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ABSTRACT

MULTIVARIATE STOCHASTIC PRIORITIZATION OF DEPENDENT
ACTUARIAL RISKS UNDER UNCERTAINTY

Ezgi NEVRUZ

Doctor of Philosophy, Department of Actuarial Sciences

Supervisor: Assoc. Prof. Dr. Şahap Kasırga YILDIRAK

Co-advisor: Prof. Dr. Ashis SENGUPTA

July 2018, 176 pages

The main prompting factor behind decision making is comparing or ordering risks. Risk man-

agement strategies should be based on the dynamics of stochastic ordering relations and influ-

ences of decision makers’ tendencies on risk prioritization. The objective of this thesis is to

construct a concept for stochastic risk prioritization of multivariate aggregate claims.

The definition of risk from perspectives of individuals, companies or governments may vary

according to their risk perceptions, as risk is indicated not only by objective measures but also

by subjective characteristics. In order to describe the risk accurately, the theoretical background

of multivariate stochastic prioritization of dependent actuarial risks should be understood. For

this aim, we familiarize ourselves with order theory that allows comparing and ordering objects
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characterized by multiple indicators.

Being an important issue of human behaviour, this area falls within the boundaries of several

fields, one of which - public health - is our specific interest. We intend to apply the order theory

to a chosen risk area such as foodborne or agricultural risks, since they are rather vulnerable

aspects of public health. Analytic tools may not always be sufficient for prioritization especially

when we work on environmental risks. Hence, geographic information system is a useful tool

for risk prioritization in such cases.

In this thesis, we aim to prioritize aggregate claim vectors of different risk clusters in agricultural

insurance under the assumption that the individual claims exposed to similar environmental

risks are dependent. For this purpose, first we obtain risk clusters for a crop-hail insurance

portfolio considering spatial and temporal features of hazard regions. We propose an extended

approach for differential evolution optimization which determines the optimal sample set used in

inverse distance weighting with reduction technique. Second, we prioritize the aggregate claims

taken as actuarial risks by using various stochastic ordering relations that are studied within

the framework of partial order theory. These relations are stochastic dominance, stochastic

majorization and stop-loss dominance. Having discussed the concept of risk itself, we also

investigate the risk measures which could be sufficient and accurate criteria for determining the

riskiness of a portfolio.

The classical first-order stochastic dominance is useful to design the risk prioritization context.

We also suggest stochastic majorization relation according to multivariate representation of ac-

tuarial risks. This relation is very beneficial for our study since it enables us to order aggregate

claim vectors partially using Schur-convex risk measures.

On the other hand, we consider the impacts of risk perception on prioritization of risks. Working

within this context and attempting to contribute to it, we seek for a behavioral approach which

could enhance and facilitate the description of the choices individuals make in risky situations.

An example of such approaches could be cumulative prospect theory (CPT), as a more accurate

alternative to expected utility theory. In the stop-loss dominance context, we adapt the zero-

utility premium principle in order to obtain solutions for stop-loss premiums and propose stop-
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loss dominance relation under CPT.

Keywords: Cumulative prospect theory, differential evolution algorithm, geographic informa-

tion system, risk clustering, Schur-convexity, spatiotemporal interpolation, stochastic majoriza-

tion, stop-loss dominance.
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ÖZET

BAĞIMLI AKTÜERYAL RİSKLERİN BELİRSİZLİK ALTINDA
ÇOKDEĞİŞKENLİ STOKASTİK ÖNCELİKLENDİRİLMESİ

Ezgi NEVRUZ

Doktora, Aktüerya Bilimleri Bölümü

Tez Danışmanı: Doç. Dr. Şahap Kasırga YILDIRAK

İkinci Tez Danışmanı: Prof. Dr. Ashis SENGUPTA

Temmuz 2018, 176 sayfa

Riskleri karşılaştırmak; riskleri ortaya çıkaran faktörlerin karakteristiklerini dikkate alarak, karar

verme aşamalarında adil ve doğru standartlar altında uygulanan en temel süreçtir. Risk yönetimi

açısından ele alındığında ise riskleri sıralandırmak, özellikle süre ve maliyet optimizasyonu

açısından önemli bir bileşendir. Çevresel riskleri önceliklendirmek ise riskleri coğrafik olarak

karşılaştıran ve sıralandıran spesifik bir alandır. Analitik araçlar, önceliklendirme için her zaman

yeterli olmayabilir. Bazı durumlarda, özellikle çevresel risklerin değerlendirilmesi ile ilgile-

nildiğinde, verideki coğrafik bilgi dikkate alınmalıdır. Bu çalışmada, benzer çevresel risklere

maruz olan tarım sigortası hasarların bağımlılığı dikkate alındığında; tarımsal sigortalarda aktü-

eryal risklerin meteorolojik karakteristiklerinin tahmin edilmesi, kümelendirilmesi ve stokastik

sıralandırma bağıntıları kullanılarak önceliklendirilmesi amaçlanmaktadır. Çalışmada ele alınan
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sıralandırma bağıntıları birinci dereceden stokastik baskınlık, toplam hasar fazlası baskınlığı ve

stokastik baskılama bağıntılarıdır.

Tezde, TARSİM tarım sigortaları havuzunun sağladığı veri setinde 2014 yılında gerçekleşen

hasarlara ilişkin bilgiler kullanılmıştır. 100’den fazla ürünü, 5 farklı tehlikeye karşı teminat

altına alan sigorta ürünlerine ilişkin prim, sigorta bedeli, hasar tarihi, hasar nedeni, ödenen/mu-

allak tazminat tutarı, hasar oranı vb. bilgileri kapsayan veride yapılan düzenlemeler ile veri seti

kendine özgü bir hale dönüştürülmüştür.

Aktüeryal risklerin öncelendirilmesi için bitkisel dolu sigortası portföyünde ortaya çıkan birey-

sel hasarlar ve her bir risk kümesine ait toplam hasarlar ele alınmıştır. Tehlike bölgeleri ve

bitkisel ürün sınıfları dikkate alınarak kurulan modelde, toplam hasar vektörleri elde edilmiştir.

Bu amaçla öncelikle; meteorolojik değişkenlerin girdi olarak ele alındığı mekansal-zamansal in-

terpolasyon teknikleri kullanılarak bireysel poliçelere ait meteorolojik değişkenler tahmin edilip

aktüeryal riskler kümelendirilmiştir. Ardından, vektör sıralamasında kolaylık sağlayan kısmı̂

sıralama teorisi çerçevesinde önerilen stokastik sıralandırma bağıntıları kullanılarak aktüeryal

riskler önceliklendirilmiştir.

Aktüeryal risklerin yönetimi ve değerlendirilmesi sürecinde; çevresel riskler, sigorta türünün

dinamikleri açısından sıklıkla kullanılan hayat ve hayat-dışı sigorta ürünlerinden farklılık arz

etmektedir. Klasik sigorta ürünlerinin risklerinin aktüeryal değerlemesinde analitik araçlar et-

kili performans göstermektedir; ancak tarımsal sigortalarda bu araçların etkinliği azalabilir. Bu

çalışmada, farklı meteorolojik değişkenlerin ve coğrafi bilginin tarımsal sigorta risklerine etkisi

birlikte incelenmiştir. Klasik risk kuramında bireysel hasarların bağımsız olduğu varsayılmasına

rağmen, literatürde bu varsayımın gerçekçi olmadığını ileri süren ve doğrulayan birçok çalışma

bulunmaktadır [1–3]. Aynı tehlikelere veya fiziksel ve finansal çevre gibi benzer olumsuz et-

kilere maruz oldukları için bireysel riskler bağımlı olabilirler. Örneğin, bir tarımsal sigor-

ta portföyündeki hasarlar, aynı meteorolojik olayın meydana gelme olasılığına ve sonuçlarına

maruz olabilir. Aynı coğrafik alanlarda üretilen bitkisel ürünler aynı fiziksel çevredeki ben-

zer tehlikelerle karşı karşıyadır. Bu çalışmada, ayrık risk kümelerine ait bağımlı toplam hasar

raslantı değişkenlerinin önceliklendirilmesi tartışılmaktadır. Bunun yanı sıra, aynı risk kümesin-

deki hasarların bağımlı oldukları varsayılmaktadır. Model kurulumu, bu bağımlılığı yansıtacak
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şekilde vektörel tanım ile yapılmıştır.

Model kurulumuna ek olarak, portföy hakkında yeterli bilgiyi içeren ve bunu doğru yansıtan bir

risk ölçütü tanımlamak riskin değerlendirilmesi için en önemli işlevlerden birisidir. Risk ölçütü

belirlenirken, ortalamanın yanı sıra ortalama etrafında yayılma ve korelasyonun da dikkate

alınması gerekir. Bağımlılık durumunda toplam hasarın ortalaması bağımsızlık durumundan

farksız olarak elde edildiğinden; bu çalışmada hem değişkenliği, hem de bağımlılığı hesaba

katan “değişim katsayısı” ve “(standartlaştırılmış) genelleştirilmiş varyans” gibi risk ölçütleri ele

alınmıştır. Aktüeryal risk olarak toplam hasar raslantı değişkeni kullanılacağından bu ölçütler

çokdeğişkenli analiz çerçevesinde tanımlanmıştır.

Risk değerlendirmesi için riskin nasıl tanımlandığını göz önünde bulundurmak önem taşımakta-

dır. Literatürde yer alan birçok risk tanımı incelendiğinde riskin miktarının belirlenebileceği,

ölçülebileceği ve mevcut veri yardımıyla matematiksel bir ilişki olarak ifade edilebileceği sonu-

cuna ulaşılmıştır. Bunun yanı sıra, riski değerlendirirken sadece etkilenen kişi sayısının veya

sadece sonuç senaryo üzerindeki finansal etkinin dikkate alınmasının yeterli olmadığı ve bu

faktörlerin beraber ele alınması gerektiği düşünülmektedir. Riskin teknik açıdan değerlendiril-

mesine ilişkin bu tarştışmalara ek olarak, belirsizlik altında karar verme ve tercihlerin modellen-

mesi kapsamında riskin subjektif yanının da göz ardı edilmemesi gerekmektedir.

Karar vericilerin rasyonel olduğu varsayımına dayalı olan geleneksel beklenen fayda kuramının

aksine, bireylerin veya kurumların karar verirken yansız olmadıklarını gösteren birçok çalışma

bulunmaktadır [4–9]. Bu çalışmada, bireylerin risk algısını ve risk önceliklendirmede yanlı karar

verme süreçlerini dikkate alan bir modelleme geliştirmek amacıyla kümülatif beklenti teorisi

ele alınmıştır. Sıfır fayda prim ilkesi çerçevesinde, bazı özel tanımlı değer fonksiyonları için

toplam hasar fazlası reasürans primleri elde edilmiştir. Elde edilen bu çözümler yardımıyla,

kısmı̂ sıralama teorisi çerçevesinde toplam hasar fazlası sıralandırma bağıntısı önerilmiştir.

Çalışmanın temelini oluşturan bir diğer stokastik sıralandırma ise stokastik baskılamadır. Stokas-

tik baskılama geleneksel vektör sıralamasına kıyasla daha kullanışlı bir bağıntıdır. Schur-kon-

veks fonksiyonlar bu bağıntının en temel araçlarıdır. Riskleri sıralandırmak için kullanılan

birçok risk ölçütü arasında yer alan ve Schur-konveks fonksiyonlar olan varyans ve değişim

vi



katsayısı önemli değişkenlik ölçütleri olarak bu çalışmada kullanılmıştır. Ayrıca, toplam hasar

raslantı değişkeninin sürekli olması nedeniyle çalışmada önerilen model kurulumuna bağlı olarak

baskılama aksiyomları adapte edilmiştir. Uygulamada, veride yer alan mevcut tehlike bölgesi

gruplandırmasının bu bağıntının aksiyomlarını sağlamadığı ve risk kümelendirilmesinin yeniden

yapılması gerektiği anlaşılmıştır.

Çalışmanın ilk aşaması olan mekansal-zamansal interpolasyon için literatürde en sık kullanılan

kriging, ters mesafe ağırlıklandırma, rasgele orman ve bu yöntemlerin çeşitli genişletilmiş ver-

siyonları arasından azaltma yaklaşımıyla ters mesafe ağırlıklandırma yöntemi kullanılmıştır. Bir

mekansal-zamansal interpolasyon yönteminin performansı, örneklemin dinamikleri ve dizaynına,

veri setine ve örneklem üzerinde etkisi olan faktörler arasındaki ilişkiye göre değişkenlik göster-

mektedir. Sözü geçen nedenlerden ötürü bu çalışmada, tarımsal hasarların gerçekleştiği konum

ve zamana ilişkin bilinmeyen meteorolojik verilerin tahmin edilmesi için; daha etkin ve daha

iyi performans gösterdiği birçok çalışma ile gösterilen ters mesafe ağırlıklandırma yöntemi ter-

cih edilmiştir. Bu yöntem uzaklık esaslı bir yöntem olduğundan; örneklem noktalarından hem

mekansal, hem de zamansal olarak uzaklıkları dikkate alan mekansal-zamansal interpolasyon

tekniği olarak kullanılabilir.

Mekansal-zamansal interpolasyon tekniği için gerekli olan optimal örneklem kümesinin, her bir

hasar için ayrı ayrı belirlenmesi gerekmektedir. Bunun için, literatürde yer alan paralel stokastik

optimizasyon teknikleri arasından dolaysız arama yöntemi olan diferansiyel gelişim algoritması

kullanılmıştır. Model kurulumuna dayalı olarak tek değişkenli değişkenler için önerilen al-

goritma, bu çalışmada çokdeğişkenli duruma uyarlanarak geliştirilmiştir. Ayrıca algoritmanın

karar verici kriterlerinden birisi olan popülasyon büyüklüğünün seçimi için de bir çözüm önerisi

sunulmuştur. Hasar verisine ilişkin enlem, boylam ve yükseklik bilgileri ele alınarak optimal

girdi olarak kullanılacak örneklem noktaları, tahmin hatasını ve noktalar arasındaki mesafenin

değişim katsayısını içeren bir maliyet fonksiyonunu minimize edecek şekilde belirlenmiştir.

Tahmin edilen meteorolojik değişkenlerin tarımsal risklerin kümelendirmesine etkisini dikkate

alan model-bazlı kümeleme çalışması ile toplam hasar vektörleri olarak ifade edilen riskler

gruplandırılmıştır. Risk kümelerine ait toplam hasar rasgele vektörleri kısmı̂ sıralama teorisi

çerçevesinde önerilen stokastik bağıntılar ile önceliklendirilmiştir.
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1. INTRODUCTION

In one of Plato’s dialogues, the Theaetetus, “knowledge” is defined in three different ways:

“knowledge as nothing but perception”, “knowledge as true judgement” and “knowledge as a

true judgement with an account”. This situation may also arise in daily life. A question of how

to measure a person’s knowledge can be thought as an example because many answers may arise

to this question. For instance, an individual’s knowledge can be evaluated by her educational

status, her age, the number of books she has read etc. Various measures can be taken for the

evaluation of an indicator. Should we choose the measures that are more efficient or should

we combine them? Are these measurements comparable or not? Finally, if we want to rank

people according to their knowledge, what should we do? Likewise, there is also an interesting

question: “Is the abundance of alien species risky or an enrichment for a given ecosystem?”. We

should answer this depending on what the investigator’s attitude is [10]. It stands to reason that

risk could not only be assessed according to feelings, however paying no attention to the social

interpretation of risk and performing a technical analysis alone may cause a misunderstanding

about decision makers’ (DMs’) judgments of risk.

Comparing or ranking things is one of the main motivations of the choices in human nature.

Rational people always consider the riskiness of things when they need to compare them. They

tend to rank risks in their minds before they act. We can thus adapt the questions about ‘knowl-

edge’ to ‘risk’ topic because the same problematique exists for risk prioritization. The starting

point here should be to ask the question of what the risk is. The risk perception phenomenon has

a huge amount of influence on the definition of risk. Cumulative prospect theory (CPT) could

be a commonly used approach taking the subjective part of risk into account. In our study, we

will adapt CPT in order to take consideration of the impact of risk perception.

Risk analysts need to understand a problem related to risk management, determine potential so-

lutions and deliberate on the criteria according to decisions to be evaluated before starting the

analysis. For this aim, some difficulties could be handled: choosing a simple problem among

alternatives, sorting actions into classes or categories, placing actions in a form of preference or-
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dering, evaluating these actions by describing their consequences in a formalized and systematic

manner, searching for, identifying or creating new decision alternatives, and choosing a subset

of alternatives considering characteristics, interactions and synergies between them [11, 12]. In

this study, we obtain risk clusters and we propose a multivariate model setting which reflects the

dependencies among these clusters considering that similar environmental features cause similar

hazards.

Problem structuring, which is the process of understanding a problem, prevents one from ad-

dressing the wrong problem since it is oriented to problem finding rather than discovering the

answer to problem. If problems are unstructured, no clear formulation could exist to solve them.

Formulation of a problem and solving it helps to reduce the uncertainty. Uncertainty might arise

not only because of the lack of knowledge, but also due to different interpretations. Since differ-

ent stakeholders have different perceptions about the problem, interaction between them helps

to have a negotiated knowledge [13]. From this point of view, thinking about specific actions

or alternatives, adapting alternative perspectives, considering both positive and negative reviews

and handling barriers and constraints are the key points for switching from problem structuring

to model building [12].

1.1. Problem Definition and Objectives of the Study

Decision making and risk prioritization cannot be dissociated from each other since both of them

are the essential parts of risk assessment, which is the procedure of the risk value hierarchy.

As risk management is becoming more complex, describing the factors of risk characterization

efficiently is becoming obligatory. Risk management, which is completely related to risk assess-

ment, is also conducted to help ranking a number of alternatives based on the risk criteria. These

debates on risk notion mostly depend on discussions about defining and accordingly managing

the risk.

In terms of risk analysis, there have been many conflicts between social scientists working on

risk management and technical risk assessors. Social scientists claim that risk should be handled

as a human value and cannot be calculated objectively, whereas the other camp manages risk

only in consideration of technical calculation. At this point of the discussion, we think that
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risk can be evaluated using a mathematical model with including the social characteristics of

it. If we ignore either approach, we will tackle an imperfect modeling problem. Since both

views are reasonable, combining these two aspects may be the best way to cope with both social

and technical features of risk. For this aim, we propose to use actuarial approaches taking the

technical part of the insurance risks and adapt the preference perspective to these models.

In this study, we consider impacts of risk perception on prioritization of risks. For this reason,

we handle various risk definitions as an evidence of the influence of how risk is perceived.

On the other hand, we present a discussion about risk definition emphasizing the importance

of including of uncertainty in this study. To provide a better understanding, we investigate

numerous areas of studies about the approaches for ranking of risks.

To understand the theoretical background of multivariate ranking and prioritization, we focus on

the order theory that allows comparing and ordering objects characterized by multiple indicators.

Unlike total ordering, we do not need to rank all sets of risks when we use partial order theory

(POT) [1]. POT is more appropriate for our study because this approach does not need all pairs

of elements to be comparable [14].

It is assumed in the classical risk theory that individual claims are independent. However,

Dhaene et al. [2] give some examples attesting that independency assumption is unrealistic.

Individual claims may be dependent since they are exposed to similar hazards or affected by

similar adverse effects such as physical or financial environment. For instance, the claims of

an agricultural insurance policy are contingent on the occurrence probabilities and the conse-

quences of the same meteorological event. Crops are subjected to the same physical environ-

ment by being produced in the same geographic area. Hereby, we discuss the prioritization of

the dependent aggregate claim random variables (rvs) of the disjoint risk clusters. We assume

that claims within each cluster are correlated. Ambagaspitiya [3] proposes a general method for

derivation of formulas for aggregate claims’ distributions under dependency assumption. Like-

wise, we assume that the claims arised in similar environment are dependent. Since the claims

of a risk cluster are determined according to the environmental factors, which are correlated, we

use the general vectorial definition proposed by Ambagaspitiya [3].

3



In our study, first we cluster aggregate claims of crop-hail insurance wrt meteorological features

under dependency of individual claims. Having obtained the risk clusters, we prioritize the

aggregate claim vectors related to each cluster using the stochastic ordering relations proposed

within the framework of POT.

The common tendency of the existing studies for comparing portfolios of correlated risks shows

that distributional properties and moments of the aggregate claim rv are useful tools for the aim

of prioritizing actuarial risks. Defining a sufficient measure, which includes enough information

about the portfolio and reflects it accurately, is one of the most important tasks to analyze the

risk. While comparing risks, the mean and the variance of aggregate claims and the correla-

tion between risks are usually considered as risk measures. Although some studies take only

the expected value as a measure, it can be disadvantageous. A risk measure should reflect both

mean and dispersion. The calculation of the expected value of total claim rv is same under both

dependency and independency cases. Thus, in order to take both the dispersion and the depen-

dency into account, one should consider a different measure including additional information

to overcome this drawback. In order to represent both variation and dependency as well as the

mean, we suggest to use “coefficient of variation” and “(standardized) generalized variance” as

risk measures in this study. According to our definition of risk as an aggregate claim rv, we use

these measures in the context of multivariate analysis. Hence, we propose to use the multivariate

definition of the coefficient of variation.

The major aim of this study is to suggest a multivariate stochastic ordering of the actuarial risks

under dependency assumption considering the impacts of DMs’ risk perceptions. This thesis

consists of four main parts. First of all, it is very essential to examine the dependency structure

of the aggregate claims. Secondly, risks should be conveniently clustered for the chosen ordering

relation and the risk measure. The third important part is to propose an appropriate stochastic

ordering for prioritizing them. Lastly, the risk perception under uncertainty must be reflected

within the prioritization procedure. These parts are summarized in Figure 1.1.
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Figure 1.1: The summary diagram for the fundamental parts of this study

Firstly, by setting a multivariate model as SSS(i) =
(
S

(i)
1 , S

(i)
2 , . . . , S

(i)
pi

)′
, we take the dependency

into account. Here, the elements of the aggregate claim random vector (r.vector) SSS(i) are as-

sumed to be dependent. The data is organized according to risk clusters and crop classes. Our

model setting is discussed in Section 1.3 in detail. We first use the existing hazard clustering in

order to prioritize the aggregate r.vectors after setting the model.

In the literature on prioritization of actuarial risks, aggregate claims are ordered according to

their distributions, which is called stochastic ordering. The prioritization of the aggregate claims

is complex because they are calculated as the sum of dependent individual claim amount rvs.

Dealing with multivariate representation of aggregate claims helps us to prioritize dependent

actuarial risks accurately.

By the help of stochastic dominance, which is one of the main types of stochastic ordering,

the aggregate claim r.vectors could be ordered. In addition to that, the premiums could also

be ordered since stochastic ordering helps to order moments of the claim rv and premiums are
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represented as functions of these moments when they are calculated according to well-known

premium principles. The main advantage of stochastic ordering is the adaptability of the rela-

tions for convolution and mixing.

We choose three stochastic orderings for the third part of our study. These orderings are stochas-

tic dominance, stop-loss dominance and stochastic majorization that are studied under POT.

Here, the stochastic dominance ordering is the traditional relation used for ranking purposes.

We use this relation in order to build a bridge between the relations we propose in this study

and the existing relations in the literature. Having provided this interconnection, it is possible to

take advantage of the properties of the stochastic dominance.

The stochastic majorization is a useful and powerful relation to derive inequalities. It has some

advantages in comparison with traditional vector orderings. Schur-convexity is the most use-

ful tool of this relation. We use the variance and the coefficient of variation for ordering risks.

However, the given classification in our data set seems unsuitable for majorization purposes.

It means that the data is not organized and grouped with regard to actuarial risks to be ma-

jorized. Therefore, we need to cluster the risks and to check if these clusters are appropriate for

majorization.

The last relation called stop-loss ordering is used in our study to obtain an ordering relation

considering the risk perception, which is the tendency of DMs who are exposed to risk. People

respond to a risk or a hazard in accordance with their perceptions of that risk. That is the

reason why the term “prioritization” is used instead of “ordering” under preference context.

Ordering risks technically means that DMs are assumed to order risks objectively. However,

their perceptions play a crucial role for risk prioritization [10]. Therefore, it is obvious that

preference modeling is the basic notion arising within the decision theory. Utility theory is the

main concept reflecting the preferences. Stop-loss premium calculated under the utility theorem

is a useful tool to compute the aggregate risk of an insurer. Hence, the stochastic stop-loss

dominance taking into account DMs’ choices is an efficient relation under these discussions.

The most common method for modeling preferences of DMs is the expected utility theory

(EUT), which is also very practical in actuarial literature for many insurance applications. One
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of the most frequent usage of EUT is to obtain results with regard to suitable premium levels

for an insurance contract, from both the perspective of an insured and an insurer’s point of view.

Thus, the highest amount of premium that the insured accepts to pay to be covered and the low-

est amount of premium that the insurer tolerates for providing assurance are determined using

this approach. EUT is extended by some modifications of its axioms and some changes of its

properties. Yaari’s dual theory (YDT), the approach of subjective probabilities suggested by

Schmeidler [4] and the prospect theory are famous methods known as the extensions of EUT.

In this study, these approaches are discussed in detail in terms of their appropriateness to model

risk perception under decision theory.

We propose CPT stop-loss dominance which reflects the impacts of the risk perceptions of DMs.

In comparison with CPT, traditional preference models are insufficient to handle bias of DMs’

choices. Among the most common approaches in preference modeling, we suggest to use CPT

approach for the decision making part. In our study, we obtain CPT stop-loss premiums by

solving different utility equilibrium equations under the zero-utility premium principle.

The thesis is organized as follows:

In introduction, we review the literature after defining our problem and summarizing the thesis.

We also introduce the dependency structure of the actuarial risks through a representation of

aggregate claims in the frame of multivariate analysis.

In Chapter 2, we explain the crucial role of risk perception and give various risk definitions

in detail in terms of assessment and ranking of risks. We discuss the controversial issues and

different approaches about defining risk to figure out the concept of risk. In this chapter, we also

discuss approaches of preference modeling under risk and under uncertainty in terms of their

advantages and drawbacks.

In Chapter 3, we discuss stochastic ordering relations as various approaches adapting order

theory to actuarial models for comparing and ordering risks. At first, we present axioms of

POT and representations of partially ordered sets as useful tools for ordering. We also introduce

geographic information system (GIS), which provides convenience for environmental studies.

Moreover, we handle various actuarial applications of ordering relations as well as ordering
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under risk.

Chapter 4 provides a relationship between stochastic ordering notion and CPT. In this chapter,

we adapt risk perception to the technical assessment of risk. We obtain solutions for stop-loss

premiums and we propose stop-loss dominance relations by the help of zero-utility premium

principle under CPT.

In Chapter 5, we introduce the theory of majorization and Schur-convexity first. We discuss

stochastic majorization and its applications as one of the stochastic ordering approaches. We

propose a rearrangement of the aggregate claim vectors for the sake of fulfillment of the ma-

jorization axioms. In addition, we present a case study in this chapter in order to show that an

accurate risk clustering is needed for majorization purposes.

In Chapter 6, we cluster agricultural claims considering their spatial and temporal characteristics

estimated by a spatiotemporal interpolation (STI) technique. This study also differs from the

previous ones due to finding optimal sample set for STI method using an extended differential

evolution (DE) optimization algorithm. We also suggest a way to choose the values of control

variables of DE algorithm. We present the application of this study by introducing our data set

of crop-hail insurance and explaining how we organize this data for the prioritization aims. We

give the results of STI through optimization, risk clustering and stochastic majorization ordering

in this chapter.

Finally, we make our concluding remarks and present our ideas for further research in Chapter 7.

1.2. Literature Review

There are many studies about technical assessment of risk. Jactel et al. [15] adapt multicrite-

ria decision analysis for the comparison of forest management alternatives. In their approach,

several risks are considered simultaneously and different evaluation criteria are used to compare

these risks. Ball and Golob [16] summarize overall risk management procedure including risk

prioritization and explain that there exist no commonly accepted definition of risk ranking. In

this context, Klinke and Renn [10] work on two-fold assessment of risk considering both ob-

jective and subjective parts of it. Our interest on risk perception impact is arised within these
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discussions.

Marhavilas et al. [17] claim that risk could be quantified, measured and defined as a mathe-

matical relationship through data. Methodologies on risk assessment between 2000 and 2009

are investigated. This study provides a classification and comparison of the methods. Accord-

ing to Alencar and Almeida [18], there is a tendency on assessing risk considering that either

the number of people affected or the financial impact on the resulting scenario is taken into ac-

count. However, handling only one of these factors is insufficient when we pay attention to the

complexity of the analysis.

In addition, Marsaro et al. [19] argue that multicriteria decision model incorporates multiat-

tribute utility theory, which considers DMs’ preferences and some aspects of the decision the-

ory. The risk of transporting natural gas by pipeline is assessed in this study. Since the length

of pipelines varies from a few meters to hundreds of kilometers, they subject to several types

of risk that can cause a gas leak such as corrosion, third party damages, workman faults. Since

a pipeline normally extends over different areas, accidents have different consequences from

an area to another. For instance, an accident in an uninhabited area does not influence people

in a similar way compared to an accident in a residential area. Thus, using multiple criteria

according to the risk characteristics is very important. The risk management process, which is

updated by the risk assessment, is organized to support the decision with regard to the resource

constraints. By means of this risk management mechanism, resources could be allocated ideally

and risk is mitigated and managed more appropriately according to the usage of resources by

DM. Leung et al. [20] investigate and examine similarities or dissimilarities among the existing

risk approaches. In their study, it is aimed to combine more than 300 individual risk assessment

models in the literature and to integrate the main concepts into an appropriate model in both

verbal and mathematical ways. Detailed information about different areas especially the ones

considering environmental risk prioritization is given in Section 2.3.2.

As a discussion of risk concept, Aven [21] presents various perspectives of risk consisting of

events, probabilities and consequences. Škulj [22] discusses subjective vs objective probability

concepts suggesting to use non-additive probabilities. Schmeidler [4] handles this topic under

traditional EUT proposed by von Neumann and Morgenstem [23].
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In addition to EUT, which is the most commonly-used preference model, various preference

approaches such as distorted expectation theory, expected utility with non-additive probabilities

and (cumulative) prospect theory are studied by Savage [5], Ellsberg [6], Yaari [7], Tversky and

Kahneman [8], Kahneman and Tversky [9], Denuit et al. [1].

Heilmann and Schröter [24] and Denuit et al. [1] suggest several applications of risk ordering

under independence and dependence assumptions. Dhaene et al. [2] provide a different view to

risk ordering by working on comonotonicity property. As for POT and its applications, Patil and

Taillie [25] and Brüggemann and Patil [14, 26] provide a significant contribution to literature.

Kahneman and Tversky propose prospect theory in 1979 and modify it in 1992 by discussing

violations of EUT [9, 27]. Kaluszka ve Krzeszowiec [28] provide an understanding of zero-

utility premium principle under CPT, which helps us to contribute to it by suggesting stop-loss

dominance within the frame of CPT. The axioms given by Choquet [29] and the concepts of

CPT discussed by Eckles and Wise [30] are very useful for our study to obtain CPT stop-loss

premium solutions.

Marshall et al. [31] define majorization inequalities and provide their properties. In addition

to CPT stop-loss dominance, majorization relation is another valuable ordering relation in this

thesis. In order to apply this relation, we need to cluster aggregate claims in our data set through

STI. The setting given by Susanto et al. [32] enables us to form the optimization problem for the

STI part. DE algorithm is proposed by Storn and Price [33] as an efficient optimization approach.

We extend this algorithm to find the optimal sample set for the estimation of environmental

characteristics of our portfolio.

1.3. Multivariate Representation of Actuarial Risks

In order to introduce our model setting, let us consider a crop-hail insurance portfolio. We

suppose that there arem risk clusters and pi crop classes for i-th risk cluster with i = 1, 2, . . . ,m.

We define the aggregate claims of the i-th risk cluster as a pi-variate r.vector as follows:

SSS(i) =
(
S

(i)
1 , S

(i)
2 , . . . , S(i)

pi

)′
, (1.1)
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where pi is the number of crop classes. Here, the aggregate claim of the i-th risk cluster and j-th

crop class can be represented by the rv S(i)
j and it is obtained as

S
(i)
j =

Nj∑
k=1

X
(i)
jk ,

where Nj is the claim number of the j-th crop class and X(i)
jk is the claim amount of the k-th

individual in the j-th crop class and i-th risk cluster with i = 1, 2, . . . ,m; j = 1, 2, . . . , pi and

k = 1, 2, . . . , Nj .

Figure 1.2 helps us to understand the prioritization of the aggregate claim r.vectors better.

Figure 1.2: Priozitization of aggregate claim r.vectors of risk clusters

Here, SSS(1),SSS(2), . . . ,SSS(m) for i = 1, 2, . . . ,m denote aggregate claim r.vectors for the first risk

cluster, second risk cluster, . . ., m-th risk cluster, respectively. There are pi aggregate claim rvs

S
(i)
j , j = 1, 2, . . . , pi within each vector.

If we order the risk clusters from the least risky one to the most risky one, where the least risky

one is on the top, then a general ordering inequality could be denoted as

SSS(1) - SSS(2) - · · · - SSS(m),
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which means that the first risk cluster is less riskier than the second risk cluster, and so on. Here,

“-” is a general notation for a binary relation over a partially ordered set. In the following

chapters, we use this relation as -sd, -sl and -maj for first-order stochastic dominance, stop-loss

dominance and stochastic majorization, respectively.

Ambagaspitiya [3] defines the aggregate claim rv for each group according to the collective risk

model considering the distributions of both the claim number rv and the claim size rv sepa-

rately. In order to model the r.vector SSS(i), a multivariate definition is used. For the evaluation

of aggregate claim r.vectors, we consider various risk measures such as generalized variance

(GV), standardized generalized variance (SGV) and coefficient of variation (CV). A general

dependency structure of a single risk cluster i is represented in Figure 1.3.

Figure 1.3: Dependency of aggregate claim rvs for a single risk cluster

This figure reflects the dependency of aggregate claims for multivariate case where each risk

cluster i consists of pi crop classes. The aggregate claim rvs for the i-th risk cluster are included

in the aggregate claim r.vector SSS(i). Here, the claims within each risk cluster are correlated

whereas the risk clusters are disjoint. According to our data set, the risk clusters are deter-

mined with respect to (wrt) the environmental similarities. Therefore, we assume that the claims

exposed to similar environmental risks, i.e. the claims arising in the same hazard region, are

dependent.
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We can compare the risk clusters using risk measures in two ways: (i) Ordering the aggregate

claim r.vectors using the risk measure γ
(
SSS(i)
)
, and (ii) Ordering the overall aggregate claim rvs

given in Equation (1.5) using the risk measure γ
(
S(i)
)
. According to the common tendency in

the literature of assessing the riskiness of a rv, these measures should reflect both the expected

value and the dispersion. One of the common examples for measuring both statistical mean and

variation together is using CV. In addition to CV, aggregate claim r.vectors could be ordered by

GV or SGV which reflects variation. The following equations show the calculations of these

risk measures:

(i) For ordering aggregate claim size r.vectors SSS(i) of each risk cluster, we use the measure

GV
(
SSS(i)
)

or SGV
(
SSS(i)
)

proposed by SenGupta [34]. They represent overall variabilities.

GV is calculated as

GV
(
SSS(i)
)

= det(ΣΣΣ(i)) =
∣∣ΣΣΣ(i)

∣∣ , (1.2)

and SGV is calculated as

SGV
(
SSS(i)
)

=
∣∣ΣΣΣ(i)

∣∣ 1
pi . (1.3)

In addition to GV and SGV, we propose to use a definition for the multivariate CV as

follows:

CV
(
SSS(i)
)

=
(
µµµ(i)′ΣΣΣ(i)−1

µµµ(i)
)− 1

2
. (1.4)

This equation is a generalization of the univariate CV given in Equation (1.6). Here, the

mean vector of the r.vector SSS(i) is represented as

µµµ(i) =
(
µ

(i)
1 , µ

(i)
2 , . . . , µ

(i)
n

)′
,

whereas the covariance matrix of the r.vector SSS(i) is obtained as

ΣΣΣ(i) =



(
σ

(i)
1

)2

σ
(i)
12 . . . σ

(i)
1n

σ
(i)
12

(
σ

(i)
2

)2

. . . σ
(i)
2n

...
... . . . ...

σ
(i)
1n σ

(i)
2n . . .

(
σ

(i)
n

)2


.
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(ii) For ordering overall aggregate claim size rvs S(i) of each risk cluster, the overall aggregate

claim size rv is calculated by the summation of the aggregate claims of the crop classes

for each risk cluster as

S(i) =

pi∑
j=1

S
(i)
j = 111′SSS(i), (1.5)

where 111 is the k-dimensional vector of ones. We use the measure CV
(
S(i)
)

to order S(i)

scalar quantities. Let CV
(
S(i)
)

be the univariate CV which is calculated as

CV
(
S(i)
)

=
σ(i)

µ(i)
, (1.6)

where µ(i) = 111′µµµ(i) is the mean and σ(i) = 111′ΣΣΣ(i)111 is the standart deviation of the rv S(i).
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2. DECISION MAKING UNDER UNCERTAINTY

2.1. Introduction

In this chapter, we concentrate on decision making associated with risk prioritization. Since our

main aim in this thesis is to make a connection between risk perception and ranking of risks,

we consider tendencies of individuals in their choices. In this context, it is very important to

assess the structure of DMs’ preferences, i.e. risk tendencies and judgments [19]. Multicriteria

decision making is an attitude which helps DM to come up with a prior idea when there exist

several contradictory views [35]. In other words, this approach deals with multiple angles related

to characteristics of DMs. Also, it could be useful to identify outcomes in monetary values and

to overcome conflicts among different criteria [36].

We can find many definitions of risk in the literature. According to common tendency in es-

pecially engineering area, risk is defined in conjunction with expected loss. However, such an

understanding may be insufficient when potential consequences are large with small probabili-

ties. Although the expected value seems to be ordinary in such cases, Haimes [37] claims that

expected value is deceptive for rare and extreme events in contrast to common losses. Thus, we

need to consider an expression reflecting a quality more than expected value when we evaluate

risk.

Having reviewed the existing risk definitions in the literature, we could see at first glance that

Campbell [38] defines risk as “expected disutility”. According to classical decision theorists, the

expected (dis)utility yields rational choices. From this point of view, Paté-Cornell [39] claims

that preferences, i.e. tendencies, should not be parts of risk assessment. Description of risk

should be possible even when DMs could not define their utility functions.

Aven [21] investigates various definitions of risk in scientific literature. Some definitions of risk

are as follows:.

(i) “a measure of probability and severity of adverse effects” [40].
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(ii) “a combination of probability of an event and its consequences” [41].

(iii) “(si, pi, ci), where si is the i-th scenario, pi is the probability of that scenario, and ci is the

consequence of that scenario” [42–44].

(iv) “the uncertainty of an outcome, of an action and of an event” [45].

(v) “the situation or the event where something of human value (including humans them-

selves) is at stake and where the outcome is uncertain” [46, 47].

(vi) “an uncertain consequence of an event or an activity wrt something that humans value”

[48].

(vii) “a two-dimensional combination of events/consequences and associated uncertainties”

[49, 50].

(viii) “uncertainty about and severity of the consequences (or outcomes) of an activity wrt some-

thing that humans value” [51]

In this chapter, we give various explanations of risk perception and the axiomatic differences

between risk and uncertainty. We also provide basic axioms of preference modeling and different

approaches handling DMs’ choices under risk and uncertainty.

Section 2.2 explains the importance of risk perception and various definitions of risk for risk

assessment. In Section 2.3, we present the place of risk prioritization in risk management pro-

cess through some examples. Section 2.4 provides fundamental conditions of preference theory

axiomatically. In Section 2.5, we introduce traditional EUT and its properties related to the

given axioms. As an alternative to EUT, we give YDT in Section 2.6. Section 2.7 presents an

extension of EUT using non-additive probability approach. In Section 2.8, we provide a gen-

eral introduction of prospect theory, which reflects bias in DMs’ decisions. Finally, Section 2.9

concludes this chapter.
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2.2. The Concept of Risk

Aven [21] claims that perspectives of risk depending on probabilities are insufficient. One should

handle urcertainties in order to define risk accurately. The concept of risk usually includes

events, probabilities and consequences (outcomes). This is formalized as Risk = (A,C, P )

where A represents event, C denotes consequence of A and P is the associated probability.

If we adapt the definition of risk to our context, we must note that the severity is just a tool

for describing the consequences. In addition to this, uncertainties are expressed through prob-

abilities, however they are connected with events and consequences. Aven [21] concludes that

for interpreting probability, there exist two alternatives basically in the literature for practical

use of the risk context which are objective relative frequency interpretation (Pf ) and subjective

probability (Ps) as the measure of uncertainty. Uncertainty is often invisible behind the proba-

bilities, therefore limiting attention to them could camouflage factors that may cause surprising

outcomes. An example is given through Ellsberg paradox in Section 2.7 that may help to under-

stand the significance of uncertainty. Therefore, dealing with uncertainty instead of probability

is a significant aspect since probability is commonly used as a tool to reflect uncertainty. For

the first interpretation of probability, we can define events associated with consequences (losses)

and probabilities that reflect the frequency. The estimation of Pf usually depends on analysts’

knowledge. On the other hand, for the case that probability is a subjective measure, it can be

said that uncertainty is based on DM’s knowledge. Hence, risk is not only an analytic concept

but also a normative notion [10].

2.3. Risk Management Strategies

The risk management process can be generally characterized in accordance with the steps shown

in Figure 2.1 [52].
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Identification of Risk

Assessment of Risk based on Perception

Prioritization of Risks

Mitigation and Planning of Risk

Risk Tracking

Assessment of Risk = (A,C, Ps)

Assessment of Actuarial Risk Criticality

Re-assesment of
Risk = (A,C, Ps)

Figure 2.1: Risk management: Fundamental steps

As it is seen from the process that the prioritization of risks is updated by risk assessment through

the risk identification, and supports the risk mitigation and risk tracking by providing informa-

tion and tools. Therefore, we investigate the risk criteria deeply in addition to the concept of risk

itself.

According to Ball and Golob [16], ordering risks indicates prioritization or ranking of objectives

with regard to a significance level. There does not exist a commonly accepted definition of risk

ranking and apparently has different meanings for different individuals, and even for the same

individual at different times. One of the most common techniques for prioritizing hazards is to

obtain scores for hazards by plotting them according to probability and consequence. Hazards

having high probability and severe consequence usually have the first priority. As explained

in their study, risk ranking may be performed variously by different actors, who have different

roles in risk management, according to their own perceptions of essence and need about their

occupations. Among several approaches of risk prioritization, we summarize some examples

provided by Ball and Golob [16] in this section.

In engineering, the most common techniques such as checklists, fault trees, event trees and loss

control procedures might be counted as precursors to the process of risk ranking. A well-known
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example widely used in chemical engineering for the identification of safety interventions and

process efficiency improvements is called as the Hazard and Operability Study (HAZOP). This

technique is used for the identification of hazards. On the other hand, it might not provide

enough knowledge about the hazards since the information on tolerable risks or those requiring

action is not known in this method.

2.3.1. Debate Topics Related to the Risk Assessment

Klinke and Renn [10] offer an approach to determine criteria for risk assesment, and to classify

types of risk and management strategies guaranteeing scientific reliability, demonstration of

social variety and political practicability. It is suggested that being aware of the debate problems,

risk assessment process can be performed beneficially. In this study, legitimate function of risk

management is discussed within the frame of some crucial themes. Since we are interested in

“risk perception” notion in our study, we discuss three topics in detail.

Firstly, twofold assessment of risk, which are realist and constructivist approaches, should be

considered. The dual nature of risk is one of the major controversial issue arised from examin-

ing the possibility [53, 54]. The question here is whether methodical estimations of risk appear

objectively or not. According to Hilgartner [55], Luhmann [56] and Adams [57] in which a con-

structivist approach is handled, the procedure of valuing risk depends on mental constructions

according to a logical framework. Besides, the realism perspective suggested by Catton [58],

Dunlap [59], Dickens [60] and Rosa [46] claims that technical risk estimates are accurate indi-

cators of hazards that will probably influence people. In this approach, estimates are obtained

by calculated results without paying attention to attitudes or judgments of investigators.

According to Klinke and Renn [10], the term “risk” undoubtedly denotes the negative experience

that people fear, and this fear obviously comes from an occurrence that has not yet happened but

might happen in the future. Since there exist various aspects of risk identified as negative effect

or harm, it is suggested that risks are difficult to examine and to judge from an entirely objectivist

viewpoint. As a result of these discussions, we try to include this idea into our definition of risk

prioritization by means of the prospect theory.
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Secondly, involving public in the risk assessment process is another controversial issue which is

related to the first topic in terms of the argument about the subjective vs objective risk analysis.

This topic is important for determining acceptable levels of risk to consider the individuals who

are likely influenced by hazard. Although it is an incomplete debate and does not seem to be

completed more recently, we should consider the variables having impacts on public’s judgment

of risk. These factors can be summarized as expected perceived loss frequency, catastrophic

perspective, qualitative characteristics of risk, stimulated emotions by risk, trust in regulators

and institutions managing risk, and beliefs of society related to the reason of risk or of risk-

handling actors [61–65].

It is considered that public concerns, which reflects perception, need to be involved into risk

evaluation. WGBU [66] suggests a list of risk criteria that are scope of damage, probability of

occurance, incertitude (entire uncertainty), omnipresence (geographic dispersion of risks), per-

sistency (temporal characteristics of risk), reversibility (capable of being restored), delay effect

(elapsed time from the event and the consequence), violation of equity (difference between risk-

averse and risk-seeking DMs), and potantial of stimulation. These criteria seem to be appeared

as the most effective ones for indicating various risks [10]. By means of these criteria, we can

suggest an adequate indicator for a measurement of risk perception. In our study, handling the

temporal and spatial characteristics of risk clusters in addition to paying attention to the bias of

DMs through prospect theory enables us to take these criteria into account.

Lastly, dealing with uncertainty has become the most significant debate as the literature about

this issue is improving. The term “uncertainty” indicates a collection of various aspects that can

be ignored in risk assessment. As mentioned before, it is undoubtedly inferred that probability

itself is an estimation of an uncertain event. Having worked on CPT, we take into consideration

of uncertainty in this concept.

2.3.2. Different Application Areas for Prioritization of Risks

Being an important issue of human behaviour, POT falls within the boundaries of several fields;

one of which, public health, is our specific interest. We intend to apply the order theory to a

chosen risk area such as foodborne disease, plant health or agricultural risks, because they are
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rather vulnerable aspects of public health. Since we could obtain agricultural insurance claim

data set, the application part of our study consists of the analysis of an agricultural data set. On

the other hand, the existing methodology on other areas of environmental risks is enlightening

to conduct our study.

The prioritization and management of foodborne risks have accelerated in recent years to re-

duce the rate and effects of foodborne diseases. There exist various methods for prioritization

considering health-related, economic and social factors [48, 67–70]. For instance, Ruzante et al.

[71] rank foodborne risks according to PROMETHEE method [72]. In their study, four factors

are considered to assess the food safety risks and six pathogen-food combinations are ranked ac-

cording to these factors. This study provides a transparent multicriteria ranking process in which

assessment of various scenarios depending on the researchers’ aims can be done systematically.

As for plant health related risks, the ecological balance is distorted by the biological species

being under the threat of rapid extinction. One of the most substantial agents which adversely

affect the plant health is invasive alien species (IAS). Even though there exist innocuous in-

vaders, some of them may seriously damage especially environment and economy.

IAS is any animal or plant that has a tendency to extend over an area and leads to ecological and

social problems causing harm to economy and human welfare. Since ecological balance is like

a chain, some links in this chain are broken due to IAS. Invaders threaten not only plants and

animals, but also humans as the link of this chain. For instance, the plants that are nutritional

source of humans will be imperiled when an invasive plant arises in that ecology [73].

Although plant health risk is an international phenomenon causing ecological, economic, social

and public health problems; there is a restricted awareness about the risk perception of environ-

mental managers or experts [74–77]. Perception of risk is very significant for thinking about

and beginning to deal with the issue of IAS [78–80]. Accordingly, Andreu et al. [81] survey

environmental managers’ thoughts about noxious alien plants for the purpose of identifying and

analyzing the impacts of their perceptions of IAS.
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2.4. Fundamental Axioms and Theorems in Preference Modeling

In decision making, we pay attention to the process that DMs’ preferences are modeled. Ex-

plaining behaviors while making a decision is a complex problem due to the difference among

decisions which is directly related to ascertaining the perceptions of individuals. Preferences dif-

fer significantly among individuals, thus values are identified as prospects in decision making.

This divergence leads us to seek a method modeling DMs’ tendencies accurately.

“Subjective (personal) probability” concept is proposed to measure the impacts of DMs’ tenden-

cies on preferences. Škulj [22] suggests to use non-additive probabilities because these prob-

abilities have been emerging as easily modified measures to evaluate subjective probabilities.

According to this study, subjective probability is the probability that DMs assign to events when

real probability is not known. It is also claimed that non-additive probabilities can provide sat-

isfactory results even if accurate probabilities are known. In addition, Schmeidler [4] proposes

an approach justifying the usage of non-additive probabilities for the definition of risk and ac-

knowledges adaptations of these probabilities to EUT.

The subjective probability notion also initiates a discussion about risk and uncertainty terms.

Škulj [22] compares definitions of risk and uncertainty, and explains their dissimilarity in this

point of view. Risk is identified as a term connected with DMs’ choices through known probabil-

ities of events whereas uncertainty is about decisions made with unknown probabilities. There-

fore, dealing with uncertainties in place of probabilities is necessary since probabilities represent

uncertainties. Schmeidler [4] also discusses assigning probabilities to uncertain events. It is pro-

posed in this study that enabling non-additive probabilities provides flexibility for DMs to assess

probabilities.

In our study, several different approaches such as EUT, distorted expectation theory (YDT), ex-

pected utility with non-additive probabilities, and prospect theory are discussed and compared

in terms of reflecting the impacts of risk perception. Among all approaches discussed, we sug-

gest to use non-additive probabilities to define the prospects because they provide a flexibility to

model DMs’ preferences even if they are biased.
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Schmeidler [4] compiles several properties used for the preference relation theories. These ax-

ioms are weak order, comonotonic independence, independence, continuity, (strict) monotonic-

ity, and nondegeneracy. They are very useful to understand the difference among preference

models. For detailed information, see [4].

The property of completeness may be the most restrictive assumption since DMs have to make

their choices according to total ordering. Total ordering requires “totality” which means that all

pairs of elements in a set are comparable under a defined relation. On the other hand, partial

ordering is more useful than total ordering for our context, we can hence rank all risks even if

there exist incomparable ones.

von Neumann-Morgernstern Theorem representing traditional utility theorem and Anscombe-

Aumann Theorem are two fundamental theorems that provide an insight into the preference

modeling. We discuss approaches for relations between risky choices in the following sections.

Schmeidler [4] provides an implication about using von Neumann-Morgernstern theorem to

adapt subjective probabilities.

As an extension of these fundamental theorems, Schmeidler [4] proposes a new theorem called

as “Schmeidler’s Theorem” in our study hereafter. It is proven that making Anscombe-Aumann

Theorem less restrictive by changing the property strict monotonicity to monotonicity yields no

difference. In addition to this, more extensions to Anscombe-Aumann Theorem are provided.

Schmeidler [4] also uses comonotonic independence instead of independence. Finally, it is sug-

gested to use a non-additive probability measure υ in the place of the finitely additive probability

P. For detailed information, see [4].

2.5. Traditional Expected Utility Theory

EUT has widely used in the actuarial literature as a representation of rational decision making

under risk and uncertainty. Within the frame of EUT, a value is assigned to monetary amount

through a utility function reflecting preferences of DMs. Wang and Young [82] stated that this

theory has been used to make a decision in three important insurance applications: (i) optimal

(re)insurance policies, (ii) optimal insurance when moral hazard or adverse selection exists, and
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(iii) choice between insurance buying and precautionary saving.

EUT has been connected to “stochastic dominance”, which is one of the most commonly used

stochastic ordering relations, because stochastic dominance can be indicated as a partial ordering

in terms of utility functions [82]. Stochastic dominance is often used in decision analysis where

one risky option is compared with another superior/inferior one. EUT is discussed in the frame

of stochastic dominance in Section 3.3.2.

In this section, the axioms proposed by von Neumann and Morgenstem [23] are provided. They

are used for ordering risks according to decision making under EUT. Let X, Y, Z ≥ 0 be

random claims, or risks, and let

SX(t) = P(X > t), t ≥ 0

represent the survival function of X . The inverse survival function is defined as [82]

S−1
X (q) = inf{t ≥ 0 : SX(t) ≤ q}, 0 ≤ q ≤ 1. (2.1)

Yaari [7] presents the axioms of EUT as follows.

Proposition 2.5.1. (Axioms of von Neumann and Morgenstem’s EUT) Consider that X - Y

means “X is less riskier than Y ”. Then,

1. Neutrality: If SX = SY , then X - Y and Y - X , i.e. X and Y represent equal risks.

2. Complete weak order: “-” is reflexive, transitive and connected.

3. Continuity: “-” is continuous in the topology of weak convergence.

4. Monotonocity: If SX ≤ SY , then X - Y .

5. Independence: If X - Y , and Z is any risk, then

{(α,X), (1− α,Z)} - {(α, Y ), (1− α,Z)},∀α ∈ [0, 1],
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where {(α,X), (1− α,Z)} represents probabilistic mixture defined as

S{(α,X),(1−α,Z)}(t) = αSX(t) + (1− α)SZ(t), ∀t ≥ 0.

Let a utility function be u s.t. [23]

X - Y ⇔ E[u(−X)] ≥ E[u(−Y )].

Here, the utility function and expected utility are defined in the following definition [82]:

Definition 2.5.2. Consider that u is a (normalized) utility function. For X ≥ 0, the expected

utilities are given by

E[u(X)] =
∫∞

0
SX(t) du(t) =

∫ 1

0
u[S−1

X (q)] dq, and

E[u(−X)] = −E[ũ(X)],

(2.2)

where ũ is the utility defined as ũ(w) = −u(−w). Here, u is defined on R with u(0) = 0.

DMs do not prefer one risky choice over another for the reason that it has higher expected utility.

Rather, a risky choice yields a higher expected utility because of the fact that it is preferred to

the other. DMs do not have utilities, they have preferences. Utilities are only representations

of these preferences. DMs behave as if they maximize their utilities when they make choices

based on their preferences [83]. Although EUT has some problems with reflecting non-objective

preferences, this theory has contributed to the literature by providing an understanding on man-

agement of risk and assessment of uncertainty [1].

For ordering risks, it is commonly accepted that tendencies of individuals should be considered

as well as the technical calculation of risk. In this context, EUT has widely adapted to the

actuarial literature with the motivation of understanding managerial and decision economics of

risk and uncertainty.

In this study, we take the notation suggested by Kahneman and Tversky [9] to define prospects

and preference relations. Considering that xi represents outcome with probability pi in the
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prospect (x1, p1; . . . ;xn, pn), the sum of the probabilities of outcomes must be equal to 1, i.e.

p1 + . . . + pn = 1 according to EUT. Three axioms of EUT applied to preferences are given as

follows.

Proposition 2.5.3. Let {x1, . . . , xn} be the set of outcomes with the probabilities {p1, . . . , pn}.

The properties of the utility function u are as follows:

1. Expectation: U(x1, p1; . . . ;xn, pn) = p1u(x1) + . . .+ pnu(xn) is the representation of the

utility of a prospect where U denotes the expected utility of its outcomes.

2. Asset integration: (x1, p1; . . . ;xn, pn) is acceptable iff U(w + x1, p1; . . . ;w + xn, pn) >

u(w) where u(w) is the utility function of the asset w.

3. Risk aversion: If u is concave, i.e. u′′ < 0, it means that the DM is risk-averse.

We deal with the “risk aversion” axiom specifically in this thesis because we are interested in

DMs’ risk tendencies in their preferences. This axiom reflects their attitudes in buying insurance

to avoid the uncertain and unpredictable events. If they prefer a certain expected value of a

prospect instead of prospect X itself, they are called “risk-averse DMs”. Thus, if a DM is

risk-averse, then

E [u(X)] ≤ u [E(X)] . (2.3)

This relation is a result of Jensen’s inequality [1].

The meaning of preference relation - may cause an ambiguous situation. Rvs represent positive

monetary amounts in economics whereas they represent losses in actuarial literature. Thus, if

X - Y , rational DMs prefer Y to X according to interpretation of economists because Y has a

larger monetary income. On the other hand, actuaries would preferX to Y according to the same

ordering relation since X is a smaller claim than Y . To overcome this doubtful interpretation,

we suggest to use this relation as it is considered in actuarial literature by taking rvs as claims.
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2.6. Distorted Expectation Theory: Yaari’s Dual Theory

Yaari [7] proposes an alternative theory by adjusting the independence axiom of classical EUT.

In this study, it is suggested to entail independence property wrt direct mixtures of “payments of

risky prospects” instead of entailing independence wrt mixtures of “only risky prospects”. Thus,

evaluation of risky prospects seems similar with EUT apart from that functions of payments

and probabilities exchange [1]. In YDT, risk attitudes are characterized by distortion applied

to distributions. A duality between concavity and convexity of a utility function is proposed

in [7]. The utility function is concave in risk aversion context and it is convex in uncertainty

aversion context. Therefore, YDT provides us a different perspective to understand the nature

of preferences in terms of subjective preferences.

To provide theory of distorted expectation, we firstly give some definitions. Let X rv denote

DM’s prospect taking values from (−∞,+∞). Then,

E(X) = −
∫ 0

−∞
[1− SX(x)] dx+

∫ +∞

0

SX(x) dx. (2.4)

The derivation of this equation is given in Appendix A.1.1. Here SX(x) = P(X > x), which is

defined as survival function in the previous section, could be called as decumulative distribution

function (df) or tail function as in [1].

On the other hand, assuming that there exists a non-decreasing function g called “distortion

function” for each DM, Yaari [7] takes the “distorted expectation” of X as the same derivation

in Equation (2.4) to value the future prospect. Considering g : [0, 1] → [0, 1] where g(0) = 0

and g(1) = 1, the distorted expectation of X is defined as

Eg(X) = −
∫ 0

−∞
[1− g (SX(x))] dx+

∫ +∞

0

g (SX(x)) dx. (2.5)

If X is a non-negative rv, then Equation (2.5) is replaced by

Eg(X) =

∫ +∞

0

g (SX(x)) dx. (2.6)
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Since SX(x) is a non-increasing function of x, g (SX(x)) is also a non-increasing function of

x, as well. Thus, Denuit et al. [1] introduce g (SX(x)) as “risk-adjusted tail function”. As a

result, the aim of DM is to maximize Eg(X) when X is taken as wealth. Let X and Y be two

prospects, then DM prefers wealth Y instead of X , i.e. X - Y ⇔ Eg(X) ≤ Eg(Y ). On the

contrary, if we need to make an inference based on actuarial literature; DM aims to minimize

Eg(X) when X is taken as a claim rv. Consider that X and Y are two prospects of loss, DM

prefers X instead of Y , i.e. X - Y ⇔ Eg(X) ≤ Eg(Y ).

According to Yaari’s hypothesis of distorted expectations, DMs are risk-averse if g is convex,

i.e. g(p) ≤ p, ∀p or equivalently g (Sx(x)) ≤ SX(x), x ∈ R. It shows that risk-averse DMs

underestimate the probability of their potential fortune’s being more than a certain value, i.e.

P(X > x), when they represent their preferences by distortion function.

As maintained by EUT, for a risk-averse DM, the preference tendency of DM chooses a certain

expected value of a prospect rather than an uncertain prospect itself. This statement can be

represented as follows.

Eg(X) ≤ E(X) = Eg [E(X)] . (2.7)

To clarify the difference between EUT and YDT under preference modeling, the comparison of

these two approaches are handled in terms of attractiveness of risk [1]. For a non-negative rv X ,

it is measured as

E[u(X)] =

∫ 1

0

u (VaRp(X)) dp, (2.8)

according to EUT whereas it is evaluated as

Eg(X) =

∫ 1

0

VaRp(X) dg(1− p), (2.9)

in YDT. Let us assume that VaRp(X) is the potential fortune amount, which is also called as

value-at-risk. Equations (2.8) and (2.9) show that VaRp(X) itself is adjusted by u and tail

probability is not changed under EUT whereas tail probability p is modified and the fortune is

not adjusted under YDT. For derivations of Equations (2.8) and (2.9), see Appendix A.1.1.
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2.7. Expected Utility with Non-additive Probabilities

The most useful characteristic of non-additive subjective probabilities is that they can be adapted

to expected utility models. Practicality of non-additive probabilities is discussed through “Ells-

berg paradox” in this section. Savage [5] improves von Neumann’s EUT by revising it with

additive subjective probabilities. However, this extension may still remain insufficient. DMs

may have different behavior tendencies when they estimate probabilities. A more flexible model

is needed because it is proven that they overestimate (underestimate) small (large) probabilities.

As a result of these discussions, Schmeidler [4] proposed a new extension of EUT which in-

cludes non-additive probabilities instead of additive ones. In addition to handling additivity of

probabilities, this model also explains “uncertainty aversion” which proves the inconsistency of

Savage’s additive EUT. Škulj [22] defines uncertainty aversion as the situation that DM prefers

choices having more information instead of choices where less information is available.

In order to understand uncertainty aversion, we introduce the Ellsberg paradox example which

is given by [4]. Consider that urn A and urn B consist of red or black balls. It is known that the

urn A contains 50 red and 50 black balls, but there is no information about the colors of the 100

balls in urn B. One ball is randomly picked from each urn and a person is asked to make a bet

on the color of the drawn balls. Four events occur which can be indicated as AR,AB,BR,BB,

where the event “the ball drawn from urn A is red” is denoted by AR etc.. Betting on each

event, the person takes $100 if that event happens and $0 otherwise. When this experiment is

performed on a significant number of DMs, it is observed that DMs prefer betting on urn A

to betting on urn B. They are indifferent between bets on AR and AB, and similarly bets on

BR and BB. Thus, Ellsberg paradox empirically shows that DMs choose the events where

more information is available, i.e. AR ' AB � BR ' BB. If we examine this example

in detail, we see that outcomes are xi = 0, 100 ; i = 1, 2 and the events are denoted by

AR = (100, p1; 0, q1), AB = (100, p2; 0, q2), BR = (100, p3; 0, q3), and BB = (100, p4; 0, q4)

where pi is the probability that i-th event occurs. Consider that a utility function is chosen

arbitrarily such as u(x) = x. Since there are only two outcomes, and the preference alternatives

are not very complicated, we could choose a simple utility function. Also, we do not discuss

how to choose the most suitable utility function here, we deal with assigning probabilities to
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events.

From Proposition 2.5.3, the expected utility of i-th event isU(x1, pi;x2, qi) = piu(x1)+qiu(x2) =

pi(100) + qi(0) = 100pi. Since AR ' AB, 100p1 = 100p2 ⇒ p1 = p2. In addition, q1 = p2

and q2 = p1 because the ball chosen from urn A is either red or black. Hence, it is obtained

that pi = qi = 1/2 for i = 1, 2 since p1 + q1 = 1 according to the additivity property of the

probabilities in EUT. Similarly, pi = qi = 1/2 for i = 3, 4 because BR ' BB. As a result,

for all events U(x1, pi;x2, qi) = 50; i = 1, 2, 3, 4 but this situation causes a contradiction with

the relation AR � BR. As a result, it is deduced that Ellsberg paradox cannot be explained

through additive probabilities. This problem can be solved by using non-additive probabilities.

For example, if we choose pi = qi = 2/5 for i = 3, 4; then we have U(x1, pi;x2, qi) = 50

for i = 1, 2 and U(x1, pi;x2, qi) = 40 for i = 3, 4 which would not be contradictory with the

relation AR ' AB � BR ' BB. Here, the difference 1− (2/5 + 2/5) = 1/5 can be assigned

as a penalty because of the lack of information for urn B [22].

It is proven by Ellsberg [6] that uncertainty aversion can only be expressed through non-additive

probabilities. The Ellsberg paradox can be used as a demonstration of this discussion [22]. Ac-

cording to this paradox, uncertainty aversion is important for decision making context because

it provides weighting of preferences. It also prevents some limitations on DMs. Schmeidler [4]

proposes a mathematical characterization of uncertainty aversion.

Definition 2.7.1. (Uncertainty Aversion) A binary relation - on L is called “uncertainty aver-

sion” s.t.

(i) If f - h and g - h, then αf + (1− α)g - h; ∀ f , g and h in L and any α ∈ [0, 1].

(ii) Equivalent to (i), if f - g, then αf + (1− α)g - g; ∀ f and g in L and any α ∈ [0, 1].

2.8. Decision under Uncertainty: Prospect Theory

Although EUT is uncomplicated reflection of reality, the mathematical accuracy of this theory

and the fact that it is widely used in the literature do not ensure that it is an appropriate model

for all DMs’ behaviors. As an approach of modeling individuals’ making decisions rationally,
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EUT is showed to be insufficient to reflect bias in their decisions. Tendencies of people can vary

according to how they identify risk behind their decision. We have mentioned that decisions of

individuals seem to depend on their perceptions. Tversky and Kahneman [8] examine this social

side of risk in a comprehensive manner. The term “heuristic”, which lowers the complexity of

likelihood assessment and simplifies the management tasks, is used as a reference of “belief”

in their study. On the other hand, it is claimed that heuristics may cause serious and systematic

errors in spite of their usefulness. In their study, an example on estimating the distance of an

object is very interesting in this context. In order to attest the influence of heuristics; a situation is

provided. It shows that the visible distance of an object is partially ascertained by its sharpness.

As result of observations, it is realized that people often overestimate (underestimate) distances

when visibility is poor (good). It can be infered from these results that intuitive decisions are

not always reliable.

Considering all of these discussions, Kahneman and Tversky [9] develop the prospect theory as

a criticism of EUT’s assumptions to model decision making under uncertainty. EUT has been

used as the most powerful approach for over 250 years in different areas. However, it is shown

that there exists a significant number of violations with regard to the assumption of individuals’

being rational. As an explanation of this situation, we consider two people having same wealth.

According to EUT, these two individuals should be happy identically. Contrary to this, if one has

this wealth after losing a huge amount of money whereas the other one has the same wealth with

gaining a significant percent (say 1000%) of his prior money, they will not be equally happy.

Therefore, the basic assumption of this theory is violated by perceptions of individuals. Starting

from this point of view, a lot of empirical studies try to create new perspectives. Among these

studies, Kahneman and Tversky come up with prospect theory which represents inconsistency

of individuals’ preferences among similar choices [9].

A prospect could be edited differently according to the context. Here, different editing opera-

tions are described [9]:

1. Coding: Outcomes are perceived as gains and losses, instead of final positions of wealth

or welfare;

(This operation is discussed in detail in Chapter 4.)
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2. Combination: Possibilities relating to same outcomes can be merged;

(For instance, (100, 0.15; 100, 0.15) can be reduced to (100, 0.30))

3. Segregation: A riskless part of a prospect can be separated from a risky component;

(For instance, (100, 0.15; 50, 0.85) can be edited as a certain gain of 50 and a prospect

(50, 0.15), or (−250, 0.30;−150, 0.70) can be edited as a certain loss of 150 and a prospect

(−250, 0.30))

4. Cancellation: Common parts of prospects, which are outcome-probability pairs, can be

omitted;

(For instance, consider (100, 0.40; 80, 0.50;−30, 0.10) and (120, 0.40; 80, 0.50;−50, 0.10).

The choice between the prospects can be changed to the selection between

(100, 0.40;−30, 0.10) and (120, 0.40;−50, 0.10))

5. Simplification: Rounding probabilities or outcomes;

(For instance (201, 0.49) or (199, 0.51) is probably edited as the same level of chance to

win 200, i.e. (200, 0.50)), and lastly

6. The detection of dominance: Searching offered prospects to discover hidden influential

prospects being rejected without a sufficient investigation.

The final value of an “edited” prospect, V , is represented based on two factors, π and υ. Here,

π is connected with each probability p, π(p), to demonstrate the impact of p on the overall value

of the prospect. The other scale, υ, gives each outcome x a number by υ(x). This scale indicates

the subjective value of that outcome by measuring the deviation from the reference point.

If we consider the prospect (x, p; y, q) having at most two non-zero outcomes, x is yielded with

probability p, y with probability q, and no outcome with probability 1− p− q, where p+ q ≤ 1.

A prospect is

i. strictly positive (negative) if all outcomes are positive (negative), x, y > 0 (x, y < 0), and

p+ q = 1;

ii. regular if either p+ q < 1, or x ≥ 0 ≥ y or x ≤ 0 ≤ y.
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If a prospect is regular, then

V (x, p; y, q) = π(p)υ(x) + π(q)υ(y), (2.10)

where υ(0) = 0, π(0) = 0 and π(1) = 1. Here, V is defined on prospects whereas υ is defined

on outcomes, i.e. V (x, 1.0) = V (x) = υ(x).

If the prospect is either strictly positive or strictly negative, Equation (2.10) is modified as

V (x, p; y, q) = υ(y) + π(p) [υ(x)− υ(y)] . (2.11)

As a result of provided introduction of prospect theory, we can develop a notion by means of the

idea given in this chapter. There is no doubt that not only tendencies in the decision making, but

also inconsistency of individuals’ preferences should be managed in risk assessment. Therefore,

assuming that risk identification is the fundamental step of risk prioritization, we will try to

adapt this approach to incorporate perceptions of individuals into the model of preferences.

2.9. Interim Conclusion: Risk Perception in Decision Making

Our study is mainly based on the effects of risk perception on risk prioritization. In this chap-

ter, we give some examples about different approaches for definition of risk and uncertainty to

explain our motivation in this thesis. We introduce some fundamental properties of preference

models which helps providing a theoretical explanation for our main model setting of prioritiza-

tion.

The impacts of preferences of DMs lead us to “utility” and “prospect” terms. In this sense,

we give some notation and definitions to explain approaches for modeling preferences such as

EUT, distorted expectation theory (YDT), expected utility with non-additive probabilities, and

prospect theory.

Moreover, we introduce some application areas to provide an understanding about the ways of

applying the theoretical information to real world. We also focus on social features of risk.
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For this reason, we investigate the theorems which handle tendencies of individuals in decision

making and considering bias of DMs’ choices. It is understood from these approaches that

controversial issues associated with risk assessment should be taken into account. In addition

to this, although EUT is commonly used in decision making, it is inferred that this approach

may not sufficiently capture inconsistency of DMs’ choices. For this aim, prospect theory is

developed as an alternative to EUT. In order to model the risk perception in the decision making,

we work on prospect theory in detail in this thesis.
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3. STOCHASTIC ORDERING RELATIONS FOR RISK
PRIORITIZATION

3.1. Introduction

For an actuary, it is crucial to deal with preferences of DMs when they make choices between

potential gains and losses. Stochastic ordering, which is partially ordering among distributions

of risks, is a very useful and convenient tool for this aim. In our study, we handle actuarial risks

as claim rvs of an insurance product. In this sense, a risk could be more desirable to another

one due to its structural and distributional properties such as being “smaller” or “thinner-tailed”

(more predictable and thus less risky). Distributions which have thinner tails are explained as

“less spread” risks.

Kaas et al. [84] and Denuit et al. [1] study on ordering of actuarial risks, i.e. claims. They ap-

ply an ordering method for several actuarial applications in order to obtain premiums according

to zero-utility principle, probability of ruin, stop-loss reinsurance, value-at-risk etc.. Deciding

whether a rv is riskier than another becomes “mean-variance ordering” without stochastic or-

dering relations. Mean-variance ordering method is a general use in which the rv with smaller

mean is preferred and the variance of that rv arises as a determinant. However, this approach

might be ambiguous since it could cause debates among DMs. Combining risk measures, which

are referred as indicators in the frame of POT, could be complex due to the reasons given in that

context. Therefore, many studies on stochastic ordering of risks have been arisen in actuarial

literature.

Various applications, especially in non-life insurance markets, are initially based on modeling

total claims. There are two substantial and restricting assumptions which are non-negativity and

independence of summands of the aggregate claim. Kaas et al. [84] provide invariance axioms

depending on the non-negativity assumption. An example for restrictive invariance properties

is about stop-loss ordering. In this axiom, stop-loss ordering remains unchanged regardless of

the change in distribution of claim severity or of claim frequency. We must be aware of conse-

quences of this constraint especially when we take both gains and losses into account. Addition-
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ally, for individual and collective risk models, individual claims are assumed independent. This

assumption is widely used in insurance applications because of two main reasons. Firstly, the

fundamental laws in statistics, “Law of Large Numbers” and “Central Limit Theorem” both of

which are based on independence assumption, allow insurers to predict their future potential po-

sition. The second reason is that obtaining information about risks is easier both statistically and

mathematically in terms of computational purposes because statistics on marginal distributions

are easy to estimate compared to joint distributions.

On the other hand, even if it provides an understanding for ordering actuarial risks, indepen-

dency assumption is not realistic. As in some examples, we can consider dependent environ-

mental risks that are influenced by the same environment such as flood and earthquake risks, or

the dependent mortality risk called “broken heart syndrome”. From this point of view, Dhaene

et al. [2] suggest using comonotonicity property to order aggregate claims without assuming in-

dependence. Moreover, Denuit et al. [1] propose a procedure consisting of dependence ordering

and integral stochastic ordering.

In Section 3.2, we introduce POT as a basis of all stochastic ordering relations studied in this

thesis. Section 3.3 presents most commonly used ordering relations and use of these relations in

actuarial literature. In this section, we also examine these stochastic ordering relations in terms

of choice under risk. Finally, we summarize this chapter in Section 3.4.

3.2. Partial Order Theory

Ordering of risks taken as rvs is possible by using stochastic ordering relations, which are studied

under POT. Therefore, we provide an understanding for risk prioritization and suggest stochastic

ordering relations by taking the advantage of properties of the POT.

3.2.1. Combination of Multiple Indicators into a Single Index

Brüggemann and Patil [26] state that complexity of data-based studies leads researchers to im-

prove prioritization based on partial orders. Since indicators are often aggregated by a weighted

sum, they firstly discuss the concept of “compound indicators”. Although considerable effort is
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made to find suitable weights for determining the compound indicator, there are some disadvan-

tages given below:

• Information about indicators could be lost as a consequence of the aggregation (the infor-

mation collected in a single compound indicator gets interlaced).

• Determining weights could be difficult, and

• If some indicators have same features, compounding them could cause a disadvantage

which makes DMs give them more importance than required.

If we examine the construction of compound indicators expressed above, obtaining these in-

dicators has two main difficulties: (i) finding basic indicators and (ii) finding the weights, i.e.

deriving the compound indicator. According to Brüggemann and Patil [14], it is very useful that

compound indicators provide not only rankings but also an efficient metric system of measure-

ment.

If we return examples related to definition of “knowledge” discussed in introduction chapter,

there are different ways for quantification, which are called “indicators”. In this perspective,

Patil and Taillie [25] study on ranking a finite set of objects when each object has an indicator

family. Since dissimilar indicators can cause several comparative assessments, the difficulty of

combining them into a single index is investigated in their study.

A nonempty set of objects, X , is considered where each object has (I1, I2, . . . , In) of real-

valued indicators. Here, small value of an indicator denotes “poor” conditions and large value

represents for “good” conditions.

Let x, y, z, . . . indicate the elements in X . The comparative statement is that x′ is “better” or

“bigger” than x (we write x′ ≥ x or x ≤ x′) if I ′j ≥ Ij for all j. Here, the objects x and x′ are

based on their indicator values (I1, I2, . . . , In) and (I ′1, I
′
2, . . . , I

′
n), respectively.

On the other hand, objects are not compared precisely since different researchers might rank x

and x′ differently. This situation could cause unanimous ordering. If we consider that there are
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n = 2 indicators, all possible decisions are represented by Figure 3.1. In this figure, object x

separates indicator space into four quadrants.

In
di

ca
to

rI
2I 2I 2

Indicator I1I1I1

•x

Ambiguous

Ambiguous

Bigger than x

Smaller than x

Figure 3.1: Comparison of objects according to indicators I1 and I2 when n = 2

According to Figure 3.1, it can be obviously seen that object x′ which falls in the first quadrant

(including its boundary) is bigger than x. x′ that falls in the third quadrant is smaller than x. The

other two quadrants (excluding their boundaries) are the quadrants of “ambiguity”, i.e. objects

that fall into these parts are not comparable with x.

In order to solve this ambiguity, Patil and Taillie [25] suggest to combine indicators into an

index defined as γ(I1, I2, . . . , In) = γ(x). Here, the index γ could be taken as a risk measure

introduced in Section 1.3. For instance, a linear compounding γ = w1I1 + w2I2 + · · · + wnIn

could be the simplest combination.

According to this setting, the index γ defines a linear ordering on the set of objectsX as follows:

x ≤γ x′ iff γ(x) ≤ γ(x′) (3.1)
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The rule represented in Equation (3.1) can be displayed by Figure 3.2 in terms of the shape of γ

that passes through object x. In both subfigures, the contour of index γ separates indicator space

into two regions. The γ index given on the left is for linear combination whereas the one on the

right is for non-linear combination.
In
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rI

2I 2I 2

Indicator I1I1I1

•x

γ

Bigger than x

Smaller than x

In
di

ca
to

rI
2I 2I 2

Indicator I1I1I1

•x

γ

Bigger than x

Smaller than x

Figure 3.2: Shape of linear (left) and non-linear (right) index γ passing through object x

According to Figure 3.2, it can be seen that object x′ which falls into the upper right region is

bigger than x and the one that falls into the lower left region is smaller than x.

The index γ(I1, I2, . . . , In) which yields the relation given in Equation (3.1) is valid if the fol-

lowing conditions are fulfilled:

i. The index γ(I1, I2, . . . , In) must be monotone increasing for each variable individually.

ii. If the derivatives of the index γ(I1, I2, . . . , In) exist, then
∂γ

∂Ij
≥ 0, ∀j must be true.

iii. If the index γ(I1, I2, . . . , In) is linear, i.e. γ = w1I1 +w2I2 + · · ·+wnIn, then wj ≥ 0,∀j

must be true.

3.2.2. Some basic notations of POT

POT allows one to compare and order objects, characterized by multiple indicators, when there

is an acceptable binary relation between two objects. It is a discipline related to discrete mathe-

matics and graph theory, which is a subdiscipline of discrete mathematics. Many applications of

POT and graph theory are common in terms of modeling pairwise relations between objects. Let

39



X = {x, y, z, . . .} be the set of objects. The binary relation “≤” is used to order these objects

[14].

Proposition 3.2.1. (Axioms of POT) The relation “≤” on the set X is a partial order when it

fulfils the following conditions:

(i) Reflexivity: x ≤ x for all x ∈ X .

(ii) Transitivity: x ≤ y and y ≤ z implies x ≤ z.

(iii) Antisymmetry: x ≤ y and y ≤ x implies x = y.

(i) and (ii) in Proposition 3.2.1 are the axioms of the relation of “pre-order”. Thus, pre-order

is partial order if antisymmetry property holds. A set X which fulfils the above conditions is a

partially ordered set, “poset”.

There is another assumption in this concept when the set X is finite. Patil and Taillie [25]

suggest one further relation “≺” in a poset represented in the following proposition.

Proposition 3.2.2. x ≺ y (y covers x) if

i. x < y

ii. A relation x < a < y does not exist for any object a.

3.2.3. Representations of Posets

There are three ways of representing posets which are Hasse diagrams, zeta matrices and cover

matrices. Hasse diagram is a very useful planar graph for visualizing a poset when the set of

objects X is not very large. Zeta matrix and cover matrix are more preferable for analytical

purposes [25].

(a) Hasse diagrams: These graphs are important visual representations of posets especially

when there exist incomparable objects in X . Incomparability appears when the order of

objects wrt an indicator is different from the order of them wrt another indicator [14].
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We use an example from the monograph of Brüggemann and Patil [14] to explain Hasse

diagrams. It is supposed that the object set is X = {x, y, z, v, w} and the indicator set

is {I1, I2, I3}. If we want to compare a pair of objects, we should check each indicator

value related to these objects. An illustration for the partial order through Hasse diagram

is represented in Table 3.1 and Figure 3.3.

Table 3.1: The values of objects wrt each indicator

Object I1 I2 I3

x 3.0 8.3 2.0
y 4.1 9.4 2.5
z 5.2 9.1 3.3
v 2.7 3.6 1.1
w 6.8 13.3 4.7

According to Table 3.1, we can write the following relations:

• x < y, x < z, x < w;

• y < w;

• z < w;

• v < x, v < y, v < z, v < w;

• y || z

where y || z denotes that y and z are incomparable since y < z according to I1 and I3,

and y > z according to I2. Considering these relations, the diagrammatic representation

of this poset is displayed in the following figure.

y

x

v

z

w

Figure 3.3: Hasse diagram of the data given in Table 3.1
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In Figure 3.3, it can be seen that v is the smallest object whereas w is the biggest one.

There are 4 levels, i.e. Level 1 (top level): {w}, Level 2: {y, z}, Level 3: {x} and Level 4

(bottom level): {v}. Here, Level 2 denotes the incomparability between objects y and z.

For more complicated Hasse diagram examples, see [25].

(b) Zeta matrices: These matrices are square matrices which have rows and columns that are

filled by binary numbers determined according to the relation between the elements of

posets. Inputs of the zeta matrix ζx,y are obtained as follows:

ζx,y =

 1 , x ≤ y

0 , otherwise
(3.2)

In order to illustrate zeta matrices, we consider 2 posets (Poset I, II) [25] having Hasse

diagrams given in Figure 3.4.

w u

y

vz

x

(a) Poset I

w

y

vz

x

(b) Poset II

Figure 3.4: Hasse diagrams for Posets I, II

In this figure, Poset I has three levels and Poset II has a disconnected Hasse diagram with

two connected components which are {x, z, w} and {y, v}.

According to Figure 3.4, the zeta matrix of Poset I, ζI is obtained as

ζI =

x y z v w u

x 1 0 0 0 0 0

y 0 1 0 0 0 0

z 1 0 1 0 0 0

v 0 1 0 1 0 0

w 1 0 1 0 1 0

u 1 1 1 1 0 1
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Here, it is easier to fill the entries row by row. For instance, the entries for the object u in

ζI is obtained by checking if u is less than or equal to other objects. As it is seen from the

Hasse diagram of (a) Poset I in Figure 3.4, u is less than the objects of the set {x, y, z, v}

and it is equal to itself. Hence, all entries excluding the one related to the object w are 1.

u and w are not comparable in Poset I.

The zeta matrix is a very useful tool for comparison purposes because it prevents “maxi-

mal” and “minimal” elements of posets. An element is maximal (minimal) iff it is greater

(less) than all objects apart from itself. It can be controlled through zeta matrix by check-

ing if all entries in the row (column) of the related object are 0 apart from the entry 1 in the

diagonal. For instance, it can be seen from Poset I that x and y are the maximal elements

whereas w and u are the minimal elements.

If posets are disconnected, grouping the elements of each connected component together

could be practical before filling the entries of the zeta matrix. Considering (b) Poset II,

zeta matrix is obtained after grouping the connected components {x, z, w} and {y, v} as

follows:

ζII =

x z w y v

x 1 0 0 0 0

z 1 1 0 0 0

w 1 1 1 0 0

y 0 0 0 1 0

v 0 0 0 1 1

Having obtained the zeta matrix ζ of a poset, the axioms of POT are revised wrt zeta

matrix. Determining if zeta matrix fulfils the partial order conditions is complicated,

especially for the transitivity axiom. In order to control three axioms of POT given in

Proposition 3.2.1 in terms of zeta matrix ζ , Patil and Taillie [25] discuss them as follows:

• Reflexivity: The condition (x ≤ x, ∀x ∈ X) is controlled by checking the entries in

the diagonal of ζ . If all elements of zeta matrix’s diagonal are 1, then the object set

X is reflexive.
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• Transitivity: The condition (x ≤ y and y ≤ z ⇒ x ≤ z) is proven with finding an

object a fulfilling the conditions ζx,a = 1 and ζa,y = 1 together when ζx,y = 1.

In other words, if the condition (
∑

a ζx,aζa,y 6= 0⇒ ζx,y 6= 0) is satisfied, then the

object set X is transitive.

• Antisymmetry: The condition (x ≤ y and y ≤ x⇒ x = y) is checked with control-

ling entries of the diagonal of ζx,y and ζy,x simultaneously. Both of them are not 1

when x 6= y if X is antisymmetric.

If the dimension of ζ matrix is larger, testing the partial order axioms is more complex.

Therefore, we need more practical control mechanism. For this aim, we use the notation

and conditions that Patil and Taillie [25] suggest. We change the axiom (iii) suggested by

[25] and we give the revised condition in Proposition 3.2.3 and Remark 3.2.4. We explain

the reason of this correction in Appendix A.2.1.

Before giving the axioms of POT in terms of zeta matrix, the following notation used in

[25] is needed:

• Consider a non-negative matrixXXX . The logical form ofXXX is obtained as

L (x) =

 1 , x > 0

0 , otherwise

for each object x in the object set X .

• LetXXX and YYY be non-negative conformable matrices. Then,

(a) XXX ◦XXX = L (XXXYYY ) whereXXXYYY is matrix multiplication ofXXX and YYY .

(b) XXX ∗ YYY is the component-wise multiplication of XXX and YYY when they have same

dimensions.

We follow the axioms given in Proposition 3.2.1 to show that zeta matrix ζ defines partial

order.

Proposition 3.2.3. Zeta matrix ζ , in which elements are either 0 or 1, is a representation

of a poset iff the following conditions are fulfilled.
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(i) Reflexivity: All elements of ζ’s diagonal are 1,

(ii) Transitivity: ζ ◦ ζ ≤ ζ ,

(iii) Antisymmetry: ζ ∗ ζT = IIIn×n.

Here, the third axiom involves the first axiom. Working with another matrix η obtained as

ζ = IIIn×n + η might sometimes be more sufficient. The axioms for ζ is revised for η in

the following remark.

Remark 3.2.4. Zeta matrix ζ is a representation of a poset iff the following conditions are

fulfilled.

(i) Reflexivity: All elements of η’s diagonal are 0,

(ii) Transitivity: η ◦ η ≤ η,

(iii) Antisymmetry: η ∗ ηT = 000n×n.

As in Proposition 3.2.3, the antisymmetry axiom given in (iii) involves the reflexivity

axiom in (i).

(c) Cover matrices: These matrices are square matrices which have elements of binary num-

bers obtained as follows:

ξx,y =

 1 , x ≺ y

0 , otherwise
(3.3)

In Equation 3.3, the relation≺ is defined before in Proposition 3.2.2. This equation means

that ηx,y = 1 but the summation
∑

a ηx,aηa,y = 0. Another formula for cover matrix ξ is

obtained from zeta matrix as

ξ = η − η ◦ η (3.4)

Having presented a general framework of POT, we provide a perspective of partial ordering

for the sake of clarity of stochastic ordering in risk prioritization context. There exist specific

concepts of POT such as ambiguity graph, canonical orders, rank ambiguity etc. which are not

studied in this thesis. For detailed information about these topics, see [14, 26, 85].
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3.2.4. Using GIS as a tool for prioritization of risks

As it is explained earlier, analytic tools given in the previous section might not always be enough

for risk prioritization purposes. Especially for environmental studies where geography-related

risks are managed, GIS appears as an efficient tool. Patil and Taillie [25] represent an example

about using landscape metrics to prioritize watersheds. In their study, they choose 9 indicators to

assess and to order environmental effect across 114 watersheds. In order to show the importance

of GIS, Figure 3.5 and Figure 3.6 are borrowed from [25].

The Hasse diagram for the primary part of watersheds is represented in Figure 3.5.

Figure 3.5: The Hasse diagram for the 52 watersheds in the primary part

In this figure, the numeric labels stand for the i-th watershed in the data set. It can be inferred

from Figure 3.5 that the diagram is very disconnected. Among 114 watersheds, there are 60

connected parts 58 of which are isolated. There exist 4 watersheds in the secondary part whereas

52 watersheds are included in the primary part.

As it is easily understood from the Hasse diagram, comparing the environmental effect of wa-

tersheds seems to be very problematic since more than half of the watersheds are isolated. In

Figure 3.5, there exist 4 levels two of which includes only 5 watersheds. This figure indicates

the complexity of the comparison since there is no reasonable connection. However, the map of
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the watersheds in Figure 3.6 provides an information about watersheds. In this map, the shaded

areas represent the primary Hasse part including 52 watersheds. Hence, it can be said that the

primary part is geographically connected.

Figure 3.6: Mid-Atlantic region map

As it can be evaluated geographically from the figure that there are three connected components

two of which are small and located near the outer edge of the biggest component of the region.

Since we prioritize risks environmentally due to the dynamics of the agricultural insurance data

that we use for the application of this study, we deal with the geographic information. Therefore,

we suggest to use GIS as a mechanism for risk prioritization in some cases such as environmental

risk assessment.

3.3. Specific Relations for Stochastic Ordering: Partial ordering of DFs

We give some definitions and properties of dfs and inverse dfs suggested by Dhaene et al. [2]

before introducing stochastic ordering of actuarial risks.

Let X rv has df FX(x) = P (X ≤ x). Inverse of df, which is also called as quantile function, is

defined as

F−1
X (p) = inf {x ∈ R : FX(x) ≥ p} , (3.5)

for p ∈ [0, 1].

General properties of dfs and inverse dfs help us to examine the partial order among dfs, and so
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rvs. Stochastic ordering is taken as partial ordering when dfs are prioritized. Denuit et al. [1]

suggest an axiomatic methodology for partially ordered dfs. In this section, we present useful

properties for specific stochastic ordering relations.

Definition 3.3.1. Consider that FX(s), FY (s) and FZ(s) with s ≥ 0 are dfs of rvs X, Y and

Z, respectively. The binary relation - is a partial order on a set P = {FX , FY , FZ , . . .} if the

axioms of POT are fulfilled as follows:

(i) Reflexivity: FX(s) - FX(s) for all FX ∈ P with ∀s ≥ 0.

(ii) Transitivity: FX(s) - FY (s) and FY (s) - FZ(s) implies FX(s) - FZ(s) for all s ≥ 0.

(iii) Antisymmetry: FX(s) - FY (s) and FY (s) - FX(s) implies FX ≡ FY where “≡”

indicates FX ≡ FY ⇔ FX(s) = FY (s), ∀s ≥ 0.

In stochastic ordering, we deal with marginal distributions rather than joint distributions. Thus,

if X - Y , then X - Y ′ is also true for any rv Y ′ which is identically distributed with Y . In

order to claim that a stochastic order relation is effective, it is expected that the relation fulfil the

properties given below [1]. Let - be any binary relation indicating stochastic ordering.

i. Shift invariance: X - Y ⇒ X + c - Y + c; ∀c where c is a constant.

ii. Scale invariance: X - Y ⇒ cX - cY ; ∀c where c is a positive constant.

iii. Closure under convolution: X - Y ⇒ X + Z - Y + Z; ∀Z where Z is independent of

both X and Y .

iv. Closure wrt weak convergence: Xn - Yn; ∀n = 1, 2, . . . and Xn
d→ X, Yn

d→ Y ⇒ X -

Y where d→ indicates the convergence in distribution.

v. Closure under mixing: (X|Z = z) - (Y |Z = z) ⇒ X - Y ; ∀z where z is the support

of Z.

The stability properties of the binary relation -, which is used as a stochastic ordering relation,

are given in the following proposition [1].

48



Proposition 3.3.2. The binary relation - is said to be stable under some special cases such as

mixture, convolution, compounding, and limit if it fulfils certain conditions.

(i) Mixture: If X - Y is true in terms of conditional probabilities given Λ = λ for each λ,

then X - Y is true in terms of unconditional probabilities. If this is the case, - is said to

be stable under mixture.

Consider two sets of independent rvs {X1, X2, X3, . . .} and {Y1, Y2, Y3, . . .} s.t. Xi - Yi is true

for all i.

(ii) Convolution:
∑n

i=1Xi -
∑n

i=1 Yi is true for all n ∈ N. If this is the case, - is said to be

stable under convolution.

Let N ∈ Z be independent of Xi and Yi. If - satisfies the conditions (i) and (ii), it is clearly

obtained that
∑N

i=1Xi -
∑N

i=1 Yi.

(iii) Compounding:
∑N

i=1Xi -
∑M

i=1 Yi is also true for N,M ∈ Z s.t. N - M . If this is the

case, - is said to be stable under compounding.

(iv) Limit: Consider that Xi converges to X in distribution and Yi converges to Y in distribu-

tion, i.e. Xi
d→ X and Yi

d→ Y . Then X - Y is true. If this is the case, - is said to be

stable under limit.

3.3.1. From Ordering Dfs to Ordering Rvs

Heilmann and Schröter [24] introduce “ordering risks” within the concept of actuarial theory.

They consider quantities or functions which produce order relations on a set of rvs such as claim

sizes (e.g. individual claims, total claims of a single contract in a single period, or aggregate

claims of a portfolio in a single period). They suggest five different ordering relations and their

interpretations with regard to actuarial applications. These orderings are traditional first-order

stochastic dominance and four relations connected with stochastic dominance.
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Consider that rvs X, Y, . . . are risks with dfs FX , FY , . . . s.t. P(X ≥ 0) = 1 and E(X) > 0.

Five ordering relations are defined as follows.

1. (-sd) First-order stochastic dominance:

X -sd Y ⇔ 1− FX(s) ≤ 1− FY (s), ∀s ≥ 0. (3.6)

Applications for this relation is given below [1, 24].

(i) Ordering of stop-loss premiums defined in Equation (3.11):

X -sd Y ⇒
∫ ∞
s

(1− FX(t)) dt ≤
∫ ∞
s

(1− FY (t)) dt, ∀x ≥ 0.

(ii) For all non-decreasing t, X -sd Y ⇒ t(X) -sd t(Y ).

(iii) Consider independent r.vectorsXXX = {X1, X2, . . . , Xn} and YYY = {Y1, Y2, . . . , Yn}.

Xi -sd Yi, ∀i = 1, 2, . . . , n⇒ ψ(XXX) -sd ψ(YYY )

where ψ : Rn → R is a non-decreasing function.

(iv) Ordering of net premiums: If a premium charged for the risk X is denoted by πX = E(X)

according to the “net premium principle”, then

X -sd Y ⇒ E(X) ≤ E(Y )⇒ πX ≤ πY .

(v) If X -sd Y , then X d
= Y when E(X) = E(Y ). Here, d

= implies FX ≡ FY defined in

Definition 3.3.1.

(vi) Order statistics: Let independent rvs X1, X2, . . . , Xn be independent and identically dis-

tributed (iid) rvs having the same df FX and suppose that X(1), X(2), . . . , X(n) are the

related order statistics. Two properties are as follows:
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• Stochastic dominance ordering of order statistics:

X(1) -sd X(2) -sd . . . -sd X(n). (3.7)

• Suppose another sequence of iid rvs Y1, Y2, . . . , Yn. Then

X1 -sd Y1 ⇒ X(i) -sd Y(i), ∀i = 1, 2, . . . , n. (3.8)

(vii) Transition from the “net premium principle” to the “expected value principle”: Consider

X -sd Y . Then the net premium πY for risk Y can be indicated as a transition to a

premium calculated according to expected value principle as

πY = E(Y ) =
∫∞

0
(1− FY (s)) ds =

[
1 +

∫∞
0

(FX(s)− FY (s)) ds∫∞
0

(1− FX(s)) ds

]
E(X)

= [1 + θ]E(X)

(3.9)

Here, θ =

∫∞
0

(FX(s)− FY (s)) ds∫∞
0

(1− FX(s)) ds
is the premium loading factor applied to the net pre-

mium for X . The premium for the rv X is calculated as πX = (1 + θ)E(X) according to

the expected value principle where θ is the premium loading factor.

For the derivation of Equation (3.9), see Appendix A.2.2, Equation (A.2).

2. (-sl) Stop-loss dominance:

X -sl Y ⇔ E [(X − d)+] ≤ E [(Y − d)+] , ∀d ≥ 0. (3.10)

Here, the net stop-loss premium E [(X − d)+] with the retention limit d of the stop-loss treaty is

defined as

E [(X − d)+] =

∫ ∞
d

(1− FX(x)) dx =

∫ ∞
d

(x− d)FX(dx). (3.11)

Applications for this relation is given below [1, 24].

(i) Ordering of expected values: X -sl Y ⇒ E(X) ≤ E(Y )
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For the proof, see Appendix A.2.2, Equation (A.3).

(ii) Ordering of variances: {X -sl Y } ∧ {E(X) = E(Y )} ⇒ V(X) ≤ V(Y )

For the proof, see Appendix A.2.2, Equation (A.5).

(iii) Ordering premiums calculated according to “variance principle”: If a premium charged

for the risk X is denoted by πX = E(X) + αV(X) ; α > 0 according to the variance

principle, then {X -sl Y } ∧ {E(X) = E(Y )} ⇒ πX ≤ πY by (ii).

3. (-`) Survival distribution of X̃:

X -` Y ⇔ X̃ -sd Ỹ ⇔ `X(s) ≤ `Y (s), ∀s ≥ 0. (3.12)

Given that the surplus falls below the initial surplus for the first time, X̃ is the amount of that

fall. The density function of X̃ is defined as

fX̃ : x→ 1

E(X)
[1− FX(x)]1(0,∞)(x).

The surplus process of an insurer, which helps us to understand the relation for X̃ rv, is given in

Appendix A.2.3.

Therefore, the survival function of X̃ is defined as

`X(x) = SX̃(x) = 1− FX̃(x) =

∫ ∞
x

fX̃(t) dt =
1

E(X)

∫ ∞
x

[1− FX(t)] dt =
E [(X − x)+]

E(X)
.

(3.13)

where FX̃ is the df of X̃ .

Applications for this relation is given below [1, 24].

(i) Ordering of variances: {X -` Y } ∧ {E(X) = E(Y )} ⇒ V(X) ≤ V(Y )

For the proof, see Appendix A.2.2, Equation (A.6).

(ii) Ordering premiums calculated according to “variance principle”: If a premium charged
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for the risk X is denoted by πX = E(X) + αV(X) ; α > 0 according to the variance

principle, then {X -` Y } ∧ {E(X) = E(Y )} ⇒ πX ≤ πY by (i).

(iii) Relationship between mean residual life of X and hazard function of X̃: In actuarial

sciences, hazard function is also called as hazard rate or failure rate, and also as force of

mortality in survival analysis literature. Thus, the hazard rate function of X̃ is given by

hX̃(x) =
fX̃(x)

SX̃(x)
=

1− FX(x)∫∞
x

[1− FX(t)] dt
.

For the proof, see Appendix A.2.2, Equation (A.7).

On the other hand, mean residual lifetime, which is also called expected future lifetime,

of X is defined by

E(XP ) =

∫∞
x

[1− FX(t)] dt

1− FX(x)
. (3.14)

where the excess-loss rv XP is defined only when the insurer makes a payment (X > x).

For the proof, see Appendix A.2.2, Equation (A.8).

Since XP is denoted as a conditional rv by XP = (X − x|X > x) [86], the mean residual

life time function at x can be given as the above equation. Therefore, the mean residual

life of X is decreasing (increasing) as the hazard of X̃ is increasing (decreasing) since

E(XP ) =
1

hX̃(x)
.

(iv) Selection of the premium calculation principle: It is considered that the premium charged

for the risk X is denoted by

πX =

 E(X) + α
V(X)

E(X)
, E(X) > 0

0 , E(X) = 0

according to the modified variance principle [87].

If we take the security loading coefficient for the expected value principle as θ = 1 to

calculate the premium for X̃ , πX̃ , and that for modified variance principle as α = 1 to
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calculate the premium for X , πX ; then

πX = E(X) +
V(X)

E(X)
=

E(X2)

E(X)

(**) in Equation A.6−−−−−−−−−−→= 2E(X̃) = πX̃

As a result, the insurer may prefer to calculate premiums for the risk X̃ that has a de-

creasing hazard rate under expected value principle rather than for the risk X that has an

increasing mean residual life under modified variance principle [24].

4. (-k) Survival distribution of X̆:

X -k Y ⇔ X̆ -sd Y̆ ⇔ kX(s) ≤ kY (s), ∀s ≥ 0. (3.15)

Here, X̆ rv has the density

fX̆ : x→ [1− FX̂(x)]1(0,∞)(x)

where FX̂ is the df of X̂ =
X

E(X)
. Therefore, considering that FX̆ is the df of X̆ , the survival

function of X̆ , kX(x), is defined as

kX(x) = SX̆(x) = 1− FX̆(x) = 1−
∫ x

0

fX̆(t) dt =
1

E(X)
E
[
(X − xE(X))+

]
. (3.16)

For the derivation, see Appendix A.2.2, Equation (A.10).

Applications for this relation is given below [1, 24].

(i) Ordering of coefficient of variations: X -k Y ⇒ CV(X) ≤ CV(Y )

For the proof, see Appendix A.2.2, Equation (A.12).

(ii) Ordering of variances: {X -k Y } ∧ {E(X) = E(Y )} ⇒ V(X) ≤ V(Y )

For the proof, see Appendix A.2.2, Equation (A.13).

(iii) Ordering premiums calculated according to “variance principle”: If πX is the premium

calculated according to the variance principle, then {X -k Y } ∧ {E(X) = E(Y )} ⇒

πX ≤ πY by (ii).
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5. (-r) Conditional mean residual life-time function:

X -r Y ⇔ rX(x) ≤ rY (x), ∀x ≥ 0. (3.17)

Here, if FX(x) < 1, then

rX(x) = E(XP ) = E[X − x|X > x] =

∫∞
x

[1− FX(t)] dt

1− FX(x)
, and (3.18)

rX(x) = 0 when FX(x) = 1. This equation is given as an alternative to the definition of E(XP )

in Equation (3.14). This ordering is important for actuarial applications because the rv XP is

defined only if a payment exists (when X > x). If there is no claim, there will be no payment.

So insurer cannot capture the loss information. As a result, conditional mean residual life-time

is useful to order risks for the policies with deductibles.

In the context of these orderings (-sd, -sl, -`, -k, -r), Heilmann and Schröter [24] also in-

vestigate moment inequalities and accordingly ordering of premiums under some premium cal-

culation principles such as the expected value principle, πX = (1 + θ)E(X); variance principle,

πX = E(X) + αV(X); standard deviation principle, πX = E(X) + α
√
V(X); and exponential

principle, πX =
1

β
ln[MX(β)] with moment generating function of X , MX(β). According to

that paper, ordering between rvs X and Y remains same as that between premiums πX and πY .

Thus, considering - denotes any ordering,

X - Y ⇒ πX ≤ πY (3.19)

holds. The following properties could be written according to the properties given in this sub-

section:

(i) Expected value principle: The relation in Equation (3.19) is fulfilled for (-sd), (-sl) in any

case, and for (-`), (-r) if Y is strictly positive almost surely (a.s.).

(ii) Variance and standard deviation principles: The relation in Equation (3.19) is fulfilled for

(-sd), (-sl), (-`), (-k), (-r) if E(X) = E(Y ).
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(iii) Exponential principle: The relation in Equation (3.19) is fulfilled for (-sd), (-sl) in any

case; and for (-`), (-r) if Y is strictly positive a.s..

3.3.2. Choice Under Risk with Stochastic Dominance

Denuit et al. [1] handle the concept of decision making under risk by unifying stochastic domi-

nance with the preference theory. They choose a simple utiliy function to give the general idea

of stochastic dominance orderings for making decisions between risky choices. In this point of

view, they study classical utility theorem EUT and YDT.

Let us choose a utiliy function defined as

u(x) =

 1 , x ≤ s

0 , otherwise
(3.20)

According to Equation (3.20), the aim of DM is to prefer the risky choice when it is smaller

than or equal to a constant s because DM’s utility is 100%. However, if there are two equivalent

choices, both of which are smaller than or equal to s, the preference relation of the DM is shown

in the following relation. DMs prefer X instead of Y according to the expected utility which is

shown as

E [u(X)] ≤ E [u(Y )]⇒ SX(s) ≤ SY (s) (3.21)

where E [u(X)] = 1P(X ≤ s) + 0P(X > s) = P(X ≤ s) = 1− SX(s).

Proposition 3.3.3. Suppose that all DMs having the same utility function defined in Equa-

tion (3.20) prefer X over Y where X and Y are random prospects. X -sd Y holds for these

DMs.
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Proof. Let DMs prefer X over Y . From the previous inference,

⇒ SX(s) ≤ SY (s); ∀s ∈ R

SX(s)=1−FX(s)−−−−−−−−−→ FX(s) ≥ FY (s); ∀s ∈ R

⇒ X -sd Y.

An important and useful deduction of this proposition is that the larger the probability that a rv

being smaller than a specified value, the more likely that rv is preferred. This inference can be

shown as

X -sd Y ⇔ FX(s) ≥ FY (s)⇔ SX(s) ≤ SY (s) (3.22)

Remark 3.3.4. As a generalization of Proposition 3.3.3 for any rvs X and Y , the following

results can be obtained.

X -sd Y ⇔ E [u(X)] ≤ E [u(Y )] ; for all u s.t. u is non-decreasing function and expectations exist,

⇔ E [u(X)] ≤ E [u(Y )] ; for all u s.t. u′(x) ≥ 0 and expectations exist.

Focusing on YDT, a similar inference is presented in the following proposition [1].

Proposition 3.3.5. Suppose that two random prospects X and Y are ordered. Then,

X -sd Y ⇔ γg(X) ≤ γg(Y ),

for all non-decreasing g where g is the distortion function.

Here, γg is the Wang risk measure defined as

γg(X) =

∫ +∞

0

g (SX(x)) dx
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with a non-decreasing function g. For the proof of Proposition 3.3.5 and more information about

the Wang risk measure, see [1].

As a stochastic dominance ordering, stop-loss dominance ordering also provides helpful rela-

tions for the procedure of choice under risk. First of all, as in the Remark 3.3.4, expectation of

functions can be ordered according to stop-loss dominance relation to provide a framework for

preference relations under risk such as EUT and YDT.

Proposition 3.3.6. For any rvs X and Y , the following results are obtained:

X -sl Y ⇔ E [υ(X)] ≤ E [υ(Y )] ; for all υ s.t. υ is convex and expectations exist,

⇔ E [υ(X)] ≤ E [υ(Y )] ; for all υ s.t. υ′′(x) ≥ 0 and expectations exist.

By using this proposition, we can obtain a relation for utility functions under EUT considering

a risk-averse DM. From the insurer’s perspective, we can infer Equation (3.21) as provided in

the following proposition.

Proposition 3.3.7. A risk-averse DM has a concave utility function u. Thus, the function

−u(w − x) is convex. According to Propositon 3.3.6,

X -sl Y ⇔ E [−u(w −X)] ≤ E [−u(w − Y )]⇔ E [u(w −X)] ≥ E [u(w − Y )] .

To see the inferences of the adaptation of stop-loss dominance ordering to YDT, the following

two propositions are presented.

Proposition 3.3.8. Suppose two random prospects X and Y . X -sl Y iff

(i) Eg(w −X) ≥ Eg(w − Y ); for all non-decreasing and convex g,

(ii) γg(X) ≤ γg(Y ); for all non-decreasing and concave g.

where g is the distortion function.
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For the proof, see [1].

3.4. Interim Conclusion: Risk Prioritization through Stochastic Ordering Relations

In this chapter, we firstly give some basic theoretical information about POT which helps us to

understand prioritization concept. In addition to POT as an analytical tool, the idea about using

GIS as a tool to assess risk offers a diversity to our study.

Moreover, we present various stochastic ordering relations and their properties. Many relations

such as first-order stochastic dominance and stop-loss dominance are used to set risk priorities

according to the existence of stochastic dominance among the risk distributions. These relations

are also investigated under preference modeling compare the orderings according to choice un-

der risk. In order to model bias in decision making, which is one of the main purposes of our

study, we investigate CPT in details in Chapter 4. We propose solutions for stop-loss premiums

under CPT for the sake of combining stochastic dominance notion with risk perception. Fur-

thermore, as a very suitable relation to multivariate representation of r.vectors, we also provide

the stochastic majorization relation in Chapter 5.
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4. RISK PRIORITIZATION THROUGH STOP-LOSS DOMINANCE
UNDER CUMULATIVE PROSPECT THEORY

4.1. Introduction

In preference theory, the most important approaches of decision making in a risky environment

are discussed in Chapter 2. It is generally accepted that EUT does not reflect biased choices and

risk perceptions of DMs, so that it needs to be improved. Kahneman and Tversky [9] discuss

prospect theory dealing with violations of EUT and suggest two main notions, which are the

value function and the probability weighting function. The value function is formed according

to the DMs tendencies of making choices for gains or losses. Moreover, the probability weight-

ing function is modified with a non-linear transformation by overweighting or underweighting

probabilities.

In addition to the prospect theory, many studies such as Schmeidler [4] and Yaari [7] suggest

to transform cumulative probabilities instead of individual ones as an expansion. In the frame

of this modification, Tversky and Kahneman [27] develop a new approach, CPT, incorporating

above concepts. Before introducing the method, it is useful to discuss fundamental phenomena

of the decision making.

i. Framing effects: Although it is assumed that identical formulations cause equivalent pref-

erence ordering, it is proven that different preferences arise because of dissimilar framing

options such as framing with regard to gains or to losses.

ii. Non-linear preferences: In EUT, it is assumed that the overall utility of a prospect defined

as U(x1, p1; . . . ;xn, pn) = p1u(x1) + . . . + pnu(xn) is linear in outcome. However, non-

linear preference formulations are observed in many studies such as Allais [88]. In this

study, it is shown that 1% difference between probabilities close to 1.00 has more influence

on preferences than those around 0.10.

iii. Source dependence: Individuals’ preferences about bets on an uncertain event is deter-

mined by both the level of uncertainty and its source. Ellsberg paradox given in Section 2.7
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shows that the source where more information is available is preferred.

iv. Risk seeking: Even if DMs are assumed to be risk-averse in traditional preference theories,

researchers come across risk-seeking choices especially when DMs make choices between

a certain loss and a high probability of a larger loss or a certain gain and a low probability

of a larger gain.

v. Loss aversion: Losses seem to be larger and frightening than gains. This asymmetrical

situation between losses and gains should not be explained only by income effects or by

decreasing risk aversion.

CPT explains non-linear preferences, risk seeking and loss aversion by the value and weighting

functions. It deals with the other two phenomena (framing effects and source dependence),

as well. The distinguishing feature of the prospect theory is framing and valuation processes.

DMs describe acts, possibilities and outcomes at framing step. Valuation step is the part that

DM evaluates the value of all prospects and makes decision according to the attained value.

Tversky and Kahneman [27] modify the EUT using gains and losses instead of final assets; and

multiplying the value of each outcome by a decision weight instead of an additive probability.

There exist two problems about the weighting when they first propose the prospect theory: not

fulfilling the conditions of stochastic dominance and not being extended to prospects with a

large number of outcomes. These problems are solved by CPT.

We introduce CPT and its properties in Section 4.2. We discuss fundamental phenomena wrt

our aim. In Section 4.3, we introduce the zero-utility premium principle under CPT proposed

by Kaluszka ve Krzeszowiec [28]. This principle is used to compute premiums for individual

claims of a single insurance contract. In this section, we also present our contribution based on

a stop-loss premium calculation under CPT through some modifications considering aggregate

claims of different risk clusters. In Section 4.4, we suggest a stop-loss dominance relation under

CPT and our solutions for stop-loss premiums are presented for three different value functions.

Finally, we summarize the chapter in Section 4.5.
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4.2. Cumulative Prospect Theory and Risk Prioritization

We consider that the set of outcomes, X , consists of outcomes that are neutral (0), positive

(gains) and negative (losses). The function f : P → X is an uncertain prospect assigning a

consequence to a state s ∈ P through f(s) = x; x ∈ X .

To obtain the cumulative functional, the outcomes of each prospect are ranked in increasing

order. Then, f is represented as a sequence of couples {xi, Ai}. Here, if Ai occurs, the prospect

yields xi. Thus, xi > xj ⇔ i > j where Ai is a partition of P . The positive part of f is given as

f+(s) =

 f(s) , f(s) > 0

0 , otherwise

whereas the negative part of f is obtained as

f−(s) =

 f(s) , f(s) < 0

0 , otherwise

As in EUT, a number V (f) is assigned to each prospect. The relation V (f) - V (g) means that g

is preferred to f or DM is indifferent between f and g. We use the term “capacity” suggested by

Choquet [29] which is a non-additive set function generalizing the standard probability concept.

Let Wi be a capacity assigning a number to each A ⊂ P , i.e. W (A) s.t. W (∅) = 0, W (S) = 1,

and A ⊂ B ⇒ W (A) ≤ W (B). According to CPT, υ : X → R is a strictly increasing

value function s.t. υ(x0) = υ(0) = 0, and there exist capacities W+ and W− and prospects

f(xi, Ai); −m ≤ i ≤ n. Then,

V (f) = V (f+) + V (f−), with

V (f+) =
∑n

i=0 π
+
i υ(xi), and

V (f−) =
∑0

i=−m π
−
i υ(xi)

(4.1)

where π+(f+) =
(
π+

0 , π
+
1 , . . . , π

+
n

)
and π−(f−) =

(
π−−m, π

−
−m+1, . . . , π

−
0

)
are decision weights
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defined as

π+
n = W+(An),

π−−m = W−(A−m),

π+
i = W+(Ai ∪ . . . ∪ An)−W+(Ai+1 ∪ . . . ∪ An); 0 ≤ i ≤ n− 1, and

π−i = W−(A−m ∪ . . . ∪ Ai)−W−(A−m ∪ . . . ∪ Ai−1); 1−m ≤ i ≤ 0.

(4.2)

By taking i ≥ 0⇒ πi = π+
i and i < 0⇒ πi = π−i , Equation (4.1) reduces to

V (f) =
n∑

i=−m

πiυ(xi) (4.3)

Tversky and Kahneman [27] interpret these decision weights as follows:

(i) π+
i related to positive outcomes: The difference between the capacitiesW+(Ai∪. . .∪An),

i.e. the events where “the outcome is better than or equal to xi” and W+(Ai+1∪ . . .∪An),

i.e. the events where “the outcome is strictly better than xi”.

(ii) π−i related to negative outcomes: The difference between the capacities W−(A−m ∪ . . .∪

Ai), i.e. the events where “the outcome is worse than or equal to xi” and W−(A−m∪ . . .∪

Ai−1), i.e. the events where “the outcome is strictly worse than xi”.

Therefore, each decision weight related to an outcome can be explained as the marginal contri-

bution of the relevant event. If each capacity is additive, then Wi becomes the probability of Ai,

i.e. pi = P(Ai). However, the sum can be smaller or greater than 1 for mixed prospects since the

decision weights π+
i and π−i are defined by different Wi for gains and losses separately. Thus,

the decision weights are defined in a different way and Equation (4.2) reduces to the following

equation:

π+
n = w+(pn),

π−−m = w−(p−m),

π+
i = w+(pi + . . .+ pn)− w+(pi+1 + . . .+ pn); 0 ≤ i ≤ n− 1, and

π−i = w−(p−m + . . .+ pi)− w−(p−m + . . .+ pi−1); 1−m ≤ i ≤ 0,

(4.4)
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where the functions w+ and w− are strictly increasing defined from the unit interval into itself

with w+(0) = w−(0) = 0 and w+(1) = w−(1) = 1.

To make the model more clear, a game of chance, given as an example by [27], is provided as

follows.

Example 4.2.1. A dice is rolled once. $x is received if x is even and $x is paid if x is odd.

Therefore,

f+ =

(
0,

1

2
; 2,

1

6
; 4,

1

6
; 6,

1

6

)
, and

f− =

(
−5,

1

6
;−3,

1

6
;−1,

1

6
; 0,

1

2

)
.

By Equations (4.1) and (4.4), the value function is obtained as follows:

V (f) = V (f+) + V (f−)

=
∑n

i=0 π
+
i υ(xi) +

∑0
i=−m π

−
i υ(xi)

= v(2)[w+(1/2)− w+(1/3)]+

v(4)[w+(1/3)− w+(1/6)]+

v(6)[w+(1/6)− w+(0)]+

v(−5)[w−(1/6)− w−(0)]+

v(−3)[w−(1/3)− w−(1/6)]+

v(−1)[w−(1/2)− w−(1/3)].

After providing a general presentation of CPT, modifications suggested by this theory can be

discussed. Firstly, CPT deals with the source dependence problematique by applying to both

uncertain and probabilistic prospects. Secondly, CPT allows separate decision weights for gains

and losses. As a rank-dependent model, CPT supposes that w−(p) = 1− w+(1− p) or equiva-

lently W−(A) = 1−W+(S −A) whereas some studies such as first version of prospect theory

assume that w−(p) = w+(p). Thus, the cumulative (rank-dependent) prospect theory fulfils the

conditions of stochastic dominance. Thirdly, CPT can be extended to continuous distributions

64



because it can be applied to any finite prospect.

The decision weights for gains and losses shown as w+(p) and w−(p), respectively, are hence-

forth indicated as the probability distortion functions g(p) and h(p) for the sake of consistency

with the literature on CPT use in actuarial sciences. Besides, it is not always assumed that

w−(p) = 1 − w+(1 − p), i.e. h(p) = 1 − g(1 − p) as in this section. Instead, we indicate this

expression as ḡ(p) = 1 − g(1 − p). We consider the probability distortion functions suggested

by Tversky and Kahneman [27]. This function is defined as

g(p) =
pγ

[pγ + (1− p)γ]1/γ
. (4.5)

The probability distortion function used for losses, i.e. h(p), is usually same as g(p) with differ-

ent values of γ. For instance, Tversky and Kahneman [27] take γ = 0.61 for gains and γ = 0.69

for losses.

When DMs’ preferences are handled in the context of prospect theory, one needs to consider the

phenomena given in the following definition and Figure 4.1 reflecting these phenomena.

Definition 4.2.1. (Fundamental phenomena of CPT)

(i) Reference point: It determines values as losses and gains,

(ii) Value function: It is an S-shaped function that reflects the concavity (convexity) for gains

(losses),

(iii) Probability weighting function: It is probability distortion function that represents over-

weighting (underweighting) of low (high) probabilities.
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Reference Axis

Loss Gain

υ1(w)

υ2(w)

(a) Value functions

g(p), h(p)g(p), h(p)g(p), h(p)

ppp
0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

h(p)

g(p)

(b) Probability distortion functions

Figure 4.1: Value functions (a) and probability distortion functions (b) proposed in prospect
theory

In Figure 4.1, the graphs of the typical value functions and probability distortion functions sug-

gested by [9, 27] and studied within the frame of the prospect theory are given . As it is seen

from the figure that the value function for losses, υ2(w), is convex , and the value function υ1(w)

is concave and more gradual for gains. On the other hand, the graph of the probability distor-

tion functions for the gains and losses show that the low (high) probabilities are overestimated

(underestimated).

4.2.1. Adapting CPT to Stochastic Ordering

In order to make a connection between CPT and stochastic ordering relations, we need to repser-

ent the axiomatic definition of CPT at first. Consider that F = {f : P → X} is the set of

prospects where F+(F−) indicates the positive (negative) prospects. It is assumed that the bi-

nary relation - satisfies the properties of completeness, transitivity, and strictly monotonicity

which means that the condition ({g 6= h} ∧ {g(s) ≤ h(s)} , ∀s⇒ g < h) holds.
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Definition 4.2.2. (Sure thing principle) Define f = gAh as

f(s) =

 g(s) , s ∈ A

h(s) , s ∈ P \ A

for all g, h ∈ F and A ⊂ P . Then, - on F is independent if

gAh - gAh′ ⇔ g′Ah - g′Ah′;

for all g, h, g′, h′ ∈ F and A ⊂ P .

This principle is one of the main properties of EUT [5]. The independence property is not

generally held by CPT. In this theorem, they provide a concept relating to comonotonicity. Thus,

a constant prospect is comonotonic with all prospects if it provides the same outcome in every

state. In this study, it is claimed in consideration of many studies that comonotonic independence

can be replaced instead of independence axiom. Therefore, if the prospects gAh, gAh′, g′Ah,

and g′Ah′ are pairwise comonotonic, it is assumed that it implies independence [27].

In addition, CPT assumes a property called “double matching” defined as below.

Definition 4.2.3. (Double matching) For the prospects g, h ∈ F ;

{
g+ ≈ h+

}
∧
{
g− ≈ h−

}
⇒ g ≈ h.

Having provided Definition 4.2.2 and Definition 4.2.3, the following theorem is the representa-

tion of CPT within the frame of stochastic ordering.

Theorem 4.2.4. (--- under CPT) Consider that both (F+,-) and (F−,-) can be denoted by a

cumulative functional. (F,-) fulfils the conditions of CPT iff double matching and comonotonic

independence properties hold.

In this context, we discuss adaptedness of CPT to the stochastic ordering relations. We propose
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stop-loss dominance ordering under CPT obtaining stop-loss premium solutions for different

value functions in forthcoming sections.

4.3. CPT Premium Principle

In order to introduce CPT premium principle, we first give the definition of the Choquet integral.

Let G be the probability distortion function class. The Choquet integral is defined as

Eg(X) :=

∫ 0

−∞
[g (P(X > t))− 1] dt+

∫ +∞

0

g (P(X > t)) dt, (4.6)

for the rv X with a fixed g ∈ G . Here, both integrals are finite. Also, all rvs are assumed to be

defined on the probability space (Ω,A ,P).

The definition and properties of the generalized Choquet integral provided by Kaluszka and

Krzeszowiec [28] is presented as follows.

Definition 4.3.1. (Generalized Choquet Integral) The generalized Choquet integral is defined

as

Egh (X) = Eg [(X)+]− Eh [(−X)+] (4.7)

for g, h ∈ G and rv X .

In this definition (X)+ is obtained as

(X)+ = max {X, 0} =

 X , X ≥ 0

0 , otherwise

Proposition 4.3.2. The properties of generalized Choquet integral are given as follows:

(C1) Egh (1A) = g(P(A)) where 1A is the indicator function of the subset A of the set X ,

(C2) Egh (cX) = cEgh (X) ; ∀c ≥ 0,

(C3) Egh (−X) = −Ehg (X),

(C4) If X ≤ Y , then Egh (X) ≤ Egh (Y ),
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(C5) If g(p) ≥ p and h(p) ≤ p for p ∈ [0, 1], then Egh (X) ≥ E (X),

(C ′5) If g(p) ≤ p and h(p) ≥ p for p ∈ [0, 1], then Egh (X) ≤ E (X),

(C6) If g(p) = h(p) = p, then Egh (X) = E (X),

(C7) Egh (c) = c ∀c ∈ R,

(C8) ∀c ∈ R

Egh (X + c) = Egh(X) + c+

∫ c

0

[h (P(−X > s))− ḡ (P(−X > s))] ds (4.8)

and

Egh (X + c) = Egh(X) + c+

∫ −c
0

[
h̄ (P(X ≥ s))− g (P(X ≥ s))

]
ds, (4.9)

(C9) Jensen’s inequality: If a non-decreasing and concave υ : R → R exists with υ(0) = 0,

then

Egh [υ(X)] ≤ υ [Egh(X)] + Igh(X), (4.10)

for g, h ∈ G and an arbitrary rv X s.t. Egh (X) exists. Here, Igh(X) is defined as

Igh(X) =

υ′[Egh(X)]Egh(X)−υ[Egh(X)]∫
0

[
h̄ (P(υ′ [Egh(X)]X ≥ s))− g (P(υ′ [Egh(X)]X ≥ s))

]
ds

where υ′ is the right-sided derivative of υ.

(C ′9) Furthermore, if g(p) ≤ h̄(p) or X ≥ 0, then Egh [υ(X)] ≤ υ [Egh (X)].

Kaluszka and Krzeszowiec [28] consider that an insurance company having a reference point

w ≥ 0 wants to decide whether covering a risk X ≥ 0 or not. Thus, losses are denoted by

(X − w)+ and gains are denoted by (w −X)+. It is assumed that υ1 : R→ R and υ2 : R→ R

are nondecreasing value functions for gains and losses, respectively. By the help of zero-utility

premium principle, the premium to cover X denoted by πX is obtained when the following
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equation is solved.

υ1(w) = Eg
[(
υ1 (w + πX −X)+

)]
− Eh

[(
υ2 (X − w − πX)+

)]
(4.11)

If the value function υ(w) = υ1((w)+) − υ2 ((−w)+) is an increasing and continuous function

s.t. υ(0) = 0, then the premium can be calculated uniquely. Thus Equation (4.11) is rewritten in

terms of generalized Choquet integral as

υ(w) = Egh [υ (w + πX −X)] (4.12)

The premium principle defined by Equation (4.12) is also examined in terms of its properties

such as non-excessive loading, no unjustified risk loading, translation and scale invariance, ad-

ditivity for comonotonic and independent risks, subadditivity, risk loading. For details, see [28].

The phenomena given in Definition 4.2.1 are taken into account for the premium principle sug-

gested by Kaluszka and Krzeszowiec [28]. They determine πX by using Equation (4.12) for the

three different value functions which are υ(w) = cw; c > 0, υ(w) =
1− e−bw

a
; a, b > 0, and

υ(w) = w. Instead of the last value function, which is a special form of the first value function,

we use the typical value function suggested by Tversky and Kahneman [27] in addition to first

and second value function. Therefore, by using a value function defined for losses and gains

separately, we calculate the premium without additional restriction as in Equation (4.12). This

value function is represented as

υ(w) =

 wα , w ≥ 0

−λ(−w)β , w < 0
(4.13)

Having provided the zero-utility premium principle suggested by [28], we extend this premium

equilibrium for aggregate claims of a stop-loss reinsurance contract. We also use the basic value

function proposed in CPT in Equation (4.13) to handle DMs tendencies according to gains and

losses.
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4.3.1. Determining stop-loss premium under CPT

The stop-loss premium calculation is very important for actuarial applications especially for

examining the total risk of the portfolio. To do this, we firstly need to calculate the stop-loss

premium by taking into account of the most accurate reference point. Eckles and Wise [30] uses

Kahneman-Tversky (KT) framework, which is widely known as CPT, to examine the demand

for insurance. In this study, the influence of prospect theory is investigated using two main

reference points which are “initial wealth minus premium” and “initial wealth”. According to

our experience and the results of this study, taking “initial wealth” as a reference point is more

accurate since the amount of the premium is also important for DMs to make decisions about

buying an insurance contract with paying a specified premium, so that it should not be included

in reference point which determines losses and gains. Therefore, we decide gains and losses in

this sense to obtain a function for stop-loss premium by using the zero-utility premium principle.

Considering the existing studies in the literature on stochastic ordering, the contribution of our

study is including the impacts of risk perception. For this aim, we take the premium principle

suggested in Kaluszka ve Krzeszowiec [28] as a reference. In their study, the distribution of

the individual claim rv X is used to calculate the premium πX . The premium is obtained from

the insurer’s perspective without considering the dependency between the individual claims of

a risk class in the portfolio. However, we suggest that we should take the aggregate claim

r.vector of a risk cluster in insurance portfolio as the actuarial risk to evaluate the overall risk

S(i) of that cluster to determine the premium. Therefore, we propose to set a model for the

total aggregate claim rv S(i) of the r.vector SSS(i) under the dependency assumption and find the

stop-loss premium πS(i)(d) with a specified retention limit d. Furthermore, we aim to suggest

a stop-loss dominance among risk clusters in Section 4.4. Thus, we adapt the CPT modified

zero-utility premium principle from the reinsurer’s perspective.

We extend the premium equilibrium for the individual claims given in Equation (4.12) to the

zero-utility premium principle for aggregate claims under stop-loss reiunsurance. As in [28],

we examine the phenomena presented in Definition 4.2.1, which are remarkable facts of CPT.

We also consider the procedure suggested by Eckles and Wise [30] in order to obtain stop-
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loss premium equilibrium under zero-utility approach. In their study, optimal deductibles are

suggested using KT framework. KR (Koszegi-Rabin) framework used by Barseghyan et al. [89]

and Sydnor [90] for obtaining optimal deductible is criticized due to their disadvantages given

as follows.

(i) Loss rv is assumed to be greater than deductible level.

(ii) It is assumed that insurance policy is bought, thus the decision of whether covering the

risk or not is not examined. It can be understood from determining the reference point as

“initial wealth minus premium”.

(iii) It is also assumed that insurer feels loss when a claim is made, and feels gain when insured

person does not make a claim, since the reference point is handled as “wealth minus

premium”. Here, it is assumed that individuals do not perceive premium as a loss. Instead,

the reference point should rely on both wealth and the decision of buying insurance, so

that the premium’s amount should be influential on the determination of losses and gains,

and thus the premium should not be included in reference point.

The determination of the optimal deductible is handled by Eckles and Wise [30] for a single

policy. We adapt their proposed procedure to the stop-loss reinsurance by the help of the sug-

gestion proposed by Raviv [91]. Having adapted this, an optimal policy for the individual case

imposes a deductible for the aggregate claim case. To calculate the stop-loss premiums, we pro-

vide the similar framework considering reinsurer’s perspective in order to be consistent with the

procedure of premium calculation proposed by [28].

Suppose that the df of an aggregate claim rv S is FS(s). The stop-loss premium πS(d) with the

retention limit d is obtained from both insurer’s and reinsurer’s point of views by solving Equa-

tions (4.11) or (4.12) replacing the insured with the insurer and the insurer with the reinsurer.

In order to decide losses and gains with regard to the reference point “initial wealth (w)”, we

firstly investigate all cases related to the size of the aggregate claim.
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i. The case that no loss occurs:

Final wealth is w − πS(d) for insurer and w + πS(d) for reinsurer.

ii. The case that loss occurs and is smaller than or equal to retention limit (S ≤ d):

Final wealth is w − πS(d)− S for insurer and w + πS(d) for reinsurer.

iii. The case that loss occurs and is greater than retention limit (S > d):

Final wealth is w − πS(d)− d for insurer and w + πS(d)− (S − d) for reinsurer.

(a) If S − d ≤ πS(d), then insurer feels loss equals to πS(d) + d− S and reinsurer feels

gain equals to −πS(d)− d+ S.

(b) If S − d > πS(d), then insurer feels gain equals to −πS(d) − d + S and reinsurer

feels loss equals to πS(d) + d− S.

As a result, considering all cases above and adapting the Equations (4.11) or (4.12), we obtain

the stop-loss premium πS(d) as a function of w and d. The stop-loss premium equilibrium is

provided in Proposition 4.3.3.

Proposition 4.3.3. Consider that πS(d) is the stop-loss premium of the stop-loss reinsurance

contract with the retention limit d. According to the stop-loss contract, the reinsurer will pay

the amount of S − d if the loss exceeds the retention limit d, and will not make any payment

otherwise, i.e. (S − d)+. The zero-utility equivalence for the reinsurer perspective which shows

the minimum premium πS(d) that the reinsurer accepts to cover the risk S under the stop-loss

reinsurance is given as:

υ(w) = Egh [υ (w + πS(d)− (S − d)+)] , (4.14)

where υ is the value function and g, h ∈ G are the probability distortion functions.
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4.4. Stop-Loss Dominance under CPT

In addition to first-order stochastic dominance, stop-loss dominance is another important or-

dering within the frame of POT. In this chapter, we examine impacts of risk perception using

the KT framework in order to obtain stop-loss dominance under CPT. We propose a general

representation of the stop-loss dominance under CPT as given in the following definition.

Definition 4.4.1. (Stop-loss dominance under CPT) Let S(i) be the overall aggregate claim

rv and πS(i)(di) be the stop-loss premium of a stop-loss reinsurance contract with the optimal

deductible di for the i-th risk cluster. Then,

πCPT
S(1)(d1) ≤ πCPT

S(2)(d2)⇒ S(1) -CPT
sl S(2).

Here, the stop-loss premiums πS(i)(di) are obtained by Proposition 4.3.3.

In this section, we use the following value functions to find stop-loss premium solutions under

CPT.

i. Value function 1: υ(w) = cw; c > 0,

ii. Value function 2: υ(w) =
1− e−bw

a
; a, b > 0, and

iii. Value function 3: υ(w) =

 wα , w ≥ 0

−λ(−w)β , w < 0

By the use of Proposition 4.3.3, the minimum premium which the reinsurer accepts to cover the

risk (S− d)+ is determined in Equations (4.15), (4.17) and (4.19) for three different value func-

tions. In order to obtain the solutions, we use the properties of the generalized Choquet integral,

the definition and properties of df, and the characteristics of probability distortion functions and

df. Since the statistical distribution for aggregate claim S varies according to data set, we prefer

to present the general solutions in terms of df or survival function of S.
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4.4.1. CPT stop-loss premiums

The solutions for the stop-loss premiums considering the risk perception are obtained under CPT

using Proposition 4.3.3.

(i) CPT stop-loss premiums for Value Function 1:

Proposition 4.4.2. Consider that πS(d) is the stop-loss premium of the stop-loss reinsur-

ance contract with the retention limit d. Let the value function

υ(w) = cw; c > 0.

Then, πS(d) is obtained as

πS(d) = ϕ−1

w +

∞∫
0

h [P (S > d+ t)] dt

− w, (4.15)

which is the analytical solution of Equation (4.14) for the minimum premium which the

reinsurer accepts to cover the risk (S − d)+. Here, ϕ−1 is the inversion of the following

function:

ϕ(x) =

x∫
0

{h [P (S > d+ t)] + g [P (S ≤ d+ t)]} dt. (4.16)

For the derivation of the solution of Equation (4.15), see Appendix A.3.1. Also, for the

proof showing that ϕ(x) is invertible, see Appendix A.3.2.

(ii) CPT stop-loss premiums for Value Function 2:

Proposition 4.4.3. Consider that πS(d) is the stop-loss premium of the stop-loss reinsur-

ance contract with the retention limit d. Let the value function

υ(w) =
1− e−bw

a
; a, b > 0.
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Then, πS(d) is obtained as

πS(d) =
ln [ϕ−1(1)]

b
− w, (4.17)

which is the analytical solution of Equation (4.14) for the minimum premium which the

reinsurer accepts to cover the risk (S − d)+. Here, ϕ−1 is the inversion of the following

function:

ϕ(x) = x
(
e−bw − 1

)
+

x∫
0

g

[
P
(
S ≤ ln t+ bd

b

)]
dt−

∞∫
x

h

[
P
(
S >

ln t+ bd

b

)]
dt.

(4.18)

For the derivation of the solution of Equation (4.17), see Appendix A.3.3. Also, for the

proof showing that ϕ(x) is invertible, see Appendix A.3.4.

(iii) CPT stop-loss premiums for Value Function 3:

Proposition 4.4.4. Consider that πS(d) is the stop-loss premium of the stop-loss reinsur-

ance contract with the retention limit d. Let the value function

υ(w) =

 wα , w ≥ 0

−λ(−w)β , w < 0

Then, πS(d) is obtained as

πS(d) = ϕ−1 (wα)− w − d, (4.19)

which is the analytical solution of Equation (4.14) for the minimum premium which the

reinsurer accepts to cover the risk (S − d)+. Here, ϕ−1 is the inversion of the following

function:

ϕ(x) = (x− d)α +

xα∫
−∞

g
(
P
[
S < s1/α

])
ds−

−λxβ∫
−∞

{
h

(
P
[
S <

(
− s
λ

)1/β
])
− 1

}
ds.

(4.20)
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For the derivation of the solution of Equation (4.19), see Appendix A.3.5. Also, for the

proof showing that ϕ(x) is invertible, see Appendix A.3.6.

4.5. Interim Conclusion: Risk Perception in Stop-Loss Dominance

EUT, which is the most common traditional approach for modeling preferences, assumes that

all decision-makers are rational and their preferences are unbiased under risk. However, this

assumption is not realistic. Hence, we seek for a behavioral approach which could reflect in-

consistency of decisions when individuals make in situations involving risk. In actuarial studies,

decisions under risk are formulated by standard technical calculations, but it is demonstrated

that DMs behave differently when outcomes are either gains or losses. Kahneman and Tversky

discussed violations of EUT and proposed prospect theory in 1979. Then in 1992, they extended

this theory to CPT taking into account “subjective part of risk” [9, 27]. They develop prospect

theory in order to provide a cumulative representation of uncertainty. This approach provides a

chance of applying both uncertain and risky prospects with any number of outcomes, and it also

enables different weighting functions for gains and for losses.

In our thesis, we consider this discussion and reflect DMs’ biased choices to risk prioritization.

For this aim, we propose stop-loss dominance relation under CPT by obtaining stop-loss pre-

mium solutions for specified value functions. Having taken the aggregate claims of each risk

cluster, we compute the stop-loss premiums by proposing an extension of the CPT modified

zero-utility premium principle for aggregate claims.
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5. RISK PRIORITIZATION THROUGH STOCHASTIC MAJORIZATION

5.1. Introduction

Majorization, which is an ordering relation of real-valued vectors, turns out to be a useful tool

since we are interested in prioritization of aggregate claim r.vectors in this study. Because it

appears within the framework of partial ordering, vectors do not need to be totally ordered, which

is very convenient for our study. We will explain this situation later in Section 5.3 by presenting

the differences between conditions of stochastic majorization given in Proposition 5.3.2 and

conditions of first-order stochastic dominance given in Remark 5.3.1.

Order-preserving functions are very beneficial in this context since we use risk measures defined

as functions to evaluate risks. A real-valued function which preserves the ordering of majoriza-

tion is said to be “Schur-convex” function. Therefore, we choose a risk measure that fulfils the

properties of Schur-convexity and we use it to order aggregate claims under majorization.

In order to set priorities through stochastic majorization relation, we propose a rearrangement

of aggregate claim vectors. We modify the conditions of majorization ordering according to

the structure of aggregate claims. By doing that, we check the convenience of our multivariate

model setting introduced in Section 1.3, as well.

After introducing our data set and explaining how we organize the data, we could order some

of the predetermined hazard classes using a Schur-convex risk measure under a case study.

Although we could not order hazard classes entirely in this case study, it shows us that the

existing hazard classification is not suitable for majorization ordering purposes. Therefore, we

recluster risks through an extension of STI. Having done this case study, we also see that our

model setting for risk prioritization is accurate.

This chapter aims to present a brief introduction and an application of stochastic majorization

relation. For this aim, we firstly introduce the theory of majorization and Schur-convexity in

Section 5.2. We give the conditions for stochastic majorization and important properties for

this relation in terms of parameters in Section 5.3. In Section 5.4, we present our contribution
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as a modification of majorization conditions and the risk measures that we use. We introduce

the data and we also give results of stochastic majorization application through a case study in

Section 5.5. Finally, we conclude the chapter in Section 5.6.

5.2. Ordering Risks: Inequalities

Having introduced our model setting in Section 1.3, the following definition clearly demon-

strates the convenience of the majorization relation for prioritizing aggregate claim vectors.

Definition 5.2.1. (Majorization) “Forxxx,yyy ∈ Rn, the orderingxxx -maj yyy denotes that yyy majorizes

xxx, and it is defined by Hardy et al. [92, 93] as follows:

xxx -maj yyy if



k∑
i=1

x[i] ≤
k∑
i=1

y[i], k = 1, . . . , n− 1

n∑
i=1

x[i] =
n∑
i=1

y[i].

(5.1)

Here, x[i] denotes i-th component of xxx = (x1, x2, . . . , xn) ∈ Rn in the decreasing order, i.e. the

i-th element of the vector xxx ↓=
(
x[1], x[2], . . . , x[n]

)
where x[1] ≥ x[2] ≥ . . . ≥ x[n]”.

The condition (5.1), which can also be expressed as “xxx is majorized by yyy”, is equavalent to the

condition below:

xxx -maj yyy if



k∑
i=1

x(i) ≥
k∑
i=1

y(i), k = 1, . . . , n− 1

n∑
i=1

x(i) =
n∑
i=1

y(i).

(5.2)

Here, x(i) denotes i-th component of xxx = (x1, x2, . . . , xn) ∈ Rn in the increasing order, i.e. the

i-th element of the vector xxx ↑=
(
x(1), x(2), . . . , x(n)

)
where x(1) ≤ x(2) ≤ . . . ≤ x(n) [31].

In addition, if we use the strict inequality “<” instead of “≤” in Equation (5.1), or “>” instead

of “≥” in Equation (5.2) for k = 1, . . . , n− 1, the ordering is called “strict majorization”.

79



5.2.1. Schur-convexity

Schur-convex functions are the most important tools of majorization. In 1923, Schur introduced

the Schur-convex function that is also referred as “Schur-increasing function”. Marshall et al.

[31] define these functions that preserve the majorization ordering as follows.

Definition 5.2.2. “A real function φ : A → R for some set A ⊂ Rn is Schur-convex on A if

xxx -maj yyy on A ⇔ φ(xxx) ≤ φ(yyy). (5.3)

This relation means that majorization ordering remains for the Schur-convex function values. φ

is strictly Schur-convex on A if≤ is replaced by< in Equation (5.3) whenxxx is not a permutation

of yyy”.

Likewise, “φ is said to be Schur-concave on A if

xxx -maj yyy on A ⇔ φ(xxx) ≥ φ(yyy).

φ is strictly Schur-convex on A if ≥ is replaced by > in the above equation when xxx is not a

permutation of yyy”.

Remark 5.2.3. “φ(xxx) is Schur-convex on A iff −φ(xxx) is Schur-concave on A ”.

In order to show that a function φ : A → R with A ⊂ Rn is Schur-convex (Schur-concave),

the following theorem is provided.

Theorem 5.2.4. (Schur’s Condition) “Consider that φ : In → R is continuously differentiable

where I ⊂ R is an open interval. φ is Schur-convex on In if

i. φ is symmetric on In, and

ii. (xi − xj)

 ∂φ

∂xi
−
∂φ

∂xj

 ≥ 0 for all 1 ≤ i, j ≤ n”.

Therefore, if we are interested in -maj, then “φ is increasing” means “φ is Schur-convex”.
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5.3. Stochastic Majorization

Stochastic majorization is used to order rvs through the majorization relation between two

r.vectors XXX and YYY . Consider that the φ function on a class of well-behaved functions C de-

fined on Rn has the property

“xxx -maj yyy ⇔ φ(xxx) ≤ φ(yyy) for all φ ∈ C ”. (5.4)

Before introducing conditions for stochastic majorization, in order to provide a relationship

between the relations -sd and -maj, we recall properties of first-order stochastic dominance in

terms of the notation to be given hereafter. The properties of the relations -sd and -maj are given

in Remark 5.3.1 and Proposition 5.3.2, respectively.

Remark 5.3.1. The following conditions are identical:

(a) In univariate case, “for X and Y rvs;

(i) X -sd Y ,

(ii) P(X > s) ≤ P(Y > s) for all s ∈ R,

(iii) P(X ≤ s) ≥ P(Y ≤ s) for all s ∈ R,

(iv) E [ψ(X)] ≤ E [ψ(Y )] for all non-decreasing functions s.t. the expectations exist,

(v) ψ(X) -sd ψ(Y ) for all non-decreasing functions ψ,

(vi) P {X ∈ A} ≤ P {Y ∈ A} for all sets with non-decreasing indicator functions”.

(b) In multivariate case, “forXXX = (X1, X2, . . . , Xn) and YYY = (Y1, Y2, . . . , Yn) r.vectors;

(i) XXX -sd YYY ,

(ii) P (X1 > s1, X2 > s2, . . . , Xn > sn) ≤ P (Y1 > s1, Y2 > s2, . . . , Yn > sn)

for all sss = (s1, s2, . . . , sn) ∈ Rn,

(iii) P (X1 ≤ s1, X2 ≤ s2, . . . , Xn ≤ sn) ≥ P (Y1 ≤ s1, Y2 ≤ s2, . . . , Yn ≤ sn)

for all sss = (s1, s2, . . . , sn) ∈ Rn,
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(iv) E [ψ(X1, X2, . . . , Xn)] ≤ E [ψ(Y1, Y2, . . . , Yn)] for all non-decreasing functions

ψ : Rn → R s.t. the expectations exist,

(v) ψ(X1, X2, . . . , Xn) -sd ψ(Y1, Y2, . . . , Yn) for all non-decreasing functions

ψ : Rn → R,

(vi) P {XXX ∈ A} ≤ P {YYY ∈ A} for all measurable sets A ⊂ R with non-decreasing

indicator functions”.

Proposition 5.3.2. (Stochastic Majorization Conditions) For any class C defined on Rn and

fulfilling (5.4), the following stochastic majorization conditions are suggested by Marshall et al.

[31]. These conditions are defined as follows.

(i) Condition PC :

“φ(XXX) -sd φ(YYY ) for all φ ∈ C ” (5.5)

where -sd is the first-order stochastic dominance.

(ii) Condition EC :

“E [φ(XXX)] ≤ E [φ(YYY )] for all φ ∈ C ” (5.6)

s.t. all expectations exist.

We summarize the stochastic majorization between the r.vectors XXX and YYY under the stochastic

majorization conditions as:

(i) XXX -PC
maj YYY means thatXXX and YYY fulfil (5.5), and

(ii) XXX -EC
maj YYY means thatXXX and YYY fulfil (5.6).

Having provided Remark 5.3.1 and Proposition 5.3.2, if we consider the conditions (iv) and (v)

for multivariate case in Remark 5.3.1, “ψ is non-decreasing” means that ψ is non-decreasing in

each arguments separately when other arguments are fixed. Therefore, ψ is order-preserving for

the ordering xxx ≤ yyy, i.e. xi ≤ yi, for all i according to first-order stochastic dominance relation.
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However, the conditions given in Equations (5.5) and (5.6) in Proposition 5.3.2, φ function does

not need to be non-decreasing in each arguments separately. “φ is non-decreasing” means that

“φ is Schur-convex” according to stochastic majorization relation. For this reason, stochastic

majorization is more useful for our study.

The classes of φ are examined by Marshall et al. [31] and could be written as follows:

(i) “C1 = {φ : φ is a real-valued Borel measurable Schur-convex function defined on Rn}”,

and

(ii) “C2 = {φ : φ is a real-valued continuous, symmetric, and convex function defined on

Rn}”

By means of these classes, the stochastic majorization conditions change into the following

conditions:

(i) PC1 ≡ P1: The condition where C = C1 in (5.5), and

(ii) EC1 ≡ E1: The condition where C = C1 in (5.6).

5.3.1. Stochastic Majorization Conditions in terms of Parameters

The r.vectors XXX and YYY are ordered with stochastic majorization. These vectors often have dis-

tributions that belong to the same parametric family where the space of parameter is a subset of

Rn. We order XXX and YYY having dfs FθθθXXX and FθθθYYY , respectively by stochastic majorization iff the

parameter vectors θθθXXX and θθθYYY are ordered by ordinary majorization [31].

In order to define the stochastic majorization conditions used in terms of parameters, we need to

provide the following notation.

Definition 5.3.3. “Let A ⊂ Rn and let {Fθθθ, θθθ ∈ A} be a family of n-dimensional dfs defined

by a vector-valued parameter θθθ. The probability that φ(XXX) exceeds t when the df of XXX is Fθθθ is

denoted as

Pθθθ (φ(XXX) > t) =

∫
{φ(xxx)>t}

dFθθθ(xxx),
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and the expectation of φ(XXX) is denoted as

Eθθθ [φ(XXX)] =

∫
Rn
φ(xxx)dFθθθ(xxx)”.

The stochastic conditions for the parametric ordering can be seen in the following proposition.

Proposition 5.3.4. (Stochastic Majorization Conditions for Parametric Ordering) Let C be

defined on Rn and fulfil (5.4). Two types of stochastic majorization conditions are suggested by

Marshall et al. [31]. These conditions are defined as follows.

i. “Condition P∗C : Pθθθ (φ(XXX) > t) is Schur-convex in θθθ for all φ ∈ C and for all t”.

ii. “Condition E∗C : Eθθθ [φ(XXX)] is Schur-convex in θθθ for all φ ∈ C s.t. expectations exist”.

For the sake of simplicity, we write P∗i and E∗i in place of P∗Ci and E∗Ci , respectively where

Ci, i = 1, 2 is defined as above. Therefore, the meaning of the stochasic majorization conditions

in terms of parameters given in Proposition 5.3.4 is presented in the following remark.

Remark 5.3.5. Consider that df ofXXX is FθθθXXX and df of YYY is FθθθYYY . Then,

i. Condition P∗C means

XXX -PC
maj YYY when θθθXXX -maj θθθYYY (5.7)

⇒XXX and YYY satisfy PC in (5.5) when θθθXXX -maj θθθYYY ,

⇒ φ(XXX) -sd φ(YYY ) when θθθXXX -maj θθθYYY ,

⇒ P (φ(XXX) > t) ≤ P (φ(YYY ) > t) when θθθXXX -maj θθθYYY for all t.

ii. Condition E∗C means

XXX -EC
maj YYY when θθθXXX -maj θθθYYY (5.8)

⇒XXX and YYY satisfy EC in (5.6) when θθθXXX -maj θθθYYY ,

⇒ E [φ(XXX)] ≤ E [φ(YYY )] when θθθXXX -maj θθθYYY s.t. expectations exist.
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5.3.2. Schur-convexity: Compound Distributions

Since aggregate claim rv is modeled with compound distributions, it is practical to obtain the

stochastic majorization conditions in terms of parameters for a family of compound distribu-

tions. As a general case for compound distribution, we can define the family of compound

distributions {Hλ, λ ∈ B} obtained from the families {Fθ, θ ∈ A} and {Gλ, λ ∈ B} as

Hλ(x) =

∫
θ

Fθ(x) dGλ(θ).

If we need to associate the Schur-convexity conditions with compound distributions, we could

consider two examples of function sets, C1 and C2. φ is Borel-measurable Schur-convex in the

first class; and it is continuous, symmetric, and convex in the second class. Here, it should be

reminded that φ is Schur-convex if it is symmetric and convex. So, these examples consist of

different sets of Schur-convex functions.

Using the conditions given in Proposition 5.3.4 and Remark 5.3.5, the stochastic majorization

conditions for the family {Hλ, λ ∈ B} of compound distributions is obtained by [31] and it is

given in the following table.

Table 5.1: The stochastic majorization conditions for compound distributions

Assumptions on
{Fθ, θ ∈ A} E∗1 E∗2 P∗2
{Gλ, λ ∈ B} E∗1 E∗1 E∗1

Conclusions of {Hλ, λ ∈ B} E∗1 E∗2 P∗2

In Table 5.1, the conditions needed for the compound distribution family Hλ are represented

under the assumptions on the conditions for distribution families Fθ and Gλ. As it can be seen

from the table, the stochastic majorization conditions for compound distributions are represented

in terms of the conditions for primary and secondary distributions. This table shows us that it

is possible to obtain Schur-convexity for compound distributions from the properties of com-

pounding ones.
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5.3.3. Schur-Convexity for Families of Distributions

“The families of multivariate distributions parameterized by a vector θθθ can hold the property that

expectations of Schur-convex functions generate Schur-convex functions of θθθ”.

Definition 5.3.6. “The family of distributions {Fθθθ, θθθ ∈ A ⊂ Rn} defined on Rn is called “pa-

rameterized to preserve Schur-convexity” if

ψ(θθθ) = Eθθθ [φ(XXX)] =

∫
φ(xxx)dFθθθ(xxx)

is Schur-convex in θθθ ∈ A for all Schur-convex functions φ s.t. expectations exist”.

Nevius et al. [94] prove that there are several conditions which are equivalent to the condition

that Schur-convexity is preserved. These conditions are given in the following proposition.

Proposition 5.3.7. “The following conditions are equivalent:

(i) ψ(θθθ) = Eθθθ [φ(XXX)] is Schur-convex in θθθ for all Schur-convex functions φ on Rn s.t. expec-

tations exist,

(ii) Pθθθ (φ(XXX) > t) =
∫
{φ(xxx)>t} dFθθθ(xxx) is Schur-convex in θθθ for every Borel-measurable Schur-

convex functions φ on Rn,

(iii) Pθθθ(B) =
∫
B dFθθθ(xxx) is Schur-convex in θθθ for every Borel-measurable set B s.t. xxx ∈ B,

xxx -maj yyy ⇒ yyy ∈ B”.

5.4. Ordering of Agricultural Claim Data

By classifying individual claims of an agricultural insurance portfolio according to the hazard re-

gions and crop types, we arrange the aggregate claim vectors for the hazard class i = 1, 2, . . . ,m

and crop class j = 1, 2, . . . , pi with regard to our setting SSS(i) =
(
S

(i)
1 , S

(i)
2 , . . . , S

(i)
pi

)′
.

In order to compare the riskiness of the aggregate claim classes using the majorization relation,

we need both a risk measure and observations represented as vectors having the majorization
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relation. Once we have a Schur-convex function being taken as a risk measure, we need to check

if the majorization relation exists between vectors. After that, we could order the functional

values of the risk measure and could infer that the riskiness of the classes can also be ordered

similarly.

To prioritize the aggregate claim vectors, we firstly check if the properties for the majorization

given in Definition 5.2.1 are satisfied. Then, we use a risk measure which fulfils the conditions

of Schur-convexity provided in Theorem 5.2.4.

Risk measures are classified into two types as (i) safety risk measures evaluating wealth under

risk and (ii) dispersion measures assessing the uncertainty level [95]. Since our aim is to as-

sociate ordering notion with “decision under uncertainty” in this thesis, we choose the second

class of risk measures.

In the first phase, we use the sample variance and the sample coefficient of variation as risk

measures, which is one of the main dispersion measures. These measures are dispersion mea-

sures used for ordering the aggregate claim vectors of m hazard classes through majorization

relation. In order to do that, we set the prioritization of the aggregate claim vectors as given in

the following proposition.

Proposition 5.4.1. Let SSS(k) and SSS(l) be aggregate claim vectors and V
(
SSS(k)

)
and V

(
SSS(l)
)

be

variance vectors of k-th and l-th hazard classes, respectively. The majorization relation between

these two hazard classes is given as follows:

SSS(k) -maj SSS
(l) ⇔ φ

(
V
(
SSS(k)

))
≤ φ

(
V
(
SSS(l)
))

(5.9)

where φ is a Schur-convex function.

We order the aggregate claim vectors of the k-th and l-th hazard classes considering an ordering

relation between the function values of their variance vectors.
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5.4.1. Rearrangement of the aggregate claim vectors

According to our main setting in Equations (5.3) and (5.9), we rewrite the majorization definition

as follows:

SSS(k) -maj SSS
(l) if


∑j

t=1 S
(k)
[t] ≤

∑j
t=1 S

(l)
[t] ; j = 1, . . . , pi − 1

∑pi
t=1 S

(k)
[t] =

∑pi
t=1 S

(l)
[t]

(5.10)

In Equation (5.10), we arrange the aggregate claim vectors by sorting them into descending

order as

SSS(k) ↓=
(
S

(k)
[1] , S

(k)
[2] , . . . , S

(k)
[pi]

)
,

where S(k)
[1] ≥ S

(k)
[2] ≥ . . . ≥ S

(k)
[pi]

. Here, S(k)
[t] denotes the t-th element of the decreasing rear-

rangement of SSS(k).

The aggregate claim vector SSS(k) for the k-th hazard class is majorized by the aggregate claim

vectorSSS(l) for the l-th hazard class if two conditions are satisfied. It is obvious that the condition∑pi
t=1 S

(k)
[t] =

∑pi
t=1 S

(l)
[t] is very unlikely to be fulfilled because aggregate claims are continuous

rvs. Thus, we suggest to redefine the majorization relation in order to overcome this problem as

follows:

SSS(k)∑pi
t=1 S

(k)
[t]

-maj

SSS(l)∑pi
t=1 S

(l)
[t]

if



∑j
t=1 S

(k)
[t]∑pi

t=1 S
(k)
[t]

≤
∑j

t=1 S
(l)
[t]∑pi

t=1 S
(l)
[t]

; j = 1, . . . , pi − 1

∑pi
t=1 S

(k)
[t]∑pi

t=1 S
(k)
[t]

=

∑pi
t=1 S

(l)
[t]∑pi

t=1 S
(l)
[t]

(5.11)

To obtain Equation (5.11), we divide all the elements in Equation (5.10) by the summations.

Now, we have two conditions to be checked in order to show that SSS(k) is majorized by SSS(l).

These conditions can be given in the following remark.
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Remark 5.4.2. (Majorization for aggregate claim vectors) The aggregate claim vector SSS(k) for

the k-th hazard class is majorized by the aggregate claim vector SSS(l) for the l-th hazard class if

the following conditions are fulfilled:

(i)

∑j
t=1 S

(k)
[t]∑pi

t=1 S
(k)
[t]

≤
∑j

t=1 S
(l)
[t]∑pi

t=1 S
(l)
[t]

; j = 1, . . . , pi − 1

(ii)
∑pi

t=1 S
(k)
[t] ≥

∑pi
t=1 S

(l)
[t]

5.4.2. Schur-convexity of a risk measure

Since our data set is big enough, we use the sample variance and the sample coefficient of

variation reflecting the variability of the data. Marshall et al. [31] show that the variance function

φ1(xxx) and the coefficient of variation φ2(xxx) is strictly Schur-convex as given in the following

propositions.

Proposition 5.4.3. The sample variance defined as

φ1(xxx) = φ1(x1, x2, . . . , xn) =
1

n

n∑
i=1

(xi − x̄)2

is strictly Schur-convex wrt xxx = (x1, x2, . . . , xn).

For the proof, see Appendix A.4.1

Proposition 5.4.4. The sample coefficient of variation defined as

φ2(xxx) = φ2(x1, x2, . . . , xn) =
[φ1(xxx)]1/2

x̄

is strictly Schur-convex wrt xxx = (x1, x2, . . . , xn) ∈ R+.

For the proof, see Appendix A.4.2
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5.5. Case Study: Ordering Existing Hazard Classes through Majorization

According to 2016’s annual report of Turkish Agricultural Insurance Pool (TARSİM), which is

a government-backed agricultural insurance system, Turkey has first and seventh biggest agron-

omy in the EU and the world, respectively. In terms of external economy, Turkey also exports

a huge variety of agricultural products which makes the country have a competitive agronomy

on a large international scale [96]. On the other hand, the agricultural industry contributes to

economy with a rate of 6.1% in the Turkey’s gross domestic product. Economically, taking into

account all of above mentioned, agricultural functions could remain effective only through a suf-

ficient risk management. For these reasons, we use agricultural insurance data in our thesis. We

work with a unique agricultural claims data set covering more than 100 products for 5 different

hazard types provided by TARSİM.

In order to do the case study, we first organize the data set according to our multivariate model

setting given in Equation (1.1). Hazard regions are already determined based on the villages of

the policyholders and the crop sensitivity classes are determined according to each hazard type.

After obtaining aggregate claim vectors, we first examine the hazard classes in terms of their

fulfilment of the majorization conditions. When we apply the majorization relation in the case

study, we show that the Schur-convexity of the sample variance as a risk measure is useful for

our risk prioritization purposes.

5.5.1. Data

TARSİM is a governmental institution taking the responsibility for the development of agri-

cultural insurance in Turkey. TARSİM has the insurance lines such as crop insurance, district

based drought yield insurance, greenhouse insurance, cattle insurance, sheep and goat insurance,

poultry insurance, aquaculture insurance and beehive insurance. Since 94.8% of the policies of

agricultural products are crop insurance policies in 2014, we focus on crop insurance [97]. Crop

insurance covers the products exposed to various sources of risk such as hail, frost, storm and

flood. Within the crop insurance products, 42.8% and 50.4% of the causes of the paid losess are

hail and frost, respectively. Also, the frost hazard is covered together with the hail hazard. Thus,
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we study crop-hail insurance in order to analyze risks using a data set which is big enough.

After we omit the cancelled policies from the recorded data set, we have 975,971 crop policies

(including zero claims) caused by hail in 2014. Since the information about the policyholders is

not shared by TARSİM due to the privacy terms, we need to obtain the individual claims through

village codes and lot-block codes, together. After merging the same village codes and lot-block

codes, the number of policies decreased to 831,325. Among these policies, the number of the

recorded claims arised from hail hazard (including zero claim amounts) is 54,113.

There are 23 hazard classes and 18 crop classes. We arrange the aggregate claim vectors accord-

ing to the settingSSS(i) =
(
S

(i)
1 , S

(i)
2 , . . . , S

(i)
pi

)′
for i = 1, 2, . . . , 23 and pi = 18. In order to check

if these hazard classes are suitable for our risk prioritization purposes through majorization, we

firstly examine the hazard classes in terms of their fulfillment of the majorization conditions. It

is seen from the results that the existing hazard classification is not acceptable. Only 4 classes

among all hazard classes seem to be majorized. In order to test our model setting, we do this

case study using these classes which are suitable for the definition of the majorization relation.

It is obtained that there is a strict majorization relation among the 4 classes.

At first, the majorization relation is checked among these classes. According to Remark 5.4.2,

only 4 classes out of 23 hazard classes are suitable for our case study. The following results are

obtained:

(i)

∑j
t=1 S

(8)
[t]∑18

t=1 S
(8)
[t]

<

∑j
t=1 S

(9)
[t]∑18

t=1 S
(9)
[t]

<

∑j
t=1 S

(19)
[t]∑18

t=1 S
(19)
[t]

>

∑j
t=1 S

(20)
[t]∑18

t=1 S
(20)
[t]

; j = 1, 2, . . . , pi − 1

(ii)
∑18

t=1 S
(8)
[t] >

∑18
t=1 S

(9)
[t] >

∑18
t=1 S

(19)
[t] >

∑18
t=1 S

(20)
[t]

⇒ SSS(8) ≺maj SSS
(9) ≺maj SSS

(19) ≺maj SSS
(20)

After that, we need to calculate the risk measure values related to sample variances for each

hazard class. If same ordering exists among the values φ1

(
V
(
SSS(k)

))
, then we can conclude our

case study by stating;

i. Our majorization setting for aggregate claims given in (5.9) to apply the Schur-convexity
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of the sample variance is accurate.

ii. The majorization ordering among the aggregate claim r.vectors related to their hazard

regions exists for the riskiness of these classes, as well.

The risk measure values related to the sample variance of the classes that we choose for the case

study are given in Table 6.2.

Table 5.2: The sample variance values of the variance of aggregate claim vectors

Risk Class φ1

(
V
(
SSS(k)

))
(∗1013)

k=8 0.008659
k=9 0.015409
k=19 0.027544
k=20 0.047684

It can be seen from Table 5.2 that the same ordering direction exists among hazard classes.

Therefore, we can conclude that the 8-th class is the least risky and the 20-th class is the most

risky class. The results from the least risky class to the most risky class can be given as RC8 →

RC9 → RC19 → RC20 where RCi denotes the riskiness of the risk class i.

It is seen from the results of all hazard classes that the existing classification is not acceptable.

In order to prioritize the agricultural claims accurately, we should cluster actuarial risks of the

agricultural insurance according to spatial and temporal characteristics of hazard regions. In

order to do that, the dates of crop-hail insurance claims and meteorological data related to claim

dates are obtained in addition to this data set.

5.6. Interim Conclusion: Majorization Analysis on Agricultural Claims Insurance

In this chapter, we aim to order aggregate claim vectors related to hazard classes. Using the data

set of an agricultural insurance portfolio, hazard classes are ordered by taking the advantage of

majorization properties and the use of Schur-convexity.

We propose a rearrangement of aggregate claim vectors in order to construct these vectors ac-
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cording to majorization conditions. If these conditions are fulfilled, we only need a Schur-

convex function which could be taken as a risk measure. In our case study, this risk measure is

sample variance. Even though all hazard classes could not be ordered, the case study provides

us a significant inference. The results show that our multivariate model setting is convenient

for majorization purposes, and it is possible to conduct an entire prioritization of the portfolio’s

actuarial risks with an accurate clustering which is discussed in the following chapter.
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6. RISK CLUSTERING THROUGH SPATIOTEMPORAL
INTERPOLATION

6.1. Introduction

Environmental risk management is different from actuarial and statistical inference of risks.

Weather-related hazards have more influence on agricultural claims compared to other lines of

non-life insurance. Therefore, it is necessary to consider the geographical characteristics of the

portfolio. In this sense, the meteorological features of agricultural claims should be taken into

account during risk assessment. Agricultural risk clustering is very useful when we need to

group claims according to environmental characteristics especially for big data. In this study,

since we have no meteorological information on the exact location of the claim, we estimate the

approximate values of unknown variables using observed values through efficient interpolation

techniques. For measuring the impacts of their environmental attributes, spatial interpolation

techniques are very functional and appropriate in GIS applications [98–101]. As an extension

of spatial interpolation techniques, STI techniques use 2-dimensional location and time points.

Most commonly-used STI algorithms are kriging and inverse distance weighting (IDW) method.

Agricultural risk assessment is a specific area which evaluates risks in geographical framework.

In order to prioritize weather-related risks, we cluster agricultural claims according to spatial

and temporal characteristics of hazard regions by using model-based clustering techniques. For

this aim, IDW method with reduction approach is used to estimate meteorological values related

to the location and the time of the reported agricultural claims. Since height has a very signifi-

cant influence on meteorological variables, altitude values are used to decide the optimal sample

set. In order to find the optimal sample set for STI technique, a stochastic optimization algo-

rithm is considered. We extend stochastic DE optimization algorithm changing one-dimensional

distance-based approach to a multidimensional setting which suggests an angular-based distance

computation. The closeness of estimated and actual altitudes determines the optimal location

pairs. Moreover, we propose a solution to choose the population size of DE algorithm for the

initialization step.
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DE algorithm has some superior features such as straightforward execution, providing depend-

able, effective and robust results [102], hence it is preferred in many studies such as solvency

requirements in insurance [103], mechanical and chemical engineering [104, 105], real-life ap-

plications [106], geophysics [107], artificial neural networks [108] and so on. On the other

hand, in model-based clustering approach, the data is viewed as being generated from a mixture

of probability distributions, each representing a different cluster [109].

The chapter is organized as follows: In Section 6.2, we introduce the extended DE algorithm

and IDW method with reduction technique. We also explain our contributions in this section.

We present the risk clustering approach in Section 6.3. In Section 6.4, we introduce the data

set and we explain what we have done to reorganize the data in addition to the case study in

Section 5.5.1. We also present the results of STI through DE optimization, risk clustering and

stochastic majorization in this section. Finally in Section 6.5, we give concluding remarks of

this chapter.

6.2. Spatiotemporal Techniques

Many spatial interpolation methods are summarized and grouped as IDW and extensions of

IDW, clustering assisted regression, kriging and extensions of kriging, splines and extensions

of splines, random forest and mixtures of these methods etc. [32]. The common assumption of

these techniques is that sample points near the location to be estimated result in strong influence

on estimation [110, 111].

As a method estimating the unknown value of a variable through its location and time, STI

has become very popular in GIS applications as an extension of spatial interpolation techniques

[112–116]. Therefore, it is a very useful approach to estimate meteorological quantities of a

claim. It is claimed that considering both location and time provides more reliable estimations

[117].

Even though kriging appears as the most appropriate technique among STI algorithms, it does

not perform well computationally. For this reason, IDW is preferred [32]. Li and Heap [118]

and Burrough and McDonnell [119] claim that any spatial interpolation method performs better
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according to the sample design, form and features of the data or factors affecting the sampling

[120]. As suggested in [32], we choose to use IDW method with reduction technique in our

thesis for the interpolation of unknown meteorological values related to the reported agricultural

claims.

6.2.1. Optimization Problem

In this chapter, we explain our extension for DE algorithm after giving the optimization problem.

In comparison with DE algorithm, random optimization methods have a drawback of choosing

the sample points randomly which causes that the location of selected points might converge

each other, so that the interpolation does not yield reasonable results especially for small sam-

ples. However, DE algorithm overcomes this disadvantage by selecting the sample points with

an optimization criterion instead of just randomizing [32]. When one deals with the choice of

the variable in a sample for optimization purposes specifically in agricultural insurance, geo-

graphical factors have high impact on estimation process. According to Capozzi et al. [121],

mid-altitudes affect the probability of the occurance of hail hazard. Hence, we use altitude data

to calculate the fitness value which is used to obtain the optimal sample set according to the

distance between estimated and actual values.

The optimization problem is defined as maximizing the leave-one-out cross-validation (LOOCV)

error of the (k−1)-dimensional sample when k-th element is left out, so that k-th element is the

best estimator [32]. In our study, LOOCV error, which represents the total absolute error when

k-th element is left out, is defined as

eabs
k (xxx−k) =

∑
i 6=k

|x̂i − oi| , (6.1)

where eabs
k is the total absolute error, x̂i denotes STI’s estimated value at location xi using the

remaining set xxx−k = xxx\ {xk}, and oi is the observed value at location xi.

IDW method with reduction technique needs 4 sample points to interpolate the unknown value.

The set of remaining (n− 4) points is the initial set of DE algorithm where the entire sample set

is xxx = {x1, x2, . . . , xn} for univariate case.
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In our case, we first choosem closest sample locations xxx(1),xxx(2), . . . ,xxx(m) and then we obtain all

possible 4-subsets out of the set of m distinct sample points. We aim to find the optimal subset

which minimizes the value of the cost function given in Equation (6.3).

LetXXX be the input of the optimization includingN =
(
m
4

)
elements, i.e. XXX = [XXX1,XXX2, . . . ,XXXN ].

Here, {XXXk; k = 1, 2, . . . , N} represents the k-th combination from the set
{
xxx(1),xxx(2), . . . ,xxx(m)

}
and it is defined as

XXXk = [xxxk,1;xxxk,2;xxxk,3;xxxk,4] ; k = 1, 2, . . . , N

where [xxxk,1;xxxk,2;xxxk,3;xxxk,4] =
[
xxx(jk,1);xxx(jk,2);xxx(jk,3);xxx(jk,4)

]
with ji,D ∈ {1, 2, . . . ,m} for D =

1, 2, 3, 4. Here, XXXk is the (4× 2)-dimensional matrix consisting of locations xxxk,j having both

latitudes
(
latxxxk,j

)
and longitudes

(
lonxxxk,j

)
in each row.

In addition to LOOCV error, Susanto et al. [32] use another measure called “sparsity” within

the cost function. The sparsity is actually the coefficient of variation (Coef.Var.) of pair-wise

distances of m closest sample points. Let pair-wise distance vector be

∆XXXpw =
(
∆xxx(1);xxx(2) ,∆xxx(1);xxx(3) , . . . ,∆xxx(1);xxx(m) , . . . ,∆xxx(m−1);xxx(m)

)
where

{
∆xxx(j);xxx(j

′) ; j 6= j′ ∈ 1, 2, . . . ,m
}

represents the Euclidean distance between the location

xxx(j) = (latxxx(j) , lonxxx(j)) and xxx(j′) = (latxxx(j′) , lonxxx(j′)). The Coef.Var. is calculated as

CV (∆XXXpw) = σ (∆XXXpw) /µ (∆XXXpw) , (6.2)

where σ (∆XXXpw) and µ (∆XXXpw) are the standart deviation and the mean of the vector ∆XXXpw , re-

spectively. Therefore, the optimization problem turns out to be a minimization problem as

costk =
[
eabs
k (XXX−k)

]−1 CV (∆XXXpw) ; k = 1, 2, . . . , N. (6.3)

where eabs
k (XXX−k) is the LOOCV error of the (k − 1)-dimensional sample when k-th element is

left out, andXXX−k = XXX\ {XXXk} is the “leave-one-out” set used as the input for DE algorithm. To

sum up, our purpose is to minimize costk, so that k-th sample set is the optimal sample set for

the interpolation.
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6.2.2. Differential Evolution Algorithm: An Extension

The minimization problem defined in Equation (6.3) is solved by DE algorithm. This algorithm

helps us to optimize non-linear and non-differentiable continuous space functions. According

to Storn and Price [33], an optimization method must

(i) be able to achieve to optimize non-linear, non-differentiable and multimodal cost functions

efficiently;

(ii) be suitable for parallel computing when it is difficult to calculate cost function fast;

(iii) be practical (not having too many control variables);

(iv) yield fast and consistent convergence to the global minimum.

As a result of these conditions, Storn and Price [33] propose DE algorithm to fulfil these neces-

sities.

The most useful part of DE algorithm is that the gradient of the cost function is not a requisite

since it is a direct search method [122, 123]. Direct search optimization algorithms work for

finding a set around the point related to unknown value. Within this set of points, the one that

yields a lower cost function value compared to others appears to be the optimal point. How-

ever, other optimization methods require first or higher derivatives of the cost function. Hence,

direct search methods are more convenient when the cost function is non-differentiable [124].

Moreover, this algorithm is a stochastic parallel method using several processors to calculate the

optimization problem fast.

In univariate case, the optimal vector is chosen among M vectors. M is the population size

and xxxi,G; i = 1, 2, . . . ,M is the D-dimensional target vector and it is used as G-th generation’s

population vector. The initialD-dimensional parameter population is determined randomly from

M vectors for each generation, but the population size M remains the same [33].

The main steps of DE algorithm are initialization, mutation, crossover, and selection:
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(i) In the “initialization” step, three parameter populations are determined randomly from

Uniform [1,M ].

(ii) A transformed vector υυυi,G+1 is obtained in the “mutation” step. In univariate case, this

vector is mutated by adding a weighted difference between two random population vectors

multiplied to random base vector. As an extension of classical DE algorithm, where the

elements in the parameter vector are one-dimensional, we adapt this calculation to the

multidimensional case, i.e. the elements in the parameter vector are two-dimensional,

which makes the parameter vector appear as a “parameter matrix”.

(iii) In the “crossover” step, the trial vector uuui,G+1 is formed by comparing pre-arranged target

vector xxxi,G and the transformed vector υυυi,G+1 wrt to a criterion given in Equation 6.7.

(iv) For the last “selection” step, the algorithm selects the trial vector or the target vector

according to their cost function values.

DE algorithm’s procedure is given in detail as follows:

• Initialization and Mutation: In univariate case, a vector is mutated for eachD-dimensional

target vector xxxi,G; i = 1, 2, . . . ,M of the generation G as

υυυi,G+1 = xxxr1,G + (xxxr2,G − xxxr3,G)F (6.4)

where xxxr1,G is the random base vector, xxxr2,G and xxxr3,G are the random parameter vectors

with random integers r1, r2, r3 and F ∈ R is a constant. Here, rk ∈ {1, 2, . . . ,M} ; k =

1, 2, 3 are different from each other and also from i, so that M ≥ 4. F ∈ [0, 2] determines

the amount for the increase of the difference (xxxr2,G − xxxr3,G). The choice of the values of

M and F is discussed in detail in Section 6.2.3.

For the sake of simplicity, the “leave-one-out” set XXX−k = XXX\ {XXXk} is redefined as a

population set given as

XXXpop = {XXX1,G,XXX2,G, . . . ,XXXM,G}

99



whereXXX i,G; i = 1, 2, . . . ,M = N − 1 is the i-th target matrix of the generation G. Here,

N =
(
m
4

)
is the dimension of combination subset of m closest points.

The first multidimensional extension of our study is in the initialization step. 3 parameter

matrices are chosen from the population set XXXpop. The initialization set consisting of

three (D × 2)-dimensional XXXrk,G parameter matrices all of which includes xxxrk,j,G pairs

for j = 1, 2, . . . , D is obtained as

XXX (init)
i,G = {The set ofXXXrk,G; rk ∈ {1, 2, . . . ,M} for k = 1, 2, 3}

where r1 6= r2 6= r3 6= i are random integers are Uniform [1,M ]-distributed. Here,

XXXrk,G is the rk-th element of the population setXXXpop = XXX−k = XXX\ {XXXk}. Also, XXX i,G =

[xxxi,1,G;xxxi,2,G; . . .xxxi,D,G] hasD location pairs consisting of latitude
(
latxxxi,j,G

)
and longitude(

lonxxxi,j,G
)

values.

Adding a weigted Euclidean distance between the nodes xxxr2,j,G and xxxr3,j,G, which is indi-

cated as ∆xxxr2,j,G;xxxr3,j,G
, to xxxr1,j,G for each j = 1, 2, . . . , D, we adapt the distance calcula-

tion from the univariate case of DE algorithm shown in Equation (6.4) to 2-dimensional

case. In other words, this angular-based extension can be expressed throughXXX (init)
i,G where

XXXr1,G is the random base matrix, XXXr2,G and XXXr3,G are the random parameter matrices

with random integers r1, r2, r3. Here, it is assumed that the distance is calculated linearly

and also that α, the angle between x-axis and the line joining the origin (0, 0) and the

point xxxi,j,G =
(
latxxxi,j,G , lonxxxi,j,G

)
does not change for the next amplification. Therefore,

the extended generation of the mutant matrix is obtained as follows:

latυυυi,j,G+1
= latxxxr1,j,G +

(
sin

[
arctan

(
latxxxi,j,G
lonxxxi,j,G

)]
∆xxxr2,j,G;xxxr3,j,G

)
F (6.5)

for the latitude of υυυi,G+1, and

lonυυυi,j,G+1
= lonxxxr1,j,G +

(
cos

[
arctan

(
latxxxi,j,G
lonxxxi,j,G

)]
∆xxxr2,j,G;xxxr3,j,G

)
F (6.6)
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for the longitude of υυυi,j,G+1. Therefore, the revised form of the mutant matrix is

υυυi,G+1 =
[(

latυυυi,1,G+1
, lonυυυi,1,G+1

)
;
(
latυυυi,2,G+1

, lonυυυi,2,G+1

)
; . . . ;

(
latυυυi,D,G+1

, lonυυυi,D,G+1

)]
as a (D × 2)-dimensional matrix. For the j-th element of the target matrix xxxi,j,G, this

operation is shown in Figure 6.1.

Longitude

Latitude

lonxxxr1,j,G

•
xxxr1,j,Glatxxxr1,j,G

lonυυυi,j,G+1

•
υυυi,j,G+1

latυυυi,j,G+1

∆
x r
2
,j
,G

;x
r 3
,j
,G

α

Figure 6.1: Mutation of υυυi,j,G+1 for the target matrixXXX i,G

• Crossover: The crossover step is necessary to ensure that both the initialization and muta-

tion processes are heterogeneous and random [33]. The j-th element of trial matrix uuui,G+1

is obtained from

uuui,j,G+1 =


υυυi,j,G+1 if {uj ≤ CR} ∨ {j = ri}

xxxi,j,G if {uj > CR} ∧ {j 6= ri}

; j = 1, 2, . . . , D (6.7)

where uj ∈ [0, 1] is a uniform random number generated for each j and CR ∈ [0, 1]

is a constant chosen by the user to determine the crossover form. Here, the trial ma-

trix is also formed from latitudes and longitudes as uuui,j,G+1 =
(
latuuui,j,G+1

, lonuuui,j,G+1

)
for

each j = 1, 2, . . . , D. The choice of the values for CR is discussed in detail in Sec-

tion 6.2.3. ri is a randomly chosen index in {1, 2, . . . , D} which ensures that uuui,G+1 =
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(uuui,1,G+1;uuui,2,G+1; . . . ;uuui,D,G+1) takes at least one element from υυυi,G+1.

• Selection: In this step, we determine the (G + 1)-th generation’s target matrix. For this

aim, the fitness function values of both the trial matrix uuui,G+1 and the target matrix xxxi,G are

compared. Naming these function values as “score value” and “cost value”, score (uuui,G+1)

and cost (xxxi,G) are calculated by Equation (6.3). The next generation’s target matrix is

obtained as

xxxi,j,G+1 =


uuui,j,G+1 ; if score (uuui,G+1) ≤ cost (xxxi,G)

xxxi,j,G ; otherwise

; j = 1, 2, . . . , D. (6.8)

This equation shows that the trial matrix replaces the target matrix in the next generation

if score (uuui,G+1) ≤ cost (xxxi,G). For each element XXX i,G of the population set XXXpop, this

procedure is repeated, thus M iterations are run for each generation.

In order to summarize DE Algorithm explained in the previous subsections, the following

flowchart is presented.
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Take the population set XXXpop = {XXX1,G,XXX2,G, . . . ,XXXM,G}

Determine the target matrix XXX i,G

Determine the base matrix XXXr1,G and the random parameter matrices XXXr2,G and XXXr3,G

Form the initialization set XXX (init)
i,G

Obtain the mutant matrix υυυi,G+1 =
[(

latυυυi,1,G+1
, lonυυυi,1,G+1

)
;
(
latυυυi,2,G+1

, lonυυυi,2,G+1

)
; . . . ;

(
latυυυi,D,G+1

, lonυυυi,D,G+1

)]
Obtain the elements of the mutant matrix latυυυi,j,G+1

and lonυυυi,j,G+1
according to Equation (6.5) and Equation (6.6)

Determine the trial matrix uuui,G+1 = (uuui,1,G+1;uuui,2,G+1; . . . ;uuui,D,G+1) for each j = 1, 2, . . . , D according to Equation (6.7)

Calculate the score (uuui,G+1) and cost (xxxi,G)

Select the (G+ 1)-th generation’s target matrix according to Equation (6.8)

Figure 6.2: Flowchart for the extension of DE algorithm
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6.2.3. Criteria for DE algorithm’s control variables

The population size must be M ≥ 4 since one base matrix and two parameter matrices are taken

from the population randomly different from i, so that at least 4 elements are needed. Thus,

different initialization setsXXX (init)
i,G is determined for each generation. Storn and Price [33] restrict

this criterion as 5D ≤ M ≤ 10D where D is the number of the elements (locations in this

study) included in the parameter matrix.

F adjusts the amount of the difference between two random parameter matrices added to the

base matrix in the mutation step, so-called “mutation scaling factor” [125]. Since F ∈ [0, 2] is

a constant, the choice of this factor is discussed in several studies. Storn and Price [33] suggest

that F = 0.5 can be preferred for the first trial. It is also recommended in this study that F can be

increased if convergence is mature. If it converges too early, it is called premature convergence.

Moreover, it is found in this study that the optimization is not effective when F < 0.4 or F > 1.

Therefore, the most effective interval for mutation scaling factor is F ∈ [0.4, 1].

Another control variable of DE algorithm is the constant CR ∈ [0, 1] value, which is called as

“crossover rate” [125]. Since higher values of CR usually provide fast convergence, the values

CR = 0.9 or CR = 1.0 could be candidates for this factor [33].

Although various criteria appear in existing studies, the conditions may vary according to the

structure of the data and the objective function. Our parameter choice for this study is explained

in the application.

6.2.4. IDW Method: Reduction Technique

Susanto et al. [32] propose an extensive alteration of the IDW-based spatiotemporal algorithm,

so called “reduction approach”. The idea behind this technique [126] claims that temporal dis-

tance should be taken independently from spatial distance.

In DE algorithm part, the optimal set of 4 locations is determined as the sample input of the

IDW method. The meteorological values for different variables shown in Table 6.1 are available

at these locations at different times. Consider that XXX = [xxx1;xxx2;xxx3;xxx4] is the optimal input

103



set. Here xxxis are inputs used for estimating the meteorological value related to an agricultural

claim located at the point x. Define oi,t as the observed meteorological value at the location

xxxi = (latxxxi , lonxxxi) and at time tttxxxi . Here, tttxxxi is the vector of times when the meteorological

value at the location xxxi is measured and let tttxxxi ∈ [tstart, tend]. Hence, the values tstart and tend

vary according to xxxi for each meteorological variable. In addition, consider that the agricultural

claim occurs at the location x = (latx, lonx) and at time tx.

According to this technique, the unknown meteorological value x̂ related to the location and the

time of the agricultural claim is estimated as follows:

x̂ =

tend∑
tstart

4∑
i=1

wt,iot,i (6.9)

where ot,i is the observed point and wt,i is the weight related to each observed point. The

weights are calculated wrt the traditional IDW technique using the inverse of 2-dimensional

spatial distance and 1-dimensional temporal distance as

wt,i =
∆−ussi

∆−utti∑tend
tstart

∑4
i=1 ∆−ussi

∆−utti

. (6.10)

In this equation, the 2-dimensional spatial distance is the Euclidean distance between the i-th

known location xxxi = (latxxxi , lonxxxi) and the unknown point’s location x = (latx, lonx) and it is

indicated as ∆si = ∆xxxi,x. The temporal distance is the time difference between the elements of

tttxxxi and tx denoted as ∆ti = ∆tttxxxi ,tx
. In order to consider the seasonality in the data set simply,

we compute the temporal distances based on (mod 365). Here, the constants us and ut are

determined by user and they are called “spatial distance-decay factor” and “temporal distance-

decay factor”, respectively [32].

The calculation of the weight wt,i in Equation (6.10) shows that it might yield “division by zero”

error if ∆si and/or ∆ti is equal to zero. In order to eliminate this problem, Susanto et al. [32]

recommend to adjust these values to 1 since it is the smallest value that can be assigned to both

spatial and temporal distances. In addition, this drawback is discussed by De Mesnard [127] and

it is suggested that the sample value can be taken directly since the distance between unknown
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point and known point is zero. As recommended, we also replace the location of the unknown

value with the sample point in our study when the distance is zero. As a result, we determine

the distances as follows:

(i) If {∆ti = 0} ∧ {∆si = 0}, then wt,i = 1, so that x̂ = ot,i which means that the estimated

value is simply the sample point as in [127].

(ii) If {∆ti = 0}∧ {∆si 6= 0}, then ∆ti is adjusted as ∆ti = 1 as in [32] and ∆si is calculated

as an Euclidean distance.

(iii) If {∆ti 6= 0}∧{∆si = 0}, then ∆si is adjusted as ∆si = 1 as in [32] and ∆ti is calculated

as the absolute difference between dates.

(iv) If {∆ti 6= 0} ∧ {∆si 6= 0}, then ∆si is calculated as an Euclidean distance and ∆ti is

calculated as the absolute difference between dates.

The optimization and interpolation results for our crop-hail insurance data set are presented in

Section 6.4.

6.3. Risk Clustering

According to our main model setting for the prioritization of aggregate claim vectors, we use

cluster analysis which is grouping a set of objects by gathering the ones having more similar

characteristics. Determination of the structure for the data to be clustered is not very easy when

no information apart from observed values is available. Clustering should be distinguished from

discriminant analysis. In discriminant analysis, known groupings of some observations are used

to categorize others and it helps to infer the structure of entire data. Once we estimate the

meteorological information related to the agricultural insurance claims, we can cluster risks wrt

their environmental features.

Clustering is one of the main analysis steps that has been studied by many researchers [128].

Studies on machine learning and data mining show that traditional clustering methods are vul-

nerable in the presence of complex characteristics of recent data sets. These data sets also force
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researchers to question if existing clustering methods are scalable and suitable for visualization

[129].

Clustering approaches could be categorized as parametric methods [130, 131] and non-parametric

models [132, 133]. Since the performance of a clustering method depends on the structure

of data, an optimal clustering approach does not exist. However, paramtetric methods appear

to be more informative. Clustering algorithms using the parametric model framework apply

Expectation-Maximization (EM) algorithm [134, 135] on statistical parametric model for the

data. If data is formed as vectors, multivariate Gaussian mixtures, which are popular model-

based clustering methods, are comparable under the most commonly used types of distance

such as Euclidean or Mahalanobis distances [136].

6.3.1. Model-Based Clustering

Clustering methodology used in this study is based on multivariate normal mixtures. In order to

select the best model, Bayesian Information Criterion (BIC) is used [137, 138]. In the mixture

model, the number of components and the related probability densities are determined by EM

algorithm under a hierarchical procedure.

The mixture density of yyy = (y1, . . . , yn) is given as

f(yyy) =
n∏
i=1

m∑
k=1

τkfk (yi |θθθk), (6.11)

where fk (yi |θθθk) is a pdf with parameter vector θθθk and τk is the probability of belonging to the

k-th component. Here, n is the data size and m is the number of clusters. Since τk is the mixing

probability of the k-th cluster, the summation of τks should be 1, i.e.
∑m

k=1 τk = 1.

The probability density function fk is usually assumed to belong multivariate normal distribution

family where the parameters are the mean vector µµµk and the covariance matrix ΣΣΣk. Thus, the

parameter vector θθθk includes the multivariate normal distribution parameters µµµk and ΣΣΣk.
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The multivariate normal distributed variable yi has the pdf defined below:

fk (yi |θθθk) = fk (yi |µµµk,ΣΣΣk) = |2πΣΣΣk|−1/2 exp

{
−1

2
(yi − µµµk)′ΣΣΣ−1

k (yi − µµµk)
}

where θθθk = (µµµk,ΣΣΣk).

To estimate the parameters in model-based clustering, EM algorithm is used to maximize the

likelihood [134, 135]. Two steps (E-step and M-step) of each EM iteration is as follows:

(1) Consider that the estimates of j-th component (µµµj , ΣΣΣj and τj) are given, the conditional

probability zik is obtained in the E-step as follows:

zik =
τkfk (yi |µµµk,ΣΣΣk)∑m
j=1 τkfk (yi |µµµj,ΣΣΣj)

. (6.12)

In this equation, zik indicates the probability that object i belongs to the k-th component.

(2) According to the estimates of zik, parameters are estimated from the data [139].

The risk clustering and stochastic majorization results are given in the following section.

6.4. Application

Our aim in this chapter is to obtain the estimated meteorological information of the agricultural

claim data, to cluster aggregate claims according to this information, and finally to prioritize

aggregate claim vectors of these risk clusters. For this aim, we first select the optimal sample

data set, which is used as an input for IDW method with reduction technique, in the extended DE

optimization algorithm. In order to estimate the unknown meteorological values for the points

related to the reported claims, we use this input set in STI method. We solve the optimization

problem, obtain the estimations and prioritize actuarial risks using Matlab. For displaying the

graphs and obtaining some of the numerical results, we use the tools of ArcGIS software. For

the clustering part, we use R software.
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6.4.1. Data

Clustering of agricultural claims has two main steps. The first step is related to the claim data

including locations (latitudes, longitudes and altitudes) and dates whereas the second step is to

obtain meteorological data considering temporal and spatial information about claim data.

The claim dates were not given related to each claim in the claim data set. The claim amounts

(Data Set 1) and the claim dates (Data Set 2) were taken separately. The problem was that these

two data sets, which were needed to be merged, were given at different times. Therefore, an

amount recorded as a “paid claim” in Data Set 1 might be recorded as an “outstanding claim”

in Data Set 2 since Data Set 2 is older than Data Set 1. On the other hand, the values of these

amounts are not always the same due to the contradictions, delays, law courts etc.. Therefore,

we have obtained the dates of individual claims checking the consistency of paid and outstand-

ing claim amounts and replacing more recent data when the values are different. We have also

checked if the claim amount exceeded the insurance amount for each claim. Here, we have re-

placed the claim amount with the insurance amount if the claim size is greater than the insurance

amount.

In addition to the dates, we also needed the information about the locations where the claims

occurred. The village codes, where the policies are written, are available in the data set, but

TARSİM does not provide the spatial information of these villages. Therefore, latitudes, lon-

gitudes and altitudes of 43,090 villages are found using online “batch geo-coding” tools of

“ArcGIS Geocode Addresses”.

On the other hand, the meteorological data, which is available from the date 01.01.1980 to

31.12.2016, is given by General Directorate of Meteorology (MGM). This data, which is used as

a sample data set, is recorded at 415 weather stations at various times. The spatial information

of the weather stations, which are latitudes, longitudes and altitudes of the stations, are also

obtained by batch geo-coding.

As the last step before clustering the aggregate claims, we merge the claim data and the related

meteorological information. For the unknown values in the claim data, one of the common STI
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methods is used. By the help of IDW technique with reduction approach, the meteorological

quantities of claims could be estimated related to its location and time.

In the following map, the brown circles indicate the location of 43,090 villages where claims are

reported whereas the yellow ones are for the locations of 415 meteorological stations.

Figure 6.3: The locations of the claims (brown) and the meteorological stations (yellow)

As it can be seen from the map, the claims are mostly centred around the middle, the west and

the south of the country due to the fact that agricultural activity is higher in these areas. Another

reason of this localization is that economic conditions, education and insurance culture is more

improved in these regions. Hence, in order to estimate the unknown meteorological value of the

brown circles through IDW technique with reduction approach, we use the known information

of the optimal set of yellow circles chosen among the ones surrounding the brown ones using

extended DE algorithm. The meteorological variable interpolated for the claims are presented

in the following table.
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Table 6.1: The information of the meteorological variables which are used in the application

No Variable Name Unit Abbreviation Size
1 Daily Average Cloud % avcloud 98,510
2 Daily Average Humidity % avhum 927,254
3 Daily Average Pressure hPa avpres 828,340
4 Daily Average 5 cm Soil Temperature ◦C avsoiltemp5 839,143
5 Daily Average 10 cm Soil Temperature ◦C avsoiltemp10 836,883
6 Daily Average 20 cm Soil Temperature ◦C avsoiltemp20 833,734
7 Daily Average 50 cm Soil Temperature ◦C avsoiltemp50 821,938
8 Daily Average Temperature ◦C avtemp 944,670
9 Daily Average Vapor Pressure hPa avvappres 804,448

10 Daily Insolation Force cal/cm2 insoforce 169,071
11 Daily Maximum Temperature ◦C maxtemp 957,491
12 Daily Minimum Surface Temperature ◦C minsurftemp 848,233
13 Daily Minimum Temperature ◦C mintemp 959,525
14 Daily Local 100 cm Soil Temperature ◦C soiltemp100 826,804
15 Daily Total Evaporation mm toteva 226,467
16 Daily Total Global Solar Radiation cal/cm2 totglsolrad 169,077
17 Daily Total Insolation Duration hour totinso 443,246
18 Daily Total Precipitation mm totprec 490,522

6.4.2. Results of STI through Optimization

It is explained in Section 6.2.3 that the criteria for DE algorithm’s control variables are accept-

able when they are chosen as: (i) the population size, 5D ≤ M ≤ 10D; (ii) the crossover ratio,

CR = 0.9 or CR = 1.0 for the fast convergence; and (iii) the scaling factor, F = 0.5. Therefore,

we determine these factors as D = 4, M = 35, CR = 0.9 and F = 0.5. Since we use initial

vectors including 4 sample points to interpolate the unknown value as it is explained in Sec-

tion 6.2.1, the condition of 5D ≤M ≤ 10D ≡ 20 ≤M ≤ 40 results in M = 35. As mentioned

before, the population matrix is obtained from the combination of the m closest points. Thus,

for determining M as 20 ≤ M =
(
m
4

)
≤ 40, M can only be equal to 7 since

(
7
4

)
= 35, not(

6
4

)
= 15 or

(
8
4

)
= 70. As a result, we first choose 7 closest sample locations to the unknown

point and we test all combinations of these locations in order to find the best 4-dimensional set

of sample points for IDW method.
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In addition to DE algorithm control variables, the choice of the spatial and temporal distance-

decay factors us and ut have a significant influence on the weights determining the IDW inter-

polation estimation. As it is inferred from Equation (6.10), the weights wt,i are proportional to

the power of the inverse distances, i.e. ∆−ussi
and ∆−utti . Each weight wt,i will be the same if

us = ut = 0. If these power values are very high, only a few closest sample points will have

impact on the estimation. In the Geostatistical Analyst tool of the software ArcGIS, the power

functions are taken as greater than 1. We choose us = ut = 2 as a special power value which is

known as inverse distance squared weighted interpolation.

The following table displays the results of DE algorithm for the optimal sample points obtained

for the last element of unique claim location pairs. In this table, the error term eabs
k (XXX−k), the

coefficient of variation CV (∆XXXpw) and the cost value costk are calculated from Equation (6.1),

Equation (6.2) and Equation (6.3), respectively.

Table 6.2: The results for the optimal sample set obtained with DE algorithm

Variable
[
eabs
k (XXX−k)

]−1 CV (∆XXXpw) costk
avcloud 0.001138952164009 0.733469869622734 0.000835387095242
avhum 0.005434783647316 0.087039863472736 0.000473042826666
avpres 0.005434783131625 0.087039863472736 0.000473042781781
avsoiltemp5 0.005434783211462 0.087039863472736 0.000473042788730
avsoiltemp10 0.005434782759576 0.087039863472736 0.000473042749398
avsoiltemp20 0.005434783100120 0.087039863472736 0.000473042779038
avsoiltemp50 0.005434782710980 0.087039863472736 0.000473042745168
avtemp 0.005434782667254 0.087039863472736 0.000473042741362
avvappres 0.005434783938753 0.087039863472736 0.000473042852033
insoforce 0.005263157894737 0.376221217837329 0.001980111672828
maxtemp 0.005434782662232 0.087039863472736 0.000473042740925
minsurftemp 0.005434788197136 0.087039863472736 0.000473043222682
mintemp 0.005434788197136 0.087039863472736 0.000473043222682
soiltemp100 0.005434782843587 0.087039863472736 0.000473042756710
toteva 0.005434782608696 0.156829118621673 0.000852332166422
totglsolrad 0.005263157894737 0.376221217837329 0.001980111672828
totinso 0.005434782608696 0.148721987392154 0.000808271670610
totprec 0.005434784027935 0.087039863472736 0.000473042859795

In Table 6.2, the reason of identical CV (∆XXXpw) is that the coefficient of variation is calculated
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from the pair-wise distances of the entire sample, not from the leave-one-out sample. Since most

of the meteorological variables are measured at the same stations, these results are not surprising.

As it is seen from Table 6.1, the sizes of meteorological variables that have same CV (∆XXXpw) are

high which means that these variables are measured at all meteorological stations.

After we find the optimal initial input set of sample points with DE algorithm, we estimate the

meteorological values using IDW reduction technique. The basic descriptive statistics (mini-

mum, maximum, mean, standard deviation and coefficient of variation) of the estimated values

for each meteorological variable are presented in the following table.

Table 6.3: The numerical results of the estimated meteorological variables obtained with STI

Variable Minimum Maximum Mean Std.Dev. Coef.Var.
avcloud 0.112387 8.212468 8.212468 1.081829 0.131730
avhum 5.418993 85.829103 53.007691 10.615359 0.200261
avpres 99.680297 1011.476578 818.432825 143.390523 0.175201
avsoiltemp5 1.638861 39.848590 20.665928 5.961296 0.288460
avsoiltemp10 1.887984 37.653357 20.015126 5.789628 0.289263
avsoiltemp20 1.630357 36.708751 19.386182 5.649834 0.291436
avsoiltemp50 1.689714 34.431422 17.885948 5.144025 0.287601
avtemp 1.590005 31.636077 17.631339 4.640650 0.263205
avvappres 0.015913 26.939887 11.846548 4.059395 0.342665
insoforce 23.655901 665.757626 353.390889 154.450782 0.437054
maxtemp 0.000894 39.117486 23.452979 5.536492 0.236068
minsurftemp -2.686932 26.446437 10.793316 4.502987 0.417201
mintemp -1.659817 27.273697 12.074831 4.435626 0.367345
soiltemp100 1.569048 32.764589 16.000496 4.586364 0.286639
toteva 0.006840 11.015796 3.744394 1.493412 0.398839
totglsolrad 5.797273 672.247079 366.594729 144.470776 0.394089
totinso 0.003298 12.184676 5.677811 2.374340 0.418179
totprec 0.007241 14.015522 1.021892 0.890617 0.871537

For an explanatory interpretation of the choropleth maps and the intervals specified for the vary-

ing colors in the choropleth maps represented in Figure 6.4, Figure 6.5 and Figure 6.6; the

statistics given in Table 6.3 and the histogram graphs in Appendix A.5.1 obtained with ArcGIS

software are necessary.
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(a) avcloud (b) avhum

(c) avpres (d) avsoiltemp5

(e) avsoiltemp10 (f) avsoiltemp20

Figure 6.4: Choropleth maps for the estimated meteorological values related to the reported
agricultural claims using IDW reduction technique: (a)-(f)
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(g) avsoiltemp50 (h) avtemp

(i) avvappres (j) insoforce

(k) maxtemp (l) minsurftemp

Figure 6.5: Choropleth maps for the estimated meteorological values related to the reported
agricultural claims using IDW reduction technique: (g)-(l)
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(m) mintemp (n) soiltemp100

(o) toteva (p) totglsolrad

(q) totinso (r) totprec

Figure 6.6: Choropleth maps for the estimated meteorological values related to the reported
agricultural claims using IDW reduction technique: (m)-(r)

We choose 9 color classes to obtain Figure 6.4, Figure 6.5 and Figure 6.6 for the sake of con-
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sistency with the model-based clustering results. According to these figures, the colors scatter

wrt the environmental characteristics of the regions. Therefore, the ones gathering together in

a region determines one cluster. We examine the analytic part of clustering in the following

section.

6.4.3. Results of Risk Clustering

After we obtain the interpolated values of meteorological variables related to each claim, we

cluster the claims according to their environmental characteristics using these estimated values.

The results of risk clustering are represented in the following tables.

Table 6.4: Model-based clustering results of the best model

Log-likelihood nnn mmm df BIC
2,617,353 54,113 9 1,565 -5,251,763

According to Table 6.4, the minimum BIC belongs to the clustering based on 9 clusters. Ta-

ble 6.5 shows the number of the data in each class and the mixing weights of these classes.

Table 6.5: Sample sizes and mixing probabilities of risk clusters (RC)

RC Sample sizes (ninini) Mixing Probabilities (τiτiτi)
i=1 3,063 τ1=0.05735849
i=2 18,344 τ2=0.33459850
i=3 5,615 τ3=0.10445179
i=4 2,520 τ4=0.04752900
i=5 5,852 τ5=0.10807725
i=6 12,986 τ6=0.24360421
i=7 1,097 τ7=0.02026161
i=8 594 τ8=0.01233283
i=9 4,042 τ9=0.07178633

Total 54,113 1.00000000

As it can be seen from Table 6.5, the second class which has 18,344 claims has the highest mix-

ing probability that is approximately 33.46 %. The detailed results such as means and covariance
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matrices of 18 meteorological variables are displayed for each risk cluster in Appendix A.5.2.

6.4.4. Results of Stochastic Majorization Ordering

As we mention in Section 5.5.1, the number of the recorded claims arised from hail hazard (in-

cluding zero claim amounts) is 54,113. There are 23 crop classes and we obtain that there exist

9 risk clusters. Therefore, we organize individual claims wrt the crop classes and risk clusters,

and we arrange the aggregate claim vectors according to the settingSSS(i) =
(
S

(i)
1 , S

(i)
2 , . . . , S

(i)
pi

)′
for i = 1, 2, . . . , 9 and pi = 18.

In this section, we order the risk clusters determined in Section 6.4.3 through stochastic ma-

jorization relation. In order to do that, we implement the procedure explained in Chapter 5.

We first check if two conditions in Remark 5.4.2 are fulfilled. After that, we order the ag-

gregate claim vectors of risk clusters according to our majorization ordering setting given in

Equation (5.9).

Firstly, we find that Condition (i) and Condition (ii) are fulfilled for majorization relation. For

Condition (i), the rearranged aggregate claim vectors are given as rows in the following table.

For i = 1, 2, . . . , 9 and j = 1, 2, . . . , 18 = pi, the aggregate claim vectors are given in entire

(9× 18)-dimensional matrix in which rows (columns) represent risk clusters (crop classes).
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Table 6.6: The rearrangement of the aggregate claim vectors of the risk clusters (RC) according
to Condition (i) in Remark 5.4.2

RC j = 1j = 1j = 1 j = 2j = 2j = 2 j = 3j = 3j = 3 j = 4j = 4j = 4 j = 5j = 5j = 5 j = 6j = 6j = 6 j = 7j = 7j = 7 j = 8j = 8j = 8 j = 9j = 9j = 9

i = 2i = 2i = 2 0.272804 0.446156 0.553132 0.657484 0.750398 0.829882 0.900794 0.934624 0.962297
i = 6i = 6i = 6 0.323349 0.525459 0.621250 0.696938 0.766751 0.835965 0.902375 0.944223 0.963547
i = 3i = 3i = 3 0.351716 0.554672 0.714374 0.801337 0.865665 0.901373 0.934207 0.965199 0.980348
i = 4i = 4i = 4 0.555706 0.700582 0.765794 0.817928 0.878269 0.921183 0.948115 0.965558 0.983617
i = 5i = 5i = 5 0.577045 0.770220 0.841609 0.885400 0.913437 0.936396 0.955604 0.972400 0.984556
i = 9i = 9i = 9 0.664807 0.782018 0.842155 0.900122 0.951110 0.970283 0.979057 0.986269 0.991676
i = 1i = 1i = 1 0.695275 0.829866 0.896246 0.932562 0.964168 0.983704 0.991187 0.994250 0.996227
i = 7i = 7i = 7 0.762466 0.829874 0.917053 0.948840 0.971371 0.985755 0.991198 0.995076 0.997939
i = 8i = 8i = 8 0.880705 0.909133 0.931771 0.953525 0.978049 0.987398 0.996605 0.999416 0.999745

RC j = 10j = 10j = 10 j = 11j = 11j = 11 j = 12j = 12j = 12 j = 13j = 13j = 13 j = 14j = 14j = 14 j = 15j = 15j = 15 j = 16j = 16j = 16 j = 17j = 17j = 17 j = 18j = 18j = 18

i = 2i = 2i = 2 0.978663 0.987315 0.991110 0.994783 0.997564 0.999133 0.999783 0.999927 1.000000
i = 6i = 6i = 6 0.980092 0.990892 0.994985 0.997820 0.998916 0.999447 0.999790 0.999931 1.000000
i = 3i = 3i = 3 0.991748 0.995718 0.998445 0.999277 0.999646 0.999867 0.999956 1.000000 1.000000
i = 4i = 4i = 4 0.992792 0.996480 0.998541 0.999373 0.999727 0.999881 1.000000 1.000000 1.000000
i = 5i = 5i = 5 0.995921 0.997638 0.999026 0.999583 0.999729 0.999939 1.000000 1.000000 1.000000
i = 9i = 9i = 9 0.997376 0.998680 0.999431 0.999643 0.999809 0.999944 1.000000 1.000000 1.000000
i = 1i = 1i = 1 0.997938 0.999297 0.999676 0.999858 1.000000 1.000000 1.000000 1.000000 1.000000
i = 7i = 7i = 7 0.999938 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000
i = 8i = 8i = 8 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

Let Cond(i)
(I) denote

∑j
t=1 S

(i)
[t]∑18

t=1 S
(i)
[t]

. Then, the following inequality is obtained from Table 6.6:

Cond(2)
(I) < Cond(6)

(I) < Cond(3)
(I) < Cond(4)

(I) < Cond(5)
(I) < Cond(9)

(I) < Cond(1)
(I) < Cond(7)

(I) < Cond(8)
(I)

which proves that

∑j
t=1 S

(2)
[t]∑18

t=1 S
(2)
[t]

<

∑j
t=1 S

(6)
[t]∑18

t=1 S
(6)
[t]

<

∑j
t=1 S

(3)
[t]∑18

t=1 S
(3)
[t]

<

∑j
t=1 S

(4)
[t]∑18

t=1 S
(4)
[t]

<

∑j
t=1 S

(5)
[t]∑18

t=1 S
(5)
[t]

<

∑j
t=1 S

(9)
[t]∑18

t=1 S
(9)
[t]

<

∑j
t=1 S

(1)
[t]∑18

t=1 S
(1)
[t]

<

∑j
t=1 S

(7)
[t]∑18

t=1 S
(7)
[t]

<

∑j
t=1 S

(8)
[t]∑18

t=1 S
(8)
[t]

for each j = 1, 2, . . . , pi − 1 = 17. Therefore, Condition (i) is fulfilled for the risk clustering

obtained in Section 6.4.3.

Moreover, for Condition (i), the last elements of the decreasing rearrangement of aggregate

claim vectors for each risk cluster are given in following table.
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Table 6.7: The sum of the decreasing rearrangement of aggregate claim vectors of the risk
clusters (RC) according to Condition (ii) in Remark 5.4.2

RC
∑18

t=1 S
(i)
[t]

∑18
t=1 S

(i)
[t]

∑18
t=1 S

(i)
[t]

i = 2i = 2i = 2 51,998,805.49
i = 6i = 6i = 6 42,230,639.03
i = 3i = 3i = 3 34,835,236.40
i = 4i = 4i = 4 22,423,303.41
i = 5i = 5i = 5 15,892,955.21
i = 9i = 9i = 9 15,837,720.50
i = 1i = 1i = 1 13,064,498.98
i = 7i = 7i = 7 4,603,761.61
i = 8i = 8i = 8 1,412,315.24

Let Cond(i)
(II) indicate

∑18
t=1 S

(i)
[t] . Then, the following inequality is obtained from Table 6.7:

Cond(2)
(II) > Cond(6)

(II) > Cond(3)
(II) > Cond(4)

(II) > Cond(5)
(I) > Cond(9)

(II) > Cond(1)
(II) > Cond(7)

(I) > Cond(8)
(I)

which proves that

∑18
t=1 S

(2)
[t] >

∑18
t=1 S

(6)
[t] >

∑18
t=1 S

(3)
[t] >

∑18
t=1 S

(4)
[t] >

∑18
t=1 S

(5)
[t] >

∑18
t=1 S

(9)
[t] >

∑18
t=1 S

(1)
[t] >

∑18
t=1 S

(7)
[t] >

∑18
t=1 S

(8)
[t] .

Therefore, Condition (ii) is fulfilled for the risk clustering obtained in Section 6.4.3. As a result,

there exist a majorization relation among all risk clusters. According to these results, we expect

that Schur-convex function values are also ordered identically. It means that we do not need to

calculate the sample variances or sample coefficient of variations of risk clusters since we know

that the ordering is same wrt Condition (i) and Condition (ii) once we prove that the sample

variance or the sample coefficient of variation is Schur-convex. Therefore, the majorization

results for sample variances and sample coefficient of variations of these risk clusters, which are

given in the following table, are only a verification of the results given in Table 6.6 and Table 6.7.
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Table 6.8: The sample variance and sample coefficient of variation values of the variance of
aggregate claim vectors of the risk clusters (RC)

RC φ1

(
V
(
SSS(j)

))
(∗108) φ2

(
V
(
SSS(j)

))
i = 2i = 2i = 2 0.031924 1.290789
i = 6i = 6i = 6 0.091042 1.469259
i = 3i = 3i = 3 0.123261 1.846709
i = 4i = 4i = 4 0.161089 1.895143
i = 5i = 5i = 5 0.163895 1.956126
i = 9i = 9i = 9 0.170576 1.980451
i = 1i = 1i = 1 0.520934 2.316822
i = 7i = 7i = 7 0.837824 2.327122
i = 8i = 8i = 8 3.932997 3.695403

Since our setting is proven to be accurate in the case study in Section 5.5, the values of risk

measure is ordered as in majorization relation. The ordering inequality is given as follows:

φ1

(
V
(
SSS(2)

))
≤ φ1

(
V
(
SSS(6)

))
≤ φ1

(
V
(
SSS(3)

))
≤ φ1

(
V
(
SSS(4)

))
≤ φ1

(
V
(
SSS(5)

))
≤

φ1

(
V
(
SSS(9)

))
≤ φ1

(
V
(
SSS(1)

))
≤ φ1

(
V
(
SSS(7)

))
≤ φ1

(
V
(
SSS(8)

))
or

φ2

(
V
(
SSS(2)

))
≤ φ2

(
V
(
SSS(6)

))
≤ φ2

(
V
(
SSS(3)

))
≤ φ2

(
V
(
SSS(4)

))
≤ φ2

(
V
(
SSS(5)

))
≤

φ2

(
V
(
SSS(9)

))
≤ φ2

(
V
(
SSS(1)

))
≤ φ2

(
V
(
SSS(7)

))
≤ φ2

(
V
(
SSS(8)

))
⇒ SSS(2) ≺maj SSS

(6) ≺maj SSS
(3) ≺maj SSS

(4) ≺maj SSS
(5) ≺maj SSS

(9) ≺maj SSS
(1) ≺maj SSS

(7) ≺maj SSS
(8)

These results show us that the stochastic majorization relation is very useful in the context of

partial ordering when the risk clustering is accurate.

6.5. Interim Conclusion: Risk Clustering through STI

Agricultural insurance risks cannot be analyzed only by actuarial and statistical modeling ig-

noring the weather-related characteristics of the insured areas. As it is very difficult to measure

the exact values of weather-related variables at the locations where claims are reported, we seek

for an approach which could estimate the missing data associated with environmental risks ac-
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curately. Spatiotemporal techniques are effective tools as more accurate alternatives to spatial

methods for this purpose. We suggest an extended method to obtain an optimal sample set for

IDW reduction technique. Another interesting issue that we deal with is the clustering of risks.

Since the number of objects to be ordered is high, they need to be collected in groups in terms

of some criteria. Parametric clustering methods are efficient in this context.

In this chapter, we extend DE algorithm offering a computation that measures the distance with

an angular-based formula. We also claim that there exist a basic solution to determine the pop-

ulation size in initialization step of the optimization procedure. Having proposed an extension

for DE algorithm, we take into account the impact of altitudes using 2-dimensional locations

all of which are very significant determinants of weather-related risks. Lastly, we cluster claims

according to a parametric model-based method.

As we mention before, analytic tools are not always sufficient for environmental risk manage-

ment. For this reason, we use GIS applications for this part of our study. The results of DE

optimization, STI estimations and risk clustering are represented by both statistical measures

and choropleth maps as GIS tools.
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7. CONCLUSION AND FURTHER STUDY

We aim to provide a summary of the main findings of our thesis as well as some suggestions for

further research in this chapter.

7.1. Concluding Remarks

The major contribution of this thesis is providing a perspective for the effects of risk perception

on prioritization of risks. The work is original as it constructs a multivariate stop-loss ordering

relation under CPT for the first time. In this thesis, we concentrate on impacts of risk perception

and various concepts of risk handling the tendencies and bias of individuals. In this sense, CPT

sufficiently captures the inconsistency in decision making. Another significant extension of this

work is to optimize multivariate sets for estimation characteristics of environmental risks.

Having provided our multivariate model setting in Chapter 1, we discuss the concept of risk and

various preference approaches as a resulf of this discussion in Chapter 2. The impacts of the

preferences of a DM steer us to the “utility” and “prospect” terms. Therefore, we give nota-

tions and definitions to explain the approaches for modeling preferences such as EUT, distorted

expectation theory, expected utility with non-additive probabilities and prospect theory.

In Chapter 3, POT and various ordering relations within the frame of POT are explained. In

addition to technical ordering of risk, the perspective provided by the use of GIS has an important

influence on this work since insurance products which covers the environmental risks are specific

in this context. GIS appears as a tool to assess risk and offers a variety to our study.

Impacts of risk perception on prioritization of risks are taken into account in Chapter 4 through

CPT. We obtain stop-loss premium solutions under CPT for three different value functions using

zero-utility premium principle, which is original compared to preivous studies.

In Chapter 5, we modify the axioms of majorization theory for our multivariate setting of aggre-

gate claim vectors. As a result of a case study, we show the drawbacks of classification when

one does not consider the spatial and temporal features of risk especially for environmental
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insurance products.

Lastly in Chapter 6, we introduce the data and explain how we overcome the problems in

this data set. We estimate the meteorological information related to insurance claims and use

weather-related variables to cluster agricultural claims. We introduce IDW method with reduc-

tion approach as an STI technique and propose a multivariate extension of DE optimization

algorithm to estimate the input sample set used in STI method. The results show that an accu-

rate clustering is very fundamental for stochastic majorization ordering. Stochastic majorization

needs an order-preserving function for practical purposes, thus in application part, we use vari-

ance and coefficient of variation as risk measures which are proven to be Schur-convex.

7.2. Suggestions for Further Research

For future studies, different risk measures can be investigated for ordering the aggregate claims

using the stochastic majorization relation if they are proven to be Schur-convex (or Schur-

concave) functions.

Moreover, a risk-based clustering as an alternative to model-based clustering, for instance which

considers a regression modeling, could be investigated. As a suggestion for environmental risk

evaluation, in addition to Euclidean distance, different distance measures such as Mahalanobis

distance, Minkowski distance or cosine distance might be examined and compared for spatial

interpolation.
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[24] W.R. Heilmann and K.J. Schröter. Orderings of risks and their actuarial applications. IMS

Lecture Notes-Monograph Series, Stochastic Orders and Decision under Risk, 19:157–

173, 1991.

[25] G.P. Patil and C. Taillie. Multiple indicators, partially ordered sets, and linear exten-

sions: Multi-criterion ranking and prioritization. Environmental and Ecological Statistics,

11(2):199–228, 2004.
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A. APPENDIX

A.1. Appendix (Chapter 2): Decision Making Under Uncertainty

A.1.1. Comparison of the EUT and the YDT

We derive the Equation (2.4) with using the method of integration by parts as follows:

E(X) =
∫ +∞
−∞ xfX(x) dx =

∫ 0

−∞ xfX(x) dx+
∫ +∞

0
xfX(x) dx

= I1 + I2.

u=x,du=dx−−−−−−−−−−−−−→
dv=fX(x) dx,v=FX(x)

I1 = xFX(x)|0−∞ −
∫ 0

−∞ FX(x) dx = −
∫ 0

−∞ FX(x) dx,

u=x,du=dx−−−−−−−−−−−−−−−−→
dv=fX(x) dx,v=−(1−FX(x))

I2 = −x[1− FX(x)]|+∞0 −
∫ +∞

0
−[1− FX(x)] dx

=
∫ +∞

0
[1− FX(x)] dx,

SX(x)=1−FX(x)−−−−−−−−−→ E(X) = −
∫ 0

−∞[1− SX(x)] dx+
∫ +∞

0
SX(x) dx.

For non-negative X rv, this equation can be written as

E(X) =

∫ ∞
0

(1− FX(x)) dx (A.1)

Denuit et al. [1] compare the EUT and the YDT in terms of expectation formulas derived by the

integrations of VaRs. We provide derivations of these expectations given in Equations (2.8) and

(2.9) as follows:
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• The derivation of the Equation (2.8) can be given as follows:

E[u(X)] =

∫ +∞

0

u(x)fX(x) dx,

Here we need to transform the variable x as

x = VaR[X; p] = F−1
X (p)

⇒ dx = dF−1
X (p) =

[
d

dp
F−1
X (p)

]
dp =

[
d

dx
FX(x)

]−1

dp = [fX(x)]−1 dp

Lower bound: x = 0⇒ VaR[X; p] = F−1
X (p) = 0⇒ p = 0

Upper bound: x = +∞⇒ VaR[X; p] = F−1
X (p) = +∞⇒ p = 1

By using this transformation, the integral transforms as

E[u(X)] =

∫ 1

0

u (VaR[X; p]) fX(x) [fX(x)]−1 dp =

∫ 1

0

u (VaR[X; p]) dp.

• The derivation of the Equation (2.9) is as follows:

Equation 2.6−−−−−−→ Eg(X) =
∫ +∞

0
g (SX(x)) dx

u=g(SX(x))⇒du=dg(SX(x))−−−−−−−−−−−−−−−−→
dv=dx⇒v=x

= xg (SX(x)) |+∞0 −
∫ +∞

0
x dg (SX(x))

= (0− 0)−
∫ +∞

0
x dg (SX(x)) = −

∫ +∞
0

x dg (SX(x))
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Here we need to transform the variable x as

x = VaR[X; 1− p] = F−1
X (1− p)

⇒ SX(x) = 1− FX(x) = 1− FX
[
F−1
X (1− p)

]
= 1− (1− p) = p

Lower bound: x = 0⇒ VaR[X; 1− p] = F−1
X (1− p) = 0⇒ 1− p = 0⇒ p = 1

Upper bound: x = +∞⇒ VaR[X; 1− p] = F−1
X (1− p) = +∞⇒ 1− p = 1⇒ p = 0

By using this transformation, the integral transforms as

Eg(X) = −
∫ 0

1
VaR[X; 1− p] dg(p) =

∫ 1

0
VaR[X; 1− p] dg(p)

p=1−p−−−−→ =
∫ 1

0
VaR[X; p] dg(1− p).
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A.2. Appendix (Chapter 3): Stochastic Ordering Relations for Risk Prioritization

A.2.1. Antisymmetry for zeta matrix: Axiom (iii) in Proposition 3.2.3 and Remark 3.2.4

The antisymmetry axiom of POT is controlled through the condition (x ≤ y and y ≤ x⇒ x = y)

for two objects x and y in the object set X . According to the definition of zeta matrix given

in Equation (3.2), this axiom should be checked by controlling entries of the diagonal of ζx,y

and ζy,x simultaneously. For an object set to be partially ordered; if x 6= y, the condition

({ζx,y = 1} ∧ {ζy,x = 1}) must be false in order to satisfy antisymmetry. Therefore, this condi-

tion can be satisfied if one of the following equations is true:

i. ζ ∗ ζT = IIIn×n, or

ii. η ∗ ηT = 000n×n

However, Patil and Taillie [25] suggest the following equations for this axiom:

i’. ζ ∗ ζ = IIIn×n, or

ii’. η ∗ η = 000n×n

which are proven to be false in our thesis. In order to eliminate this contradiction, we give a

poset example used in Section 3.2.3.

We consider Poset I given in Figure 3.4. For the zeta matrix of Poset I obtained as

ζI =

x y z v w u

x 1 0 0 0 0 0

y 0 1 0 0 0 0

z 1 0 1 0 0 0

v 0 1 0 1 0 0

w 1 0 1 0 1 0

u 1 1 1 1 0 1
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the component-wise multiplication given in (i’) is calculated as

ζI ∗ ζI =

x y z v w u

x 1 0 0 0 0 0

y 0 1 0 0 0 0

z 1 0 1 0 0 0

v 0 1 0 1 0 0

w 1 0 1 0 1 0

u 1 1 1 1 0 1

where ∗ indicates the component-wise multiplication of two same dimensional matrices. As a

result, the condition given in (i’) is not true since ζI ∗ ζI 6= IIIn×n.

However, for the transpose of zeta matrix obtained as

ζTI =

x y z v w u

x 1 0 1 0 1 1

y 0 1 0 1 0 1

z 0 0 1 0 1 1

v 0 0 0 1 0 1

w 0 0 0 0 1 0

u 0 0 0 0 0 1

⇒ ζI ∗ ζTI =

x y z v w u

x 1 0 0 0 0 0

y 0 1 0 0 0 0

z 0 0 1 0 0 0

v 0 0 0 1 0 0

w 0 0 0 0 1 0

u 0 0 0 0 0 1

which proves that the condition given in (i) as ζI ∗ ζTI = IIIn×n is true as we suggest.
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Similarly, using the transformation ηI = ζI − IIIn×n;

ηI =

x y z v w u

x 0 0 0 0 0 0

y 0 0 0 0 0 0

z 1 0 0 0 0 0

v 0 1 0 0 0 0

w 1 0 1 0 0 0

u 1 1 1 1 0 0

the component-wise multiplication given in (ii’) is calculated as

ηI ∗ ηI =

x y z v w u

x 0 0 0 0 0 0

y 0 0 0 0 0 0

z 1 0 0 0 0 0

v 0 1 0 0 0 0

w 1 0 1 0 0 0

u 1 1 1 1 0 0

As a result, the condition given in (ii’) is not true since ηI ∗ ηI 6= 000n×n.

However, for the transpose of eta matrix obtained as

ηTI =

x y z v w u

x 0 0 1 0 1 1

y 0 0 0 1 0 1

z 0 0 0 0 1 1

v 0 0 0 0 0 1

w 0 0 0 0 0 0

u 0 0 0 0 0 0

⇒ ηI ∗ ηTI =

x y z v w u

x 0 0 0 0 0 0

y 0 0 0 0 0 0

z 0 0 0 0 0 0

v 0 0 0 0 0 0

w 0 0 0 0 0 0

u 0 0 0 0 0 0

which proves that the condition given in (ii) as ηI ∗ ηTI = 000n×n is true as we suggest.
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A.2.2. Stochastic Dominance and Other Ordering Relations for Actuarial Applications

• The net premium πY for risk Y can be indicated as a transition to a premium calculated

according to expected value principle as

πY = E(Y )
Equation (A.1)−−−−−−−−→=

∫∞
0

(1− FY (x)) dx

=
∫∞

0
(1− FY (x)) dx+

∫∞
0

(FX(x)− FX(x)) dx

=
[∫∞

0
(1− FX(x)) dx+

∫∞
0

(FX(x)− FY (x)) dx
] E(X)

E(X)

Equation (A.1)−−−−−−−−→ =

[
1 +

∫∞
0

(FX(x)− FY (x)) dx∫∞
0

(1− FX(x)) dx

]
E(X)

(A.2)

• Ordering of expected values wrt the relation (-sl): X -sl Y ⇒ E(X) ≤ E(Y ) can be

proven as

X -sl Y :⇔ E [(X − d)+] ≤ E [(Y − d)+]

Equation (3.11)−−−−−−−−−→
∫∞
d

(1− FX(x)) dx ≤
∫∞
d

(1− FY (x)) dx

⇒ 1− FX(x) ≤ 1− FY (x)

⇒
∫∞

0
(1− FX(x)) dx ≤

∫∞
0

(1− FY (x)) dx

Equation (A.1)−−−−−−−−→ E(X) ≤ E(Y )

(A.3)
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• Ordering of variances wrt the relation (-sl): {X -sl Y } ∧ {E(X) = E(Y )} ⇒ V(X) ≤

V(Y ) can be proven as

∫∞
0

E [(X − t)+] dt =
∫∞

0

∫∞
t

[1− FX(x)] dx dt

u=
∫∞
t [1−FX(x)] dx

−−−−−−−−−−−→
dv=dt

= {t
∫∞
t

[1− FX(x)] dx}|∞0 +
∫∞

0
t[1− FX(t)] dt

u=[1−FX(x)]−−−−−−−→
dv=dx

= t{x[1− F (x)]|∞t +
∫∞
t
xf(x) dx}|∞0 +

∫∞
0
t[1− FX(t)] dt

t=0 & t=∞−−−−−−−−−−−−−−−−−−−→
t{x(1−F (x))|∞t +

∫∞
t xf(x) dx}=0

=
∫∞

0
t[1− FX(t)] dt = A

u=t[1−FX(t)] dt , dv=dt−−−−−−−−−−−−−−→ = t2[1− FX(t)]|∞0 −
{∫∞

0
−t2f(t) dt+

∫∞
0
t[1− FX(t)] dt

}
A=
∫∞
0 t[1−FX(t)] dt

−−−−−−−−−−−→ ⇒ A = 0 + E(X2)− A

⇒ A =
∫∞

0
t[1− FX(t)] dt =

1

2
E(X2)

(A.4)

Equation (A.4)−−−−−−−−→
∫∞

0
E [(X − t)+] dt ≤

∫∞
0

E [(Y − t)+] dt⇒ 1

2
E(X2) ≤ 1

2
E(Y 2)

E [(X − t)+] ≤ E [(Y − t)+]⇒ E(X2) ≤ E(Y 2)

E(X)=E(Y )−−−−−−→ V(X) ≤ V(Y )

(A.5)
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• Ordering of variances wrt the relation (-`): {X -` Y } ∧ {E(X) = E(Y )} ⇒ V(X) ≤

V(Y ) can be proven as

E(X̃) =
∫∞

0
`X(t) dt

Equation (3.13)−−−−−−−−−→ =
∫∞

0

E [(X − t)+]

E(X)
dt =

1

E(X)

∫∞
0

E [(X − t)+] dt

Equation (A.4)−−−−−−−−→ =
1

E(X)
[
1

2
E(X2)](∗∗)

X -` Y ⇒ `X(x) ≤ `Y (x)⇒
∫∞

0
`X(t) dt ≤

∫∞
0
`Y (t) dt⇒ E(X̃) ≤ E(Ỹ )

(∗∗)−−→ E(X2)

2E(X)
≤ E(Y 2)

2E(Y )

E(X)=E(Y )−−−−−−→ V(X) ≤ V(Y )

(A.6)
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• Relationship between mean residual life of X and hazard function of X̃ can be proven as

hX̃(x) =
fX̃(x)

SX̃(x)
= [

1− FX(x)

E(X)
]/[1− F̃X(x)]

= [
1− FX(x)

E(X)
]/[1−

∫ x
0
f̃X(t) dt]

= [
1− FX(x)

E(X)
]/[1−

∫ x
0

1− FX(t)

E(X)
dt]

= [
1− FX(x)

E(X)
]/[

E(X)−
∫ x

0
[1− FX(t)] dt

E(X)
]

= [1− FX(x)]/[E(X)−
∫∞

0
[1− FX(t)] dt+

∫∞
x

[1− FX(t)] dt]

= [1− FX(x)]/[E(X)− E(X) +
∫∞
x

[1− FX(t)] dt]

= [1− FX(x)]/[
∫∞
x

[1− FX(t)] dt]

(A.7)

E(XP ) = E(X − t|X > t) =
E[(X − t)IX>t]

P(X > t)

=

∫∞
t

(x− t)fX(x) dx

1− FX(t)

=
{−(x− t)[1− FX(x)]|∞t }+

∫∞
t

[1− FX(x)] dx

1− FX(t)

=

∫∞
t

[1− FX(x)] dx

1− FX(t)

(A.8)

147



• The survival function of X̆ is obtained as

FX̂(x) = P(X̂ ≤ x)

X̂=
X

E(X)
−−−−−−→= P

(
X

E(X)
≤ x

)
= P(X ≤ xE(X)) = FX(xE(X))

(A.9)

kX(x) = SX̆(x) = 1− FX̆(x) =
∫∞
x
fX̆(t) dt =

∫∞
x

[1− FX̂(t)] dt

Equation (A.9)−−−−−−−−→ =
∫∞
x

[1− FX(tE(X))] dt

u=tE(X), du=E(X) dt(∗∗∗)−−−−−−−−−−−−−−−→ =
∫∞
xE(X)

[1− FX(u)]
du

E(X)
=

1

E(X)

∫∞
xE(X)

[1− FX(t)] dt

Equation (3.13)−−−−−−−−−→ = `X(xE(X)) =
E
[
(X − xE(X))+

]
E(X)

(A.10)

• Ordering of coefficient of variations wrt the relation (-k): X -k Y ⇒ CV(X) ≤ CV(Y )

can be proven as

∫∞
0
kX(t) dt =

∫∞
0
`X(tE(X)) dt

(∗∗∗)−−−→=
1

E(X)

∫∞
0
`X(u) du

(∗∗)−−→=
1

E(X)

(
E(X2)

2E(X)

)
=

1

2

(
V(X) + [E(X)]2

[E(X)]2

)
=

1

2

(
[CV(X)]2 + 1

) (A.11)

X -k Y ⇒ kX(x) ≤ kY (x)⇒
∫∞

0
kX(t) dt ≤

∫∞
0
kY (t) dt

Equation (A.11)−−−−−−−−−→ 1

2

(
[CV(X)]2 + 1

)
≤ 1

2

(
[CV(Y )]2 + 1

)
⇒ CV(X) ≤ CV(Y )

(A.12)
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• Ordering of variances wrt the relation (-k): {X -k Y } ∧ {E(X) = E(Y )} ⇒ V(X) ≤

V(Y ) can be proven as

X -k Y ⇒ CV(X) ≤ CV(Y )

Equation (A.11)−−−−−−−→ 1

2

V(X) + [E(X)]2

[E(X)]2
≤ 1

2

V(Y ) + [E(Y )]2

[E(Y )]2

E(X)=E(Y )−−−−−−→ V(X) ≤ V(Y )

(A.13)

A.2.3. Surplus process in classical risk theory

In the classical risk process, the surplus process of insurer at a fixed time t > 0, denoted as

{U(t)}t≥0, is described by Dickson [140] as follows:

U(t) = u+ ct− S(t). (A.14)

Here, u is the amount of initial surplus (t = 0); c denotes the premium rate per time unit, so ct is

the premium amount paid by insureds in the time interval [0, t]; and {S(t)}t≥0 is the aggregate

claims process indicating the amount paid by the insurer in [0, t]. Aggregate claims process is

given as

S(t) =

N(t)∑
i=1

Xi. (A.15)

Here, individual claim amounts are iid rvs {Xi}∞i=1, where Xi is the amount of the ith claim

having df FX . {N(t)}t≥0 which is the number of claims in the time interval [0, t] is assumed as a

Poisson process. The distribution of this process is Poisson with parameter λt. Hence, {S(t)}t≥0

is said to be a compound Poisson process denoted by S(t) ∼ Compound Poisson(λt, FX). For

this ordering, Heilmann and Schröter [24] assume that the premium rate is calculated according

to the expected value principle, i.e. c = (1 + θ)λE(X), θ ≥ 0.

To see how the relation -` defined in Equation (3.12) is applied, T is defined in [24] as the time
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at which the surplus falls below the initial surplus for the first time

T = inf{t > 0 : U(t) < u}.

Then,

P(T <∞, a < u− U(t) ≤ b) =
1

(1 + θ)E(X)

∫ b

a

[1− FX(x)] dx.
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A.3. Appendix (Chapter 4): Risk Prioritization through Stop-Loss Dominance under CPT

A.3.1. Solution of CPT stop-loss premium for Value Function 1

Proof. Let the value function u(w) = cw. The minimum premium that the reinsurer accept to

cover the risk (S− d)+ is determined by using the Equation (4.14). We obtain πS(d) as follows.

υ(w) = Egh [υ (w + πS(d)− (S − d)+)]

Prop. 4.3.2, (C2)−−−−−−−−−→ cw = cEgh [(w + πS(d)− (S − d)+)]

Equation (4.8)−−−−−−−−−−−−−→
(S−d)+=Y, c=w+πS(d)

w = Egh(−Y ) + (w + πS(d)) +
∫ w+πS(d)

0
[h (P(Y > s))− ḡ (P(Y > s))] ds

Prop. 4.3.2, (C3)−−−−−−−−−→ w = −Ehg(Y ) + (w + πS(d)) +
∫ w+πS(d)

0
[h (P(Y > s))− ḡ (P(Y > s))] ds

Now divide the equation into the following integral parts and take Y = (S − d)+ again.

w = I1 + (w + πS(d)) + I2 (A.16)

where I1 = −Ehg [(S − d)+] and I2 =
∫ w+πS(d)

0
{h [P ((S − d)+ > s)]− ḡ [P ((S − d)+ > s)]} ds.

At first, we will simplify I1:

I1 = −Ehg [(S − d)+]
(S−d)+≥0−−−−−−→= −Eh [(S − d)+] = −

∫∞
0
h [P ((S − d)+ > t)] dt

= −
∫∞

0
h
[
P ((S − d)+ > t){S≤d}

]
dt−

∫∞
0
h
[
P ((S − d)+ > t){S>d}

]
dt

S≤d⇒(S−d)+=0−−−−−−−−−−−−→
⇒P(0>t)=0; 0≤t<∞

= −
∫∞

0
h(0) dt−

∫∞
0
h [P (S − d > t)] dt

h(0)=0−−−−→= −
∫∞

0
h [P (S > d+ t)] dt
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⇒ I1 = −
∫ ∞

0

h [P (S > d+ t)] dt (A.17)

Now, we will simplify I2:

I2 =
∫ w+πS(d)

0
{h [P ((S − d)+ > s)]− ḡ [P ((S − d)+ > s)]} ds

=
∫ w+πS(d)

0

{
h
[
P ((S − d)+ > s){S≤d}

]
− ḡ

[
P ((S − d)+ > s){S≤d}

]}
ds

+
∫ w+πS(d)

0

{
h
[
P ((S − d)+ > s){S>d}

]
− ḡ

[
P ((S − d)+ > s){S>d}

]}
ds

S≤d⇒(S−d)+=0−−−−−−−−−−−−−−−−→
⇒P(0>s)=0; 0≤s≤w+πS(d)

=
∫ w+πS(d)

0
{h(0)− ḡ(0)} ds

+
∫ w+πS(d)

0

{
h
[
P ((S − d)+ > s){S>d}

]
− ḡ

[
P ((S − d)+ > s){S>d}

]}
ds

h(0)=0−−−−−−−−→
ḡ(0)=1−g(1)=0

=
∫ w+πS(d)

0
{h [P (S − d > s)]− ḡ [P (S − d > s)]} ds

t=s−−→ =
∫ w+πS(d)

0
h [P (S > d+ t)] dt−

∫ w+πS(d)

0
ḡ [P (S > d+ t)] dt

ḡ(p)=1−g(1−p)−−−−−−−−−→ =
∫ w+πS(d)

0
h [P (S > d+ t)] dt−

∫ w+πS(d)

0
{1− g [P (S ≤ d+ t)]} dt

=
∫ w+πS(d)

0
h [P (S > d+ t)] dt− (w + πS(d)) +

∫ w+πS(d)

0
g [P (S ≤ d+ t)] dt

⇒ I2 =

∫ w+πS(d)

0

h [P (S > d+ t)] dt− (w + πS(d)) +

∫ w+πS(d)

0

g [P (S ≤ d+ t)] dt (A.18)

Lastly, if we take the simplified Equation (A.17) and Equation (A.18) , the Equation (A.16) can
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be rewritten as

w = −
∫∞

0
h [P (S > d+ t)] dt+ (w + πS(d))

+
∫ w+πS(d)

0
h [P (S > d+ t)] dt− (w + πS(d)) +

∫ w+πS(d)

0
g [P (S ≤ d+ t)] dt

⇒ w = −
∫∞

0
h [P (S > d+ t)] dt+

∫ w+πS(d)

0
{h [P (S > d+ t)] + g [P (S ≤ d+ t)]} dt

In order to find πS(d), we define ϕ(x) =
∫ x

0
{h [P (S > d+ t)] + g [P (S ≤ d+ t)]} dt.

Appendix A.3.2−−−−−−−−−→
⇒ϕ(x) is invertible

w = −
∫∞

0
h [P (S > d+ t)] dt+ ϕ (w + πS(d))

w +
∫∞

0
h [P (S > d+ t)] dt = ϕ (w + πS(d))

ϕ−1
(
w +

∫∞
0
h [P (S > d+ t)] dt

)
= w + πS(d)

πS(d) = ϕ−1

(
w +

∫ ∞
0

h [P (S > d+ t)] dt

)
− w (A.19)

A.3.2. Proof for invertibility of ϕ(x) in Equation (4.16)

Proof. In order to prove that “ϕ(x) is invertible”, we need to show that ϕ(x) is either strictly

increasing or decreasing. Thus, we check ϕ′(x) > 0 or ϕ′(x) < 0 as follows.

ϕ′(x) =
d

dx

∫ x
0
{h [P (S > d+ t)] + g [P (S ≤ d+ t)]} dt

= h [P (S > d+ x)] + g [P (S ≤ d+ x)]

h,g:[0,1]→[0,1]−−−−−−−−→ ≥ 0
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Here, if h [P (S > d+ x)] + g [P (S ≤ d+ x)] = 0, then both h [P (S > d+ x)] = 0 and

g [P (S ≤ d+ x)] = 0, i.e. both P (S > d+ x) = 0 and P (S ≤ d+ x) = 0 must be true.

However, if P (S > d+ x) = 0, then P (S ≤ d+ x) = 1; or if P (S ≤ d+ x) = 0, then

P (S > d+ x) = 1. Thus, h [P (S > d+ x)] + g [P (S ≤ d+ x)] 6= 0.

So we obtain that h [P (S > d+ x)] + g [P (S ≤ d+ x)] > 0.

We conclude the proof as ϕ′(x) > 0, thus ϕ(x) is invertible.

A.3.3. Solution of CPT stop-loss premium for Value Function 2

Proof. Let the value function υ(w) =
1− e−bw

a
. The minimum premium that the reinsurer

accept to cover the risk (S − d)+ is determined by using the Equation (4.14). We obtain πS(d)

as follows.

υ(w) = Egh [υ (w + πS(d)− (S − d)+)]

Prop. 4.3.2, (C2)−−−−−−−−−→ 1− e−bw

a
=

1

a
Egh

[
1− e−b(w+πS(d)−(S−d)+)

]

Take c = 1 and −e−b(w+πS(d)−(S−d)+) = Y ; then

Equation (4.8)−−−−−−−−→ 1− e−bw = Egh(Y ) + 1 +
∫ 1

0
[h (P(−Y > s))− ḡ (P(−Y > s))] ds

Prop. 4.3.2, (C3)−−−−−−−−−→ 1− e−bw = −Ehg
[
e−b(w+πS(d)−(S−d)+)

]
+ 1

+
∫ 1

0

[
h
(
P(e−b(w+πS(d)−(S−d)+) > s)

)
− ḡ

(
P(e−b(w+πS(d)−(S−d)+) > s)

)]
ds
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seb(w+πS(d))=t−−−−−−−−→ −e−bw = −e−b(w+πS(d))Ehg
[
eb(S−d)+

]

+
∫ eb(w+πS(d))

0


h

[
P
(
e−b(w+πS(d))eb(S−d)+ >

t

eb(w+πS(d))

)]

−ḡ
[
P
(
e−b(w+πS(d))eb(S−d)+ >

t

eb(w+πS(d))

)]


dt

eb(w+πS(d))

⇒ −e−bw = −e−b(w+πS(d))Ehg
[
eb(S−d)+

]
+e−b(w+πS(d))

∫ eb(w+πS(d))

0

{
h
[
P
(
eb(S−d)+ > t

)]
− ḡ

[
P
(
eb(S−d)+ > t

)]}
dt

⇒ −e−bw = −e−bwe−bπS(d)Ehg
[
eb(S−d)+

]
+e−bwe−bπS(d)

∫ eb(w+πS(d))

0

{
h
[
P
(
eb(S−d)+ > t

)]
− ḡ

[
P
(
eb(S−d)+ > t

)]}
dt

⇒ 1 = e−bπS(d)Ehg
[
eb(S−d)+

]
−e−bπS(d)

∫ eb(w+πS(d))

0

{
h
[
P
(
eb(S−d)+ > t

)]
− ḡ

[
P
(
eb(S−d)+ > t

)]}
dt

⇒ ebπS(d) = Ehg
[
eb(S−d)+

]
−
∫ eb(w+πS(d))

0

{
h
[
P
(
eb(S−d)+ > t

)]
− ḡ

[
P
(
eb(S−d)+ > t

)]}
dt

Now divide the equation into the following integral parts.

ebπS(d) = I3 − I4 (A.20)

where I3 = Ehg
[
eb(S−d)+

]
and I4 =

∫ eb(w+πS(d))

0

{
h
[
P
(
eb(S−d)+ > t

)]
− ḡ

[
P
(
eb(S−d)+ > t

)]}
dt.
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At first, we will simplify I3:

I3 = Ehg
[
eb(S−d)+

] eb(S−d)+≥0−−−−−−→= Eh
[
eb(S−d)+

]
=
∫∞

0
h
[
P
(
eb(S−d)+ > t

)]
dt

=
∫∞

0
h
[
P
(
eb(S−d)+ > t

)
{S≤d}

]
dt+

∫∞
0
h
[
P
(
eb(S−d)+ > t

)
{S>d}

]
dt

S≤d⇒(S−d)+=0−−−−−−−−−−−−−−−−−−−→
⇒ P(e0 = 1 > t) = 1; 0 ≤ t < 1

⇒ P(e0 = 1 > t) = 0; 1 ≤ t <∞

=
∫ 1

0
h(1) dt+

∫∞
1
h(0) dt+

∫∞
0
h
[
P
(
eb(S−d) > t

)]
dt

h(0)=0, h(1)=1−−−−−−−−→ = 1 +
∫∞

0
h

[
P
(
S >

ln t+ bd

b

)]
dt

⇒ I3 = 1 +

∫ ∞
0

h

[
P
(
S >

ln t+ bd

b

)]
dt (A.21)

Now, we will simplify I4:

I4 =
∫ eb(w+πS(d))

0

{
h
[
P
(
eb(S−d)+ > t

)]
− ḡ

[
P
(
eb(S−d)+ > t

)]}
dt

=
∫ eb(w+πS(d))

0

{
h
[
P
(
eb(S−d)+ > t

)
{S≤d}

]
− ḡ

[
P
(
eb(S−d)+ > t

)
{S≤d}

]}
dt

+
∫ eb(w+πS(d))

0

{
h
[
P
(
eb(S−d)+ > t

)
{S>d}

]
− ḡ

[
P
(
eb(S−d)+ > t

)
{S>d}

]}
dt

Since S ≤ d ⇒ (S − d)+ = 0, we can write P(e0 = 1 > t) = 1 for 0 ≤ t < 1 and

P(e0 = 1 > t) = 0 for 1 ≤ t ≤ eb(w+πS(d)). Thus,

=
∫ 1

0
{h(1)− ḡ(1)} dt+

∫ eb(w+πS(d))

1
{h(0)− ḡ(0)} dt

+
∫ eb(w+πS(d))

0

{
h
[
P
(
eb(S−d)+ > t

)
{S>d}

]
− ḡ

[
P
(
eb(S−d)+ > t

)
{S>d}

]}
dt
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h(0)=0, ḡ(0)=1−g(1)=0−−−−−−−−−−−−−→
h(1)=1, ḡ(1)=1−g(0)=1

=
∫ eb(w+πS(d))

0

{
h
[
P
(
eb(S−d) > t

)]
− ḡ

[
P
(
eb(S−d) > t

)]}
dt

=
∫ eb(w+πS(d))

0
h

[
P
(
S >

ln t+ bd

b

)]
dt−

∫ eb(w+πS(d))

0
ḡ

[
P
(
S >

ln t+ bd

b

)]
dt

ḡ(p)=1−g(1−p)−−−−−−−−−→ =
∫ eb(w+πS(d))

0
h

[
P
(
S >

ln t+ bd

b

)]
dt

−
∫ eb(w+πS(d))

0

{
1− g

[
P
(
S ≤ ln t+ bd

b

)]
dt

}

=
∫ eb(w+πS(d))

0
h

[
P
(
S >

ln t+ bd

b

)]
dt

−
(
eb(w+πS(d))

)
+
∫ eb(w+πS(d))

0
g

[
P
(
S ≤ ln t+ bd

b

)]
dt

⇒ I4 =

∫ eb(w+πS(d))

0

h

[
P
(
S >

ln t+ bd

b

)]
dt−

(
eb(w+πS(d))

)
+

∫ eb(w+πS(d))

0

g

[
P
(
S ≤ ln t+ bd

b

)]
dt

(A.22)

Lastly, if we take the simplified Equation (A.21) and Equation (A.22) , the Equation (A.20) can

be rewritten as

ebπS(d) = 1 +
∫∞

0
h

[
P
(
S >

ln t+ bd

b

)]
dt−

∫ eb(w+πS(d))

0
h

[
P
(
S >

ln t+ bd

b

)]
dt+

(
eb(w+πS(d))

)

−
∫ eb(w+πS(d))

0
g

[
P
(
S ≤ ln t+ bd

b

)]
dt

⇒ ebπS(d) = 1 +
∫∞
eb(w+πS(d)) h

[
P
(
S >

ln t+ bd

b

)]
dt+

(
eb(w+πS(d))

)

−
∫ eb(w+πS(d))

0
g

[
P
(
S ≤ ln t+ bd

b

)]
dt
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⇒ 1 =
[
eb(w+πS(d))

(
e−bw − 1

)]
−
∫∞
eb(w+πS(d)) h

[
P
(
S >

ln t+ bd

b

)]
dt

+
∫ eb(w+πS(d))

0
g

[
P
(
S ≤ ln t+ bd

b

)]
dt

In order to find πS(d), we define

ϕ(x) = x
(
e−bw − 1

)
+

∫ x

0

g

[
P
(
S ≤ ln t+ bd

b

)]
dt−

∫ ∞
x

h

[
P
(
S >

ln t+ bd

b

)]
dt.

Appendix A.3.4−−−−−−−−−→
⇒ϕ(x) is invertible

1 = ϕ
(
eb(w+πS(d))

)

⇒ ϕ−1(1) = eb(w+πS(d)) ⇒ ln [ϕ−1(1)] = b (w + πS(d))

πS(d) =
ln [ϕ−1(1)]

b
− w (A.23)

A.3.4. Proof for invertibility of ϕ(x) in Equation (4.18)

Proof. In order to prove that “ϕ(x) is invertible”, we need to show that ϕ(x) is either strictly

increasing or decreasing. Thus, we check ϕ′(x) > 0 or ϕ′(x) < 0 as follows.

ϕ′(x) =
d

dx

{
x
(
e−bw − 1

)
+
∫ x

0
g

[
P
(
S ≤ ln t+ bd

b

)]
dt

−
∫∞
x
h

[
P
(
S >

ln t+ bd

b

)]
dt

}

=
(
e−bw − 1

)
+ g

[
P
(
S ≤ lnx+ bd

b

)]
+ h

[
P
(
S >

lnx+ bd

b

)]

g(p)+h(1−p)<1; p6=0,1[27]−−−−−−−−−−−−−−−→
limw→∞ e−bw=0

ϕ′(x) < 0
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Here, we need to assume 1 − e−bw 6= h

[
P
(
S >

lnx+ bd

b

)]
+ g

[
P
(
S ≤ lnx+ bd

b

)]
for

ϕ′(x) 6= 0.

A.3.5. Solution of CPT stop-loss premium for Value Function 3

Proof. Let the value function υ(w) =

 wα , w ≥ 0

−λ(−w)β , w < 0
. The minimum premium that

the reinsurer accept to cover the risk (S − d)+ is determined by using the Equation (4.14). We

obtain πS(d) as follows.

υ(w) = Egh [υ (w + πS(d)− (S − d)+)]

w≥0−−→ wα = Egh [υ (w + πS(d)− (S − d)+)]

For (S − d)+ ≤ w + πS(d), the amount of w + πS(d)− (S − d)+ is seen as a gain and we use

the value and probability weighting functions for gains. Otherwise, we use these functions for

losses.

⇒ wα = Eg [(w + πS(d)− (S − d)+)α]− Eh
[
−λ ((S − d)+ − w − πS(d))β

]
Equation (4.6)−−−−−−−−→=

∫ 0

−∞ {g (P [(w + πS(d)− (S − d)+)α > t])− 1} dt

+
∫∞

0
g (P [(w + πS(d)− (S − d)+)α > t]) dt

−
∫ 0

−∞

{
h
(
P
[
−λ ((S − d)+ − w − πS(d))β > t

])
− 1
}

dt

−
∫∞

0
h
(
P
[
−λ ((S − d)+ − w − πS(d))β > t

])
dt
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If we represent each of the four integrals in the above equation as I5, I6, I7 and I8, respectively,

then we have the following equation.

wα = I5 + I6 − I7 − I8. (A.24)

At first, we will simplify I5:

I5 =
∫ 0

−∞ {g (P [(w + πS(d)− (S − d)+)α > t])− 1} dt

=
∫ 0

−∞

{
g
(
P [(w + πS(d)− (S − d)+)α > t]{S≤d}

)
− 1
}

dt

+
∫ 0

−∞

{
g
(
P [(w + πS(d)− (S − d)+)α > t]{S>d}

)
− 1
}

dt

(i) If S ≤ d⇒ (S − d)+ = 0 and since w, πS(d) ≥ 0, then we can write

P [(w + πS(d)− (S − d)+)α > t] = P [(w + πS(d))α > t] = 1 for −∞ < t < 0,

(ii) If S > d⇒ (S−d)+ = S−d and since (S−d)+ ≤ w+πS(d)⇒ w+πS(d)−(S−d)+ ≥ 0,

then we can write P [(w + πS(d)− (S − d)+)α > t] = 1 for −∞ < t < 0.

Thus, we obtain I5 as follows.

⇒ I5 =

∫ 0

−∞
{g(1)− 1}{S≤d} dt+

∫ 0

−∞
{g(1)− 1}{S>d} dt

g(1)=1−−−−→ I5 = 0. (A.25)

Now, we will simplify I6:

I6 =
∫∞

0
g (P [(w + πS(d)− (S − d)+)α > t]) dt

=
∫∞

0
g
(
P [(w + πS(d)− (S − d)+)α > t]{S≤d}

)
dt

+
∫∞

0
g
(
P [(w + πS(d)− (S − d)+)α > t]{S>d}

)
dt

(i) If S ≤ d⇒ (S − d)+ = 0, then
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∫∞
0
g
(
P [(w + πS(d)− (S − d)+)α > t]{S≤d}

)
dt =

∫∞
0
g (P [(w + πS(d))α > t]) dt

=
∫ (w+πS(d))α

0
g (P [(w + πS(d))α > t]) dt

+
∫∞

(w+πS(d))α
g (P [(w + πS(d))α > t]) dt

=
∫ (w+πS(d))α

0
g(1) dt+

∫∞
(w+πS(d))α

g(0) dt

g(0)=0, g(1)=1−−−−−−−−→= (w + πS(d))α .

(ii) If S > d⇒ (S − d)+ = S − d and since (S − d)+ ≤ w + πS(d), then

∫∞
0
g
(
P [(w + πS(d)− (S − d)+)α > t]{S>d}

)
dt =

∫∞
0
g (P [(w + πS(d)− S + d)α > t]) dt

=
∫∞

0
g
(
P
[
w + πS(d)− S + d > t1/α

])
dt

=
∫∞

0
g
(
P
[
S < −t1/α + w + πS(d) + d

])
dt

−t1/α + w + πS(d) + d = s1/α

⇒ −
1

α
t

(
1

α
−1

)
dt =

1

α
s

(
1

α
−1

)
ds

−−−−−−−−−−−−−−−−−−−−→
0 < t <∞

⇒ −∞ < s < (w + πS(d) + d)α

=
∫ (w+πS(d)+d)α

−∞ g
(
P
[
S < s1/α

])
ds.

Thus, we obtain I6 as follows.

⇒ I6 = (w + πS(d))α +

∫ (w+πS(d)+d)α

−∞
g
(
P
[
S < s1/α

])
ds. (A.26)
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Now, we will simplify I7:

I7 =
∫ 0

−∞

{
h
(
P
[
−λ ((S − d)+ − w − πS(d))β > t

])
− 1
}

dt

=
∫ 0

−∞

{
h

(
P
[
−λ ((S − d)+ − w − πS(d))β > t

]
{S≤d}

)
− 1

}
dt

+
∫ 0

−∞

{
h

(
P
[
−λ ((S − d)+ − w − πS(d))β > t

]
{S>d}

)
− 1

}
dt

(i) If S ≤ d⇒ (S − d)+ = 0, and since (S − d)+ > w + πS(d)⇒ w + πS(d) < 0 which is

impossible where w, πS(d) ≥ 0, then

∫ 0

−∞

{
h

(
P
[
−λ ((S − d)+ − w − πS(d))β > t

]
{S≤d}

)
− 1

}
dt = 0.

(ii) If S > d⇒ (S − d)+ = S − d and since (S − d)+ > w + πS(d), then

∫ 0

−∞

{
h

(
P
[
−λ ((S − d)+ − w − πS(d))β > t

]
{S>d}

)
− 1

}
dt

=
∫ 0

−∞

{
h
(
P
[
−λ (S − d− w − πS(d))β > t

])
− 1
}

dt

=
∫ 0

−∞

{
h

(
P
[
(S − d− w − πS(d))β < − t

λ

])
− 1

}
dt

=
∫ 0

−∞

{
h

(
P

[
S − d− w − πS(d) <

(
− t
λ

)1/β
])
− 1

}
dt

=
∫ 0

−∞

{
h

(
P

[
S <

(
− t
λ

)1/β

+ d+ w + πS(d)

])
− 1

}
dt
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(
−
t

λ

)1/β

+ d+ w + πS(d) =
(
−
s

λ

)1/β
⇒

1

β

(
−
t

λ

)( 1

β
−1

)
−1

λ
dt =

1

β

(
−
s

λ

)( 1

β
−1

)
−1

λ
ds

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
−∞<t<0⇒−∞<s<−λ(d+w+πS(d))β

=
∫ −λ(d+w+πS(d))β

−∞

{
h

(
P
[
S <

(
− s
λ

)1/β
])
− 1

}
ds.

Thus, we obtain I7 as follows.

⇒ I7 =

∫ −λ(d+w+πS(d))β

−∞

{
h

(
P
[
S <

(
− s
λ

)1/β
])
− 1

}
ds. (A.27)

Now, we will simplify I8:

I8 =
∫∞

0
h
(
P
[
−λ ((S − d)+ − w − πS(d))β > t

])
dt

=
∫∞

0
h

(
P
[
−λ ((S − d)+ − w − πS(d))β > t

]
{S≤d}

)
dt

+
∫∞

0
h

(
P
[
−λ ((S − d)+ − w − πS(d))β > t

]
{S>d}

)
dt

(i) If S ≤ d⇒ (S − d)+ = 0, and since (S − d)+ > w + πS(d)⇒ w + πS(d) < 0 which is

impossible where w, πS(d) ≥ 0, then

∫∞
0
h

(
P
[
−λ ((S − d)+ − w − πS(d))β > t

]
{S≤d}

)
dt = 0.

(ii) If S > d⇒ (S−d)+ = S−d and since (S−d)+ > w+πS(d)⇒ −λ (S − d− w − πS(d))β <

0, then we can write P
[
−λ (S − d− w − πS(d))β > t

]
= 0 for 0 ≤ t <∞.

Thus, we obtain I8 as follows.

⇒ I8 =

∫ ∞
0

h(0) dt
h(0)=0−−−−→ I8 = 0. (A.28)
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Lastly, if we take the simplified Equation (A.25), Equation (A.26), Equation (A.27) and Equa-

tion (A.28) , the Equation (A.24) can be rewritten as

wα = (w + πS(d))α +
∫ (w+πS(d)+d)α

−∞ g
(
P
[
S < s1/α

])
ds

−
∫ −λ(d+w+πS(d))β

−∞

{
h

(
P
[
S <

(
− s
λ

)1/β
])
− 1

}
ds

In order to find πS(d), we define

ϕ(x) = (x− d)α +

∫ xα

−∞
g
(
P
[
S < s1/α

])
ds−

∫ −λxβ
−∞

{
h

(
P
[
S <

(
− s
λ

)1/β
])
− 1

}
ds.

Appendix A.3.6−−−−−−−−−→
⇒ϕ(x) is invertible

wα = ϕ (w + πS(d) + d)

⇒ ϕ−1 (wα) = w + πS(d) + d

πS(d) = ϕ−1 (wα)− w − d (A.29)

A.3.6. Proof for invertibility of ϕ(x) in Equation (4.20)

Proof. In order to prove that “ϕ(x) is invertible”, we need to show that ϕ(x) is either strictly

increasing or decreasing. Thus, we check ϕ′(x) > 0 or ϕ′(x) < 0 as follows.

ϕ′(x) =
d

dx

[
(x− d)α +

∫ xα
−∞ g

(
P
[
S < s1/α

])
ds

−
∫ −λxβ
−∞

{
h

(
P
[
S <

(
− s
λ

)1/β
])
− 1

}
ds

]
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= α (x− d)α−1 + g
(
P
[
S < (xα)1/α

])
(αxα−1)

−

{
h

(
P

[
S <

(
−−λx

β

λ

)1/β
])
− 1

}(
−λβxβ−1

)

= α (x− d)α−1 + g [P (S < x)] (αxα−1)− {h [P (S < x)]− 1}
(
−λβxβ−1

)
α=β−−→ = α (x− d)α−1 + (αxα−1) (g [P (S < x)] + λh [P (S < x)]− λ)

⇒< 0 or > 0

Here, we need to assume that g [P (S < d)] + λh [P (S < d)] 6= λ when x = d.
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A.4. Appendix (Chapter 5): Risk Prioritization Through Stochastic Majorization

A.4.1. Proof of Schur-convexity of Sample Variance

Proposition A.4.1. The sample variance defined as

φ1(xxx) = φ1(x1, x2, . . . , xn) =
1

n

n∑
i=1

(xi − x̄)2

is strictly Schur-convex wrt xxx = (x1, x2, . . . , xn).

Proof. In order to show that φ1 fulfills the Schur’s conditions, we firstly check whether it is

symmetric or not. Since this function gives the same values for all permutations of xxx, it is

symmetric. For all (x1, x2, . . . , xn), the function φ1(x1, x2, . . . , xn) =
1

n

n∑
i=1

(xi − x̄)2 is same

since (xi − x̄)2 is same as the result of that x̄ is same for all i = 1, 2, . . . , n.

We also need to show that (xi − xj)

∂φ1

∂xi
−
∂φ1

∂xj

 > 0 for all 1 ≤ i, j ≤ n in order to prove

φ1(xxx)’s being strictly Schur-convex. We use Schur’s Condition given by Theorem 5.2.4.

Let x1 > x2. Then,

∂φ1

∂x1

=
1

n


2

(
x1 −

x1 + . . .+ xn
n

)(
1− 1

n

)
+ 2

(
x2 −

x1 + . . .+ xn
n

)(
− 1

n

)

+ . . .+ 2

(
xn −

x1 + . . .+ xn
n

)(
− 1

n

)


and

∂φ1

∂x2

=
1

n


2

(
x1 −

x1 + . . .+ xn
n

)(
− 1

n

)
+ 2

(
x2 −

x1 + . . .+ xn
n

)(
1− 1

n

)

+ . . .+ 2

(
xn −

x1 + . . .+ xn
n

)(
− 1

n

)

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Thus,
∂φ1

∂x1

−
∂φ1

∂x2

=
2

n

[(
x1 −

x1 + . . .+ xn
n

)
−
(
x2 −

x1 + . . .+ xn
n

)]

=
2

n
(x1 − x2)

Since x1 > x2 ⇒ x1 − x2 > 0,
∂φ1

∂x1

−
∂φ1

∂x2

=
2

n
(x1 − x2) > 0.

This is true for all 1 ≤ i, j ≤ n. Therefore, (xi − xj)

∂φ1

∂xi
−
∂φ1

∂xj

 > 0 is true for all

1 ≤ i, j ≤ n. φ1(xxx) is strictly Schur-convex wrt xxx = (x1, x2, . . . , xn).

A.4.2. Proof of Schur-convexity of Sample Coefficient of Variation

Proposition A.4.2. The sample variance defined as

φ2(xxx) = φ2(x1, x2, . . . , xn) =
[φ1(xxx)]1/2

x̄

is strictly Schur-convex wrt xxx = (x1, x2, . . . , xn) inR+.

Proof. In order to show that φ2 fulfills the Schur’s conditions, we firstly check whether it is

symmetric or not. Since this function gives the same values for all permutations of xxx, it is sym-

metric. For all (x1, x2, . . . , xn), the function φ2(x1, x2, . . . , xn) is same since φ1(x1, x2, . . . , xn)

is same (by Proof A.4.1) and x̄ is same for all i = 1, 2, . . . , n.

We also need to show that (xi − xj)

∂φ2

∂xi
−
∂φ2

∂xj

 > 0 for all 1 ≤ i, j ≤ n in order to prove

that φ2(xxx) is strictly Schur-convex. We use Schur’s Condition given by Theorem 5.2.4.
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Let x1 > x2. Then,

∂φ2

∂x1

=

(
1

x̄

)(
1

2

)
[φ1(xxx)]−1/2

∂φ1

∂x1



Proof A.4.1−−−−−−−→ =
[φ1(xxx)]−1/2

2nx̄


2

(
x1 −

x1 + . . .+ xn
n

)(
1− 1

n

)
+ 2

(
x2 −

x1 + . . .+ xn
n

)(
− 1

n

)

+ . . .+ 2

(
xn −

x1 + . . .+ xn
n

)(
− 1

n

)


and

∂φ2

∂x2

=

(
1

x̄

)(
1

2

)
[φ1(xxx)]−1/2

∂φ1

∂x2



Proof A.4.1−−−−−−−→ =
[φ1(xxx)]−1/2

2nx̄


2

(
x1 −

x1 + . . .+ xn
n

)(
− 1

n

)
+ 2

(
x2 −

x1 + . . .+ xn
n

)(
1− 1

n

)

+ . . .+ 2

(
xn −

x1 + . . .+ xn
n

)(
− 1

n

)


Thus,

∂φ2

∂x1

−
∂φ2

∂x2

=
[φ1(xxx)]−1/2

nx̄

[(
x1 −

x1 + . . .+ xn
n

)
−
(
x2 −

x1 + . . .+ xn
n

)]

=
[φ1(xxx)]−1/2

nx̄
(x1 − x2)

Since x1 > x2 ⇒ x1 − x2 > 0 and xxx ∈ R+ ⇒ x̄ > 0,
∂φ2

∂x1

−
∂φ2

∂x2

=
[φ1(xxx)]−1/2

nx̄
(x1 − x2) > 0.

This is true for all 1 ≤ i, j ≤ n. Therefore, (xi − xj)

∂φ2

∂xi
−
∂φ2

∂xj

 > 0 is true for all

1 ≤ i, j ≤ n. φ2(xxx) is strictly Schur-convex wrt xxx = (x1, x2, . . . , xn) ∈ R+.
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A.5. Appendix (Chapter 6): Risk Clustering Through STI

A.5.1. Histogram graphs of the estimated meteorological variables obtained with STI

(a) avcloud (b) avhum

(c) avpres (d) avsoiltemp5

(e) avsoiltemp10 (f) avsoiltemp20

Figure A.1: The histograms of the estimated meteorological values: (a)-(f)
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(g) avsoiltemp50 (h) avtemp

(i) avvappres (j) insoforce

(k) maxtemp (l) minsurftemp

(m) mintemp (n) soiltemp100

Figure A.2: The histograms of the estimated meteorological values: (g)-(n)
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(o) toteva (p) totglsolrad

(q) totinso (r) totprec

Figure A.3: The histograms of the estimated meteorological values: (o)-(r)

A.5.2. Means and covariances of meteorological variables for each risk cluster

Table A.1: The means of meteorological variables for 1st, 2nd, 3rd risk cluster

Variable RC1 RC2 RC3

minsurf 8.788189 8.8281923 15.5461123
totprec 1.466348 0.8865548 0.8872827
totinso 6.178126 5.7099397 7.1767608
totglsolrad 289.731508 307.7783323 338.9304482
toteva 3.068682 3.3232559 4.7150127
avtemp 13.798889 16.5387931 21.1974264
avhum 41.514418 54.6180217 52.6388427
avvappres 9.801051 10.6689119 15.1958562
avpres 791.458346 823.2496504 875.31934
avsoiltemp50 13.911024 16.368625 22.729601
avsoiltemp20 15.78924 17.8993169 24.0480312
avsoiltemp10 14.403511 18.6605555 24.6804167
avsoiltemp5 14.996502 19.2629557 27.2255031
mintemp 10.087009 10.4409772 17.2292644
maxtemp 20.251147 22.8620844 25.9921597
insoforce 254.278476 320.5589598 302.1036239
soiltemp100 12.016795 14.731008 21.0769166
avcloud 2.640343 3.0701164 2.4202439
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Table A.2: The means of meteorological variables for 4th, 5th, 6th risk cluster

Variable RC4 RC5 RC6

minsurf 12.906555 6.311327 13.7424415
totprec 0.9866787 1.752387 0.9829862
totinso 6.2008081 4.333961 6.5982279
totglsolrad 364.4457881 305.893582 456.2283794
toteva 4.220361 2.982059 4.4107307
avtemp 18.6997178 11.514396 21.0517734
avhum 56.8489691 40.274581 58.8870503
avvappres 13.8301822 7.685148 14.6175528
avpres 856.3475145 576.922714 903.8997313
avsoiltemp50 19.0927162 11.263783 21.2369373
avsoiltemp20 20.9221512 11.901326 22.9611222
avsoiltemp10 19.9474618 12.435957 23.8501352
avsoiltemp5 21.3304141 13.393678 24.3040616
mintemp 12.5258116 6.883572 14.8792172
maxtemp 22.5190031 16.073289 27.7582911
insoforce 364.4166012 290.325946 430.1956694
soiltemp100 16.5696259 10.322108 18.8862896
avcloud 2.5656042 2.863458 2.2291128

Table A.3: The means of meteorological variables for 7th, 8th, 9th risk cluster

Variable RC7 RC8 RC9

minsurf 8.3695278 12.4512379 10.3796518
totprec 0.5853526 0.7639731 0.7165093
totinso 4.9917168 4.7881601 1.8473166
totglsolrad 336.6498463 557.623263 506.6833009
toteva 4.3196837 3.6460996 3.2608636
avtemp 19.1343661 20.1227974 16.639702
avhum 50.394717 50.5318629 53.0603058
avvappres 6.9156867 12.044096 11.0028778
avpres 664.4551099 848.1502853 821.5887622
avsoiltemp50 18.4187536 19.2824201 18.4957785
avsoiltemp20 20.3680573 21.5912591 19.8717833
avsoiltemp10 21.8090424 23.1745981 21.4168935
avsoiltemp5 0.9016968 22.9437831 19.895738
mintemp 11.7445774 13.2020035 11.6787432
maxtemp 14.3023841 26.9272529 24.1756238
insoforce 162.0148217 555.1631569 506.6030765
soiltemp100 14.5687959 17.331259 16.2691584
avcloud 2.6674196 2.6863729 2.6383672
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