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ABSTRACT

A STUDY ON DIRECT SUMMAND SUBMODULES
OVER NONCOMMUTATIVE RINGS

Meltem ALTUN OZARSLAN

Doctor of Philosophy, Department of Mathematics
Supervisor: Prof. Dr. Ayse Cigdem OZCAN

December 2018, 98 pages

A natural problem to consider in ring and module theory is to investigate the cancel-
lation property of a given object. This problem was first considered by Jénsson and
Tarski for any algebraic system and then gave rise to many variations related to the
cancellation theme such as substitution and internal cancellation. In the mid-30s of the
last century, just before the cancellation problem was treated for any algebraic sys-
tem by Jénsson and Tarski, a ground-breaking invention was made by von Neumann.
He developed the theory of continuous geometries. One of the main ideas of this new
structure was the construction of a dimension function whose range is a continuum
of real numbers and this construction was based on the perspectivity relation. Thro-
ughout this work we discuss new concepts derived from cancellation and continuity.
This dissertation consists of four chapters. In the first chapter, we recall the ring and
module theoretical properties that play an important role within our framework like
stable range conditions, the exchange property, and perspectivity. In the second chap-
ter, we study the class of internally cancellable rings, i.e., the class of rings that satisfy
internal cancellation property with respect to their one-sided ideals. By considering a

condition, we obtain new characterizations of internally cancellable rings, unit regular



rings, and rings with stable range one. We also investigate internally cancellable rings
with the summand sum property. In Chapter 3, we introduce the lifting of elements
having (idempotent) stable range one from a quotient of a ring R modulo a two-sided
ideal I by providing several examples and investigating the relations with other lifting
properties, including lifting idempotents, lifting units, and lifting of von Neumann re-
gular elements. In the case where the ring R is a left or a right duo ring, we show that
stable range one elements lift modulo every two-sided ideal iff R is a ring with stable
range one. Under a mild assumption, we further prove that the lifting of elements ha-
ving idempotent stable range one implies the lifting of von Neumann regular elements.
In the last chapter, we study the most recent variations of continuity and discreteness
concepts, namely C'4- and D4-modules, in terms of perspective direct summands by
providing new characterizations and results. Endomorphism rings of C'4-modules and
extensions of right C'4-rings are also investigated. Decompositions of C'4-modules with
restricted AC'C' on direct summands and D4-modules with restricted DC'C' on direct

summands are obtained.

Keywords: Internal cancellation, perspectivity, stable range one, idempotent stable
range one, lifting units, lifting idempotents, quasi-continuous and quasi-discrete mo-

dules, C'4- and D4-modules.
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OZET

DEGISMELI OLMAYAN HALKALARDA
DIK TOPLANAN ALT MODULLER UZERINE
BIR CALISMA

Meltem ALTUN OZARSLAN

Doktora, Matematik Bolimii
Tez Danigsmani: Prof. Dr. Ayse Cigdem OZCAN

Aralik 2018, 98 sayfa

Halka ve modiil teorisinde ilk akla gelebilecek problemlerden biri verilen nesnenin sa-
delesme 0Ozelligini incelemektir. Bu problem, ilk olarak Jénsson ve Tarski tarafindan
genel bir cebirsel yapi i¢in ele alinmig ve sonrasinda yerine koyma ve igsel sadelesme gibi
sadelegme kavramu ile ilgili varyasyonlarin tanimlanmasina imkan vermistir. 1930’larin
ortalarinda, sadelesme problemi Jénsson ve Tarski tarafindan genel bir cebirsel yapi
icin ele alinmadan hemen oOnce, von Neumann ¢igir acan bir bulusa imza att1 ve
siirekli geometrilerin teorisini geligtirdi. Stirekli geometrilerin 6nemli 6zelliklerinden biri
goriintli kiimesi [0, 1] olan bir boyut fonksiyonuna sahip olmasiydi ve bu boyut fonksi-
yonunun ingaasinda ise temel yap1 tag1 perspektiflik bagintisiydi. Bu tez caligmasinda,
sadelesme ve siireklilik kavramlarindan tiireyen yeni nosyonlar: ele alacagiz. Bu tez
dort bolimden olugmaktadir. Tezin birinci boliimiinde, stable range 1, degisim ozelligi
ve perspektiflik gibi ¢aligmalarimizda 6nem arz eden halka ve modiil teorik kavramlar
tanitilmigtir. Tezin ikinci boliimiinde, igsel sadelesebilen halkalar olarak adlandirilan tek
yonlii ideallerine gore icsel sadelesme 0zelligini saglayan halkalar ele alinmigtir. Daha

sonra Ozel bir kosul tanitilarak icsel sadelesebilen halkalar, birimsel diizenli halkalar
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ve stable range 1 ozelligine sahip halkalar i¢in yeni karakterizasyonlar elde edilmigtir.
Ayrica, dik toplanan sag ideallerinin toplami da dik toplanan olan halka sinifi, igsel
sadelegebilir halkalar ile birlikte ele alinmigtir. Tezin tiglincii boliimiinde, bir R hal-
kasinin (egkare) stable range 1 6zelligine sahip elemanlarimin bir [ idealine gore, R/
boliim halkasindan yiikseltilmesi kavrami tanitilmigtir. Bu kavramlar tanitilirken cesitli
ornekler verilmig ve bugiline kadar literatiirde onemli yer edinmisg eskare elemanlarin
yiikseltilmesi, birimsel elemanlarin yiikseltilmesi ve von Neumann diizenli elemanlarin
yikseltilmesi gibi ozellikler ile baglantilar1 incelenmigtir. Daha sonra bir R halkasinin
sol veya sag duo olmasi kogulu altinda stable range 1 ozelligine sahip elemanlarin her
ideale gore yiikseltilmesi ile o halkanin stable range 1 6zelligine sahip olmasinin denk
oldugu gosterilmistir. Ayrica, zayif bir kogul altinda (eskare) stable range 1 6zelligine
sahip elemanlarin yiikseltilmesi kavraminin von Neumann diizenli elemanlarin yiiksel-
tilmesi kavramini gerektirdigi gosterilmistir. Tezin dordiincii ve son boliimiinde, stirek-
lilik ve ayriklik kavramlarinin en son varyasyonlar1 C'4- ve D4-modiiller perspektif
dik toplanan alt modiiller agisindan ele alinmig, yeni karakterizasyonlar ve sonuclar
elde edilmistir. Bunula birlikte, C'4-modiillerin endomorfizma halkalar: ve C'4-halkalarin
bazi geniglemeleri incelenmistir. Son olarak yeni tanimlanan bir zincir kosulu ile C'4-

modiiller ve D4-modiiller i¢in ayrigim teoremleri verilmistir.

Anahtar Kelimeler: I¢sel sadelesme, perspektiflik, stable range 1, eskare stable range
1, birimsel elemanlarin yiikseltilmesi, eskare elemanlarin yikseltilmesi, yari-siirekli ve

yari-ayrik modiiller, C'4- ve D4-modiiller.
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1 PRELIMINARIES

In this chapter, we give some basic concepts and facts which will be used frequently.
Throughout this dissertation, all rings we consider are associative rings R with identity.

Modules are unital right R-modules unless otherwise stated.

1.1 Basic Notions

We begin by recalling some basic definitions and results which can be found in a

standard text on ring and module theory such as [5], [54], and [27].

There are many important types of elements in a ring R. But two of them are of great
significance; the units and idempotents. An element u € R is said to be a unit in case
there is an element v € R, called inverse of u, such that uv = vu = 1. The set of all
units of R, denoted by U(R), forms a multiplicative group. An element e € R is an
idempotent in case €2 = e. A ring always has at least two idempotents, namely 0 and
1. An idempotent e of R is a central idempotent if it is in the center of R. Clearly,
if e € R is an idempotent, then the complementary idempotent to e, namely 1 — e, is

also an idempotent.

Idempotents in the endomorphism ring of a module M determine direct summand
submodules of that module. Recall that a submodule N of M is called a direct summand

of M in case there is a submodule N’ of M with M = N & N’, that is,
M =N+ N and NN N'=0.

In that case, N’ is also a direct summand, and N and N’ are complementary direct
summands or direct complements . It is clear that every non-zero module M has at
least two direct summands, namely, 0 and M. A non-zero module M is indecomposable

if 0 and M are its only direct summands.

A submodule N of a module M is said to be essential in M, abbreviated N <, M, in
case for every submodule L < M, NN L = 0 implies L = 0. Then we say that M is an
essential extension of N. A non-zero module M is uniform in case each of its non-zero

submodules is essential in M.

Now we recall some properties of essential submodules.

1



Proposition 1.1.1 ([5]) Let M be an R-module with submodules K < N < M and
H < M. Then the following hold:

(1) K <. M if and only if for each 0 # x € M, there exists an r € R such that
0#are K.

(2) K <. M if and only if K <. N and N <, M.
(3) HNK <. M if and only if H <. M and K <. M.
(4) If K <. M and f: L — M a homomorphism, then f~'(K) <, L.

(5) Suppose that Ky < My < M, Ky < My < M, and M = My®Ms; then K1® Ky <,
M if and only if K1 <. My and Ky <, M.

Recall that a module M is a simple module if it is non-zero and its only submodules
are 0 and M. The socle of a module M, denoted by soc(M), is the sum of all simple
submodules of M, or equivalently is the intersection of all essential submodules of M.
If M fails to have a simple submodule, then soc(M) = 0. An R-module M is called
semisimple (or completely reducible) if M = soc(M). Clearly, every simple module is
semisimple. As is well known, a module M is semisimple if and only if every submodule

of M is a direct summand.

The right socle S, of a ring R is the sum of all minimal right ideals of R. The left
socle S; of a ring R is defined analogously. Note that S, and S; are not equal in
general. In case they are equal, we may write soc(R) for either socle. A ring R is said
to be (right) semisimple if the right regular module Ry is semisimple. Thanks to the
celebrated works of Wedderburn and Artin, there is no distinction between right and

left semisimplicity of a ring, as the following theorem shows.

Theorem 1.1.2 (Wedderburn-Artin) For a ring R, the following are equivalent:
(1) The ring R is semisimple as a right (left) module over itself.
(2) Ewvery right (left) module over R is semisimple.
(3) The ring R is a finite direct product of simple artinian rings.

(4) The ring R is a finite direct product of matriz rings over division rings.

2



The notion of an essential submodule can be dualized in a natural way. A submodule
K of a module M is called small in M if, for every submodule L < M, K +L = M
implies L = M. It is denoted by N < M. If every proper submodule of M is small,

then M is called a hollow module. Dually, we have the following proposition.

Proposition 1.1.3 ([5]) Let M be an R-module. Then the following statements hold
for K< N<M and H< M:

(1) N< M if and only if K < M and N/JK < M/K.
(2) H+ K < M if and only if H < M and K < M.

(3) If K <« M and f: M — L is an R-homomorphism, then f(K) < L. In
particular, if K < M < L, then K < L.

(4) LetKlnggM, K2§M2§McmdM:M1®M2 . ThenKl@K2<<sz
and only if K1 < My and Ky < M.

(5) Let K < L < M. If K < M and L C% M, then K < L. In particular, if
K < M and K C® M, then K = 0.

The (Jacobson) radical of a module M is defined to be the intersection of all maximal
submodules of M, and is denoted by rad(M). Equivalently, it is the sum of all small
submodules of M. If the module M has no maximal submodules, then rad(M) = M.
For a ring R, rad(Rr) = rad(gR) is an ideal of R, and we simply denote it by J(R).

Recall that if M is a module, then its (right) annihilator
anng(M) ={r € R| Mr =0}

and that M is faithful if anng(M) = 0. For any m € M, the set anng(m) = {r € R |
mr = 0} is the annihilator of m in R, and it is a right ideal of R. In the ring case, for
an element a in R, we will denote by lg(a) and rg(a), the left and right annihilators

of a in R, respectively.

Let M be a module. A set £ of submodules of M satisfies the ascending chain condition

(ACC) if, for every chain



in £, there is an n with M,;, = M, (i = 1,2,...). The descending chain condition
(DCC) is analogously defined. A module M is noetherian in case the lattice L(M)
of all submodules of M satisfies the ACC. A module M is artinian in case L£(M)
satisfies the DCC. A ring R is called right noetherian (resp., right artinian) if Rp is
noetherian (resp., artinian). Left-handed versions are defined similarly. R is noetherian
(resp., artinian) if it is both right and left noetherian (resp., artinian). The artinian

and noetherian properties are inherited by submodules and factor modules (see [5]).

Recall that a commutative integral domain with unique factorization of ideals into
prime ideals is called a Dedekind domain; such a ring is necessarily noetherian, i.e.,
it satisfies the ascending chain condition for ideals. Any noetherian unique factoriza-
tion domain, briefly UFD, is a Dedekind domain, but there are UFD’s that are not
noetherian, and hence not Dedekind, e.g., the polynomial ring in infinitely many inde-

terminates over a field (see [19]).

A module is local if it has a greatest proper submodule. Equivalently, a module is local
if and only if it is cyclic, non-zero, and has a unique maximal proper submodule. It is

known that every local module is indecomposable (see [27]).

Proposition 1.1.4 ([27]) The following conditions are equivalent for a ring R:
(1) R/J(R) is a division ring.
(2) Rpg is a local module (that is, R has a unique mazimal proper right ideal).
(3) The sum of two non-invertible elements of R is non-invertible.
(4) J(R) is a maximal right ideal.
(5) J(R) is the set of all non-invertible elements of R.

Since the condition (1) of the above proposition is left-right symmetric, for any ring
R, the right module Rpg is local if and only if the left module zR is local. A ring R
which satisfies the equivalent conditions of Proposition 1.1.4 is said to be a local ring
(see [27]). As a generalization of a local ring, a ring R is called semilocal if R/J(R) is

a semisimple artinian ring.



Definition 1.1.5 ([54]) Two rings R, S are said to be Morita equivalent (R ~ S, for
short) if there exists a category equivalence F': Mod- R — Mod-S. A ring-theoretic
property P is said to be Morita invariant if, whenever R has the property P, so does

every ring S with S ~ R.

1.2 Stable Range One and Idempotent Stable Range One Con-
ditions

The concept of stable range was initiated by Bass [9] in the context of Algebraic K-
theory, and thereafter, many authors have worked on the simplest case of stable range

one (see, e.g., [14, 31, 34, 40, 48, 56, 85]).

Definition 1.2.1 ([56]) A sequence {a,...,a,} inaring R is said to be left unimodular
if Ra; +---+ Ra, = R. In case n > 2, such a sequence is said to be reducible if there

exist r1,...,7,_1 € R such that R(a; + ra,) + -+ R(an_1 + rp10,) = R.
This definition directs us to the definition of stable range.

Definition 1.2.2 ([56]) A ring R is said to have left stable range < n if every left
unimodular sequence of length > n is reducible. The smallest such n is said to be
the left stable range of R; we write simply sr;(R) = n. (If no such n exists, we say

sr;(R) = oo. ) The right stable range is defined similarly, and is denoted by sr,.(R).

The stable range condition for a ring R is left-right symmetric due to Vaserstein (see

[85]). Thus, we can omit the subscripts and call it simply the stable range of a ring R.
Proposition 1.2.3 ([56]) The following statements hold:

(1) If S is a factor ring of R, then sr(S) < sr(R).

(2) sr(R) = sr(R/J(R)).
Examples 1.2.4 ([56], [85])

(1) sr(Z) = 2.

(2) For any field k C R, sr(k[xy,...,2,]) =n+ 1.

(3) For any field k, sr(k[[x1,...,x,]]) =n+ 1.
5



Throughout this work, we focus on the simplest case, that is, the case of stable range
one. Recall that a ring R is Dedekind-finite (or sometimes, directly finite) if uv = 1 for

u, v € R implies that v € U(R).
Theorem 1.2.5 ([56]) Let R be a ring. Then the following hold:
(1) Ifsr(R) =1, then R is Dedekind-finite.

(2) sr(R) =1 if and only if, whenever a, b € R and Ra+ Rb = R, there ezists v € R
such that a + zb € U(R).

The following theorem due to Bass was one of the earliest results obtained on the stable

range of rings.
Theorem 1.2.6 ([9]) If R is a semilocal ring, then sr(R) = 1.

The notion of stable range one was transferred from a ring to an element of a ring by

Khurana and Lam, as in the definition below.

Definition 1.2.7 ([50]) An element a € R is said to have stable range one (written
sr(a) = 1) if, for any b € R, Ra+ Rb = R implies that a + b € U(R) for some = € R.

Here we use the left version of the definition of a stable range one element. Unfortuna-
tely, it is not known whether the notion of stable range one for a given element a € R

is left-right symmetric.
A new kind of stable range one condition was provided by Chen in 1999, as follows.

Definition 1.2.8 ([14]) A ring R is said to have idempotent stable range one (written
isr(R) = 1) if, whenever a, b € R and Ra + Rb = R, there exists e € idem(R) such
that a +eb € U(R).

As in the case of stable range one, idempotent stable range one condition for rings is

left-right symmetric (see [14]).

Theorem 1.2.9 ([14]) The following are equivalent for a ring R:

(1) isr(R) = 1.



(2) isr(R/J(R)) =1 and idempotents can be lifted modulo J(R).
Corollary 1.2.10 ([14]) If R is a local ring, then isr(R) = 1.

In general, every ring satisfying idempotent stable range one condition has stable range

one, but the converse is not true as the following example shows.

Example 1.2.11 ([14])Consider the semilocal commutative domain

R={2cQl2 /3 Jn}

with two maximal ideals M; = 2R and My = 3R. Then J(R) = M;NMs and R/J(R) =
R/M; x R/M,. Then the factor ring R/J(R) has two non-trivial idempotents which

do not lift to idempotents in R, because R has no non-trivial idempotents. Since R is

semilocal, sr(R) = 1 by Theorem 1.2.6. However, isr(R) # 1 via Theorem 1.2.9.

Recently, Wang et al. introduced an element-wise definition for idempotent stable range

one condition, as follows.

Definition 1.2.12 ([86]) An element a € R is said to have idempotent stable range
one (written isr(a) = 1) if Ra+ Rb = R for any b € R implies a + eb € U(R) for some
e € idem(R).

Clearly, for any unit u in a ring R, isr(u) = 1. Moreover, any regular element in a ring
R with sr(R) = 1 has idempotent stable range one, as we shall see in the next section

(see Theorem 1.3.19).

1.3 Cancellation and Regularity

To begin the groundwork of cancellation, we first introduce the substitution notion,

due to P. Crawley and L. Fuchs.

Definition 1.3.1 ([18], [56]) A module M is said to have the substitution property or

be substitutable if, given a module A with internal decompositions
A=M &N =M, ® N,

where My =2 M = M,, then the summands N; and Ny have a common complement

My, necessarily isomorphic to M, that is, there is a submodule M, of A for which
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A=My®d Ny =My P N,

Proposition 1.3.2 ([56]) Let K and L be modules. Then M = K & L has the substi-
tution property if and only if K and L have both the substitution property.

We now relate the substitution property and stable range one condition.

Theorem 1.3.3 ([56]) An R module M has the substitution property if and only if
S = Endgr(Mg) has stable range 1.

For R-modules M, X, Y over aring R, M & X = M &Y in general does not imply

X 2Y. In fact, given non-isomorphic modules X and Y, if we let
M=Y®opXaYpX...,

then X & M =2 Y & M, and we cannot cancel M. This construction is often referred

to as “Eilenberg’s trick” (see [56]).

Definition 1.3.4 ([18]) Given a collection C of right R-modules, a module M € C is
said to be cancellable in C if, whenever M & X == M @Y for X, Y € C, then X =Y.
In the case where C is the category of all right R-modules, we simply say that M is

cancellable or has the cancellation property.

Proposition 1.3.5 ([56]) Let K and L be modules. Then K & L is cancellable if and

only if K and L themselves are.
Proposition 1.3.6 ([18]) A substitutable module M is cancellable.
Theorem 1.3.3 together with Proposition 1.3.6 yield the following.

Theorem 1.3.7 (Evans [26]) If the endomorphism ring S of a module Mg has stable

range 1 (e.g., S is semilocal), then Mg is cancellable.
The following result provides an interesting example of cancellable modules.

Proposition 1.3.8 ([56]) Let R be a Dedekind domain. Then the module Rg is can-

cellable.



Example 1.3.9 ([18]) The Z-module Z is cancellable but not substitutable. The pro-
position above clearly implies that Zz is cancellable. However, sr(Z) # 1, so The-

orem 1.3.3 gives us the latter.

An element a in R is called (von Neumann) regular provided there exists an element
x € R such that a = axa. The set of all regular elements in R will be denoted by
reg(R). Following [34], the ring R is called (von Neumann) regular if every element
in R is regular. It is well-known that for any @ € R, a is regular < aR is a direct

summand of Rp < Ra is a direct summand of zR.

The following well-known result gives a criterion for the regularity of an element in the

endomorphism of a module.

Proposition 1.3.10 ([56]) Let S = Endg(Mg) where My is a right module over the
ring R. Then f € S is reqular if and only if ker(f) and im(f) are both direct summands
Of MR-

Corollary 1.3.11 ([56]) The endomorphism ring of any semisimple module Mg is

reqular.

Following Ehrlich [24], an element a in R is called unit-reqular provided that there
exists a unit element u € R such that a = aua. The set of all unit-regular elements in
R will be denoted by ureg(R). The ring R is called unit-reqular if every element in R
is unit-regular. Moreover, any element a € R is unit-regular < there exist u € U(R)

and e € idem(R) such that a = ue < there exist v € U(R) and f € idem(R) such that
a= fu.

Fact 1.3.12 ([38, Theorem 2B(14)]) If z,y € ureg(R) and Rx = Ry, then x = uy for
some u € U(R) (see also, [50, Lemma 3.3]).

Theorem 1.3.13 (Ehrlich-Handelman [24], [37]) Let Mg be a module with a regular
endomorphism ring S = Endgr(Mg). Then S is unit-reqular if and only if, whenever
M = M, & My = Ny & Ny (in the category of right R-modules) with My, = Ny, then
My = N;s.

The property of the module M of Theorem 1.3.13 motivates a definition as follows.

9



Definition 1.3.14 ([56]) A right R-module M is said to be internally cancellable if,
whenever M = M; & My = Ny & Ny with M; = Ny, then My = N,. A ring R is said
to be internally cancellable (IC, for short) in case the right R-module Rp is internally

cancellable.

An obvious necessary condition for a module M to satisfy internal cancellation is that
it is Dedekind-finite, in the sense that M = M & X = X = 0. In general, however, this

condition is only necessary, but not sufficient (see [56]).

Corollary 1.3.15 ([56])
(1) A regular ring R is unit-reqular iff R is internally cancellable.
(2) Any semisimple ring is unit-reqular.

Recall that a ring R is abelian if all idempotents in R are central.

Theorem 1.3.16 ([56]) Abelian regular rings are unit-reqular. (In particular, commu-

tative reqular rings are unit-regular.)

Now we establish the relation between unit-regularity and stable range one condition
with the help of a result proved by Fuchs [31], Henriksen [40], and Kaplansky [48]

independently.
Theorem 1.3.17 ([56]) If R is a unit-reqular ring, then sr(R) = 1.

Nicholson defined a ring element a of R to be clean if it can be written as a sum of a
unit and an idempotent. If every a € R is clean, R is said to be a clean ring (see [69]).
Nicholson also asked whether unit-regular rings are clean. The first attempt to give
a positive answer to this question was by Camillo and Yu. However, their proof had
a gap. Later, Camillo and Khurana proved the following result, which, in particular,

shows that a unit regular ring is clean.

Theorem 1.3.18 (Camillo-Khurana [12]) A ring R is unit-reqular if and only if every
element a of R can be written as e+u such that aRMNeR = 0, where e is an idempotent

and u 1s a unit in R.
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Recently, Wang et al. have proved that any unit-regular ring has idempotent stable

range one with the help of the theorem below.

Theorem 1.3.19 ([86]) Let a € reg(R) where R is a ring with st(R) = 1. Then,
whenever Ra+ Rb = R, there exists an idempotent e € R such that a+eb € U(R) and

aR ® eR = R. In particular, isr(a) = 1, and a is clean.

Indeed, any element a € R with isr(a) = 1 is clean. This can easily be seen by con-
sidering the equality Ra + R(—1) = R. Also, Theorem 1.3.19 gives immediately the

following improvement of Theorem 1.3.17.
Corollary 1.3.20 ([86]) If R is a unit-regular ring, then ist(R) = 1, and so R is clean.

The Camillo-Khurana theorem can be refined by adding an equivalent statement with

the help of Theorem 1.3.19.

Theorem 1.3.21 ([86]) For any ring R, the following are equivalent:
(1) R is unit-reqular.

(2) For anya € R, there exist u € U(R) and an idempotent e € R such that a = e+u
and aRNeR = 0.

(3) Whenever Ra+Rb = R, there exists an idempotent e € R such that a+eb € U(R)
and aRNeR = 0.

1.4 The Exchange Property

Crawley and Jénsson introduced the exchange property in their study on the decom-
positions of algebraic systems in 1964. Here we restrict our attention to the category

of modules instead of considering general algebraic systems.

Definition 1.4.1 ([20]) Let R be a cardinal number. A module M is said to have the

R-exchange property if, for any module G and any internal direct sum decompositions
G=M &N = Dic1 A,

where M’ = M and |I| < N, there are submodules B; of A;, i € I, such that G =
M' © (Bic1 Bs).
11



A module M has the exchange property if it has the N-exchange property for every
cardinal X. A module M has the finite exchange property if it has the N-exchange
property for every finite cardinal X (see [20]).

It is clear from the definition that a finitely generated module with the finite exchange
property has the full exchange property. However, it is unknown whether any module

with the finite exchange property also has the full exchange property (see [20]).

The following result shows that the class of modules with the N-exchange property is

closed under direct summands and finite direct sums.

Lemma 1.4.2 (][20]) Suppose N is a cardinal and M = M; & M. The module M has
the N-exchange property if and only if both My and My have the RX-exchange property.

In general, however, the class of modules with the N-exchange property is not closed
under arbitrary direct sums. Crawley and Jonsson showed that if B is a Z-module such
that B = @®;c;B; where, for i = 1,2,3,..., B; is a cyclic Z-module of order p’, then
B does not have the 2-exchange property even though each of the cyclic Z-modules of
order p’ has the exchange property (see [20]).

Clearly, every module has the 1-exchange property. The behavior of the modules with

the 2-exchange property is quite surprising, as follows.

Lemma 1.4.3 (]20]) If a module M has the 2-exchange property, then M has the finite

exchange property.
Now we introduce the definition of exchange rings due to Warfield.

Definition 1.4.4 ([88]) A ring R is called a exzchange ring if the module g R has the

(finite) exchange property.

Moreover, he proved that the above definition is left-right symmetric and provided
an important connection between the modules with the finite exchange property and

exchange rings (see [88]).

Theorem 1.4.5 ([88]) A module M has the finite exchange property if and only if its

endomorphism ring End(M) is an exchange ring.
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Later Monk [65] gave a ring-theoretic description of these exchange rings. This result

of Monk implies that any direct product of exchange rings is again an exchange ring.

Theorem 1.4.6 ([65]) A ring R is an exchange ring if and only if for any a € R,
there exist b,c € R such that bab =b and c¢(1 — a)(1 —ba) =1 —ba

Subsequently, Nicholson provided another characterization of exchange rings. For this
characterization, recall that if I is a right (or left) ideal of R, we say that idempotents

lift modulo I if, given any a € R with a®> —a € I, there exists e = e € Rwithe—a € I.

Theorem 1.4.7 ([69]) A ring R is an exchange ring if and only if idempotents lift
modulo I for every right (equivalently, left) ideal I of R.

It is immediate from the above result that any factor ring of an exchange ring is an

exchange ring. Moreover, we have:

Proposition 1.4.8 ([69]) A ring R is an exchange ring if and only if R/J(R) is exc-
hange and idempotents lift modulo J(R).

This result enables us to show that the class of exchange rings is quite large and, in
fact, contains all (von Neumann) regular rings. Call a ring R semiregular if R/J(R) is

(von Neumann) regular and idempotents lift modulo J(R) (see [69]).
Proposition 1.4.9 ([69]) Every semiregular ring is exchange.

The next result due to Nicholson provides another class of exchange rings and gives a

characterization of exchange rings among rings with central idempotents.

Proposition 1.4.10 ([69]) The following hold:
(1) Ewvery clean ring is exchange.

(2) An abelian ring is clean if and only if it is exchange. In particular, commutative

clean rings are precisely commutative exchange rings.

Indecomposable modules with the (finite) exchange property have a special importance.
They are exactly the modules with a local endomorphism ring as the following theorem

states.
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Theorem 1.4.11 ([20, 88]) The following conditions are equivalent for an indecompo-

sable module Mg:
(1) The endomorphism ring of Mg is local.
(2) Mg has the finite exchange property.
(3) Mg has the exchange property.

Theorem 1.4.12 ([56]) Let M be a finite direct sum of indecomposable modules. If M

satisfies the 2-exchange property, then M has the substitution property.

Here we should note that, without the assumption on M in the above theorem (namely,
that it is a finite direct sum of indecomposables), the 2-exchange property on M need
not imply the substitution property. Nevertheless, it turns out that, in the presence of

2-exchange, we have the following result due to H.-P. Yu.

Theorem 1.4.13 ([96]) Let M be a module with the 2-exchange (or equivalently, finite

exchange) property. Then the following conditions on M are equivalent:
(1) M is internally cancellable.
(2) M is cancellable.

(3) M has the substitution property.

The following result unites the various criteria introduced in the last two sections for

the right R-module Rr under the additional assumption that R has the exchange

property.

Theorem 1.4.14 ([86]) Let R be an exchange ring. Then the following statements are

equivalent:
(1) sr(R) = 1.
(2) If a,b € R are such that aR = bR, then b = au for some u € U(R).
(3) Rg is internally cancellable.

(4) Rg is cancellable in the category of all right R-modules.
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(5) Rg is cancellable in the category P(R) of finitely generated projective right R-

modules.
(6) Every module in P(R) is cancellable in P(R).

(7) The left analogues of (2), (3), (4), (5), and (6).

1.5 Perspectivity, Summand Sum and Intersection Properties

Continuous geometry was invented by von Neumann in the fall of 1935 in [66]. He
set out to formulate suitable axioms to characterize this new structure. It happened
that just previously, K. Menger and G. Birkhoff had characterized L,, (L, denotes the
lattice of all linear subsets of an n— 1 dimensional projective geometry), by lattice-type
axioms; in particular, Birkhoff had shown the structures L, could be characterized as
the complemented modular irreducible lattices which satisfy a chain condition. Von
Neumann dropped the chain condition and replaced it by two of its weak consequen-
ces: (i) order completeness of the lattice, and (ii) continuity of the lattice operations.
Lattices which are complemented, modular, irreducible, satisfy (i) and (ii), but do not
satisfy a chain condition, were called by von Neumann: continuous geometries. One of
the von Neumann’s fundamental results was the construction, for an arbitrary conti-
nuous geometry, of a dimension function with values ranging over the interval [0, 1].
The construction was based on the definition:  and y are to be called equidimensional
if x and y are in perspective relation, that is: for some w the lattice join and meet of
x with w are identical with those of y with w (see [66]). This summary is taken from
Halperin’s foreword of von Neumann’s ground-breaking book “Continuous Geometry”

(see [68]).

After von Neumann’s above definition, not only the perspectivity but also the transi-
tivity of perspectivity has been studied by von Neumann and Halperin in a series of
papers, see [66, 36, 67]. Holland [42] studied the perspectivity notion in orthomodu-
lar lattices. Later Handelman considered the transitivity of perspectivity in the lattice
L(R) of principal right ideals of a von Neumann regular ring R. Handelman showed
that a von Neumann regular ring R is unit-regular if and only if the transitivity holds

on a two by two matrix ring over R.
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Throughout this work, we place a particular emphasize on the notion of perspectivity
in the context of rings and modules. But first we need to recall some lattice theoretical

notions.

A relation < on a set P is a partial order on P in case it is reflexive (a < a), transitive
(a <band b < c¢= a<c),and anti-symmetric (¢ < b and b < a = a = b). A pair
(P, <) consisting of a set and a partial order on the set is called a partially ordered set

or a poset (see [5]).

Let P be a poset and let A C P. An element e € A is a greatest (resp., least) element of
Ain case a < e (resp., e < a) for all a € A. Not every subset of a poset has a greatest
or a least element, but clearly if one does exist, it is unique. An element b € P is an
upper bound (resp., lower bound) for A in case a < b (resp., b < a) for all a € A. So
the greatest (resp., least) element, if it exists, is an upper (resp., lower) bound for A.
If the set of upper bounds of A has a least element, it is called the least upper bound,
join, or supremum of A; if the set of lower bounds has a greatest element, it is called
the greatest lower bound, meet, or infimum of A. A lattice (resp., complete lattice) is a
poset P in which every pair (resp., every subset) of P has both a least upper bound

and a greatest lower bound in P (see [5]).

Let L be a lattice. Then each pair a,b € L has both a join and a meet in L; let us
denote these by a vV b and a A b, respectively. The lattice L is said to be modular in

case it satisfies the modularity condition: for all a,b,c € L,
b<aimpliesaA(bVec)=bV(aAc).

The lattice L is called bounded in case L has two elements 0 and 1 satisfying the

following conditions:
(1) forallain L,av1l=1and a A1l =aq;
(2) forallain L,aV0=aand a A0 =0.

The elements 1 and 0 are called top and bottom of L, respectively. Furthermore, by a
complement of an element a in a bounded lattice L, we mean an element b € L such
that a Ab=0and a Vb= 1; and a bounded lattice L is called complemented if all its

elements have complements (see [10]).
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Definition 1.5.1 ([10]) Let L be a complemented modular lattice. Two elements a

and b of L are perspective, denoted by a ~ b, if they have a common complement.

As we mentioned above, we come back to the ring and module theoretical aspects of
perspectivity. Two direct summands A and B of a module M are called perspective,
denoted by A ~ B, if they have a common complement, i.e., there exists a submodule

C such that
M=AaeC=BaC.

It is clear that A ~ B implies A = B. In a recent work by Garg et al. [33], the
modules in which any two isomorphic summands have a common complement have
been studied. These modules are called perspective modules. Indeed, a module M is
perspective exactly when, for any two summands A, B of M, A = B implies A ~ B.

Clearly, every perspective module is internally cancellable. Further, we have
M has the substitution property = M is perspective = M is internally cancellable.

However, the converse of the above implications is not true in general. See [33], for

more information.

As expected, a ring R is called (right) perspective if the right regular module Rp
is perspective. Since perspectivity is a left-right symmetric property for rings, it is
enough to call such rings simply perspective [33]. Abelian rings and rings with stable
range one are examples of perspective rings. As we mentioned earlier, Wang et al.
[86] proved that in a ring with stable range one, every regular element is clean (see
Theorem 1.3.19). Garg et al. both generalized this result and established the following

characterization of perspective rings.

Theorem 1.5.2 ([33]) For a ring R, the following conditions are equivalent:
(1) R is perspective.

(2) If Ra+ Rb= R for some a,b € R and if aR ® X = R for some right ideal X of

R, then brg(a) and X have a common complement.

(3) If Ra+ Rb= R for some a,b € R and if aR ® X = R for some right ideal X of
R, then there exists e € idem(R), such that eR = X and a + eb is a unit.
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(4) If aR® X = R for some a € R, then rg(a) and X have a common complement.

In particular, every reqular element of a perspective ring has idempotent stable range

one and 1s thus clean.
After the above characterization, the authors ask the following question in [33]:

Question 1.5.3 If every regular element of R has idempotent stable range one, is R

perspective?
We will give a partial answer to this question in Chapter 2.

Remark 1.5.4 ([33]) In [49, Example 4.5], it was proved that in the ring My(Z) the
element (1?3) is unit-regular but not clean. Hence, M (Z) is not a perspective ring by

Theorem 1.5.2. Note further that My (Z) is also an example of an IC ring which is not
perspective by [50, (5.9)(1)].

In the last part of this section, we recall two important classes of modules, namely, mo-
dules with summand intersection property and modules with summand sum property.
Modules with summand intersection property were first studied by Kaplansky [47] and
he showed that if F' is a free module over a principal ideal domain R, then the inter-
section of any two summands of F' is again a summand. This result motivated Fuchs
[30] to consider the problem of characterizing abelian groups in which the intersection
of two direct summands is again a summand. This problem was addressed by Wilson
[92] for modules over a ring. Later, Garcia [32] studied modules M with the property

that the sum of any pair of direct summands of M is a direct summand of M.

Definition 1.5.5 ([92]) A module M is said to have the summand intersection pro-
perty (SIP, for short) if the intersection of two direct summands of M is a direct

summand.

Definition 1.5.6 ([32]) A module M is said to have the summand sum property (SSP,

for short) if the sum of two direct summands of M is again a direct summand.

Proposition 1.5.7 ([32]) If a direct sum L @& N of two modules L and N has the SSP

and f: L — N a homomorphism, then im(f) is a direct summand of N.
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The following results concern the question of whether a quasi-projective module has
the SSP (or a quasi-injective module has the SIP) can be settled by looking at the SSP
of rings (see [32]). Note that we shall consider injectivity and projectivity concepts in

the next two sections.

Theorem 1.5.8 ([32]) A module M has both SSP and SIP if and only if End(M) has
SSP.

Corollary 1.5.9 ([32]) Let M be a module with its endomorphism ring S = Endg(M).
Then:

(1) If M is quasi-projective, then M has SSP if and only if Endg(M) has SSP.

(2) If M is quasi-injective, then M has SIP if and only if Endg(M) has SSP.

More recently, Alkan and Harmanc: [3] studied modules having the SSP and the SIP
and their relations with some generalizations of quasi-injective modules and quasi-

projective modules.

Theorem 1.5.10 ([3]) A module M has SSP if and only if for every decomposition
M = A® B and every homomorphism f: A — B, the image of f is a direct summand
of B.

1.6 Injectivity and Related Concepts

Baer [8] initiated the study of abelian groups which are summands whenever they are
subgroups. Modules which are summands of every containing module were studied by
a number of authors. Eckmann and Schopf [23] introduced the terminology “injective”
(see also [63]). In this section, we not only consider injective modules, but we also

investigate some generalizations.

Definition 1.6.1 ([54]) A right R-module M is said to be injective if, for any mono-
morphism f: A — B of right R-modules and any homomorphism ¢g: A — M, there
exists an R-homomorphism h: B — M such that g = hf.

Next, recall that a ring R is called right self-injective if the right regular module Rp is

injective. Left self-injective rings are defined similarly.
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Proposition 1.6.2 ([11]) If M is an injective module that is also a submodule of an

R-module N, then M is a direct summand of N.

Proposition 1.6.3 ([54]) A direct product M = [[,, M, of right R-modules is injective
if and only if each M, 1s.

It is not true that every direct sum of injective modules is injective. Indeed, it is precisely
the right noetherian rings over which every direct sum of injective right modules is

injective (see [5]).

Proposition 1.6.4 (Baer’s Criterion [8]) A right R-module M is injective if and only
if, for any right ideal I of R, any R-homomorphism f: I — M can be extended to
f'"R— M.

The notion of an essential extension is closely related to the concept of injectivity. First

we give a characterization of injective modules in terms of essential extensions.

Theorem 1.6.5 ([76]) A module Mg is injective if and only if it has no proper essential

extensions.

Now we present the main result of Eckmann-Schopf and Baer on the basic theory of

injective envelopes of arbitrary modules.

Theorem 1.6.6 ([76]) Let M be an R-module. Then there ezists an R-module E sa-

tisfying the following equivalent conditions:
(1) E is an essential injective extension of M.
(2) E is a mazimal essential extension of M.
(3) E is a minimal injective extension of M.

Moreover, if E1 and E5 are both essential injective extensions of M, then there is an

1somorphism 60: Ey — FEo which is the identity on M.

Definition 1.6.7 ([76]) Let M be an R-module. An R-module E satisfying the con-
ditions of Theorem 1.6.6 is called an injective envelope (or injective hull) of M; we use
the symbol E(M) to denote an injective envelope of M.
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Remark 1.6.8 Let M be a module. Sometimes it is possible to denote an injective
envelope of the module M as a pair (E,i) where F is an injective R-module and

0 — M -5 E is an essential monomorphism, that is, im(i) <. F.

Proposition 1.6.9 ([5]) Let M be an injective right R-module with its endomorphism
ring S = End(M). Let f € S. Then

f e J(9) if and only if ker(f) <. M.

Theorem 1.6.10 ([63]) An injective module M has the cancellation property if and
only if M is Dedekind-finite.

Next we recall the notion of a quasi-injective module which generalizes that of an

injective module due to Johnson and Wong [46].

Definition 1.6.11 ([54]) An R-module M is said to be quasi-injective if, for any sub-
module N C M, any homomorphism g: N — M can be extended to an endomorphism

of M.

Clearly, any injective module is always quasi-injective. The converse is not true in ge-
neral; it is not difficult to find a simple module which is always quasi-injective but need
not always be injective. Furthermore, a direct summand of a quasi-injective module is
always quasi-injective. However, in general, a direct sum of two quasi-injective modules

need not be quasi-injective (see [54]).

The following result is an interesting characterization of quasi-injective modules M in

terms of its injective envelope E(M).

Theorem 1.6.12 ([54]) A module Mg is quasi-injective if and only if M is fully in-

variant in B(M) i.e., M is stabilized by every endomorphism of E(M).

The following theorem was first proved by Warfield [87] for injective modules, and the

proof was generalized to quasi-injective modules by Fuchs [29].

Theorem 1.6.13 ([29]) Every quasi-injective module M has the exchange property.
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Utumi studied continuity concept for rings in a series of papers (see [82, 83, 84]) and
introduced three conditions for a ring. These conditions were extended to modules by

Jeremy [45] and Mohamed and Bouhy[61], as follows.

Definitions 1.6.14 ([63]) A module M is called a C'i-module if it satisfies the following
C'i-conditions.

C1: Every submodule of M is essential in a direct summand of M.

C2: Whenever A and B are submodules of M such that A = B and B is a direct
summand of M, then A is a direct summand of M.

C3: Whenever A and B are direct summands of M with AN B =0, then A+ B is a

direct summand of M.

Here there is a point that needs mentioning. C'l-modules are also known as extending
modules or CS-modules (complements are summands), and C'2-modules are also known
as direct-injective modules in the literature. Moreover, a ring R is said to be right CS if
the right regular module Rp is C'1, and is said to be right C2 (right C3, respectively)
if Rp is C2 (C3, respectively).

Definitions 1.6.15 ([63]) Let M be a module. M is called continuous if it satisfies
both the C'1- and C2-conditions, and is called quasi-continuous if it satisfies both the
C'1- and (C'3-conditions.

Now we should note the following hierarchy of the above-mentioned definitions for

modules:
Injective = quasi-injective = continuous = quasi-continuous = C'1.

Further, it is well known that every C2-module is a C'3-module, and each of the C'-
properties of modules is inherited by direct summands, and thus direct summands
of (quasi-) continuous modules are (quasi-) continuous. However, in general, a direct
sum of (quasi-) continuous modules need not be (quasi-) continuous (see [63] for more

information).

Continuous and quasi-continuous modules have a particular importance because of their
relationship with the exchange property. To establish this relationship, the following

decomposition theorem is crucial. First, recall that a module M is called (summand-)
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square-free if whenever N C M and N =Y, @Y, with ¥; 2 Y, (and Y3, Yo C% M),
then Y7 = Y5, = 0.

Theorem 1.6.16 ([62]) If M is a quasi-continuous module, then we can write M =

My & My where M is quasi-injective and My is square-free.
Theorem 1.6.17 ([62]) Every continuous module has the exchange property.

Unfortunately, quasi-continuous modules do not necessarily enjoy the finite exchange

property (e.g., the abelian group Z), but when they do then they also have full exchange

property.

Theorem 1.6.18 ({64, 73]) Every quasi-continuous module with the finite exchange
property has the exchange property.

We conclude this section by a result of Nicholson and Yousif that will be needed later.

Proposition 1.6.19 ([71]) The following conditions are equivalent for a local ring R:
(1) R is a right C2-ring.
(2) J(R) ={a € R | rg(a) # 0}.

In particular, any local ring with nil Jacobson radical is a right and left C2-ring.

1.7 Projectivity and Related Concepts

The notion of projective module was introduced by Cartan and FEilenberg in their
revolutionary book “Homological Algebra” (see [91]). Major contributions to this con-
cept were made by Kaplansky and Bass. In this section, we review various forms of

projectivity.

Definition 1.7.1 ([54]) A right R-module M is said to be projective if, for any epi-
morphism f: B — (' of right R-modules and any homomorphism ¢g: M — C| there
exists an R-homomorphism h: M — B such that g = fh.

An injective R-module M is a direct summand of each R-module N that extends M.

Projective modules enjoy a dual property.
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Proposition 1.7.2 ([11]) If f: N — M is an epimorphism and M is a projective

R-module, then M 1is isomorphic to a direct summand of N.

Proposition 1.7.3 ([54]) A direct sum M = ©,M, of right R-modules is projective

if and only if each summand M, is projective.

Note that a ring is a projective module over itself. Moreover, a free module, that is, a
module isomorphic to a (possibly infinite) direct sum of copies of Ry is a projective
module. On the other hand, the direct product of projective modules need not be
projective in general. For example, the direct product M = ZXxZx- - - is not a projective
Z-module. This example is attributed to R. Baer [54]. The next result provides a
basic characterization of a projective module M in terms of its (first) dual M* =

Hompg(M, R).

Lemma 1.7.4 (Dual Basis Lemma [54]) A right R-module M is projective if and only
if there exist a family of elements {a;: i € I} C M and linear functionals {f;: i € I} C
M* such that, for any a € P, fi(a) =0 for almost all i, and a =), a;f;(a).

It is well known that every R-module M is the homomorphic image of a projective
module. Among the projective modules that “cover” M, there may be one that is,
in some sense, minimal. Such a cover of M, if it exists, can be viewed as a “best

approximation” of M by a projective module (see [11]).

Definition 1.7.5 ([5]) A projective R-module P is a projective cover of M if there
exists an epimorphism p: P — M with small kernel, i.e., ker(p) < P.

Remark 1.7.6 Let M be a module. It is possible to denote a projective cover of the
module M as a pair (P,p) where P is a projective R-module and P B M—-0isa

small epimorphism, that is, ker(p) < P.

Proposition 1.7.7 ([5]) Let R be a ring. If M is a projective right R-module, then
rad(M) = MJ(R).

Proposition 1.7.8 ([5]) Let M be a projective right R-module with its endomorphism
ring S = End(M). Let f € S. Then

f € J(S) if and only if im(f) < M.
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The following lemma will be used frequently in Chapter 2.

Lemma 1.7.9 (Nicholson’s Lemma [69, Lemma 2.8]) Let P be a projective module
over any ring R and let A and B submodules of P such that P = A+ B. If A is a
direct summand of P, then there exists a submodule C C B such that P=A® C.

Definition 1.7.10 ([54]) An R-module M is said to be quasi-projective if, for any
quotient module @) of M, any homomorphism ¢g: M — () can be lifted to an endo-
morphism of M.

Clearly, any projective module is always quasi-projective. The converse is not true in
general; it is not difficult to find a simple module which is always quasi-projective but
need not always be projective. Furthermore, a direct summand of a quasi-projective
module is always quasi-projective. However, in general, a direct sum of two quasi-

projective modules need not be quasi-projective.

Recently, the above result of Nicholson has been generalized to m-projective modules.
Recall that a module M is said to be m-projective if, for every two submodules U, V
of M with U 4V = M, there exists f € End(M) with im(f) C U and im(1 — f) C V.
It is easy to see that every quasi-projective module is also m-projective. Hollow (and

hence local) modules trivially have this property (see [93]).

There are modules that fail to have a projective cover, this brings up the question “Are
there rings over which every module has a projective cover?” Such rings do indeed exist.
In the process, we first describe rings over which every finitely generated module has

a projective cover (see [11]).

Definition 1.7.11 ([55]) A ring R is called semiperfect if R is semilocal, and idempo-
tents of R/J(R) can be lifted to R.

Theorem 1.7.12 ([55]) A ring R is semiperfect if and only if every finitely generated

right R-module has a projective cover.

Our next goal is to introduce the notion of left and right perfect rings. This depends on
a new notion of nilpotency called T-nilpotency, where the letter “T” apparently stands
for “transfinite” (see [55]).
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Definition 1.7.13 ([55]) A subset A of a ring R is called left (vesp., right) T-nilpotent
if, for any sequence of elements {a, as, as, ...} C A, there exists an integer n > 1 such

that ajasy . ..a, =0 (resp., a, ...asa; = 0).

Definition 1.7.14 ([55]) A ring R is called right (resp., left) perfect if R/J(R) is
semisimple and J(R) is right (resp., left) T-nilpotent. If R is both left and right perfect,

we call R a perfect ring.

Theorem 1.7.15 ([55]) A ring R is right perfect if and only if every right R-module

has a projective cover.

Now we introduce concepts dual to continuity and quasi-continuity. For this, we need

the following definitions.

Definitions 1.7.16 ([63]) A module M is called a Di-module if it satisfies the following
Di-conditions.

D1: For every submodule A of M, there is a decomposition M = M; & M, such that
M; C A and AN My is small in Ms.

D2: Whenever A and B are submodules of M with M/A = B and B is a direct
summand of M, then A is a direct summand of M.

D3: Whenever A and B are direct summands of M with A+ B = M, then AN B is a

direct summand of M.

It is worthwhile to note that D1-modules are also known as lifting modules, and D2-

modules are also known as direct-projective modules.

Definitions 1.7.17 ([63]) Let M be a module. M is called discrete if it is both a D1-
and a D2-module, and is called quasi-discrete if it is both a D1- and a D3-module.

It is clear that continuity generalizes injectivity. On the other hand, discreteness gene-
ralizes projectivity if and only if the ring is perfect. Hence, in contrast to the hierarchy

of the injectivity and its related concepts, we have the following:

Projective = quasi-projective #- discrete = quasi-discrete = D].
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It is widely known that every quasi-projective module is a D2-module, and every D2-
module is a D3-module. Each of the Di-properties of modules is inherited by direct
summands, and thus direct summands of (quasi-) discrete modules are (quasi-) discrete.
However, in general, a direct sum of (quasi-) discrete modules need not be (quasi-)

discrete (see [63] for more information).

We end this section by a decomposition theorem for quasi-discrete modules and its

application.

Theorem 1.7.18 ([62]) A quasi-discrete module M has a decomposition, unique up to
1somorphism, M = ®;crH;, where each H; is hollow; moreover if M is discrete, then

each H; has a local endomorphism ring.

Corollary 1.7.19 ([62]) A quasi-discrete module M has the exchange property if and

only if every hollow summand of M has a local endomorphism ring.
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2 INTERNALLY CANCELLABLE RINGS

A right R-module M is said to be internally cancellable if, whenever M = M; & My =
N1 @ Ny with M; = Ny, then My = N,. This property of modules was first considered
by Ehrlich [24] and Handelman [37]; they proved independently that for a module M

with a regular endomorphism ring S = Endg(Mg),
M is internally cancellable if and only if S is unit-regular.

In fact, the regularity condition on the endomorphism ring was not necessary. Guralnick

and Lanski [35] dropped this condition, and showed that
M is internally cancellable if and only if every regular element in S is unit-regular.

There is another result of Guralnick and Lanski [35] which provide a characterization
for internally cancellable modules in terms of “pseudo-similarity” in the endomorphism

rings of these modules.

All of the characterizations mentioned above address the class of rings that are endo-
morphism rings of internally cancellable modules. Following [50], a ring R is said to
be internally cancellable (IC, for short) in case the right R-module Rg is internally
cancellable. The class of IC rings is quite large and contains abelian rings (i.e., rings
with all idempotents central), unit-regular rings, and right artinian rings by [50]. Tt
follows from the above result due to Guralnick and Lanski that, for any ring R, Rgr
is IC if and only if every regular element in R is unit-regular, and hence the internal

cancellation property of rings is left-right symmetric.

First, we record a well-known characterization of IC rings in terms of isomorphic idem-

potents.

Theorem 2.0.1 ([18]) The following are equivalent for a ring R:
(1) R is an IC ring.
(2) Given idempotents e, f € R, if eR = fR, then (1 —e)R = (1 — f)R.

(3) Given idempotents e, f € R, if eR = fR, then e and f are conjugates, that is,

ueu™t = f for some u € U(R).
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(4) The left analogues of (2) and (3).
Next, consider the following characterization of IC rings where
($): Ra+ Rb= R implies that a + zb € U(R) for some = € R.

Lemma 2.0.2 ([79], [50]) The following are equivalent for a ring R:
(1) R s IC.
(2) For each a € reg(R) and b € R, () holds.
(3) For each a,b € reg(R), ({) holds.
(4) For each a € reg(R) and b € idem(R), () holds.
(5) For each a € R and b € idem(R), () holds.

(6) For each a € R and b € reg(R), ({) holds.

The first four conditions in Lemma 2.0.2 were given by Song et al. in [79], and they
define a ring R to be reqularly stable if R satisfies the condition (3) in Lemma 2.0.2.
Other conditions were given by Khurana and Lam [50], and they define a ring R to
have regular stable range one (written rsr(R) = 1) if R satisfies the condition (2) in
Lemma 2.0.2, since the condition (2) means that every regular element has stable range

one.

Now let us summarize the following hierarchy of the rings we have considered so far.
R is unit-reqular = isr(R) =1 = sr(R)=1 = rsr(R)=1 <= R isIC

Note that the converse of the above implications are true when the ring is regular by
Corollary 1.3.15. On the other hand, if R is both exchange and IC, then sr(R) = 1 by
Theorem 1.4.14.

This chapter seeks to continue the study of internally cancellable rings and find some
new characterizations. In the first section, inspired by Lemma 2.0.2, we consider the

following condition:

(¥): Ra+ Rb= R implies that a +2b € U(R) and aRNzR = 0 for some z € R,
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where the elements a,b € R are to be quantified. There are nine combinations, and
we obtain new characterizations of unit-regular rings (Corollary 2.1.4) and IC rings
(Theorem 2.1.5) via these combinations. It is observed that (x) and ({) have different
behaviors. The cases where the element a + b is unit-regular in the condition ({) are
also considered, and then rings with stable range one (Theorem 2.1.9) and IC rings

(Theorem 2.1.10) are characterized.

In Section 2.2, we consider IC rings with the summand sum property. Following [33],
a ring R is called perspective if any two isomorphic direct summands of Ri have a
common complement, i.e.; if eR = fR for any e, f € idem(R), then there exists a direct
summand C' of Ry such that R =eR® C = fR® C. Perspective rings include abelian
rings, rings with stable range one, and right or left quasi-duo rings (see [33, Section
2 and Corollary 4.8]). Clearly, any perspective ring is IC. We prove that an IC ring
with SSP is a perspective ring (Theorem 2.2.2). This generalizes Handelman’s result
[37, Theorem 2] saying that unit regular rings (which are both IC and SSP) are always
perspective. On the other hand, it gives a partial answer to a question posed in [33]

(Corollary 2.2.6).

Section 2.3 includes a direct proof to the result [15, Corollary 2.7] saying that for any
abelian ring R and for any a € reg(R), there exists a unique decomposition a = e + u
such that aR N eR = 0 where e € idem(R), u € U(R) is given (Theorem 2.3.2). As a

final result, IC rings are characterized by special clean elements (Proposition 2.3.5).

2.1 Unit-Regular Elements and Internal Cancellation
Consider the following statement:
(¥*): Ra+ Rb=R = a+ zb € U(R) and aRN xR = 0 for some = € R,

where the elements a,b € R are to be quantified. We deal with the nine combinations
arising from the quantifiers “for all”, “for all regular elements”, and “for all idempotents

elements” for each of a and b.

First we recall two theorems from Khurana and Lam [50].

Theorem 2.1.1 [50, Theorem 3.2] If a is a unit-reqular element in a ring R, then
sr(a) = 1.
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Proof. Consider any a € ureg(R), and let b be any element of R such that Ra+ Rb = R.
Since a is unit-regular, Ra is a direct summand of g R. Then there exists a left ideal
C' C Rb such that R = Ra @ C by Nicholson’s Lemma. Write (uniquely) 1 = e + f;
where e; € Ra and f; € C. Then ey, f; are complementary idempotents with Ra = Re;
and C' = Rf;. Thus, Fact 1.3.12 implies that a = uje; for some u; € U(R). Writing
f1 = yb for some y € R, and left-multiplying 1 = e; + f; by u, we get a +u1yb = uy €
U(R). This checks that sr(a) = 1. O

Theorem 2.1.2 [50, Theorem 3.5] Let R be a ring and a € reg(R). Then a is unit-

reqular if and only if sr(a) = 1.

Proof. The “only if” part is true for any element a € R, by Theorem 2.1.1. For the
“Uf” part, write a = axa for some x € R, and assume that sr(a) = 1. The following
familiar argument is from the proof of [19, (4.12)]. In view of Ra + R(1 — za) = R, we
get an element y € R such that a + y(1 — za) € U(R). Letting u be the inverse of this

unit, we have
a=aza = aula+y(l — za)| xa = auazra = aua,
so we have a € ureg(R). O

On the other hand, any unit regular element in a ring R need not have idempotent
stable range 1. Khurana and Lam [49, Example 4.5] showed that in the ring My (Z) the
element A = (?3) is unit-regular but not clean. As we mentioned in the preliminary

chapter, every element having idempotent stable range 1 is clean. Hence, isr(A) # 1.
Now we characterize unit-regular elements.

Theorem 2.1.3 For any element a in a ring R, the following are equivalent:
(1) a is unit-regular.

(2) Whenever Ra + Rb = R with b € R, there exists x € R such that a + xb € U(R)
and aRNzR = 0.

(3) Whenever Ra + Rb = R with b € reg(R), there ezists x € R such that a + xb €
U(R) and aRNzR = 0.
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(4) Whenever Ra+ Rb = R with b € idem(R), there exists x € R such that a + xb €
U(R) and aRNzR = 0.

Proof. (1) = (2) Assume a is unit-regular and let Ra + Rb = R. Since Ra is a direct
summand of gR, there exists B C Rb such that Ra & B = R by Nicholson’s Lemma.
Then we can write 1 = e + f where Ra = Re and B = Rf for e, f € idem(R). Since
a is unit-regular, there exists a unit « in R such that a = ue by Fact 1.3.12. Write
f = rb for some r € R. Then a + (urbr)b = ue + uf = wu. Finally, we show that
aRNurbrR = 0. For, if ax = urbry for some z, y € R, then ex = fry = (1—e¢e)ry =0,
and hence ax = urbry = 0.

(2) = (3) and (3) = (4) are obvious.

(4) = (1) Since Ra + R(1) = R, there exists x € R such that a + 2z = u € U(R) and
aRNzR = 0 by hypothesis. Now we can follow the proof of [12, Theorem 1]. Multiplying
a —u = —x by u 'a from the right gives that au™'a —a = —zu"'a € aRNzR = 0.

Thus, au"'a = a, i.e., a is unit-regular. O

Theorem 2.1.3 immediately gives the following corollary that characterizes rings satisf-
ying (*) “for each a,b € R”, or “for each a € R and b € reg(R)”, or “for each a € R and
b € idem(R)”. As is well-known, the class of rings with idempotent stable range one is
properly contained in the class of rings with stable range one, but with the additional
condition “aRNxR = 07, we see that these classes coincide. Note that the equivalence

of the conditions (1) and (2) in Corollary 2.1.4 is due to Wang et al. [86, Theorem 3.6].

Corollary 2.1.4 The following are equivalent for a ring R:
(1) R is unit-reqular.

(2) Whenever Ra + Rb = R with a,b € R, there exists e € idem(R) such that
a+ebe UR) and aRNeR = 0.

(3) Whenever Ra+ Rb = R with a,b € R, there exists x € R such that a+xb € U(R)
and aRNzR = 0.

(4) Whenever Ra+ Rb= R with a € R and b € reg(R), there exists x € R such that
a+xbe UR) and aRN xR = 0.
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(5) Whenever Ra+ Rb = R with a € R and b € idem(R), there exists x € R such
that a +xb € U(R) and aRNzR = 0.

[P

Next, we will consider the element “a” as regular in (x) whenever b € R, b € reg(R),

or b € idem(R) and characterize IC rings. Compare it with Lemma 2.0.2.

Theorem 2.1.5 The following are equivalent for a ring R:
(1) R s IC.

(2) Whenever Ra+ Rb = R with a € reg(R) and b € R, there exists v € R such that
a+xbe UR) and aRN xR = 0.

(3) Whenever Ra+ Rb = R with a € reg(R) and b € reg(R), there exists x € R such
that a + zb € U(R) and aRN xR = 0.

(4) Whenever Ra + Rb = R with a € reg(R) and b € idem(R), there exists © € R
such that a + xb € U(R) and aRNzR = 0.

Proof. (1) = (2) is true by Theorem 2.1.3 since every regular element is unit-regular.
(2) = (1) Every regular element has stable range one by hypothesis. Thus, R is IC by
Theorem 2.0.2. (2) = (3) = (4) are obvious.

(4) = (2) Let Ra+ Rb = R where a € reg(R) and b € R. Since Ra is a direct summand
of R, there exists e € idem(R) with Re C Rb such that R = Ra & Re by Nicholson’s
Lemma. By assumption, there exists « € R such that a +xe € U(R) and aRNzR = 0.
Let e = rb for some r € R. Thus, a + (zr)b € U(R) and aR N arR = 0. O

Now we consider the case where the elements “a” and “b” are idempotents in (x) and

see that this always holds.

Theorem 2.1.6 For any idempotents e, f in a ring R, if Re + Rf = R, then there
exists a unit-reqular element x € Rf such that e + zf € U(R) and eRN xR = 0.

Proof. Assume that Re+ Rf = R where e, f € idem(R). By Nicholson’s Lemma, there
exists g € idem(R) such that Rg C Rf and Re & Rg = R. Write 1 = t; + t where
t1,ty € idem(R), t; € Re, and ty € Rg. Then Re = Rt; and Rg = Rt,. Let u and v
be units such that e = ut; and t, = vg by Fact 1.3.12. Since g € Rf, gf = ¢g. Now
e+uvgf = e+ uvg = uty + uty = u. Clearly, eR N uvgR = 0. Thus, we are done with

T = uvg. O
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Remark 2.1.7 In other words, Theorem 2.1.6 says that (x) always holds for each
a € idem(R) and b € idem(R). This condition is also equivalent to the following

conditions.

(i) () holds for each a € idem(R) and b € R.
(ii) (*) holds for each a € idem(R) and b € reg(R).

It is enough to prove that if (x) holds for each a € idem(R) and b € idem(R), then
(i) holds. Let Ra + Rb = R where a € idem(R) and b € R. According to Nicholson’s
Lemma, there exists B C Rb such that R = Ra® B. Take B = Re where e € idem(R).
Then there exists x € R such that a + ze € U(R) and aR N xR = 0 by hypothesis.
Write e = rb where r € R. Thus a+ (zr)b € U(R) and aRNzrR = 0. Hence, (i) holds.

The Case Where “a + x0” is Unit-Regular

Any unit element in a ring is clearly unit-regular. Based upon this fact, one can consider
the cases where the element a+ b is unit-regular instead of being unit in the statement
(). We see that rings with stable range one and IC rings can also be characterized

with the cases including unit-regular elements.

Theorem 2.1.8 For any element a in a ring R, the following are equivalent:
(1) @ has stable range one.

(2) Whenever Ra+ Rb = R with b € R, there exists an element x in R such that

a + xb 1s unit-regular.

Proof. (1) = (2) is obvious.

(2) = (1) Let Ra+ Rb = R. By assumption, there exists z € R such that a + 2b = ug
where u € U(R) and g € idem(R). Then Rg+ Rb = R. Since any idempotent has stable
range one by Theorem 2.1.1, there exists y € R such that g + yb = v where v € U(R).
It follows that a + xb = ug = uv — uyb, and so a + (x + uy)b = wv which is a unit in

R. Therefore, a has stable range one. g

The next corollary generalizes [89, Theorem 2.4] by removing the unnecessary “exc-

hange” assumption placed on R.
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Corollary 2.1.9 The following are equivalent for a ring R:
(1) sr(R) =1.

(2) Whenever Ra + Rb = R, there exists an element x in R such that a + xb is

unit-regular.

Lemma 2.1.10 Let a € reg(R). Then, a is unit-reqular if and only if whenever Ra +

Rb = R, there exists an element x in R such that a + zb is unit-regular.

Proof. If a is unit-regular, then we can take x = 0 to prove the necessity. For the
sufficiency, we have sr(a) = 1 by Theorem 2.1.8. Since a € reg(R), it is unit-regular by
Theorem 2.1.2. O

Now Lemma 2.0.2 and Lemma 2.1.10 together give the following result.

Theorem 2.1.11 The following are equivalent for a ring R:
(1) R s IC.

(2) For each a € reg(R) and b € R, if Ra + Rb = R, then there ezists © € R such

that a + zb is unit-regular.

(3) For each a € reg(R) and b € reg(R), if Ra + Rb = R, then there ezists x € R

such that a + xb is unit-regular.

(4) For each a € reg(R) and b € idem(R), if Ra + Rb = R, then there exists v € R

such that a + xb is unit-regular.

(5) For each a € R and b € reg(R), if Ra+ Rb = R, then there exists x € R such

that a + xb is unit-regular.

(6) For each a € R and b € idem(R), if Ra+ Rb = R, then there exists © € R such

that a + xb is unit-regular.

Proof. (1) = (2) follows from Lemma 2.0.2. (2) = (3) and (3) = (4) are trivial.

(4) = (1) Let a € reg(R). Using Lemma 2.1.10, we will show that a is unit-regular.

Let Ra + Rb = R. Then Ra @& Rf = R for some f € idem(R) with Rf C Rb. By

hypothesis, there exists an element y in R such that a + yf is unit-regular. If f = rb,
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then a + yf = a + yrb is unit-regular. This proves (1).

(1) = (5) follows from Lemma 2.0.2.

(5) = (6) is trivial.

(6) = (1) Let Ra+ Rf = R where a € R and f € idem(R). To complete the proof,
according to Lemma 2.0.2, it suffices to show that there exists an element z in R such
that a + xf € U(R). Since a + yf is unit-regular for some y € R by hypothesis, write
a+yf =wvg where v € U(R), g € idem(R). Then a € Rg+ Rf, and so R = Rg+ Rf.
According to Theorem 2.1.6, there exists z € R such that g + zf = u € U(R). Then
a+yf+vzf =wou, and hence a + (y + vz)f = vu € U(R), as desired. O

In Theorem 2.1.11, we can add trivially the condition “aRNzR = 0” to the items (2-4).
However, when we consider Corollary 2.1.9 and the items (5) and (6) of Theorem 2.1.11,

the following question arises.

Question 2.1.12 What is the structure of a ring R with the property that whenever
Ra + Rb = R with “a € R” and “b € R or b € reg(R) or b € idem(R)”, there exists
x € R such that a + zb is unit-regular and aR N xR = 07

2.2 Internal Cancellation with Summand Sum Property

This section will be devoted to IC rings with SSP. As we mentioned in Section 1.5,
any perspective ring is IC. However, the converse does not hold in general (see Re-
mark 1.5.4). Indeed, as Garg et al. states that it is not difficult to see that the converse
is true if eR and ueR (equivalently, Re and Reu) have a common complement for every

e € idem(R) and u € U(R) [33].

We first recall the following result of Handelman because it has a close connection with

the main result (Theorem 2.2.2) of this section.

Theorem 2.2.1 ([37, Theorem 2|) For a reqular ring R, the following are equivalent:
(1) R is unit-reqular.
(2) For idempotents e, f in R, eR = fR implies (1 —e)R = (1 — f)R.

(3) For idempotents e, f in R, eR = fR implies there exists a unit x such that

rlex = f

36



4) IfIeoJ, 'K € L(R), and also [ J=T"® K and [ = I, then J = K.
(5) ForI,J € L(R), I = J implies I is perspective to J.
(6) R satisfies the cancellation law for finitely generated projective modules.

Now we prove our main result. On one hand, this generalizes Handelman’s above result
[37, Theorem 2] saying that unit regular rings (which are both IC and SSP) are always
perspective. On the other hand, it gives a partial answer to the Question 1.5.3 posed

in [33] (See Corollary 2.2.6).
Theorem 2.2.2 If R is an IC ring with SSP, then R is perspective.

Proof. Let e, f be idempotents in R such that eR = fR. Since R has SSP, eR + fR
is a direct summand of Rp, and hence projective. According to Nicholson’s Lemma,
there exist idempotents g and h in R such that eR + fR = eR ® gR = hR® fR
where gR C fR and hR C eR. Write R = (eR + fR) @ T for some right ideal T’
of R. Then R=eR®gR®T = hR® fR®T. Since R is IC, gR = hR. Let ¢ be
the isomorphism from gR to hR. Since gR N hR = 0, a routine argument shows that
gR®hR =gR&® C =C & hR where C = {x + ¢(z) |2z € gR}. Then it follows that
eR+fR=eR®C =C®fR,and hence R = (eR+ fR)®T = eRECHT = fRECHT.

Thus, eR and fR have a common complement, and so R is perspective. O

Example 2.2.3 SSP is not superfluous in Theorem 2.2.2; let R = My(Z). As R =
Endz(Z & Z) and Z & Z is an 1C Z-module, it follows that the ring R is IC. As we
mentioned earlier, the element (%) is unit-regular but not clean. Hence, R is not
perspective by Remark 1.5.4. On the other hand, Z & Z does not have SSP as a Z-
module by Proposition 1.5.7. Thus, R does not have SSP by Corollary 1.5.9.

Recall that a module M is called perspective if any two isomorphic direct summands
have a common direct complement [33]. A module-theoretic property P is called an
endomorphism ring property (“ER-property”, for short) if for any module Mg, Mg
has P if and only if Endg(M) has P as a module over itself (see [56, 8.1] for details).
According to [56, Proposition 8.5] and [33, Theorem 3.4], the module properties “inter-
nal cancellation” and “perspectivity” are ER-properties. Thereby, we get the following

module-theoretic version of Theorem 2.2.2.
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Corollary 2.2.4 If M is a quasi-projective’ right R-module with SSP, then the follo-

wing are equivalent:
(1) M satisfies internal cancellation.
(2) M 1is perspective.

Proof. We should note that if M is quasi-projective, then M has SSP if and only if
Endg (M) has SSP by Corollary 1.5.9. Hence an application of Theorem 2.2.2 finishes
the proof. O

A version of the following corollary was proved by Chen in [15, Theorem 2.4]. Here
we will be able to prove this result by effectively dropping the unnecessary regularity

condition on b.

Corollary 2.2.5 Let R be a ring with SSP. Then the following are equivalent:
(1) R s IC.

(2) Whenever Ra + Rb = R with a € reg(R) and b € R, there exists e € idem(R)
such that a + eb € U(R) and aRNeR = 0.

Proof. (1) = (2) Let a € reg(R) and b € R such that Ra+ Rb= R. Then R =aR&T
for some right ideal T'. According to Theorem 2.2.2, R is perspective, and so there
exists e € idem(R) such that eR = T and a + eb € U(R) by Theorem 1.5.2. This
completes the proof.

(2) = (1) Let a € reg(R). Since Ra + R(—1) = R, there exists e € idem(R) such that
a—e € U(R) and aRNeR = 0. Then a is unit-regular, and hence R is IC. O

In [33], the authors ask the following question:
If every regular element of R has idempotent stable range one, then is R perspective?

According to Theorem 2.2.2, we have a partial answer as follows.

!This can be replaced by (D3) condition by [3, Theorem 22]. Recall that M has (D3) if for any
direct summands A and B of M with A+ B = M, then AN B is a direct summand in M. Any

quasi-projective module has (D3).
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Corollary 2.2.6 Let R be a ring with SSP. Then the following are equivalent:
(1) R is perspective.
(2) FEvery regular element of R has idempotent stable range one.

Proof. (1) = (2) follows from Theorem 1.5.2(3).
(2) = (1) Since every regular element has idempotent stable range one, R is IC by
Lemma 2.0.2(2). Now the perspectivity of R is an immediate consequence of The-

orem 2.2.2. O

It is well known that IC rings are exactly the rings in which every regular element is
unit-regular. Recently, Chen et al. have studied the rings in which the product of two
regular elements is unit-regular as an extension of unit-regular rings [16]. Actually, this
new class of rings coincides with the class of IC rings with SSP, as the following lemma

shows.

Lemma 2.2.7 [16, Lemma 2.2] Let R be a ring. Then the product of two regular ele-
ments in R is unit-reqular if and only if R is an IC ring with SSP.

Proof. (=) Suppose that the product of two regular elements in R is unit-regular.
Then, in particular, every regular element in R is unit-regular. This implies that R is IC.
Let e, f € R be idempotents. Then, (1—e)f € R is unit-regular. Hence, (1—e)fR C% R.
Write (1 —e)fR® A = R. Then, (1 —e¢)R = (1 —e)fR® ((1 —e)RN A). Hence,
since eR+ fR=eR® (1 —e)fR, weget R=eR®(1—¢e)f RO ((1—€e)RNA) =
(eR+ fR) ® ((1 —e)RN A). This shows that R has SSP.

(<) Let a,b € R be regular. Since R is IC, a and b are unit-regular. Write a = wue,
b= fv, where e, f € R are idempotents and u,v € U(R). Then, ab = u(ef)v. Since R
has SSP, we see that (1—e)R+ fR C? R, i.e., (1—e)R@efR C% R. This implies that
efR C% R, and so, ef € R is regular. By hypothesis, ef € R is unit-regular. Therefore,

ab € R is unit-regular and hence the result follows. a

Proposition 2.2.8 [16, Proposition 2.3] Let R be an IC ring. Then the following are

equivalent:

(1) R has SSP.
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(2) Every product of two idempotents is unit-reqular.

(3) FEwvery finite product of idempotents is unit-reqular.
Proof. (1) = (2) Since every idempotent is regular, this is clear.
(2)
(1)

(1) It is enough to apply (=) part of the proof of Lemma 2.2.7.

= (1)
< (3) This follows from (1) < (2) and induction. O

2.3 Special Clean Elements

Following [1], a ring R is called special clean if every element a can be decomposed
as the sum of a unit 4 and an idempotent e with aR N eR = 0. The Camillo-Khurana

Theorem in [12] states that R is unit-regular if and only if R is a special clean ring.

Inspired by this notion, we call an element a in R special clean if there exists a decom-
position a = e 4+ u such that aRNeR = 0 where e € idem(R) and u € U(R). It is easy
to see that any special clean element is unit-regular (see (4) = (1) in Theorem 2.1.3).

This gives the following fact for a ring R:
Every regular element is special clean = 1C

This implication is irreversible, because the ring R = My(Z) is IC, but it has a unit-

regular element which is not clean (see Example 2.2.3).

Chen proved that the converse of the above implication is true if R has SSP [15,
Theorem 2.4|. After that result abelian rings are considered to obtain a corollary, that
is, if R is an abelian ring, then for any a € reg(R), there exists a unique decomposition
a = e+ u such that aR N eR = 0 where e € idem(R) and u € U(R) [15, Corollary
2.7]. The proof of Chen involves SSP and IC property of abelian rings and a technical
result. We will offer an independent and more elementary proof here. First, we need

the following lemma.
Lemma 2.3.1 Any left non zero-divisor reqular element in an abelian ring is a unit.

Proof. Let R be an abelian ring and z a left non zero-divisor regular element of R.
Let y € R be such that xyx = x. Then z(1 — yx) = 0 implies that yz = 1. On the
other hand, since e = xy is an idempotent, x = 2%y, and x(1 — xy) = 0. Hence xy = 1,

and so z is a unit. O
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Theorem 2.3.2 Let R be an abelian ring. Then, for every a € reg(R), there exists
a unique decomposition a = e + u such that aR N eR = 0 where e € idem(R) and

u € U(R).

Proof. Let a € reg(R). Then the right annihilator of a, ann.(a), is equal to eR for
some idempotent e € R. Write a = e 4 (a — e). First, we claim that a — e is a left non
zero-divisor. Let r € R be such that (a — e)r = 0. Since ae = 0, a(1 — e) = a. Then,
0=(1—-e)(a—e)r =(1—e)ar = a(l —e)r = ar. So r € eR. On the other hand,
0 =e(a—e)r = —er. This gives (1 —e)r =r —er =r. Then r € (1 — e) R, and hence
r = 0. Next, we show that a — e is regular. Since a is regular, there exists b such that
aba = a. Let V/ = bab. Then ab'a = a, and hence (a—e)(V' —e)(a—e) = a—e. According
to Lemma 2.3.1, a — e is a unit. It is easy to see that aR N eR = 0. The uniqueness
follows from the proof of [2, Proposition 5.1, and we include it here for completeness.
Let a = e +u = € + u where e, ¢ € idem(R), u,u’ € U(R) with aR NeR = 0 and
aRNe'R=0.Then au™' =eu ' +1and au"'(1 —e) =1 — ¢ € aR since R is abelian.
Also, €(1—e)=(1—e)e € RNaR =0,and so €(1 —e) = (1 —e)e’ =0. Since R is

abelian, e = ¢'e = e¢’ = ¢/, and henceu =a —e=a — ¢ = u'. O

Recently, it has been proved that the converse of the above theorem is also true by

Chen et al. [16]. We include it here for completeness.

Theorem 2.3.3 [16, Corollary 3.7] Let R be a ring. If, for every a € reg(R), there
exists a unique decomposition a = e+ u such that aRNeR = 0 where e € idem(R) and

u € U(R), then R is abelian.

Proof. Let ¢ € R be an idempotent, and let x € R. Choose a = e — 1. Then, a €
R is regular. Clearly, e + ex(1l — e) € R is an idempotent. It is easy to verify that
a—ea—(e+ex(l —e)) € UR) with aRNeR = aRN (e + ex(l —e))R = 0.
The uniqueness forces that e + ex(1 — e) = e, hence, ex = exe. Likewise, ze = exe.

Accordingly, ex = xe, which completes the proof. O

Theorem 2.3.2 cannot be generalized to perspective rings: let R = M3(Zsy) be the ring
of 3 x 3 matrices over Zs. It is a perspective ring since the stable range of Mi3(Zs) is one,
but the idempotent a = <§ (11) §> can be written in two different ways: a = e4+u = f+w,
e, f €idem(R), u* =1,v* =1,aRNeR =0, and aRN fR = 0 where ¢ = <é§§>’
110 100 110
u = <010>, f= (000) and v = (010).
001 011 011

41



Corollary 2.3.4 [2, Proposition 5.1] If R is abelian, then R is unit-reqular if and only
if for every a € R, there exists a unique decomposition a = e+u such that aRNeR =0

where e € idem(R) and u € U(R).

Chin and Qua proved that R is unit-regular if and only if for any a € R, there exists
e € idem(R) such that a — e or a + e is unit and aR NeR = 0 in [17, Theorem 2.2].
It can also be observed that if a 4 e is unit and aR N eR = 0, then a is unit-regular.
Thus, by the proof of Theorem 2.3.2, we see that if R is an abelian ring, then for any
regular element a € R, there exists a unique e € idem(R) such that a — e or a + e is
unit in R and aR NeR = 0. Moreover, one can see that the converse of this statement

is also true by an argument similar to that used in the proof of Theorem 2.3.3.
We conclude this section with the following characterization of IC rings.

Proposition 2.3.5 The following are equivalent for a ring R:
(1) R s IC.
(2) For every a € reg(R), there exists u € U(R) such that au is special clean.

Proof. (1) = (2) Let a € reg(R). Since Ra + R(—1) = R, there exist x € R and v €
U(R) such that a+x(—1) = v and aRNzR = 0 by Theorem 2.1.5. Then R = aRG zR.
Let g € idem(R) be such that aR = (1 — g)R and xR = gR. Since z is regular and R
is IC, z is unit-regular. Then there exists u € U(R) such that xu = g by Fact 1.3.12.
By considering a + x(—1) = v, we see that au = g + vu, g € idem(R), vu € U(R), and
auR N gR = 0. Hence, au is special clean.

(2) = (1) Let a be a regular element of R. Then there exists u € U(R) such that au is
special clean. Since special clean elements are unit-regular, au is unit-regular. Hence,

a is unit-regular. O
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3 LIFTING STABLE RANGE ONE ELEMENTS

Lifting of some special elements modulo an ideal of a ring is a quite substantial subject
in ring theory. The structure of many classes of rings, including exchange, semiperfect,
and semiregular rings is described in terms of lifting idempotents (for a detailed account
of this, see for example [5] and [69]). On the other hand, a particular emphasis has been
placed on lifting units by Menal and Moncasi [60] for certain types of self-injective
rings; by Perera [75] for exchange rings and certain classes of C*-algebras with real
rank zero; and by Ster [80] for clean rings. Recently, Khurana et al. [51], besides lifting
of idempotents and units, have considered lifting of different types of elements; such as

(von Neumann) regular elements, unit-regular elements, conjugate idempotents, etc.

In this chapter, inspired by the work in [51], we present lifting of elements having
(idempotent) stable range one modulo an ideal and investigate several properties and
applications of such ideals. As we mentioned earlier, the concept of stable range was
introduced by Bass [9] in the context of algebraic K-theory and the simplest case of
stable range one has attracted attention (see for example [14, 31, 34, 40, 48, 56, 85]).

A new characterization of rings with stable range one is provided in this chapter, too.

Now, it is useful to state all the lifting properties in terms of some special classes

together for having a complete interpretation.

Let I be an ideal of a ring R and C(R) be a class of some elements having a property
C in R. An element a in R is called C lifting modulo I if, whenever a + I € C(R/I),
then there exists b € C(R) such that a + 1 = b+ I. The ideal [ is called C-lifting if
every element of R is C lifting modulo I. Throughout this chapter, we will consider the

following classes.

U(R) = {z € R|x is a unit} idem(R) = {z € R|z is an idempotent}
reg(R) = {z € R|z is regular} ureg(R) = {x € R|z is unit-regular}
SRi(R) ={x € R|sr(z) =1} ISR (R) = {x € R|isr(x) =1}

For clarity, an ideal I is called an idempotent lifting in case I is idem(R)-lifting; unit
lifting if I is U(R)-lifting; regular lifting if I is reg(R)-lifting; unit-reqular lifting if 1
is ureg(R)-lifting stable range one lifting if I is SR (R)-lifting; and idempotent stable
range one lifting if I is ZSR1(R)-lifting.
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The first section of this chapter is devoted to stable range one lifting ideals and Section
2 is concerned with idempotent stable range one lifting ideals. We obtain that these
two lifting conditions properly imply lifting of units modulo an ideal. It is well-known
that the Jacobson radical J(R) of a ring R is always unit lifting. Further, we see that it
is also stable range one lifting (Corollary 3.1.4). Moreover, if R is a regular ring, then
an ideal [ is unit lifting if and only if I is stable range one lifting (Proposition 3.1.8).
If R is a left or a right duo ring, then every ideal is stable range one lifting if and only
if sr(R) = 1 (Theorem 3.1.10). Among other results, it is proved in Section 2 that if
I is an idempotent stable range one lifting ideal such that R/I is perspective, then it
is regular lifting (Theorem 3.2.11). This result yields some important corollaries. We
characterize rings with idempotent stable range one, that is, we prove that isr(R) = 1
iff isr(R/I) = 1 and [ is idempotent stable range one lifting for any ideal I contained
in the Jacobson radical (Corollary 3.2.12). The Jacobson radical J(R) is idempotent
stable range one lifting in case it is idempotent lifting (Corollary 3.2.3). The converse
of this statement is true if R is a left quasi-duo ring (Corollary 3.2.14). Last but not
least, we prove that if R is a (right and left) duo ring, then every ideal is idempotent
stable range one lifting iff every ideal is regular lifting iff isr(R) = 1 iff R is exchange
(Theorem 3.2.15).

3.1 Stable Range One Lifting Ideals

In this section, we introduce stable range one lifting ideals. First, recall that an element
a € R is said to have stable range one (written sr(a) = 1) if, whenever Ra + Rb = R
for any b € R, then there exists x € R such that a + b € U(R). Clearly, every unit
element and every element in the Jacobson radical J(R) of a ring R have stable range

one.

Definition 3.1.1 Let I be an ideal of a ring R. [ is called a stable range one lifting
ideal if, for every a € R with a + I € SR1(R/I), there exists b € SR1(R) such that
a+I=0+1.

Obviously, the trivial ideals of R are stable range one lifting. On the other hand, if

sr(R) = 1, then every ideal of R is stable range one lifting. Local rings, unit-regular
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rings, and semilocal rings are some examples of rings with stable range one, see [85]

for more examples.

Example 3.1.2 Consider the ring Z. We first note that the only elements of Z with
stable range one are 0,1, —1, because if a is an integer different from 0,1, —1, then one
can choose b € Z such that ged(a,b) =1,b f1 —a, and b f1 + a, so that aZ + VZ = Z,
but there do not exist z € Z such that a +2b=1or a + b = —1

This fact gives immediately that the ideals 2Z and 37Z are stable range one lifting. But
the ideal 47 is not stable range one lifting. To see this, consider the element 2 + 47Z.
Clearly, sr(2+4Z) = 1, but there do not exist b € Z with 2447 = b+4Z and sr(b) = 1.
Indeed, b cannot be 0,1, or —1.

More generally, if n > 4, then nZ is not stable range one lifting. To show the last
sentence, one can consider the unit-regular elements different from 0+ nZ, 1 +nZ, and

—1 4 nZ in the ring Z/nZ.

Recall that a two-sided ideal I of a ring R is called a radical ideal if 1 + x € U(R)
for every x € I (see [90]). Obviously, every ring has a largest radical ideal, namely, the

Jacobson radical of R.

Proposition 3.1.3 Let I be a proper ideal of a ring R. For any a € R, if sr(a) =1 in
R, then sr(a+ 1) =1 in R/I. The converse is true if I is a radical ideal.

Proof. Let a € R. Set @ := a+1 and R := R/I. Assume that sr(a) = 1. If Ra+Rb = R,
then Ra+ Rb+ I = R. Then we can find r,s € R and y € [ such that 1 =ra+ sb+y.
This implies that Ra + R(sb+ y) = R. By assumption, there exists z € R such that
a+ z(sb+y) € U(R). Hence @+ Z(sb+y) = @+ (z5)b € U(R). Thus sr(a+ I) = 1.

For the converse, assume that [ is a radical ideal and sr(a + I) = 1. If Ra + Rb = R,
then there exists # € R such that @ + Zb = @ where u € U(R). This implies that
a+ xb = u+ j for some j € I. Since I is a radical ideal, 1 + u~!j is a unit. It follows

that a + b = u+ j = u(1 +u~'j) is a unit, too. Thus, sr(a) = 1. O

It is well known that the Jacobson radical J(R) of a ring R need not be idempotent
lifting, but the following result shows an interesting property of J(R). Recall that
sr(R) = 1iff st(R/J(R)) = 1.
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Corollary 3.1.4 Any radical ideal of a ring R is stable range one lifting. In particular,
J(R) is stable range one lifting.

Proof. Let I be a radical ideal and a € R with @ = a+ I € SRy(R/I). We claim
that a € SRy (R). Suppose that Ra + Rb = R for some b € R. Then there exist z € R
and % € U(R/I) such that @ + Zb = 7. Let © be the inverse of . Multiplying the last
equality on the left by @, we get va + vzb = 1. Since v(a + xb) — 1 € I, v(a + xb)
is invertible in R by assumption. This implies that a + xb is left invertible. Similarly,
the multiplication on the right by v will imply that a 4+ zb is right invertible. Hence
a € SRi(R). O

Lemma 3.1.5 Let ¢ : R — S be a ring isomorphism. If sr(a) = 1 in R, then
sr(e(a)) =11in S.

Example 3.1.6 Let R = {(z1,...,2,,8,8,...)|x1,...,2, € Q,s € Z,n > 1}. Then
R is a commutative ring with J(R) = 0 and every regular element of R is unit-regular
by [50, Remark 6.6]. Further, every regular element of R has idempotent stable range
one by Theorem 1.5.2. Set I := {(z1,...,2,,0,0,...)|z1,...,2, € Q,n > 1}. Then

R/I = 7 via the map ¢ : (1,...,2p,5,8,...) + [ — s. For any a € R, we claim that
sr(a) =1 <= a is unit-regular.

Assume that sr(a) = 1. Proposition 3.1.3 implies that sr(a+1) = 1, and then sr(p(a+
I)) = 1in Z by Lemma 3.1.5. So ¢(a + I) = 0,1, or —1. This implies that a =
(x1,...,2pn,8,8,...) where s = 0,1, or —1, and so a is unit-regular. Since any unit-

regular element has stable range one by Theorem 2.1.1, the claim follows.

Now we show that the ideal I is stable range one lifting. For this, assume that a is an
element in R such that sr(a+ 1) = 1. As in the above discussion, a is unit-regular, and

hence sr(a) = 1.
Lemma 3.1.7 Any stable range one lifting ideal is unit lifting.

Proof. Let I be a stable range one lifting ideal of a ring R. Take an invertible element
@ € R/I with the inverse b. Since @ is unit-regular, sr(@) = 1. By hypothesis, there exists

an r € Rsuch that @ = T and sr(z) = 1. Then ba = bT = 1, and so ¢ := 1 —bx € I. This
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gives us that Rz + Rc = R. Since sr(x) = 1, there exists y € R such that x + yc = v is

a unit in R, and hence @ =% = x + yc = v. Thus v is the required element. a

The converse of Lemma 3.1.7 is not true in general, because the ideal 47Z of Z is
unit lifting (1 and 3 = —1 in Z/47 lift to units) but not stable range one lifting by
Example 3.1.2. In the following result, we see that the converse of Lemma 3.1.7 is true

if R is a regular ring.

Proposition 3.1.8 If R is a reqular ring, then any ideal I of a ring R is unit lifting

if and only if it is stable range one lifting.

Proof. Assume that [ is unit lifting and let @ € SR1(R/I). Then the regular element @
is unit-regular by the fact that a regular element has stable range one iff it is unit-regular
(see Theorem 2.1.1 and Theorem 2.1.2). Since any regular ring is exchange, every ideal
is idempotent lifting by Theorem 1.4.7. Hence [ is unit lifting and idempotent lifting.
This is equivalent to saying that I is unit-regular lifting by [51, Theorem 6.2]. Thus
there exists a unit-regular element b € R such that @ = b. Since b is unit-regular,

sr(b) = 1, and so b is the desired element. O

Bacella showed in [6, Lemma 3.5] that a regular ring R with an ideal I is unit-regular
if and only if e Re is unit-regular for every idempotent e € I, R/I is unit-regular, and [
is unit lifting. Hence Proposition 3.1.8 implies that “unit lifting” can be interchanged

with “stable range one lifting” in Bacella’s result.

In [51, Theorem 6.2], the authors proved that an ideal is unit-regular lifting if and only
if it is both unit lifting and idempotent lifting. This leads us to suspect that stable range
one lifting ideals need not be unit-regular lifting. For this, it suffices to consider a ring
R such that J(R) is not idempotent lifting (see Example 3.2.16), and thus J(R) is the
required ideal by Corollary 3.1.4. The following corollary is immediate by the fact that

over a regular (or an exchange) ring any ideal is idempotent lifting by Theorem 1.4.7.

Corollary 3.1.9 If R is a regular ring, then any ideal I of a ring R is stable range
one lifting if and only if it is unit-reqular lifting.

Let R be a commutative ring. Then sr(R) = 1 iff the natural map U(R) — U(R/I)

is an epimorphism for every ideal I of R by [25, Lemma 6.1]. The latter condition
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actually means that every ideal [ is unit lifting. More generally, Siddique proved in [78,
Theorem 3| that sr(R) = 1 if and only if every left unit lifts modulo every principal
left ideal, i.e., if ba — 1 € Rc for some a,b,c € R, there exists a left unit v € R such

that a — u € Re.

Now we will characterize a ring R with sr(R) = 1 whenever R is a left or a right duo
ring. Recall that a ring R is called left duo if every left ideal is a right ideal; equivalently
aR C Ra for every a € R. Right duo rings can be defined analogously. If R is a left and
right duo ring, then we say that R is a duo ring. Any left duo ring is directly finite
(see, for example [74, Corollary 1.11]).

Theorem 3.1.10 If R is a left or a right duo ring, then the following are equivalent:
(1) Every ideal of R is stable range one lifting.
(2) Every ideal of R is unit lifting.
(3) sr(R) =1.

Proof. (3) = (1) = (2) are obvious.

(2) = (3) Assume that R is left duo. It is enough to show that every left unit lifts
modulo every principal ideal left ideal by [78, Theorem 3|. Let ba — 1 € Re for some
a,b,c € R. Then Rc is an ideal of R and hence R/Rc is a left duo ring. It follows that
R/ Rc is directly finite. Hence, a+ Rc is a unit. The hypothesis implies that there exists
a unit u € R such that a — u € Re. Thus, sr(R) = 1. By the left-right symmetry of

stable range one condition for rings, the right duo case has a similar proof. a

Proposition 3.1.11 Let I and K be ideals of a ring R with I C K. If K is stable range
one lifting, then K/I is stable range one lifting. The converse is true if, in addition, I

15 stable range one lifting.

Proof. Assume that K is stable range one lifting. Let @ € R with sr(a+ 1+ K/I) = 1.
The mapping ¢ : 113_% — R/K, defined by o(r + 1 + K/I) = r + K for every r € R,
is a ring isomorphism, so that sr(a + K) = 1 by Lemma 3.1.5. By hypothesis, we can
find an element b € SRy (R) such that a + K = b+ K. Further, b+ 1 € SR(R/I) by
Proposition 3.1.3. Thus a+ [ + K/I =b+ 1 + K/I and sr(b+ I) = 1.
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Conversely, assume that [ and K/I are stable range one lifting. Let a € R with
sr(a+ K) = 1. By the above isomorphism and Lemma 3.1.5, sr(a+ 1+ K/I) = 1. Since
K/ is stable range one lifting, there exists b+ 1 € SR1(R/I) such that a+ I+ K/I =
b+I1+K/I. Then a—b € K. Since I is stable range one lifting, there exists ¢ € SR (R)
such that b+1 =c+1. Now b—c € I C K implies that a—c € K. Hence a+ K = c+ K
and ¢ € SR1(R). O

If I C K and K is stable range one lifting, then I need not be stable range one lifting.
For example, take I = 47 and K = 27 in Z.

Following [97], we denote by 0, := 6(Rg) the ideal which is the intersection of all
essential maximal right ideals of a ring R. Clearly, J(R) C ¢, and S, C J, (see also
[97, Lemma 1.9]). In view of [97, Corollary 1.7], J(R/S,) = 0,/S,; in particular, R
is semisimple if and only if §, = R. Now as a consequence of Proposition 3.1.11 and

Corollary 3.1.4, we can get the following result.

Corollary 3.1.12 (1) 6, is stable range one lifting if and only if 6,./J(R) is stable
range one lifting in R/J(R).
(2) If S, is stable range one lifting, then 0, is stable range one lifting.

Proof. Take I = J(R) and K = §, for (1) and I = S, and K = ¢, for (2) in
Proposition 3.1.11. O

Note that, for any ring R, S, is always idempotent lifting by [7], but it need not be

stable range one lifting as the following example shows.

Example 3.1.13 [59, Example 1] Let F' be a field, Vr a countably infinite-dimensional
vector space, and @@ = Endg (V). Then there exists a regular directly infinite subring
R of @ such that soc(Q) = soc(R) C R and R/soc(Q) is a field. On the other hand,
Baccella proved in [6, Lemma 3.4] that for a subring 7" of @ with soc(Q) C T, T is
directly finite if and only if T'/soc(T) is directly finite and soc(T") is unit lifting. From
this result we deduce that soc(Q) is not unit lifting. Hence soc(Q) is not stable range one

lifting by Proposition 3.1.7. We further note that soc(Q) = soc(R) = 0(grR) = 6(Rg).

At the end of this section, we discuss about the symmetry of stable range one lifting

ideals.
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Remark 3.1.14 In this chapter, we define stable range one elements by considering
principal left ideals. There is a symmetric right version: an element a € R is said to
have right stable range one if, for any b € R, aR+bR = R implies that a+bx € U(R) for
some x € R. To avoid ambiguity about left and right versions of this definition, we will
subscript the notation by 1 or r. It is not known yet whether the left version of element-
wise stable range one condition is equivalent to that of right one. The best result in
this direction is that if a is a regular element, then sr;(a) = 1 iff a is unit-regular iff

sr.(a) = 1 in [50].

There is a more natural situation in which the left-right symmetry of stable range one

element and stable range one lifting ideal can occur.
Lemma 3.1.15 Let R be a duo ring. Then srj(a) =1 iff sr.(a) =1 for any a € R.

Proof. Assume that srj(a) = 1. Write aR+ bR = R. Since R is left duo, Ra+ Rb = R.
Then there exist an element € R such that a + zb = v € U(R). Since Rb C bR,

xb = by for some y € R. Hence a + by = u, i.e., sr.(a) = 1. O

Corollary 3.1.16 Let R be a duo ring and I < R. Then the following are equivalent:
(1) I is right stable range one lifting.

(2) I is left stable range one lifting.

Proof. It is enough to note that if R is a duo ring, then R/I is a duo ring by [74,
Proposition 1.4]. O

3.2 Idempotent Stable Range One Lifting Ideals

As we mentioned earlier, an element a € R is said to have idempotent stable range
one if, whenever Ra + Rb = R for any b € R, then there exists e € idem(R) such
that a + eb € U(R). Obviously, if u is a unit in R, then isr(u) = 1. Further, if R is a
Dedekind-finite ring, then isr(0) = 1.

Recently, Wang et al. discovered that every regular element has idempotent stable
range one over a ring R with sr(R) = 1 (see Theorem 1.3.19). As a consequence of

this, they showed that any unit-regular ring has idempotent stable range one (see
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Corollary 1.3.20). However, by [49], this result does not hold on the element-wise level
i.e., unit-regular elements need not have idempotent stable range one. This was shown
by finding a unit-regular element which is not clean, i.e., not a sum of an idempotent
and a unit. Indeed, any element a € R with isr(a) = 1 is clean. This can easily be seen

by considering the equality Ra + R(—1) = R.

Definition 3.2.1 Let [ be an ideal of a ring R. If for any element a € R with a+ I €
IZSR1(R/I), there exists b € ZSR1(R) such that a + I = b+ I, then I is called an

idempotent stable range one lifting ideal.

In case isr(R) = 1, then every ideal of R is idempotent stable range one lifting. Obvi-

ously, if isr(R) = 1, then sr(R) = 1. In this vein, one can ask the following question:
Is any idempotent stable range one lifting ideal stable range one lifting?

We do not have an answer to this question yet, but the converse will be answered in

the negative in Example 3.2.16.

Proposition 3.2.2 Let I be a radical ideal of a ring R. Ifisr(a) = 1, thenisr(a+1) =1

for any a € R. The converse is true if, in addition, I is idempotent lifting.

Proof. Let a € R with isr(a) = 1. Set @ := a + [ and R := R/I. Assume that
Ra+ Rb= R. Then Ra+ Rb+ I = R. Since [ is a radical ideal, I C J(R). Now [ is a
small left ideal of R, and hence Ra + Rb = R. By assumption, there exists e? = e € R
such that a + eb is a unit in R. Thus @ + @b is a unit in R/I.

For the converse, assume in addition that [ is idempotent lifting. Let a € R with
isr(@) = 1, and let Ra+ Rb = R. Since I is idempotent lifting, there exists e € idem(R)
and u € U(R/I) such that @+ eb = u. Let © be the inverse of . Multiplying the last
equality by T on the left, we obtain va 4 veb = 1. Since 1 — v(a + eb) € I, v(a + eb) is
invertible in R. This implies that a + eb is left invertible. Similarly, the multiplication
by v on the right will give that a + eb is right invertible. Hence isr(a) = 1. O

Corollary 3.2.3 Any idempotent lifting radical ideal I of a ring R is idempotent stable

range one lifting.
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Remark 3.2.4 Idempotent lifting condition in Corollary 3.2.3 is not superfluous: There
exists a ring R such that J(R) is neither idempotent lifting nor idempotent stable range

one lifting by Example 3.2.16.

Remark 3.2.5 The radial ideal condition on I in Corollary 3.2.3 is not superfluous:
For example, the ideal I = 4Z in the ring R = Z is idempotent lifting but it is not
idempotent stable range one lifting. To see this, consider 2 + 47 in Z/4Z. Clearly,
isr(2 4+ 4Z) = 1, but 2 + 47 does not lift to an idempotent stable range one element in
Z by Example 3.1.2. Observe that I is not a radical ideal.

Example 3.2.6 Let R = {(z1,...,2,,8,8,...)|21,...,2, € Q,s € Z,n > 1}. By
Example 3.1.6, being a unit-regular element is equivalent to being an element with
stable range one in R. Since every regular element of R has idempotent stable range

one by Theorem 1.5.2, we get that, for any a € R,
sr(a) = 1 <= a is unit-regular <= isr(a) = 1.

Further, the ideal I in Example 3.1.6 is idempotent stable range one lifting because
R/I = 7 and the only elements with idempotent stable range one of the ring Z are 0, 1
and —1.

Lemma 3.2.7 Any idempotent stable range one lifting ideal is unit lifting.

Proof. We proceed with the same argument as in the proof of Lemma 3.1.7. Let I be
an idempotent stable range one lifting ideal of a ring R. Take an invertible element
@ € R/I with the inverse b. Since @ is a unit, isr(@) = 1. By hypothesis, we can find an
element x € R such that @ = 7 and isr(z) = 1. Then ba = bT = 1, and so ¢ := 1—bx € I.

This implies that Rx + Rc = R. Since isr(z) = 1, there exists an idempotent ¢ € R

such that x + ec = v is a unit in R. Hence @ =7 = & + ec = v. Thus v is the required

element. O

The converse of Lemma 3.2.7 need not be true. For example, the ideal I = 47 in the
ring R = Z is unit lifting, but as we have pointed out before, it is not idempotent

stable range one lifting.

Following Nicholson [69], an element z in a ring R is called suitable if there exists an

idempotent e € R such that e —z € R(z — x?). He showed that a ring R is an exchange
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ring if and only if every element of R is suitable. He further proved that any clean

element is suitable.

In the literature, there are some natural equivalence relations on idempotents: First,
two idempotents e and f in a ring R are said to be isomorphic if eR = fR as right
R-modules, and second, they are called conjugate if f = u~'eu for some unit u € U(R).
Close attention to the lifting of isomorphic idempotents and conjugate idempotents has
been paid recently in [51]. Now we preface Theorem 3.2.11 with three lemmas from

[51] needed for its proof.

Lemma 3.2.8 [51, Theorem 5.2] Let R be a ring, I be an ideal of R, and let x € R be
an idempotent modulo I. Then x lifts to an idempotent modulo I iff x lifts to a suitable

element modulo I.

Lemma 3.2.9 [51, Proposition 3.11] Let R be a ring and I be an ideal of R. If R/I
1s perspective, and I is idempotent lifting, then I is isomorphic idempotent lifting and

conjugate idempotent lifting.

Lemma 3.2.10 [51, Proposition 5.20] If units and isomorphic idempotents lift modulo

an ideal of R, then reqular elements lift.

Theorem 3.2.11 Let R be a ring and I be an ideal of R such that R/I is perspective. If

I is idempotent stable range one lifting, then it is reqular lifting (hence it is idempotent

lifting).

Proof. First we claim that [ is idempotent lifting. Let @ be an idempotent in R/I.
Since R/I is perspective, every regular element has idempotent stable range one by
Theorem 1.5.2. Hence isr(a) = 1. Since [ is idempotent stable range one lifting, there
exists b € ZSR4(R) such that a —b € I. Since isr(b) = 1, the equality Rb+ R(—1) = R
implies that b is clean. Then b is suitable. This means that @ lifts to a suitable element
of R. By Lemma 3.2.8, this is equivalent to saying that @ lifts to an idempotent of R.
Hence I is idempotent lifting. Now by Lemma 3.2.9, [ is isomorphic idempotent lifting.
Finally, Lemmas 3.1.7 and 3.2.10 yield that [ is regular lifting, as desired. a

The converse of Theorem 3.2.11 is not true in general. For example, let R = Z and

I = 47. Then I is regular lifting, because all regular elements of R/I are 0,1 and —1
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and they are lifted to regular elements of Z. But we have pointed out before that [ is

not idempotent stable range one lifting.

Note that regular lifting ideals are idempotent lifting in general and they are equivalent

for ideals contained in the Jacobson radical by [51, Theorem 5.24].

Before stating the next corollary, we recall that a ring R has idempotent stable range
one if each of its elements has idempotent stable range one. A characterization of this
class of rings was obtained by Hiremath and Hedge in [41, Proposition 2.18] as follows:

If I is an ideal contained in the Jacobson radical of the ring R, then
isr(R) = 1 if and only if ist(R/I) = 1 and I is idempotent lifting.
Note that this result was first proved for I = J(R) in [14, Theorem 9.

Corollary 3.2.12 Let R be a ring and I be an ideal of R such that I C J(R). Then
isr(R) =1 if and only if ist(R/I) = 1 and I is idempotent stable range one lifting.

Proof. (=) If isr(R) = 1, then isr(R/I) = 1 by [41, Proposition 2.18] and clearly I is
idempotent stable range one lifting.

(<) Assume that isr(R/I) = 1 and I is idempotent stable range one lifting. Since
any ring with stable range one is perspective, R/I is perspective. It follows that [ is
idempotent lifting by Theorem 3.2.11. Hence isr(R) = 1 by [41, Proposition 2.18].
There is also an alternative (direct) way to get that I is idempotent lifting. Let @ be an
idempotent in R/I. Since isr(1 — a) = 1, there exists a ¢ € R such that 1 —a = ¢ and

isr(c) = 1. Since c¢ is clean, ¢ = e + u for some idempotent e and a unit v in R. Then

a=1-c=1—e—u=(1—e—1u)? gives that eu — u + ue + u2 = 0, and multiplying

1

by u~! from the left we have @ = u—leu where u 'eu is an idempotent in R. a

Corollary 3.2.13 Let R be a ring and I an ideal of R such that I C J(R). Then
R is perspective and I is idempotent lifting if and only if R/I is perspective and I is

idempotent stable range one lifting.
Proof. It follows from [33, Proposition 5.7], Corollary 3.2.3 and Theorem 3.2.11. O

Last but not least, we have the following corollary of Theorem 3.2.11, but first recall

that a ring R is left quasi-duo if every maximal left ideal is a two-sided ideal [95].
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Corollary 3.2.14 If R is a left quasi-duo ring and I is an idempotent stable range
one lifting ideal, then I is reqular lifting. In particular, J(R) is idempotent stable range

one lifting iff J(R) is idempotent lifting.

Proof. Since R/I is left quasi-duo, it is perspective by [33, Corollary 4.8]. Hence I is

regular lifting. The last assertion follows from Corollary 3.2.3. a

There is a close relationship between the class of exchange rings and the lifting property
of regular elements modulo left ideals. A ring R is an exchange ring iff every left ideal
is regular lifting, i.e., if L is a left ideal and a — aba € L, then there exists a regular

element ¢ € R such that a — ¢ € L [28, Corollary 5.

Rings with idempotent stable range one were characterized in [14, Theorem 12] over
abelian rings. Here we provide a characterization over duo rings. Note that a ring is
abelian iff every direct summand left ideal is fully invariant (see [74, p. 536]). Hence

any left duo ring is abelian.

Theorem 3.2.15 If R is a duo ring, then the following are equivalent:

(1) FEwvery ideal is idempotent stable range one lifting.
(2) FEvery ideal is regular lifting.

(3) R is exchange.

(4) isr(R) = 1.

(5) R is clean.

Proof. First note that (3) — (5) are equivalent for any abelian ring by [14, Theorem
12]. The equivalence of (2) and (3) is true for any ring R by [28, Corollary 5].

(1) = (2) Since R is a duo ring, R/I is a duo ring for any ideal I of R by [74,
Proposition 1.4], and so it is perspective by [33]. Now Theorem 3.2.11 implies that [
is regular lifting.

(4) = (1) It is obvious. O

Hence Theorem 3.1.10 and Theorem 3.2.15 together imply that, over a commutative
ring, if every ideal is idempotent stable range one lifting, then every ideal is stable

range one lifting.
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Now we can present an example of a stable range one lifting ideal which is not idem-

potent stable range one lifting.

Example 3.2.16 There exists an ideal I of a ring R such that [ is stable range one
lifting but it is neither idempotent stable range one lifting nor idempotent lifting:

Consider a semilocal commutative domain with two maximal ideals M; and M, (for
example, take R = {% € Q[2 /n,3 /n}). Then J(R) = M, N My and R/J(R) =
R/M, x R/Mjy. The factor ring R/J(R) has two non-trivial idempotents which do not
lift to idempotents in R, because R has no non-trivial idempotents. Hence J(R) is not
idempotent lifting. However, it is stable range one lifting by Corollary 3.1.4. Moreover,
since any commutative ring is perspective, R/J(R) is perspective. Thus, J(R) is not

idempotent stable range one lifting by Theorem 3.2.11.
Finally, we investigate some extensions of idempotent stable range one lifting ideals.

Lemma 3.2.17 Let ¢ : R — S be a ring isomorphism with p(1g) = 1g. Ifisr(a) =1
in R, then isr(p(a)) =1 1in S.

Proposition 3.2.18 Let I and K be ideals of a ring R with I C J(R) N K. If K s
idempotent stable range one lifting, then K/I is idempotent stable range one lifting.

The converse is true if, in addition, I is idempotent stable range one lifting.

Proof. The proof is similar to that of Proposition 3.1.11. Assume that K is idempotent
stable range one lifting. Let a € R with isr(a+ I + K/I) = 1. The mapping ¢ : ﬁ—% —
R/K, defined by ¢(r + I+ K/I) = r + K for every r € R, is a ring isomorphism, so
that isr(a + K) = 1 by Lemma 3.2.17. By hypothesis, there exists b € R such that
a+ K =b+ K and isr(b) = 1. On the other hand, isr(b+ I) = 1 by Proposition 3.2.2.
Thus a+ 1+ K/l =b+ 1+ K/I and isr(b+ 1) = 1.

Conversely, assume that I and K/I are idempotent stable range one lifting. Let a € R
with isr(a+ K) = 1. The above mentioned isomorphism and Lemma 3.2.17 implies that
isr(a + I + K/I) = 1. Since K/I is idempotent stable range one lifting, there exists
b+ e R/Isuchthata+I+ K/I=b+1+ K/l andisr(b+1)=1. Thena—be K.
Since [ is idempotent stable range one lifting, there exists ¢ € R such that b+1 =c+1
and isr(c) = 1. Now b —c € I C K gives that a — ¢ € K. Hence a + K = ¢+ K and
isr(c) = 1. O
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In particular, taking K = J(R) or I = J(R) in Proposition 3.2.18 respectively yields

the following corollary.

Corollary 3.2.19 The following hold for a ring R:

(1) Let I be an ideal of R with I C J(R). If J(R) is idempotent stable range one
lifting, then J(R)/I is idempotent stable range one lifting. The converse is true

if I is idempotent stable range one lifting.

(2) Let K be an ideal of R with J(R) C K. If K is idempotent stable range one
lifting, then K/J(R) is idempotent stable range one lifting. The converse is true
if J(R) is idempotent stable range one lifting.

As an example, consider any ring R. If d,. is idempotent stable range one lifting, then
0, /J(R) is idempotent stable range one lifting. The converse is true if J(R) is idempotent

stable range one lifting.
We end this section with the following questions that we were unable to answer.

Question 3.2.20 Is any idempotent stable range one lifting ideal stable range one
lifting? Since the Jacobson radical is always stable range one lifting, it is necessary to

consider an ideal different from J(R).

Question 3.2.21 Is the converse of Corollary 3.2.3 true? This is equivalent to asking
that whether there is a (non-quasi-duo) ring R with J(R) idempotent stable range one
lifting but not idempotent lifting?

Question 3.2.22 s the element-wise definition of (idempotent) stable range one is

left-right symmetric?
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4 (4- and D4&-MODULES VIA PERSPECTIVITY

Utumi introduced continuity concept for rings in a series of papers (see [82, 83, 84])
and established three conditions for a ring that are satisfied if the ring is self-injective.
The driving force behind all of these conditions is the von Neumann’s continuous
geometries which are the analogues of projective geometries, except that they have no
points. Subsequently, Utumi’s conditions were extended to modules by Jeremy [45] and

Mohamed and Bouhy [61], as follows.

A module M is called a Ci-module if it satisfies the following C'i-conditions.

C'1: Every submodule of M is essential in a direct summand of M.

C?2: Whenever A and B are submodules of M such that A = B and B is a direct
summand of M, then A is a direct summand of M.

C3: Whenever A and B are direct summands of M with AN B =0, then A+ B is a

direct summand of M.

Moreover, M is called continuous if it is both a C'1- and C'2-module, and is called quasi-
continuous if it is both a C'1- and C'3-module. It is well known that every C'2-module
is a C'3-module, and every quasi-injective module is continuous. For a full account on

these conditions, see [63].

Recently, the class of C'3-modules have been thoroughly investigated by Amin et al. in
[4] and Ibrahim et al. in [43]. In these articles, the authors extended many well-known
results on rings and modules in terms of (quasi-)continuous to C'3-modules. In [4,
Proposition 2.3], it was proved that if M is a C'3-module, then for every decomposition
M = A® B and every homomorphism f : A — B with ker(f) a direct summand of A,
then im(f) is a direct summand of B. This result was recently considered in [21], and
a module M is called a C'4-module if it satisfies the latter property. An example was
provided in [21, Example 2.10] to show that the class of C'4-modules is a non-trivial

generalization of the class of C'3-modules.

Dually, a module M is called a Di-module if it satisfies the following Di-conditions.
D1: For every submodule A of M, there is a decomposition M = M; & M, such that
M; C A and AN My is small in Ms.
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D2: Whenever A and B are submodules of M with M/A = B and B is a direct
summand of M, then A is a direct summand of M.
D3: Whenever A and B are direct summands of M with A+ B = M, then AN B is a

direct summand of M.

A module M is called discrete if it is both a D1- and a D2-module, and is called
quasi-discrete if it is both a D1- and a D3-module. Every D2-module is a D3-module

and every quasi-projective module is a D2-module. Again we refer the interested reader

to [63].

The class of D3-modules has also been investigated by Amin et al. in [94]. It was
shown in [94, Proposition 4] that if M is a D3-module, then for every decomposition
M = A@® B and every homomorphism [ : A — B with im(f) a direct summand of B,
then ker(f) is a direct summand of A. A module M that satisfies the latter property
is called a D4-module in [22].

In this chapter, we continue the study of C'4- and D4-modules, providing several new
characterizations and results on the subject. Recall that two direct summands A and
B of amodule M are called perspective exactly when they have a common (direct sum)
complement C, i.e., M = Ad C = B® C. We will call two idempotents e and f of a

ring R perspective if, eR and fR have a common complement.

In Section 4.1, we use the notion of perspective submodules to prove in Theorem 4.1.4
that, a module M is a C'4-module if and only if whenever A and B are perspective
(direct) summands of M with AN B = 0, then A& B C%® M. Moreover, arbitrary
direct sum of C'4-modules are also investigated. Furthermore, we introduce the notion
of restricted ACC on summands, and show in Proposition 4.1.15 that a C'4-module M
with the restricted ACC on summands can be decomposed as M = A® B & K where

A= Bis a (2-module and K is a summand-square-free module.

In Section 4.2, C'4-modules are characterized by their endomorphism rings. It is proved
that a right R-module M is a C'4-module if and only if for any idempotents e, f €
Endgr(M), if ker(e) = ker(f) = ker(e — f), then (1 —e)fM is a direct summand of
M. We provide an example of a C'4-module whose endomorphism ring is not C'4, and

provide several conditions under which the endomorphism ring of a C'4 -module is a
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right C'4-ring. Section 4.3 is devoted to right C'4-rings. For example, corner rings and

trivial extensions are investigated in terms of C'4 property.

In Section 4.4, we consider the D4-modules, dualizing many of our results on C4-
modules and providing several new characterizations of D4-modules. We prove in Pro-
position 4.4.14 that a module M is both a D4-module and a summand-square-free
module iff M is a C4-module and a summand-dual-square-free module. In Propo-
sition 4.4.17 we show that, if M is a D4-module that satisfies the restricted DCC
on (direct) summands, then M = A® B & K where A =2 B, A and B are D2-
modules, and K is a summand-dual-square-free module. As a result, we prove in
Proposition 4.4.20 that a quasi-discrete module M with DCC on summands can be
decomposed as M = A® B & K where A = B are quasi-projective modules and K is

both a summand-square-free and a summand-dual-square-free module.

4.1 (C4-Modules

In this section, we provide some basic properties of C'4-modules. We start with the

following lemma that has been established in [21].
Lemma 4.1.1 [21, Theorem 2.2] The following are equivalent for a module M :

(1) If M =A® B and f : A — B is a monomorphism, then im(f) C® B.

(2) If M = A® B and f : A — B is a homomorphism with ker(f) C% A, then
im(f) C® B.

3) [ B=AC®M, BCM, and ANB =0, then A® B C® M.

(4) f B2AC® M, BC M, and ANB =0, then BC% M.

(5) If A, BC® M, A~ B, and AN B =0, then A® B C® M.

6) [M=A®A=B®B and ANB=ANB =0, then A® B C® M.

Definition 4.1.2 [21] A module M is called a C4-module if it satifies any of the
equivalent conditions in Lemma 4.1.1. A ring R is called a right C'4-ring if R is a

C4-module as a right R-module.
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Examples 4.1.3 (1) Clearly, any C'3-module is a C'4-module. Thus all quasi-continuous
modules, uniform modules, indecomposable modules, semisimple modules, regular mo-
dules, and modules with the summand sum property are C'4, all being examples of
C'3-modules.

(2) Recall that a module M is called (summand-) square-free if whenever N C M and
N =Y, &Y, with ¥ 2Y; (and Yy, Y2 C% M), then Y; = Y3 = 0. Using the above
notions, it is easy to see that any summand-square-free module is C'4. But the converse
is not true in general. Let F be a field and R = Mjy(F). Now Ry is continuous by
[72, Theorem 1.35], and so it is a C'4-module. Consider the idempotents e = (§ ) and
f=1(39). Then eR and fR are non-zero non-intersecting isomorphic direct summands
of Rg. Thus, Rp is not a summand-square-free module. See also [21, Example 2.8] for

another example.

Note that any direct summand of a C'4-module is again a C'4-module by [21, Proposi-
tion 2.15]. The following characterization of C'4-modules in terms of perspective direct

summands will be used frequently throughout this chapter.

Theorem 4.1.4 The following are equivalent for a module M :
(1) M is a C4-module.

(2) If A and B are perspective direct summands of M with ANB = 0, then A®B C®
M.

(3) If A and B are perspective direct summands of M with AN B C% M, then
A+ B C® M.

Proof. (1) = (2) Let A and B be perspective direct summands with common direct
sum complement C' and ANB = 0. Let 7 : M — C be the projection with ker(m) = B.
Consider the restriction map 7|4 : A — C. Since ker(n|a) = ANB =0 C% A, we
have im(7|4) €% C by the C4 property of M. Then we could write C' = 7(A4) ® X
for some submodule X C C. It can easily be seen that A® B = B @& w(A). Hence
M=BeC=Bon(A)) o X=A®dB®X,andso A® B C% M.

(2) = (3) Let A and B be perspective direct summands of M with ANB C% M. Then
there exist C';, D C% M such that M = A@C = B&C = (AN B) @& D. By modularity

law, we have A = (ANB)® (AND) and B = (ANB)®(BND). Now AND and BND
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are perspective direct summands of M and (AND)N(BND)=(ANB)ND = 0.
Now (AND)® (BN D) C® M by assumption, and so (AN D)@ (BN D) C® D. Write
D=(AND)® (BND)® D for a submodule D' C D. Then M = (ANB)® D =
(ANB)&(AND)&(BND)&D'. Since A+B = [(ANB)®&(AND)|®[(ANB)&(BND)| =
(ANB)® [(AND)® (BN D)], we obtain A+ B C% M.

(3) = (1) Let M = A® B and f : A — B be a monomorphism. Consider the graph
submodule T' = {a+ f(a) : a € A} of M. It can easily be checked that M = T @ B. So A
and T are perspective direct summands of M. We claim that ANT = 0. For, if x € ANT,
then there exists an a € A such that x = a + f(a). Since z —a = f(a) € ANB =0
and f is a monomorphism, we have a = 0, and so = 0. By assumption, we have
AT C%® M. Now we show that A® T = A @ im(f). To see this, take z € im(f).
Then 2 = f(a) for some a € A and we can write © = —a + a + f(a) € A+ T. Since
AT C% M, im(f) €% M, and hence im(f) C® B. O

Corollary 4.1.5 The following conditions on a module M are equivalent:
(1) M is a C4-module.

(2) If A and B are perspective direct summands of M with AN B = 0, then there
exists B' C M with B C B’ such that M = A& B’.

Proof. (1) = (2) Let A and B are perspective direct summands of M with ANB = 0.
Then M = (A® B) @ C for some C' C M by Theorem 4.1.4. Taking B’ := B® C gives
the result.

(2) = (1) Let A and B are perspective direct summands of M with AN B = 0. Write
M =A&C = B®&C for some C C M. By assumption, there exists B C M with
B C B’ such that M = A@® B'. Now B’ = B® (C' N B’) by the modular law, and so
M =A@ B& (CnB). Hence M is a C4-module by Theorem 4.1.4. O

In the next result we will replace the condition AN B = 0 in Lemma 4.1.1 by the
weaker one AN B C® M.

Theorem 4.1.6 The following are equivalent for a module M :
(1) M is a C4-module.

(2) f B2XAC®*M,BC M, and ANB C® M, then A+ BC% M.
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(3) f B®XAC® M, BC M, and ANB C® M, then B C® M.
(4) If A, BC® M, A~ B, and AN B C® M, then A+ B C® M.

Proof. (1) = (2) Let A and B be two submodules of M with AN B C%® M and
BXA C® M. Write M = A® T for a submodule T C M, and let 7 : AT — T
be the natural projection. Clearly, A+ B = A + m(B). Now consider the restriction
g : B — T.Since M = A®T, wlgoo™! : A — T is a homomorphism with
ker(m|goo™) = c(AN B) and (AN B) C% A, the C'4 property of M implies that
im(r|poo™!) =m(B) C® T.If T = m(B) ® K for a submodule K of T, then M =
AoT=Ad(n(B)e K)=(A+7(B))® K = (A+ B) ® K, as desired.

(2) = (3) Let A and B be two submodules of M with ANB C%® M and B= A C% M.
By hypothesis, A+ B C% M. Write M = (ANB)@Y and M = (A+ B) ® X for
some submodules X, Y C M. Then A= (ANB)® (ANY) by the modular law. Now
A+B=(ANB)+(ANY)+B=(ANY)® B. Thus, M = (ANY)® B & X and so
B C%® M.

(3) = (1) is clear by Lemma 4.1.1.

(2) = (4) is clear.

(4) = (1) Let A and B be perspective direct summands of M with ANB C% M. Then
A = B. By hypothesis, A+ B C% M. Hence M is C4 by Theorem 4.1.4. O

It was mentioned in [21] that the direct sum of two C'4-modules need not be C4 (see
Remarks 2.31 and 3.2 in [21]). In the next theorem we consider a specific case where
the direct sum of C'4-modules is a again a C'4-module. Recall first that a submodule
N of a module M is called fully invariant in M if f(N) C N for every endomorphism
f of M.

Theorem 4.1.7 Let M = ®;c;M; be a module, where M; is fully invariant in M for
every i € I. Then M is a C4-module if and only if each M; is a C4-module.

Proof. Suppose that M; is a C'4-module for every ¢ € [. Let M = A@C = B® C such

that ANB = 0. Since each M, is fully invariant, M; = (ANM;)® (CNM;) = (BNM,;)&®

(C' N M;) for every i € I. Tt follows that M = @;e M; = @i [(ANM;) ® (C N M;)| =

[@icr(ANM)] ® [Bier(CN M), A = @ier(ANM;), and B = ®ier(B N M;). Thus

A® B = [Die1(ANM;)] @ [©ier(B N M;)] = @ier [(AN M;) © (BN M;)]. Since AN M;
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and BN M; are perspective direct summands of M; with zero intersection, (A N M;) ®
(BN M;) C® M; for every i € I. Hence A @ B is a direct summand of M, and so
M is a C'4-module, as required. The converse is obvious, since a direct summand of a

C'4-module is again C4 by [21, Proposition 2.15]. O

As we mentioned earlier, a module M is said to have the summand intersection property
(SIP, for short) if the intersection of any two direct summands of M is a direct sum-
mand. Dually, M is said to have the summand sum property (SSP, for short) when the
sum of any two direct summands of M is a direct summand. In the next proposition,

we characterize modules with the SIP (SSP) in terms of perspective direct summands.

Proposition 4.1.8 Let M be a module. Then we have the following:

(1) M has the SIP if and only if the intersection of any two perspective direct sum-

mands of M is a direct summand.

(2) M has SSP if and only if the sum of any two perspective direct summands of M

18 a direct summand.

Proof. 1) (=) Obvious. (<) Let M = A@ B and f : A — B be a homomorphism.
It is enough to show that ker(f) C% A by [39, Proposition 1.4]. Consider the graph
submodule T'= {a + f(a)|a € A} of M. Then M = A® B=T @ B. Hence A and T
are perspective direct summands. By the hypothesis, ANT C% M. Now we claim that
ANT = ker(f). To see this, let a = a’+ f(a’) € ANT. Thena—a' = f(a') € ANB =0,
and so a = a’ € ker(f). Hence ker(f) C% A.

2) (=) Obvious. (<) Similarly, let M = A@® B and f : A — B be a homomorphism. It
is enough to show that im(f) C% B by [3, Theorem 8]. Let T be the graph submodule as
above. By the hypothesis, M = (A+T)® D for some D. Since A+T = {a+ f(d') | a,d’ €
A}, we have that B = im(f) @ D" where D' = {b € B|3a € A such that a +b € D}.
Hence M has SSP. a

Every module with SSP is a C'3-module. The converse is true if the module has SIP
by [3, Corollary 20]. The next corollary was established in [21, Example 2.9], and here
we provide a slightly different proof.

Corollary 4.1.9 If M is a C'4-module with SIP, then M has SSP.
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Proof. Let A and B be perspective direct summands of M. Then AN B C%® M by
Proposition 4.1.8(1). Hence A+ B C® M by Theorem 4.1.4. Thus M has SSP again
by Proposition 4.1.8(2). O

In [32, Theorem 2.3] it was proved that a module M has both SSP and SIP if and only
if End(M) has SSP. Therefore, Corollary 4.1.9 implies the following.

Corollary 4.1.10 Let M be a module. Then M is a C'4-module with SIP if and only
if End(M) has SSP.

Example 4.1.11 There exists a module with SIP which is not Cy. Let R = <Z§ Zzz 2)2 )
and e;; be the 3 x 3 matrix with (¢, j)-entry 1 and all other entries zero. Then 2all
idempotents of R are 0, 1, ey, €92, €33, €11 + €22, €11 + €33, €22 + €33, €11 + €13, €13 + €33,
€13 + €29 + €33, €11 + €29 + €13. So it can easily be checked that the intersection of any
two direct summands of Ry is a direct summand, i.e., Rr has SIP. Now consider the
idempotents e = e33, f = e13+ €33, and g = e11 + €22. An easy computation shows that
R=eR®gR=fR®gRand eRN fR =0, but eR + fR is not a direct summand of
Rpg. Thus R is not right Cjy.

One can also observe that for the idempotents e = e11, f = €11 + €13, and g = ea9 + €33,
R=Re® Rg=Rf ® Rg and ReN Rf =0, but Re + Rf is not a direct summand of
rR. Thus R is not left Cj either.

Camillo et al. restricted the C'3 (C2) property to the class of simple modules in [13],

where the following result was established.

Proposition 4.1.12 [13, Proposition 2.1] The following are equivalent for a module
M:

(1) For any simple submodules A, B of M with A~ B C% M, AC% M.
(2) For any simple direct summands A, B of M with ANB =0, A® B C® M.

(3) If M = Ay ® Ay with Ay simple and f: Ay — Ay an R-homomorphism, then
1m(f) g@ AQ.
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Subsequently, a module M is called simple-direct-injective in [13] if it satisfies any of the
equivalent conditions of Proposition 4.1.12. When we restrict the C'4 property to the
class of simple modules we see that it coincides with the class of simple-direct-injective

modules.

Proposition 4.1.13 M is simple-direct-injective if and only if for any simple pers-

pective direct summands A, B of M with ANB =0, A® B C% M.

Proof. Necessity is obvious. Assume that for any simple perspective direct summands
A,Bof M with ANB =0, ApB C% M. Let M = A, & A, with A; simple and
f Ay — A; an R-homomorphism. Without loss of generality we may assume that
f # 0. Then f is an R-monomorphism. Let " = {a + f(a)|a € A;} be the graph
submodule. We have that M = T @ Ay and A1 NT = 0. Since T" = M/Ay = Ay,
T and A; are simple perspective direct summands of M with A; N"T = 0. Thus
A @ T = A; & im(f) €% M by assumption. This means that im(f) C® M, and so
im(f) C% A,. By Proposition 4.1.12, M is simple-direct-injective. O

Definition 4.1.14 A module M is said to satisfy the restricted ascending chain condi-

tion (ACC) on summands if, M has no strictly ascending chains of non-zero summands

A S A4S
B, S BG--

with A; = B; and A, N B; =0 for all i > 1.

Clearly, every summand-square-free module and every module with the ACC on sum-
mands (equivalently, DCC on summands) satisfies the restricted ACC on summands.
In particular, modules with finite Goldie (or dual Goldie) dimension are examples of
modules with the restricted ACC on summands. Thus semilocal rings and rings with
no infinite sets of orthogonal idempotents satisfy both the left and right restricted ACC

on summands.

Proposition 4.1.15 If M is a C4-module that satisfies the restricted ACC on sum-
mands, then M = A® B @& K where A = B is a C2-module and K is a summand-

square-free module.
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Proof. There is nothing to prove if M is a summand-square-free module. Assume
that M is not a summand-square-free module, and let A;, B; be non-zero summands
of M with A; =2 By and A; N By = 0. Since M is a C'4-module, by Lemma 4.1.1,
A @B, C% M. Write M = A, ® B, ® T, for a submodule T} ;Cé M. By [21, Proposition
2.15] , both A; and B; are C'2-modules. We are done if 7} is a summand-square-free
module. Otherwise, by repeating the argument we can find two non-zero summands
Ay, By of Th with AsN By = 0 and Ay = B,. In this case, since T} is a C'4-module, we can
write M = A1 ® B D Ay ® B, ®T, for a submodule 15 ; M. Clearly A1 ® Ay = B1® By
and so, by [21, Proposition 2.15], both A; & Ay and By @ By are C'2-modules with
(AL @A) N(B1® By) =0 and Ay & Ay © Ay and By G By @ Bs. By repeating the

process, we obtain proper ascending chains of non-zero summands

Ay A1@A2;A1@A2@A3;”'

C
=
By ; 31@32531@82@33;'”

of M with Ay @ Ay @ - P A, X B DO By®---® B and (A DA DD A) N
(B1 ® Bo® -+ @ Bg) =0 for all k. Since M satisfies the restricted ACC' condition on
summands, the two chains must terminate. This means M = A& B P AP Bo®--- P
A, ®B,®T,, with Ay A ®--- DA, EB DBy D P B, are C2-modules and T, is
a summand-square-free module. Now we are done by setting A := A1 S Ay D --- D A,

B=B ®&®By®---®B,,and K :=1T,. O

4.2 Endomorphism Rings of C'4-Modules

Recently, the endomorphism rings of C2, C'3, and C'4-modules were investigated by
Nicholson and Yousif [72], Mazurek et al. [58], and Ding et al. [21], respectively. Let M
be a right R-module and S = Endg(M). If S is a right C2-module, then My is C2; the
converse is true if ker(«) is generated by M, i.e., ker(a) = > {0(M) |0 € S, (M) C
ker(a)}, whenever « is such that rg(«) is a direct summand of Sg [72, Theorem 7.14].
If Sg is a right C'3-module, then Mg is C3 [4, Proposition 2.8] (see also [58, Proposition
4.6]); the converse is true if for every pair of idempotents e, f € S with eS N fS =0
we have eM N fM = 0 by [58, Proposition 4.6]. Similarly, if Sg is a right C'4-module,
then Mpg is C4; the converse is true if for every pair of idempotents e, f € S with
eSN fS =0 wehave eM N fM = 0 [21, Proposition 2.13].
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We will now give some interesting results concerning the endomorphism rings of C'4-
modules. Just as with the C'3-condition, the C'4-condition is not an endomorphism ring

invariant (see [21, Example 2.14]). The next result shows that this is almost the case.

Lemma 4.2.1 Let M be a right R-module with S = Endg(M). Then the following are

equivalent:

(1) M is a C4-module.

(2) For every pair of perspective idempotents e, f € S with eM N fM = 0, there exist
orthogonal idempotents g, h € S such that eM = gM and fM = hM.

(3) For every pair of perspective idempotents e, f € S with eM N fM = 0, there exists
an idempotent g of S such that eM = gM and fM C (1 —g)M.

Proof. (1) = (2) This proof is similar to the proof of Lemma 4.5 in [58]. Let e, f € S be
perspective idempotents in S with eM N fM = 0. Write S = eS® X = fSP X for some
right ideal X in S. Then there exist idempotents p, g € S such that eS = pS, fS = ¢S,
and X = (1—p)S =(1—-¢q)S. It follows that M =eM & (1 —p)M = fM & (1 —q)M
and (1 —p)M = (1 —q)M. Hence eM and fM are perspective direct summands of M.
Since M is C4, M = eM & fM & N for some N. If g is the projection to eM with
kernel fM @ N, and h is the projection to fM with kernel eM @ N, then g and h are
orthogonal idempotents such that gM = eM and hM = fM.

(2) = (3) Let e, f € S be perspective idempotents with eM N fM = 0. By hypothesis,
there exist orthogonal idempotents g, h € S such that gM = eM and hM = fM. Since
fM =hM Cker(g) = (1 — g)M, g is the desired idempotent.

(3) = (1) Let e, f be perspective idempotents in S with eM N fM = 0. By hypothesis,
there exists an idempotent g € S such that eM = gM and fM C (1 — g)M. Since
M = fM& (- M, (1-gM = [M& [(1— )M N (1 - g)(M)]. Now M =
gMa[fMao(1—-fHHIMN(1—-gM)]=eMa[fMa[(1—-f)Mn(1l—g)M]]. Hence
eM @& fM is a direct summand of M. O

The following lemma will enable us to prove another characterization of C'4-modules

in terms of the endomorphism ring.
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Lemma 4.2.2 Let M be a right R-module with S = Endgr(M). For any idempotents
e, f €S, we have the following:

(1) eM + fM C® M if and only if (1 —e)fM C% M.
(2) (1—e)M = (1—f)M andeMNfM = 0 if and only if ker(e) = ker(f) = ker(e—f).
Proof. (1) is by the fact that eM + fM =eM & (1 —e)fM. (2) is obvious. O

Proposition 4.2.3 A right R-module M is C4 if and only if for any idempotents
e, f € Endg(M), if ker(e) = ker(f) = ker(e — f), then (1 —e)fM C® M.

Proof. Let A and B be perspective direct summands of M with ANB = 0. Then we can
find idempotents e, f € Endg(M) such that A =eM, B = fM, M =eM®&(1—e)M =
fMa& (11— f)M, and (1 —e)M = (1 — f)M. By Lemma 4.2.2 and the hypothesis,
eM + fM C® M. Hence M is C'4. The converse is obvious by Lemma 4.2.2. O

Following [57], a right R-module M is called k-local-retractable if ry(p) = rs(p)M
for every ¢ € S = Endgr(M) (It was called “P-flat over S” in [70]). For example,
free modules, regular modules, and modules whose all non-zero endomorphisms are

monomorphisms are k-local retractable (see [57]).

Theorem 4.2.4 Let M be a right R-module with S = Endg(M). Then S is a right
C4-ring, if M is a C4-module and one of the following is satisfied:

(1) M is k-local-retractable.
(2) For any o € S, ker(«) is generated by M.

(3) For every pair of perspective idempotents e, f € S with eS N fS = 0, we have
eMN fM =0.

Proof. (1) Suppose that M is C4 and k-local-retractable. Let eS and fS be perspective

direct summands of S with zero intersection. Then we could write S = eS® (1—e€)S =

fS@®(l—f)Sand (1—e)S = (1—f)S.Since (1—¢)S=(1—f)S and eSNfS =0, we

have rg(e) = rs(f) = rs(e — f). Now the k-local-retractable property of M gives that

ru(e—f) =rsle—f)M =rs(f)M = (1—f)M = (1—e) M. We claim that eMNfM = 0.

Let x =em = fm' €¢eMNfM. Thenm—em = (1—e)m =m— fm' = (1 — f)m” for
69



some m"” € M, and so fm = fm'. This implies that m € ry(e — f) = (1 — e)M, and
thus * = em = 0. By Lemma 4.2.1, there exist orthogonal idempotents g, h € S such
that ¢S =eS and hS = fS. SoeS® fS=gS®hS = (g+ h)S C% S. It follows that
S is right C'4.

(2) Assume that M is C4, and ker(«) is generated by M for any a € S, i.e., ker(a) =
Y{OM)|0 € S, 0(M) C ker(a)}. Let e, f be idempotents in S such that rg(e) =
rs(f) = rs(e — f). We claim that (1 —e)fS C® S. By hypothesis, ker(e — f) =
YH{OM)|0e S, 0(M) Cker(e—f)}. If0(M) C ker(e— f), then 6 € rg(e—f) = rs(e),
and so #(M) C ker(e). This implies that ker(e — f) C ker(e). Similarly, ker(e) C
ker(e— f). Hence ker(e — f) = ker(e) = ker(f). By Proposition 4.2.3, (1—e)fM C% M.
It follows that (1 —e)fS C% S. By Proposition 4.2.3, Sg is C4.

(3) It can easily be seen by a proof similar to [58, Proposition 4.6]. O

Consider the free right R-module ' = R(Y on Q generators. Then Endgz(F) can be
identified with CFMgq(R), the ring of Q2 x ) matrices where each column has only
finitely many non-zero entries. The ring CFMg(R) is called the ring of column finite

matrices. The C2 and C'3 properties of column finite matrices were investigated in [77].

Corollary 4.2.5 If M is a free right R-module, then M is a C'4-module if and only
if Endr(M) is a right C4-ring. In particular, the following assertions hold for n € Z*

and any infinite set A:
(1) R"™ is a right C4-module if and only if ML, (R) is a right C'4-ring.

(2) R™ is a right C4-module if and only if CFM(R) is a right C4-ring.

Proof. It follows from Theorem 4.2.4(i) since every free module is k-local-retractable

(or a generator for right R-modules). O
Corollary 4.2.6 The following conditions are equivalent for a ring R:

(1) CFMy(R) is a right C2-ring.

(2) CFM(R) is a right C3-ring.

(3) CFMy(R) is a right C4-ring.

(4) CFM(R) is a right C4-ring for any infinite set A.
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Proof. The equivalence of the first two conditions was proved by [77, Theorem 3].
Next, (2) = (3) is obvious. Now suppose that (3) holds. Then Rg) is C'4. For any
infinite set A, R%\) = R%\) & Rg). This fact and [21, Proposition 2.15] give that Rg) is
C2. Since Rg) is free, it is a generator for right R-modules. Hence (1) follows by [72,
Theorem 7.14]. (2) = (4) is obvious by [77, Theorem 3]. (4) implies (3) because if A is
an infinite set, then R%\I) can be viewed as a direct summand of RJ(RA), and any direct

summand of a C4-module is C4. O

A ring R is called right strongly C2-ring [71] if R}, is a C2-module for every n > 1,
equivalently if M, (R) is a right C2-ring for every n > 1. Similarly, right strongly C3-
rings and right strongly C'4-rings can be defined. But by [21, Proposition 2.15] and [4,
Proposition 2.10], we see that they are all equivalent, i.e., R is a right strongly C2-ring
if and only if R is a right strongly C'3-ring if and only if R is a right strongly C'4-ring.

4.3 Right C4-Rings

An example of a right C'4-ring which is not left C'4 was given by [21, Example 2.12].
Here we provide another example of a left C'4-ring which is not right C'4 which shows

that the C'4 property of rings is not left-right symmetric.

Example 4.3.1 There exists a left C'4-ring which is not right C'4. Let R be the ring

of matrices, over a division ring D, of the form

a 0 b ¢
a 0 d
0 a O
0 0 e

o o O

R is artinian, right Kasch by [54, Examples 8.29(6)], and so R is left Cs-ring by [72,
Proposition 1.46]. Now we claim that R is not right C'4. The set of all idempotents of
R is {0,1, E. 4, F.q4} where

0 00 ¢ 1 0 0 ¢

0 00 d 01 0 d
Eeq= and g = ,

0 00O 0 010

0 001 0 00O
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for any ¢,d € D. Consider the idempotents £ o and Ep;. Then
R = El,OR D Fc,dR = EOJR D Fc,dR and El’oR N EOJR =0

for any ¢,d € D. Hence F; (R and Ej; R are perspective direct summands of R with
zero intersection. But their sum is not generated by an idempotent. For, any non-zero
idempotent in E, gR + Ey1 R is of the form E, ;_, where x € D, soif F1 R+ Ey 1 R =

E,1-.R for some z, then we would have the following relations:
Ex,lfxEl,O = El,o and Ex,lfxEO,l = Eo,l
But in this case, 1 = x = 0, a contradiction.

Proposition 4.3.2 Let R; (i € I) be any collection of rings, and let R be the direct

product [[.c; R;. Then R is a right C4-ring if and only if every R; is a right C4-ring.

Proof. (=) Suppose that R is a right C4-ring. Let e;R; and f;R; be perspective
direct summands of R; with common direct complement X; and zero intersection.
Then there exist idempotents g;, h; € R; such that e;R; = g;R;, fiR; = h;R;, and
X; = (1 —=g;)R; = (1 — h;)R;. Now write e (resp. f) for the element in R with ith
component e; (resp. f;) and all other components 0, and 1 — g (resp. 1 — k) for the
element in R with ith component 1 —g; (resp. 1 — h;) and all other components 1. Then
eR®(1—g)R=R=fR®(1—h)R. It is easy to see that eR and fR are perspective
direct summands of R with zero intersection. Hence, eR & fR C® R by assumption. It
follows that e;R; ® f; R; C® R;, and so R; is a right C'4-ring.

(<) Suppose that each R; is a right C'4-ring. Let {e;};R and {f;}; R be perspective
direct summands of R with zero intersection where e¢? = e; and f? = f; for each
i € I. Then there exist idempotents {g¢;};, {h:}; € R such that {e;};R = {g:}:iR,
{fi}iR = {h:};R, and {1 —g;};R = {1 — h;};R. It can easily be seen that ¢;R; and f;R;
are perspective direct summands of R; with zero intersection for each ¢ € I. Since each
R; is a right C4-ring, e;R; ® fiR; = k;R; C¥ R; for some idempotent k; € R;. Thus,
{e;};R® {f:}iR = {k:};R C¥ R, and so R is a right C'4-ring. O

Proposition 4.3.3 If R is a right C4-ring, then so is eRe for any idempotent ¢ € R
such that ReR = R.
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Proof. If R is right C4, then eRg is C4 as a direct summand of Rgr. Note that
eRe = Endg(eR). So it is enough to show that fSN ¢S = 0 implies f(eR)Ng(eR) =0
for any pair of (perspective) idempotents f, g € S = eRe by Theorem 4.2.4(iii). Assume
that fS N gS = 0 for some idempotents f,g € S. Let fr = gt € f(eR) N g(eR). Then
for every x € R, ferze = getre € fSNgS = 0. Since ReR = R, we have that fer = 0.

Hence fr =0. O

Example 4.3.4 The condition ReR = R is not superfluous in Proposition 4.3.3: Let
R be the algebra of matrices, over a field F', of the form

a xz 00 00
0O b 0O0O0O0
0 0 cy 00
00 0a 00
00 0O0©Db 2
00 0O0O0c¢

Let e = €11 + €92 + €33 + €44 + €55, where e;; are the matrices with (¢, j)-entry 1 and all
other entries zero. Then e is an idempotent of R such that ReR # R. Since R is a quasi-
Frobenius ring by [52, Example 9], R is a right C4-ring. However, eRe = (5 5) = S'is
not a right C'4-ring. To prove that, consider the idempotents e = €15 + €99 and f = eg9
of S. Then it can easily be seen that S = eS ®e;1S = fS @ eSS and eSN fS = 0.

But eS + fS is not a direct summand of Sg because it is the second column of S.

By Proposition 4.3.3, the right C'4-property for rings is Morita invariant if and only if
for every n > 1, M, (R) is a right C'4-ring whenever R is a right C'4-ring. But this does
not necessarily hold. Because there exists a right C'4-ring which is not right strongly C'2
(equivalently, strongly C4): Let A be a commutative local UFD that is not principal
ideal domain (for instance, A can be the ring of formal power series in two variables
over a field). Let M be the direct sum of all A/pA where p ranging over the primes
of A. Let R = A < M, the trivial extension of A by M (see below for the definition).
Then R is a local ring and every (right) non zero-divisor element of R is invertible [53].
Hence, by Proposition 1.6.19, R is a C'2-ring, and so is C'4. But, it is not a strongly
C'2-ring, as was shown in [53, p. 285].
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Let R be a ring and M an R-R-bimodule. Then the trivial extension R o< M is a ring
whose underlying group is R x M with the multiplication defined by

(r,m)(s,n) = (rs,rn + ms)

where ;s € R and m,n € M. In fact, R o« M is isomorphic to the subring {(6 ’,’?) |r e
R,m € M} of the formal 2 x 2 triangular matrix ring (5 %) and R o< R = R[z]/(2?).
For convenience, let (I, N) = {(r,n) :r € I,n € N} where I is a subset of R and N is
a subset of M.

Proposition 4.3.5 Let R be a ring and M an R-R-bimodule. Then

(1) If R < M is a right C4-ring, and for any idempotents e, f € R, eRN fR =0
implies eM N fM =0, then R is a right C'4-ring.

(2) If R is a right C4-ring, and eM(1 —e) = 0 for any idempotent e € R, then
R o< M s a right C'4-ring.

Proof. Set T'= R x M.

(1) Let e, f, g be idempotents in R such that R = eR®gR = fR®gR and eRNfR = 0.
Then E := (¢,0)T, F := (f,0)T and G := (g,0)T" are direct summands of 7. Now let
(ea,em) = (fb, fn) € ENF where a,b € R and m,n € M. Then ea = fb € eRN fR =
0,and em = fn € eMN fM = 0, by hypothesis. This implies that ENF' = 0. Similarly,
ENG =0and FNG = 0. Also, it can easily be seen that T'= E G = F & G.
Then E and F are perspective direct summands. Since T is right C4, £+ F C® T.
Then there exists an idempotent (h,m) € T such that £ + F = (h,m)T. It follows
that h* = h. Now we claim that eR+ fR = hR. Since (h,m) € E+ F, hR C eR+ fR.
If ea+ fb € eR+ fR for some a,b € R, (e,0)(a,0)+(f,0)(b,0) = (ea+ fb,0) € E+ F.
Hence ea + fb € hR. This proves the claim. Therefore, Rg is C'4.

(2) If eM(1—e) =0 for any idempotent e € R, then any direct summand of T is of the
form (eR,eM) (e* = e € R) by the proof of [32, Proposition 4.5]. Now let (eR, eM) and
(fR, f M) be perspective direct summands of 7" with a common direct sum complement
(gR, gM) and zero intersection. Then it is easy to see that R =eR® gR = fR® gR
and eRN fR = 0. Since R is right C4, eR + fR C® R. Let h? = h € R be such that
eR+ fR=hR. Now (eR,eM)+ (fR, fM) = (eR+ fR,eM+ fM) = (eR+ fR, (eR+
fR)YM) = (hR,hM) C® T. O
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Corollary 4.3.6 Let R and S be rings and M an R-S-bimodule. Consider the formal
triangular matriz ring T = (£ ). Then the following hold.

(1) If T is right C4, and for any idempotents e, f € R, eRN fR = 0 implies eM N
fM =0, then R and S are right C4.

(2) If R and S are right C4 and M = 0, then T is right C4.

Proof. (1) Note that 7= (§% )@ (32). Then (§ %) and S are right C4 by Propo-
sition 4.3.2. Since (§4) = (R x 0) o< M, R is right C'4 by Proposition 4.3.5.

(2) It is obvious. O

Note that Garcia in [32, Proposition 4.5] proved that if the ring R o< M has SSP,
then eM(1 — e) = 0 for any idempotent e € R. But this property need not hold for
C'4-modules.

Example 4.3.7 There exist an idempotent e of a ring R and an R-R-bimodule M
such that R o« M is right Cy and eM(1 —e) # 0: Let T = (% Zr>> ). Then all
idempotents of T" are 0, 1, E,, = (§%), and F,, = (§7) where m € Zy~. By direct
calculations, E,, TN F,,T =0 and T = E,T & F,,/T for any m,m’ € Zy~. For any
m #m' in Zye, E,TNE,,T # 0 and F,,TNF,,T # 0. Hence after checking all direct
summands regarding to Cy, we see that 17 is right C;. Now we shall note the fact that

T=(ZXZ) X Lyo. So take R =7Z X Z, M = Zy~ and e = (1,0), as desired.

Recently, in [43], rings whose cyclic right modules are C'3 are investigated in great
detail. Commutative rings, abelian exchange rings, and local rings are examples of
such rings. Here we will first notice that this kind of property of rings is equivalent to

the property of rings whose cyclic right modules are right C'4.

Proposition 4.3.8 For a ring R, every cyclic right R-module is C4 if and only if
every cyclic right R-module is C'3.

Proof. It can be obtained by the result that every factor module of M is C'4 if and
only if every factor module of M is SSP (equivalently C3, by [43]) [21, Proposition
2.28(1)]. O
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Hence a structure theorem, Theorem 3.18 in [43], can be restated for C'4-modules:
Over a semiperfect ring R, every cyclic right R-module is C'4 if and only if R is a direct
product of a semisimple artinian ring and a ring which is a finite direct product of local

rings. More generally, we have the following result inspired by [43, Lemma 2.4].

Corollary 4.3.9 Let n > 2. Every n-generated module is C4 if and only if every

n-generated module is C3.

Proof. (<) is obvious. (=) Let Pr = R" and S = Endg(P). Then Mod-R and Mod-S
are Morita equivalent categories with functors Hompg(sPg, -) and ®gP. It is known
that for any n-generated module N, Homg(P, N) is a cyclic S-module, and for any
cyclic S-module M, M ®g P is an n-generated R-module. Hence every cyclic S-module
is a C'3-module if and only if every n-generated R-module is a C'3-module. Further, by
[4, Remark 2.11], the C'4 property of modules are preserved under Morita equivalences.
Hence every cyclic S-module is a C'4-module if and only if every n-generated R-module

is a C'4-module. By Proposition 4.3.8, the proof is completed. O

4.4 D4-Modules

The following lemma was established by Ding et al. in [22] and will be used frequently

throughout this section.

Lemma 4.4.1 [22, Theorem 2.2] The following conditions are equivalent for a module

M:

(1) If M = A® B with A,B C M and f : A — B is an epimorphism, then ker(f) C%
A.

(2) If M = A® B with AyB C M and f : A — B is a homomorphism with
im(f) C® B, then ker(f) C% A.

10

(3) If A and B are submodules of M with A C B and M/B = A C%® M, then
B C® M.

(4) If A and B are submodules of M with M = A+ B, AC® M and M/A = M/B,
then ANB C% M.
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(5) If A and B are direct summands of M with M = A+ B and M/A = M/B, then
ANBC® M.

(6) If A and B are submodules of M with M = A+ B, AC® M and M/A = M/B,
then B C® M.

(7) If M = ApA' = BB = A+ B = A+ B, where A, A, B and B’ are submodules
of M, then AN B C% M.

(8) If A and B are direct summands of M with M = A+ B and A = B, then
ANBC® M.

Definition 4.4.2 A module M is called a D4-module if it satisfies any of the equivalent

conditions in Lemma 4.4.1.

In the next theorem we provide new characterizations of D4-modules in terms of pers-

pective direct summands.
Theorem 4.4.3 The following conditions on a module M are equivalent:

(1) M is a D4-module.

(2) If A and B are perspective direct summands of M with A+B = M, then ANB C¥%
M.

(3) If A and B are perspective direct summands of M with A + B C® M, then
ANBC® M.

Proof. (1) = (2) Let A and B be perspective direct summands with common direct
sum complement C, and with A+ B = M. Let 7 : M — C be the projection with
ker(m) = B. Consider the restriction map 7|4 : A — C. Now A + B = M implies that
m(A) = C C% C, and hence ker(m|4) C% A. Since ker(w|s) = ANB C¥ A C® M,
ANBCY M.

(2) = (3) Let A and B be perspective direct summands of M with A+ B C% M. Then
there exist C', D C% M such that M = A@C = B&C = (A+ B) @ D. By modularity,
we have A+ B=A®(CN(A+B))and A+ B=B& (CN(A+ B)). Now A® D and
B @ D are perspective direct summands of M and (A® D)+ (B ® D) = M. Then the
hypothesis implies that (A& D)N(B@& D) = (ANB)@& D C% M. Thus ANB C% M.
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(3) = (1) Let M = A® B and f : A — B be an epimorphism. Consider the graph
submodule 7' = {a+ f(a) : a € A} of M. Obviously, M =T+ B and TN B = 0. Then
M=T®B=A® B, ie., Aand T are perspective direct summands of M. Since f is
an epimorphism, we have A + T = M. According to the hypothesis, ANT C% M. It
can easily be shown that ANT = ker(f), and so ker(f) €% M. Hence ker(f) C® A. O

Corollary 4.4.4 The following conditions on a module M are equivalent:

(1) M is a D4-module.

(2) If M = A+ B for any perspective direct summands A and B of M, then there
exists B' C B such that M = A® B’.

Proof. (1) = (2) Let M = A+ B where A and B are perspective direct summands
of M. Then M = (AN B) & C for some C' by Theorem 4.4.3. By the modular law,
B=(ANB)® (CnNB). It follows that M = Ad (C N B). So B':=CNB.

(2) = (1) Let M = A+ B where A and B are perspective direct summands of M.
Then there exists B’ C B such that M = A® B’. This implies that B = (ANB)® B'.

Hence AN B is a direct summand of B, and so of M. O

In the following theorem, we see that it is enough to assume that A+ B C% M in the
conditions (4)-(6) and (8) in Lemma 4.4.1.

Theorem 4.4.5 The following conditions on a module M are equivalent:

(1) M is D4-module.

(2) If A and B are submodules of M with A+ B C® M, A C® M and M/A = M/B,
then AN B C% M.

(3) If A and B are direct summands of M with A+ B C® M and M/A = M/B,
then ANB C® M.

(4) If A and B are submodules of M with A+ B C® M, AC® M and M/A = M/B,
then B C® M.

(5) If A and B are direct summands of M with A+ B C® M and A = B, then
ANBC® M.
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Proof. (1) = (2) Let A and B be submodules of M with A+ B C% M, A C® M and
M/B = M/A. Write M = A@Y and M = (A+ B) & X for some submodules X,
Y € M. Now consider the morphisms: 7 : M — M /(AN B) the natural epimorphism
with the ker(r) = ANB, f: M/(ANB) — M/B defined by f(m+ (ANB))=m+ B
(for every m € M), and ¢ : M/A — Y an isomorphism. Then we define g = ¢o f|4.
Now since f(A/(ANB)) = (A+B)/B C% M/B, im(g) C® Y. Clearly, ker(g) = AN B,
and so ANB C% A. Thus, ANB C% M.

(2) = (4) Let A and B be submodules of M with A+ B C% M, A C% M and
M/A = M/B. By hypothesis, AN B C® M. Write M = (ANB)®X =(A+B)aY
for some submodules X, Y C M. Then A = (AN B) ® (AN X) by the modular law.
Now A+B=(ANB)+(ANX)+B=B&(ANX)and so B C% M.

(4) = (1) is clear by Lemma 4.4.1.

(2) = (3) is clear.

(3) = (1) Let A and B be perspective direct summands of M with A + B C% M.
Since A and B are perspective direct summands of M, M /A = M/B. By hypothesis,
AN B C® M. Hence M is D4 by Theorem 4.4.3.

(1) = (5) Let A and B be direct summands of M with A+ B C% M and A L B. Write
M = A@ A for some submodule A" C M. Consider 7 : M — M/A as the natural
epimorphism. Let ¢ denote the isomorphism M/A = A’ and set f = 1 o x| 0 ¢. Since
A+ B C% M and im(f) = ¥((A+ B)/A), im(f) C% A’. Note that ker(f) = ¢~ (AN B)
implies that ¢~ (ANB) C¥ A by hypothesis and hence ANB C% B. Thus ANB C% M.
(5) = (1) is clear by Theorem 4.4.1. 0

In general the direct sum of two D4-modules need not be a D4-module, see [22, Example
2.12]. Indeed it was shown in [22, Theorem 2.13] that the direct sum of any two D4-
modules is a D4-module if and only if R is a semisimple ring. In the next theorem
we provide a specific case where the direct sum of a set of D4-modules is again a
D4-module. Note the fact that if N is a fully invariant submodule of M, then N =
@icr (N N M;) for any decomposition M = @;c;M; (see [74, Lemma 2.1]).

Theorem 4.4.6 Let M = ®;c;M; be a direct sum of submodules M;. If N = @;er (NN
M;) for every submodule N of M, then M is a D4-module if and only if each M; is a
D4-module, i € 1.
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Proof. Suppose that M; is a D4-module for every i € I. Let M = A C = B&® C such
that A+ B = M. By hypothesis, we have A = ®;c; (AN M;), B = @;c;(BN M;), and
C = @ic1(CNM). Since M =A®C =BoC, M = @i [(ANM,) © (CN M) =
[®icr(B N M) [®icr(C N M;)]. Therefore, M; = (ANM;)&(CNM;) = (BNM;)®(CN
M;) for every i € I. Also, M = A+ B implies that M = @1 [(AN M;) + (B N M;)], and
so M; = (ANM;)+ (BNM;). Since ANM; and BN M; are perspective direct summands
of M; with (AN M;)+ (BN M;) = M;, (AnM,;)n (BN M) C® M, for every i € I.
Now AN B = [@icr(ANM,)] N [Bier(BNM,;)] = @ier [(ANM;) N (BN M;)] C¥ M,
and hence M is a D4-module. The converse is obvious, since a direct summand of a

D4-module is again a D4-module, see [22, Proposition 2.11]. O

It is known that if N = @, (N N M;) for every N < M, then Hom(M;, M;) = 0 for

every i # j in I (see [74, Lemma 2.4]), so it is natural to ask the following question.

Question 4.4.7 Can the above hypothesis in Theorem 4.4.6 be omitted if we assume

instead that Hom(M;, M;) = 0 for every ¢ # j in I7

The following proposition is a dual to Corollary 4.1.9 and it can be proved by a similar

argument.
Proposition 4.4.8 If M is a D4-module with SSP, then M has SIP.

Proposition 4.4.9 Let M be a right R-module with S = Endg(M). Then the following

are equivalent:
(1) M is a D4-module.

(2) For every pair of perspective idempotents e, f € S with eM + fM = M, there
exists an idempotent g of S such that gM = eM and (1 — g)M C fM.

Proof. Follows from [81, Lemma 5.3]. O

Lemma 4.4.10 Let M be a right R-module and S = Endg(M). For any idempotents
e, f €S, eMn fM C® M if and only if ker((1 —e)f) C% M.

Proof. (=) Suppose eM N fM C% M for idempotents e, f € S. Then there exist
C C% M such that M = (eM N fM) @ C. By the modular law, fM = (eM N fM) @
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(CN fM). Hence M = (eM N fM)® (CN fM) @ (1 — f)M. Since ker((1 —e)f) =
(eM N fM)® (1 — f)M, it follows that ker((1 —e)f) C® M.

(<) is obvious by the fact that ker((1 —e)f) = (eM N fM) @ (1 — f)M. O

Proposition 4.4.11 A right R-module M 1is a D4-module if and only if for any pair
of idempotents e, f € Endr(M), if M = eM + fM and ker(e) = ker(f), then ker(1 —
e)f C% M.

Proof. (=) is obvious by Lemma 4.4.10.

(<) Let A and B be perspective direct summands of M with M = A+ B. Then we can
find idempotents e, f € Endg(M) such that A=eM,B=fM, M =eM®(1—e)M =
fM& (11— f)M, and (1 —e)M = (1 — f)M. By the hypothesis and Lemma 4.4.10,
eMnN fM C® M. O

In [43], Ibrahim et al. restricted the submodules in the D2-condition to the the class of
simple modules, and call a module M simple-direct-projective if it satisfies any of the

equivalent conditions in the following lemma:

Lemma 4.4.12 (][44, Proposition 2.1], [43]) The following are equivalent for a module
M:

(1) If A and B are submodules of M with B simple and M/A = B C® M, then
AC® M.

(2) M = A® B with B simple and f : A — B is an R-homomorphism, then
ker(f) C% M.

(3) If A and B are direct summand of M with B mazimal, then AN B C% M.

(4) If A and B are maximal direct summands of M, then AN B C% M.

In the next proposition we characterize simple-direct-projective modules in terms of

perspective direct summands.

Proposition 4.4.13 M is simple-direct-projective if and only if for any perspective
direct summands A, B of M with B maxzimal, AN B C® M.

81



Proof. Necessity is obvious. Assume that for any perspective direct summands A, B
of M with B maximal, AN B C® M. Let M = A, & Ay with Ay simple and [ :
Ay — Ay an R-homomorphism. We claim that ker(f) is a direct summand of A;.
Without loss of generality we may assume that f # 0. Then f is an R-epimorphism.
Let T'= {a + f(a)|a € A} be the graph submodule. We have that M = T & A,.
Since Ay 2 M/T = M/A;, T and A; are perspective direct summands of M with A,
maximal. Thus 7'N A; C® M by assumption. Clearly, ker(f) € T'N A;. Since ker(f)
is maximal in A; and M =T + A;, we have T'N A; = ker(f). Hence ker(f) is a direct

summand in M, and so in A;. By Lemma 4.4.12, M is simple-direct-projective. a

A module M is called summand-dual-square-free [22] if M has no proper direct sum-
mands A and B with M = A+ B and M/A = M/B. Any summand-dual-square-free
module is a D4-module by [22, Proposition 5.4].

Proposition 4.4.14 The following conditions on a module M are equivalent:

(1) M is a D4- and summand-square-free module.

(2) M is a C4- and summand-dual-square-free module.

Proof. (1) = (2) Clearly, M is a C4-module. Now, we show that M is summand-dual-
summand-square-free. Assume that M is not summand-dual-square-free, then there
exists two non-zero proper summands Ay, By of M with Ay + By = M and M/A; =
M/By. Since M is a D4-module, A; N B; C% M. Write M = (A; N By) @ T and
so Ay = (AN B) @ (A NTy) and By = (A N By) @ (By NTy). Therefore, we have
AANTy=A/(AiNB) =2 M/B; = M/A = B /(AiNBy) = ByNTy with (A,NT7)N
(BiNTy) = (AN B;)NT; =0 and both Ay N7} and B; N7 summands of M. Since
M is summand square-free, Ay NTy = By NT; = 0. Thus A; = (4; N By) = By and so
M = Ay + By = Ay = By a contradiction. Hence M is summand-dual-square-free.

(2) = (1) Clearly, M is a D4-module. Now, we show that M is summand-square-
free. Assume that M is not a summand-square-free module, and let A;, B; be non-
zero summands of M with Ay = B; and A; N B; = 0. Since M is a C'4-module,
A1 ®B; C® M. Write M = A, ® B, ®T; for a submodule T} ; M. Now, M/(A;6T)) =
By =2 A =2M/(B &T) with M = AyoB Ty = (A eT)+ (B ®T)) and
both A; & 17 and B; & 17 summands of M. Since M is summand-dual-square-free,
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M=A &1, =B;®T; and so A; = By = 0, a contradiction. Hence M is summand-

square-free. a

Corollary 4.4.15 A ring R is summand-square-free as a right R-module if and only

if R is a right C'4-module and summand-dual-square-free as a right R-module.

Definition 4.4.16 A module M is said to satisfy the restricted descending chain con-
dition on direct summands if, M has no strictly descending chains of non-zero direct

summands

Al; 2 =z
B2 By 2

with M/A; 2 M/B; and A; + B; €% M for all ¢ > 1.

Proposition 4.4.17 If M is a D4-module that satisfies the restricted DCC' on sum-
mands, then M = A® B ® K where A = B, A and B are D2-modules, and K is a

summand-dual-square-free module.

Proof. If M is summand-dual-square-free, then the proof is done by setting each A =
B =0and K = M. Suppose that M is not summand-dual-square-free, then there exist
two non-zero proper summands Ay, By of M with A; + By = M and M/A; = M/B;.
Since M is a D4-module, AN B; C% M. Write M = (A;NBy)® Ty and M = A; & Al
Now, since T} = M/(A1 N By) =2 A1 /(AiNB) @A 2M/B @A, = M/A @ A =
Al @ A} and T} is a D4-module, A} @ A) is a D4-module, and then by [22, Proposition
2.11], A} is a D2-module. Therefore, T} = K; ® K| where K; = A = K| are D2-
modules. Clearly Y] := AyN By # M. If Y] =0, then M =T} = K; ® K] and the proof

is done.

Now, suppose that Y; # 0; and so we have 0 ; Yi ;Cé M. If Yy is summand-dual-square-
free, the proof is done. Suppose that Y7 is not summand-dual-square-free, then there
exist two non-zero proper summands Ay, By of Y} with Ay + By = Y) and Y; /Ay =
Y1/Bs. Since Y; is a D4-module, Y, := A; N By C% Yy, Write Y7 = (Ay N By) @ Ty,
Yi=A A, =B, @By M =A@ A, Ty, and M = (Ay N By) & Ty, & T. Then
Y1/As = Y; /By implies that M/Ay; = M/By. Now, we have To = Y;/(Ay N By) =
(As + AL) /(A2 N By) = AyJ(Ay N By) @ A, = Y /Bo®d A, =Y, /A ® Ay = A, @ Al
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Therefore, 1 T = (A} & A)) & (AL, @ A) = (A & A) & (A] @ A)) is a D4-module
and so by [22, Proposition 2.11], A} @ A} is a D2-module. Therefore, T1® Ty = Ko @ K}
with Ky =2 A} @ A, = K} are D2-modules. Clearly Yy := Ay N By # Y. If Yy = 0, then
M =T,® T, = Ky ® K}, and the proof is done.

Now, suppose that Y5 # 0. If Y5 is summand-dual-square-free, the proof is done. Sup-
pose that Y5 is not summand-dual-square-free, then by continuing the process and if

each Y; is not summand-dual-square-free, we get proper descending chains,

A2 42
Bl 2 B2

with M/A; =2 M/B; and A; + B; C% M for all i > 1, contradicting the hypothesis that
M has the restricted DCC on summands. Therefore, there exists a summand-dual-
square-free module Y,, such that M =T\ T @ --- T, ®Y, with T 1o ®--- BT, =
K, & K|, with K,, = K] a D2-module and Y,, summand-dual-square-free. Hence the
proof is done by setting A := K,,, B:= K/ and K :=Y,,. a

Recall that a ring R is called I- finite if it contains no infinite orthogonal family of

idempotents (see [72, Lemma B.6.]).

Corollary 4.4.18 If R is I-finite, then Rp, = A® B & K with A = B and K a
summand-dual-square-free module. Moreover, if R is also a right C'4-ring, then Rr =
A® B @& K where A= B are C2-modules and K is both a summand-dual-square-free

as well as a summand-square-free module.

Lemma 4.4.19 [21, Theorem 2.27] If M is a module whose local summands are sum-

mands, then M = A® B ® K where A= B and K is a summand-square-free module.

Proposition 4.4.20 If M is a quasi-discrete module with DCC' on summands, then
M = A® B® K where A= B are quasi-projective modules and K is both a summand-

square-free and a summand-dual-square-free module.

Proof. By Proposition 4.4.17, M = X @Y & T where X =Y and T is a summand-
dual-square-free module. Now, since T is quasi-discrete, every local summand of T is
a summand, see [63, Corollary 4.13]. By Lemma 4.4.19, T'= C & D & K where C' = D

and K is both a summand-square-free module as well as a summand-dual-square-free
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module. Now, if we set A := X@&Cand B: =Y ® D, then M = A B& K with A = B.
By [22, Proposition 4.12], since M is quasi-discrete, both A and B are quasi-projective

as required. O

Corollary 4.4.21 If R is a semiperfect ring, then R = A® B & K with A= B and

K is both a summand-dual-square-free as well as a summand-square-free module.

We end this chapter with a number of related questions that we were unable to answer.

Question 4.4.22 If M is a C'4-module, does the finite exchange property imply the
full exchange property?

Question 4.4.23 Is there a C'1- and C'4-module that is not C'37

Question 4.4.24 If M is a D4-module, does the finite exchange property imply the
full exchange property?

Question 4.4.25 Is there a D4-module that is not D37

85



REFERENCES

G. Abrams, K.L. Rangaswamy, Regularity conditions for arbitrary Leavitt path
algebras, Algebr. Represent. Theory, 13 (3) (2010) 319-334.

E. Akalan, L. Vas, Classes of almost clean rings, Algebr. Represent. Theory, 16
(3) (2013) 843-857.

M. Alkan, A. Harmanci, On summand sum and summand intersection property

of modules, Turkish J. Math., 26 (2002) 131-147.

[. Amin, Y. Ibrahim, M. Yousif, C'3-Modules, Algebra Colloq., 4 (2015) 655-
670.

F.W. Anderson, K.R. Fuller, Rings and Categories of Modules, Graduate Texts
in Mathematics, Vol. 13, Springer-Verlag, New York, 1992.

G. Baccella, Semiartinian V-rings and semiartinian Von Neumann regular rings,

J. Algebra, 173 (1995) 587-612.

G. Baccella, Exchange property and the natural preorder between simple mo-

dules over semi-Artinian rings, J. Algebra, 253 (2002) 133-166.

R. Baer, Abelian groups that are direct summands of every containing abelian

group, Bull. Amer. Math. Soc., 46 (1940) 800-806.

H. Bass, K-theory and stable algebra, Publ. Math. Inst. Hautes Etudes Sci., 22
(1964) 5-60.

G. Birkhoff, Lattice theory, rev. ed., Amer. Math. Soc., Providence, R.I., 1948.
P. E. Bland, Rings and Their Modules, Walter de Gruyter & Co., Berlin, 2011.

V.P. Camillo, D. Khurana, A characterization of unit-regular rings, Comm.

Algebra, 29 2001 2293-2295.

V.P. Camillo, Y. Ibrahim, M. Yousif, Y. Zhou, Simple-direct-injective modules,
J. Algebra, 420 (2014) 39-53.

86



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

H. Chen, Rings with many idempotents, Internat. J. Math. & Math. Sci., 22
(3) (1999) 547-558.

H. Chen, Internal cancellation over SSP rings, https://arxiv.org/abs/1408.0781,
5 pages, 2014.

H. Chen, N. Ashrafi, M.S. Abdolyousefi, Regularity and Related Rings, Medi-
terr. J. Math., 15 (1), (2018), 24, 13 pp.

A Y.M. Chin, K.T. Qua, A note on weakly clean rings, Acta Math. Hungar.,
132 (1-2) (2011) 113-116.

J. Clark, C. Lomp, N. Vanaja, R. Wisbauer, Lifting Modules, Birkhauser Verlag,
Basel, 2006.

P.M. Cohn, Unique Factorization Domains, The American Mathematical

Monthly, 80 (1) (1973) 1-18.

P. Crawley, B. Jonsson, Refinements for infinite direct decompositions of algeb-

raic systems, Pacif. J. Math., 14 (1964) 797-855.

N. Ding, Y. Ibrahim, M. Yousif, Y. Zhou , C4-Modules, Comm. Algebra, 45 (4)
(2017) 1727-1740.

N. Ding, Y. Ibrahim, M. Yousif, Y. Zhou, D4-Modules, J. Algebra Appl., 16
(5) (2017) 1750166, 25 pp.

B. Eckmann, A. Schopf, Uber injektive Moduln, Arch. Math., 4 (1953) 75-78.

G. Ehrlich, Units and one-sided units in regular rings, Trans. Amer. Math. Soc.,

216 (1976) 81-90.

D. Estes, J. Ohm, Stable range in commutative rings, J. Algebra, 7 (1967)
343-362.

E.G. Evans, Krull-Schmidt and cancellation over local rings, Pacific J. Math.,
46 (1973) 115-121, .

87



[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

A. Facchini, Module Theory: Endomorphism rings and direct sum decomposi-
tions in some classes of modules, Progress in Mathematics Vol. 167, Birkhauser

Verlag, Basel, 1991.

M.A. Fortes Escalona, I. de las Penas Cabrera, E. Sanchez Campos, Lifting
idempotents in associative pairs, J. Algebra, 222 (1999) 511-523.

L. Fuchs, On quasi-injective modules, Annali della Scuola Normale Superiore

di Pisa, 23 (4) (1969) 541-546.
L. Fuchs, Infinite Abelian Groups, Academic Press, New York, 1970.

L. Fuchs, On a substitution property of modules, Monatsh. Math., 75 (1971)
198-204.

J.L. Garcia, Properties of direct summands of modules, Comm. Algebra, 17

(1989) 73-92.

S. Garg, H.K. Grover, D. Khurana, Perspective rings, J. Algebra , 415 (2014)
1-12.

K.R. Goodearl, von Neumann Regular Rings, 2nd edn., Krieger Publishing Co.,
Malabar, Florida, 1991.

R. Guralnick, C. Lanski, Pseudosimilarity and cancellation of modules, Linear

Algebra Appl., 47 (1982) 111-115.

[. Halperin, On transitivity of perspectivity in continuous geometries, Trans.

Amer. Math. Soc., 44 (1938) 537-562.

D. Handelman, Perspectivity and cancellation in regular rings, J. Algebra, 48

(1977) 1-16.

R. Hartwig, J. Luh, A note on the group structure of unit regular ring elements,

Pacific J. Math., 71 (1977) 449-461.

J. Hausen, Modules with the summand intersection property, Comm. Algebra,

17 (1) (1989) 135-148.

88



[40]

[41]

[42]

[43]

[44]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

M. Henriksen, On a class of regular rings that are elementary divisor rings,

Arch. Math., 24 (1973) 133-141.

V.A. Hiremath, S. Hegde, Using ideals to provide a unified approach to uniquely
clean rings. J. Aust. Math. Soc. 96 (2014) 258-274.

S.S. Holland, Distributivity and perspectivity in orthomodular lattices, Trans.
Amer. Math. Soc., 112 (1964) 330-343.

Y. Ibrahim, X.H. Nguyen, M.F. Yousif, Y. Zhou, Rings whose cyclics are C'3-
modules, J. Algebra Appl., 15 (8) (2016) 1650152 18 pp.

Y. Ibrahim, M.T. Kosan, T.C. Quynh, M. Yousif, Simple-direct-projective mo-
dules, Comm. Algebra, 44 (2016) 5163-5178.

L. Jeremy, Sur les modules et anneaux quasi-continus, C. R. Acad. Sci. Paris,

272 (1971) 80-83.

R.E. Johnson, E.T. Wong, Quasi-injective modules and irreducible rings, J.

London Math. Soc., 36 (1961) 260-268.

[. Kaplansky, Infinite Abelian Groups, Univ. of Michigan Press, Ann Arbor,
1969.

I. Kaplansky, Bass’s first stable range condition, mimeographed notes, 1971.

D. Khurana, T.Y. Lam, Clean matrices and unit-regular matrices, J. Algebra,

280 (2004) 683-698.

D. Khurana, T.Y. Lam, Rings with internal cancellation, J. Algebra, 284 (2005)
203-235.

D. Khurana, T.Y. Lam, P. Nielsen, An ensemble of idempotent lifting hypot-
heses, J. Pure Appl. Algebra, 222 (6) (2018) 1489-1511.

K. Koike, Dual rings and cogenerator rings, Math. J. Okayama Univ, 37 (1)
(1995) 99-103.

F. Kourki, When maximal linearly independent subsets of a free module have

the same cardinality?, T. Brzezinski , J.L.. Gémez Pardo, I. Shestakov, P.F.
89



[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Smith (Eds.), Modules and Comodules, Proc. International Conference on Mo-
dules and Comodules, Porto, September 6-8, 2006, Birkhauser Verlag, Basel,
281-293, 2008.

T.Y. Lam, Lectures On Modules and Rings, Graduate Texts in Mathematics,
Vol. 189, Springer-Verlag, Berlin-Heidelberg-New York, 1999.

T.Y. Lam, A First Course in Noncommutative Rings, second ed., Graduate

Texts in Mathematics, Vol. 131, Springer-Verlag, New York, 2001.

T. Y. Lam, A crash course on stable range, cancellation, substitution, and

exchange, J. Algebra Appl., 3 (2004) 301-343.

G. Lee, S.T. Rizvi, C.S. Roman, Rickart modules, Comm. Algebra, 38 (11)
(2010) 4005-4027.

R. Mazurek, P.P. Nielsen, M. Ziembowski, Commuting idempotents, square-free

modules, and the exchange property, J. Algebra, 444 (2015) 52-80.

P. Menal, J. Moncasi, On regular rings with stable range 2, J. Pure Appl.
Algebra, 24 (1982) 25-40.

P. Menal, J. Moncasi, Lifting units in self-injective rings and an index theory

for Rickart C*-algebras, Pacific J. Math. 126 (1987) 295-329.

S.H. Mohamed, T. Bouhy, Continuous modules, Arabian J. Sci. Eng., 2 (1977)
107-112.

S.H. Mohamed, B.J. Miiller, Continuous modules have the exchange property,
L. Fuchs, R. Gobel, P. Schultz (Eds.), Abelian Group Theory, Proc. of the 1987
Perth Conference, Perth, August 9-14, 1987, Contemp. Math., vol. 87, Amer.
Math. Soc., Providence, RI, 285-289, 1989.

S.H. Mohamed, B.J. Miiller, Continuous and Discrete Modules, Cambridge Uni-
versity Press, Cambridge, 1990.

S.H. Mohamed, B.J. Miiller, On the exchange property for quasi-continuous
modules,; A. Facchini, C. Menini (Eds.), Abelian Groups and Modules, Proc. of

90



[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

the Padova Conference, Padova, June 23-July 1, 1994, Math. Appl., vol. 343,
Kluwer Acad. Publ., Dordrecht, 367-372, 1995

G.S. Monk, A characterization of exchange rings, Proc. Amer. Math. Soc., 35
(1972) 349-353.

J. von Neumann, Continuous geometry, Proc. Natl. Acad. Sci. USA, 22 (1936)
92-100.

J. von Neumann, I. Halperin, On the transitivity of perspective mappings, Ann.

of Math., 41 (2) (1940) 87-93.

J. von Neumann, Continuous geometry, foreword by Israel Halperin, Princeton

Mathematical Series, Vol. 25, Princeton Univ. Press, Princeton, N.J., 1960.

W.K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math.
Soc., 229 1977 269-278.

W.K. Nicholson, On PP-endomorphism rings, Canad. Math. Bull., 36 (2)
(1993) 227-230.

W.K. Nicholson, M. Yousif, Weakly continuous and C2-rings, Comm. Algebra,
29 (2001) 2429-2446.

W.K. Nicholson, M. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in Mat-
hematics, Vol. 158, Cambridge University Press, Cambridge, 2003.

K. Oshiro, S.T. Rizvi, The exchange property of quasi-continuous modules with

the finite exchange property, Osaka J. Math., 33 (1) (1996) 217-234.

A.C. Ozcan, A. Harmanci, P.F. Smith, Duo modules, Glasg. Math. J., 48 (2006)
533-545.

F. Perera, Lifting units modulo exchange ideals and C*-algebras with real rank

zero, J. Reine Angew. Math., 522 (2000) 51-62.

D.W. Sharpe, P. Vamos, Injective modules, Cambridge Tracts in Math., Camb-
ridge Univ. Press, Cambridge, 1972.

91



[79]

[30]

[81]

[89]

[90]

L. Shen, J. Chen, C2 property of column finite matrices, Ukranian J. Math., 66
(12) (2015) 1933-1938.

F. Siddique, On two questions of Nicholson,
https://arxiv.org/pdf/1402.4706.pdf, 5 pages, 2014.

G. Song, C. Chu, M. Zhu, Regularly stable rings and stable isomorphism of
modules, J. Univ. Sci. Technol. China, 33 (2003) 1-8.

J. Ster, Lifting units in clean rings, J. Algebra, 381 (2013) 200-208.

T. Takeuchi, On cofinite-dimensional modules, Hokkaido Math. J., 5 (1) (1976)
1-43.

Y. Utumi, On continuous regular rings and semisimple self injective rings, Ca-

nad. J. Math., 12 (1960) 597-605.
Y. Utumi, On continuous regular rings, Canad. Math. Bull., 4 (1961) 63-69.

Y. Utumi, On continuous regular rings and self injective rings, Trans. Amer.

Math. Soc., 118 (1965) 158-173.

L.N. Vaserstein, Bass’s first stable range condition, J. Pure Appl. Algebra, 34
(1984) 319-330.

7. Wang, J. Chen, D. Khurana, T.Y. Lam, Rings of idempotent stable range
one, Algebr. Represent. Theory, 15 (2012) 195-200.

R.B. Warfield, A Krull-Schmidt theorem for infinite sums of modules, Proc.
AM.S., 22 (1969) 460-465.

R.B. Warfield, Exchange rings and decompositions of modules, Math. Ann., 199
(1972) 32-36.

J. Wei, Unit-regularity and stable range conditions, Comm. Algebra, 33 (2005)
1937-1946.

C.A. Weibel, The K-book: An introduction to algebraic K-theory, Graduate
Studies in Mathematics, 145, American Mathematical Society, Providence, RI,
2013.

92



[91]

[92]

[93]

[94]

[95]

[96]

[97]

C.A. Weibel, History of homological algebra,
http://sites.math.rutgers.edu/~weibel /HA-history.pdf, 40 pages, (Acces-
sed: November 14, 2018).

G.V. Wilson, Modules with the summand intersection property, Comm. Al-
gebra, 14 (1) (1986) 21-38.

R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach,
Philadelphia, 1991.

M. Yousif, I. Amin, Y. Ibrahim, D3-Modules, Comm. Algebra, 42 (2) (2014)
578-592.

H.-P. Yu, On quasi-duo rings, Glasg. Math. J., 37 (1995) 21-31.

H.-P. Yu, Stable range one for exchange rings, J. Pure Appl. Algebra, 98 (1995)
105-109.

Y. Zhou, Generalizations of perfect, semiperfect and semiregular rings, Algebra

Collog., 7 (3) (2000) 305-318.

93



Index

C'l-module, 22, 58 direct complement, 1
C2-module, 22, 58 direct summand submodule, 1
C3-module, 22, 58 directly finite ring, 6
D1-module, 26, 59 discrete module, 26, 59
D2-module, 26, 59 Dual Basis Lemma, 24
D3-module, 26, 59 duo ring, 48

N-exchange property, 11
Ehrlich-Handelman Theorem, 9

abelian ring, 10 essential extension, 1
annihilator of a module, 3 essential submodule, 1
annihilator of an element, 3 Evans’ Theorem, 8
artinian module, 4 exchange property, 12
artinian ring, 4 exchange ring, 12, 55

ascending chain condition, 3 '
finite exchange property, 12

Baer’s Criterion, 20 free module, 24

bounded lattice, 16
hollow module, 3

Camillo-Khurana Theorem, 10
idempotent stable range 1, 50

cancellable module, 8

idempotent stable range 1 lifting, 51
central idempotent, 1

idempotent stable range one, 6
clean element, 10

idempotent stable range one element, 7
clean ring, 10

indecomposable module, 1
complemented lattice, 16

injective envelope, 20
complete lattice, 16

injective module, 19
conjugate idempotents, 53

internally cancellable module, 10, 28
continuous module, 22, 58

internally cancellable ring, 10, 28
Dedekind domain, 4 isomorphic idempotents, 53
Dedekind-finite module, 10

Jacobson radical, 3
Dedekind-finite ring, 6

descending chain condition, 4 lattice, 16

94



left T-nilpotent set, 26 right artinian ring, 4

left duo ring, 48 right CS ring, 22

left perfect ring, 26 right noetherian ring, 4

left quasi duo ring, 54 right perfect ring, 26

left unimodular sequence, 5 right self-injective ring, 19

lifting idempotents, 13 right socle of a ring, 2

local module, 4 ring with regular stable range one, 29

local ring, 4
semilocal ring, 4

modular lattice, 16 semiperfect ring, 25

semiregular ring, 13
Nicholson’s Lemma, 25

semisimple module, 2
noetherian module, 4

semisimple ring, 2

partial order, 16 simple module, 2

partially ordered set, 16 small submodule, 3

perfect ring, 26 socle of a module, 2

perspective direct summands, 17 special clean element, 40
perspective elements, 17 special clean ring, 40
perspective module, 17 square-free module, 23
perspective ring, 17, 30 stable range, 5

projective cover, 24 stable range one element, 6, 44
projective module, 23 stable range one lifting ideal, 44

) . substitutable module, 7
quasi-continuous module, 22, 58

substitution property, 7
quasi-discrete module, 26, 59 Propetty

Ciniect] dule. 21 summand intersection property, 18
quasi-injective module,

. .. summand sum property, 18
quasi-projective module, 25

summand-square-free module, 23

radical ideal, 45

) uniform module, 1
reducible sequence, 5

1t- lar el t, 9
regularly stable ring, 29 unit-regular element,
it- lar ring, 9
right C2 ring, 22 unit-regular ring,
right C'3 ring, 22 von Neumann regular element, 9

right T-nilpotent set, 26 von Neumann regular ring, 9

95



Credentials

Name, Surname

Place of Birth
Marital Status
E-mail

Address

Education

High School
BSc.

MSe.

PhD.

CURRICULUM VITAE

Meltem ALTUN OZARSLAN
Bolu

Married
meltemaltun@hacettepe.edu.tr

Hacettepe University, Department of Mathematics

06800 Beytepe Cankaya Ankara TURKEY

2001 - 2005, Bolu Izzet Baysal Anatolian High School
2005 - 2010, Hacettepe University, Faculty of Science,

Department of Mathematics

2010 - 2013, Hacettepe University, Institute of Graduate Studies in
Science, Department of Mathematics

2013 - 2018, Hacettepe University, Institute of Graduate Studies in

Science, Department of Mathematics

Foreign Languages

English, Fluent

Italian, Intermediate

Work Experience

2011 — - -+ Research Assistant, Hacettepe University, Faculty of Science, Department

of Mathematics

96



09/2017 — 08/2018 Visiting Scholar, University of Padova, Department of Mathematics

Areas of Experience

Non-commutative Algebra, Ring and Module Theory

Projects and Budgets

Hacettepe University, FDK-2018-16894 (Researcher), 14739.08 (TL) 05/2018-12/2018
Hacettepe University, FED-2017-14662 (Researcher), 5500 (TL) 04/2017-01/2018
Hacettepe University, FED-2015-6196 (Director), 3500 (TL) 04/2015-08/2015

Grants and Fellowships

TUBITAK 2214-A International Research Fellowship 09/2017-08/2018
TUBITAK 2211-E National Scholarship for Ph.D. Students 2013-2018
Publications

1. Meltem Altun-Ozarslan and A. Cigdem Ozcan, On ideals whose stable range

one elements lift, submitted for publication, 2018.

2. Meltem Altun—ézarslan, Yasser Ibrahim, A. Cigdem Ozcan, and Mohamed
Yousif, C'4- and D4-Modules via perspective direct summands, Communications

in Algebra, 46 (10) (2018) 4480-4497.

3. Meltem Altun and A. Cigdem Ozcan, On Internally Cancellable Rings, Journal
of Algebra and Its Applications 16 (6) (2017) 1750117 (12 pages).

Oral and Poster Presentations

1. MALGA Seminars, Canazei, Italy June 24-27, 2018
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