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ABSTRACT

A STUDY ON DIRECT SUMMAND SUBMODULES

OVER NONCOMMUTATIVE RINGS

Meltem ALTUN ÖZARSLAN

Doctor of Philosophy, Department of Mathematics

Supervisor: Prof. Dr. Ayşe Çiğdem ÖZCAN

December 2018, 98 pages

A natural problem to consider in ring and module theory is to investigate the cancel-

lation property of a given object. This problem was first considered by Jónsson and

Tarski for any algebraic system and then gave rise to many variations related to the

cancellation theme such as substitution and internal cancellation. In the mid-30s of the

last century, just before the cancellation problem was treated for any algebraic sys-

tem by Jónsson and Tarski, a ground-breaking invention was made by von Neumann.

He developed the theory of continuous geometries. One of the main ideas of this new

structure was the construction of a dimension function whose range is a continuum

of real numbers and this construction was based on the perspectivity relation. Thro-

ughout this work we discuss new concepts derived from cancellation and continuity.

This dissertation consists of four chapters. In the first chapter, we recall the ring and

module theoretical properties that play an important role within our framework like

stable range conditions, the exchange property, and perspectivity. In the second chap-

ter, we study the class of internally cancellable rings, i.e., the class of rings that satisfy

internal cancellation property with respect to their one-sided ideals. By considering a

condition, we obtain new characterizations of internally cancellable rings, unit regular
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rings, and rings with stable range one. We also investigate internally cancellable rings

with the summand sum property. In Chapter 3, we introduce the lifting of elements

having (idempotent) stable range one from a quotient of a ring R modulo a two-sided

ideal I by providing several examples and investigating the relations with other lifting

properties, including lifting idempotents, lifting units, and lifting of von Neumann re-

gular elements. In the case where the ring R is a left or a right duo ring, we show that

stable range one elements lift modulo every two-sided ideal iff R is a ring with stable

range one. Under a mild assumption, we further prove that the lifting of elements ha-

ving idempotent stable range one implies the lifting of von Neumann regular elements.

In the last chapter, we study the most recent variations of continuity and discreteness

concepts, namely C4- and D4-modules, in terms of perspective direct summands by

providing new characterizations and results. Endomorphism rings of C4-modules and

extensions of right C4-rings are also investigated. Decompositions of C4-modules with

restricted ACC on direct summands and D4-modules with restricted DCC on direct

summands are obtained.

Keywords: Internal cancellation, perspectivity, stable range one, idempotent stable

range one, lifting units, lifting idempotents, quasi-continuous and quasi-discrete mo-

dules, C4- and D4-modules.
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ÖZET

DEĞİŞMELİ OLMAYAN HALKALARDA

DİK TOPLANAN ALT MODÜLLER ÜZERİNE

BİR ÇALIŞMA

Meltem ALTUN ÖZARSLAN

Doktora, Matematik Bölümü

Tez Danışmanı: Prof. Dr. Ayşe Çiğdem ÖZCAN

Aralık 2018, 98 sayfa

Halka ve modül teorisinde ilk akla gelebilecek problemlerden biri verilen nesnenin sa-

deleşme özelliğini incelemektir. Bu problem, ilk olarak Jónsson ve Tarski tarafından

genel bir cebirsel yapı için ele alınmış ve sonrasında yerine koyma ve içsel sadeleşme gibi

sadeleşme kavramı ile ilgili varyasyonların tanımlanmasına imkan vermiştir. 1930’ların

ortalarında, sadeleşme problemi Jónsson ve Tarski tarafından genel bir cebirsel yapı

için ele alınmadan hemen önce, von Neumann çığır açan bir buluşa imza attı ve

sürekli geometrilerin teorisini geliştirdi. Sürekli geometrilerin önemli özelliklerinden biri

görüntü kümesi [0, 1] olan bir boyut fonksiyonuna sahip olmasıydı ve bu boyut fonksi-

yonunun inşaasında ise temel yapı taşı perspektiflik bağıntısıydı. Bu tez çalışmasında,

sadeleşme ve süreklilik kavramlarından türeyen yeni nosyonları ele alacağız. Bu tez

dört bölümden oluşmaktadır. Tezin birinci bölümünde, stable range 1, değişim özelliği

ve perspektiflik gibi çalışmalarımızda önem arz eden halka ve modül teorik kavramlar

tanıtılmıştır. Tezin ikinci bölümünde, içsel sadeleşebilen halkalar olarak adlandırılan tek

yönlü ideallerine göre içsel sadeleşme özelliğini sağlayan halkalar ele alınmıştır. Daha

sonra özel bir koşul tanıtılarak içsel sadeleşebilen halkalar, birimsel düzenli halkalar
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ve stable range 1 özelliğine sahip halkalar için yeni karakterizasyonlar elde edilmiştir.

Ayrıca, dik toplanan sağ ideallerinin toplamı da dik toplanan olan halka sınıfı, içsel

sadeleşebilir halkalar ile birlikte ele alınmıştır. Tezin üçüncü bölümünde, bir R hal-

kasının (eşkare) stable range 1 özelliğine sahip elemanlarının bir I idealine göre, R/I

bölüm halkasından yükseltilmesi kavramı tanıtılmıştır. Bu kavramlar tanıtılırken çeşitli

örnekler verilmiş ve bugüne kadar literatürde önemli yer edinmiş eşkare elemanların

yükseltilmesi, birimsel elemanların yükseltilmesi ve von Neumann düzenli elemanların

yükseltilmesi gibi özellikler ile bağlantıları incelenmiştir. Daha sonra bir R halkasının

sol veya sağ duo olması koşulu altında stable range 1 özelliğine sahip elemanların her

ideale göre yükseltilmesi ile o halkanın stable range 1 özelliğine sahip olmasının denk

olduğu gösterilmiştir. Ayrıca, zayıf bir koşul altında (eşkare) stable range 1 özelliğine

sahip elemanların yükseltilmesi kavramının von Neumann düzenli elemanların yüksel-

tilmesi kavramını gerektirdiği gösterilmiştir. Tezin dördüncü ve son bölümünde, sürek-

lilik ve ayrıklık kavramlarının en son varyasyonları C4- ve D4-modüller perspektif

dik toplanan alt modüller açısından ele alınmış, yeni karakterizasyonlar ve sonuçlar

elde edilmiştir. Bunula birlikte, C4-modüllerin endomorfizma halkaları ve C4-halkaların

bazı genişlemeleri incelenmiştir. Son olarak yeni tanımlanan bir zincir koşulu ile C4-

modüller ve D4-modüller için ayrışım teoremleri verilmiştir.

Anahtar Kelimeler: İçsel sadeleşme, perspektiflik, stable range 1, eşkare stable range

1, birimsel elemanların yükseltilmesi, eşkare elemanların yükseltilmesi, yarı-sürekli ve

yarı-ayrık modüller, C4- ve D4-modüller.
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1 PRELIMINARIES

In this chapter, we give some basic concepts and facts which will be used frequently.

Throughout this dissertation, all rings we consider are associative rings R with identity.

Modules are unital right R-modules unless otherwise stated.

1.1 Basic Notions

We begin by recalling some basic definitions and results which can be found in a

standard text on ring and module theory such as [5], [54], and [27].

There are many important types of elements in a ring R. But two of them are of great

significance; the units and idempotents. An element u ∈ R is said to be a unit in case

there is an element v ∈ R, called inverse of u, such that uv = vu = 1. The set of all

units of R, denoted by U(R), forms a multiplicative group. An element e ∈ R is an

idempotent in case e2 = e. A ring always has at least two idempotents, namely 0 and

1. An idempotent e of R is a central idempotent if it is in the center of R. Clearly,

if e ∈ R is an idempotent, then the complementary idempotent to e, namely 1 − e, is

also an idempotent.

Idempotents in the endomorphism ring of a module M determine direct summand

submodules of that module. Recall that a submodule N of M is called a direct summand

of M in case there is a submodule N ′ of M with M = N ⊕N ′, that is,

M = N +N ′ and N ∩N ′ = 0.

In that case, N ′ is also a direct summand, and N and N ′ are complementary direct

summands or direct complements . It is clear that every non-zero module M has at

least two direct summands, namely, 0 and M . A non-zero module M is indecomposable

if 0 and M are its only direct summands.

A submodule N of a module M is said to be essential in M , abbreviated N ≤e M , in

case for every submodule L ≤M , N ∩L = 0 implies L = 0. Then we say that M is an

essential extension of N . A non-zero module M is uniform in case each of its non-zero

submodules is essential in M .

Now we recall some properties of essential submodules.
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Proposition 1.1.1 ([5]) Let M be an R-module with submodules K ≤ N ≤ M and

H ≤M . Then the following hold:

(1) K ≤e M if and only if for each 0 6= x ∈ M , there exists an r ∈ R such that

0 6= xr ∈ K.

(2) K ≤e M if and only if K ≤e N and N ≤e M .

(3) H ∩K ≤e M if and only if H ≤e M and K ≤e M .

(4) If K ≤e M and f : L −→M a homomorphism, then f−1(K) ≤e L.

(5) Suppose that K1 ≤M1 ≤M , K2 ≤M2 ≤M , and M = M1⊕M2; then K1⊕K2 ≤e
M if and only if K1 ≤e M1 and K2 ≤e M2.

Recall that a module M is a simple module if it is non-zero and its only submodules

are 0 and M . The socle of a module M , denoted by soc(M), is the sum of all simple

submodules of M, or equivalently is the intersection of all essential submodules of M .

If M fails to have a simple submodule, then soc(M) = 0. An R-module M is called

semisimple (or completely reducible) if M = soc(M). Clearly, every simple module is

semisimple. As is well known, a module M is semisimple if and only if every submodule

of M is a direct summand.

The right socle Sr of a ring R is the sum of all minimal right ideals of R. The left

socle Sl of a ring R is defined analogously. Note that Sr and Sl are not equal in

general. In case they are equal, we may write soc(R) for either socle. A ring R is said

to be (right) semisimple if the right regular module RR is semisimple. Thanks to the

celebrated works of Wedderburn and Artin, there is no distinction between right and

left semisimplicity of a ring, as the following theorem shows.

Theorem 1.1.2 (Wedderburn-Artin) For a ring R, the following are equivalent:

(1) The ring R is semisimple as a right (left) module over itself.

(2) Every right (left) module over R is semisimple.

(3) The ring R is a finite direct product of simple artinian rings.

(4) The ring R is a finite direct product of matrix rings over division rings.
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The notion of an essential submodule can be dualized in a natural way. A submodule

K of a module M is called small in M if, for every submodule L ≤ M , K + L = M

implies L = M . It is denoted by N � M . If every proper submodule of M is small,

then M is called a hollow module. Dually, we have the following proposition.

Proposition 1.1.3 ([5]) Let M be an R-module. Then the following statements hold

for K ≤ N ≤M and H ≤M :

(1) N �M if and only if K �M and N/K �M/K.

(2) H +K �M if and only if H �M and K �M .

(3) If K � M and f : M −→ L is an R-homomorphism, then f(K) � L. In

particular, if K �M ≤ L, then K � L.

(4) Let K1 ≤M1 ≤M , K2 ≤M2 ≤M and M = M1 ⊕M2 . Then K1 ⊕K2 �M if

and only if K1 �M1 and K2 �M2.

(5) Let K ≤ L ≤ M . If K � M and L ⊆⊕ M , then K � L. In particular, if

K �M and K ⊆⊕ M , then K = 0.

The (Jacobson) radical of a module M is defined to be the intersection of all maximal

submodules of M , and is denoted by rad(M). Equivalently, it is the sum of all small

submodules of M . If the module M has no maximal submodules, then rad(M) = M .

For a ring R, rad(RR) = rad(RR) is an ideal of R, and we simply denote it by J(R).

Recall that if M is a module, then its (right) annihilator

annR(M) = {r ∈ R |Mr = 0}

and that M is faithful if annR(M) = 0. For any m ∈ M , the set annR(m) = {r ∈ R |

mr = 0} is the annihilator of m in R, and it is a right ideal of R. In the ring case, for

an element a in R, we will denote by lR(a) and rR(a), the left and right annihilators

of a in R, respectively.

Let M be a module. A set L of submodules of M satisfies the ascending chain condition

(ACC) if, for every chain

M1 ≤M2 ≤ . . . ≤Mn ≤ . . .
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in L, there is an n with Mn+i = Mn (i = 1, 2, . . .). The descending chain condition

(DCC) is analogously defined. A module M is noetherian in case the lattice L(M)

of all submodules of M satisfies the ACC. A module M is artinian in case L(M)

satisfies the DCC. A ring R is called right noetherian (resp., right artinian) if RR is

noetherian (resp., artinian). Left-handed versions are defined similarly. R is noetherian

(resp., artinian) if it is both right and left noetherian (resp., artinian). The artinian

and noetherian properties are inherited by submodules and factor modules (see [5]).

Recall that a commutative integral domain with unique factorization of ideals into

prime ideals is called a Dedekind domain; such a ring is necessarily noetherian, i.e.,

it satisfies the ascending chain condition for ideals. Any noetherian unique factoriza-

tion domain, briefly UFD, is a Dedekind domain, but there are UFD’s that are not

noetherian, and hence not Dedekind, e.g., the polynomial ring in infinitely many inde-

terminates over a field (see [19]).

A module is local if it has a greatest proper submodule. Equivalently, a module is local

if and only if it is cyclic, non-zero, and has a unique maximal proper submodule. It is

known that every local module is indecomposable (see [27]).

Proposition 1.1.4 ([27]) The following conditions are equivalent for a ring R:

(1) R/J(R) is a division ring.

(2) RR is a local module (that is, R has a unique maximal proper right ideal).

(3) The sum of two non-invertible elements of R is non-invertible.

(4) J(R) is a maximal right ideal.

(5) J(R) is the set of all non-invertible elements of R.

Since the condition (1) of the above proposition is left-right symmetric, for any ring

R, the right module RR is local if and only if the left module RR is local. A ring R

which satisfies the equivalent conditions of Proposition 1.1.4 is said to be a local ring

(see [27]). As a generalization of a local ring, a ring R is called semilocal if R/J(R) is

a semisimple artinian ring.
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Definition 1.1.5 ([54]) Two rings R, S are said to be Morita equivalent (R ≈ S, for

short) if there exists a category equivalence F : Mod-R → Mod-S. A ring-theoretic

property P is said to be Morita invariant if, whenever R has the property P , so does

every ring S with S ≈ R.

1.2 Stable Range One and Idempotent Stable Range One Con-

ditions

The concept of stable range was initiated by Bass [9] in the context of Algebraic K-

theory, and thereafter, many authors have worked on the simplest case of stable range

one (see, e.g., [14, 31, 34, 40, 48, 56, 85]).

Definition 1.2.1 ([56]) A sequence {a1, . . . , an} in a ringR is said to be left unimodular

if Ra1 + · · ·+ Ran = R. In case n > 2, such a sequence is said to be reducible if there

exist r1, . . . , rn−1 ∈ R such that R(a1 + r1an) + · · ·+R(an−1 + rn−1an) = R.

This definition directs us to the definition of stable range.

Definition 1.2.2 ([56]) A ring R is said to have left stable range 6 n if every left

unimodular sequence of length > n is reducible. The smallest such n is said to be

the left stable range of R; we write simply srl(R) = n. (If no such n exists, we say

srl(R) =∞. ) The right stable range is defined similarly, and is denoted by srr(R).

The stable range condition for a ring R is left-right symmetric due to Vaserstein (see

[85]). Thus, we can omit the subscripts and call it simply the stable range of a ring R.

Proposition 1.2.3 ([56]) The following statements hold:

(1) If S is a factor ring of R, then sr(S) 6 sr(R).

(2) sr(R) = sr(R/J(R)).

Examples 1.2.4 ([56], [85])

(1) sr(Z) = 2.

(2) For any field k ⊆ R, sr(k[x1, . . . , xn]) = n+ 1.

(3) For any field k, sr(k[[x1, . . . , xn]]) = n+ 1.
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Throughout this work, we focus on the simplest case, that is, the case of stable range

one. Recall that a ring R is Dedekind-finite (or sometimes, directly finite) if uv = 1 for

u, v ∈ R implies that v ∈ U(R).

Theorem 1.2.5 ([56]) Let R be a ring. Then the following hold:

(1) If sr(R) = 1, then R is Dedekind-finite.

(2) sr(R) = 1 if and only if, whenever a, b ∈ R and Ra+Rb = R, there exists x ∈ R

such that a+ xb ∈ U(R).

The following theorem due to Bass was one of the earliest results obtained on the stable

range of rings.

Theorem 1.2.6 ([9]) If R is a semilocal ring, then sr(R) = 1.

The notion of stable range one was transferred from a ring to an element of a ring by

Khurana and Lam, as in the definition below.

Definition 1.2.7 ([50]) An element a ∈ R is said to have stable range one (written

sr(a) = 1) if, for any b ∈ R, Ra+Rb = R implies that a+ xb ∈ U(R) for some x ∈ R.

Here we use the left version of the definition of a stable range one element. Unfortuna-

tely, it is not known whether the notion of stable range one for a given element a ∈ R

is left-right symmetric.

A new kind of stable range one condition was provided by Chen in 1999, as follows.

Definition 1.2.8 ([14]) A ring R is said to have idempotent stable range one (written

isr(R) = 1) if, whenever a, b ∈ R and Ra + Rb = R, there exists e ∈ idem(R) such

that a+ eb ∈ U(R).

As in the case of stable range one, idempotent stable range one condition for rings is

left-right symmetric (see [14]).

Theorem 1.2.9 ([14]) The following are equivalent for a ring R:

(1) isr(R) = 1.
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(2) isr(R/J(R)) = 1 and idempotents can be lifted modulo J(R).

Corollary 1.2.10 ([14]) If R is a local ring, then isr(R) = 1.

In general, every ring satisfying idempotent stable range one condition has stable range

one, but the converse is not true as the following example shows.

Example 1.2.11 ([14])Consider the semilocal commutative domain

R = {m
n
∈ Q | 2 6 |n, 3 6 |n}

with two maximal ideals M1 = 2R and M2 = 3R. Then J(R) = M1∩M2 and R/J(R) ∼=

R/M1 × R/M2. Then the factor ring R/J(R) has two non-trivial idempotents which

do not lift to idempotents in R, because R has no non-trivial idempotents. Since R is

semilocal, sr(R) = 1 by Theorem 1.2.6. However, isr(R) 6= 1 via Theorem 1.2.9.

Recently, Wang et al. introduced an element-wise definition for idempotent stable range

one condition, as follows.

Definition 1.2.12 ([86]) An element a ∈ R is said to have idempotent stable range

one (written isr(a) = 1) if Ra+Rb = R for any b ∈ R implies a+ eb ∈ U(R) for some

e ∈ idem(R).

Clearly, for any unit u in a ring R, isr(u) = 1. Moreover, any regular element in a ring

R with sr(R) = 1 has idempotent stable range one, as we shall see in the next section

(see Theorem 1.3.19).

1.3 Cancellation and Regularity

To begin the groundwork of cancellation, we first introduce the substitution notion,

due to P. Crawley and L. Fuchs.

Definition 1.3.1 ([18], [56]) A module M is said to have the substitution property or

be substitutable if, given a module A with internal decompositions

A = M1 ⊕N1 = M2 ⊕N2

where M1
∼= M ∼= M2, then the summands N1 and N2 have a common complement

M0, necessarily isomorphic to M , that is, there is a submodule M0 of A for which
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A = M0 ⊕N1 = M0 ⊕N2

Proposition 1.3.2 ([56]) Let K and L be modules. Then M = K ⊕ L has the substi-

tution property if and only if K and L have both the substitution property.

We now relate the substitution property and stable range one condition.

Theorem 1.3.3 ([56]) An R module M has the substitution property if and only if

S = EndR(MR) has stable range 1.

For R-modules M , X, Y over a ring R, M ⊕ X ∼= M ⊕ Y in general does not imply

X ∼= Y . In fact, given non-isomorphic modules X and Y , if we let

M := Y ⊕X ⊕ Y ⊕X . . . ,

then X ⊕M ∼= Y ⊕M , and we cannot cancel M . This construction is often referred

to as “Eilenberg’s trick” (see [56]).

Definition 1.3.4 ([18]) Given a collection C of right R-modules, a module M ∈ C is

said to be cancellable in C if, whenever M ⊕X ∼= M ⊕ Y for X, Y ∈ C, then X ∼= Y .

In the case where C is the category of all right R-modules, we simply say that M is

cancellable or has the cancellation property.

Proposition 1.3.5 ([56]) Let K and L be modules. Then K ⊕ L is cancellable if and

only if K and L themselves are.

Proposition 1.3.6 ([18]) A substitutable module M is cancellable.

Theorem 1.3.3 together with Proposition 1.3.6 yield the following.

Theorem 1.3.7 (Evans [26]) If the endomorphism ring S of a module MR has stable

range 1 (e.g., S is semilocal), then MR is cancellable.

The following result provides an interesting example of cancellable modules.

Proposition 1.3.8 ([56]) Let R be a Dedekind domain. Then the module RR is can-

cellable.

8



Example 1.3.9 ([18]) The Z-module Z is cancellable but not substitutable. The pro-

position above clearly implies that ZZ is cancellable. However, sr(Z) 6= 1, so The-

orem 1.3.3 gives us the latter.

An element a in R is called (von Neumann) regular provided there exists an element

x ∈ R such that a = axa. The set of all regular elements in R will be denoted by

reg(R). Following [34], the ring R is called (von Neumann) regular if every element

in R is regular. It is well-known that for any a ∈ R, a is regular ⇔ aR is a direct

summand of RR ⇔ Ra is a direct summand of RR.

The following well-known result gives a criterion for the regularity of an element in the

endomorphism of a module.

Proposition 1.3.10 ([56]) Let S = EndR(MR) where MR is a right module over the

ring R. Then f ∈ S is regular if and only if ker(f) and im(f) are both direct summands

of MR.

Corollary 1.3.11 ([56]) The endomorphism ring of any semisimple module MR is

regular.

Following Ehrlich [24], an element a in R is called unit-regular provided that there

exists a unit element u ∈ R such that a = aua. The set of all unit-regular elements in

R will be denoted by ureg(R). The ring R is called unit-regular if every element in R

is unit-regular. Moreover, any element a ∈ R is unit-regular ⇔ there exist u ∈ U(R)

and e ∈ idem(R) such that a = ue ⇔ there exist v ∈ U(R) and f ∈ idem(R) such that

a = fv.

Fact 1.3.12 ([38, Theorem 2B(14)]) If x, y ∈ ureg(R) and Rx = Ry, then x = uy for

some u ∈ U(R) (see also, [50, Lemma 3.3]).

Theorem 1.3.13 (Ehrlich-Handelman [24], [37]) Let MR be a module with a regular

endomorphism ring S = EndR(MR). Then S is unit-regular if and only if, whenever

M = M1 ⊕M2 = N1 ⊕ N2 (in the category of right R-modules) with M1
∼= N1, then

M2
∼= N2.

The property of the module M of Theorem 1.3.13 motivates a definition as follows.
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Definition 1.3.14 ([56]) A right R-module M is said to be internally cancellable if,

whenever M = M1 ⊕M2 = N1 ⊕ N2 with M1
∼= N1, then M2

∼= N2. A ring R is said

to be internally cancellable (IC, for short) in case the right R-module RR is internally

cancellable.

An obvious necessary condition for a module M to satisfy internal cancellation is that

it is Dedekind-finite, in the sense that M = M ⊕X ⇒ X = 0. In general, however, this

condition is only necessary, but not sufficient (see [56]).

Corollary 1.3.15 ([56])

(1) A regular ring R is unit-regular iff R is internally cancellable.

(2) Any semisimple ring is unit-regular.

Recall that a ring R is abelian if all idempotents in R are central.

Theorem 1.3.16 ([56]) Abelian regular rings are unit-regular. (In particular, commu-

tative regular rings are unit-regular.)

Now we establish the relation between unit-regularity and stable range one condition

with the help of a result proved by Fuchs [31], Henriksen [40], and Kaplansky [48]

independently.

Theorem 1.3.17 ([56]) If R is a unit-regular ring, then sr(R) = 1.

Nicholson defined a ring element a of R to be clean if it can be written as a sum of a

unit and an idempotent. If every a ∈ R is clean, R is said to be a clean ring (see [69]).

Nicholson also asked whether unit-regular rings are clean. The first attempt to give

a positive answer to this question was by Camillo and Yu. However, their proof had

a gap. Later, Camillo and Khurana proved the following result, which, in particular,

shows that a unit regular ring is clean.

Theorem 1.3.18 (Camillo-Khurana [12]) A ring R is unit-regular if and only if every

element a of R can be written as e+u such that aR∩eR = 0, where e is an idempotent

and u is a unit in R.
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Recently, Wang et al. have proved that any unit-regular ring has idempotent stable

range one with the help of the theorem below.

Theorem 1.3.19 ([86]) Let a ∈ reg(R) where R is a ring with sr(R) = 1. Then,

whenever Ra+Rb = R, there exists an idempotent e ∈ R such that a+ eb ∈ U(R) and

aR⊕ eR = R. In particular, isr(a) = 1, and a is clean.

Indeed, any element a ∈ R with isr(a) = 1 is clean. This can easily be seen by con-

sidering the equality Ra + R(−1) = R. Also, Theorem 1.3.19 gives immediately the

following improvement of Theorem 1.3.17.

Corollary 1.3.20 ([86]) If R is a unit-regular ring, then isr(R) = 1, and so R is clean.

The Camillo-Khurana theorem can be refined by adding an equivalent statement with

the help of Theorem 1.3.19.

Theorem 1.3.21 ([86]) For any ring R, the following are equivalent:

(1) R is unit-regular.

(2) For any a ∈ R, there exist u ∈ U(R) and an idempotent e ∈ R such that a = e+u

and aR ∩ eR = 0.

(3) Whenever Ra+Rb = R, there exists an idempotent e ∈ R such that a+eb ∈ U(R)

and aR ∩ eR = 0.

1.4 The Exchange Property

Crawley and Jónsson introduced the exchange property in their study on the decom-

positions of algebraic systems in 1964. Here we restrict our attention to the category

of modules instead of considering general algebraic systems.

Definition 1.4.1 ([20]) Let ℵ be a cardinal number. A module M is said to have the

ℵ-exchange property if, for any module G and any internal direct sum decompositions

G = M ′ ⊕N = ⊕i∈IAi,

where M ′ ∼= M and |I| 6 ℵ, there are submodules Bi of Ai, i ∈ I, such that G =

M ′ ⊕ (⊕i∈IBi).
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A module M has the exchange property if it has the ℵ-exchange property for every

cardinal ℵ. A module M has the finite exchange property if it has the ℵ-exchange

property for every finite cardinal ℵ (see [20]).

It is clear from the definition that a finitely generated module with the finite exchange

property has the full exchange property. However, it is unknown whether any module

with the finite exchange property also has the full exchange property (see [20]).

The following result shows that the class of modules with the ℵ-exchange property is

closed under direct summands and finite direct sums.

Lemma 1.4.2 ([20]) Suppose ℵ is a cardinal and M = M1 ⊕M2. The module M has

the ℵ-exchange property if and only if both M1 and M2 have the ℵ-exchange property.

In general, however, the class of modules with the ℵ-exchange property is not closed

under arbitrary direct sums. Crawley and Jónsson showed that if B is a Z-module such

that B = ⊕i∈IBi where, for i = 1, 2, 3, . . . , Bi is a cyclic Z-module of order pi, then

B does not have the 2-exchange property even though each of the cyclic Z-modules of

order pi has the exchange property (see [20]).

Clearly, every module has the 1-exchange property. The behavior of the modules with

the 2-exchange property is quite surprising, as follows.

Lemma 1.4.3 ([20]) If a module M has the 2-exchange property, then M has the finite

exchange property.

Now we introduce the definition of exchange rings due to Warfield.

Definition 1.4.4 ([88]) A ring R is called a exchange ring if the module RR has the

(finite) exchange property.

Moreover, he proved that the above definition is left-right symmetric and provided

an important connection between the modules with the finite exchange property and

exchange rings (see [88]).

Theorem 1.4.5 ([88]) A module M has the finite exchange property if and only if its

endomorphism ring End(M) is an exchange ring.
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Later Monk [65] gave a ring-theoretic description of these exchange rings. This result

of Monk implies that any direct product of exchange rings is again an exchange ring.

Theorem 1.4.6 ([65]) A ring R is an exchange ring if and only if for any a ∈ R,

there exist b, c ∈ R such that bab = b and c(1− a)(1− ba) = 1− ba

Subsequently, Nicholson provided another characterization of exchange rings. For this

characterization, recall that if I is a right (or left) ideal of R, we say that idempotents

lift modulo I if, given any a ∈ R with a2−a ∈ I, there exists e2 = e ∈ R with e−a ∈ I.

Theorem 1.4.7 ([69]) A ring R is an exchange ring if and only if idempotents lift

modulo I for every right (equivalently, left) ideal I of R.

It is immediate from the above result that any factor ring of an exchange ring is an

exchange ring. Moreover, we have:

Proposition 1.4.8 ([69]) A ring R is an exchange ring if and only if R/J(R) is exc-

hange and idempotents lift modulo J(R).

This result enables us to show that the class of exchange rings is quite large and, in

fact, contains all (von Neumann) regular rings. Call a ring R semiregular if R/J(R) is

(von Neumann) regular and idempotents lift modulo J(R) (see [69]).

Proposition 1.4.9 ([69]) Every semiregular ring is exchange.

The next result due to Nicholson provides another class of exchange rings and gives a

characterization of exchange rings among rings with central idempotents.

Proposition 1.4.10 ([69]) The following hold:

(1) Every clean ring is exchange.

(2) An abelian ring is clean if and only if it is exchange. In particular, commutative

clean rings are precisely commutative exchange rings.

Indecomposable modules with the (finite) exchange property have a special importance.

They are exactly the modules with a local endomorphism ring as the following theorem

states.
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Theorem 1.4.11 ([20, 88]) The following conditions are equivalent for an indecompo-

sable module MR:

(1) The endomorphism ring of MR is local.

(2) MR has the finite exchange property.

(3) MR has the exchange property.

Theorem 1.4.12 ([56]) Let M be a finite direct sum of indecomposable modules. If M

satisfies the 2-exchange property, then M has the substitution property.

Here we should note that, without the assumption on M in the above theorem (namely,

that it is a finite direct sum of indecomposables), the 2-exchange property on M need

not imply the substitution property. Nevertheless, it turns out that, in the presence of

2-exchange, we have the following result due to H.-P. Yu.

Theorem 1.4.13 ([96]) Let M be a module with the 2-exchange (or equivalently, finite

exchange) property. Then the following conditions on M are equivalent:

(1) M is internally cancellable.

(2) M is cancellable.

(3) M has the substitution property.

The following result unites the various criteria introduced in the last two sections for

the right R-module RR under the additional assumption that R has the exchange

property.

Theorem 1.4.14 ([86]) Let R be an exchange ring. Then the following statements are

equivalent:

(1) sr(R) = 1.

(2) If a, b ∈ R are such that aR = bR, then b = au for some u ∈ U(R).

(3) RR is internally cancellable.

(4) RR is cancellable in the category of all right R-modules.
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(5) RR is cancellable in the category P(R) of finitely generated projective right R-

modules.

(6) Every module in P(R) is cancellable in P(R).

(7) The left analogues of (2), (3), (4), (5), and (6).

1.5 Perspectivity, Summand Sum and Intersection Properties

Continuous geometry was invented by von Neumann in the fall of 1935 in [66]. He

set out to formulate suitable axioms to characterize this new structure. It happened

that just previously, K. Menger and G. Birkhoff had characterized Ln (Ln denotes the

lattice of all linear subsets of an n−1 dimensional projective geometry), by lattice-type

axioms; in particular, Birkhoff had shown the structures Ln could be characterized as

the complemented modular irreducible lattices which satisfy a chain condition. Von

Neumann dropped the chain condition and replaced it by two of its weak consequen-

ces: (i) order completeness of the lattice, and (ii) continuity of the lattice operations.

Lattices which are complemented, modular, irreducible, satisfy (i) and (ii), but do not

satisfy a chain condition, were called by von Neumann: continuous geometries. One of

the von Neumann’s fundamental results was the construction, for an arbitrary conti-

nuous geometry, of a dimension function with values ranging over the interval [0, 1].

The construction was based on the definition: x and y are to be called equidimensional

if x and y are in perspective relation, that is: for some w the lattice join and meet of

x with w are identical with those of y with w (see [66]). This summary is taken from

Halperin’s foreword of von Neumann’s ground-breaking book “Continuous Geometry”

(see [68]).

After von Neumann’s above definition, not only the perspectivity but also the transi-

tivity of perspectivity has been studied by von Neumann and Halperin in a series of

papers, see [66, 36, 67]. Holland [42] studied the perspectivity notion in orthomodu-

lar lattices. Later Handelman considered the transitivity of perspectivity in the lattice

L(R) of principal right ideals of a von Neumann regular ring R. Handelman showed

that a von Neumann regular ring R is unit-regular if and only if the transitivity holds

on a two by two matrix ring over R.
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Throughout this work, we place a particular emphasize on the notion of perspectivity

in the context of rings and modules. But first we need to recall some lattice theoretical

notions.

A relation 6 on a set P is a partial order on P in case it is reflexive (a 6 a), transitive

(a 6 b and b 6 c ⇒ a 6 c), and anti-symmetric (a 6 b and b 6 a ⇒ a = b). A pair

(P,6) consisting of a set and a partial order on the set is called a partially ordered set

or a poset (see [5]).

Let P be a poset and let A ⊆ P . An element e ∈ A is a greatest (resp., least) element of

A in case a 6 e (resp., e 6 a) for all a ∈ A. Not every subset of a poset has a greatest

or a least element, but clearly if one does exist, it is unique. An element b ∈ P is an

upper bound (resp., lower bound) for A in case a 6 b (resp., b 6 a) for all a ∈ A. So

the greatest (resp., least) element, if it exists, is an upper (resp., lower) bound for A.

If the set of upper bounds of A has a least element, it is called the least upper bound,

join, or supremum of A; if the set of lower bounds has a greatest element, it is called

the greatest lower bound, meet, or infimum of A. A lattice (resp., complete lattice) is a

poset P in which every pair (resp., every subset) of P has both a least upper bound

and a greatest lower bound in P (see [5]).

Let L be a lattice. Then each pair a, b ∈ L has both a join and a meet in L; let us

denote these by a ∨ b and a ∧ b, respectively. The lattice L is said to be modular in

case it satisfies the modularity condition: for all a, b, c ∈ L,

b 6 a implies a ∧ (b ∨ c) = b ∨ (a ∧ c).

The lattice L is called bounded in case L has two elements 0 and 1 satisfying the

following conditions:

(1) for all a in L, a ∨ 1 = 1 and a ∧ 1 = a;

(2) for all a in L, a ∨ 0 = a and a ∧ 0 = 0.

The elements 1 and 0 are called top and bottom of L, respectively. Furthermore, by a

complement of an element a in a bounded lattice L, we mean an element b ∈ L such

that a ∧ b = 0 and a ∨ b = 1; and a bounded lattice L is called complemented if all its

elements have complements (see [10]).
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Definition 1.5.1 ([10]) Let L be a complemented modular lattice. Two elements a

and b of L are perspective, denoted by a ∼ b, if they have a common complement.

As we mentioned above, we come back to the ring and module theoretical aspects of

perspectivity. Two direct summands A and B of a module M are called perspective,

denoted by A ∼ B, if they have a common complement, i.e., there exists a submodule

C such that

M = A⊕ C = B ⊕ C.

It is clear that A ∼ B implies A ∼= B. In a recent work by Garg et al. [33], the

modules in which any two isomorphic summands have a common complement have

been studied. These modules are called perspective modules. Indeed, a module M is

perspective exactly when, for any two summands A, B of M , A ∼= B implies A ∼ B.

Clearly, every perspective module is internally cancellable. Further, we have

M has the substitution property ⇒ M is perspective ⇒ M is internally cancellable.

However, the converse of the above implications is not true in general. See [33], for

more information.

As expected, a ring R is called (right) perspective if the right regular module RR

is perspective. Since perspectivity is a left-right symmetric property for rings, it is

enough to call such rings simply perspective [33]. Abelian rings and rings with stable

range one are examples of perspective rings. As we mentioned earlier, Wang et al.

[86] proved that in a ring with stable range one, every regular element is clean (see

Theorem 1.3.19). Garg et al. both generalized this result and established the following

characterization of perspective rings.

Theorem 1.5.2 ([33]) For a ring R, the following conditions are equivalent:

(1) R is perspective.

(2) If Ra+ Rb = R for some a, b ∈ R and if aR⊕X = R for some right ideal X of

R, then brR(a) and X have a common complement.

(3) If Ra+ Rb = R for some a, b ∈ R and if aR⊕X = R for some right ideal X of

R, then there exists e ∈ idem(R), such that eR = X and a+ eb is a unit.
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(4) If aR⊕X = R for some a ∈ R, then rR(a) and X have a common complement.

In particular, every regular element of a perspective ring has idempotent stable range

one and is thus clean.

After the above characterization, the authors ask the following question in [33]:

Question 1.5.3 If every regular element of R has idempotent stable range one, is R

perspective?

We will give a partial answer to this question in Chapter 2.

Remark 1.5.4 ([33]) In [49, Example 4.5], it was proved that in the ring M2(Z) the

element
(

12 5
0 0

)
is unit-regular but not clean. Hence, M2(Z) is not a perspective ring by

Theorem 1.5.2. Note further that M2(Z) is also an example of an IC ring which is not

perspective by [50, (5.9)(1)].

In the last part of this section, we recall two important classes of modules, namely, mo-

dules with summand intersection property and modules with summand sum property.

Modules with summand intersection property were first studied by Kaplansky [47] and

he showed that if F is a free module over a principal ideal domain R, then the inter-

section of any two summands of F is again a summand. This result motivated Fuchs

[30] to consider the problem of characterizing abelian groups in which the intersection

of two direct summands is again a summand. This problem was addressed by Wilson

[92] for modules over a ring. Later, Garcia [32] studied modules M with the property

that the sum of any pair of direct summands of M is a direct summand of M .

Definition 1.5.5 ([92]) A module M is said to have the summand intersection pro-

perty (SIP, for short) if the intersection of two direct summands of M is a direct

summand.

Definition 1.5.6 ([32]) A module M is said to have the summand sum property (SSP,

for short) if the sum of two direct summands of M is again a direct summand.

Proposition 1.5.7 ([32]) If a direct sum L⊕N of two modules L and N has the SSP

and f : L→ N a homomorphism, then im(f) is a direct summand of N .
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The following results concern the question of whether a quasi-projective module has

the SSP (or a quasi-injective module has the SIP) can be settled by looking at the SSP

of rings (see [32]). Note that we shall consider injectivity and projectivity concepts in

the next two sections.

Theorem 1.5.8 ([32]) A module M has both SSP and SIP if and only if End(M) has

SSP.

Corollary 1.5.9 ([32]) Let M be a module with its endomorphism ring S = EndR(M).

Then:

(1) If M is quasi-projective, then M has SSP if and only if EndR(M) has SSP.

(2) If M is quasi-injective, then M has SIP if and only if EndR(M) has SSP.

More recently, Alkan and Harmancı [3] studied modules having the SSP and the SIP

and their relations with some generalizations of quasi-injective modules and quasi-

projective modules.

Theorem 1.5.10 ([3]) A module M has SSP if and only if for every decomposition

M = A⊕B and every homomorphism f : A→ B, the image of f is a direct summand

of B.

1.6 Injectivity and Related Concepts

Baer [8] initiated the study of abelian groups which are summands whenever they are

subgroups. Modules which are summands of every containing module were studied by

a number of authors. Eckmann and Schopf [23] introduced the terminology “injective”

(see also [63]). In this section, we not only consider injective modules, but we also

investigate some generalizations.

Definition 1.6.1 ([54]) A right R-module M is said to be injective if, for any mono-

morphism f : A → B of right R-modules and any homomorphism g : A → M , there

exists an R-homomorphism h : B →M such that g = hf .

Next, recall that a ring R is called right self-injective if the right regular module RR is

injective. Left self-injective rings are defined similarly.
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Proposition 1.6.2 ([11]) If M is an injective module that is also a submodule of an

R-module N , then M is a direct summand of N .

Proposition 1.6.3 ([54]) A direct product M =
∏

αMα of right R-modules is injective

if and only if each Mα is.

It is not true that every direct sum of injective modules is injective. Indeed, it is precisely

the right noetherian rings over which every direct sum of injective right modules is

injective (see [5]).

Proposition 1.6.4 (Baer’s Criterion [8]) A right R-module M is injective if and only

if, for any right ideal I of R, any R-homomorphism f : I → M can be extended to

f ′ : R→M .

The notion of an essential extension is closely related to the concept of injectivity. First

we give a characterization of injective modules in terms of essential extensions.

Theorem 1.6.5 ([76]) A module MR is injective if and only if it has no proper essential

extensions.

Now we present the main result of Eckmann-Schöpf and Baer on the basic theory of

injective envelopes of arbitrary modules.

Theorem 1.6.6 ([76]) Let M be an R-module. Then there exists an R-module E sa-

tisfying the following equivalent conditions:

(1) E is an essential injective extension of M .

(2) E is a maximal essential extension of M .

(3) E is a minimal injective extension of M .

Moreover, if E1 and E2 are both essential injective extensions of M , then there is an

isomorphism θ : E1 → E2 which is the identity on M .

Definition 1.6.7 ([76]) Let M be an R-module. An R-module E satisfying the con-

ditions of Theorem 1.6.6 is called an injective envelope (or injective hull) of M ; we use

the symbol E(M) to denote an injective envelope of M .
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Remark 1.6.8 Let M be a module. Sometimes it is possible to denote an injective

envelope of the module M as a pair (E, i) where E is an injective R-module and

0→M
i→ E is an essential monomorphism, that is, im(i) 6e E.

Proposition 1.6.9 ([5]) Let M be an injective right R-module with its endomorphism

ring S = End(M). Let f ∈ S. Then

f ∈ J(S) if and only if ker(f) 6e M.

Theorem 1.6.10 ([63]) An injective module M has the cancellation property if and

only if M is Dedekind-finite.

Next we recall the notion of a quasi-injective module which generalizes that of an

injective module due to Johnson and Wong [46].

Definition 1.6.11 ([54]) An R-module M is said to be quasi-injective if, for any sub-

module N ⊆M , any homomorphism g : N →M can be extended to an endomorphism

of M .

Clearly, any injective module is always quasi-injective. The converse is not true in ge-

neral; it is not difficult to find a simple module which is always quasi-injective but need

not always be injective. Furthermore, a direct summand of a quasi-injective module is

always quasi-injective. However, in general, a direct sum of two quasi-injective modules

need not be quasi-injective (see [54]).

The following result is an interesting characterization of quasi-injective modules M in

terms of its injective envelope E(M).

Theorem 1.6.12 ([54]) A module MR is quasi-injective if and only if M is fully in-

variant in E(M) i.e., M is stabilized by every endomorphism of E(M).

The following theorem was first proved by Warfield [87] for injective modules, and the

proof was generalized to quasi-injective modules by Fuchs [29].

Theorem 1.6.13 ([29]) Every quasi-injective module M has the exchange property.
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Utumi studied continuity concept for rings in a series of papers (see [82, 83, 84]) and

introduced three conditions for a ring. These conditions were extended to modules by

Jeremy [45] and Mohamed and Bouhy[61], as follows.

Definitions 1.6.14 ([63]) A moduleM is called a Ci-module if it satisfies the following

Ci-conditions.

C1: Every submodule of M is essential in a direct summand of M .

C2: Whenever A and B are submodules of M such that A ∼= B and B is a direct

summand of M , then A is a direct summand of M .

C3: Whenever A and B are direct summands of M with A ∩ B = 0, then A + B is a

direct summand of M .

Here there is a point that needs mentioning. C1-modules are also known as extending

modules or CS-modules (complements are summands), and C2-modules are also known

as direct-injective modules in the literature. Moreover, a ring R is said to be right CS if

the right regular module RR is C1, and is said to be right C2 (right C3, respectively)

if RR is C2 (C3, respectively).

Definitions 1.6.15 ([63]) Let M be a module. M is called continuous if it satisfies

both the C1- and C2-conditions, and is called quasi-continuous if it satisfies both the

C1- and C3-conditions.

Now we should note the following hierarchy of the above-mentioned definitions for

modules:

Injective ⇒ quasi-injective ⇒ continuous ⇒ quasi-continuous ⇒ C1.

Further, it is well known that every C2-module is a C3-module, and each of the Ci-

properties of modules is inherited by direct summands, and thus direct summands

of (quasi-) continuous modules are (quasi-) continuous. However, in general, a direct

sum of (quasi-) continuous modules need not be (quasi-) continuous (see [63] for more

information).

Continuous and quasi-continuous modules have a particular importance because of their

relationship with the exchange property. To establish this relationship, the following

decomposition theorem is crucial. First, recall that a module M is called (summand-)
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square-free if whenever N ⊆ M and N = Y1 ⊕ Y2 with Y1
∼= Y2 (and Y1, Y2 ⊆⊕ M),

then Y1 = Y2 = 0.

Theorem 1.6.16 ([62]) If M is a quasi-continuous module, then we can write M =

M1 ⊕M2 where M1 is quasi-injective and M2 is square-free.

Theorem 1.6.17 ([62]) Every continuous module has the exchange property.

Unfortunately, quasi-continuous modules do not necessarily enjoy the finite exchange

property (e.g., the abelian group Z), but when they do then they also have full exchange

property.

Theorem 1.6.18 ([64, 73]) Every quasi-continuous module with the finite exchange

property has the exchange property.

We conclude this section by a result of Nicholson and Yousif that will be needed later.

Proposition 1.6.19 ([71]) The following conditions are equivalent for a local ring R:

(1) R is a right C2-ring.

(2) J(R) = {a ∈ R | rR(a) 6= 0}.

In particular, any local ring with nil Jacobson radical is a right and left C2-ring.

1.7 Projectivity and Related Concepts

The notion of projective module was introduced by Cartan and Eilenberg in their

revolutionary book “Homological Algebra” (see [91]). Major contributions to this con-

cept were made by Kaplansky and Bass. In this section, we review various forms of

projectivity.

Definition 1.7.1 ([54]) A right R-module M is said to be projective if, for any epi-

morphism f : B → C of right R-modules and any homomorphism g : M → C, there

exists an R-homomorphism h : M → B such that g = fh.

An injective R-module M is a direct summand of each R-module N that extends M .

Projective modules enjoy a dual property.

23



Proposition 1.7.2 ([11]) If f : N → M is an epimorphism and M is a projective

R-module, then M is isomorphic to a direct summand of N .

Proposition 1.7.3 ([54]) A direct sum M = ⊕αMα of right R-modules is projective

if and only if each summand Mα is projective.

Note that a ring is a projective module over itself. Moreover, a free module, that is, a

module isomorphic to a (possibly infinite) direct sum of copies of RR is a projective

module. On the other hand, the direct product of projective modules need not be

projective in general. For example, the direct productM = Z×Z×· · · is not a projective

Z-module. This example is attributed to R. Baer [54]. The next result provides a

basic characterization of a projective module M in terms of its (first) dual M∗ :=

HomR(M,R).

Lemma 1.7.4 (Dual Basis Lemma [54]) A right R-module M is projective if and only

if there exist a family of elements {ai : i ∈ I} ⊆M and linear functionals {fi : i ∈ I} ⊆

M∗ such that, for any a ∈ P , fi(a) = 0 for almost all i, and a =
∑

i aifi(a).

It is well known that every R-module M is the homomorphic image of a projective

module. Among the projective modules that “cover” M , there may be one that is,

in some sense, minimal. Such a cover of M , if it exists, can be viewed as a “best

approximation” of M by a projective module (see [11]).

Definition 1.7.5 ([5]) A projective R-module P is a projective cover of M if there

exists an epimorphism p : P →M with small kernel, i.e., ker(p)� P .

Remark 1.7.6 Let M be a module. It is possible to denote a projective cover of the

module M as a pair (P, p) where P is a projective R-module and P
p→ M → 0 is a

small epimorphism, that is, ker(p)� P .

Proposition 1.7.7 ([5]) Let R be a ring. If M is a projective right R-module, then

rad(M) = MJ(R).

Proposition 1.7.8 ([5]) Let M be a projective right R-module with its endomorphism

ring S = End(M). Let f ∈ S. Then

f ∈ J(S) if and only if im(f)�M.
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The following lemma will be used frequently in Chapter 2.

Lemma 1.7.9 (Nicholson’s Lemma [69, Lemma 2.8]) Let P be a projective module

over any ring R and let A and B submodules of P such that P = A + B. If A is a

direct summand of P , then there exists a submodule C ⊆ B such that P = A⊕ C.

Definition 1.7.10 ([54]) An R-module M is said to be quasi-projective if, for any

quotient module Q of M , any homomorphism g : M → Q can be lifted to an endo-

morphism of M .

Clearly, any projective module is always quasi-projective. The converse is not true in

general; it is not difficult to find a simple module which is always quasi-projective but

need not always be projective. Furthermore, a direct summand of a quasi-projective

module is always quasi-projective. However, in general, a direct sum of two quasi-

projective modules need not be quasi-projective.

Recently, the above result of Nicholson has been generalized to π-projective modules.

Recall that a module M is said to be π-projective if, for every two submodules U , V

of M with U + V = M , there exists f ∈ End(M) with im(f) ⊆ U and im(1− f) ⊆ V .

It is easy to see that every quasi-projective module is also π-projective. Hollow (and

hence local) modules trivially have this property (see [93]).

There are modules that fail to have a projective cover, this brings up the question “Are

there rings over which every module has a projective cover?” Such rings do indeed exist.

In the process, we first describe rings over which every finitely generated module has

a projective cover (see [11]).

Definition 1.7.11 ([55]) A ring R is called semiperfect if R is semilocal, and idempo-

tents of R/J(R) can be lifted to R.

Theorem 1.7.12 ([55]) A ring R is semiperfect if and only if every finitely generated

right R-module has a projective cover.

Our next goal is to introduce the notion of left and right perfect rings. This depends on

a new notion of nilpotency called T -nilpotency, where the letter “T” apparently stands

for “transfinite” (see [55]).
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Definition 1.7.13 ([55]) A subset A of a ring R is called left (resp., right) T -nilpotent

if, for any sequence of elements {a1, a2, a3, . . . } ⊆ A, there exists an integer n > 1 such

that a1a2 . . . an = 0 (resp., an . . . a2a1 = 0).

Definition 1.7.14 ([55]) A ring R is called right (resp., left) perfect if R/J(R) is

semisimple and J(R) is right (resp., left) T -nilpotent. If R is both left and right perfect,

we call R a perfect ring.

Theorem 1.7.15 ([55]) A ring R is right perfect if and only if every right R-module

has a projective cover.

Now we introduce concepts dual to continuity and quasi-continuity. For this, we need

the following definitions.

Definitions 1.7.16 ([63]) A moduleM is called aDi-module if it satisfies the following

Di-conditions.

D1: For every submodule A of M , there is a decomposition M = M1 ⊕M2 such that

M1 ⊆ A and A ∩M2 is small in M2.

D2: Whenever A and B are submodules of M with M/A ∼= B and B is a direct

summand of M , then A is a direct summand of M .

D3: Whenever A and B are direct summands of M with A+B = M , then A ∩B is a

direct summand of M .

It is worthwhile to note that D1-modules are also known as lifting modules, and D2-

modules are also known as direct-projective modules.

Definitions 1.7.17 ([63]) Let M be a module. M is called discrete if it is both a D1-

and a D2-module, and is called quasi-discrete if it is both a D1- and a D3-module.

It is clear that continuity generalizes injectivity. On the other hand, discreteness gene-

ralizes projectivity if and only if the ring is perfect. Hence, in contrast to the hierarchy

of the injectivity and its related concepts, we have the following:

Projective ⇒ quasi-projective ; discrete ⇒ quasi-discrete ⇒ D1.
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It is widely known that every quasi-projective module is a D2-module, and every D2-

module is a D3-module. Each of the Di-properties of modules is inherited by direct

summands, and thus direct summands of (quasi-) discrete modules are (quasi-) discrete.

However, in general, a direct sum of (quasi-) discrete modules need not be (quasi-)

discrete (see [63] for more information).

We end this section by a decomposition theorem for quasi-discrete modules and its

application.

Theorem 1.7.18 ([62]) A quasi-discrete module M has a decomposition, unique up to

isomorphism, M = ⊕i∈IHi, where each Hi is hollow; moreover if M is discrete, then

each Hi has a local endomorphism ring.

Corollary 1.7.19 ([62]) A quasi-discrete module M has the exchange property if and

only if every hollow summand of M has a local endomorphism ring.
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2 INTERNALLY CANCELLABLE RINGS

A right R-module M is said to be internally cancellable if, whenever M = M1⊕M2 =

N1 ⊕N2 with M1
∼= N1, then M2

∼= N2. This property of modules was first considered

by Ehrlich [24] and Handelman [37]; they proved independently that for a module M

with a regular endomorphism ring S = EndR(MR),

M is internally cancellable if and only if S is unit-regular.

In fact, the regularity condition on the endomorphism ring was not necessary. Guralnick

and Lanski [35] dropped this condition, and showed that

M is internally cancellable if and only if every regular element in S is unit-regular.

There is another result of Guralnick and Lanski [35] which provide a characterization

for internally cancellable modules in terms of “pseudo-similarity” in the endomorphism

rings of these modules.

All of the characterizations mentioned above address the class of rings that are endo-

morphism rings of internally cancellable modules. Following [50], a ring R is said to

be internally cancellable (IC, for short) in case the right R-module RR is internally

cancellable. The class of IC rings is quite large and contains abelian rings (i.e., rings

with all idempotents central), unit-regular rings, and right artinian rings by [50]. It

follows from the above result due to Guralnick and Lanski that, for any ring R, RR

is IC if and only if every regular element in R is unit-regular, and hence the internal

cancellation property of rings is left-right symmetric.

First, we record a well-known characterization of IC rings in terms of isomorphic idem-

potents.

Theorem 2.0.1 ([18]) The following are equivalent for a ring R:

(1) R is an IC ring.

(2) Given idempotents e, f ∈ R, if eR ∼= fR, then (1− e)R ∼= (1− f)R.

(3) Given idempotents e, f ∈ R, if eR ∼= fR, then e and f are conjugates, that is,

ueu−1 = f for some u ∈ U(R).
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(4) The left analogues of (2) and (3).

Next, consider the following characterization of IC rings where

(♦) : Ra+Rb = R implies that a+ xb ∈ U(R) for some x ∈ R.

Lemma 2.0.2 ([79], [50]) The following are equivalent for a ring R:

(1) R is IC.

(2) For each a ∈ reg(R) and b ∈ R, (♦) holds.

(3) For each a, b ∈ reg(R), (♦) holds.

(4) For each a ∈ reg(R) and b ∈ idem(R), (♦) holds.

(5) For each a ∈ R and b ∈ idem(R), (♦) holds.

(6) For each a ∈ R and b ∈ reg(R), (♦) holds.

The first four conditions in Lemma 2.0.2 were given by Song et al. in [79], and they

define a ring R to be regularly stable if R satisfies the condition (3) in Lemma 2.0.2.

Other conditions were given by Khurana and Lam [50], and they define a ring R to

have regular stable range one (written rsr(R) = 1) if R satisfies the condition (2) in

Lemma 2.0.2, since the condition (2) means that every regular element has stable range

one.

Now let us summarize the following hierarchy of the rings we have considered so far.

R is unit-regular =⇒ isr(R) = 1 =⇒ sr(R) = 1 =⇒ rsr(R) = 1 ⇐⇒ R is IC

Note that the converse of the above implications are true when the ring is regular by

Corollary 1.3.15. On the other hand, if R is both exchange and IC, then sr(R) = 1 by

Theorem 1.4.14.

This chapter seeks to continue the study of internally cancellable rings and find some

new characterizations. In the first section, inspired by Lemma 2.0.2, we consider the

following condition:

(∗): Ra+Rb = R implies that a+ xb ∈ U(R) and aR ∩ xR = 0 for some x ∈ R,
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where the elements a, b ∈ R are to be quantified. There are nine combinations, and

we obtain new characterizations of unit-regular rings (Corollary 2.1.4) and IC rings

(Theorem 2.1.5) via these combinations. It is observed that (∗) and (♦) have different

behaviors. The cases where the element a+ xb is unit-regular in the condition (♦) are

also considered, and then rings with stable range one (Theorem 2.1.9) and IC rings

(Theorem 2.1.10) are characterized.

In Section 2.2, we consider IC rings with the summand sum property. Following [33],

a ring R is called perspective if any two isomorphic direct summands of RR have a

common complement, i.e., if eR ∼= fR for any e, f ∈ idem(R), then there exists a direct

summand C of RR such that R = eR⊕C = fR⊕C. Perspective rings include abelian

rings, rings with stable range one, and right or left quasi-duo rings (see [33, Section

2 and Corollary 4.8]). Clearly, any perspective ring is IC. We prove that an IC ring

with SSP is a perspective ring (Theorem 2.2.2). This generalizes Handelman’s result

[37, Theorem 2] saying that unit regular rings (which are both IC and SSP) are always

perspective. On the other hand, it gives a partial answer to a question posed in [33]

(Corollary 2.2.6).

Section 2.3 includes a direct proof to the result [15, Corollary 2.7] saying that for any

abelian ring R and for any a ∈ reg(R), there exists a unique decomposition a = e + u

such that aR ∩ eR = 0 where e ∈ idem(R), u ∈ U(R) is given (Theorem 2.3.2). As a

final result, IC rings are characterized by special clean elements (Proposition 2.3.5).

2.1 Unit-Regular Elements and Internal Cancellation

Consider the following statement:

(∗) : Ra+Rb = R ⇒ a+ xb ∈ U(R) and aR ∩ xR = 0 for some x ∈ R,

where the elements a, b ∈ R are to be quantified. We deal with the nine combinations

arising from the quantifiers “for all”, “for all regular elements”, and “for all idempotents

elements” for each of a and b.

First we recall two theorems from Khurana and Lam [50].

Theorem 2.1.1 [50, Theorem 3.2] If a is a unit-regular element in a ring R, then

sr(a) = 1.
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Proof. Consider any a ∈ ureg(R), and let b be any element of R such that Ra+Rb = R.

Since a is unit-regular, Ra is a direct summand of RR. Then there exists a left ideal

C ⊆ Rb such that R = Ra ⊕ C by Nicholson’s Lemma. Write (uniquely) 1 = e1 + f1

where e1 ∈ Ra and f1 ∈ C. Then e1, f1 are complementary idempotents with Ra = Re1

and C = Rf1. Thus, Fact 1.3.12 implies that a = u1e1 for some u1 ∈ U(R). Writing

f1 = yb for some y ∈ R, and left-multiplying 1 = e1 + f1 by u1, we get a+ u1yb = u1 ∈

U(R). This checks that sr(a) = 1. 2

Theorem 2.1.2 [50, Theorem 3.5] Let R be a ring and a ∈ reg(R). Then a is unit-

regular if and only if sr(a) = 1.

Proof. The “only if” part is true for any element a ∈ R, by Theorem 2.1.1. For the

“if” part, write a = axa for some x ∈ R, and assume that sr(a) = 1. The following

familiar argument is from the proof of [19, (4.12)]. In view of Ra+R(1− xa) = R, we

get an element y ∈ R such that a+ y(1− xa) ∈ U(R). Letting u be the inverse of this

unit, we have

a = axa = au [a+ y(1− xa)]xa = auaxa = aua,

so we have a ∈ ureg(R). 2

On the other hand, any unit regular element in a ring R need not have idempotent

stable range 1. Khurana and Lam [49, Example 4.5] showed that in the ring M2(Z) the

element A =
(

12 5
0 0

)
is unit-regular but not clean. As we mentioned in the preliminary

chapter, every element having idempotent stable range 1 is clean. Hence, isr(A) 6= 1.

Now we characterize unit-regular elements.

Theorem 2.1.3 For any element a in a ring R, the following are equivalent:

(1) a is unit-regular.

(2) Whenever Ra+ Rb = R with b ∈ R, there exists x ∈ R such that a+ xb ∈ U(R)

and aR ∩ xR = 0.

(3) Whenever Ra + Rb = R with b ∈ reg(R), there exists x ∈ R such that a + xb ∈

U(R) and aR ∩ xR = 0.
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(4) Whenever Ra+Rb = R with b ∈ idem(R), there exists x ∈ R such that a+ xb ∈

U(R) and aR ∩ xR = 0.

Proof. (1) ⇒ (2) Assume a is unit-regular and let Ra+Rb = R. Since Ra is a direct

summand of RR, there exists B ⊆ Rb such that Ra ⊕ B = R by Nicholson’s Lemma.

Then we can write 1 = e + f where Ra = Re and B = Rf for e, f ∈ idem(R). Since

a is unit-regular, there exists a unit u in R such that a = ue by Fact 1.3.12. Write

f = rb for some r ∈ R. Then a + (urbr)b = ue + uf = u. Finally, we show that

aR∩ urbrR = 0. For, if ax = urbry for some x, y ∈ R, then ex = fry = (1− e)ry = 0,

and hence ax = urbry = 0.

(2) ⇒ (3) and (3) ⇒ (4) are obvious.

(4) ⇒ (1) Since Ra + R(1) = R, there exists x ∈ R such that a + x = u ∈ U(R) and

aR∩xR = 0 by hypothesis. Now we can follow the proof of [12, Theorem 1]. Multiplying

a − u = −x by u−1a from the right gives that au−1a − a = −xu−1a ∈ aR ∩ xR = 0.

Thus, au−1a = a, i.e., a is unit-regular. 2

Theorem 2.1.3 immediately gives the following corollary that characterizes rings satisf-

ying (∗) “for each a, b ∈ R”, or “for each a ∈ R and b ∈ reg(R)”, or “for each a ∈ R and

b ∈ idem(R)”. As is well-known, the class of rings with idempotent stable range one is

properly contained in the class of rings with stable range one, but with the additional

condition “aR∩xR = 0”, we see that these classes coincide. Note that the equivalence

of the conditions (1) and (2) in Corollary 2.1.4 is due to Wang et al. [86, Theorem 3.6].

Corollary 2.1.4 The following are equivalent for a ring R:

(1) R is unit-regular.

(2) Whenever Ra + Rb = R with a, b ∈ R, there exists e ∈ idem(R) such that

a+ eb ∈ U(R) and aR ∩ eR = 0.

(3) Whenever Ra+Rb = R with a, b ∈ R, there exists x ∈ R such that a+xb ∈ U(R)

and aR ∩ xR = 0.

(4) Whenever Ra+Rb = R with a ∈ R and b ∈ reg(R), there exists x ∈ R such that

a+ xb ∈ U(R) and aR ∩ xR = 0.
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(5) Whenever Ra + Rb = R with a ∈ R and b ∈ idem(R), there exists x ∈ R such

that a+ xb ∈ U(R) and aR ∩ xR = 0.

Next, we will consider the element “a” as regular in (∗) whenever b ∈ R, b ∈ reg(R),

or b ∈ idem(R) and characterize IC rings. Compare it with Lemma 2.0.2.

Theorem 2.1.5 The following are equivalent for a ring R:

(1) R is IC.

(2) Whenever Ra+Rb = R with a ∈ reg(R) and b ∈ R, there exists x ∈ R such that

a+ xb ∈ U(R) and aR ∩ xR = 0.

(3) Whenever Ra+Rb = R with a ∈ reg(R) and b ∈ reg(R), there exists x ∈ R such

that a+ xb ∈ U(R) and aR ∩ xR = 0.

(4) Whenever Ra + Rb = R with a ∈ reg(R) and b ∈ idem(R), there exists x ∈ R

such that a+ xb ∈ U(R) and aR ∩ xR = 0.

Proof. (1) ⇒ (2) is true by Theorem 2.1.3 since every regular element is unit-regular.

(2) ⇒ (1) Every regular element has stable range one by hypothesis. Thus, R is IC by

Theorem 2.0.2. (2) ⇒ (3) ⇒ (4) are obvious.

(4)⇒ (2) Let Ra+Rb = R where a ∈ reg(R) and b ∈ R. Since Ra is a direct summand

of R, there exists e ∈ idem(R) with Re ⊆ Rb such that R = Ra ⊕ Re by Nicholson’s

Lemma. By assumption, there exists x ∈ R such that a+xe ∈ U(R) and aR∩xR = 0.

Let e = rb for some r ∈ R. Thus, a+ (xr)b ∈ U(R) and aR ∩ xrR = 0. 2

Now we consider the case where the elements “a” and “b” are idempotents in (∗) and

see that this always holds.

Theorem 2.1.6 For any idempotents e, f in a ring R, if Re + Rf = R, then there

exists a unit-regular element x ∈ Rf such that e+ xf ∈ U(R) and eR ∩ xR = 0.

Proof. Assume that Re+Rf = R where e, f ∈ idem(R). By Nicholson’s Lemma, there

exists g ∈ idem(R) such that Rg ⊆ Rf and Re ⊕ Rg = R. Write 1 = t1 + t2 where

t1, t2 ∈ idem(R), t1 ∈ Re, and t2 ∈ Rg. Then Re = Rt1 and Rg = Rt2. Let u and v

be units such that e = ut1 and t2 = vg by Fact 1.3.12. Since g ∈ Rf , gf = g. Now

e+ uvgf = e+ uvg = ut1 + ut2 = u. Clearly, eR ∩ uvgR = 0. Thus, we are done with

x = uvg. 2
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Remark 2.1.7 In other words, Theorem 2.1.6 says that (∗) always holds for each

a ∈ idem(R) and b ∈ idem(R). This condition is also equivalent to the following

conditions.

(i) (∗) holds for each a ∈ idem(R) and b ∈ R.

(ii) (∗) holds for each a ∈ idem(R) and b ∈ reg(R).

It is enough to prove that if (∗) holds for each a ∈ idem(R) and b ∈ idem(R), then

(i) holds. Let Ra + Rb = R where a ∈ idem(R) and b ∈ R. According to Nicholson’s

Lemma, there exists B ⊆ Rb such that R = Ra⊕B. Take B = Re where e ∈ idem(R).

Then there exists x ∈ R such that a + xe ∈ U(R) and aR ∩ xR = 0 by hypothesis.

Write e = rb where r ∈ R. Thus a+ (xr)b ∈ U(R) and aR∩xrR = 0. Hence, (i) holds.

The Case Where “a+ xb” is Unit-Regular

Any unit element in a ring is clearly unit-regular. Based upon this fact, one can consider

the cases where the element a+xb is unit-regular instead of being unit in the statement

(♦). We see that rings with stable range one and IC rings can also be characterized

with the cases including unit-regular elements.

Theorem 2.1.8 For any element a in a ring R, the following are equivalent:

(1) a has stable range one.

(2) Whenever Ra + Rb = R with b ∈ R, there exists an element x in R such that

a+ xb is unit-regular.

Proof. (1) ⇒ (2) is obvious.

(2) ⇒ (1) Let Ra+Rb = R. By assumption, there exists x ∈ R such that a+ xb = ug

where u ∈ U(R) and g ∈ idem(R). Then Rg+Rb = R. Since any idempotent has stable

range one by Theorem 2.1.1, there exists y ∈ R such that g + yb = v where v ∈ U(R).

It follows that a + xb = ug = uv − uyb, and so a + (x + uy)b = uv which is a unit in

R. Therefore, a has stable range one. 2

The next corollary generalizes [89, Theorem 2.4] by removing the unnecessary “exc-

hange” assumption placed on R.
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Corollary 2.1.9 The following are equivalent for a ring R:

(1) sr(R) = 1.

(2) Whenever Ra + Rb = R, there exists an element x in R such that a + xb is

unit-regular.

Lemma 2.1.10 Let a ∈ reg(R). Then, a is unit-regular if and only if whenever Ra+

Rb = R, there exists an element x in R such that a+ xb is unit-regular.

Proof. If a is unit-regular, then we can take x = 0 to prove the necessity. For the

sufficiency, we have sr(a) = 1 by Theorem 2.1.8. Since a ∈ reg(R), it is unit-regular by

Theorem 2.1.2. 2

Now Lemma 2.0.2 and Lemma 2.1.10 together give the following result.

Theorem 2.1.11 The following are equivalent for a ring R:

(1) R is IC.

(2) For each a ∈ reg(R) and b ∈ R, if Ra + Rb = R, then there exists x ∈ R such

that a+ xb is unit-regular.

(3) For each a ∈ reg(R) and b ∈ reg(R), if Ra + Rb = R, then there exists x ∈ R

such that a+ xb is unit-regular.

(4) For each a ∈ reg(R) and b ∈ idem(R), if Ra + Rb = R, then there exists x ∈ R

such that a+ xb is unit-regular.

(5) For each a ∈ R and b ∈ reg(R), if Ra + Rb = R, then there exists x ∈ R such

that a+ xb is unit-regular.

(6) For each a ∈ R and b ∈ idem(R), if Ra + Rb = R, then there exists x ∈ R such

that a+ xb is unit-regular.

Proof. (1) ⇒ (2) follows from Lemma 2.0.2. (2) ⇒ (3) and (3) ⇒ (4) are trivial.

(4) ⇒ (1) Let a ∈ reg(R). Using Lemma 2.1.10, we will show that a is unit-regular.

Let Ra + Rb = R. Then Ra ⊕ Rf = R for some f ∈ idem(R) with Rf ⊆ Rb. By

hypothesis, there exists an element y in R such that a + yf is unit-regular. If f = rb,
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then a+ yf = a+ yrb is unit-regular. This proves (1).

(1) ⇒ (5) follows from Lemma 2.0.2.

(5) ⇒ (6) is trivial.

(6) ⇒ (1) Let Ra + Rf = R where a ∈ R and f ∈ idem(R). To complete the proof,

according to Lemma 2.0.2, it suffices to show that there exists an element x in R such

that a + xf ∈ U(R). Since a + yf is unit-regular for some y ∈ R by hypothesis, write

a+ yf = vg where v ∈ U(R), g ∈ idem(R). Then a ∈ Rg +Rf , and so R = Rg +Rf .

According to Theorem 2.1.6, there exists z ∈ R such that g + zf = u ∈ U(R). Then

a+ yf + vzf = vu, and hence a+ (y + vz)f = vu ∈ U(R), as desired. 2

In Theorem 2.1.11, we can add trivially the condition “aR∩xR = 0” to the items (2-4).

However, when we consider Corollary 2.1.9 and the items (5) and (6) of Theorem 2.1.11,

the following question arises.

Question 2.1.12 What is the structure of a ring R with the property that whenever

Ra + Rb = R with “a ∈ R” and “b ∈ R or b ∈ reg(R) or b ∈ idem(R)”, there exists

x ∈ R such that a+ xb is unit-regular and aR ∩ xR = 0?

2.2 Internal Cancellation with Summand Sum Property

This section will be devoted to IC rings with SSP. As we mentioned in Section 1.5,

any perspective ring is IC. However, the converse does not hold in general (see Re-

mark 1.5.4). Indeed, as Garg et al. states that it is not difficult to see that the converse

is true if eR and ueR (equivalently, Re and Reu) have a common complement for every

e ∈ idem(R) and u ∈ U(R) [33].

We first recall the following result of Handelman because it has a close connection with

the main result (Theorem 2.2.2) of this section.

Theorem 2.2.1 ([37, Theorem 2]) For a regular ring R, the following are equivalent:

(1) R is unit-regular.

(2) For idempotents e, f in R, eR ∼= fR implies (1− e)R ∼= (1− f)R.

(3) For idempotents e, f in R, eR ∼= fR implies there exists a unit x such that

x−1ex = f
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(4) If I ⊕ J, I ′ ⊕K ∈ L(R), and also I ⊕ J ∼= I ′ ⊕K and I ∼= I ′, then J ∼= K.

(5) For I, J ∈ L(R), I ∼= J implies I is perspective to J .

(6) R satisfies the cancellation law for finitely generated projective modules.

Now we prove our main result. On one hand, this generalizes Handelman’s above result

[37, Theorem 2] saying that unit regular rings (which are both IC and SSP) are always

perspective. On the other hand, it gives a partial answer to the Question 1.5.3 posed

in [33] (See Corollary 2.2.6).

Theorem 2.2.2 If R is an IC ring with SSP, then R is perspective.

Proof. Let e, f be idempotents in R such that eR ∼= fR. Since R has SSP, eR + fR

is a direct summand of RR, and hence projective. According to Nicholson’s Lemma,

there exist idempotents g and h in R such that eR + fR = eR ⊕ gR = hR ⊕ fR

where gR ⊆ fR and hR ⊆ eR. Write R = (eR + fR) ⊕ T for some right ideal T

of R. Then R = eR ⊕ gR ⊕ T = hR ⊕ fR ⊕ T . Since R is IC, gR ∼= hR. Let ϕ be

the isomorphism from gR to hR. Since gR ∩ hR = 0, a routine argument shows that

gR ⊕ hR = gR ⊕ C = C ⊕ hR where C = {x + ϕ(x) |x ∈ gR }. Then it follows that

eR+fR = eR⊕C = C⊕fR, and hence R = (eR+fR)⊕T = eR⊕C⊕T = fR⊕C⊕T .

Thus, eR and fR have a common complement, and so R is perspective. 2

Example 2.2.3 SSP is not superfluous in Theorem 2.2.2; let R = M2(Z). As R ∼=

EndZ(Z ⊕ Z) and Z ⊕ Z is an IC Z-module, it follows that the ring R is IC. As we

mentioned earlier, the element
(

12 5
0 0

)
is unit-regular but not clean. Hence, R is not

perspective by Remark 1.5.4. On the other hand, Z ⊕ Z does not have SSP as a Z-

module by Proposition 1.5.7. Thus, R does not have SSP by Corollary 1.5.9.

Recall that a module M is called perspective if any two isomorphic direct summands

have a common direct complement [33]. A module-theoretic property P is called an

endomorphism ring property (“ER-property”, for short) if for any module MR, MR

has P if and only if EndR(M) has P as a module over itself (see [56, 8.1] for details).

According to [56, Proposition 8.5] and [33, Theorem 3.4], the module properties “inter-

nal cancellation” and “perspectivity” are ER-properties. Thereby, we get the following

module-theoretic version of Theorem 2.2.2.
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Corollary 2.2.4 If M is a quasi-projective1 right R-module with SSP, then the follo-

wing are equivalent:

(1) M satisfies internal cancellation.

(2) M is perspective.

Proof. We should note that if M is quasi-projective, then M has SSP if and only if

EndR(M) has SSP by Corollary 1.5.9. Hence an application of Theorem 2.2.2 finishes

the proof. 2

A version of the following corollary was proved by Chen in [15, Theorem 2.4]. Here

we will be able to prove this result by effectively dropping the unnecessary regularity

condition on b.

Corollary 2.2.5 Let R be a ring with SSP. Then the following are equivalent:

(1) R is IC.

(2) Whenever Ra + Rb = R with a ∈ reg(R) and b ∈ R, there exists e ∈ idem(R)

such that a+ eb ∈ U(R) and aR ∩ eR = 0.

Proof. (1)⇒ (2) Let a ∈ reg(R) and b ∈ R such that Ra+Rb = R. Then R = aR⊕T

for some right ideal T . According to Theorem 2.2.2, R is perspective, and so there

exists e ∈ idem(R) such that eR = T and a + eb ∈ U(R) by Theorem 1.5.2. This

completes the proof.

(2) ⇒ (1) Let a ∈ reg(R). Since Ra+ R(−1) = R, there exists e ∈ idem(R) such that

a− e ∈ U(R) and aR ∩ eR = 0. Then a is unit-regular, and hence R is IC. 2

In [33], the authors ask the following question:

If every regular element of R has idempotent stable range one, then is R perspective?

According to Theorem 2.2.2, we have a partial answer as follows.

1This can be replaced by (D3) condition by [3, Theorem 22]. Recall that M has (D3) if for any

direct summands A and B of M with A + B = M , then A ∩ B is a direct summand in M . Any

quasi-projective module has (D3).
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Corollary 2.2.6 Let R be a ring with SSP. Then the following are equivalent:

(1) R is perspective.

(2) Every regular element of R has idempotent stable range one.

Proof. (1) ⇒ (2) follows from Theorem 1.5.2(3).

(2) ⇒ (1) Since every regular element has idempotent stable range one, R is IC by

Lemma 2.0.2(2). Now the perspectivity of R is an immediate consequence of The-

orem 2.2.2. 2

It is well known that IC rings are exactly the rings in which every regular element is

unit-regular. Recently, Chen et al. have studied the rings in which the product of two

regular elements is unit-regular as an extension of unit-regular rings [16]. Actually, this

new class of rings coincides with the class of IC rings with SSP, as the following lemma

shows.

Lemma 2.2.7 [16, Lemma 2.2] Let R be a ring. Then the product of two regular ele-

ments in R is unit-regular if and only if R is an IC ring with SSP.

Proof. (⇒) Suppose that the product of two regular elements in R is unit-regular.

Then, in particular, every regular element in R is unit-regular. This implies that R is IC.

Let e, f ∈ R be idempotents. Then, (1−e)f ∈ R is unit-regular. Hence, (1−e)fR ⊆⊕ R.

Write (1 − e)fR ⊕ A = R. Then, (1 − e)R = (1 − e)fR ⊕ ((1 − e)R ∩ A). Hence,

since eR + fR = eR ⊕ (1 − e)fR, we get R = eR ⊕ (1 − e)fR ⊕ ((1 − e)R ∩ A) =

(eR + fR)⊕ ((1− e)R ∩ A). This shows that R has SSP.

(⇐) Let a, b ∈ R be regular. Since R is IC, a and b are unit-regular. Write a = ue,

b = fv, where e, f ∈ R are idempotents and u, v ∈ U(R). Then, ab = u(ef)v. Since R

has SSP, we see that (1− e)R+fR ⊆⊕ R, i.e., (1− e)R⊕ efR ⊆⊕ R. This implies that

efR ⊆⊕ R, and so, ef ∈ R is regular. By hypothesis, ef ∈ R is unit-regular. Therefore,

ab ∈ R is unit-regular and hence the result follows. 2

Proposition 2.2.8 [16, Proposition 2.3] Let R be an IC ring. Then the following are

equivalent:

(1) R has SSP.
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(2) Every product of two idempotents is unit-regular.

(3) Every finite product of idempotents is unit-regular.

Proof. (1) ⇒ (2) Since every idempotent is regular, this is clear.

(2) ⇒ (1) It is enough to apply (⇒) part of the proof of Lemma 2.2.7.

(1) ⇔ (3) This follows from (1) ⇔ (2) and induction. 2

2.3 Special Clean Elements

Following [1], a ring R is called special clean if every element a can be decomposed

as the sum of a unit u and an idempotent e with aR ∩ eR = 0. The Camillo-Khurana

Theorem in [12] states that R is unit-regular if and only if R is a special clean ring.

Inspired by this notion, we call an element a in R special clean if there exists a decom-

position a = e+ u such that aR ∩ eR = 0 where e ∈ idem(R) and u ∈ U(R). It is easy

to see that any special clean element is unit-regular (see (4) ⇒ (1) in Theorem 2.1.3).

This gives the following fact for a ring R:

Every regular element is special clean =⇒ IC

This implication is irreversible, because the ring R = M2(Z) is IC, but it has a unit-

regular element which is not clean (see Example 2.2.3).

Chen proved that the converse of the above implication is true if R has SSP [15,

Theorem 2.4]. After that result abelian rings are considered to obtain a corollary, that

is, if R is an abelian ring, then for any a ∈ reg(R), there exists a unique decomposition

a = e + u such that aR ∩ eR = 0 where e ∈ idem(R) and u ∈ U(R) [15, Corollary

2.7]. The proof of Chen involves SSP and IC property of abelian rings and a technical

result. We will offer an independent and more elementary proof here. First, we need

the following lemma.

Lemma 2.3.1 Any left non zero-divisor regular element in an abelian ring is a unit.

Proof. Let R be an abelian ring and x a left non zero-divisor regular element of R.

Let y ∈ R be such that xyx = x. Then x(1 − yx) = 0 implies that yx = 1. On the

other hand, since e = xy is an idempotent, x = x2y, and x(1− xy) = 0. Hence xy = 1,

and so x is a unit. 2
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Theorem 2.3.2 Let R be an abelian ring. Then, for every a ∈ reg(R), there exists

a unique decomposition a = e + u such that aR ∩ eR = 0 where e ∈ idem(R) and

u ∈ U(R).

Proof. Let a ∈ reg(R). Then the right annihilator of a, annr(a), is equal to eR for

some idempotent e ∈ R. Write a = e+ (a− e). First, we claim that a− e is a left non

zero-divisor. Let r ∈ R be such that (a − e)r = 0. Since ae = 0, a(1 − e) = a. Then,

0 = (1 − e)(a − e)r = (1 − e)ar = a(1 − e)r = ar. So r ∈ eR. On the other hand,

0 = e(a− e)r = −er. This gives (1− e)r = r − er = r. Then r ∈ (1− e)R, and hence

r = 0. Next, we show that a− e is regular. Since a is regular, there exists b such that

aba = a. Let b′ = bab. Then ab′a = a, and hence (a−e)(b′−e)(a−e) = a−e. According

to Lemma 2.3.1, a − e is a unit. It is easy to see that aR ∩ eR = 0. The uniqueness

follows from the proof of [2, Proposition 5.1], and we include it here for completeness.

Let a = e + u = e′ + u′ where e, e′ ∈ idem(R), u, u′ ∈ U(R) with aR ∩ eR = 0 and

aR ∩ e′R = 0. Then au−1 = eu−1 + 1 and au−1(1− e) = 1− e ∈ aR since R is abelian.

Also, e′(1− e) = (1− e)e′ ∈ e′R ∩ aR = 0, and so e′(1− e) = (1− e)e′ = 0. Since R is

abelian, e = e′e = ee′ = e′, and hence u = a− e = a− e′ = u′. 2

Recently, it has been proved that the converse of the above theorem is also true by

Chen et al. [16]. We include it here for completeness.

Theorem 2.3.3 [16, Corollary 3.7] Let R be a ring. If, for every a ∈ reg(R), there

exists a unique decomposition a = e+u such that aR∩ eR = 0 where e ∈ idem(R) and

u ∈ U(R), then R is abelian.

Proof. Let e ∈ R be an idempotent, and let x ∈ R. Choose a = e − 1. Then, a ∈

R is regular. Clearly, e + ex(1 − e) ∈ R is an idempotent. It is easy to verify that

a − e, a − (e + ex(1 − e)) ∈ U(R) with aR ∩ eR = aR ∩ (e + ex(1 − e))R = 0.

The uniqueness forces that e + ex(1 − e) = e, hence, ex = exe. Likewise, xe = exe.

Accordingly, ex = xe, which completes the proof. 2

Theorem 2.3.2 cannot be generalized to perspective rings: let R = M3(Z2) be the ring

of 3×3 matrices over Z2. It is a perspective ring since the stable range of M3(Z2) is one,

but the idempotent a =
(

0 1 0
0 1 0
0 0 0

)
can be written in two different ways: a = e+u = f+v,

e, f ∈ idem(R), u2 = 1, v2 = 1, aR ∩ eR = 0, and aR ∩ fR = 0 where e =
(

1 0 0
0 0 0
0 0 1

)
,

u =
(

1 1 0
0 1 0
0 0 1

)
, f =

(
1 0 0
0 0 0
0 1 1

)
and v =

(
1 1 0
0 1 0
0 1 1

)
.
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Corollary 2.3.4 [2, Proposition 5.1] If R is abelian, then R is unit-regular if and only

if for every a ∈ R, there exists a unique decomposition a = e+u such that aR∩eR = 0

where e ∈ idem(R) and u ∈ U(R).

Chin and Qua proved that R is unit-regular if and only if for any a ∈ R, there exists

e ∈ idem(R) such that a − e or a + e is unit and aR ∩ eR = 0 in [17, Theorem 2.2].

It can also be observed that if a + e is unit and aR ∩ eR = 0, then a is unit-regular.

Thus, by the proof of Theorem 2.3.2, we see that if R is an abelian ring, then for any

regular element a ∈ R, there exists a unique e ∈ idem(R) such that a − e or a + e is

unit in R and aR ∩ eR = 0. Moreover, one can see that the converse of this statement

is also true by an argument similar to that used in the proof of Theorem 2.3.3.

We conclude this section with the following characterization of IC rings.

Proposition 2.3.5 The following are equivalent for a ring R:

(1) R is IC.

(2) For every a ∈ reg(R), there exists u ∈ U(R) such that au is special clean.

Proof. (1) ⇒ (2) Let a ∈ reg(R). Since Ra + R(−1) = R, there exist x ∈ R and v ∈

U(R) such that a+x(−1) = v and aR∩xR = 0 by Theorem 2.1.5. Then R = aR⊕xR.

Let g ∈ idem(R) be such that aR = (1− g)R and xR = gR. Since x is regular and R

is IC, x is unit-regular. Then there exists u ∈ U(R) such that xu = g by Fact 1.3.12.

By considering a+ x(−1) = v, we see that au = g + vu, g ∈ idem(R), vu ∈ U(R), and

auR ∩ gR = 0. Hence, au is special clean.

(2) ⇒ (1) Let a be a regular element of R. Then there exists u ∈ U(R) such that au is

special clean. Since special clean elements are unit-regular, au is unit-regular. Hence,

a is unit-regular. 2
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3 LIFTING STABLE RANGE ONE ELEMENTS

Lifting of some special elements modulo an ideal of a ring is a quite substantial subject

in ring theory. The structure of many classes of rings, including exchange, semiperfect,

and semiregular rings is described in terms of lifting idempotents (for a detailed account

of this, see for example [5] and [69]). On the other hand, a particular emphasis has been

placed on lifting units by Menal and Moncasi [60] for certain types of self-injective

rings; by Perera [75] for exchange rings and certain classes of C∗-algebras with real

rank zero; and by Šter [80] for clean rings. Recently, Khurana et al. [51], besides lifting

of idempotents and units, have considered lifting of different types of elements; such as

(von Neumann) regular elements, unit-regular elements, conjugate idempotents, etc.

In this chapter, inspired by the work in [51], we present lifting of elements having

(idempotent) stable range one modulo an ideal and investigate several properties and

applications of such ideals. As we mentioned earlier, the concept of stable range was

introduced by Bass [9] in the context of algebraic K-theory and the simplest case of

stable range one has attracted attention (see for example [14, 31, 34, 40, 48, 56, 85]).

A new characterization of rings with stable range one is provided in this chapter, too.

Now, it is useful to state all the lifting properties in terms of some special classes

together for having a complete interpretation.

Let I be an ideal of a ring R and C(R) be a class of some elements having a property

C in R. An element a in R is called C lifting modulo I if, whenever a + I ∈ C(R/I),

then there exists b ∈ C(R) such that a + I = b + I. The ideal I is called C-lifting if

every element of R is C lifting modulo I. Throughout this chapter, we will consider the

following classes.

U(R) = {x ∈ R |x is a unit} idem(R) = {x ∈ R |x is an idempotent}

reg(R) = {x ∈ R |x is regular} ureg(R) = {x ∈ R |x is unit-regular}

SR1(R) = {x ∈ R | sr(x) = 1} ISR1(R) = {x ∈ R | isr(x) = 1}

For clarity, an ideal I is called an idempotent lifting in case I is idem(R)-lifting; unit

lifting if I is U(R)-lifting; regular lifting if I is reg(R)-lifting; unit-regular lifting if I

is ureg(R)-lifting stable range one lifting if I is SR1(R)-lifting; and idempotent stable

range one lifting if I is ISR1(R)-lifting.
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The first section of this chapter is devoted to stable range one lifting ideals and Section

2 is concerned with idempotent stable range one lifting ideals. We obtain that these

two lifting conditions properly imply lifting of units modulo an ideal. It is well-known

that the Jacobson radical J(R) of a ring R is always unit lifting. Further, we see that it

is also stable range one lifting (Corollary 3.1.4). Moreover, if R is a regular ring, then

an ideal I is unit lifting if and only if I is stable range one lifting (Proposition 3.1.8).

If R is a left or a right duo ring, then every ideal is stable range one lifting if and only

if sr(R) = 1 (Theorem 3.1.10). Among other results, it is proved in Section 2 that if

I is an idempotent stable range one lifting ideal such that R/I is perspective, then it

is regular lifting (Theorem 3.2.11). This result yields some important corollaries. We

characterize rings with idempotent stable range one, that is, we prove that isr(R) = 1

iff isr(R/I) = 1 and I is idempotent stable range one lifting for any ideal I contained

in the Jacobson radical (Corollary 3.2.12). The Jacobson radical J(R) is idempotent

stable range one lifting in case it is idempotent lifting (Corollary 3.2.3). The converse

of this statement is true if R is a left quasi-duo ring (Corollary 3.2.14). Last but not

least, we prove that if R is a (right and left) duo ring, then every ideal is idempotent

stable range one lifting iff every ideal is regular lifting iff isr(R) = 1 iff R is exchange

(Theorem 3.2.15).

3.1 Stable Range One Lifting Ideals

In this section, we introduce stable range one lifting ideals. First, recall that an element

a ∈ R is said to have stable range one (written sr(a) = 1) if, whenever Ra + Rb = R

for any b ∈ R, then there exists x ∈ R such that a + xb ∈ U(R). Clearly, every unit

element and every element in the Jacobson radical J(R) of a ring R have stable range

one.

Definition 3.1.1 Let I be an ideal of a ring R. I is called a stable range one lifting

ideal if, for every a ∈ R with a + I ∈ SR1(R/I), there exists b ∈ SR1(R) such that

a+ I = b+ I.

Obviously, the trivial ideals of R are stable range one lifting. On the other hand, if

sr(R) = 1, then every ideal of R is stable range one lifting. Local rings, unit-regular
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rings, and semilocal rings are some examples of rings with stable range one, see [85]

for more examples.

Example 3.1.2 Consider the ring Z. We first note that the only elements of Z with

stable range one are 0, 1,−1, because if a is an integer different from 0, 1,−1, then one

can choose b ∈ Z such that gcd(a, b) = 1, b 6 |1− a, and b 6 |1 + a, so that aZ + bZ = Z,

but there do not exist x ∈ Z such that a+ xb = 1 or a+ xb = −1

This fact gives immediately that the ideals 2Z and 3Z are stable range one lifting. But

the ideal 4Z is not stable range one lifting. To see this, consider the element 2 + 4Z.

Clearly, sr(2+4Z) = 1, but there do not exist b ∈ Z with 2+4Z = b+4Z and sr(b) = 1.

Indeed, b cannot be 0, 1, or −1.

More generally, if n ≥ 4, then nZ is not stable range one lifting. To show the last

sentence, one can consider the unit-regular elements different from 0 +nZ, 1 +nZ, and

−1 + nZ in the ring Z/nZ.

Recall that a two-sided ideal I of a ring R is called a radical ideal if 1 + x ∈ U(R)

for every x ∈ I (see [90]). Obviously, every ring has a largest radical ideal, namely, the

Jacobson radical of R.

Proposition 3.1.3 Let I be a proper ideal of a ring R. For any a ∈ R, if sr(a) = 1 in

R, then sr(a+ I) = 1 in R/I. The converse is true if I is a radical ideal.

Proof. Let a ∈ R. Set a := a+I and R := R/I. Assume that sr(a) = 1. If Ra+Rb = R,

then Ra+Rb+ I = R. Then we can find r, s ∈ R and y ∈ I such that 1 = ra+ sb+ y.

This implies that Ra + R(sb + y) = R. By assumption, there exists x ∈ R such that

a+ x(sb+ y) ∈ U(R). Hence a+ x(sb+ y) = a+ (xs)b ∈ U(R). Thus sr(a+ I) = 1.

For the converse, assume that I is a radical ideal and sr(a + I) = 1. If Ra + Rb = R,

then there exists x ∈ R such that a + xb = u where u ∈ U(R). This implies that

a + xb = u + j for some j ∈ I. Since I is a radical ideal, 1 + u−1j is a unit. It follows

that a+ xb = u+ j = u(1 + u−1j) is a unit, too. Thus, sr(a) = 1. 2

It is well known that the Jacobson radical J(R) of a ring R need not be idempotent

lifting, but the following result shows an interesting property of J(R). Recall that

sr(R) = 1 iff sr(R/J(R)) = 1.
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Corollary 3.1.4 Any radical ideal of a ring R is stable range one lifting. In particular,

J(R) is stable range one lifting.

Proof. Let I be a radical ideal and a ∈ R with a = a + I ∈ SR1(R/I). We claim

that a ∈ SR1(R). Suppose that Ra+Rb = R for some b ∈ R. Then there exist x ∈ R

and u ∈ U(R/I) such that a + xb = u. Let v be the inverse of u. Multiplying the last

equality on the left by v, we get va + vxb = 1. Since v(a + xb) − 1 ∈ I, v(a + xb)

is invertible in R by assumption. This implies that a + xb is left invertible. Similarly,

the multiplication on the right by v will imply that a + xb is right invertible. Hence

a ∈ SR1(R). 2

Lemma 3.1.5 Let ϕ : R −→ S be a ring isomorphism. If sr(a) = 1 in R, then

sr(ϕ(a)) = 1 in S.

Example 3.1.6 Let R = {(x1, . . . , xn, s, s, . . .) |x1, . . . , xn ∈ Q, s ∈ Z, n ≥ 1}. Then

R is a commutative ring with J(R) = 0 and every regular element of R is unit-regular

by [50, Remark 6.6]. Further, every regular element of R has idempotent stable range

one by Theorem 1.5.2. Set I := {(x1, . . . , xn, 0, 0, . . .) |x1, . . . , xn ∈ Q, n ≥ 1}. Then

R/I ∼= Z via the map ϕ : (x1, . . . , xn, s, s, . . .) + I 7→ s. For any a ∈ R, we claim that

sr(a) = 1 ⇐⇒ a is unit-regular.

Assume that sr(a) = 1. Proposition 3.1.3 implies that sr(a+I) = 1, and then sr(ϕ(a+

I)) = 1 in Z by Lemma 3.1.5. So ϕ(a + I) = 0, 1, or −1. This implies that a =

(x1, . . . , xn, s, s, . . .) where s = 0, 1, or −1, and so a is unit-regular. Since any unit-

regular element has stable range one by Theorem 2.1.1, the claim follows.

Now we show that the ideal I is stable range one lifting. For this, assume that a is an

element in R such that sr(a+ I) = 1. As in the above discussion, a is unit-regular, and

hence sr(a) = 1.

Lemma 3.1.7 Any stable range one lifting ideal is unit lifting.

Proof. Let I be a stable range one lifting ideal of a ring R. Take an invertible element

a ∈ R/I with the inverse b. Since a is unit-regular, sr(a) = 1. By hypothesis, there exists

an x ∈ R such that a = x and sr(x) = 1. Then ba = bx = 1, and so c := 1−bx ∈ I. This
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gives us that Rx+Rc = R. Since sr(x) = 1, there exists y ∈ R such that x+ yc = v is

a unit in R, and hence a = x = x+ yc = v. Thus v is the required element. 2

The converse of Lemma 3.1.7 is not true in general, because the ideal 4Z of Z is

unit lifting (1 and 3 = −1 in Z/4Z lift to units) but not stable range one lifting by

Example 3.1.2. In the following result, we see that the converse of Lemma 3.1.7 is true

if R is a regular ring.

Proposition 3.1.8 If R is a regular ring, then any ideal I of a ring R is unit lifting

if and only if it is stable range one lifting.

Proof. Assume that I is unit lifting and let a ∈ SR1(R/I). Then the regular element a

is unit-regular by the fact that a regular element has stable range one iff it is unit-regular

(see Theorem 2.1.1 and Theorem 2.1.2). Since any regular ring is exchange, every ideal

is idempotent lifting by Theorem 1.4.7. Hence I is unit lifting and idempotent lifting.

This is equivalent to saying that I is unit-regular lifting by [51, Theorem 6.2]. Thus

there exists a unit-regular element b ∈ R such that a = b. Since b is unit-regular,

sr(b) = 1, and so b is the desired element. 2

Bacella showed in [6, Lemma 3.5] that a regular ring R with an ideal I is unit-regular

if and only if eRe is unit-regular for every idempotent e ∈ I, R/I is unit-regular, and I

is unit lifting. Hence Proposition 3.1.8 implies that “unit lifting” can be interchanged

with “stable range one lifting” in Bacella’s result.

In [51, Theorem 6.2], the authors proved that an ideal is unit-regular lifting if and only

if it is both unit lifting and idempotent lifting. This leads us to suspect that stable range

one lifting ideals need not be unit-regular lifting. For this, it suffices to consider a ring

R such that J(R) is not idempotent lifting (see Example 3.2.16), and thus J(R) is the

required ideal by Corollary 3.1.4. The following corollary is immediate by the fact that

over a regular (or an exchange) ring any ideal is idempotent lifting by Theorem 1.4.7.

Corollary 3.1.9 If R is a regular ring, then any ideal I of a ring R is stable range

one lifting if and only if it is unit-regular lifting.

Let R be a commutative ring. Then sr(R) = 1 iff the natural map U(R) → U(R/I)

is an epimorphism for every ideal I of R by [25, Lemma 6.1]. The latter condition
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actually means that every ideal I is unit lifting. More generally, Siddique proved in [78,

Theorem 3] that sr(R) = 1 if and only if every left unit lifts modulo every principal

left ideal, i.e., if ba − 1 ∈ Rc for some a, b, c ∈ R, there exists a left unit u ∈ R such

that a− u ∈ Rc.

Now we will characterize a ring R with sr(R) = 1 whenever R is a left or a right duo

ring. Recall that a ring R is called left duo if every left ideal is a right ideal; equivalently

aR ⊆ Ra for every a ∈ R. Right duo rings can be defined analogously. If R is a left and

right duo ring, then we say that R is a duo ring. Any left duo ring is directly finite

(see, for example [74, Corollary 1.11]).

Theorem 3.1.10 If R is a left or a right duo ring, then the following are equivalent:

(1) Every ideal of R is stable range one lifting.

(2) Every ideal of R is unit lifting.

(3) sr(R) = 1.

Proof. (3) ⇒ (1) ⇒ (2) are obvious.

(2) ⇒ (3) Assume that R is left duo. It is enough to show that every left unit lifts

modulo every principal ideal left ideal by [78, Theorem 3]. Let ba − 1 ∈ Rc for some

a, b, c ∈ R. Then Rc is an ideal of R and hence R/Rc is a left duo ring. It follows that

R/Rc is directly finite. Hence, a+Rc is a unit. The hypothesis implies that there exists

a unit u ∈ R such that a − u ∈ Rc. Thus, sr(R) = 1. By the left-right symmetry of

stable range one condition for rings, the right duo case has a similar proof. 2

Proposition 3.1.11 Let I and K be ideals of a ring R with I ⊆ K. If K is stable range

one lifting, then K/I is stable range one lifting. The converse is true if, in addition, I

is stable range one lifting.

Proof. Assume that K is stable range one lifting. Let a ∈ R with sr(a+ I +K/I) = 1.

The mapping ϕ : R/I
K/I
→ R/K, defined by ϕ(r + I + K/I) = r + K for every r ∈ R,

is a ring isomorphism, so that sr(a + K) = 1 by Lemma 3.1.5. By hypothesis, we can

find an element b ∈ SR1(R) such that a+K = b+K. Further, b+ I ∈ SR1(R/I) by

Proposition 3.1.3. Thus a+ I +K/I = b+ I +K/I and sr(b+ I) = 1.
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Conversely, assume that I and K/I are stable range one lifting. Let a ∈ R with

sr(a+K) = 1. By the above isomorphism and Lemma 3.1.5, sr(a+I+K/I) = 1. Since

K/I is stable range one lifting, there exists b+ I ∈ SR1(R/I) such that a+ I +K/I =

b+I+K/I. Then a−b ∈ K. Since I is stable range one lifting, there exists c ∈ SR1(R)

such that b+I = c+I. Now b−c ∈ I ⊆ K implies that a−c ∈ K. Hence a+K = c+K

and c ∈ SR1(R). 2

If I ⊆ K and K is stable range one lifting, then I need not be stable range one lifting.

For example, take I = 4Z and K = 2Z in Z.

Following [97], we denote by δr := δ(RR) the ideal which is the intersection of all

essential maximal right ideals of a ring R. Clearly, J(R) ⊆ δr and Sr ⊆ δr (see also

[97, Lemma 1.9]). In view of [97, Corollary 1.7], J(R/Sr) = δr/Sr; in particular, R

is semisimple if and only if δr = R. Now as a consequence of Proposition 3.1.11 and

Corollary 3.1.4, we can get the following result.

Corollary 3.1.12 (1) δr is stable range one lifting if and only if δr/J(R) is stable

range one lifting in R/J(R).

(2) If Sr is stable range one lifting, then δr is stable range one lifting.

Proof. Take I = J(R) and K = δr for (1) and I = Sr and K = δr for (2) in

Proposition 3.1.11. 2

Note that, for any ring R, Sr is always idempotent lifting by [7], but it need not be

stable range one lifting as the following example shows.

Example 3.1.13 [59, Example 1] Let F be a field, VF a countably infinite-dimensional

vector space, and Q = EndF (V ). Then there exists a regular directly infinite subring

R of Q such that soc(Q) = soc(R) ⊆ R and R/soc(Q) is a field. On the other hand,

Baccella proved in [6, Lemma 3.4] that for a subring T of Q with soc(Q) ⊆ T , T is

directly finite if and only if T/soc(T ) is directly finite and soc(T ) is unit lifting. From

this result we deduce that soc(Q) is not unit lifting. Hence soc(Q) is not stable range one

lifting by Proposition 3.1.7. We further note that soc(Q) = soc(R) = δ(RR) = δ(RR).

At the end of this section, we discuss about the symmetry of stable range one lifting

ideals.
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Remark 3.1.14 In this chapter, we define stable range one elements by considering

principal left ideals. There is a symmetric right version: an element a ∈ R is said to

have right stable range one if, for any b ∈ R, aR+bR = R implies that a+bx ∈ U(R) for

some x ∈ R. To avoid ambiguity about left and right versions of this definition, we will

subscript the notation by l or r. It is not known yet whether the left version of element-

wise stable range one condition is equivalent to that of right one. The best result in

this direction is that if a is a regular element, then srl(a) = 1 iff a is unit-regular iff

srr(a) = 1 in [50].

There is a more natural situation in which the left-right symmetry of stable range one

element and stable range one lifting ideal can occur.

Lemma 3.1.15 Let R be a duo ring. Then srl(a) = 1 iff srr(a) = 1 for any a ∈ R.

Proof. Assume that srl(a) = 1. Write aR+ bR = R. Since R is left duo, Ra+Rb = R.

Then there exist an element x ∈ R such that a + xb = u ∈ U(R). Since Rb ⊆ bR,

xb = by for some y ∈ R. Hence a+ by = u, i.e., srr(a) = 1. 2

Corollary 3.1.16 Let R be a duo ring and I / R. Then the following are equivalent:

(1) I is right stable range one lifting.

(2) I is left stable range one lifting.

Proof. It is enough to note that if R is a duo ring, then R/I is a duo ring by [74,

Proposition 1.4]. 2

3.2 Idempotent Stable Range One Lifting Ideals

As we mentioned earlier, an element a ∈ R is said to have idempotent stable range

one if, whenever Ra + Rb = R for any b ∈ R, then there exists e ∈ idem(R) such

that a + eb ∈ U(R). Obviously, if u is a unit in R, then isr(u) = 1. Further, if R is a

Dedekind-finite ring, then isr(0) = 1.

Recently, Wang et al. discovered that every regular element has idempotent stable

range one over a ring R with sr(R) = 1 (see Theorem 1.3.19). As a consequence of

this, they showed that any unit-regular ring has idempotent stable range one (see
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Corollary 1.3.20). However, by [49], this result does not hold on the element-wise level

i.e., unit-regular elements need not have idempotent stable range one. This was shown

by finding a unit-regular element which is not clean, i.e., not a sum of an idempotent

and a unit. Indeed, any element a ∈ R with isr(a) = 1 is clean. This can easily be seen

by considering the equality Ra+R(−1) = R.

Definition 3.2.1 Let I be an ideal of a ring R. If for any element a ∈ R with a+ I ∈

ISR1(R/I), there exists b ∈ ISR1(R) such that a + I = b + I, then I is called an

idempotent stable range one lifting ideal.

In case isr(R) = 1, then every ideal of R is idempotent stable range one lifting. Obvi-

ously, if isr(R) = 1, then sr(R) = 1. In this vein, one can ask the following question:

Is any idempotent stable range one lifting ideal stable range one lifting?

We do not have an answer to this question yet, but the converse will be answered in

the negative in Example 3.2.16.

Proposition 3.2.2 Let I be a radical ideal of a ring R. If isr(a) = 1, then isr(a+I) = 1

for any a ∈ R. The converse is true if, in addition, I is idempotent lifting.

Proof. Let a ∈ R with isr(a) = 1. Set a := a + I and R := R/I. Assume that

Ra+Rb = R. Then Ra+Rb+ I = R. Since I is a radical ideal, I ⊆ J(R). Now I is a

small left ideal of R, and hence Ra+Rb = R. By assumption, there exists e2 = e ∈ R

such that a+ eb is a unit in R. Thus a+ eb is a unit in R/I.

For the converse, assume in addition that I is idempotent lifting. Let a ∈ R with

isr(a) = 1, and let Ra+Rb = R. Since I is idempotent lifting, there exists e ∈ idem(R)

and u ∈ U(R/I) such that a + eb = u. Let v be the inverse of u. Multiplying the last

equality by v on the left, we obtain va+ veb = 1. Since 1− v(a+ eb) ∈ I, v(a+ eb) is

invertible in R. This implies that a+ eb is left invertible. Similarly, the multiplication

by v on the right will give that a+ eb is right invertible. Hence isr(a) = 1. 2

Corollary 3.2.3 Any idempotent lifting radical ideal I of a ring R is idempotent stable

range one lifting.
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Remark 3.2.4 Idempotent lifting condition in Corollary 3.2.3 is not superfluous: There

exists a ring R such that J(R) is neither idempotent lifting nor idempotent stable range

one lifting by Example 3.2.16.

Remark 3.2.5 The radial ideal condition on I in Corollary 3.2.3 is not superfluous:

For example, the ideal I = 4Z in the ring R = Z is idempotent lifting but it is not

idempotent stable range one lifting. To see this, consider 2 + 4Z in Z/4Z. Clearly,

isr(2 + 4Z) = 1, but 2 + 4Z does not lift to an idempotent stable range one element in

Z by Example 3.1.2. Observe that I is not a radical ideal.

Example 3.2.6 Let R = {(x1, . . . , xn, s, s, . . .) |x1, . . . , xn ∈ Q, s ∈ Z, n ≥ 1}. By

Example 3.1.6, being a unit-regular element is equivalent to being an element with

stable range one in R. Since every regular element of R has idempotent stable range

one by Theorem 1.5.2, we get that, for any a ∈ R,

sr(a) = 1 ⇐⇒ a is unit-regular ⇐⇒ isr(a) = 1.

Further, the ideal I in Example 3.1.6 is idempotent stable range one lifting because

R/I ∼= Z and the only elements with idempotent stable range one of the ring Z are 0, 1

and −1.

Lemma 3.2.7 Any idempotent stable range one lifting ideal is unit lifting.

Proof. We proceed with the same argument as in the proof of Lemma 3.1.7. Let I be

an idempotent stable range one lifting ideal of a ring R. Take an invertible element

a ∈ R/I with the inverse b. Since a is a unit, isr(a) = 1. By hypothesis, we can find an

element x ∈ R such that a = x and isr(x) = 1. Then ba = bx = 1, and so c := 1−bx ∈ I.

This implies that Rx + Rc = R. Since isr(x) = 1, there exists an idempotent e ∈ R

such that x+ ec = v is a unit in R. Hence a = x = x+ ec = v. Thus v is the required

element. 2

The converse of Lemma 3.2.7 need not be true. For example, the ideal I = 4Z in the

ring R = Z is unit lifting, but as we have pointed out before, it is not idempotent

stable range one lifting.

Following Nicholson [69], an element x in a ring R is called suitable if there exists an

idempotent e ∈ R such that e−x ∈ R(x−x2). He showed that a ring R is an exchange

52



ring if and only if every element of R is suitable. He further proved that any clean

element is suitable.

In the literature, there are some natural equivalence relations on idempotents: First,

two idempotents e and f in a ring R are said to be isomorphic if eR ∼= fR as right

R-modules, and second, they are called conjugate if f = u−1eu for some unit u ∈ U(R).

Close attention to the lifting of isomorphic idempotents and conjugate idempotents has

been paid recently in [51]. Now we preface Theorem 3.2.11 with three lemmas from

[51] needed for its proof.

Lemma 3.2.8 [51, Theorem 5.2] Let R be a ring, I be an ideal of R, and let x ∈ R be

an idempotent modulo I. Then x lifts to an idempotent modulo I iff x lifts to a suitable

element modulo I.

Lemma 3.2.9 [51, Proposition 3.11] Let R be a ring and I be an ideal of R. If R/I

is perspective, and I is idempotent lifting, then I is isomorphic idempotent lifting and

conjugate idempotent lifting.

Lemma 3.2.10 [51, Proposition 5.20] If units and isomorphic idempotents lift modulo

an ideal of R, then regular elements lift.

Theorem 3.2.11 Let R be a ring and I be an ideal of R such that R/I is perspective. If

I is idempotent stable range one lifting, then it is regular lifting (hence it is idempotent

lifting).

Proof. First we claim that I is idempotent lifting. Let a be an idempotent in R/I.

Since R/I is perspective, every regular element has idempotent stable range one by

Theorem 1.5.2. Hence isr(a) = 1. Since I is idempotent stable range one lifting, there

exists b ∈ ISR1(R) such that a− b ∈ I. Since isr(b) = 1, the equality Rb+R(−1) = R

implies that b is clean. Then b is suitable. This means that a lifts to a suitable element

of R. By Lemma 3.2.8, this is equivalent to saying that a lifts to an idempotent of R.

Hence I is idempotent lifting. Now by Lemma 3.2.9, I is isomorphic idempotent lifting.

Finally, Lemmas 3.1.7 and 3.2.10 yield that I is regular lifting, as desired. 2

The converse of Theorem 3.2.11 is not true in general. For example, let R = Z and

I = 4Z. Then I is regular lifting, because all regular elements of R/I are 0, 1 and −1
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and they are lifted to regular elements of Z. But we have pointed out before that I is

not idempotent stable range one lifting.

Note that regular lifting ideals are idempotent lifting in general and they are equivalent

for ideals contained in the Jacobson radical by [51, Theorem 5.24].

Before stating the next corollary, we recall that a ring R has idempotent stable range

one if each of its elements has idempotent stable range one. A characterization of this

class of rings was obtained by Hiremath and Hedge in [41, Proposition 2.18] as follows:

If I is an ideal contained in the Jacobson radical of the ring R, then

isr(R) = 1 if and only if isr(R/I) = 1 and I is idempotent lifting.

Note that this result was first proved for I = J(R) in [14, Theorem 9].

Corollary 3.2.12 Let R be a ring and I be an ideal of R such that I ⊆ J(R). Then

isr(R) = 1 if and only if isr(R/I) = 1 and I is idempotent stable range one lifting.

Proof. (⇒) If isr(R) = 1, then isr(R/I) = 1 by [41, Proposition 2.18] and clearly I is

idempotent stable range one lifting.

(⇐) Assume that isr(R/I) = 1 and I is idempotent stable range one lifting. Since

any ring with stable range one is perspective, R/I is perspective. It follows that I is

idempotent lifting by Theorem 3.2.11. Hence isr(R) = 1 by [41, Proposition 2.18].

There is also an alternative (direct) way to get that I is idempotent lifting. Let a be an

idempotent in R/I. Since isr(1− a) = 1, there exists a c ∈ R such that 1− a = c and

isr(c) = 1. Since c is clean, c = e + u for some idempotent e and a unit u in R. Then

a = 1− c = 1− e− u = (1− e− u)2 gives that eu− u+ ue+ u2 = 0, and multiplying

by u−1 from the left we have a = u−1eu where u−1eu is an idempotent in R. 2

Corollary 3.2.13 Let R be a ring and I an ideal of R such that I ⊆ J(R). Then

R is perspective and I is idempotent lifting if and only if R/I is perspective and I is

idempotent stable range one lifting.

Proof. It follows from [33, Proposition 5.7], Corollary 3.2.3 and Theorem 3.2.11. 2

Last but not least, we have the following corollary of Theorem 3.2.11, but first recall

that a ring R is left quasi-duo if every maximal left ideal is a two-sided ideal [95].
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Corollary 3.2.14 If R is a left quasi-duo ring and I is an idempotent stable range

one lifting ideal, then I is regular lifting. In particular, J(R) is idempotent stable range

one lifting iff J(R) is idempotent lifting.

Proof. Since R/I is left quasi-duo, it is perspective by [33, Corollary 4.8]. Hence I is

regular lifting. The last assertion follows from Corollary 3.2.3. 2

There is a close relationship between the class of exchange rings and the lifting property

of regular elements modulo left ideals. A ring R is an exchange ring iff every left ideal

is regular lifting, i.e., if L is a left ideal and a − aba ∈ L, then there exists a regular

element c ∈ R such that a− c ∈ L [28, Corollary 5].

Rings with idempotent stable range one were characterized in [14, Theorem 12] over

abelian rings. Here we provide a characterization over duo rings. Note that a ring is

abelian iff every direct summand left ideal is fully invariant (see [74, p. 536]). Hence

any left duo ring is abelian.

Theorem 3.2.15 If R is a duo ring, then the following are equivalent:

(1) Every ideal is idempotent stable range one lifting.

(2) Every ideal is regular lifting.

(3) R is exchange.

(4) isr(R) = 1.

(5) R is clean.

Proof. First note that (3) − (5) are equivalent for any abelian ring by [14, Theorem

12]. The equivalence of (2) and (3) is true for any ring R by [28, Corollary 5].

(1) ⇒ (2) Since R is a duo ring, R/I is a duo ring for any ideal I of R by [74,

Proposition 1.4], and so it is perspective by [33]. Now Theorem 3.2.11 implies that I

is regular lifting.

(4) ⇒ (1) It is obvious. 2

Hence Theorem 3.1.10 and Theorem 3.2.15 together imply that, over a commutative

ring, if every ideal is idempotent stable range one lifting, then every ideal is stable

range one lifting.
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Now we can present an example of a stable range one lifting ideal which is not idem-

potent stable range one lifting.

Example 3.2.16 There exists an ideal I of a ring R such that I is stable range one

lifting but it is neither idempotent stable range one lifting nor idempotent lifting:

Consider a semilocal commutative domain with two maximal ideals M1 and M2 (for

example, take R = {m
n
∈ Q | 2 6 |n, 3 6 |n}). Then J(R) = M1 ∩ M2 and R/J(R) ∼=

R/M1 ×R/M2. The factor ring R/J(R) has two non-trivial idempotents which do not

lift to idempotents in R, because R has no non-trivial idempotents. Hence J(R) is not

idempotent lifting. However, it is stable range one lifting by Corollary 3.1.4. Moreover,

since any commutative ring is perspective, R/J(R) is perspective. Thus, J(R) is not

idempotent stable range one lifting by Theorem 3.2.11.

Finally, we investigate some extensions of idempotent stable range one lifting ideals.

Lemma 3.2.17 Let ϕ : R −→ S be a ring isomorphism with ϕ(1R) = 1S. If isr(a) = 1

in R, then isr(ϕ(a)) = 1 in S.

Proposition 3.2.18 Let I and K be ideals of a ring R with I ⊆ J(R) ∩ K. If K is

idempotent stable range one lifting, then K/I is idempotent stable range one lifting.

The converse is true if, in addition, I is idempotent stable range one lifting.

Proof. The proof is similar to that of Proposition 3.1.11. Assume that K is idempotent

stable range one lifting. Let a ∈ R with isr(a+ I +K/I) = 1. The mapping ϕ : R/I
K/I
→

R/K, defined by ϕ(r + I + K/I) = r + K for every r ∈ R, is a ring isomorphism, so

that isr(a + K) = 1 by Lemma 3.2.17. By hypothesis, there exists b ∈ R such that

a+K = b+K and isr(b) = 1. On the other hand, isr(b+ I) = 1 by Proposition 3.2.2.

Thus a+ I +K/I = b+ I +K/I and isr(b+ I) = 1.

Conversely, assume that I and K/I are idempotent stable range one lifting. Let a ∈ R

with isr(a+K) = 1. The above mentioned isomorphism and Lemma 3.2.17 implies that

isr(a + I + K/I) = 1. Since K/I is idempotent stable range one lifting, there exists

b+ I ∈ R/I such that a+ I +K/I = b+ I +K/I and isr(b+ I) = 1. Then a− b ∈ K.

Since I is idempotent stable range one lifting, there exists c ∈ R such that b+I = c+I

and isr(c) = 1. Now b − c ∈ I ⊆ K gives that a − c ∈ K. Hence a + K = c + K and

isr(c) = 1. 2
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In particular, taking K = J(R) or I = J(R) in Proposition 3.2.18 respectively yields

the following corollary.

Corollary 3.2.19 The following hold for a ring R:

(1) Let I be an ideal of R with I ⊆ J(R). If J(R) is idempotent stable range one

lifting, then J(R)/I is idempotent stable range one lifting. The converse is true

if I is idempotent stable range one lifting.

(2) Let K be an ideal of R with J(R) ⊆ K. If K is idempotent stable range one

lifting, then K/J(R) is idempotent stable range one lifting. The converse is true

if J(R) is idempotent stable range one lifting.

As an example, consider any ring R. If δr is idempotent stable range one lifting, then

δr/J(R) is idempotent stable range one lifting. The converse is true if J(R) is idempotent

stable range one lifting.

We end this section with the following questions that we were unable to answer.

Question 3.2.20 Is any idempotent stable range one lifting ideal stable range one

lifting? Since the Jacobson radical is always stable range one lifting, it is necessary to

consider an ideal different from J(R).

Question 3.2.21 Is the converse of Corollary 3.2.3 true? This is equivalent to asking

that whether there is a (non-quasi-duo) ring R with J(R) idempotent stable range one

lifting but not idempotent lifting?

Question 3.2.22 Is the element-wise definition of (idempotent) stable range one is

left-right symmetric?
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4 C4- and D4-MODULES VIA PERSPECTIVITY

Utumi introduced continuity concept for rings in a series of papers (see [82, 83, 84])

and established three conditions for a ring that are satisfied if the ring is self-injective.

The driving force behind all of these conditions is the von Neumann’s continuous

geometries which are the analogues of projective geometries, except that they have no

points. Subsequently, Utumi’s conditions were extended to modules by Jeremy [45] and

Mohamed and Bouhy [61], as follows.

A module M is called a Ci-module if it satisfies the following Ci-conditions.

C1: Every submodule of M is essential in a direct summand of M .

C2: Whenever A and B are submodules of M such that A ∼= B and B is a direct

summand of M , then A is a direct summand of M .

C3: Whenever A and B are direct summands of M with A ∩ B = 0, then A + B is a

direct summand of M .

Moreover, M is called continuous if it is both a C1- and C2-module, and is called quasi-

continuous if it is both a C1- and C3-module. It is well known that every C2-module

is a C3-module, and every quasi-injective module is continuous. For a full account on

these conditions, see [63].

Recently, the class of C3-modules have been thoroughly investigated by Amin et al. in

[4] and Ibrahim et al. in [43]. In these articles, the authors extended many well-known

results on rings and modules in terms of (quasi-)continuous to C3-modules. In [4,

Proposition 2.3], it was proved that if M is a C3-module, then for every decomposition

M = A⊕B and every homomorphism f : A→ B with ker(f) a direct summand of A,

then im(f) is a direct summand of B. This result was recently considered in [21], and

a module M is called a C4-module if it satisfies the latter property. An example was

provided in [21, Example 2.10] to show that the class of C4-modules is a non-trivial

generalization of the class of C3-modules.

Dually, a module M is called a Di-module if it satisfies the following Di-conditions.

D1: For every submodule A of M , there is a decomposition M = M1 ⊕M2 such that

M1 ⊆ A and A ∩M2 is small in M2.
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D2: Whenever A and B are submodules of M with M/A ∼= B and B is a direct

summand of M , then A is a direct summand of M .

D3: Whenever A and B are direct summands of M with A+B = M , then A ∩B is a

direct summand of M .

A module M is called discrete if it is both a D1- and a D2-module, and is called

quasi-discrete if it is both a D1- and a D3-module. Every D2-module is a D3-module

and every quasi-projective module is a D2-module. Again we refer the interested reader

to [63].

The class of D3-modules has also been investigated by Amin et al. in [94]. It was

shown in [94, Proposition 4] that if M is a D3-module, then for every decomposition

M = A⊕B and every homomorphism f : A→ B with im(f) a direct summand of B,

then ker(f) is a direct summand of A. A module M that satisfies the latter property

is called a D4-module in [22].

In this chapter, we continue the study of C4- and D4-modules, providing several new

characterizations and results on the subject. Recall that two direct summands A and

B of a module M are called perspective exactly when they have a common (direct sum)

complement C, i.e., M = A⊕ C = B ⊕ C. We will call two idempotents e and f of a

ring R perspective if, eR and fR have a common complement.

In Section 4.1, we use the notion of perspective submodules to prove in Theorem 4.1.4

that, a module M is a C4-module if and only if whenever A and B are perspective

(direct) summands of M with A ∩ B = 0, then A ⊕ B ⊆⊕ M . Moreover, arbitrary

direct sum of C4-modules are also investigated. Furthermore, we introduce the notion

of restricted ACC on summands, and show in Proposition 4.1.15 that a C4-module M

with the restricted ACC on summands can be decomposed as M = A⊕B ⊕K where

A ∼= B is a C2-module and K is a summand-square-free module.

In Section 4.2, C4-modules are characterized by their endomorphism rings. It is proved

that a right R-module M is a C4-module if and only if for any idempotents e, f ∈

EndR(M), if ker(e) = ker(f) = ker(e − f), then (1 − e)fM is a direct summand of

M . We provide an example of a C4-module whose endomorphism ring is not C4, and

provide several conditions under which the endomorphism ring of a C4 -module is a
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right C4-ring. Section 4.3 is devoted to right C4-rings. For example, corner rings and

trivial extensions are investigated in terms of C4 property.

In Section 4.4, we consider the D4-modules, dualizing many of our results on C4-

modules and providing several new characterizations of D4-modules. We prove in Pro-

position 4.4.14 that a module M is both a D4-module and a summand-square-free

module iff M is a C4-module and a summand-dual-square-free module. In Propo-

sition 4.4.17 we show that, if M is a D4-module that satisfies the restricted DCC

on (direct) summands, then M = A ⊕ B ⊕ K where A ∼= B, A and B are D2-

modules, and K is a summand-dual-square-free module. As a result, we prove in

Proposition 4.4.20 that a quasi-discrete module M with DCC on summands can be

decomposed as M = A⊕ B ⊕K where A ∼= B are quasi-projective modules and K is

both a summand-square-free and a summand-dual-square-free module.

4.1 C4-Modules

In this section, we provide some basic properties of C4-modules. We start with the

following lemma that has been established in [21].

Lemma 4.1.1 [21, Theorem 2.2] The following are equivalent for a module M :

(1) If M = A⊕B and f : A→ B is a monomorphism, then im(f) ⊆⊕ B.

(2) If M = A ⊕ B and f : A → B is a homomorphism with ker(f) ⊆⊕ A, then

im(f) ⊆⊕ B.

(3) If B ∼= A ⊆⊕ M , B ⊆M , and A ∩B = 0, then A⊕B ⊆⊕ M .

(4) If B ∼= A ⊆⊕ M , B ⊆M , and A ∩B = 0, then B ⊆⊕ M .

(5) If A, B ⊆⊕ M , A ∼= B, and A ∩B = 0, then A⊕B ⊆⊕ M .

(6) If M = A⊕ A′ = B ⊕B′ and A ∩B = A ∩B′ = 0, then A⊕B ⊆⊕ M .

Definition 4.1.2 [21] A module M is called a C4-module if it satifies any of the

equivalent conditions in Lemma 4.1.1. A ring R is called a right C4-ring if R is a

C4-module as a right R-module.
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Examples 4.1.3 (1) Clearly, any C3-module is a C4-module. Thus all quasi-continuous

modules, uniform modules, indecomposable modules, semisimple modules, regular mo-

dules, and modules with the summand sum property are C4, all being examples of

C3-modules.

(2) Recall that a module M is called (summand-) square-free if whenever N ⊆M and

N = Y1 ⊕ Y2 with Y1
∼= Y2 (and Y1, Y2 ⊆⊕ M), then Y1 = Y2 = 0. Using the above

notions, it is easy to see that any summand-square-free module is C4. But the converse

is not true in general. Let F be a field and R = M2(F ). Now RR is continuous by

[72, Theorem 1.35], and so it is a C4-module. Consider the idempotents e =
(

1 0
0 0

)
and

f =
(

0 0
0 1

)
. Then eR and fR are non-zero non-intersecting isomorphic direct summands

of RR. Thus, RR is not a summand-square-free module. See also [21, Example 2.8] for

another example.

Note that any direct summand of a C4-module is again a C4-module by [21, Proposi-

tion 2.15]. The following characterization of C4-modules in terms of perspective direct

summands will be used frequently throughout this chapter.

Theorem 4.1.4 The following are equivalent for a module M :

(1) M is a C4-module.

(2) If A and B are perspective direct summands of M with A∩B = 0, then A⊕B ⊆⊕

M .

(3) If A and B are perspective direct summands of M with A ∩ B ⊆⊕ M , then

A+B ⊆⊕ M .

Proof. (1) ⇒ (2) Let A and B be perspective direct summands with common direct

sum complement C and A∩B = 0. Let π : M → C be the projection with ker(π) = B.

Consider the restriction map π|A : A → C. Since ker(π|A) = A ∩ B = 0 ⊆⊕ A, we

have im(π|A) ⊆⊕ C by the C4 property of M . Then we could write C = π(A) ⊕ X

for some submodule X ⊆ C. It can easily be seen that A ⊕ B = B ⊕ π(A). Hence

M = B ⊕ C = B ⊕ π(A)⊕X = A⊕B ⊕X, and so A⊕B ⊆⊕ M .

(2)⇒ (3) Let A and B be perspective direct summands of M with A∩B ⊆⊕ M . Then

there exist C, D ⊆⊕ M such that M = A⊕C = B⊕C = (A∩B)⊕D. By modularity

law, we have A = (A∩B)⊕ (A∩D) and B = (A∩B)⊕ (B∩D). Now A∩D and B∩D
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are perspective direct summands of M and (A ∩ D) ∩ (B ∩ D) = (A ∩ B) ∩ D = 0.

Now (A∩D)⊕ (B ∩D) ⊆⊕ M by assumption, and so (A∩D)⊕ (B ∩D) ⊆⊕ D. Write

D = (A ∩ D) ⊕ (B ∩ D) ⊕ D′ for a submodule D′ ⊆ D. Then M = (A ∩ B) ⊕ D =

(A∩B)⊕(A∩D)⊕(B∩D)⊕D′. Since A+B = [(A∩B)⊕(A∩D)]⊕[(A∩B)⊕(B∩D)] =

(A ∩B)⊕ [(A ∩D)⊕ (B ∩D)], we obtain A+B ⊆⊕ M .

(3) ⇒ (1) Let M = A ⊕ B and f : A → B be a monomorphism. Consider the graph

submodule T = {a+f(a) : a ∈ A} of M . It can easily be checked that M = T⊕B. So A

and T are perspective direct summands ofM . We claim that A∩T = 0. For, if x ∈ A∩T ,

then there exists an a ∈ A such that x = a + f(a). Since x − a = f(a) ∈ A ∩ B = 0

and f is a monomorphism, we have a = 0, and so x = 0. By assumption, we have

A ⊕ T ⊆⊕ M . Now we show that A ⊕ T = A ⊕ im(f). To see this, take x ∈ im(f).

Then x = f(a) for some a ∈ A and we can write x = −a + a + f(a) ∈ A + T . Since

A⊕ T ⊆⊕ M , im(f) ⊆⊕ M , and hence im(f) ⊆⊕ B. 2

Corollary 4.1.5 The following conditions on a module M are equivalent:

(1) M is a C4-module.

(2) If A and B are perspective direct summands of M with A ∩ B = 0, then there

exists B′ ⊆M with B ⊆ B′ such that M = A⊕B′.

Proof. (1)⇒ (2) Let A and B are perspective direct summands of M with A∩B = 0.

Then M = (A⊕B)⊕C for some C ⊆M by Theorem 4.1.4. Taking B′ := B⊕C gives

the result.

(2) ⇒ (1) Let A and B are perspective direct summands of M with A ∩B = 0. Write

M = A ⊕ C = B ⊕ C for some C ⊆ M . By assumption, there exists B′ ⊆ M with

B ⊆ B′ such that M = A ⊕ B′. Now B′ = B ⊕ (C ∩ B′) by the modular law, and so

M = A⊕B ⊕ (C ∩B′). Hence M is a C4-module by Theorem 4.1.4. 2

In the next result we will replace the condition A ∩ B = 0 in Lemma 4.1.1 by the

weaker one A ∩B ⊆⊕ M .

Theorem 4.1.6 The following are equivalent for a module M :

(1) M is a C4-module.

(2) If B ∼= A ⊆⊕ M , B ⊆M , and A ∩B ⊆⊕ M , then A+B ⊆⊕ M .
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(3) If B ∼= A ⊆⊕ M , B ⊆M , and A ∩B ⊆⊕ M , then B ⊆⊕ M .

(4) If A, B ⊆⊕ M , A ∼= B, and A ∩B ⊆⊕ M , then A+B ⊆⊕ M .

Proof. (1) ⇒ (2) Let A and B be two submodules of M with A ∩ B ⊆⊕ M and

B
σ∼= A ⊆⊕ M . Write M = A ⊕ T for a submodule T ⊆ M , and let π : A ⊕ T → T

be the natural projection. Clearly, A + B = A + π(B). Now consider the restriction

π|B : B → T . Since M = A ⊕ T , π|B ◦ σ−1 : A → T is a homomorphism with

ker(π|B ◦ σ−1) = σ(A ∩ B) and σ(A ∩ B) ⊆⊕ A, the C4 property of M implies that

im(π|B ◦ σ−1) = π(B) ⊆⊕ T . If T = π(B) ⊕ K for a submodule K of T , then M =

A⊕ T = A⊕ (π(B)⊕K) = (A+ π(B))⊕K = (A+B)⊕K, as desired.

(2)⇒ (3) Let A and B be two submodules of M with A∩B ⊆⊕ M and B ∼= A ⊆⊕ M .

By hypothesis, A + B ⊆⊕ M . Write M = (A ∩ B) ⊕ Y and M = (A + B) ⊕ X for

some submodules X, Y ⊆M . Then A = (A ∩B)⊕ (A ∩ Y ) by the modular law. Now

A+B = (A ∩B) + (A ∩ Y ) +B = (A ∩ Y )⊕B. Thus, M = (A ∩ Y )⊕B ⊕X and so

B ⊆⊕ M .

(3) ⇒ (1) is clear by Lemma 4.1.1.

(2) ⇒ (4) is clear.

(4)⇒ (1) Let A and B be perspective direct summands of M with A∩B ⊆⊕ M . Then

A ∼= B. By hypothesis, A+B ⊆⊕ M . Hence M is C4 by Theorem 4.1.4. 2

It was mentioned in [21] that the direct sum of two C4-modules need not be C4 (see

Remarks 2.31 and 3.2 in [21]). In the next theorem we consider a specific case where

the direct sum of C4-modules is a again a C4-module. Recall first that a submodule

N of a module M is called fully invariant in M if f(N) ⊆ N for every endomorphism

f of M .

Theorem 4.1.7 Let M = ⊕i∈IMi be a module, where Mi is fully invariant in M for

every i ∈ I. Then M is a C4-module if and only if each Mi is a C4-module.

Proof. Suppose that Mi is a C4-module for every i ∈ I. Let M = A⊕C = B⊕C such

that A∩B = 0. Since each Mi is fully invariant, Mi = (A∩Mi)⊕(C∩Mi) = (B∩Mi)⊕

(C ∩Mi) for every i ∈ I. It follows that M = ⊕i∈IMi = ⊕i∈I [(A ∩Mi)⊕ (C ∩Mi)] =

[⊕i∈I(A ∩Mi)] ⊕ [⊕i∈I(C ∩Mi)], A = ⊕i∈I(A ∩ Mi), and B = ⊕i∈I(B ∩ Mi). Thus

A⊕B = [⊕i∈I(A ∩Mi)]⊕ [⊕i∈I(B ∩Mi)] = ⊕i∈I [(A ∩Mi)⊕ (B ∩Mi)]. Since A∩Mi
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and B ∩Mi are perspective direct summands of Mi with zero intersection, (A∩Mi)⊕

(B ∩ Mi) ⊆⊕ Mi for every i ∈ I. Hence A ⊕ B is a direct summand of M , and so

M is a C4-module, as required. The converse is obvious, since a direct summand of a

C4-module is again C4 by [21, Proposition 2.15]. 2

As we mentioned earlier, a module M is said to have the summand intersection property

(SIP, for short) if the intersection of any two direct summands of M is a direct sum-

mand. Dually, M is said to have the summand sum property (SSP, for short) when the

sum of any two direct summands of M is a direct summand. In the next proposition,

we characterize modules with the SIP (SSP) in terms of perspective direct summands.

Proposition 4.1.8 Let M be a module. Then we have the following:

(1) M has the SIP if and only if the intersection of any two perspective direct sum-

mands of M is a direct summand.

(2) M has SSP if and only if the sum of any two perspective direct summands of M

is a direct summand.

Proof. 1) (⇒) Obvious. (⇐) Let M = A ⊕ B and f : A → B be a homomorphism.

It is enough to show that ker(f) ⊆⊕ A by [39, Proposition 1.4]. Consider the graph

submodule T = {a+ f(a) | a ∈ A} of M . Then M = A⊕ B = T ⊕ B. Hence A and T

are perspective direct summands. By the hypothesis, A∩T ⊆⊕ M . Now we claim that

A∩T = ker(f). To see this, let a = a′+f(a′) ∈ A∩T . Then a−a′ = f(a′) ∈ A∩B = 0,

and so a = a′ ∈ ker(f). Hence ker(f) ⊆⊕ A.

2) (⇒) Obvious. (⇐) Similarly, let M = A⊕B and f : A→ B be a homomorphism. It

is enough to show that im(f) ⊆⊕ B by [3, Theorem 8]. Let T be the graph submodule as

above. By the hypothesis, M = (A+T )⊕D for some D. Since A+T = {a+f(a′) | a, a′ ∈

A}, we have that B = im(f)⊕D′ where D′ = {b ∈ B | ∃ a ∈ A such that a + b ∈ D}.

Hence M has SSP. 2

Every module with SSP is a C3-module. The converse is true if the module has SIP

by [3, Corollary 20]. The next corollary was established in [21, Example 2.9], and here

we provide a slightly different proof.

Corollary 4.1.9 If M is a C4-module with SIP, then M has SSP.
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Proof. Let A and B be perspective direct summands of M . Then A ∩ B ⊆⊕ M by

Proposition 4.1.8(1). Hence A + B ⊆⊕ M by Theorem 4.1.4. Thus M has SSP again

by Proposition 4.1.8(2). 2

In [32, Theorem 2.3] it was proved that a module M has both SSP and SIP if and only

if End(M) has SSP. Therefore, Corollary 4.1.9 implies the following.

Corollary 4.1.10 Let M be a module. Then M is a C4-module with SIP if and only

if End(M) has SSP.

Example 4.1.11 There exists a module with SIP which is not C4. Let R =
( Z2 0 Z2

0 Z2 0
0 0 Z2

)
and eij be the 3 × 3 matrix with (i, j)-entry 1 and all other entries zero. Then all

idempotents of R are 0, 1, e11, e22, e33, e11 + e22, e11 + e33, e22 + e33, e11 + e13, e13 + e33,

e13 + e22 + e33, e11 + e22 + e13. So it can easily be checked that the intersection of any

two direct summands of RR is a direct summand, i.e., RR has SIP. Now consider the

idempotents e = e33, f = e13 + e33, and g = e11 + e22. An easy computation shows that

R = eR⊕ gR = fR⊕ gR and eR ∩ fR = 0, but eR + fR is not a direct summand of

RR. Thus R is not right C4.

One can also observe that for the idempotents e = e11, f = e11 + e13, and g = e22 + e33,

R = Re⊕ Rg = Rf ⊕ Rg and Re ∩ Rf = 0, but Re+ Rf is not a direct summand of

RR. Thus R is not left C4 either.

Camillo et al. restricted the C3 (C2) property to the class of simple modules in [13],

where the following result was established.

Proposition 4.1.12 [13, Proposition 2.1] The following are equivalent for a module

M :

(1) For any simple submodules A, B of M with A ∼= B ⊆⊕ M , A ⊆⊕ M .

(2) For any simple direct summands A,B of M with A ∩B = 0, A⊕B ⊆⊕ M .

(3) If M = A1 ⊕ A2 with A1 simple and f : A1 → A2 an R-homomorphism, then

im(f) ⊆⊕ A2.
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Subsequently, a module M is called simple-direct-injective in [13] if it satisfies any of the

equivalent conditions of Proposition 4.1.12. When we restrict the C4 property to the

class of simple modules we see that it coincides with the class of simple-direct-injective

modules.

Proposition 4.1.13 M is simple-direct-injective if and only if for any simple pers-

pective direct summands A,B of M with A ∩B = 0, A⊕B ⊆⊕ M .

Proof. Necessity is obvious. Assume that for any simple perspective direct summands

A,B of M with A ∩ B = 0, A ⊕ B ⊆⊕ M . Let M = A1 ⊕ A2 with A1 simple and

f : A1 → A2 an R-homomorphism. Without loss of generality we may assume that

f 6= 0. Then f is an R-monomorphism. Let T = {a + f(a) | a ∈ A1} be the graph

submodule. We have that M = T ⊕ A2 and A1 ∩ T = 0. Since T ∼= M/A2
∼= A1,

T and A1 are simple perspective direct summands of M with A1 ∩ T = 0. Thus

A1 ⊕ T = A1 ⊕ im(f) ⊆⊕ M by assumption. This means that im(f) ⊆⊕ M , and so

im(f) ⊆⊕ A2. By Proposition 4.1.12, M is simple-direct-injective. 2

Definition 4.1.14 A module M is said to satisfy the restricted ascending chain condi-

tion (ACC) on summands if, M has no strictly ascending chains of non-zero summands

A1 $ A2 $ · · ·

B1 $ B2 $ · · ·

with Ai ∼= Bi and Ai ∩Bi = 0 for all i > 1.

Clearly, every summand-square-free module and every module with the ACC on sum-

mands (equivalently, DCC on summands) satisfies the restricted ACC on summands.

In particular, modules with finite Goldie (or dual Goldie) dimension are examples of

modules with the restricted ACC on summands. Thus semilocal rings and rings with

no infinite sets of orthogonal idempotents satisfy both the left and right restricted ACC

on summands.

Proposition 4.1.15 If M is a C4-module that satisfies the restricted ACC on sum-

mands, then M = A ⊕ B ⊕ K where A ∼= B is a C2-module and K is a summand-

square-free module.
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Proof. There is nothing to prove if M is a summand-square-free module. Assume

that M is not a summand-square-free module, and let A1, B1 be non-zero summands

of M with A1
∼= B1 and A1 ∩ B1 = 0. Since M is a C4-module, by Lemma 4.1.1,

A1⊕B1 ⊆⊕ M . Write M = A1⊕B1⊕T1 for a submodule T1 $M . By [21, Proposition

2.15] , both A1 and B1 are C2-modules. We are done if T1 is a summand-square-free

module. Otherwise, by repeating the argument we can find two non-zero summands

A2, B2 of T1 with A2∩B2 = 0 and A2
∼= B2. In this case, since T1 is a C4-module, we can

write M = A1⊕B1⊕A2⊕B2⊕T2 for a submodule T2 $M . Clearly A1⊕A2
∼= B1⊕B2

and so, by [21, Proposition 2.15], both A1 ⊕ A2 and B1 ⊕ B2 are C2-modules with

(A1 ⊕ A2) ∩ (B1 ⊕ B2) = 0 and A1 $ A1 ⊕ A2 and B1 $ B1 ⊕ B2. By repeating the

process, we obtain proper ascending chains of non-zero summands

A1 $ A1 ⊕ A2 $ A1 ⊕ A2 ⊕ A3 $ · · ·

B1 $ B1 ⊕B2 $ B1 ⊕B2 ⊕B3 $ · · ·

of M with A1 ⊕ A2 ⊕ · · · ⊕ Ak ∼= B1 ⊕ B2 ⊕ · · · ⊕ Bk and (A1 ⊕ A2 ⊕ · · · ⊕ Ak) ∩

(B1 ⊕B2 ⊕ · · · ⊕Bk) = 0 for all k. Since M satisfies the restricted ACC condition on

summands, the two chains must terminate. This means M = A1⊕B1⊕A2⊕B2⊕· · ·⊕

An⊕Bn⊕Tn, with A1⊕A2⊕· · ·⊕An ∼= B1⊕B2⊕· · ·⊕Bn are C2-modules and Tn is

a summand-square-free module. Now we are done by setting A := A1⊕A2⊕ · · · ⊕An,

B := B1 ⊕B2 ⊕ · · · ⊕Bn, and K := Tn. 2

4.2 Endomorphism Rings of C4-Modules

Recently, the endomorphism rings of C2, C3, and C4-modules were investigated by

Nicholson and Yousif [72], Mazurek et al. [58], and Ding et al. [21], respectively. Let M

be a right R-module and S = EndR(M). If SS is a right C2-module, then MR is C2; the

converse is true if ker(α) is generated by M , i.e., ker(α) =
∑
{ θ(M) | θ ∈ S, θ(M) ⊆

ker(α)}, whenever α is such that rS(α) is a direct summand of SS [72, Theorem 7.14].

If SS is a right C3-module, then MR is C3 [4, Proposition 2.8] (see also [58, Proposition

4.6]); the converse is true if for every pair of idempotents e, f ∈ S with eS ∩ fS = 0

we have eM ∩ fM = 0 by [58, Proposition 4.6]. Similarly, if SS is a right C4-module,

then MR is C4; the converse is true if for every pair of idempotents e, f ∈ S with

eS ∩ fS = 0 we have eM ∩ fM = 0 [21, Proposition 2.13].
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We will now give some interesting results concerning the endomorphism rings of C4-

modules. Just as with the C3-condition, the C4-condition is not an endomorphism ring

invariant (see [21, Example 2.14]). The next result shows that this is almost the case.

Lemma 4.2.1 Let M be a right R-module with S = EndR(M). Then the following are

equivalent:

(1) M is a C4-module.

(2) For every pair of perspective idempotents e, f ∈ S with eM ∩ fM = 0, there exist

orthogonal idempotents g, h ∈ S such that eM = gM and fM = hM .

(3) For every pair of perspective idempotents e, f ∈ S with eM∩fM = 0, there exists

an idempotent g of S such that eM = gM and fM ⊆ (1− g)M .

Proof. (1)⇒ (2) This proof is similar to the proof of Lemma 4.5 in [58]. Let e, f ∈ S be

perspective idempotents in S with eM∩fM = 0. Write S = eS⊕X = fS⊕X for some

right ideal X in S. Then there exist idempotents p, q ∈ S such that eS = pS, fS = qS,

and X = (1− p)S = (1− q)S. It follows that M = eM ⊕ (1− p)M = fM ⊕ (1− q)M

and (1− p)M = (1− q)M . Hence eM and fM are perspective direct summands of M .

Since M is C4, M = eM ⊕ fM ⊕ N for some N . If g is the projection to eM with

kernel fM ⊕N , and h is the projection to fM with kernel eM ⊕N , then g and h are

orthogonal idempotents such that gM = eM and hM = fM .

(2) ⇒ (3) Let e, f ∈ S be perspective idempotents with eM ∩ fM = 0. By hypothesis,

there exist orthogonal idempotents g, h ∈ S such that gM = eM and hM = fM . Since

fM = hM ⊆ ker(g) = (1− g)M , g is the desired idempotent.

(3)⇒ (1) Let e, f be perspective idempotents in S with eM ∩ fM = 0. By hypothesis,

there exists an idempotent g ∈ S such that eM = gM and fM ⊆ (1 − g)M . Since

M = fM ⊕ (1 − f)M , (1 − g)M = fM ⊕ [(1 − f)M ∩ (1 − g)(M)]. Now M =

gM ⊕ [fM ⊕ ((1− f)M ∩ (1− g)M)] = eM ⊕ [fM ⊕ [(1− f)M ∩ (1− g)M ]]. Hence

eM ⊕ fM is a direct summand of M . 2

The following lemma will enable us to prove another characterization of C4-modules

in terms of the endomorphism ring.
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Lemma 4.2.2 Let M be a right R-module with S = EndR(M). For any idempotents

e, f ∈ S, we have the following:

(1) eM + fM ⊆⊕ M if and only if (1− e)fM ⊆⊕ M .

(2) (1−e)M = (1−f)M and eM∩fM = 0 if and only if ker(e) = ker(f) = ker(e−f).

Proof. (1) is by the fact that eM + fM = eM ⊕ (1− e)fM . (2) is obvious. 2

Proposition 4.2.3 A right R-module M is C4 if and only if for any idempotents

e, f ∈ EndR(M), if ker(e) = ker(f) = ker(e− f), then (1− e)fM ⊆⊕ M .

Proof. Let A and B be perspective direct summands of M with A∩B = 0. Then we can

find idempotents e, f ∈ EndR(M) such that A = eM , B = fM , M = eM⊕(1−e)M =

fM ⊕ (1 − f)M , and (1 − e)M = (1 − f)M . By Lemma 4.2.2 and the hypothesis,

eM + fM ⊆⊕ M . Hence M is C4. The converse is obvious by Lemma 4.2.2. 2

Following [57], a right R-module M is called k-local-retractable if rM(ϕ) = rS(ϕ)M

for every ϕ ∈ S = EndR(M) (It was called “P-flat over S” in [70]). For example,

free modules, regular modules, and modules whose all non-zero endomorphisms are

monomorphisms are k-local retractable (see [57]).

Theorem 4.2.4 Let M be a right R-module with S = EndR(M). Then S is a right

C4-ring, if M is a C4-module and one of the following is satisfied:

(1) M is k-local-retractable.

(2) For any α ∈ S, ker(α) is generated by M .

(3) For every pair of perspective idempotents e, f ∈ S with eS ∩ fS = 0, we have

eM ∩ fM = 0.

Proof. (1) Suppose that M is C4 and k-local-retractable. Let eS and fS be perspective

direct summands of S with zero intersection. Then we could write S = eS⊕ (1−e)S =

fS⊕ (1− f)S and (1− e)S = (1− f)S. Since (1− e)S = (1− f)S and eS ∩ fS = 0, we

have rS(e) = rS(f) = rS(e− f). Now the k-local-retractable property of M gives that

rM(e−f) = rS(e−f)M = rS(f)M = (1−f)M = (1−e)M . We claim that eM∩fM = 0.

Let x = em = fm′ ∈ eM ∩ fM . Then m− em = (1− e)m = m− fm′ = (1− f)m′′ for
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some m′′ ∈ M , and so fm = fm′. This implies that m ∈ rM(e − f) = (1 − e)M , and

thus x = em = 0. By Lemma 4.2.1, there exist orthogonal idempotents g, h ∈ S such

that gS = eS and hS = fS. So eS ⊕ fS = gS ⊕ hS = (g + h)S ⊆⊕ S. It follows that

S is right C4.

(2) Assume that M is C4, and ker(α) is generated by M for any α ∈ S, i.e., ker(α) =∑
{ θ(M) | θ ∈ S, θ(M) ⊆ ker(α)}. Let e, f be idempotents in S such that rS(e) =

rS(f) = rS(e − f). We claim that (1 − e)fS ⊆⊕ S. By hypothesis, ker(e − f) =∑
{ θ(M) | θ ∈ S, θ(M) ⊆ ker(e−f)}. If θ(M) ⊆ ker(e−f), then θ ∈ rS(e−f) = rS(e),

and so θ(M) ⊆ ker(e). This implies that ker(e − f) ⊆ ker(e). Similarly, ker(e) ⊆

ker(e−f). Hence ker(e−f) = ker(e) = ker(f). By Proposition 4.2.3, (1−e)fM ⊆⊕ M .

It follows that (1− e)fS ⊆⊕ S. By Proposition 4.2.3, SS is C4.

(3) It can easily be seen by a proof similar to [58, Proposition 4.6]. 2

Consider the free right R-module F = R(Ω) on Ω generators. Then EndR(F ) can be

identified with CFMΩ(R), the ring of Ω × Ω matrices where each column has only

finitely many non-zero entries. The ring CFMΩ(R) is called the ring of column finite

matrices. The C2 and C3 properties of column finite matrices were investigated in [77].

Corollary 4.2.5 If M is a free right R-module, then M is a C4-module if and only

if EndR(M) is a right C4-ring. In particular, the following assertions hold for n ∈ Z+

and any infinite set Λ:

(1) Rn is a right C4-module if and only if Mn(R) is a right C4-ring.

(2) R(Λ) is a right C4-module if and only if CFMΛ(R) is a right C4-ring.

Proof. It follows from Theorem 4.2.4(i) since every free module is k-local-retractable

(or a generator for right R-modules). 2

Corollary 4.2.6 The following conditions are equivalent for a ring R:

(1) CFMN(R) is a right C2-ring.

(2) CFMN(R) is a right C3-ring.

(3) CFMN(R) is a right C4-ring.

(4) CFMΛ(R) is a right C4-ring for any infinite set Λ.
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Proof. The equivalence of the first two conditions was proved by [77, Theorem 3].

Next, (2) ⇒ (3) is obvious. Now suppose that (3) holds. Then R
(N)
R is C4. For any

infinite set Λ, R
(Λ)
R
∼= R

(Λ)
R ⊕R

(Λ)
R . This fact and [21, Proposition 2.15] give that R

(N)
R is

C2. Since R
(N)
R is free, it is a generator for right R-modules. Hence (1) follows by [72,

Theorem 7.14]. (2) ⇒ (4) is obvious by [77, Theorem 3]. (4) implies (3) because if Λ is

an infinite set, then R
(N)
R can be viewed as a direct summand of R

(Λ)
R , and any direct

summand of a C4-module is C4. 2

A ring R is called right strongly C2-ring [71] if Rn
R is a C2-module for every n ≥ 1,

equivalently if Mn(R) is a right C2-ring for every n ≥ 1. Similarly, right strongly C3-

rings and right strongly C4-rings can be defined. But by [21, Proposition 2.15] and [4,

Proposition 2.10], we see that they are all equivalent, i.e., R is a right strongly C2-ring

if and only if R is a right strongly C3-ring if and only if R is a right strongly C4-ring.

4.3 Right C4-Rings

An example of a right C4-ring which is not left C4 was given by [21, Example 2.12].

Here we provide another example of a left C4-ring which is not right C4 which shows

that the C4 property of rings is not left-right symmetric.

Example 4.3.1 There exists a left C4-ring which is not right C4. Let R be the ring

of matrices, over a division ring D, of the form

γ =


a 0 b c

0 a 0 d

0 0 a 0

0 0 0 e


R is artinian, right Kasch by [54, Examples 8.29(6)], and so R is left C2-ring by [72,

Proposition 1.46]. Now we claim that R is not right C4. The set of all idempotents of

R is {0, 1, Ec,d, Fc,d} where

Ec,d =


0 0 0 c

0 0 0 d

0 0 0 0

0 0 0 1

 and Fc,d =


1 0 0 c

0 1 0 d

0 0 1 0

0 0 0 0

,
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for any c, d ∈ D. Consider the idempotents E1,0 and E0,1. Then

R = E1,0R⊕ Fc,dR = E0,1R⊕ Fc,dR and E1,0R ∩ E0,1R = 0

for any c, d ∈ D. Hence E1,0R and E0,1R are perspective direct summands of R with

zero intersection. But their sum is not generated by an idempotent. For, any non-zero

idempotent in E1,0R+E0,1R is of the form Ex,1−x where x ∈ D, so if E1,0R+E0,1R =

Ex,1−xR for some x, then we would have the following relations:

Ex,1−xE1,0 = E1,0 and Ex,1−xE0,1 = E0,1

But in this case, 1 = x = 0, a contradiction.

Proposition 4.3.2 Let Ri (i ∈ I) be any collection of rings, and let R be the direct

product
∏

i∈I Ri. Then R is a right C4-ring if and only if every Ri is a right C4-ring.

Proof. (⇒) Suppose that R is a right C4-ring. Let eiRi and fiRi be perspective

direct summands of Ri with common direct complement Xi and zero intersection.

Then there exist idempotents gi, hi ∈ Ri such that eiRi = giRi, fiRi = hiRi, and

Xi = (1 − gi)Ri = (1 − hi)Ri. Now write e (resp. f) for the element in R with ith

component ei (resp. fi) and all other components 0, and 1 − g (resp. 1 − h) for the

element in R with ith component 1−gi (resp. 1−hi) and all other components 1. Then

eR⊕ (1− g)R = R = fR⊕ (1− h)R. It is easy to see that eR and fR are perspective

direct summands of R with zero intersection. Hence, eR⊕ fR ⊆⊕ R by assumption. It

follows that eiRi ⊕ fiRi ⊆⊕ Ri, and so Ri is a right C4-ring.

(⇐) Suppose that each Ri is a right C4-ring. Let {ei}iR and {fi}iR be perspective

direct summands of R with zero intersection where e2
i = ei and f 2

i = fi for each

i ∈ I. Then there exist idempotents {gi}i, {hi}i ∈ R such that {ei}iR = {gi}iR,

{fi}iR = {hi}iR, and {1− gi}iR = {1−hi}iR. It can easily be seen that eiRi and fiRi

are perspective direct summands of Ri with zero intersection for each i ∈ I. Since each

Ri is a right C4-ring, eiRi ⊕ fiRi = kiRi ⊆⊕ Ri for some idempotent ki ∈ Ri. Thus,

{ei}iR⊕ {fi}iR = {ki}iR ⊆⊕ R, and so R is a right C4-ring. 2

Proposition 4.3.3 If R is a right C4-ring, then so is eRe for any idempotent e ∈ R

such that ReR = R.
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Proof. If R is right C4, then eRR is C4 as a direct summand of RR. Note that

eRe ∼= EndR(eR). So it is enough to show that fS ∩ gS = 0 implies f(eR)∩ g(eR) = 0

for any pair of (perspective) idempotents f, g ∈ S = eRe by Theorem 4.2.4(iii). Assume

that fS ∩ gS = 0 for some idempotents f, g ∈ S. Let fr = gt ∈ f(eR) ∩ g(eR). Then

for every x ∈ R, ferxe = getxe ∈ fS ∩ gS = 0. Since ReR = R, we have that fer = 0.

Hence fr = 0. 2

Example 4.3.4 The condition ReR = R is not superfluous in Proposition 4.3.3: Let

R be the algebra of matrices, over a field F , of the form

a x 0 0 0 0

0 b 0 0 0 0

0 0 c y 0 0

0 0 0 a 0 0

0 0 0 0 b z

0 0 0 0 0 c


Let e = e11 + e22 + e33 + e44 + e55, where eij are the matrices with (i, j)-entry 1 and all

other entries zero. Then e is an idempotent of R such that ReR 6= R. Since R is a quasi-

Frobenius ring by [52, Example 9], R is a right C4-ring. However, eRe ∼=
(
F F
0 F

)
= S is

not a right C4-ring. To prove that, consider the idempotents e = e12 + e22 and f = e22

of S. Then it can easily be seen that S = eS ⊕ e11S = fS ⊕ e11S and eS ∩ fS = 0.

But eS + fS is not a direct summand of SS because it is the second column of S.

By Proposition 4.3.3, the right C4-property for rings is Morita invariant if and only if

for every n ≥ 1, Mn(R) is a right C4-ring whenever R is a right C4-ring. But this does

not necessarily hold. Because there exists a right C4-ring which is not right strongly C2

(equivalently, strongly C4): Let A be a commutative local UFD that is not principal

ideal domain (for instance, A can be the ring of formal power series in two variables

over a field). Let M be the direct sum of all A/pA where p ranging over the primes

of A. Let R = A ∝ M , the trivial extension of A by M (see below for the definition).

Then R is a local ring and every (right) non zero-divisor element of R is invertible [53].

Hence, by Proposition 1.6.19, R is a C2-ring, and so is C4. But, it is not a strongly

C2-ring, as was shown in [53, p. 285].
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Let R be a ring and M an R-R-bimodule. Then the trivial extension R ∝M is a ring

whose underlying group is R×M with the multiplication defined by

(r,m)(s, n) = (rs, rn+ms)

where r, s ∈ R and m,n ∈M . In fact, R ∝M is isomorphic to the subring {
(
r m
0 r

)
| r ∈

R,m ∈M} of the formal 2× 2 triangular matrix ring
(
R M
0 R

)
and R ∝ R ∼= R[x]/(x2).

For convenience, let (I,N) = {(r, n) : r ∈ I, n ∈ N} where I is a subset of R and N is

a subset of M .

Proposition 4.3.5 Let R be a ring and M an R-R-bimodule. Then

(1) If R ∝ M is a right C4-ring, and for any idempotents e, f ∈ R, eR ∩ fR = 0

implies eM ∩ fM = 0, then R is a right C4-ring.

(2) If R is a right C4-ring, and eM(1 − e) = 0 for any idempotent e ∈ R, then

R ∝M is a right C4-ring.

Proof. Set T = R ∝M .

(1) Let e, f, g be idempotents in R such that R = eR⊕gR = fR⊕gR and eR∩fR = 0.

Then E := (e, 0)T , F := (f, 0)T and G := (g, 0)T are direct summands of T . Now let

(ea, em) = (fb, fn) ∈ E∩F where a, b ∈ R and m,n ∈M . Then ea = fb ∈ eR∩fR =

0, and em = fn ∈ eM∩fM = 0, by hypothesis. This implies that E∩F = 0. Similarly,

E ∩ G = 0 and F ∩ G = 0. Also, it can easily be seen that T = E ⊕ G = F ⊕ G.

Then E and F are perspective direct summands. Since T is right C4, E + F ⊆⊕ T .

Then there exists an idempotent (h,m) ∈ T such that E + F = (h,m)T . It follows

that h2 = h. Now we claim that eR+ fR = hR. Since (h,m) ∈ E+F , hR ⊆ eR+ fR.

If ea+ fb ∈ eR+ fR for some a, b ∈ R, (e, 0)(a, 0) + (f, 0)(b, 0) = (ea+ fb, 0) ∈ E+F .

Hence ea+ fb ∈ hR. This proves the claim. Therefore, RR is C4.

(2) If eM(1−e) = 0 for any idempotent e ∈ R, then any direct summand of T is of the

form (eR, eM) (e2 = e ∈ R) by the proof of [32, Proposition 4.5]. Now let (eR, eM) and

(fR, fM) be perspective direct summands of T with a common direct sum complement

(gR, gM) and zero intersection. Then it is easy to see that R = eR ⊕ gR = fR ⊕ gR

and eR ∩ fR = 0. Since R is right C4, eR + fR ⊆⊕ R. Let h2 = h ∈ R be such that

eR+ fR = hR. Now (eR, eM) + (fR, fM) = (eR+ fR, eM + fM) = (eR+ fR, (eR+

fR)M) = (hR, hM) ⊆⊕ T . 2
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Corollary 4.3.6 Let R and S be rings and M an R-S-bimodule. Consider the formal

triangular matrix ring T =
(
R M
0 S

)
. Then the following hold.

(1) If T is right C4, and for any idempotents e, f ∈ R, eR ∩ fR = 0 implies eM ∩

fM = 0, then R and S are right C4.

(2) If R and S are right C4 and M = 0, then T is right C4.

Proof. (1) Note that T =
(
R M
0 0

)
⊕
(

0 0
0 S

)
. Then

(
R M
0 0

)
and S are right C4 by Propo-

sition 4.3.2. Since
(
R M
0 0

) ∼= (R× 0) ∝M , R is right C4 by Proposition 4.3.5.

(2) It is obvious. 2

Note that Garcia in [32, Proposition 4.5] proved that if the ring R ∝ M has SSP,

then eM(1 − e) = 0 for any idempotent e ∈ R. But this property need not hold for

C4-modules.

Example 4.3.7 There exist an idempotent e of a ring R and an R-R-bimodule M

such that R ∝ M is right C4 and eM(1 − e) 6= 0 : Let T =
( Z Zp∞

0 Z

)
. Then all

idempotents of T are 0, 1, Em =
(

1 m
0 0

)
, and Fm =

(
0 m
0 1

)
where m ∈ Zp∞ . By direct

calculations, EmT ∩ Fm′T = 0 and T = EmT ⊕ Fm′T for any m,m′ ∈ Zp∞ . For any

m 6= m′ in Zp∞ , EmT ∩Em′T 6= 0 and FmT ∩Fm′T 6= 0. Hence after checking all direct

summands regarding to C4, we see that TT is right C4. Now we shall note the fact that

T ∼= (Z× Z) ∝ Zp∞ . So take R = Z× Z, M = Zp∞ and e = (1, 0), as desired.

Recently, in [43], rings whose cyclic right modules are C3 are investigated in great

detail. Commutative rings, abelian exchange rings, and local rings are examples of

such rings. Here we will first notice that this kind of property of rings is equivalent to

the property of rings whose cyclic right modules are right C4.

Proposition 4.3.8 For a ring R, every cyclic right R-module is C4 if and only if

every cyclic right R-module is C3.

Proof. It can be obtained by the result that every factor module of M is C4 if and

only if every factor module of M is SSP (equivalently C3, by [43]) [21, Proposition

2.28(1)]. 2
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Hence a structure theorem, Theorem 3.18 in [43], can be restated for C4-modules:

Over a semiperfect ring R, every cyclic right R-module is C4 if and only if R is a direct

product of a semisimple artinian ring and a ring which is a finite direct product of local

rings. More generally, we have the following result inspired by [43, Lemma 2.4].

Corollary 4.3.9 Let n ≥ 2. Every n-generated module is C4 if and only if every

n-generated module is C3.

Proof. (⇐) is obvious. (⇒) Let PR = Rn and S = EndR(P ). Then Mod-R and Mod-S

are Morita equivalent categories with functors HomR(SPR, ) and ⊗SP . It is known

that for any n-generated module N , HomR(P,N) is a cyclic S-module, and for any

cyclic S-module M , M⊗S P is an n-generated R-module. Hence every cyclic S-module

is a C3-module if and only if every n-generated R-module is a C3-module. Further, by

[4, Remark 2.11], the C4 property of modules are preserved under Morita equivalences.

Hence every cyclic S-module is a C4-module if and only if every n-generated R-module

is a C4-module. By Proposition 4.3.8, the proof is completed. 2

4.4 D4-Modules

The following lemma was established by Ding et al. in [22] and will be used frequently

throughout this section.

Lemma 4.4.1 [22, Theorem 2.2] The following conditions are equivalent for a module

M :

(1) If M = A⊕B with A,B ⊆M and f : A→ B is an epimorphism, then ker(f) ⊆⊕

A.

(2) If M = A ⊕ B with A,B ⊆ M and f : A → B is a homomorphism with

im(f) ⊆⊕ B, then ker(f) ⊆⊕ A.

(3) If A and B are submodules of M with A ⊆ B and M/B ∼= A ⊆⊕ M , then

B ⊆⊕ M .

(4) If A and B are submodules of M with M = A+B, A ⊆⊕ M and M/A ∼= M/B,

then A ∩B ⊆⊕ M .
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(5) If A and B are direct summands of M with M = A+B and M/A ∼= M/B, then

A ∩B ⊆⊕ M .

(6) If A and B are submodules of M with M = A+B, A ⊆⊕ M and M/A ∼= M/B,

then B ⊆⊕ M .

(7) If M = A⊕A′ = B⊕B′ = A+B = A+B′, where A,A′, B and B′ are submodules

of M , then A ∩B ⊆⊕ M .

(8) If A and B are direct summands of M with M = A + B and A ∼= B, then

A ∩B ⊆⊕ M .

Definition 4.4.2 A module M is called a D4-module if it satisfies any of the equivalent

conditions in Lemma 4.4.1.

In the next theorem we provide new characterizations of D4-modules in terms of pers-

pective direct summands.

Theorem 4.4.3 The following conditions on a module M are equivalent:

(1) M is a D4-module.

(2) If A and B are perspective direct summands of M with A+B = M , then A∩B ⊆⊕

M .

(3) If A and B are perspective direct summands of M with A + B ⊆⊕ M , then

A ∩B ⊆⊕ M .

Proof. (1) ⇒ (2) Let A and B be perspective direct summands with common direct

sum complement C, and with A + B = M . Let π : M → C be the projection with

ker(π) = B. Consider the restriction map π|A : A→ C. Now A+ B = M implies that

π(A) = C ⊆⊕ C, and hence ker(π|A) ⊆⊕ A. Since ker(π|A) = A ∩ B ⊆⊕ A ⊆⊕ M ,

A ∩B ⊆⊕ M .

(2)⇒ (3) Let A and B be perspective direct summands of M with A+B ⊆⊕ M . Then

there exist C, D ⊆⊕ M such that M = A⊕C = B⊕C = (A+B)⊕D. By modularity,

we have A+B = A⊕ (C ∩ (A+B)) and A+B = B⊕ (C ∩ (A+B)). Now A⊕D and

B ⊕D are perspective direct summands of M and (A⊕D) + (B ⊕D) = M . Then the

hypothesis implies that (A⊕D)∩ (B ⊕D) = (A∩B)⊕D ⊆⊕ M . Thus A∩B ⊆⊕ M .

77



(3) ⇒ (1) Let M = A ⊕ B and f : A → B be an epimorphism. Consider the graph

submodule T = {a+ f(a) : a ∈ A} of M . Obviously, M = T +B and T ∩B = 0. Then

M = T ⊕B = A⊕B, i.e., A and T are perspective direct summands of M . Since f is

an epimorphism, we have A + T = M . According to the hypothesis, A ∩ T ⊆⊕ M . It

can easily be shown that A∩ T = ker(f), and so ker(f) ⊆⊕ M . Hence ker(f) ⊆⊕ A. 2

Corollary 4.4.4 The following conditions on a module M are equivalent:

(1) M is a D4-module.

(2) If M = A + B for any perspective direct summands A and B of M , then there

exists B′ ⊆ B such that M = A⊕B′.

Proof. (1) ⇒ (2) Let M = A + B where A and B are perspective direct summands

of M . Then M = (A ∩ B) ⊕ C for some C by Theorem 4.4.3. By the modular law,

B = (A ∩B)⊕ (C ∩B). It follows that M = A⊕ (C ∩B). So B′ := C ∩B.

(2) ⇒ (1) Let M = A + B where A and B are perspective direct summands of M .

Then there exists B′ ⊆ B such that M = A⊕B′. This implies that B = (A∩B)⊕B′.

Hence A ∩B is a direct summand of B, and so of M . 2

In the following theorem, we see that it is enough to assume that A+B ⊆⊕ M in the

conditions (4)-(6) and (8) in Lemma 4.4.1.

Theorem 4.4.5 The following conditions on a module M are equivalent:

(1) M is D4-module.

(2) If A and B are submodules of M with A+B ⊆⊕ M , A ⊆⊕ M and M/A ∼= M/B,

then A ∩B ⊆⊕ M .

(3) If A and B are direct summands of M with A + B ⊆⊕ M and M/A ∼= M/B,

then A ∩B ⊆⊕ M .

(4) If A and B are submodules of M with A+B ⊆⊕ M , A ⊆⊕ M and M/A ∼= M/B,

then B ⊆⊕ M .

(5) If A and B are direct summands of M with A + B ⊆⊕ M and A ∼= B, then

A ∩B ⊆⊕ M .
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Proof. (1) ⇒ (2) Let A and B be submodules of M with A+B ⊆⊕ M , A ⊆⊕ M and

M/B
σ∼= M/A. Write M = A ⊕ Y and M = (A + B) ⊕ X for some submodules X,

Y ⊆ M . Now consider the morphisms: π : M → M/(A ∩ B) the natural epimorphism

with the ker(π) = A∩B, f : M/(A∩B)→M/B defined by f(m+ (A∩B)) = m+B

(for every m ∈ M), and φ : M/A → Y an isomorphism. Then we define g = φσfπ|A.

Now since f(A/(A∩B)) = (A+B)/B ⊆⊕ M/B, im(g) ⊆⊕ Y . Clearly, ker(g) = A∩B,

and so A ∩B ⊆⊕ A. Thus, A ∩B ⊆⊕ M .

(2) ⇒ (4) Let A and B be submodules of M with A + B ⊆⊕ M , A ⊆⊕ M and

M/A ∼= M/B. By hypothesis, A ∩ B ⊆⊕ M . Write M = (A ∩ B)⊕X = (A+ B)⊕ Y

for some submodules X, Y ⊆ M . Then A = (A ∩ B) ⊕ (A ∩X) by the modular law.

Now A+B = (A ∩B) + (A ∩X) +B = B ⊕ (A ∩X) and so B ⊆⊕ M .

(4) ⇒ (1) is clear by Lemma 4.4.1.

(2) ⇒ (3) is clear.

(3) ⇒ (1) Let A and B be perspective direct summands of M with A + B ⊆⊕ M .

Since A and B are perspective direct summands of M , M/A ∼= M/B. By hypothesis,

A ∩B ⊆⊕ M . Hence M is D4 by Theorem 4.4.3.

(1)⇒ (5) Let A and B be direct summands of M with A+B ⊆⊕ M and A
φ∼= B. Write

M = A ⊕ A′ for some submodule A′ ⊆ M . Consider π : M → M/A as the natural

epimorphism. Let ψ denote the isomorphism M/A ∼= A′ and set f = ψ ◦ π|B ◦ φ. Since

A+B ⊆⊕ M and im(f) = ψ((A+B)/A), im(f) ⊆⊕ A′. Note that ker(f) = φ−1(A∩B)

implies that φ−1(A∩B) ⊆⊕ A by hypothesis and hence A∩B ⊆⊕ B. Thus A∩B ⊆⊕ M .

(5) ⇒ (1) is clear by Theorem 4.4.1. 2

In general the direct sum of twoD4-modules need not be aD4-module, see [22, Example

2.12]. Indeed it was shown in [22, Theorem 2.13] that the direct sum of any two D4-

modules is a D4-module if and only if R is a semisimple ring. In the next theorem

we provide a specific case where the direct sum of a set of D4-modules is again a

D4-module. Note the fact that if N is a fully invariant submodule of M , then N =

⊕i∈I(N ∩Mi) for any decomposition M = ⊕i∈IMi (see [74, Lemma 2.1]).

Theorem 4.4.6 Let M = ⊕i∈IMi be a direct sum of submodules Mi. If N = ⊕i∈I(N ∩

Mi) for every submodule N of M , then M is a D4-module if and only if each Mi is a

D4-module, i ∈ I.
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Proof. Suppose that Mi is a D4-module for every i ∈ I. Let M = A⊕C = B⊕C such

that A+ B = M . By hypothesis, we have A = ⊕i∈I(A ∩Mi), B = ⊕i∈I(B ∩Mi), and

C = ⊕i∈I(C ∩Mi). Since M = A ⊕ C = B ⊕ C, M = ⊕i∈I [(A ∩Mi)⊕ (C ∩Mi)] =

[⊕i∈I(B ∩Mi)]⊕[⊕i∈I(C ∩Mi)]. Therefore, Mi = (A∩Mi)⊕(C∩Mi) = (B∩Mi)⊕(C∩

Mi) for every i ∈ I. Also,M = A+B implies thatM = ⊕i∈I [(A ∩Mi) + (B ∩Mi)], and

so Mi = (A∩Mi)+(B∩Mi). Since A∩Mi and B∩Mi are perspective direct summands

of Mi with (A ∩Mi) + (B ∩Mi) = Mi, (A ∩Mi) ∩ (B ∩Mi) ⊆⊕ Mi for every i ∈ I.

Now A ∩ B = [⊕i∈I(A ∩Mi)] ∩ [⊕i∈I(B ∩Mi)] = ⊕i∈I [(A ∩Mi) ∩ (B ∩Mi)] ⊆⊕ M ,

and hence M is a D4-module. The converse is obvious, since a direct summand of a

D4-module is again a D4-module, see [22, Proposition 2.11]. 2

It is known that if N = ⊕i∈I(N ∩Mi) for every N 6 M , then Hom(Mi,Mj) = 0 for

every i 6= j in I (see [74, Lemma 2.4]), so it is natural to ask the following question.

Question 4.4.7 Can the above hypothesis in Theorem 4.4.6 be omitted if we assume

instead that Hom(Mi,Mj) = 0 for every i 6= j in I?

The following proposition is a dual to Corollary 4.1.9 and it can be proved by a similar

argument.

Proposition 4.4.8 If M is a D4-module with SSP, then M has SIP.

Proposition 4.4.9 Let M be a right R-module with S = EndR(M). Then the following

are equivalent:

(1) M is a D4-module.

(2) For every pair of perspective idempotents e, f ∈ S with eM + fM = M , there

exists an idempotent g of S such that gM = eM and (1− g)M ⊆ fM .

Proof. Follows from [81, Lemma 5.3]. 2

Lemma 4.4.10 Let M be a right R-module and S = EndR(M). For any idempotents

e, f ∈ S, eM ∩ fM ⊆⊕ M if and only if ker((1− e)f) ⊆⊕ M .

Proof. (⇒) Suppose eM ∩ fM ⊆⊕ M for idempotents e, f ∈ S. Then there exist

C ⊆⊕ M such that M = (eM ∩ fM)⊕ C. By the modular law, fM = (eM ∩ fM)⊕
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(C ∩ fM). Hence M = (eM ∩ fM) ⊕ (C ∩ fM) ⊕ (1 − f)M . Since ker((1 − e)f) =

(eM ∩ fM)⊕ (1− f)M , it follows that ker((1− e)f) ⊆⊕ M .

(⇐) is obvious by the fact that ker((1− e)f) = (eM ∩ fM)⊕ (1− f)M . 2

Proposition 4.4.11 A right R-module M is a D4-module if and only if for any pair

of idempotents e, f ∈ EndR(M), if M = eM + fM and ker(e) = ker(f), then ker(1−

e)f ⊆⊕ M .

Proof. (⇒) is obvious by Lemma 4.4.10.

(⇐) Let A and B be perspective direct summands of M with M = A+B. Then we can

find idempotents e, f ∈ EndR(M) such that A = eM , B = fM , M = eM⊕(1−e)M =

fM ⊕ (1 − f)M , and (1 − e)M = (1 − f)M . By the hypothesis and Lemma 4.4.10,

eM ∩ fM ⊆⊕ M . 2

In [43], Ibrahim et al. restricted the submodules in the D2-condition to the the class of

simple modules, and call a module M simple-direct-projective if it satisfies any of the

equivalent conditions in the following lemma:

Lemma 4.4.12 ([44, Proposition 2.1], [43]) The following are equivalent for a module

M :

(1) If A and B are submodules of M with B simple and M/A ∼= B ⊆⊕ M , then

A ⊆⊕ M .

(2) M = A ⊕ B with B simple and f : A → B is an R-homomorphism, then

ker(f) ⊆⊕ M .

(3) If A and B are direct summand of M with B maximal, then A ∩B ⊆⊕ M .

(4) If A and B are maximal direct summands of M , then A ∩B ⊆⊕ M .

In the next proposition we characterize simple-direct-projective modules in terms of

perspective direct summands.

Proposition 4.4.13 M is simple-direct-projective if and only if for any perspective

direct summands A,B of M with B maximal, A ∩B ⊆⊕ M .
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Proof. Necessity is obvious. Assume that for any perspective direct summands A,B

of M with B maximal, A ∩ B ⊆⊕ M . Let M = A1 ⊕ A2 with A2 simple and f :

A1 → A2 an R-homomorphism. We claim that ker(f) is a direct summand of A1.

Without loss of generality we may assume that f 6= 0. Then f is an R-epimorphism.

Let T = {a + f(a) | a ∈ A1} be the graph submodule. We have that M = T ⊕ A2.

Since A2
∼= M/T ∼= M/A1, T and A1 are perspective direct summands of M with A1

maximal. Thus T ∩ A1 ⊆⊕ M by assumption. Clearly, ker(f) ⊆ T ∩ A1. Since ker(f)

is maximal in A1 and M = T +A1, we have T ∩A1 = ker(f). Hence ker(f) is a direct

summand in M , and so in A1. By Lemma 4.4.12, M is simple-direct-projective. 2

A module M is called summand-dual-square-free [22] if M has no proper direct sum-

mands A and B with M = A + B and M/A ∼= M/B. Any summand-dual-square-free

module is a D4-module by [22, Proposition 5.4].

Proposition 4.4.14 The following conditions on a module M are equivalent:

(1) M is a D4- and summand-square-free module.

(2) M is a C4- and summand-dual-square-free module.

Proof. (1)⇒ (2) Clearly, M is a C4-module. Now, we show that M is summand-dual-

summand-square-free. Assume that M is not summand-dual-square-free, then there

exists two non-zero proper summands A1, B1 of M with A1 + B1 = M and M/A1
∼=

M/B1. Since M is a D4-module, A1 ∩ B1 ⊆⊕ M . Write M = (A1 ∩ B1) ⊕ T1 and

so A1 = (A1 ∩ B1) ⊕ (A1 ∩ T1) and B1 = (A1 ∩ B1) ⊕ (B1 ∩ T1). Therefore, we have

A1 ∩ T1
∼= A1/(A1 ∩B1) ∼= M/B1

∼= M/A1
∼= B1/(A1 ∩B1) ∼= B1 ∩ T1 with (A1 ∩ T1)∩

(B1 ∩ T1) = (A1 ∩ B1) ∩ T1 = 0 and both A1 ∩ T1 and B1 ∩ T1 summands of M. Since

M is summand square-free, A1 ∩ T1 = B1 ∩ T1 = 0. Thus A1 = (A1 ∩B1) = B1 and so

M = A1 +B1 = A1 = B1 a contradiction. Hence M is summand-dual-square-free.

(2) ⇒ (1) Clearly, M is a D4-module. Now, we show that M is summand-square-

free. Assume that M is not a summand-square-free module, and let A1, B1 be non-

zero summands of M with A1
∼= B1 and A1 ∩ B1 = 0. Since M is a C4-module,

A1⊕B1 ⊆⊕ M . Write M = A1⊕B1⊕T1 for a submodule T1 $M . Now, M/(A1⊕T1) ∼=

B1
∼= A1

∼= M/(B1 ⊕ T1) with M = A1 ⊕ B1 ⊕ T1 = (A1 ⊕ T1) + (B1 ⊕ T1) and

both A1 ⊕ T1 and B1 ⊕ T1 summands of M. Since M is summand-dual-square-free,
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M = A1 ⊕ T1 = B1 ⊕ T1 and so A1 = B1 = 0, a contradiction. Hence M is summand-

square-free. 2

Corollary 4.4.15 A ring R is summand-square-free as a right R-module if and only

if R is a right C4-module and summand-dual-square-free as a right R-module.

Definition 4.4.16 A module M is said to satisfy the restricted descending chain con-

dition on direct summands if, M has no strictly descending chains of non-zero direct

summands

A1 % A2 % · · ·

B1 % B2 % · · ·

with M/Ai ∼= M/Bi and Ai +Bi ⊆⊕ M for all i > 1.

Proposition 4.4.17 If M is a D4-module that satisfies the restricted DCC on sum-

mands, then M = A ⊕ B ⊕ K where A ∼= B, A and B are D2-modules, and K is a

summand-dual-square-free module.

Proof. If M is summand-dual-square-free, then the proof is done by setting each A =

B = 0 and K = M. Suppose that M is not summand-dual-square-free, then there exist

two non-zero proper summands A1, B1 of M with A1 + B1 = M and M/A1
∼= M/B1.

Since M is a D4-module, A1∩B1 ⊆⊕ M . Write M = (A1∩B1)⊕T1 and M = A1⊕A′1.

Now, since T1
∼= M/(A1 ∩ B1) ∼= A1/(A1 ∩ B1) ⊕ A′1 ∼= M/B1 ⊕ A′1 ∼= M/A1 ⊕ A′1 ∼=

A′1⊕A′1 and T1 is a D4-module, A′1⊕A′1 is a D4-module, and then by [22, Proposition

2.11], A′1 is a D2-module. Therefore, T1 = K1 ⊕ K ′1 where K1
∼= A′1

∼= K ′1 are D2-

modules. Clearly Y1 := A1∩B1 6= M. If Y1 = 0, then M = T1 = K1⊕K ′1 and the proof

is done.

Now, suppose that Y1 6= 0; and so we have 0 $ Y1 $M. If Y1 is summand-dual-square-

free, the proof is done. Suppose that Y1 is not summand-dual-square-free, then there

exist two non-zero proper summands A2, B2 of Y1 with A2 + B2 = Y1 and Y1/A2
∼=

Y1/B2. Since Y1 is a D4-module, Y2 := A2 ∩ B2 ⊆⊕ Y1. Write Y1 = (A2 ∩ B2) ⊕ T2,

Y1 = A2 ⊕ A′2 = B2 ⊕ B′2, M = A2 ⊕ A′2 ⊕ T1, and M = (A2 ∩ B2) ⊕ T2 ⊕ T1. Then

Y1/A2
∼= Y1/B2 implies that M/A2

∼= M/B2. Now, we have T2
∼= Y1/(A2 ∩ B2) =

(A2 + A′2)/(A2 ∩ B2) ∼= A2/(A2 ∩ B2) ⊕ A′2 ∼= Y1/B2 ⊕ A′2 ∼= Y1/A2 ⊕ A′2 ∼= A′2 ⊕ A′2.
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Therefore, T1⊕ T2
∼= (A′1 ⊕ A′1)⊕ (A′2 ⊕ A′2) ∼= (A′1 ⊕ A′2)⊕ (A′1 ⊕ A′2) is a D4-module

and so by [22, Proposition 2.11], A′1⊕A′2 is a D2-module. Therefore, T1⊕ T2 = K2⊕K ′2
with K2

∼= A′1⊕A′2 ∼= K ′2 are D2-modules. Clearly Y2 := A2 ∩B2 6= Y1. If Y2 = 0, then

M = T2 ⊕ T1 = K2 ⊕K ′2 and the proof is done.

Now, suppose that Y2 6= 0. If Y2 is summand-dual-square-free, the proof is done. Sup-

pose that Y2 is not summand-dual-square-free, then by continuing the process and if

each Yi is not summand-dual-square-free, we get proper descending chains,

A1 % A2 % · · ·

B1 % B2 % · · ·

with M/Ai ∼= M/Bi and Ai +Bi ⊆⊕ M for all i > 1, contradicting the hypothesis that

M has the restricted DCC on summands. Therefore, there exists a summand-dual-

square-free module Yn such that M = T1⊕T2⊕· · ·⊕Tn⊕Yn with T1⊕T2⊕· · ·⊕Tn =

Kn ⊕ K ′n with Kn
∼= K ′n a D2-module and Yn summand-dual-square-free. Hence the

proof is done by setting A := Kn, B := K ′n and K := Yn. 2

Recall that a ring R is called I- finite if it contains no infinite orthogonal family of

idempotents (see [72, Lemma B.6.]).

Corollary 4.4.18 If R is I-finite, then RR = A ⊕ B ⊕ K with A ∼= B and K a

summand-dual-square-free module. Moreover, if R is also a right C4-ring, then RR =

A ⊕ B ⊕K where A ∼= B are C2-modules and K is both a summand-dual-square-free

as well as a summand-square-free module.

Lemma 4.4.19 [21, Theorem 2.27] If M is a module whose local summands are sum-

mands, then M = A⊕B ⊕K where A ∼= B and K is a summand-square-free module.

Proposition 4.4.20 If M is a quasi-discrete module with DCC on summands, then

M = A⊕B⊕K where A ∼= B are quasi-projective modules and K is both a summand-

square-free and a summand-dual-square-free module.

Proof. By Proposition 4.4.17, M = X ⊕ Y ⊕ T where X ∼= Y and T is a summand-

dual-square-free module. Now, since T is quasi-discrete, every local summand of T is

a summand, see [63, Corollary 4.13]. By Lemma 4.4.19, T = C ⊕D⊕K where C ∼= D

and K is both a summand-square-free module as well as a summand-dual-square-free
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module. Now, if we set A := X⊕C and B := Y ⊕D, then M = A⊕B⊕K with A ∼= B.

By [22, Proposition 4.12], since M is quasi-discrete, both A and B are quasi-projective

as required. 2

Corollary 4.4.21 If R is a semiperfect ring, then RR = A⊕B ⊕K with A ∼= B and

K is both a summand-dual-square-free as well as a summand-square-free module.

We end this chapter with a number of related questions that we were unable to answer.

Question 4.4.22 If M is a C4-module, does the finite exchange property imply the

full exchange property?

Question 4.4.23 Is there a C1- and C4-module that is not C3?

Question 4.4.24 If M is a D4-module, does the finite exchange property imply the

full exchange property?

Question 4.4.25 Is there a D4-module that is not D3?
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[23] B. Eckmann, A. Schopf, Über injektive Moduln, Arch. Math., 4 (1953) 75-78.

[24] G. Ehrlich, Units and one-sided units in regular rings, Trans. Amer. Math. Soc.,

216 (1976) 81-90.

[25] D. Estes, J. Ohm, Stable range in commutative rings, J. Algebra, 7 (1967)

343-362.

[26] E.G. Evans, Krull-Schmidt and cancellation over local rings, Pacific J. Math.,

46 (1973) 115-121, .

87



[27] A. Facchini, Module Theory: Endomorphism rings and direct sum decomposi-

tions in some classes of modules, Progress in Mathematics Vol. 167, Birkhäuser
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