A New Skew Extension of Generalized Normal Distribution

The researchers show great interest to generalize the well-known distribution to in-

crease the flexibility of the distribution. On this basis, SN distribution was studied

and generalized extensively by many researchers [54, 55, 56, 57, 58]. The alternative

normal distribution, enables to model skewness, called alpha-skew-normal (ASN), was

introduced by Elal-Olivero [52]. The pdf of ASN distribution is given by

f (x;α) =
(1− αx)2 + 1

2 + α2
φ (x) , x ∈ <, α ∈ <, (4.71)

where α is an additional parameter controls the both skewness and uni-bimodal shapes.

Now, a new skew extension of the generalized-Normal (GN) distribution, introduced

by Nadarajah [59], is proposed by means of Elal-Olivero [52] approach. Note that GN

distribution is also known as GED. The pdf of the normal distribution is given by

34



f (x;µ, σ) =
1√
2πσ

exp

{
−(x− µ)2

2σ2

}
, (4.72)

where x ∈ <, µ ∈ < and σ > 0. A generalization of (4.72), called as the GN distribu-

tion, was introduced by Nadarajah [59] with replacing the power 2 with κ > 0. The

pdf of GN distribution is given by

f (x;µ, σ, κ) = K exp

{
−
∣∣∣∣x− µσ

∣∣∣∣κ} , (4.73)

where K = κ
2σΓ(1/κ)

. The GN distribution reduces to normal distribution for κ = 2.

Using the standardized random variable Z = (X − µ)/σ, the pdf of standardized GN

(SGN) distribution is given by

fSGN (z;κ) =
κ exp {−|z|κ}

2Γ (1/κ)
. (4.74)

The nth moment of standardized GN distribution is given by

E
(
Zk
)

=
1 + (−1)k

2Γ (1/κ)
Γ

(
1 + k

κ

)
. (4.75)

Definition 1. Using the approach of Elal-Olivero [52], a new skew extension of GN

distribution, called Alpha Skew Generalized Normal (ASGN) is proposed. The pdf of

ASGN distribution is obtained by

f (x;α, κ) =
(1− αx)2 + 1

2 + α2 Γ(3/κ)
Γ(1/κ)

κ exp {−|x|κ}
2Γ (1/κ)

, x ∈ <, (4.76)

where α ∈ < controls the skewness and bi-modality and κ > 0 controls the kurtosis of

the ASGN distribution.

The ASGN distribution contains following distributions as its sub-models:

X If α = 0, the ASGN reduces to the GN.

X If κ = 2, the ASGN reduces to the ASN.
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X If α = 0 and κ = 2 , the ASGN reduces to normal.

X If κ = 1 , the ASGN reduces to Alpha-Skew Laplace.

X If α = 0 and κ = 1 , the ASGN reduces to Laplace.

X If α = 0 and κ = 2 , the ASGN reduces to normal.

Figure 3 displays the plots of density functions of the ASGN distribution. As seen

in Figure 3, the ASGN distribution provides new opportunities to model skewness,

bimodality and fat-tailed structure of the data sets in many fields. Since the most

of the financial time series possess skewness and leptokurtotic properties, the ASGN

distribution could be a good alternative to remove lack of modeling ability of many

distributions in terms of VaR forecast.
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Figure 3: Plots of density functions for the ASGN distribution for several parameter
values.
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4.1.14.1. Moments

Proposition 1. Let X ∼ ASGN (α, κ), then kth moment of X is given by

E
(
Xk
)
ASGN

=
∞∫
−∞

xk(2−2αx+α2x2)
c(α,κ)

fSGN (x) dx

= 2
c(α,κ)

[
E
(
Zk
)
SGN
− αE

(
Zk+1

)
SGN

+ α2

2
E
(
Zk+2

)
SGN

]
,

(4.77)

where c (α, κ) = 2 +α2 [Γ (3/κ)/Γ (1/κ)] and E
(
Zk
)
SGN

is the kth moment of standar-

tized GN (κ), defined in (4.75).

Proof.

E
(
Xk
)

= 1
c(α,κ)

∞∫
−∞

xk (2− 2αx+ α2x2)fSGN (x) dx

= 1
c(α,κ)

{ ∞∫
−∞

2xkfSGN (x) dx− 2α
∞∫
−∞

xk+1fSGN (x) dx+ α2
∞∫
−∞

xk+2fSGN (x) dx

}
= 2

c(α,κ)

[
E
(
Zk
)
− αE

(
Zk+1

)
+ α2

2
E
(
Zk+2

)]
.

(4.78)

The first four moments of the ASGN distribution are obtained using (4.77) as follows:

E (X) = 2
c(α,κ)

[
−αΓ(3/κ)

Γ(1/κ)

]
,

E (X2) = 2
c(α,κ)

[
Γ(3/κ)
Γ(1/κ)

+ α2

2
Γ(5/κ)
Γ(1/κ)

]
,

E (X3) = 2
c(α,κ)

[
−αΓ(5/κ)

Γ(1/κ)

]
,

E (X4) = 2
c(α,κ)

[
Γ(5/κ)
Γ(1/κ)

+ α2

2
Γ(7/κ)
Γ(1/κ)

]
.

(4.79)

Using the first four moments of the ASGN distribution, skewness and kurtosis can be

obtained by

γ1 = E(X−µ)3

σ3 ,

γ2 = E(X−µ)4

σ4 − 3.
(4.80)

where µ = E (X) and σ =
√
E (X2)− µ2.
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Figure 4 displays the location, spread and shape measures of ASGN distribution. It is

clear from Figure 4 that the parameter α has more effect on mean, variance, skewness,

and kurtosis than parameter λ.
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Figure 4: The plots for location, spread and shape measures of the ASGN distribution.

4.1.14.2. Distribution Function

Proposition 2. Let X ∼ ASGN (α, κ), then the cdf of X is given by

F (x) =
1

c (α, κ)

[
2FSGN (x)− 2αF1 (x) + α2F2 (x)

]
, (4.81)

where Γ (a, b) denotes the incomplete gamma function and
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FSGN (x) =


Γ(1/κ,(−x)κ)

2Γ(1/κ)
, x ≤ 0

1− Γ(1/κ,(−x)κ)
2Γ(1/κ)

, x > 0

F1 (x) =


Γ(2/κ,(−x)κ)

2Γ(1/κ)
, x ≤ 0

1− Γ(2/κ,(−x)κ)
2Γ(1/κ)

, x > 0

F2 (x) =


Γ(3/κ,(−x)κ)

2Γ(1/κ)
, x ≤ 0

1− Γ(3/κ,(−x)κ)
2Γ(1/κ)

, x > 0

Proof.

F (x) = 1
c(α,κ)

x∫
−∞

(2− 2αt+ α2t2)fSGN (t) dt

= 1
c(α,κ)

{
x∫
−∞

2fSGN (t) dt− 2α
x∫
−∞

tfSGN (t) dt+ α2
x∫
−∞

t2fSGN (t) dt

}
= 2

c(α,κ)
[2FSGN (x)− 2αF1 (x) + α2F2 (x)] .

(4.82)

Here, F1 (x), F2 (x) and FSGN (x) can be obtained easily by following the results given

in Nadarajah [59]. The main idea is based on the z = (−x)κ transformation.

4.1.14.3. Stochastic Representation

Definition 2. Let the random variable X has the following pdf

fSC−ASGN (x;α, κ) =
(2 + α2x2)

2 + α2 Γ(3/κ)
Γ(1/κ)

fGN (x) , (4.83)

where −∞ < α <∞. This density function is called as symmetric-component random

variable of ASGN (α, κ). The pdf in (4.83) is denoted as S ∼ SCASGN (α, κ). Note

that the SCASGN reduces to GN (κ) for α = 0.

Here, two algorithms are given for generating random observations from the ASGN

distribution.

Proposition 3. (Acceptance-Rejection Algorithm)
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Let f(x) denotes the pdf of ASGN and f1(x) denotes the pdf of SCASGN, then the

supremum of these two functions is given by

M = sup
x

f (x)

f1 (x)
=

√
2 + 1√

2
. (4.84)

The below algorithm is useful to generate the random observations from X ∼ ASGN (α, κ).

1. Generate U ∼ uniform(0, 1) and S ∼ SCASGN(α, κ),

2. If U < 1
M

f(x)
f1(x)

, then X = S, otherwise, return to Step 1.

Proposition 4. (Inverse Transform Algorithm)

Let F (x) denotes the cdf of ASGN distribution. The below algorithm is useful to gen-

erate the random observations from X ∼ ASGN (α, κ).

1. Generate U ∼ uniform(0, 1) ,

2. Solve non-linear equation F (x)− u = 0, then X = x.

The uniroot function of R software can be used to solve given non-linear equation.

4.1.14.4. Standardized ASGN Distribution

Let ε = (X − µ)/σ, the random variable X can be expressed as X = εσ + µ. Thus,

the pdf of standardized ASGN distribution is given by

f (ε;α, κ) =
σ
{

(1− α [εσ + µ])2 + 1
}

2− α2 Γ(3/κ)
Γ(1/κ)

κ exp {−|εσ + µ|κ}
2Γ (1/κ)

. (4.85)

where µ and σ are given in (4.79), respectively.
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4.1.14.5. Estimation and Simulation Study

Estimation

Let x1, x2, . . . , xn be a random sample from ASGN (α, κ) distribution. Using Equation

(4.76), the ll function of ASGN distribution is given by

` (Θ) =
n∑
i=1

ln

[
(1− αxi)2 + 1

c (α, κ)

]
+

n∑
i=1

ln

[
κ exp {−|xi|κ}

2Γ (1/κ)

]
. (4.86)

where Θ = (α, κ) denotes the parameter vector. Taking partial derivatives of (4.86)

with respect to parameters, the following normal equations are obtained as

∂`

∂α
=

n∑
i=1

4xi (αxi − 1) Γ (1/κ) + 2α (αxi − 2) Γ (3/κ)

(α2x2
i − 2αxi + 2) (α2Γ (3/κ) + 2Γ (1/κ))

,

∂`
∂κ

=
n∑
i=1

 2Γ (1/κ) exp(−|xi|κ)
2kΓ(1/κ)

×
(
exp (−|xi|κ)− κ exp (−|xi|κ) |xi|κ log (|xi|) + exp (−|xi|κ)ψ(0) (1/κ)

)


−n
(

(κ2Γ(1/κ))
−1
α2Γ(3/κ)(ψ(0)(1/κ)−3ψ(0)(3/κ))

α2Γ(3/κ)
Γ(1/κ)

+2

)
.

where ψn (x) denotes the nth derivative of digamma function. The simultaneous so-

lutions of the ∂`
∂α

= 0, and ∂`
∂κ

= 0 equations give the maximum likelihood estimates

(MLEs) of (α, κ), say, (α̂, κ̂). Since the likelihood equations contain non-linear func-

tions, it is not possible to obtain explicit forms of the MLEs. Therefore, they have to

be solved by using numerical methods. Note that S-Plus, R or MATLAB can be used

for obtaining the MLEs of the parameters.

For interval estimation of the model parameters, the observed information matrix J (Θ)

is required. Under standard regularity conditions, when n → ∞, the distribution of

Θ̂ can be approximated by multivariate normal distribution, Np

(
0, J
(

Θ̂
)−1
)

where

J
(

Θ̂
)

is the total observed information matrix evaluated at Θ̂. The elements of J
(

Θ̂
)

are given in Appendix.
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Simulation Study

Now, the simulation study is conducted to investigate the performance of the MLEs

of ASGN distribution. For this goal, 10, 000 samples of sizes n = 50, 150 and 500

are generated from ASGN distribution by means of inverse transform method. The

following measures are used to evaluate the precision of the MLEs: averages of the

estimates (AEs), biases and mean square errors (MSEs).

The results of simulations study is given in Table 1. Table 1 shows that the AEs are

closed to nominal values. It means that estimates are quite stable. Moreover, biases

and MSEs approach to zero when n increases. It means that consistency property of the

MLEs holds. Figure 5 displays the true densities and the density functions evaluated

at average values of the MLEs given in Table 1 for n = 500. Figure 6 displays the Q-Q

plots of MLEs of ASGN distributions for n = 500. Figure 6 verifies the asymptotic

normality property of MLE. It is clear that the MLEs of ASGN distribution are near

to normal distribution.
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Figure 5: The pdf plots of ASGN distribution evaluated at the true parameter values
and the AEs for n = 500, (a) α = 2, κ = 2 (b) α = −2, κ = 2 (c) α = 0.5, κ = 3 and
(d) α = −0.5, κ = 3
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Figure 6: QQ normality plots of MLEs of ASGN for n = 500, (a) α = 2, κ = 2 (b)
α = −2, κ = 2 (c) α = 0.5, κ = 3 and (d) α = −0.5, κ = 3

Here, GARCH-ASGN model is introduced by means of standardized ASGN distribu-

tion given in (4.85). The ll function of GARCH model with the ASGN innovation
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distribution is given by

` (ψ) =
T∑
t=1

ln
(
σ
{

(1− α [εtσ + µ])2 + 1
})
− T ln

(
2− α2 Γ(3/κ)

Γ(1/κ)

)
− T ln (2Γ (1/κ))

+
T∑
t=1

ln (κ exp {−|εtσ + µ|κ})− 1
2

T∑
t=1

ln (h2
t )

(4.87)

where ψ = (m,ω, γ1, γ2, α, κ). The one-day-ahead VaR forecast of GARCH-ASGN

model is given by

V aRt+1 = m̂t+1 + Fp
−1(εt, α, κ)ĥt+1, (4.88)

where Fp
−1(εt, α, κ) is the qf of ASGN distribution at p level. The quantile estimations

of ASGN distribution is obtained by means of numerical integration methods. Note

that when the parameter α = 0, GARCH-ASGN model reduces to GARCH-GN model.

4.1.15. A New Generalized Skew-T Distribution

In this section, a new generalization of skew-T distribution is introduced by means of

combining the approaches of Azzalini [40] and Elal-Olivero [52]. Azzalini and Capi-

tanio [42] proposed the ST distribution which is the skew generalization of Student-t

distribution. ST distribution has some advantages over the normal and Student-t dis-

tributions in many application fields, such as financial risk modeling and management.

ST distribution enables to model the skewness and kurtosis, simultaneously. This prop-

erty of ST distribution gives an opportunity to increase its popularity in forecasting

VaR.

Motivated by the approaches of Azzalini and Capitanio [42] and Elal-Olivero [52], a

new generalization of Skew-T, called Generalized Alpha Skew-T (GAST), is proposed.

Definition 3. The pdf of GAST distribution is obtained as

f (x;α, λ, υ) =
(1− αx)2 + 1

c (α, λ, υ)
t (x; υ)T

(√
1 + υ

x2 + υ
λx; υ + 1

)
, υ > 2, x ∈ <, (4.89)
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where

c (α, λ, υ) = 1− α
[
δ(υ/π)1/2Γ ((υ − 1)/2)

/
Γ (υ/2)

]
︸ ︷︷ ︸

E[Y ]

+
α2

2
[υ/(υ − 2)]︸ ︷︷ ︸

E[Y 2]

. (4.90)

Here, E [Y ] and E [Y 2] are the moments of ST distribution.

GAST distribution contains some important distributions as follows:

X If α = 0, GAST reduces to ST.

X If λ = 0, GAST reduces to Alpha-skew-T.

X If ν →∞, GAST reduces to ASN.

X If α = 0 and ν →∞, GAST reduces to SN.

X If α = 0 and λ = 0, GAST reduces to Student-t.

X If α = 0, ν →∞ and λ = 0, GAST reduces to normal.

Note that alpha-skew-T (AST) distribution is the sub model of Alpha-Skew Generalized-

T distribution introduced by Acitas et al. [51].

Figure 7 displays the plots for the pdf of GAST distribution. As seen in Figure 7,

GAST distribution provides new opportunities to model skewness, bimodality and fat-

tailed structure of the data sets in many fields. Since the most of the financial time

series possess skewness and leptokurtotic properties, GAST distribution could be a

good candidate to remove lack of modeling ability of many distributions in terms of

VaR forecast.
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Figure 7: Probability density plots of GAST distribution for several parameter values
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4.1.15.1. Moments

Proposition 5. The moments of GAST distribution can be obtained from the moments

of ST distribution. Let X ∼ GAST (α, λ, υ), then kth moment of X is given by

E
[
Xk
]

=

{
E
[
Y k
]
− αE

[
Y k+1

]
+ α2

2
E
[
Y k+2

]}
c (α, λ, υ)

, (4.91)

where E
[
Y k
]

is the kth moment of ST (λ, ν), defined in Equation (4.26) and (4.18).

The first four moments of GAST distribution are obtained using Equation (4.77) as

follows:

E [X] =

{
δ(υ/π)1/2Γ((υ−1)/2)/Γ(υ/2)−αυ/(υ−2)+α2

2 (υ2 )
3/2

(Γ(υ−3
2 )/Γ(υ2 ))

√
2
π

3(δ−δ3)
}

c(α,λ,υ)
,

E [X2] =

{
υ/(υ−2)−α(υ2 )

3/2
(Γ(υ−3

2 )/Γ(υ2 ))
√

2
π

3(δ−δ3)+ 3α2

2 (υ2 )
4/2

(Γ(υ−4
2 )/Γ(υ2 ))

}
c(α,λ,υ)

,

E [X3] =


(
υ
2

)3/2 (
Γ
(
υ−3

2

)/
Γ
(
υ
2

))√
2
π
3 (δ − δ3)− 3α

(
υ
2

)4/2 (
Γ
(
υ−4

2

)/
Γ
(
υ
2

))
+α2

2

(
υ
2

)5/2 (
Γ
(
υ−5

2

)/
Γ
(
υ
2

))√
2
π

(15δ − 10δ3 + 3δ5)


c(α,λ,υ)

,

E [X4] =


3
(
υ
2

)4/2 (
Γ
(
υ−4

2

)/
Γ
(
υ
2

))
− α

(
υ
2

)5/2 (
Γ
(
υ−5

2

)/
Γ
(
υ
2

))√
2
π

(15δ − 10δ3 + 3δ5)

+15α2

2

(
υ
2

)6/2 (
Γ
(
υ−6

2

)/
Γ
(
υ
2

))


c(α,λ,υ)
.

The skewness and kurtosis measures of GAST distribution can be obtained by means

of first four raw moments given above. Figure 8 displays location, spread and shape

measures of GAST distribution. Figure 8 provides graphical interpretation about how

the additional shape parameter effects the location and dispersion measures. It is clear

in Figure 8 that the parameter α has more effect on mean, variance, skewness, and

kurtosis than parameter λ.
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Figure 8: The plots for location, spread and shape measures of GAST distribution
for ν = 7

4.1.15.2. Stochastic Representation

Proposition 6. If the random variables W ∼ AST (α, υ) and Z ∼ t (υ + 1) are inde-

pendent, then we have

W |

{√
1 + υ

W 2 + υ
λW > Z

}
∼ GAST (λ, α, υ) . (4.92)

Proof. Let X = W |
{√

1+υ
W 2+υ

λW > Z
}

, we obtain

P (X ≤ x) = P
(
W ≤ x|

√
1+υ
W 2+υ

λW > Z
)

=
P
(
W≤x,

√
1+υ

W2+υ
λW>Z

)
P
(√

1+υ

W2+υ
λW>Z

)

50



Then, we get

P

(
W ≤ x,

√
1 + υ

W 2 + υ
λW > Z

)
=

x∫
−∞

(1− αu)2 + 1

2 + α2 υ
υ−2

t (u, υ)T

(√
1 + υ

u2 + υ
λu, υ + 1

)
du

P
(√

1+υ
W 2+υ

λW > Z
)

=
∞∫
−∞

(1−αu)2+1
2+α2 υ

υ−2
t (u, υ)T

(√
1+υ
u2+υ

λu, υ + 1
)
du =

1
2+α2 υ

υ−2
c (α, λ, υ)

Thus, we obtain

P (X ≤ x) =

x∫
−∞

(1−αu)2+1

2+α2 υ
υ−2

t(u,υ)T
(√

1+υ

u2+υ
λu,υ+1

)
du

1
2+α2 υ

υ−2
c(α,λ,υ)

=
x∫
−∞

(1−αu)2+1
c(α,λ,υ)

t (u, υ)T
(√

1+υ
u2+υ

λu, υ + 1
)
du

. (4.93)

Then, the pdf corresponding to Equation (4.93) is given by

f (x;α, λ, υ) =
(1− αx)2 + 1

c (α, λ, υ)
t (x; υ)T

(√
1 + υ

x2 + υ
λt; υ + 1

)
. (4.94)

It is clear that Equation (4.94) is the pdf of GAST distribution.

Proposition 7. From Equation (4.94), the algorithm to generate data from GAST

distribution can be given as follows:

1. Generate W ∼ AST (α, υ) and Z ∼ t (υ + 1)

2. If
√

1+υ
W 2+υ

λW > Z, X = W , otherwise go to Step 1.
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4.1.15.3. Estimation and Simulation Study

Estimation

Let x1, x2, . . . , xn be a random sample from GAST (α, λ, υ) distribution. Using Equa-

tion (4.89), the ll function of GAST distribution is given by

` (Θ) =
n∑
i=1

log

[
(1− αxi)2 + 1

c (α, λ, υ)

]
+

n∑
i=1

log [t (xi; υ)] +
n∑
i=1

log

[
T

(√
1 + υ

x2
i + υ

λxi; υ + 1

)]
,

(4.95)

where Θ = (α, λ, υ) is the parameter vector and c (α, λ, υ) is defined in Equation

(4.90). Taking partial derivatives from Equation (4.95) with respect to parameters,

the following normal equations are obtained as

∂`

∂α
=

n∑
i=1

(2− αx2
i ) cα (α, λ, υ) + x2

i c (α, λ, υ)

(αx2
i − 2) c (α, λ, υ)

,

∂`

∂λ
= −ncλ (α, λ, υ)

c (α, λ, υ)
+

n∑
i=1

xi

√
υ + 1

x2
i + υ

ω∗,

∂`

∂υ
= −ncυ (α, λ, υ)

c (α, λ, υ)
+

n∑
i=1

τ ∗i +
n∑
i=1

 λxi (x
2
i − 1)

2
√

υ+1
x2
i+υ

(x2
i + υ)

2

ω∗i ,
where

ω∗i =
t
(√

1+υ
x2
i+υ

λxi; υ + 1
)

T
(√

1+υ
x2
i+υ

λxi; υ + 1
) ,

τ ∗i =
tυ (xi; υ)

t (xi; υ)
.

Here, cυ (α, λ, υ), cλ (α, λ, υ), cα (α, λ, υ) and tυ (xi; υ) are the partial derivatives of

c (α, λ, υ) and t (xi; υ) with respect to υ, λ, α and υ. The maximum likelihood estimates

(MLEs) of (α, λ, υ), say,
(
α̂, λ̂, υ̂

)
, are the simultaneous solutions of the equations:

∂`
∂α

= 0, ∂`
∂λ

= 0 and ∂`
∂υ

= 0. Since the likelihood equations contain non-linear functions,

it is not possible to obtain explicit forms of the MLEs. Therefore, they have to be solved
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by using numerical methods. S-Plus, R or MATLAB can be used for obtaining the

MLEs of the parameters.

For interval estimation of the model parameters, the observed information matrix J (Θ)

is required. Under standard regularity conditions, when n → ∞, the distribution of

Θ̂ can be approximated by multivariate normal distribution, Np

(
0, J
(

Θ̂
)−1
)

where

J
(

Θ̂
)

is the total observed information matrix evaluated at Θ̂. The elements of J
(

Θ̂
)

are given in Appendix.

Simulation Study

Here, the simulation study is conducted to investigate the performance of the MLEs

of GAST distribution. For this goal, 10, 000 samples of sizes n = 50, 150 and 500

are generated from GAST distribution by means of inverse transform method. The

following measures are used to evaluate the precision of the MLEs: AEs, biases, mean

relative errors (MREs) and MSEs. The results of simulations study are given in Table

2. Table 2 shows that the AEs are closed to nominal values. It means that estimates

are quite stable. Moreover, biases and MSEs approach to zero when n increases. It

means that consistency property of the MLEs holds. Figure 9 displays the true densities

and the density functions evaluated at average values of the MLEs given in Table 2

for n = 500. Figure 10 displays the Q-Q plots of MLEs of ASGN distributions for

n = 500. Figure 10 verifies the asymptotic normality property of MLE. It is clear that

the MLEs of ASGN distribution are near to normal distribution.
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Figure 9: Plots of the density functions for the GAST distribution at the true
parameter values and at the AEs for n = 500, (a) λ = 2, α = 2, υ = 5 (b)
λ = −0.5, α = 0.5, υ = 3 (c) λ = 0.5, α = −2, υ = 5 and (d) λ = 2, α = 3, υ = 5
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Figure 10: QQ normality plots of MLEs of GAST for n = 500, (a) λ = 2, α = 2, υ = 5
(b) λ = −0.5, α = 0.5, υ = 3 (c) λ = 0.5, α = −2, υ = 5 and (d) λ = 2, α = 3, υ = 5

Some of mathematical properties of the GAST distribution are presented above. Here,

GARCH-GAST model is introduced by means of standardized GAST distribution. The
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standardized GAST distribution is given by

f (ε;α, λ, υ) =
σ(1− α (εσ + µ))2 + 1

c (α, λ, υ)
t ((εσ + µ) ; υ)T

(√
1 + υ

(εσ + µ)2 + υ
λ (εσ + µ) ; υ + 1

)
,

(4.96)

where υ > 4, µ and σ can be obtained by (4.91). Mean and variance of GAST

distribution can be obtained by Equation (4.91). The ll function of GARCH model

with GAST innovation distribution is given by

` (ψ) =
T∑
t=1

ln
[
σ(1−α(εtσ+µ))2+1

c(α,λ,υ)

]
+

T∑
t=1

ln [t ((εtσ + µ) ; υ)]

+
T∑
t=1

ln
(
T
(√

1+υ
(εtσ+µ)2+υ

λ (εtσ + µ) ; υ + 1
))
− 1

2

T∑
t=1

ln (h2
t ).

(4.97)

where ψ = (m,ω, γ1, γ2, α, λ, υ). The one-day-ahead VaR forecast of GARCH-GAST

model is given by

V aRt+1 = m̂t+1 + Fp
−1(εt, α, λ, ν)ĥt+1. (4.98)

where Fp
−1(εt, α, λ, ν) is the qf of the GAST at p level. The quantile estimation of

GAST distribution is obtained by means of numerical integration method.

4.2. Semiparameteric Value-at-Risk Models

In this section, the most popular semi-parametric VaR model, based on the EVT, is

given comprehensively.

4.2.1. Extreme Value Theory

EVT has numerous applications in actuarial sciences, engineering, finance and envi-

ronmental fields. Two methods are widely used to apply EVT. The first method is

Block-Maxima (BM). BM is a traditional method and used to model the observed

maximum (minimum) values in blocks. The lengths of blocks can be determined as

monthly or yearly. Generalized Extreme Value (GEV) distribution is used to model

maximum (minimum) values observed in the blocks. The other method is Peaks-over-

Threshold (POT). POT method is widely used in finance and econometric modeling
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and deals with the conditional excess distribution over a given threshold value. The

POT method is based on the modeling of tail distribution with generalized Pareto

distribution (GPD). Let Fu (y) denotes the conditional excess distribution. Fu (y) is

defined as follows

Fu(y) = P (X − u ≤ y/X > u), (4.99)

where y = X − u denotes the excess values over a given threshold value. Fu(y) can be

re-defined as follows

Fu(y) =
Pr{X − u ≤ y,X > u}

Pr(X > u)
=
F (x)− F (u)

1− F (u)
. (4.100)

A theorem given by [60] and [61] shows that the excess distribution function, Fu (y),

can be approximated by GPD for a sufficiently high threshold u. The pdf of GPD is

given by

Gξ,σ(y) =

 1− (1 + ξ y
σ
)−1/ξ, ξ 6= 0

1− e−y/σ, ξ = 0
(4.101)

where y ≥ 0 for ξ ≥ 0 and 0 ≤ y ≤ σ
ξ

for ξ < 0 and ξ and σ are shape and scale

parameters of GP distribution, respectively. Isolating F (x) from (4.100), we get

F (x) = (1− F (u))Fu(y) + F (u), (4.102)

where Fu (y) is the cdf of GPD and F (u) = (n−Nu)/n. Then, substituting (4.101) in

(4.102), the following estimate for F (x) is obtained

F̂ (x) = 1− Nu

n
(1 +

ξ̂

σ̂
(x− û))−1/ξ̂, (4.103)

where ξ̂ and σ̂ are MLEs of ξ and σ, respectively. Note that Nu is the number of

observations over the defined threshold value u. Inverting (4.103) for a given probability

p, V aRp can be obtained as
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V aRp = û+
σ̂

ξ̂

[(
n

Nu

(1− p)
)−ξ̂
− 1

]
. (4.104)

In VaR estimation using POT method is applied to raw return data assuming the

distribution to be stationary or unconditional without considering the time-varying

volatility. POT method can also be considered as a dynamic framework, where the

conditional distribution of F is taken into account and the volatility of returns is

captured. The dynamic POT method is given comprehensively at below.

4.2.1.1. Dynamic POT-GPD Approach

McNeil and Frey [17] proposed the dynamic POT-GPD model combining GARCH

model with POT-GPD method. This model is known as GARCH-EVT model and

consists of two-step estimation procedure, can be given as follows:

1. The benchmark model, GARCH (1,1) is fitted to raw returns by the quasi max-

imum likelihood estimation (QMLE) to maximize the ll function and obtain the

one day ahead forecasts of mt+1 and ht+1 from the fitted model and extract the

standardized residuals for the next step. QML estimation of ψ is defined as:

ψ̂T = arg max LT (ψ) = argmin ÎT (ψ),

ÎT (ψ) = T−1
T∑
t=1

lt and lt =
ε2t
h2
t

+ log h2
t .

2. Standardized residual obtained from the GARCH(1,1) is modeled with POT

method to estimate V aRp (εt). Using the one-day-ahead forecasts of mt+1 and

mt+1 , V aRt+1 forecast can be obtained by

V aRt+1 = m̂t+1 + V aRp (εt) ĥt+1.

where V aRp (εt) can be obtained from (4.104).
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Threshold selection is difficult task and essential part for tail modeling with GPD. The

below sub-section is devoted to detail information about threshold selection tools in

POT-GPD method. Scarrott and MacDonald [62] provided comprehensive survey on

threshold estimation methods.

Here, the well-known threshold determination tools, Mean Excess (ME), Hill and

Threshold Stability plots, are examined.

X The first tool is ME plot for determination of threshold. ME function is given by

en(u) =

n∑
i=1

(Xi − u)

n∑
i=1

I{Xi>u}

. (4.105)

Figure 11 displays the ME plot of ISE-100 index. As seen from Figure 11, 0.02

can be chosen as optimal threshold value for this data set.
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Figure 11: The mean excess plot

Note that the upward linear trend above a given threshold value indicates that

the financial returns follows GPD with positive shape parameter, ξ. The op-

posite case indicates that he financial returns follows GPD with negative shape
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parameter, ξ.

X The second tool is Hill plot, introduced by Hill [63], for determination of thresh-

old. Let X(1), X(2), ..., X(n) ascending ordered sequence, the Hill estimator is

defined by

Hk,n =
1

k

k∑
i=1

log

(
X(i)

X(k+1)

)
. (4.106)

where n is the sample size, k is the exceedances, α = 1
ξ

is the tail index. The Hill

plot shows the estimated ξ̂ against to threshold value or upper order statistics.

The optimal threshold value can be determined where the parameter ξ̂ is nearly

stable.

X The third tool is threshold stability plot, described in Coles [64]. This plot

examines the sensitivity of maximum likelihood estimates of GPD parameters

to selected threshold value. The optimal threshold can be determined using the

similar approach in Hill plot.

These tools only provide a graphical information about the optimal threshold value. It

is not possible to determine the optimal threshold value for rolling window estimation

method or any continuous process with these type tools. Many traditional threshold

selection methods were proposed in literature, for instance, upper 10% rule by Du-

Mouchel [65], k =
√
n rule by Ferreira et al. [66] and k = n2/3

/
log (log (n)) by Loretan

and Philips [67].

Here, we use the method proposed by Reiss and Thomas [68]. The method is based on

the minimization of below function:

1

k

k∑
i=1

iβ
∣∣∣δ̂i −median(δ̂1, δ̂2, δ̂3, . . . , δ̂k

)∣∣∣. (4.107)

where δ̂ is the estimated shape parameter of GPD and 0 ≤ β ≤ 0.5 is the tuning

parameter. To apply the threshold determination tools and obtain GPD parameter

estimation, R packages can be used. The most used R packages for EVT can be given
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as follows: fextRemes, evir, evmix and tea. The tea package contains almost all

threshold estimation methods in literature. In this study, the tea is used to determine

optimal threshold value by methods of Reiss and Thomas [68]. The parameter esti-

mation of GPD is obtained by minimizing the negative ll function of GPD model by

optim function of R software.

4.3. Nonparametric Value-at-Risk Models

4.3.1. Historical Simulation

In this section, the non-parametric VaR models are investigated. The most simple VaR

model is HS model. The VaR based on the HS model is given by

V aRt+1 = Quantile {{Xt}nt=1 , p} . (4.108)

where p is the quantile at which VaR is calculated.

4.3.2. Filtered Historical Simulation

In this section, FHS model is defined. The steps of FHS model are given as follows:

X Let rt denote the daily log-returns. The benchmark GARCH(1,1) model, intro-

duced by Bollerslev [35], is defined as follows:

rt = mt + et,

et = εt ht, εt ∼ i.i.d.

h2
t = ω + γ1 e

2
t−1 + γ2h

2
t−1,

(4.109)

The ll function of rt with f (εt; τ) density function is given by

` (ψ) =
T∑
t=1

[
ln (f (εt; τ))− 1

2
ln
(
h2
t

)]
, (4.110)

where ψ = (m,ω, γ1, γ2, τ) is the parameter vector, τ is the shape parameter(s)

of f (εt; τ) and εt = et
ht

.
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X The standardized residuals of estimated GARCH(1,1) model are extracted as

follows:

εt =
êt

ĥt
, (4.111)

where êt is the estimated residual and ĥt is the corresponding daily estimated

volatility.

X Now, we can generate the first simulated residual by randomly (with replacement)

draw standardized residuals from the dataset with multiplying the one-day ahead

volatility forecast:

e∗t+1 = ε∗1ĥt+1, (4.112)

X The first simulated return for period t+ 1 can be obtained as follows:

R∗t+1 = m̂t+1 + e∗t+1, (4.113)

where e∗t+1 is the first simulated residual for period t+ 1.

This procedure is repeated B times of length T . Here, B represents the number of

bootstrapped samples and T represents the each of bootstrapped sample size. Then,

VaR for period t+ 1 can be forecasted as follows:

V aRt+1 =

B∑
b=1

Quantile
{
{R∗t}

T
t=1 , 100p

}
B

. (4.114)
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5. EVALUATION OF VALUE-AT-RISK MODELS

Backtesting methodology is used to decide the best performed VaR model based on

the accuracy of VaR forecast. The two well-known and widely used backtests are Un-

conditional Likelihood Ratio test, introduced by [69] and Conditional Likelihood Ratio

test, introduced by [70]. Here, these two backtest methods are given comprehensively.

Moreover, the loss functions have also critical importance for model evaluation. Even if

all models achieve to pass two backtest methods, we should compare their forecasting

errors. The following procedure is used to decide best model in terms of VaR accuracy.

1. The VaR forecasts of all candidate models are obtained.

2. Unconditional and conditional Likelihood Ratio tests are applied to decide which

model produce consistent VaR forecasts.

3. The forecasting errors of VaR models achieved to pass stage 2 is compared by

means of loss functions.

4. The lowest values of the loss functions represents the best model.

This section is devoted to model comparison tests and metrics of VaR models.

5.1. Unconditional Coverage

The first backtesting method is Likelihood Ratio test of unconditional coverage (LRuc)

proposed by Kupiec [69]. The aim of this method is to test the equality of failure rate

and its expected value. The LRuc test statistic is given by

LRuc = −2 ln

[
pn1(1− p)n0

π̂n1(1− π)n0

]
∼ χ2

1. (5.1)

where π̂ = n1/(n0 + n1) is the MLE of p, n1 represents the total violation and n0

represents the total non-violations forecasts. Note that if V aRt > rt violation occurs,

opposite case indicates the non-violation. Under the null hypothesis (H0 : p = π̂), the

LR statistic is asymptotically distributed as χ2 distribution with one degree of freedom.
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5.2. Conditional Coverage

Christoffersen [70] proposed a likelihood ratio test of conditional coverage LRcc to

remove the lack of Kupiec’s [69] test. The LRcc test investigates both the equality of

failure rate and expected one and also independently distributed violations. The LRcc

test statistic is given by

LRcc = −2 ln

[
(1− p)n0pn1

(1− π01)n00π01
n01(1− π11)n10π11

n11

]
∼ χ2

2. (5.2)

where nij is the number of observations with value i followed by j for i, j = 0, 1 and

πij = nij/
∑
j

nij are the probabilities, i, j = 1 denotes that the violation has been

occurred, otherwise indicates the opposite case. The LRcc statistic is asymptotically

distributed as χ2 distribution with two degree of freedom.

5.3. Loss Functions

The LRuc annd LRcc backtesting methods provide limited information to compare the

VaR models. To decide the best VaR model, the magnitude of violation should be

investigated whether the VaR model produce accurate forecasts. For this goal, the loss

functions are very useful in decision of the best model. In this section, the most used

loss functions are given.

5.3.1. Quadratic Loss Function

The performance evaluation of VaR models by means of LRuc and LRcc test can not

provide the sufficient evidence to decide which model produce the most accurate VaR

forecasts among others. For instance, some of the models may have the same violation

number with different forecast errors.

Lopez [71] proposed a test based on the quadratic loss function (QLF) to take into

account differences between realized returns and VaR forecasts. The QLF defined by
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Lopez [71] is given by

QLFt+1 =

 1 + (rt+1 − V aRt+1)2, if rt+1 < V aRt+1

0, if rt+1 ≥ V aRt+1

(5.3)

where rt+1 and V aRt+1 are the realized return and VaR forecast at time t+ 1, respec-

tively.

5.3.2. Regulator’s Loss Function

The another loss function, defined by Sarma et al. [72], is regulator’s loss function

(RLF). The RLF is given by

RLFt+1 =

 (rt+1 − V aRt+1)2, if rt+1 < V aRt+1

0, if rt+1 ≥ V aRt+1

(5.4)

where rt+1 and V aRt+1 are the realized return and VaR forecast at time t+ 1, respec-

tively.

5.3.3. Unexpected Loss

The unexpected loss (UL) is equal to average value of differences between realized

return and VaR forecasts. The magnitude of the violation is given by

ULt+1 =

 (rt+1 − V aRt+1), if rt+1 < V aRt+1

0, if rt+1 ≥ V aRt+1

(5.5)

where ULt+1 is the one-day-ahead magnitude of the violation at time t+ 1.

5.3.4. Firm’s Loss Functions

The QLF and UL loss functions do not consider the case in which the realized returns

exceed the VaR forecast. The appropriate loss function should take into consideration

the cost of excess capital. Because, overestimated VaR forecasts yield firms to hold
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much more capital value than required one. The main objective of any firm is to

maximize the their profits. For this reason, Sarma et al. [72] proposed the new loss

function, called Firm’s Loss Function (FLF). The FLF is given by

FLFt+1 =

 (rt+1 − V aRt+1)2, if rt+1 < V aRt+1

−βV aRt+1, if rt+1 ≥ V aRt+1

(5.6)

where β is the cost of excess capital. The another loss function was proposed by Abad

et al. [73] in the same way with Sarma et al. [72] The loss function, proposed by Abad

et al. [73] is given by

FABLt+1 =

 (rt+1 − V aRt+1)2, if rt+1 < V aRt+1

−β (rt+1 − V aRt+1) , if rt+1 ≥ V aRt+1

(5.7)

where β is the cost of excess capital.
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6. EMPIRICAL RESULTS

In this section, the usefulness of proposed VaR models are demonstrated by means of

five applications to real data sets. The first four application is related to published

and/or under review papers given in Section 1. The comprehensive empirical study is

given in fifth application contains all the models introduced in Section 4. The results

of backtesting and loss functions are used to decide the best performed model.

6.1. Application of ASGT Model

In this section, empirical results of ASGT study are presented.

6.1.1. Data Description of ASGT Model

The major index of Turkey, ISE-100 index, is used to demonstrate the forecasting

performance of GARCH-ASGT model in terms of accuracy of VaR. The used time series

data contains 1278 daily observations from 09.02.2012 to 07.03.2017. The descriptive

statistics of the log-returns of ISE-100 index are given in Table 3. Figure 12 displays

the daily log-returns of ISE-100 index and histogram of daily log-returns. The p-values

of skewness and kurtosis measures are obtained by the hypothesis tests of D’Agostino

[74] and Anscombe and Glynn [75].

Table 3: Summary statistics of ISE-100 index (09.02.2012-07.03.2017)

ISE-100

Number of observations Minimum Maximum Mean Median Std. Deviation
1278 -0.1106 0.0623 0.0003 0.0007 0.0140
Skewness Kurtosis Jarque-Bera
-0.5930 (p=<0.0001) 5.0700 (p=<0.0001) 1450.7610 (p=<0.0001)
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Figure 12: Daily log-returns of ISE-100 index

Table 3 shows that the mean return is close to 0. The Jarque-Bera (JB) test shows

that the ISE-100 index is not normally distributed. It can be viewed as an evidence

for significant skewness and excess kurtosis. Thus, it is clear that log return of ISE-100

index has non-normal characteristics, excess kurtosis, and fat tails.

The benchmark model, GARCH(1,1), defined in Equation (4.1), is estimated with six

different innovation distributions: normal, Student-t, GED, GT, SGT and ASGT dis-

tributions. Table 4 shows the estimated parameters of GARCH models. The rugarch

package in R is used to obtain parameter estimation of GARCH-N, GARCH-T and

GARCH-GED models and constrOptim function in R is used to minimize negative

ll function of GARCH-GT, GARCH-SGT and GARCH-ASGT models.
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Table 4: Estimated parameters of GARCH(1,1) models for ISE-100 index, the corre-
sponding SEs are in parenthesis and p-values in [·].

Parameters
ISE-100

Normal Student-t GED GT SGT ASGT

m 7.29× 10−4 8.70× 10−4 8.53× 10−4 9× 10−4 9.58× 10−4 6.19× 10−4

(3.68× 10−4) (3.34× 10−4) (3.29× 10−4 ) (3.32× 10−4) (3.70× 10−4) (3.60× 10−4)
[0.048] [0.009] [0.007] [0.007] [0.010] [0.031]

ω 1.06× 10−5 2.99× 10−6 5.88× 10−6 1× 10−5 9.92× 10−6 3.03× 10−6

(4.12× 10−6) (1.91× 10−6) (4.59× 10−6) (8.48× 10−6) (1.35× 10−6) (2.19× 10−6)
[0.012] [0.021] [0.341] [0.238] [<0.001] [0.166]

γ1 0.064 0.032 0.045 0.123 0.123 0.033
(0.017) (0.019) (0.02) (0.084) (0.052) (0.012)
[<0.001] [<0.001] [0.088] [0.143] [0.018] [0.006]

γ2 0.881 0.951 0.923 0.856 0.8562731 0.951
(0.033) (0.018) (0.042) (0.083) (0.031) (0.021)
[<0.001] [<0.001] [<0.001] [<0.001] [<0.001] [<0.001]

υ - 5.569 - 1.642 1.706 2.448
(0.803) (0.476) (0.510) (0.859)
[<0.001] [<0.001] [<0.001] [0.004]

κ - - 1.279 2.303 2.271974 2.155
(0.063) (0.379) (0.370) (0.289)
[<0.001] [<0.001] [<0.001] [<0.001]

α - - - - - 0.157
(0.011)
[<0.001]

η - - - - -0.045 -
(0.021)
[0.031]

−` -3683.52 -3740.26 -3730.03 -3732.78 -3733.498 -3742.12

Based on the results given in Table 4, GARCH-ASGT model has the lowest ll value

among others and exhibits superior fit to standardized residuals. The γ1 and γ2 param-

eters are statistically significant. Moreover, skewness parameters of SGT and ASGT

distributions are found statistically significant. It is an evidence that the distribution

of εt exhibits skewness and kurtosis. Therefore, it is easy to conclude that the normal

distribution is unsuitable for innovation process of GARCH models. Figure 13 displays

the estimated densities of innovation distributions for standardized residuals.
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Figure 13: Estimated densities for standardized residuals

6.1.2. Backtesting Results of ASGT Model

In this subsection, rolling window estimation procedure is used to compare the out-

of-sample performance of GARCH models in terms of VaR accuracy. Rolling window

estimation produce allows us to capture time-varying characteristics of the time series

in different time periods. Window length is determined as 678 and next 600 daily

returns are used to evaluate the out-of-sample performance of VaR models.

Table 5 and 6 show the bactesting results of VaR models. All used VaR models are

evaluated by comparing the failure rates and using four backtesting results. Accord-

ing to failure rates, GARCH models specified under the normal, Student-t and GED

innovation distributions perform poorly for both confidence levels, whereas GARCH-

GT, GARCH-SGT and GARCH-ASGT outperform to other models and shows great

consistency for both confidence levels. Since normal, Student-t and GED distributions

are symmetric about the zero, these distributions fail to capture skewness in financial

returns.
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Table 5: Backtesting results of VaR models for 97.5% confidence level (p = 0.025)

Models
Mean

VaR (%)
Failure

rate
LRuc LRcc AQLF UL

GARCH-N -2.696 0.032 1.010 (0.314) 2.255 (0.323) 0.10865 -0.0353
GARCH-Student-t -2.701 0.032 1.010 (0.314) 2.255 (0.323) 0.10501 -0.0337

GARCH-GED -2.793 0.028 0.262 (0.608) 1.255 (0.533) 0.09592 -0.0312
GARCH-GT -2.930 0.025 0 (1) 0.771(0.680) 0.08290 -0.0274

GARCH-SGT -2.933 0.025 0 (1) 0.771(0.680) 0.08301 -0.0273
GARCH-ASGT -2.966 0.023 0.069 (0.791) 0.740 (0.691) 0.08247 -0.0272

p-values of LRuc and LRcc tests are presented in parentheses.

GARCH-GT, GARCH-SGT and GARCH-ASGT models produce similar results in the

basis of failure rates. To understand the differences between these three models deeply,

LRuc, LRcc, average QLF (AQLF ) and UL are used. Based on the LRcc, AQLF and

UL criteria, GARCH-ASGT model outperforms to GARCH-GT and GARCH-SGT

models for both confidence levels. GARCH-GT and GARCH-SGT models outperform

to GARCH-ASGT model only in terms of LRuc results for 97.5% confidence level.

Consequently, GARCH-ASGT model generates the most reliable VaR forecasts among

others for both confidence levels on the basis of backtesting results. Moreover, it is clear

that the VaR forecasts of GARCH-ASGT model has the lowest forecast errors among

others. This fact reveals that the ASGT innovation distribution provides the superior

fits to conditional return series and enables to model both skewness and kurtosis in

financial return series.

Table 6: Backtesting results of VaR models for 99% confidence level (p = 0.01)

Models
Mean

VaR (%)
Failure

rate
LRuc LRcc AQLF UL

GARCH-N -3.212 0.022 6.185 (0.012) 6.762 (0.034) 0.07042 -0.02256
GARCH-Student-t -3.496 0.017 2.243 (0.134) 2.583(0.274) 0.05376 -0.01625

GARCH-GED -3.517 0.017 2.243 (0.134) 2.583(0.274) 0.05284 -0.01585
GARCH-GT -3.798 0.012 0.159 (0.689) 0.325 (0.849) 0.03943 -0.01280

GARCH-SGT -3.804 0.012 0.159 (0.689) 0.325 (0.849) 0.03870 -0.01266
GARCH-ASGT -3.846 0.010 0 (1) 0.121 (0.941) 0.03850 -0.01237

p values of LRuc and LRcctests are presented in parentheses.

72



Figures 14 and 15 display the VaR forecasts of models for both confidence levels.

Based on these plots and backtesting results, it is clear that GARCH-ASGT model

outperforms among others especially for high quantiles.
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Figure 14: Daily VaR forecast of GARCH models with different innovation distribu-
tions for 97.5% confidence level
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Figure 15: Daily VaR forecast of GARCH models with different innovation distribu-
tions for 99% confidence level
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6.2. Application of GAST model

In this section, empirical results of GAST study are presented.

6.2.1. Data Description of GAST Model

In this section, S&P-500 index is used. The used time series data contains 792 daily

log-returns from 03.01.2014 to 24.02.2017. The descriptive statistics of the log-returns

of S&P-500 index are given in Table 7. Figure 16 displays the daily log-returns of

S&P-500 index.

Table 7: Summary statistics of S&P-500 index

SP-500

Number of observations 792
Minimum -0.0402
Maximum 0.0382

Mean 0.0003
Median 0.0003

Std. Deviation 0.0082
Skewness -0.3736
Kurtosis 5.4270

Jarque-Bera 212.9143 (p<0.001)
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Figure 16: Daily log-returns of S&P-500 index

Table 7 shows that the mean return is closed to 0. The JB test shows that the ISE-

100 index is not normally distributed. It can be viewed as an evidence for significant

skewness and excess kurtosis. Thus, it is clear that log return of S&P-500 index has

non-normal characteristics, excess kurtosis, and fat tails.

The benchmark models, GARCH(1,1) and GJR-GARCH(1,1), are estimated with four

different innovation distributions: Normal, Student-t, ST, and GAST. Table 8 shows

the estimated parameters of models specified under four different innovation distribu-

tions. The rugarch package in R software is used to obtain parameter estimation of

normal and Student-t models. The constrOptim function in R software is used to

minimize negative ll function of GARCH-ST, GJR-GARCH-ST, GARCH-GAST and

GJR-GARCH-GAST models.
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Figure 17: Diagnostic plots of GJR-GARCH-GAST model

Table 8 shows that GJR-GARCH-GAST model has the lowest ll value among others

and therefore, GJR-GARCH-GAST model could be chosen as the best model for the

dataset. Based on the estimated parameters, the γ2 and γ3 are statistically signifi-

cant. Therefore, it is clear that bad news have more impact on volatility than good

news. Figure 17 displays the diagnostic plots of GJR-GARCH-GAST model. Figure

17 proves that GJR-GARCH-GAST model is statistically valid and exhibits superior

fits to innovations of GJR-GARCH(1,1) models.
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6.2.2. Backtesting Results of GAST Model

Rolling window estimation procedure is used to estimate parameters of GARCH mod-

els. Window length is determined as 292 and next 500 daily returns are used to compare

the performance of VaR models.

Table 9 shows the backtesting results for GARCH(1,1)-N, GJR-GARCH(1,1)-N, GARCH(1,1)-

T,GJR-GARCH(1,1)-T, GARCH(1,1)-ST, GJR-GARCH(1,1)-ST, GARCH(1,1)-GAST

and GJR-GARCH(1,1)-GAST models for long position. Table 10 shows the backtest-

ing results of VaR models for the short position. All used VaR models are evaluated

by comparing the failure rates and using LRuc, LRcc, average RLF (ARLF) and UL

backtesting results.

When considered the out-of-sample performance of VaR models for long position,

GARCH models specified under normal, Student-t and ST distributions perform poorly

at 0.025% level and produce underestimated VaR forecasts on the basis of failure rates

and GJR-GARCH-GAST model produces the overestimated VaR forecast at 0.025%

level. GARCH-GAST model produces more accurate VaR forecast and has the mini-

mum ARLF and UL values among others. Consequently, GARCH-GAST model could

be chosen the best model for 0.025% level.

GJR-GARCH-ST, GJR-GARCH-GAST and GARCH-GAST models produce the sim-

ilar results for 0.01% level on the basis of failure rates. When taking into consid-

eration the backtesting results of these models, it is clear that GARCH-GAST and

GJR-GARCH-GAST models, respectively, have the minimum ARLF and UL values.

Therefore, GJR-GARCH-GAST model could be chosen as the best model for 0.01%

level.
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Table 9: Backtesting results of VaR models for long position (p = 0.025 and p = 0.01)

p=0.025

Models Mean VaR Failure rate LRuc LRuc ARLF UL

GARCH-N -1.577 0.042 4.938 (0.026) 6.102 (0.047) 0.0267 -0.0233
GJR-GARCH-N -1.662 0.032 0.925 (0.336) 1.317 (0.518) 0.0224 -0.0162

GARCH-T -1.617 0.038 2.998 (0.083) 4.698 (0.095) 0.0247 -0.0212
GJR-GARCH-T -1.582 0.040 3.916 (0.047) 3.965 (0.137) 0.0283 -0.0201

GARCH-ST -1.725 0.032 0.924 (0.336) 1.317 (0.517) 0.0220 -0.0182
GJR-GARCH-ST -1.722 0.034 1.496 (0.221) 1.768 (0.412) 0.0251 -0.0160
GARCH-GAST -1.854 0.022 0.192 (0.661) 1.621 (0.444) 0.0175 -0.0139

GJR-GARCH-GAST -1.811 0.016 1.901(0.167) 2.166(0.339) 0.0189 -0.0121

p=0.01

Models Mean VaR Failure rate LRuc LRuc ARLF UL

GARCH-N -1.881 0.024 7.111 (0.008) 8.263 (0.016) 0.0169 -0.0141
GJR-GARCH-N -1.974 0.016 1.538 (0.214) 1.798 (0.406) 0.0166 -0.0114

GARCH-T -2.045 0.014 0.718 (0.396) 3.804 (0.149) 0.0140 -0.0115
GJR-GARCH-T -2.000 0.020 3.913 (0.048) 4.322 (0.115) 0.0206 -0.0116

GARCH-ST -2.171 0.014 0.718 (0.396) 3.804 (0.149) 0.0128 -0.0104
GJR-GARCH-ST -2.168 0.010 0(1) 0.101 (0.951) 0.0194 -0.0100
GARCH-GAST -2.306 0.012 0.189 (0.663) 3.901 (0.142) 0.0103 -0.0087

GJR-GARCH-GAST -2.258 0.010 0(1) 0.102(0.951) 0.0114 -0.0082

p values of LR-uc and LR-cc tests are presented in parentheses.

When considered the out-of-sample performance of VaR models for short position,

all models pass LRuc and LRcc tests for both confidence levels. However, GARCH-

N, GJR-GARCH-N, GARCH-T, GJR-GARCH-T and GARCH-ST models produce

overestimated VaR forecasts at 97.5% level on the basis of failure rates. GJR-GARCH-

ST and GARCH-GAST models produce more accurate VaR forecast at 97.5% level.

Since GARCH-GAST has the minimum ARLF and UL values among others, GARCH-

GAST model could be chosen as the best model for 97.5% level.

All VaR models produce similar results at 99% level on the basis of failure rates, LRuc

and LRcc tests results. When taking into consideration the ARLF and UL results,

it is clear that GARCH-GAST model has the minimum values for these statistics.

Therefore, GARCH-GAST model could be chosen as the best model for 99% level.
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Table 10: Backtesting results of VaR models for short position (p = 0.975 and p =
0.99)

p=0.975

Models Mean VaR Failure rate LRuc LRuc ARLF UL

GARCH-N 1.671 0.984 1.901 (0.167) 2.161 (0.339) 0.0024 0.0047
GJR-GARCH-N 1.678 0.980 0.549 (0.458) 0.958 (0.619) 0.0031 0.0057

GARCH-T 1.729 0.988 4.278 (0.038) 4.424 (0.109) 0.0028 0.0043
GJR-GARCH-T 1.696 0.980 0.549 (0.458) 0.958 (0.619) 0.0030 0.0049

GARCH-ST 1.602 0.982 1.111 (0.291) 1.442 (0.486) 0.0031 0.0053
GJR-GARCH-ST 1.604 0.972 0.177 (0.673) 0.986 (0.611) 0.0053 0.0086
GARCH-GAST 1.614 0.978 0.192 (0.661) 0.688 (0.708) 0.0023 0.0042

GJR-GARCH-GAST 1.537 0.966 1.496 (0.221) 1.768 (0.419) 0.0037 0.0079

p=0.99

Models Mean VaR Failure rate LRuc LRuc ARLF UL

GARCH-N 1.975 0.996 2.352 (0.125) 2.369 (0.305) 0.0010 0.0016
GJR-GARCH-N 1.989 0.994 0.943 (0.331) 0.979 (0.613) 0.0011 0.0023

GARCH-T 2.157 0.996 2.352 (0.125) 2.369 (0.305) 0.0010 0.0015
GJR-GARCH-T 2.113 0.994 0.943 (0.331) 0.979 (0.613) 0.0011 0.0018

GARCH-ST 1.950 0.996 2.352 (0.125) 2.369 (0.305) 0.0012 0.0017
GJR-GARCH-ST 1.793 0.986 0.718 (0.396) 0.917 (0.632 0.0023 0.0043
GARCH-GAST 1.912 0.994 0.943 (0.331) 0.979 (0.613) 0.0007 0.0013

GJR-GARCH-GAST 1.787 0.986 0.718(0.396) 0.917(0.632) 0.0009 0.0026

p values of LR-uc and LR-cc tests are presented in parentheses.

Figures 18 and 19 display the VaR forecasts of the models for long and short positions.

Based on the Figures 18 and 19, it is concluded that the GARCH models with GAST

innovation distribution exhibit great consistency for estimating the true quantile value

of innovation distribution.
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Figure 18: Daily VaR forecast of GARCH models with different innovation distribu-
tions for 97.5% and 99% confidence levels
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Figure 19: Daily VaR forecast of GJR-GARCH models with different innovation
distributions for 97.5% and 99% confidence levels
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6.3. Application of FHS Model

In this section, empirical results of FHS study are presented. The goal of this empirical

study is to show whether the distributional assumption on innovation process effects

the accuracy of VaR forecast for FHS model.

6.3.1. Data description of FHS Model

ISE-100 index of Turkey is used to evaluate the performance of FHS models in terms

of accuracy of VaR forecasts. The time series data contains 1092 daily log-returns from

03.01.2013 to 04.05.2017. The descriptive statistics of the log-returns of ISE-100 index

are given in Table 11.

Table 11: Summary statistics of ISE-100 index (03.01.2013-04.05.2017)

ISE-100

Number of observations 1092
Minimum −0.048
Maximum 0.027

Mean 6.6× 10−5

Median 2× 10−4

Std. Deviation 0.006
Skewness −0.603
Kurtosis 4.957

Jarque-Bera 1190.970 (p <0.001)

Table 11 shows that the mean return is close to 0. The JB test shows that the ISE-

100 index is not normally distributed. It can be viewed as an evidence for significant

skewness and excess kurtosis. Thus, it is clear that log return of ISE-100 index has

non-normal characteristics, excess kurtosis, and fat tails. Figure 20 displays the daily

log-returns of ISE-100 index.
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Figure 20: Daily log-returns of ISE-100 index

Figure 21 displays the time-varying skewness and kurtosis of ISE-100. For Figure 21,

window length is determined as 392 and rolling window procedure is used. Based

on Figure 21, it is clear that skewness and kurtosis of ISE-100 index exhibit great

variability across the time.
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Figure 21: Time varying skewness and kurtosis plots of ISE-100 index

The benchmark model, GARCH(1,1), is estimated with six different innovation distri-
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butions: Normal, SN, Student-t, ST, GED and SGED. Table 12 lists the estimated

parameters of GARCH models. The rugarch package in R software is used to obtain

parameter estimation of normal, Student-t, GED and SGED models. The constrOp-

tim function in R software is used to minimize negative ll functions of GARCH-ST

and GARCH-SN models.

Table 12: In-sample performance of GARCH models under skewed and fat-tailed
innovation distributions

Parameters Normal Student-t ST SN GED SGED

m 5.24× 10−4 5.67× 10−4 8.56× 10−4 4.05× 10−4 5.67× 10−4 3.51× 10−4

3.41× 10−4 3.04× 10−4 3.60× 10−4 3.34× 10−4 3.77× 10−4 3.26× 10−4

ω 3.69× 10−6 2.01× 10−6 2.27× 10−6 3.65× 10−6 2.72× 10−6 2.63× 10−6

1.50× 10−6 1.53× 10−6 6.71× 10−6 1.73× 10−6 1.66× 10−6 1.57× 10−6

γ1 0.1194 0.0759 0.1510 0.1460 0.0930 0.0873
0.0413 0.0336 0.2940 0.0560 0.0393 0.0353

γ2 0.8234 0.8908 0.8240 0.7950 0.8600 0.8650
0.0449 0.0485 0.3130 0.0662 0.0518 0.0486

ν - 4.7490 4.8760 - 1.2020 -
- 1.1600 0.5620 - 0.1040 -

λ - - −0.2750 −1.5050 - 0.8860
- - 2.4260 0.2630 - 0.0440

κ - - - - - 1.2200
- - - - - 0.1093

−` −1381.110 −1405.003 −1402.263 −1388.180 −1401.060 −1402.730

Based on figures in Table 12, we conclude that GARCH-T and GARCH-SGED models

have the lower ll value among others. Since GARCH-T model has the lowest ll value,

it could be chosen as the best model for in-sample period. Moreover, the parameters

γ1 γ2 are highly significant for all GARCH models.

6.3.2. Backtesting Results of FHS Model

In this subsection, rolling window estimation procedure is used to estimate parame-

ters of GARCH models. Then, VaR forecasts of FHS models are obtained by using

estimated parameters of GARCH models, one-day-ahead forecasts of conditional mean

and conditional variance and standardized residuals extracted from estimated GARCH

models. Window length is determined as 392 and next 700 daily returns are used to
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compare the performance of VaR models.

Table 13 shows the backtesting results for FHS-N, FHS-T, FHS-ST, FHS-SN, FHS-

GED and FHS-SGED models. LRuc, LRcc, average RLF (ARLF) and UL results are

used to decide the best performed FHS model on the basis of accuracy of VaR forecasts.

Table 13 indicates that all FHS models perform well based on the results of LRuc, LRcc

tests. On the other hand, even if FHS models have similar results in view of LRuc,

LRcc, they have different failure rates and forecast errors. The failure rates of FHS-T

and FHS-ST at p = 0.05 and FHS-GED model at p = 0.01 are more close to nominal

values. Moreover, loss functions are useful to compare VaR models with their forecast

errors. Based on the ARLF and UL results, we conclude following results: (i) FHS-SN

is the best performed model at p = 0.05 and p = 0.025 levels; (ii) FHS model with

GED innovation distribution provides the most accurate VaR forecasts among other

at p = 0.01 level.

Figures 22 displays the VaR forecasts of FHS models specified under six innovation

distributions. As seen in Figure 22, the assumption on innovation process does not

affect the VaR forecasts of FHS model soulfully. However, the GED could be preferable

to reduce the forecast error of the FHS model, especially at high quantiles.
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Table 13: Backtesting results of VaR models for long position (p = 0.05, p = 0.025,
and p = 0.01)

p=0.05

Models Mean VaR (%) N. Of Vio. Failure rate LR-uc LR-cc ARLF UL

FHS-N -0.910 29 0.041
1.146

(0.284)
1.186

(0.552)
0.0172063 -0.0179110

FHS-SN -0.911 29 0.041
1.146

(0.284)
1.186

(0.552)
0.0171900 -0.0178643

FHS-T -0.897 32 0.046
0.278

(0.597)
0.459

(0.794)
0.0173740 -0.0181385

FHS-GED -0.899 30 0.043
0.788

(0.374)
0.863

(0.649)
0.0172983 -0.0180858

FHS-SGED -0.904 30 0.043
0.788

(0.374)
0.863

(0.649)
0.0173162 -0.0179867

FHS-ST -0.897 32 0.046
0.278

(0.597)
0.459

(0.794)
0.0173437 -0.0181591

p=0.025

Models Mean VaR (%) N. Of Vio. Failure rate LR-uc LR-cc ARLF UL

FHS-N -1.193 20 0.029
0.350

(0.554)
0.630

(0.729)
0.0097984 -0.0108364

FHS-SN -1.196 20 0.029
0.350

(0.554)
0.630

(0.729)
0.0097622 -0.0107498

FHS-T -1.177 20 0.029
0.350

(0.554)
0.630

(0.729)
0.0098350 -0.0108600

FHS-GED -1.179 20 0.029
0.350

(0.554)
0.630

(0.729)
0.0097898 -0.0108694

FHS-SGED -1.187 20 0.029
0.350

(0.554)
0.630

(0.729)
0.0098099 -0.0107848

FHS-ST -1.177 20 0.029
0.350

(0.554)
0.630

(0.729)
0.0098287 -0.0108752

p=0.01

Models Mean VaR (%) N. Of Vio. Failure rate LR-uc LR-cc ARLF UL

FHS-N -1.546 9 0.013
0.529

(0.466)
0.764

(0.682)
0.0052475 -0.0051635

FHS-SN -1.549 9 0.013
0.529

(0.466)
0.764

(0.682)
0.0052483 -0.0051776

FHS-T -1.526 9 0.013
0.529

(0.466)
0.764

(0.682)
0.0052399 -0.0051979

FHS-GED -1.530 8 0.011
0.137

(0.710)
0.323

(0.851)
0.0052125 -0.0051546

FHS-SGED -1.538 9 0.013
0.529

(0.466)
0.764

(0.682)
0.0052148 -0.0051849

FHS-ST -1.526 9 0.013
0.529

(0.466)
0.764

(0.682)
0.0052135 -0.0051634

p values of LR-uc and LR-cc tests are presented in parentheses.
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Figure 22: Daily VaR forecast of GARCH models with different innovation distribu-
tions for 97.5% and 99% confidence levels
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6.4. Application of ASGN Model

In this section, empirical results of ASGN study are presented.

6.4.1. Data Description of ASGN Model

To demonstrate the forecasting performance of GARCH model with ASGN innovation

distribution, ISE-100 index is used. The used time series data contains 1278 daily

observations from 09.02.2012 to 07.03.2017. Here, the used time series data set is

the same with ASGT model. Therefore, the descriptive statistics are omitted and

corresponding statistics can be found in Section 6.1.1.

The benchmark model GARCH(1,1), defined in (4.1), is estimated with five different

innovation distributions: normal, Student-t, SN, GN and ASGN. Table 14 shows the

estimated parameters of GARCH models. The rugarch package in R is used to obtain

parameter estimation of GARCH-N and GARCH-T models and constrOptim func-

tion in R is used to minimize negative ll function of GARCH-SN, GARCH-GN and

GARCH-ASGN models.
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Table 14: Estimated parameters of GARCH(1,1) model for ISE-100 index, the corre-
sponding standard errors are given in second line.

ISE-100

Parameters Normal Student-t GN SN ASGN

m 7.29× 10−4 8.70× 10−4 8.53× 10−4 5.36× 10−4 6.19× 10−4

3.68× 10−4 3.34× 10−4 3.29× 10−4 3.72× 10−4 3.63× 10−4

0.048 0.009 0.007 0.149 0.088
ω 1.06× 10−5 2.99× 10−6 5.88× 10−6 9× 10−6 6.52× 10−6

4.12× 10−6 1.91× 10−6 4.59× 10−6 4.00× 10−6 5.28× 10−6

0.012 0.021 0.341 0.031 0.217
γ1 0.064 0.032 0.045 0.056 0.047

0.017 0.019 0.020 0.017 0.022
<0.001 <0.001 0.088 0.001 0.035

γ2 0.881 0.951 0.923 0.896 0.918
0.033 0.018 0.042 0.036 0.048
<0.001 <0.001 <0.001 <0.001 <0.001

υ - 5.569 - -
0.803
<0.001

κ - - 1.279 - 1.287
0.063 0.061
<0.001 <0.001

α - - - - 0.163
0.076
<0.001

λ - - - 0.891 -
0.029
<0.001

−` -3683.52 -3740.26 -3730.03 -3689.94 -3741.05

As seen in Table 14, GARCH-ASGN model has the lowest ll value among others and

exhibits superior fit to standardized residuals. The parameters γ1 and γ2 are statis-

tically significant. Figure 23 displays the diagnostic plots of GARCH-ASGN model.

These figures reveal that standardized ASGN distribution provides the superior fits to

standardized residuals of GARCH(1,1) model.
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Figure 23: Diagnostic plots of GARCH-ASGN model

6.4.2. Backtesting Results of ASGN Model

Rolling window estimation procedure is used to estimate parameters of GARCH models

specified under different innovation distributions. Window length is determined as 678

and next 600 daily log-returns are used to compare the performance of VaR models.

The out-of-sample performance of VaR models are evaluated by comparing the failure

rates, LRuc, LRcc, average RLF (ARLF) and UL results.

Tables 15 and 16 show the backtesting results of GARCH models for 97.5% and 99%

confidence levels. As seen in Tables 15 and 16, GARCH-ASGN model yields higher

VaR forecasts than other competitive models. The failure rates of GARCH-ASGN
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model are more closer to nominal values. According to LRuc and LRcc results, all

models produce accurate VaR forecasts. Based on the this results, it is clear that the

failure rates of the VaR models is consistent with the expected one. Hence, all models

can produce accurate VaR forecasts for ISE-100 index. However, AQLF and UL results

show that which model produces the more accurate VaR forecasts. The lower values of

AQLF and UL, indicates the more accurate VaR forecasts. Tables 15 and 16 show that

the GARCH-ASGN model has the lowest values of AQLF and UL results. Therefore,

GARCH-ASGN model can be chosen as the best performed model than among others.

Table 15: Backtesting results of VaR models for ISE-100 index at p = 0.025

Models Mean VaR (%) Failure rate LRuc LRcc AQLF UL

GARCH-N -2.696 0.032 1.010 (0.314) 2.255 (0.323) 0.10865 -0.0353
GARCH-t -2.701 0.032 1.010 (0.314) 2.255 (0.323) 0.10501 -0.0337

GARCH-GN -2.793 0.028 0.262 (0.608) 1.255 (0.533) 0.09592 -0.0312
GARCH-SN -2.825 0.028 0.262 (0.608) 1.255 (0.533) 0.06675 -0.0308

GARCH-ASGN -3.020 0.023 0.069 (0.791) 0.741 (0.691) 0.0575 -0.0263

p values of LR-uc and LR-cc tests are presented in parentheses.

Table 16: Backtesting results of VaR models for ISE-100 index at p = 0.01

Models Mean VaR (%) Failure rate LR-uc LR-cc AQLF UL

GARCH-N -3.212 0.022 6.185 (0.012) 6.762 (0.034) 0.0704 -0.0226
GARCH-t -3.496 0.017 2.243 (0.134) 2.583 (0.274) 0.0538 -0.0163

GARCH-GN -3.517 0.017 2.243 (0.134) 2.583 (0.274) 0.0528 -0.0158
GARCH-SN -3.387 0.018 3.377 (0.066) 3.788 (0.151) 0.0408 -0.0182

GARCH-ASGN -3.768 0.012 0.159 (0.689) 0.325 (0.849) 0.0302 -0.0141

p values of LR-uc and LR-cc tests are presented in parentheses.

Figures 24 and 25 display the VaR forecasts of GARCH models for for 97.5% and 99%

confidence levels, respectively. These figures reveal that GARCH model with ASGN

innovation distribution exhibits great consistency for estimating the true quantile value

of innovation distribution.
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Figure 24: Daily VaR forecasts of GARCH models for 97.5% confidence level
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Figure 25: Daily VaR forecasts of GARCH models for 99% confidence level
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6.5. Comprehensive Empirical Study

In this section, the VaR models given in Section 4 are compared by means of the results

of backtesting and loss functions.

6.5.1. Data Description

Nasdaq-100 index is used to evaluate the performance of all VaR models given in Section

4 in forecasting daily VaR. The used time series data contains 1450 daily observations

from 01.03.2011 to 01.12.2017. The descriptive statistics of the log-returns of Nasdaq-

100 index are given in Table 17. Figure 26 displays the daily log-returns of Nasdaq-100.

Table 17: Summary statistics of Nasdaq-100 index

Nasdaq-100

Number of Observations 1450
Minimum -0.0437
Maximum 0.0493

Mean 0.0006
Median 0.0008

Std. Deviation 0.0092
Skewness -0.3203
Kurtosis 2.3239

Jarque-Bera 353.2188 (p<0.001)
ARCH-LM test 141.3383 (p<0.001)

Ljung-Box 11.5365 (p=0.3173)
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Figure 26: Daily log-returns of Nasdaq-100 index.

Based on the results given in Table 17, it is clear that the mean return is close to 0.

The JB test shows that the ISE-100 index is not normally distributed. It can be viewed

as an evidence for significant skewness and excess kurtosis. Thus, it is clear that log

return of Nasdaq-100 index has the non-normal characteristics, excess kurtosis, and fat

tails. ARCH-LM test shows that log returns have a heteroscedasticity problem and it

is an evidence of significant ARCH effect. According to result of Ljung-Box test, there

is no autocorrelation problem for log-returns of Nasdaq-100 index.

Figure 27 displays the time-varying skewness and kurtosis of Nasdaq-100. For Figure

27, window length is determined as 250 and rolling window procedure is used. Based

on Figure 27, it is clear that skewness and kurtosis of Nasdaq-100 index exhibit great

variability across the time.
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Figure 27: Time varying skewness and kurtosis plots of Nasdaq-100 index

The benchmark model GARCH(1,1), defined in (4.1), is estimated with fourteen dif-

ferent innovation distributions: normal, Student-t, SN, ST, AST, GHST, NIG, GED,

SGED, GT, SGT, ASGT, ASGN and GAST. Table 18 shows the estimated parame-

ters of GARCH models. The constrOptim function in R is used to minimize negative

ll function of GARCH-SN, GARCH-ST, GARCH-AST, GARCH-GT, GARCH-SGT,

GARCH-ASGT, GARCH-ASGN, and GARCH-GAST models. The parameter estima-

tions of other models are obtained by using the rugarch package of R software.
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Table 18: Estimated parameters of GARCH(1,1) model for Nasdaq-100 index, the
corresponding standard errors and p-values are given second and third line, respectively.

Nasdaq-100

Parameters Normal SN Student-t ST AST GHST

m 8.48× 10−4 7.59× 10−4 1.09× 10−3 8.39× 10−4 7.72× 10−4 8.35× 10−4

2.14× 10−4 2.11× 10−4 1.89× 10−4 2.04× 10−4 2.24× 10−4 2.05× 10−4

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001
ω 7× 10−6 7× 10−6 5× 10−6 1× 10−6 1.37× 10−5 1× 10−6

2× 10−6 2× 10−6 2× 10−6 1× 10−6 1.25× 10−5 1× 10−6

<0.001 <0.001 0.007 0.152 0.273 0.049
γ1 0.116 0.119 0.141 0.098 0.364 0.113

0.022 0.022 0.031 0.021 0.182 0.024
<0.001 <0.001 <0.001 <0.001 0.045 <0.001

γ2 0.798 0.802 0.823 0.902 0.619 0.885
0.038 0.036 0.036 0.0201 0.178 0.022
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001

λ - 0.872 0.915 - -
0.027 0.031
<0.001 <0.001

υ - - 4.516 4.922 - 5.055
0.596 0.643 0.670057
<0.001 <0.001 <0.001

α - - - - 0.509 -
0.041
<0.001

β - - - - - -0.315
0.144
0.028

υ1 - - - - 3.148 -
0.808
<0.001

υ2 - - - - 5.875 -
2.080
0.005

κ - - - - - -

η - - - - - -

−` -4807.875 -4817.930 -4855.610 -4858.540 -4848.120 -4856.8
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Table 18: Estimated parameters of GARCH(1,1) model for Nasdaq-100 index.

Nasdaq-100

Parameters NIG GED SGED GT SGT ASGT ASGN GAST

m 7.94× 10−4 9.65× 10−4 7.11× 10−4 1.26× 10−3 1.26× 10−3 1.16× 10−3 7.57× 10−4 1.26× 10−3

2.06× 10−4 2.26× 10−4 1.53× 10−4 1.87× 10−4 2.13× 10−4 2.06× 10−4 2.07× 10−4 2.07× 10−4

<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
ω 1× 10−6 1× 10−6 1× 10−6 2.98× 10−6 2.83× 10−6 4.71× 10−6 5.53× 10−6 7.66× 10−6

1× 10−6 1× 10−6 1× 10−6 1.08× 10−6 1.04× 10−6 1.69× 10−6 1.85× 10−6 2.85× 10−6

0.054 0.048 0.516 0.006 0.006 0.005 0.003 0.007
γ1 0.106 0.083 0.062 0.123 0.123133 0.131 0.137 0.204

0.024 0.022 0.015 0.029 0.028 0.028 0.031 0.047
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

γ2 0.892 0.909 0.937 0.856 0.856 0.820 0.805 0.735
0.022 0.022 0.014 0.029 0.029 0.037 0.041 0.058
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

λ - - 0.924 - - - - -0.274
0.026 0.381
<0.001 0.471

υ - - - 6.191 5.882 6.785 - 4.790
4.565 4.071 4.864 0.745
0.175 0.148 0.163 <0.001

α 1.018 - - - - 0.105 0.109 0.118
0.188 0.035 0.044 0.037
<0.001 0.003 <0.001 0.001

β -0.148 - - - - - - -
0.050
0.003

υ1 - - - - - - - -

υ2 - - - - - - - -

κ - 1.180 1.199 1.461 1.503 1.496 1.212 -
0.058 0.058 0.203 0.205 0.204 0.059
<0.001 <0.001 <0.001 <0.001 <0.001 <0.001

η - - - - -0.045 - - -
0.039
0.256

−` -4858.519 -4852.740 -4849.180 -4857.550 -4858.640 -4861.100 -4861.400 -4855.540

Table 18 shows that GARCH-ASGN model has the lowest ll value among others and

therefore, GARCH-ASGN model could be chosen as the best model for Nasdaq-100

index. Figure 28 displays the diagnostic plots of GARCH-ASGN model. Figure 28

proves that GARCH-ASGN model is statistically valid and exhibits superior fits to

innovations of GARCH model for Nasdaq-100 index.
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Figure 28: Diagnostic plots of GARCH-ASGN model for Nasdaq-100 index.

6.5.2. Backtesting Results

The parameters of GARCH models specified under fourteen innovation distributions

such as normal, SN, Student-t, ST, AST, GHST, NIG, GED, SGED, GT, SGT, ASGT,

ASGN, GAST and RiskmetricsTM, GARCH-EVT and FHS models are obtained by

means of rolling window estimation method. Window length is determined as 250

and next 1200 daily log-returns are used to compare the performance of VaR models.

The forecasting performance of seventeen VaR models are evaluated by comparing the

LRuc, LRcc, ARLF, UL FLF and FABL results.

Two stage evaluation process is used to decide the best model. In the first stage, LRuc
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and LRcc backtesting results are used to determine the models which produce accurate

VaR forecasts. In the second stage, the results of ARLF, UL FLF and FABL loss

functions are used to determine the models which have minimum forecast errors and

minimum excess capital value.

Empirical Results for Left-Tail (Long-Position) Modeling

Tables 19, 21 and 23 show the average value of VaR forecasts, failure rates, LRuc and

LRcc results at p = 0.01, p = 0.025 and p = 0.05, respectively, for seventeen VaR

models. Tables 20, 22 and 24 show the results of ARLF, UL FLF and FABL loss

functions at p = 0.01, p = 0.025 and p = 0.05, respectively, for seventeen VaR models.

As seen in Table 19, seven VaR models produce accurate VaR forecasts at p = 0.01 level

on the basis of the results of LRuc and LRcc tests. These are GARCH-AST, GARCH-

GAST, GARCH-EVT, GARCH-ASGT, GARCH-SGT, GARCH-GT and GARCH-

ASGN models. The other models perform poorly and produce underestimated VaR

forecasts. Based on the results given in Table 20, GACH-AST model is the best per-

formed model according to results of AQLF and UL loss functions. However, GARCH-

GAST model is the best performed model according to results of FLF and FABL loss

functions. FLF and FABL loss functions evaluate the models according to theirs fore-

casting error and excess capital value. Hence, it is easy to conclude that GARCH-AST

model has higher excess capital value than GARCH-GAST model. Therefore, GARCH-

GAST model is the best model at p = 0.01 level and produce the most accurate VaR

forecasts among others.
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Table 19: Out-of-sample performances of VaR models at p = 0.01 for Nasdaq-100
index.

Models Mean VaR (%) Failure rate LR-uc LR-cc

RiskmetricsTM -1.960146 0.030000 31.588 (<0.001) 32.261 (<0.001)
GARCH-N -1.942391 0.028333 27.228 (<0.001) 27.230 (<0.001)

GARCH-SN -2.116057 0.027500 25.139 (<0.001) 25.148 (<0.001)
GARCH-T -2.192240 0.025833 21.148 (<0.001) 21.196 (<0.001)

GARCH-ST -2.201780 0.024167 17.423 (<0.001) 17.541 (<0.001)
GARCH-AST -2.860846 0.009167 0.086 (0.768) 3.028 (0.220)

GARCH-GHST -2.410733 0.021667 12.371(<0.001) 12.660 (0.002)
GARCH-NIG -2.428040 0.021667 12.371 (<0.001) 12.660 (0.002)
GARCH-GED -2.184546 0.025833 21.148 (<0.001) 21.196 (<0.001)

GARCH-SGED -2.329230 0.021667 12.371 (<0.001) 12.660 (0.002)
GARCH-GT -2.509783 0.012500 0.702 (0.402) 2.514 (0.284)

GARCH-SGT -2.610881 0.011667 0.319 (0.572) 2.372 (0.305)
GARCH-ASGT -2.501769 0.015833 3.503 (0.061) 4.559 (0.102)
GARCH-ASGN -2.484593 0.015833 3.503 (0.061) 4.559 (0.102)
GARCH-GAST -2.592540 0.012500 0.702 (0.402) 2.514 (0.284)
GARCH-EVT -2.638549 0.013333 1.219 (0.269) 2.814 (0.245)

FHS -2.428463 0.020000 9.392 (0.002) 9.843 (0.007)

p values of LR-uc and LR-cc tests are presented in parentheses.

Table 20: Results of loss functions at p = 0.01 for Nasdaq-100 index.

Models AQLF UL FLF FABL

RiskmetricsTM 0.020345860 -0.018695380 0.039432347 0.040833526
GARCH-N 0.021392290 -0.020026770 0.04033098 0.041717642
GARCH-SN 0.013084760 -0.014929730 0.033721836 0.035093884
GARCH-T 0.015661650 -0.014891530 0.037097299 0.038432264

GARCH-ST 0.012181410 -0.013111300 0.033726415 0.035029578
GARCH-AST 0.003212329 -0.004289289 0.031593947 0.032562934

GARCH-GHST 0.010767410 -0.010795400 0.034419478 0.035681948
GARCH-NIG 0.007171372 -0.008976530 0.030989685 0.032240791
GARCH-GED 0.014824280 -0.014672030 0.036175832 0.037515717
GARCH-SGED 0.008400208 -0.010472960 0.03123078 0.032496493

GARCH-GT 0.006229179 -0.006807509 0.031079236 0.03209434
GARCH-SGT 0.006080951 -0.006272239 0.031959438 0.032951736

GARCH-ASGT 0.005965562 -0.007212417 0.030622813 0.031754626
GARCH-ASGN 0.006693712 -0.007928160 0.031191294 0.03231818
GARCH-GAST 0.004596994 -0.005252798 0.030480216 0.031512287
GARCH-EVT 0.004830963 -0.005666951 0.030654447 0.031734266

FHS 0.006574809 -0.008351412 0.030410468 0.03164221

As seen in Table 21, ten VaR models produce accurate VaR forecasts at p = 0.025 level

101



on the basis of the results of LRuc and LRcc tests. These are GARCH-GAST, GARCH-

AST, GARCH-EVT, GARCH-SGT, GARCH-GT, GARCH-ASGN, GARCH-ASGT,

FHS, GARCH-SGED and GARCH-GHST models. Other models perform poorly and

produce underestimated VaR forecasts. Based on the result given in Table 22, GARCH-

GAST model is the best performed model according to results of AQLF, UL, FLF and

FABL loss functions. Therefore, GARCH-GAST model is the best model at p = 0.025

level and produce the most accurate VaR forecasts with minumum excess capital value

and minimum forecast error among others.

Table 21: Out-of-sample performances of VaR models at p = 0.025 for Nasdaq-100
index.

Models Mean VaR (%) Failure rate LR-uc LR-cc

RiskmetricsTM -1.642622 0.041667 11.426 (<0.001) 11.430 (0.003)
GARCH-N -1.624122 0.043333 13.621 (<0.001) 14.569 (<0.001)

GARCH-SN -1.752156 0.036667 5.871 (0.015) 6.160 (0.045)
GARCH-T -1.670122 0.041667 11.426 (<0.001) 12.176 (0.002)
GARCH-ST -1.677082 0.041667 11.426 (<0.001) 12.176 (<0.001)

GARCH-AST -2.083726 0.027500 0.298 (0.585) 0.307 (0.857)
GARCH-GHST -1.824539 0.034167 3.718 (0.054) 3.854 (0.145)
GARCH-NIG -1.860182 0.033333 3.100 (0.078) 3.198 (0.202)
GARCH-GED -1.721147 0.040833 10.391 (0.001) 11.050 (0.004)

GARCH-SGED -1.838163 0.034167 3.718 (0.054) 3.854 (0.145)
GARCH-GT -1.962228 0.030000 1.157 (0.282) 1.164 (0.558)

GARCH-SGT -2.040309 0.026667 0.133 (0.714) 0.1589 (0.924)
GARCH-ASGT -1.946904 0.029167 0.811 (0.367) 0.812 (0.666)
GARCH-ASGN -1.989565 0.027500 0.298 (0.585) 0.307 (0.857)
GARCH-GAST -2.023920 0.026667 0.133 (0.714) 0.158 (0.924)
GARCH-EVT -2.127702 0.025833 0.033 (0.854) 0.082 (0.959)

FHS -1.948280 0.030000 1.157 (0.282) 1.164 (0.558)

p values of LR-uc and LR-cc tests are presented in parentheses.
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Table 22: Results of loss functions at p = 0.025 for Nasdaq-100 index.

Models AQLF UL FLF FABL

RiskmetricsTM 0.033577970 -0.029027140 0.049371029 0.050993715
GARCH-N 0.035747310 -0.030260360 0.051344501 0.052992808
GARCH-SN 0.026222320 -0.024835230 0.043167573 0.044691478
GARCH-T 0.034428950 -0.028885570 0.050520928 0.052118272

GARCH-ST 0.030180660 -0.027145940 0.046324846 0.047922191
GARCH-AST 0.014739540 -0.015521790 0.035078128 0.036431272

GARCH-GHST 0.027234830 -0.024185790 0.044936613 0.046421332
GARCH-NIG 0.021956850 -0.022006770 0.04000585 0.041477983
GARCH-GED 0.031465350 -0.027139360 0.048060747 0.049647465
GARCH-SGED 0.022622990 -0.022482440 0.04044397 0.041928692

GARCH-GT 0.016312230 -0.016531960 0.035391121 0.036799085
GARCH-SGT 0.015059830 -0.014760070 0.034956487 0.036309777

GARCH-ASGT 0.018004430 -0.017790340 0.036947161 0.038350627
GARCH-ASGN 0.017400890 -0.016874730 0.036791211 0.038164541
GARCH-GAST 0.013270350 -0.014064900 0.034044061 0.035387275
GARCH-EVT 0.014530520 -0.015165520 0.034277377 0.035620635

FHS 0.018719140 -0.019175030 0.037679664 0.039092947

As seen in Table 23, fifteen VaR models produce accurate VaR forecasts at p = 0.05

level on the basis of the results of LRuc and LRcc tests. These are GARCH-GAST,

GARCH-AST, GARCH-EVT, GARCH-SGT, GARCH-GT, GARCH-ASGN, GARCH-

ASGT, FHS, GARCH-SGED, GARCH-SN, GARCH-NIG, Riskmetris, GARCH-N,

GARCH-GED and GARCH-GHST models. The other two models, GARCH-T and

GARCH-ST, perform poorly and produce underestimated VaR forecasts. Based on the

results given in Table 24, GACH-GAST model is the best performed model accord-

ing to results of AQLF, UL, FLF and FABL loss functions. Therefore, GARCH-GAST

model is the best model at p = 0.005 level and produce the most accurate VaR forecasts

with minumum excess capital value and minimum forecast error among others.
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Table 23: Out-of-sample performances of VaR models at p = 0.05 for Nasdaq-100
index.

Models Mean VaR (%) Failure rate LR-uc LR-cc

RiskmetricsTM -1.369533 0.060833 2.781 (0.095) 2.833 (0.242)
GARCH-N -1.350269 0.059167 2.010 (0.156) 2.171 (0.337)

GARCH-SN -1.440973 0.055000 0.612 (0.689) 0.743 (0.689)
GARCH-T -1.298487 0.068333 7.656 (0.006) 7.735 (0.021)
GARCH-ST -1.303731 0.068333 7.656 (0.006) 7.735 (0.021)

GARCH-AST -1.590137 0.045833 0.450(0.502) 1.735 (0.420)
GARCH-GHST -1.407899 0.057500 1.358 (0.244) 1.647 (0.439)
GARCH-NIG -1.434775 0.055833 0.829 (0.362) 1.006 (0.605)
GARCH-GED -1.353171 0.059167 2.010 (0.156) 2.021 (0.364)

GARCH-SGED -1.445667 0.055000 0.612 (0.689) 0.743 (0.689)
GARCH-GT -1.562823 0.049167 0.017 (0.894) 0.363 (0.834)

GARCH-SGT -1.618168 0.045833 0.450 (0.502) 0.578 (0.749)
GARCH-ASGT -1.541274 0.050833 0.017 (0.895) 0.021 (0.989)
GARCH-ASGN -1.594829 0.045833 0.450 (0.502) 0.578 (0.749)
GARCH-GAST -1.610245 0.044167 0.893 (0.344) 0.950 (0.622)
GARCH-EVT -1.660786 0.040000 2.704 (0.100) 2.707 (0.258)

FHS -1.486718 0.051667 0.069 (0.792) 0.644 (0.724)

p values of LR-uc and LR-cc tests are presented in parentheses.

Table 24: Results of loss functions at p = 0.05 for Nasdaq-100 index.

Models AQLF UL FLF FABL

RiskmetricsTM 0.051714460 -0.042597270 0.064633671 0.066535023
GARCH-N 0.054406510 -0.043585290 0.067125896 0.069044298
GARCH-SN 0.044201390 -0.037780300 0.057878396 0.059688175
GARCH-T 0.059085840 -0.047246340 0.071220892 0.073242426

GARCH-ST 0.054725880 -0.045827160 0.066898858 0.068920715
GARCH-AST 0.034135240 -0.030448930 0.049354839 0.051040353

GARCH-GHST 0.050131950 -0.040499630 0.063467753 0.065315185
GARCH-NIG 0.044451950 -0.038446760 0.058054324 0.059883421
GARCH-GED 0.054629490 -0.043957970 0.067388092 0.069300025
GARCH-SGED 0.043738080 -0.037573400 0.05745321 0.059269733

GARCH-GT 0.033080060 -0.030071930 0.047958774 0.049708266
GARCH-SGT 0.030816020 -0.027888770 0.046289608 0.04797584

GARCH-ASGT 0.036661480 -0.032052220 0.05129764 0.053093995
GARCH-ASGN 0.034116350 -0.029891950 0.049337629 0.051062805
GARCH-GAST 0.030303420 -0.027313910 0.046168563 0.047808845
GARCH-EVT 0.030725940 -0.028119700 0.046286443 0.047883673

FHS 0.040783630 -0.035337260 0.054942533 0.056703435

Table 25 shows the ranking of VaR models according to results of loss functions for
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long position. The models that passed the first stage are ranked according to results of

loss functions. GARCH-AST could be evaluated as the best model according results

of AQLF and UL loss functions. However, it is easy to see that GARCH-AST model

has significantly higher excess capital value than GARCH-GAST model. Based on the

FLF and FABL results, GARCH-AST is dropped to sixth rank. The VaR forecasts of

GARCH-GAST is more consistent than other models. It is clear that GARCH-GAST

is the best performed model based on the results of four loss functions for left-tail

modeling.
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Table 25: Ranking of VaR models according to results of loss functions for the long
position

Long position

p = 0.01

AQLF UL FLF FABL

GARCH-AST GARCH-AST GARCH-GAST GARCH-GAST
GARCH-GAST GARCH-GAST GARCH-ASGT GARCH-EVT
GARCH-EVT GARCH-EVT GARCH-EVT GARCH-ASGT

GARCH-ASGT GARCH-SGT GARCH-GT GARCH-GT
GARCH-SGT GARCH-GT GARCH-ASGN GARCH-ASGN
GARCH-GT GARCH-ASGT GARCH-AST GARCH-AST

GARCH-ASGN GARCH-ASGN GARCH-SGT GARCH-SGT

p = 0.025

AQLF UL FLF FABL

GARCH-GAST GARCH-GAST GARCH-GAST GARCH-GAST
GARCH-EVT GARCH-SGT GARCH-EVT GARCH-EVT
GARCH-AST GARCH-EVT GARCH-SGT GARCH-SGT
GARCH-SGT GARCH-AST GARCH-AST GARCH-AST
GARCH-GT GARCH-GT GARCH-GT GARCH-GT

GARCH-ASGN GARCH-ASGN GARCH-ASGN GARCH-ASGN
GARCH-ASGT GARCH-ASGT GARCH-ASGT GARCH-ASGT

FHS FHS FHS FHS
GARCH-SGED GARCH-SGED GARCH-SGED GARCH-SGED
GARCH-GHST GARCH-GHST GARCH-GHST GARCH-GHST

p = 0.05

AQLF UL FLF FABL

GARCH-GAST GARCH-GAST GARCH-GAST GARCH-GAST
GARCH-EVT GARCH-SGT GARCH-EVT GARCH-EVT
GARCH-SGT GARCH-EVT GARCH-SGT GARCH-SGT
GARCH-GT GARCH-ASGN GARCH-GT GARCH-GT

GARCH-ASGN GARCH-GT GARCH-ASGN GARCH-AST
GARCH-AST GARCH-AST GARCH-AST GARCH-ASGN

GARCH-ASGT GARCH-ASGT GARCH-ASGT GARCH-ASGT
FHS FHS FHS FHS

GARCH-SGED GARCH-SGED GARCH-SGED GARCH-SGED
GARCH-SN GARCH-SN GARCH-SN GARCH-SN

GARCH-NIG GARCH-NIG GARCH-NIG GARCH-NIG
GARCH-GHST GARCH-GHST GARCH-GHST GARCH-GHST
RiskmetricsTM RiskmetricsTM RiskmetricsTM RiskmetricsTM

GARCH-N GARCH-N GARCH-N GARCH-N
GARCH-GED GARCH-GED GARCH-GED GARCH-GED
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Empirical Results for Right-Tail (Short-Position) Modeling

Tables 26, 28 and 30 show the average value of VaR forecasts, failure rates, LRuc and

LRcc results at p = 0.99, p = 0.975 and p = 0.95, respectively, for seventeen VaR

models. Tables 27, 29 and 31 show the results of ARLF, UL, FLF and FABL loss

functions at p = 0.99, p = 0.975 and p = 0.95, respectively, for seventeen VaR models.

As seen in Table 26, ten of VaR models produce accurate VaR forecasts at p =

0.99 level on the basis of the results of LRuc and LRcc tests. These are GARCH-

GAST,GARCH-SGED, GARCH-AST, GARCH-NIG, GARCH-GHST, GARCH-SN,

Riskmetrics, GARCH-N, GARCH-EVT and FHS models. The other models perform

poorly and produce overestimated VaR forecasts. Based on the results given in Table

27, GACH-GAST model is the best performed model according to results of AQLF, UL,

FLF and FABL loss functions. Therefore, GARCH-GAST model is the best performed

model at p = 0.99 level for short position.

Table 26: Out-of-sample performances of VaR models at p = 0.99 for Nasdaq-100
index.

Models Mean VaR (%) Failure rate LR-uc LR-cc

RiskmetricsTM 2.072083 0.990833 0.086 (0.768) 0.290 (0.865)
GARCH-N 2.099291 0.992500 0.829 (0.362) 0.965 (0.617)

GARCH-SN 1.926702 0.987500 0.701 (0.402) 2.514 (0.284)
GARCH-T 2.395289 0.995833 5.286 (0.021) 5.328 (0.069)

GARCH-ST 2.405007 0.997500 9.750 (0.002) 9.765 (0.007)
GARCH-AST 2.222486 0.992500 0.829 (0.362) 0.965 (0.617)

GARCH-GHST 2.032741 0.991667 0.356 (0.550) 3.667 (0.160)
GARCH-NIG 2.097494 0.992500 0.829 (0.362) 4.556 (0.102)
GARCH-GED 2.367327 0.995833 5.286 (0.021) 5.328 (0.069)

GARCH-SGED 2.134111 0.992500 0.829 (0.362) 0.965 (0.617)
GARCH-GT 2.509783 0.998333 12.916 (<0.001) 12.923 (0.002)

GARCH-SGT 2.288419 0.997500 9.750 (0.002) 9.765(0.007)
GARCH-ASGT 2.260199 0.996667 7.264 (0.007) 7.291 (0.026)
GARCH-ASGN 2.312384 0.995833 5.286 (0.022) 5.328 (0.070)
GARCH-GAST 2.180479 0.993333 1.526 (0.216) 5.729 (0.057)
GARCH-EVT 1.990751 0.990833 0.086 (0.768) 3.028 (0.219)

FHS 1.947894 0.990833 0.086 (0.768) 3.028 (0.219)

p values of LR-uc and LR-cc tests are presented in parentheses.
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Table 27: Results of loss functions at p = 0.99 for Nasdaq-100 index.

Models AQLF UL FLF FABL

RiskmetricsTM 0.004252293 0.004055139 0.024805878 0.02431442
GARCH-N 0.004649519 0.004004361 0.025496785 0.024981613
GARCH-SN 0.003797671 0.004676088 0.023961078 0.023411586
GARCH-T 0.001701321 0.001594453 0.02556641 0.024970904

GARCH-ST 0.001657597 0.001364904 0.02565154 0.025022064
GARCH-AST 0.002614729 0.003204915 0.024672555 0.024172384

GARCH-GHST 0.003354847 0.003763992 0.023499365 0.023020648
GARCH-NIG 0.002796637 0.003112300 0.023597543 0.023103448
GARCH-GED 0.001517913 0.001721999 0.025079565 0.024509155

GARCH-SGED 0.002370973 0.002617218 0.023539791 0.023039003
GARCH-GT 0.001184021 0.001186422 0.026249816 0.025594465
GARCH-SGT 0.001492774 0.001131291 0.024322304 0.023689025

GARCH-ASGT 0.002501239 0.002464591 0.025016958 0.024428627
GARCH-ASGN 0.002230654 0.002353767 0.025249193 0.024678782
GARCH-GAST 0.002282065 0.002398051 0.022806035 0.022412196
GARCH-EVT 0.007820032 0.005525755 0.027541194 0.027083546

FHS 0.008397837 0.006040184 0.027694321 0.027237925

As seen in Table 28, twelve of VaR models produce accurate VaR forecasts at p =

0.975 level on the basis of the results of LRuc and LRcc tests. These are GARCH-

GAST, GARCH-SGT, GARCH-SGED, GARCH-AST, GARCH-ASGT, GARCH-NIG,

GARCH-GHST, GARCH-SN, Riskmetrics, GARCH-N, GARCH-EVT and FHS mod-

els. Other models perform poorly and produce overestimated VaR forecasts. Based

on the results given in Table 29, GARCH-GAST model is the best performed model

according to results of AQLF, UL, FLF and FABL loss functions. Therefore, GARCH-

GAST model is the best performed model at p = 0.975 level for short position.
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Table 28: Out-of-sample performances of VaR models at p = 0.975 for Nasdaq-100
index.

Models Mean VaR (%) Failure rate LR-uc LR-cc

RiskmetricsTM 1.754559 0.980000 1.319 (0.251) 1.770262 (0.413)
GARCH-N 1.781022 0.982500 3.088 (0.078) 3.864205 (0.144)

GARCH-SN 1.656783 0.973333 0.133 (0.714) 0.1589077 (0.923)
GARCH-T 1.873165 0.988333 10.877 (<0.001) 12.93094 (0.001)

GARCH-ST 1.880309 0.988333 10.877 (<0.001) 12.93094 (0.001)
GARCH-AST 1.778105 0.976667 0.139 (0.708) 0.306 (0.858)

GARCH-GHST 1.674642 0.973333 0.133 (0.714) 0.158 (0.923)
GARCH-NIG 1.705943 0.974167 0.033 (0.854) 0.082 (0.956)
GARCH-GED 1.903928 0.987500 11.210 (<0.001) 9.397 (0.002)

GARCH-SGED 1.741966 0.976667 0.139 (0.708) 0.306 (0.858)
GARCH-GT 1.962228 0.989167 12.503 (<0.001) 14.822 (<0.001)

GARCH-SGT 1.827286 0.980833 1.819 (0.177) 2.366 (0.306)
GARCH-ASGT 1.793682 0.981667 2.407 (0.121) 3.062 (0.216)
GARCH-ASGN 1.849769 0.987500 9.397 (0.002) 11.210 (0.004)
GARCH-GAST 1.778716 0.980833 1.819 (0.177) 2.366 (0.306)
GARCH-EVT 1.699757 0.975000 0 (1) 0.079 (0.961)

FHS 1.682527 0.971667 0.524 (0.468) 0.526 (0.768)

p values of LR-uc and LR-cc tests are presented in parentheses.

Table 29: Results of loss functions at p = 0.975 for Nasdaq-100 index.

Models AQLF UL FLF FABL

RiskmetricsTM 0.007884943 0.008150897 0.025090493 0.024812786
GARCH-N 0.008577423 0.007943489 0.026076413 0.025766484
GARCH-SN 0.007732292 0.009905903 0.023857085 0.023699931
GARCH-T 0.004555089 0.005305897 0.023055753 0.02264055

GARCH-ST 0.004189176 0.004759324 0.022755811 0.022340608
GARCH-AST 0.006404154 0.008215765 0.023777037 0.023568108

GARCH-GHST 0.007471018 0.009407202 0.023771972 0.023612254
GARCH-NIG 0.006826866 0.008759346 0.023445044 0.023274638
GARCH-GED 0.004713092 0.005237554 0.023499166 0.023105496

GARCH-SGED 0.006115850 0.007868273 0.023127944 0.022914937
GARCH-GT 0.003208314 0.003708784 0.022614225 0.022168431
GARCH-SGT 0.005532482 0.006401832 0.022969104 0.022684411

GARCH-ASGT 0.006509263 0.006435837 0.024117854 0.023811191
GARCH-ASGN 0.005706436 0.005818383 0.023964661 0.023563058
GARCH-GAST 0.004148469 0.005478655 0.022075434 0.021776858
GARCH-EVT 0.011918590 0.010434830 0.028486538 0.028321251

FHS 0.012378080 0.010964740 0.028726007 0.028613738

As seen in Table 30, sixteen VaR models produce accurate VaR forecasts at p =
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0.95 level on the basis of the results of LRuc and LRcc tests. These are GARCH-

GAST, GARCH-SGT, GARCH-SGED, GARCH-AST, GARCH-ASGT, GARCH-NIG,

GARCH-GHST, GARCH-SN, Riskmetrics, GARCH-N, GARCH-EVT and FHS mod-

els. GARCH-GT model performs poorly and produce overestimated VaR forecasts at

p = 0.95 level. Based on the results given in Table 31, GARCH-ST and GARCH-GED

models are the best performed models according to results of AQLF, UL loss functions,

respectively. However, GARCH-GAST model is the best performed model according

to results of FLF and FABL loss functions at p = 0.95 level. Hence, it is easy to

conclude that GARCH-ST and GARCH-GED models have higher excess capital value

than GARCH-GAST model. Therefore, GARCH-GAST model is the best model at

p = 0.95 level and produce the most accurate VaR forecasts among others.

Table 30: Out-of-sample performances of VaR models at p = 0.95 for Nasdaq-100
index.

Models Mean VaR (%) Failure rate LR-uc LR-cc

RiskmetricsTM 1.481470 0.957500 1.493 (0.222) 1.508 (0.470)
GARCH-N 1.507182 0.960000 2.704 (0.100) 2.707(0.258)

GARCH-SN 1.422886 0.950833 0.017 (0.894) 0.432 (0.806)
GARCH-T 1.501531 0.960833 3.193 (0.074) 3.687 (0.158)

GARCH-ST 1.506958 0.960833 3.193 (0.074) 3.687 (0.158)
GARCH-AST 1.458960 0.953333 0.286 (0.592) 0.459 (0.794)

GARCH-GHST 1.395976 0.946667 0.274 (0.600) 0.381 (0.826)
GARCH-NIG 1.404186 0.947500 0.155 (0.693) 0.306 (0.858)
GARCH-GED 1.535952 0.965833 3.718 (0.054) 3.854 (0.145)

GARCH-SGED 1.427695 0.951667 0.070 (0.790) 0.085 (0.958)
GARCH-GT 1.562823 0.969167 10.687 (0.001) 10.706 (0.005)

GARCH-SGT 1.483608 0.958333 1.855 (0.173) 1.859 (0.395)
GARCH-ASGT 1.452726 0.954167 0.450 (0.502) 0.544 (0.761)
GARCH-ASGN 1.492163 0.959167 2.258 (0.132) 2.918 (0.232)
GARCH-GAST 1.459766 0.954167 0.450 (0.502) 0.544 (0.761)
GARCH-EVT 1.434281 0.954167 0.450 (0.502) 1.269 (0.530)

FHS 1.417881 0.950000 0 (1) 0.335 (0.845)

p values of LR-uc and LR-cc tests are presented in parentheses.
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Table 31: Results of loss functions at p = 0.95 for Nasdaq-100 index.

Models AQLF UL FLF FABL

RiskmetricsTM 0.014294340 0.015564790 0.028515107 0.028565441
GARCH-N 0.015229000 0.015478590 0.029697791 0.029756358
GARCH-SN 0.014614350 0.018464380 0.028122044 0.028328598
GARCH-T 0.011583800 0.014040810 0.026006734 0.026040265

GARCH-ST 0.011027390 0.013558310 0.025499768 0.025533299
GARCH-AST 0.014239840 0.017923760 0.028149398 0.028309431

GARCH-GHST 0.015168890 0.019308990 0.028372363 0.028622489
GARCH-NIG 0.014862170 0.019039440 0.028155348 0.028395172
GARCH-GED 0.011721170 0.013210680 0.026543181 0.026513542

GARCH-SGED 0.014228970 0.017868030 0.027808789 0.027985345
GARCH-GT 0.009077096 0.011298330 0.024226811 0.024119057
GARCH-SGT 0.012254920 0.015852990 0.02617971 0.026311865

GARCH-ASGT 0.014795240 0.016888860 0.028639413 0.028792134
GARCH-ASGN 0.013199090 0.015236180 0.027504856 0.027573826
GARCH-GAST 0.011066100 0.014684410 0.025304608 0.025349766
GARCH-EVT 0.019202930 0.019792740 0.032885255 0.033044412

FHS 0.019745450 0.020492980 0.033214988 0.033429941

Table 32 shows the ranking of VaR models according to results of loss functions for

long position. It is clear that GARCH-GAST is the best performed model based on

the results of four loss functions for right-tail modeling.
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Table 32: Ranking of VaR models according to results of loss functions for short
position

Short Position

p = 0.99

AQLF UL FLF FABL

GARCH-GAST GARCH-GAST GARCH-GAST GARCH-GAST
GARCH-SGED GARCH-SGED GARCH-GHST GARCH-GHST
GARCH-AST GARCH-NIG GARCH-SGED GARCH-SGED
GARCH-NIG GARCH-AST GARCH-NIG GARCH-NIG

GARCH-GHST GARCH-GHST GARCH-SN GARCH-SN
GARCH-SN GARCH-N GARCH-AST GARCH-AST

RiskmetricsTM RiskmetricsTM RiskmetricsTM RiskmetricsTM

GARCH-N GARCH-SN GARCH-N GARCH-N
GARCH-EVT GARCH-EVT GARCH-EVT GARCH-EVT

FHS FHS FHS FHS

p = 0.975

AQLF UL FLF FABL

GARCH-GAST GARCH-GAST GARCH-GAST GARCH-GAST
GARCH-SGT GARCH-SGT GARCH-SGT GARCH-SGT

GARCH-SGED GARCH-ASGT GARCH-SGED GARCH-SGED
GARCH-AST GARCH-SGED GARCH-NIG GARCH-NIG

GARCH-ASGT GARCH-N GARCH-GHST GARCH-AST
GARCH-NIG RiskmetricsTM GARCH-AST GARCH-GHST

GARCH-GHST GARCH-AST GARCH-SN GARCH-SN
GARCH-SN GARCH-NIG GARCH-ASGT GARCH-ASGT

RiskmetricsTM GARCH-GHST RiskmetricsTM RiskmetricsTM

GARCH-N GARCH-SN GARCH-N GARCH-N
GARCH-EVT GARCH-EVT GARCH-EVT GARCH-EVT

FHS FHS FHS FHS

p = 0.95

AQLF UL FLF FABL

GARCH-ST GARCH-GED GARCH-GAST GARCH-GAST
GARCH-GAST GARCH-ST GARCH-ST GARCH-ST

GARCH-T GARCH-T GARCH-T GARCH-T
GARCH-GED GARCH-GAST GARCH-SGT GARCH-SGT
GARCH-SGT GARCH-ASGN GARCH-GED GARCH-GED

GARCH-ASGN GARCH-N GARCH-ASGN GARCH-ASGN
GARCH-SGED RiskmetricsTM GARCH-SGED GARCH-SGED
GARCH-AST GARCH-SGT GARCH-SN GARCH-AST
RiskmetricsTM GARCH-ASGT GARCH-AST GARCH-SN
GARCH-SN GARCH-SGED GARCH-NIG GARCH-NIG

GARCH-ASGT GARCH-AST GARCH-GHST RiskmetricsTM

GARCH-NIG GARCH-SN RiskmetricsTM GARCH-GHST
GARCH-GHST GARCH-NIG GARCH-ASGT GARCH-ASGT

GARCH-N GARCH-GHST GARCH-N GARCH-N
GARCH-EVT GARCH-EVT GARCH-EVT GARCH-EVT

FHS FHS FHS FHS
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Figure 29 displays the VaR forecasts of GARCH-GAST model for p = 0.01, p = 0.025,

p = 0.05, p = 0.99, p = 0.975, p = 0.95 levels. This figure reveals that GARCH model

with GAST innovation distribution exhibits great consistency for estimating the true

quantile value of innovation distribution.
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Figure 29: Daily VaR forecasts of GARCH-GAST model for long and short positions
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7. CONCLUSION

Forecasting VaR with misspecified model causes to underestimation or overestimation

of the real market risk. Accurately forecasting VaR with GARCH models requires

a flexible innovation distribution. The flexible distributions increase the modeling

accuracy of empirical distribution of financial returns. The selection of innovation

distribution for εt is important task since it effects the quality of the VaR forecasts

directly.

The contributions of this study can be summarized as follows: ASGT distribution is

applied to GARCH models for the first time. A new skew generalization of generalized

normal distribution, called ASGN, is proposed and applied to GARCH models. A new

generalized Skew-T distribution, called GAST, is proposed and applied to GARCH

models for symmetric and asymmetric cases. The importance of distributional as-

sumption on innovation process for FHS model is investigated.

The empirical results of this study can be summarized as follows: Five applications to

real data sets are provided to demonstrate the out-of-sample performance of GARCH

models with fifteen innovation distribution, GARCH-EVT and FHS models in terms

of accuracy of VaR forecasts. The first four applications are related to research papers

produced by the thesis. The last application is the comprehensive application study

consists of all VaR models given in Section 4.

Based on the results given in comprehensive empirical study, GARCH model with

GAST, AST, ASGT, SGT, GT and ASGN innovation distributions produce accurate

VaR forecasts at p = 0.01 level for the long position. Moreover, GARCH-EVT model

produces also accurate VaR forecasts at p = 0.01 level for long position. According

to results of loss functions, GARCH model with GAST innovation distribution is the

best model and provides superior fits to empirical distribution of financial returns of

Nasdaq-100 index. The similar results are also obtained for p = 0.025 and p = 0.05

levels. Consequently, GARCH model with GAST innovation distribution produce the

most realistic and accurate VaR forecasts among others for long position. When the
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empirical results are examined for short position, GARCH model with GAST, SGED,

AST, NIG, GHST, SN and normal innovation distributions produce accurate VaR

forecasts at p = 0.99 level for short position. Moreover, GARCH-EVT and FHS models

produce also accurate VaR forecasts at p = 0.99 level for short position. According

to results of loss functions, GARCH model with GAST innovation distribution is the

best model and provides superior fits to empirical distribution of financial returns of

Nasdaq-100 index. The similar results are also obtained for p = 0.975 and p = 0.95

levels. Consequently, GARCH model with GAST innovation distribution produces the

most realistic and accurate VaR forecasts among others for short position.

As a result of this study, it is clear that the effects of skewness and fat-tails are more

important than only the effect of fat-tail and skewness on VaR forecast in stock markets.

Accurately modeling of the financial returns is an essential task in estimating the real

market risk. This study proves that the skewed and fat-tailed distributions produce

better VaR forecasts based on the backtesting and loss function results. Therefore,

new financial risk systems should be developed taking into account both effects of

skewness and kurtosis. The flexible distributions should be considered in financial risk

management. We hope that the results given in this study will be useful for researchers

studying in financial risk management, regulators and risk managers.
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APPENDIX

APPENDIX 1: The Elements of Observed Information Matrix for ASGN

and GAST Distributions

The elements of J
(

Θ̂
)

for ASGN distribution are given by

Jαα =
n∑
i=1

4x2
iΓ (1/κ) + 2αxiΓ (3/κ) + 2Γ (3/κ) (αxi − 2)

(α2x2
i − 2αxi + 2) (α2Γ (3/κ) + 2Γ (1/κ))

−
n∑
i=1

(2αx2
i − 2xi) (4xiΓ (1/κ) (αxi − 1) + 2αΓ (3/κ) (αxi − 2))

(α2x2
i − 2αxi + 2)

2
(α2Γ (3/κ) + 2Γ (1/κ))

+
n∑
i=1

2αΓ (3/κ) (4xiΓ (1/κ) (αxi − 1) + 2αΓ (3/κ) (αxi − 2))

(α2x2
i − 2αxi + 2) (α2Γ (3/κ) + 2Γ (1/κ))2

Jακ =

n∑
i=1

−κ−2
[
4xΓ (1/κ)ψ(0) (1/κ) (αxi − 1) + 6αΓ (3/κ)ψ(0) (3/κ) (αxi − 2)

]
(α2x2i − 2αx+ 2) (α2Γ (3/κ) + 2Γ (1/κ))

+

n∑
i=1

−κ−2
(
3α2Γ (3/κ)ψ(0) (3/κ) + 2Γ (1/κ)ψ(0) (1/κ)

)
(4xiΓ (1/κ) (αxi − 1) + 2αΓ (3/κ) (αxi − 2))

(α2x2i − 2αx+ 2) (α2Γ (3/κ) + 2Γ (1/κ))
2
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Jκκ =

n∑
i=1

1

κ
Γ

(
1

κ

)
exp (|xi|κ)

(
ψ(0)

(
1
κ

)2
exp (−|xi|κ)

2κ3Γ
(

1
κ

) −
ψ(1)

(
1
κ

)2
exp (−|xi|κ)

2κ3Γ
(

1
κ

) −
κ exp (−|xi|κ) |xi|κlog2 (|xi|)

2κΓ
(

1
κ

) )
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1

κ
Γ
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1

κ

)
exp (|xi|κ)
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1
κ
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exp (−|xi|κ) |xi|κ log (|xi|)
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1
κ
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ψ(0)
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1
κ
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2κ3Γ
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1
κ
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2Γ
(

1
κ

)
ψ(0)
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1
κ
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exp (|xi|κ)
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exp(−|xi|κ)

2Γ( 1
κ )

− κ exp(−|xi|κ)|xi|κ log(|xi|)
2Γ( 1

κ )
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ψ(0)( 1

κ ) exp(−|xi|κ)

2κΓ( 1
κ )

)
κ3

−
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κ
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) )

The elements of J
(

Θ̂
)

for GAST distribution are given by

Jαα =
n∑
i=1

(αx2
i − 2)

2
cα(α, λ, υ)2 − (αx2

i − 2)
2
c (α, λ, υ) cα,α (α, λ, υ) + x4

i

(
−c(α, λ, υ)2)

(2− αx2
i )

2
c(α, λ, υ)2

Jαλ = n
cλ (α, λ, υ) cα (α, λ, υ)− c (α, λ, υ) cα,λ (α, λ, υ)

c(α, λ, υ)2

Jαυ = n
cυ (α, λ, υ)− cα (α, λ, υ)− c (α, λ, υ) cα,υ (α, λ, υ)

c(α, λ, υ)2
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Jλλ = n
cλ(α, λ, υ)2 − c (α, λ, υ) cλ (α, λ, υ)

c(α, λ, υ)2

+
n∑
i=1

(1 + υ)x2
i

(
T
(√

υ+1
x2
i+υ

λxi; υ + 1
)
t′
(√

υ+1
x2
i+υ

λxi; υ + 1
)
− t
(√

υ+1
x2
i+υ

λxi; υ + 1
)2
)

(υ + x2
i )T

(√
υ+1
x2
i+υ

λxi; υ + 1
)2

Jλυ =
cυ (α, λ, υ) cλ (α, λ, υ)− c (α, λ, υ) cλ,υ (α, λ, υ)

c(α, λ, υ)2

+
n∑
i=1

λx2
i

(
1

υ+x2
i
− 1+k

(υ+x2
i )

2

)
t′
(√

υ+1
x2
i+υ

λxi; υ + 1
)

2T
(√

υ+1
x2
i+υ

λxi; υ + 1
)

−
n∑
i=1

λx2
i

(
1

υ+x2
i
− 1+k

(υ+x2
i )

2

)
t
(√

υ+1
x2
i+υ

λxi; υ + 1
)2

2T
(√

υ+1
x2
i+υ

λxi; υ + 1
)2

+
n∑
i=1

xi

(
1

υ+x2
i
− 1+k

(υ+x2
i )

2

)
t
(√

υ+1
x2
i+υ

λxi; υ + 1
)

2
√

υ+1
x2
i+υ

T
(√

υ+1
x2
i+υ

λxi; υ + 1
)
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Jυυ =
cυ(α, λ, υ)2 − c (α, λ, υ) cυ,υ (α, λ, υ)

c(α, λ, υ)2 +
tυ2 (xi; υ)

t (xi; υ)
− tυ(xi; υ)2

t(xi; υ)2

+
n∑
i=1

λ2x2
i (υ + x2

i )

(
1

υ+x2
i
− 1+k

(υ+x2
i )

2

)2

t′
(√

υ+1
x2
i+υ
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)

4 (1 + υ)T
(√

υ+1
x2
i+υ

λxi; υ + 1
)

−
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1
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i )

2

)2

t
(√

υ+1
x2
i+υ
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4 (1 + υ)T
(√
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x2
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−
n∑
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1
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2
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(√
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(√
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√
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APPENDIX 2: The Used Mathematical Functions

1. Gamma function

Γ (z) =

∞∫
0

xz−1e−xdx

2. Beta function

B (α, β) =

1∫
0

xα−1(1− x)β−1dx

3. Modified bessel function of the third kind of order j

Kj (x) =

 π cos (πx) [I−j (x)− Ij (x)] , ifj /∈ Z

lim
µ→j

Kµ (x) , ifj ∈ Z
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where Ij (·) denotes the modified Bessel function of the first kind of order j defined

by

Ij (x) =
∞∑
k=0

1

Γ (k + j + 1) k!

(x
2

)2k+j

4. Polygamma function

ψn (x) =
∂n

∂zn
Γ′ (z)

Γ (z)
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