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Reliability engineering focuses on analyzing the properties related with failure times of high 

valued items. Bayesian Networks (BNs) are an effective way of analyzing causal relations, 

they allow incorporating expert judgement into mathematical models, and they are able to 

make probabilistic calculations when only a part of their variables are known. This makes 

BNs a suitable tool for reliability analysis considering the cost of life testing high-value 

products. Hence, numerous BNs and Bayesian approaches have been proposed for reliability 

estimation and prediction analyses. Some of these approaches tend to focus on more on 

building discrete nodes as BN models for developing a subjective judgement where others 

are more focused on failure time distribution parameters and mathematical properties of the 

Bayes Theorem. This thesis proposes a novel BN model for predicting the time to failure 

distribution of an aircraft fleet, by a bottom to top approach. Our model incorporates both 

actual failure data and the expert judgement on design and manufacturing qualities of the 

aircrafts by using BNs. The expert judgement is based on the design life estimations provided 
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by the manufacturer of the aircrafts and these values are transformed into a distribution, 

reflecting our uncertainty associated with it. Then this prior information is integrated to the 

Weibull distribution as median parameter and used for obtaining scale parameter. We 

applied our model to make reliability prediction by using failure data provided by an aircraft 

fleet operator, after preprocessing the raw data into a structure suitable for reliability 

analysis. We compared the performance of our model in predicting the reliability of the main 

systems of the aircrafts to commonly used reliability estimation methods. The proposed 

model offers a robust approach by giving consistently satisfactory results compared to the 

purely data-driven approaches and design life estimations.  As the sample size increase, the 

performance of the model becomes very similar to the data-driven approaches. This is 

expected as the effect of the priors used in the model decreases with as the size of the data 

increases. We have also used a different prior distribution for shape parameter of the Weibull 

distribution, compared to standard approaches in the literature, and applied it to the aircraft 

fleet data. 

 

 

Key words: Bayesian Networks, Bayesian Reliability, Reliability in Aviation, Bayesian 

Weibull Analysis 
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Güvenilirlik mühendisliği pahalı malzemelerin hata zamanlarına ilişkin özelliklerini analiz 

etmeye odaklanan mühendislik dalıdır. Bayes ağları nedensel ilişkileri analiz etmenin ve 

uzman değerlendirmelerini matematiksel modellere birleştirmenin efektif bir yoludur ve, 

değişkenlerin sadece bir kısmının bilindiği durumlarda da olasılıksal hesaplamalar 

yapabilmektedirler. Bayes ağları bu özelliği sayesinde, pahalı malzemelerine uygulanan 

ömür testlerinin maliyeti göz önüne alındığında güvenilirlik analizi için uygun bir 

modelleme aracıdır. Bu sebeple güvenilirlik tahmin analizlerinde uygulanmakta olan birçok 

Bayes ağı ve Bayes yöntemi bulunmaktadır. Bu yöntemlerin bir kısmı daha çok ayrık 

düğümler oluşturarak sübjektif değerlendirmeler oluşturmaya odaklanırken diğerleri hata 

zamanlarının dağılımına ilişkin parametreler ve Bayes Teorisi’nin matematiksel 

özelliklerine yoğunlaşmaktadır. Bu tezde, alt seviyeden üst seviyeye doğru ilerleyen ve bir 

hava aracı filosunun hata zamanlarının dağılımını tahmin etmek için geliştirilen özgün bir 

Bayes ağı modeli sunulmaktadır. Önerilen model, hem gerçek hata verilerini hem de hava 

araçlarının tasarım ve üretim kalitesine ilişkin uzman değerlendirmelerini Bayes ağları 

kullanarak birleştirmektedir. Uzman değerlendirmeleri, hava aracı üreticisi tarafından 
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sağlanan tasarım ömür tahminlerini baz almakta ve bu tahmin değerlerini, değerlerdeki 

belirsizlikleri yansıtan bir dağılıma dönüştürmektedir. Daha sonra bu öncül bilgi Weibull 

dağılımının medyan parametresi olarak iletilmekte ve ölçek parametresini elde etmek için 

kullanılmaktadır. Bir hava aracı filosu işletmecisi tarafından temin edilen ham veri 

kullanılabilir veriye dönüştürüldükten sonra önerilen model bu veriden güvenilirlik tahmini 

için uygulanmıştır. Modelimizin hava aracının ana sistemlerinin güvenirliğini tahmin 

etmekteki performansı yaygın olarak kullanılan güvenilirlik analizi yöntemleri ile 

karşılaştırılmıştır. Önerilen model sadece veri temelli yöntemlere ve tasarım ömür 

tahminlerine göre istikrarlı olarak iyi sonuçlar vermekte; güvenilirlik tahmini için gürbüz bir 

yöntem sunmaktadır. Veri adedi arttıkça önerilen yöntem ile veri temelli yöntemler 

arasındaki performans farkı azalmaktadır. Bu beklenilen durum, veri adedi arttıkça 

modeldeki öncül uzman bilgisinin etkisinin azalmasından kaynaklanmaktadır. Ayrıca bu 

tezde Weibull dağılımının şekil parametresi için literatürdeki standart yaklaşımlardan 

değişik bir dağılım seçilmiş ve hava aracı filosu verisinde uygulanmıştır. 

 

 

Anahtar Kelimeler: Bayes Ağları, Bayesci Güvenilirlik, Havacılıkta Güvenilirlik, Bayesci 

Weibull Analizi 
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1. INTRODUCTION 

Reliability can be defined as the quality of being reliable, that may be relied upon; in which 

reliance or confidence may be put; trustworthy, safe, sure [1]. However, following the efforts 

of decreasing the number of failures observed in the vacuum tube back in World War II, 

which was required to be replaced five times as often as all other equipment, the term 

“Reliability” changed its preliminary meaning after a couple of decades [2].  In order to 

decrease number of failures of these vacuum tubes, US department of defense initiated 

multiple studies to look deeper into the causes of these failures, which led to birth of a whole 

new engineering discipline, namely “Reliability Engineering” [1].  

To be precise, the birth of reliability engineering can be linked with the declaration of the 

AGREE1 Report on 1957 June 4, in which the specification of minimum acceptable figures, 

allocation of reliability, the modeling of reliability cost-benefits, the demonstration of 

reliability, and the effects of storage on reliability was discussed [1]. Following this ground-

breaking creation of a new terminology, further efforts to understand this new concept 

caused divergence of these efforts into new branches during 1960s. Systematic approach was 

more into tasks of specifying, allocating, predicting and demonstrating reliability where 

physics-of-failure approach was more interested in identifying and modeling the physical 

causes of failure [3]. In 1970s, reliability engineering was consolidated into risk assessment 

activities and then in 1980s and 1990s, it was considered as an indispensable contributor to 

system analysis with many new methodological developments and commercial applications 

introduced during these years [4]. Though mostly driven by aerospace and defense 

applications in the past, nowadays reliability engineering is a concept that is widely applied 

to nearly all commercial products as well, because of the dramatic increase in usage of high-

valued complex devices in our daily lives. 

This increase led to alternative approaches emerging for reliability estimation and prediction, 

especially arising from the need for minimizing resources required in reliability testing 

environment. One of these approaches that has gained popularity during the adoption period 

of reliability engineering is a probabilistic modelling approach called Bayesian Networks 

(BNs). BNs are effective in analyzing causal relations since they have the capability to 

transform subjective expert knowledge that cannot be obtained through standard frequentist 

approaches into mathematical relations. The initial proposals for using BNs in the field of 

                                                 
1 The Advisory Group on Reliability of Electronic Equipment (AGREE), established on August 21, 1952. 
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reliability can be traced back to studies conducted by Barlow [5] and Almond [6]. Barlow 

[5] proposed use of influence diagrams developed by a Bayesian modeling tool, for 

providing valuable aid for modeling the logical and statistical dependencies between random 

quantities and decision alternatives. The work of Almond [6] can be considered as the first 

real attempt to merge BNs with reliability analysis where he introduces the use of a 

Graphical-Belief tool for determining reliability parameters. Using BNs for assessment of 

reliability in the current literature are mainly concentrated on areas such as software 

reliability [7], [8], troubleshooting [9], [10] and maintenance modelling [11]. However, 

current BN community has a tendency for using only discrete variables in the BN models, 

mainly due to the technical limitations on the calculation pattern and BNs’ applicability in 

reliability analysis is extremely insufficient if only discrete variables are considered [12]. 

A crucial field in reliability engineering is parameter estimation, as the parameters of 

statistical distributions representing failure times are usually estimated from data. The most 

commonly used type of distribution used in failure time analysis of various components is 

the Weibull distribution. Maximum likelihood estimation (MLE) has been the most 

commonly used method for estimating the parameters of failure time distributions. 

Nowadays, the use of Bayesian parameter estimation approach has increased as well [13]. 

These studies are mainly focused on estimating the parameters of Weibull distribution, 

representing failure times of subject component by using Bayesian approach. Bayesian 

approach necessitates the use of prior distributions on the estimated parameters. There is still 

not a generally accepted method for selecting priors on Weibull parameters and many 

different priors are adopted for both shape and scale parameters within studies in the current 

literature [14]–[17]. Previous Bayesian parameter estimation studies in reliability are mostly 

focused on computational issues regarding Bayesian inference rather than structuring a 

descriptive BN model for problem representation, hence their use require deep statistical and 

mathematical knowledge. 

In this thesis, we propose a BN model that incorporates both actual failure data and expert 

judgement for estimating and predicting Weibull parameters of the times between failure 

occurrences distributions of an aircraft fleet composed of the same model of aircrafts. The 

necessity of the model arises from the need of the operator for a more accurate reliability 

prediction method. During procurement of the aircrafts, the operator receives single point 

design life estimates (DLEs) from the manufacturer of the aircraft and collects maintenance 

and spare part requests data by himself. However, both these sources do not provide the 
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operator desired accuracy. Therefore, our model is developed for the operator’s use, and it 

is structured in such a way that it is easy to visualize and its use requires minimal statistical 

and mathematical background. The proposed model enhances reliability prediction 

accuracy, especially with relatively small dataset sizes, compared to standard frequentist 

approaches and it can be used as a better source for optimizing maintenance planning and 

spare part stock levels. 

In summary, our proposed model combines the following for aircraft reliability estimation: 

1. Expert judgement, by using ordinal nodes for ranking the quality of design and 

quality of manufacturing processes, 

2. Single point DLE value, provided by the aircraft manufacturer, 

3. Failure data, inserted to the model as evidence. 

We use discrete (ordinal) nodes for expert judgement and continuous nodes for both shape 

and scale parameter of the Weibull distribution. Therefore, our model is a hybrid BN that 

contains both discrete and continuous nodes. Within the proposed model, the single point 

DLE values provided by the manufacturer are used as the prior information about times 

between failure occurrences parameter. This value is transformed into a distribution 

reflecting our belief, which is used as the median of the subject Weibull distribution, after 

adjusting it by expert judgement on design and manufacturing quality of the subject system.  

We apply our proposed model for predicting time to failure distributions of a real aircraft 

fleet as a case study. We use data regarding maintenance and spare part requests collected 

by the aircraft fleet operator for a period of more than two years in our case study. Firstly, 

the raw data provided by the operator is pre-processed to use it for reliability analysis. We 

have also made written interviews with two major aircraft manufacturer companies to clarify 

the semantics of variables in the data and the DLE value provided by those manufacturers. 

We then analyze this data by using standard frequentist approaches to have a broad opinion 

about the times between failure occurrences distributions of the aircraft main systems. 

Finally we apply our model on this data and compare the results to common reliability 

prediction methods in aviation. Effects of selecting different prior distributions on shape 

parameter of the Weibull distribution is also provided in the case study. 

The main contributions of this thesis involves: 

 A novel and robust model for predicting reliability of aircrafts, which combines 

values provided by the manufacturer, failure data and expert knowledge, 
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 A cognitively simpler approach for incorporating expert knowledge in times between 

failure occurrences estimation, 

 A flexible framework for defining prior distributions, including a comparison of 

performances between setting triangular and uniform as prior distributions of shape 

parameter, 

 A decision support tool on supplier quality determination, in the presence of no prior 

information regarding the suppliers. 

The remainder of this thesis is organized as follows: Chapter 2 provides an overview of BNs 

and Chapter 3 presents an overview of terms and prediction techniques used in the field of 

reliability engineering. Chapter 4 involves the steps of data collection process for the case 

study and presents the results of conducted failure time analyses. Chapter 5 presents the 

proposed method structure and parameters, and discusses the results obtained through the 

model by comparing these results with results obtained by using other common reliability 

prediction methods. Chapter 6 presents our conclusions. 
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2. BAYESIAN NETWORKS 

This aim of this section is to provide an overview of BNs. Section 2.1 and 2.2 respectively 

presents the Bayes’ Theorem and BNs along with their difficulties and advantages. In 

Section 2.3, types of connections used in BNs are introduced. Section 2.4 describes the d-

separation phenomenon in BNs and Section 2.5 provides common steps for building and 

using a BN model. Finally, Section 2.6 presents the dynamic discretization (DD) algorithm, 

which is used to compute the BN model proposed in this thesis. 

2.1. Bayes’ Theorem 

Throughout the years, estimation of unknown parameters of a probabilistic model had been 

the primary goal of modeling for the “classical” approach, as known as the “frequentist” 

approach in statistics. In this classical approach, the probability of occurrence of an event is 

defined as the proportion of occurrence of events in an infinite number of independent 

experiments. This is usually illustrated by using a simple tossing a coin experiment such as 

in Eq.(2.1). 

P({heads})= lim
m→∞

#heads

m
           (2.1) 

where m represents the number of trials, #heads is the observed number of the experiment 

and P({heads}) is the probability of the coin landing on heads.  

This method is conclusive that the relative frequencies appear to approach a limit and that 

limit is the probability ratio [18]. However, frequentist approach depends on two crucial 

assumptions; the first one is that the experiment can be duplicated over and over again under 

the exact same conditions (repeatability) and the second one is the result of one experiment 

does not have any effect on the outcome of another one (independence) [19]. 

“Bayesian” approach is an alternative to this classical approach that is especially useful when 

the subject event is a unique one, such as an earthquake or failure of a system, which are 

neither repeatable nor independent. It is based on Bayes’ Theorem which was put forward 

by Thomas Bayes in [20]. Bayes’ Theorem is given in Eq.(2.2.). 

P(X|Y)=
P(Y|X)P(X)

P(Y)
            (2.2) 

where X and Y are two events such that P(X)≠0 and P(Y)≠0. 

Furthermore, Eq.(2.2) can be expanded to multiple states of an event provided that these 

states are mutually exclusive and exhaustive [18]. This expansion is expressed as follows: 
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P(Xi|Y)=
P(Y|Xi)P(Xi)

P(Y|X1)P(X1)+P(Y|X2)P(X2)+…P(Y|Xn)P(Xn)
           (2.3) 

where P(Xi)≠0 for all i and 1 ≤ i ≤ n. 

Bayes’ Theorem contributes to a method for revising our belief regarding the probability of 

an event X given information about another event Y [21]. Therefore, in this relation P(X) is 

referred as “prior” probability of X and P(X|Y) is called the “posterior” probability of X given 

Y since our belief of event X happening is revised as event Y is provided as an evidence. 

Also, P(Y|X) is the conditional probability of X given Y and P(Y) is simply the probability of 

event Y. 

Bayes’ Theorem is generally used when the probability of interest cannot be directly 

determined, but all other probabilities in Eq.(2.2) or Eq.(2.3) can be [18]. The posterior 

distribution over the parameter domain can be used to calculate the probability distribution 

of a future event, based on previous experience. On contrary to the classical approach, the 

result is a probability distribution that contains a subjective component described by the prior 

distribution [22].  

Calculation of a conditional probability of an event and updating these calculations with 

evidence by using Eq.(2.2) and Eq.(2.3) is called the “Bayesian Inference” [18]. The 

posterior probability is computed based on both prior belief and new evidence. This update 

of prior beliefs with data is the key concept of Bayesian learning [22] and Bayesian 

parameter estimation. 

This subjective property of Bayes’ Theorem allows us to incorporate personal judgement 

into probability computations. As a result, Bayesian approach has been also widely used in 

other fields than reliability, which also make a combined analysis of expertise and data 

including software testing [23][24], medical science [25]–[27], educational assessment [28], 

forensics [29][30], data mining [31], artificial intelligence [32].  

2.2. Bayesian Networks 

BNs are graphical probabilistic models that illustrate joint probability models among a set 

of variables [33]. A BN is composed  of the following two main elements:  

1. A directed acyclic graph (DAG): The DAG consists of a group of nodes and arcs. 

The nodes correspond to the variables and the arcs correspond directly to dependence 

links between the variables. An arc from event A to B refers to a direct causal or 
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influential dependence of event A on B. A DAG has no cycles to avoid circular 

reasoning in the BN. A typical directed graph is given in Fig.1 [19].  

 

Figure 1 An Example Directed Acyclic Graph [34] 

In Fig.1, node A is called the parent node of B and C as there is a direct link from A 

to B and C. B and C are called the children of A, as the link direct link between A and 

these nodes are pointed towards them. The node A is also a root node, because it has 

no parent nodes. The graphical structure of Bayesian networks are often build to 

represent causal relations between the variables [21].  

2. A Node Probability Table (NPT): Every node has a related probability table, called 

an NPT. This is the conditional probability distribution of an event A given the set of 

parents of A. For node A without parents (a root node), the NPT of A be the 

probability distribution of A. A typical NPT is given in Fig.2 [19]. 

 

Figure 2 An Example Node Probability Table [34] 

Powerful algorithms, such as Junction Trees [21], are available for BNs that enables 

propagating information about the observed values of variables through the graph to revise 

the probability distributions over other variables that are not examined. These algorithms 

essentially enable the computation of Bayes’ Theorem for large probability distributions 

represented on BNs. Recent algorithms are also available for calculating hybrid BN models 

with continuous nodes (these are described in Section 2.6).  
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2.3. Types of Connections in Bayesian Networks 

In a BN, observing a node is also called as entering evidence on that node. There are two 

different types of evidence that can be entered to a BN: 

1. Hard Evidence: This type of evidence represents an observation or evidence that we 

are 100% certain. It assigns zero probability to all other states of the node [35]. Hard 

evidence on a variable can be also called as “instantiation”. 

2. Soft Evidence: Soft evidence increases the likelihood of a state but not with 100% 

certainty. 

When an evidence is entered, BNs update the posteriors of unobserved nodes based on the 

conditional independence assertions encoded between the nodes [19]. The conditional 

independence assumptions between the nodes in BNs can be summarized by three different 

types of connections.  

2.3.1. Serial Connections 

In Fig.3, the event A affects the event B and the event B affects the event C. If there is any 

evidence on A, the certainty of event B will be changed and this change will also affect the 

certainty of event C. Similarly, if there is evidence on C, this will update B and A. However, 

if the state of B is known, then this cause-effect relationship between A and C will be 

blocked. In other words, the events A and C are conditionally independent given B [19][35]. 

 

Figure 3 Serial Connection in BNs [21] 

2.3.2. Diverging Connections 

An example of a diverging connection is given in Fig.4. It can be seen that the event A, which 

can be referred as common cause if the relationship is casual, has influence on all of its 

children nodes B, C, D and E. Therefore, any change in the certainty of event A will definitely 

affect certainties of all of its children nodes and any change in the certainty of events B, C, 

D or E will have effect on all other nodes through A. However, if A is observed, then all the 

communication between children nodes will be blocked. In other words, B, C, D and E are 

conditionally independent given A [19][35]. 
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Figure 4 Diverging Connection in BNs [21] 

2.3.3. Converging Connections 

In a converging connection, such as Fig.5, the child node A can be referred as the common 

effect and the parent nodes B to E can be referred as possible causes. In this type of 

connection, any evidence for events B, C, D or E will have influence on A. Also, if there is 

no evidence about A, then the parent nodes B-E are independent and any evidence on one of 

them does not have effect on the others. However, in case evidence is present on A or its 

descendants, then evidence on any of B, C, D or E will have influence on all other parent 

nodes. In other words, the events B to E are conditionally dependent on each other given A 

or its descendants [19] [35]. This type of reasoning is called “explaining away”. 

 

Figure 5 Converging Connection in BNs [21] 

2.4. D-Separation 

D-separation enables us to identify all the conditional independencies encoded in a DAG. 

This concept is used to answer questions such as “are X and Y independent given Z” or, more 

widely, questions such as “is information about X irrelevant for our belief about the state of 

Y given information about Z”, where X and Y are individual variables and Z is either the 

empty set of variables or an individual variable [35]. This is especially important in 

determining the types of connections to be used between the nodes while building a BN. 

The formal definition of the d-separation criterion is: 
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“Let G = (V, E) be a DAG, where V = {X1,...,Xd} is a collection of random variables. Let S 

⊂ V such that all the variables in S are instantiated and all the variables in V\S are not 

instantiated. Two distinct variables Xi and Xj not in S are d-separated by S if all trails between 

Xi and Xj are blocked by S” [22]. 

It can be understood that all d-separations are conditional independencies and any two nodes 

that are not d-separated is named as d-connected. 

With this definition, d-separation for different types of connections can be described as: 

 For serial type connections (Fig.3), A and C are d-separated given B. 

 For diverging type of connections (Fig.4), B-E are d-separated given A. 

 For converging type of connections (Fig.5), B-E are d-separated and they become d-

connected given A [19]. 

2.5. Building and Using a Bayesian Network Model 

The steps for building and using a BN model is given in Fig-6. Each of these steps will be 

discussed below.  

 

Figure 6 Flowchart of Stages for Building and Using a BN Model [36]. 
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1. The first stage of building a BN model is the “problem structuring stage” [36]. This 

includes the following steps [19]: 

o Identify set of variables relevant to the model: It is vital to introduce only 

variables that affects the parameter in question in a direct or an indirect 

manner. However, this variable must also be quantifiable and the effects of 

this variable in the model must be mathematically feasible to the burden of 

calculation time. All these variables should be represented in the model as 

nodes later on. 

o Identify the connections required between the nodes and develop 

network structure: The cause and effect relationship in the variables must 

be identified and therefore a link between all associated nodes has to be 

specified. This step is the most difficult step as any flaw injected to the system 

at this step dramatically affects the validation of the model. 

o Identify set of states for each variable: All variables in the model has to be 

quantifiable but can be in different types such as discrete, continuous or 

logical. The set of states for discrete variables must be carefully specified for 

having a precise representation of the problem. 

2. The second stage is the “instantiation stage”. In this phase, the conditional 

probabilities are specified in NPTs. Determining the conditional probabilities is a 

challenging step in building a BN model [36]. If all “k” number of variables involved 

in the model have a limited discrete “n” set of states then the NPT requires us to 

determine the probability of each state of the node given each combination of states 

of the parent nodes which results in an NPT of “nk” parameters. Therefore, the 

complexity of the BN depends on the number of parent nodes of a variable. NPTs 

can be defined by eliciting domain experts’ opinion or by learning from data [37]. 

As the number of parent nodes increase, more data is required to effectively learn the 

NPT and, defining it from expert knowledge may become infeasible [19]. For more 

complex problems, data from physical/chemical theories, engineering and 

qualification test results, universal industrywide data, computational analysis, 

previous experience with comparable products, test results obtained in the past from 

a process development program are also used as sources for defining NPTs [38]. 

3. The third stage is called the “Bayesian inference stage”, during which hard or soft 

evidence in the form of information about the states of the variables, is inputted to 

the BN model, and the conditional probabilities are updated for other variables in 
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accordance with propagation. The evidence updates the probabilities of all the other 

nodes in the network through the d-separation rules as provided in the previous 

section. The results are interpreted in this stage and different sets of evidence can be 

entered to the BN as well to perform what if analyses or update the results as new 

evidence are generated in time [36]. 

Building a BN by using expert knowledge and data can be challenging [34] but, once these 

difficulties are managed, BNs provides several advantages over other modelling techniques 

such as: 

 The graphical representation can be easily understood and it helps people focusing 

on the problem[21], 

 The burden of parameter acquisition can be reduced since a BN requires less 

probability values and parameters than a full joint probability model due to 

conditional independencies encoded, 

 Complex probabilistic inferences among a large number of features can be performed 

in an acceptable amount of time [18], 

 Causal factors can be explicitly modelled by incorporating not only historical data 

but also expert judgement, 

 Reasoning can be made from effect to cause,  from the other way around and between 

causes (i.e. “explaining-away”) since a BN can revise the probability distribution for 

each unknown variable whenever an observation is introduced into a node, 

 Unlike regression models, introducing observations about all the inputs is not 

required because any variable has a prior distribution and the model generates 

updated probability distributions for each unknown variable when any new 

observations are entered, 

 Various types of evidence such as subjective judgements and objective data can be 

combined in a BN [19]. 

2.6. Dynamic Discretization in BN Models 

One of the main limitations of BNs were to solve models with continuous nodes. Common 

BN algorithms such as Junction Tree could only solve discrete BNs. Throughout this study, 

AgenaRisk2 BN modelling software is used for building and solving the proposed BN 

models. The DD algorithm developed by Neil et al. [39] is implemented in AgenaRisk for 

                                                 
2 AgenaRisk, Agena Ltd. 
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computing the continuous distributions in BNs. DD algorithm enables BNs to solve models 

with continuous nodes and offers flexible solutions for the computation of BNs that consist 

of both discrete and continuous nodes, which are named as hybrid BNs. 

The DD algorithm uses entropy error as the basis for approximation, influenced by the work 

done by Kozlov and Koller [40] and differs from their approach by inducing an iterative 

approximation pattern within current BN software frameworks, Junction Tree propagation 

for instance. The DD algorithm repetitiously discretizes continuous variables by minimizing 

the relative entropy error between the actual and the discretized marginal probability 

densities calculated by Eq.(2.4). As a result, more states to high-density areas are added and 

states in the zero density areas are combined by the algorithm. In the region of highest 

density, all continuous variables are discretized at each iteration, then a typical discrete 

propagation algorithm is used to determine the resulting posterior marginals. Each time a 

new observation is introduced to the BN model, the discretization of each continuous node 

is altered as well. The DD algorithm’s convergence threshold defines an upper bound 

relative entropy that ceases the algorithm in AgenaRisk software, enabling the user to decide 

on the compensation between accuracy of the discretization and the computation speed [41]. 

Once the continuous variables rare discretized by DD, the discretized BN is solved by the 

Junction Tree algorithm or a similar discrete BN algorithm. 

𝐸𝑗 = [
𝑓𝑚𝑎𝑥−�̅�

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
𝑓𝑚𝑖𝑛𝑙𝑜𝑔

𝑓𝑚𝑖𝑛

�̅�
+

�̅�−𝑓𝑚𝑖𝑛

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
𝑓𝑚𝑎𝑥𝑙𝑜𝑔

𝑓𝑚𝑎𝑥

�̅�
] |𝜔𝑗|         (2.4) 

where Ej is the approximate relative entropy error, and fmax is the maximum, fmin is the 

minimum and 𝑓 ̅is the, mean value of the function in a given discretization interval ωj.  
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3. RELIABILITY ANALYSIS MODELS 

This section presents an introduction to terms and methods used in reliability. In Section 3.1, 

general terms used in reliability along with common types of distributions used in reliability 

analyses are presented. Reliability of non-repairable and repairable systems are also briefly 

discussed. Section 3.2 presents an overview of two types of reliability modelling and 

prediction methods, i.e. qualitative and quantitative. In Section 3.3, reviews the use of BN 

models in reliability (Section 3.3.1) and Bayesian parameter estimation (Section 3.3.2). 

3.1. Reliability Analysis 

Reliability can be defined as “the probability that an item can perform its intended function 

for a specified interval under stated conditions” [27]. In this definition, the term “performing 

its intended function” requires a clear definition of “failure” in order to comprehensively and 

consistently classify an item that does not function. Failure can be defined as “the event, or 

inoperable state, in which any item or part of an item does not, or would not, perform as 

previously specified” [27]. Failure of a go/no-go system’s performance attributes are 

generally easy to delineate and measure since there is a yes/no binary outcome. However, 

failure of a fluctuating performance characteristic is more difficult to define because of 

specific limits outside of the system performance specifications which are not considered 

satisfactory. The success/failure criterion shall be specified for each subject system’s 

performance attributes and they must be defined in distinct, decisive terms in order to 

minimize the possibility of  interpreting  the failure definition in a biased manner [42]. 

Reliability analysis is done to understand and reveal the aspects of failure, probability and 

time interval of an item of interest. Reliability analysis is generally broken down into two 

groups: qualitative and quantitative. Where qualitative methods are performed for the goal 

of verifying the diverse failure modes and causes that results in the unreliability of a system, 

quantitative methods focus on obtained real failure data collected from a test program or 

field in alignment with appropriate mathematical representations to estimate system 

reliability [29]. This thesis is focused on quantitative methods, however common qualitative 

methods are also briefly presented in Section 3.2.1. The mathematical framework of general 

terms in reliability will be discussed in the following section. 

3.1.1. General Terms of Reliability 

In accordance with reliability definition given in Section 3.1, the probability of occurrence 

of a failure in a specified time frame is referred as “unreliability function”. The probability 
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density function (PDF) of this failure occurrence over time t is denoted as f(t) and the 

cumulative distribution function (CDF) of the unreliability function is denoted as F(t). This 

unreliability function can be formulated as: 

𝐹(𝑡) = ∫ 𝑓(𝑥)𝑑𝑥
𝑡

0
             (3.1) 

where 𝐹(𝑡) = Pr (𝑇 ≤ 𝑡), for 𝑡 > 0.  

An example of CDF and PDF graphs are given in Fig.7. 

 

Figure 7 CDF F(t) and PDF f(t) versus Time [43] 

The reliability function is the antonym of and unreliability function, meaning that their sum 

has to be equal to one. Hence reliability function is: 

𝑅(𝑡) = 1 − 𝐹(𝑡) = 1 − ∫ 𝑓(𝑢)𝑑𝑢
𝑡

0
                    (3.2) 

𝑅(𝑡) =  ∫ 𝑓(𝑢)𝑑𝑢
∞

𝑡
                    (3.3) 

where 𝑅(𝑡) = Pr (𝑇 > 𝑡), for 𝑡 > 0. A generic reliability function is given in Fig-8. 

 

Figure 8 Reliability Function [43] 

From Eq.(3.2), the PDF of failure can be calculated as: 

f(𝑡) = −
𝑑[𝑅(𝑡)]

𝑑𝑡
            (3.4) 
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Another useful function used in reliability analysis is failure rate function, which is as known 

as hazard rate. Hazard rate represents the rate of failure of units that survived up to time t 

and is given by: 

𝜆(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
             (3.5) 

Typically, many failure rate functions are assumed to fit “bathtub curve”, which is given in 

Fig.9.  

 

Figure 9 The Bathtub Curve [43] 

This curve indicates higher failure rates in the initial deployment of the system called the 

“burn-in period”, which can be explained with “infant mortality” phenomenon. This is due 

to undiscovered defects during manufacturing or development phase of the items and, these 

defects tend to occur as soon as the item has begun to be used. After this period, the failure 

rate function usually stabilizes and becomes constant throughout the “useful life period”. In 

this period, undiscovered defects from manufacturing phase are resolved and hence the 

design expectation is mostly achieved. Finally, after certain amount of time spent in useful 

life period, the item begins to wear out physically due to normal use in operational 

environment until it cannot function any more. This period is called “wear-out period”. 

Knowing that 𝑅(0) = 1, then Eq.(3.5) becomes: 

∫ 𝜆(𝑢)𝑑𝑢 = −𝑙𝑛𝑅(𝑡)
𝑡

0

 

𝑅(𝑡) = 𝑒− ∫ 𝜆(𝑢)𝑑𝑢
𝑡

0             (3.6) 

Switching R(t) obtained from Eq.(3.6) into Eq.(3.5), then we have: 

𝑓(𝑡) = 𝜆(𝑡). 𝑒− ∫ 𝜆(𝑢)𝑑𝑢
𝑡

0            (3.7) 

Expression of F(t), f(t), R(t) and λ(t) in terms of each other is shown in Table-1. 
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Table-1 Reliability Terms Expressed as in Different Parameters [43] 

 

3.1.2. Reliability of Non-Repairable Systems  

A useful term used in non-repairable systems’ reliability analysis is the Mean Time To 

Failure (MTTF). This term is used specifically for non-repairable systems and represents the 

expected time for the failure of the non-repairable item. MTTF is given by: 

     MTTF = 𝐸(𝑇) = ∫ 𝑡𝑓(𝑡)𝑑𝑡
∞

0
           (3.8) 

Since 𝑓(𝑡) = −𝑅’(𝑡); 

MTTF = − ∫ 𝑡𝑅′(𝑡)𝑑𝑡
∞

0

 

and by partial integration, 

MTTF = −[𝑡𝑅(𝑡)]0
∞ +  ∫ 𝑅(𝑡)𝑑𝑡

∞

0

 

Also, lim
𝑡→∞

𝑅(𝑡) = 0 because of the fact that an item’s reliability cannot be infinite, and 

−[𝑡. 𝑅(𝑡)]0
∞ = 0, then 

MTTF = ∫ 𝑅(𝑡)𝑑𝑡
∞

0
            (3.9) 

Another term commonly used in reliability analysis is the “Median Life”. As opposed to 

MTTF, which is simply the expected value of the PDF, median life provides the value of the 

item’s life limit with a 50%-50% chance to be under it, or above. It is expressed as: 

𝑅(𝑡𝑚) = 0.5           (3.10) 
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Last term that will be discussed in this Section is the “Mode”. The mode of a failure time 

distribution is the highest probable value that the item would likely to fail, meaning that the 

location where PDF attains to its maximum value. Mode is formulated as: 

𝑓(𝑡𝑚𝑜𝑑𝑒) = max
0≤t<∞

𝑓(𝑡)          (3.11) 

The terms MTTF, Median Life and Mode are visualized in Fig.10. 

 

Figure 10 Locations of MTTF, Median Life and Mode of a Failure Time Distribution [43] 

3.1.3. Reliability of Repairable Systems  

A repairable system can be brought back to its original operational condition by corrective 

maintenance [44]. Hence, MTTF, which implies time to first failure, does not provide 

sufficient insight about a repairable system and becomes irrelevant. For a repairable system, 

the first failure may occur at time T1, second failure at time T2 and so on. Therefore, Mean 

Time Between Failures (MTBF) is used to facilitate the sequence of time to failures and 

distribution functions for showing interdependency of each time to failure for repairable 

systems. 

In order to consider a series of random events occurring through time, a stochastic process 

should be modelled: a counting process. A counting process is a random function 𝐶 ∶  R+ →

 R  such that: 

 𝐶(0)  =  0 and 𝐶(𝑡)  ∈  {0, 1, 2, 3, . . . } for all t, and 

 If 𝑠 <  𝑡 then 𝐶(𝑠)  ≤  𝐶(𝑡) [45]. 

C(t) simply counts the number of failures up to time t. When the failure times have 

independent and identically exponential distributions with parameter λ then this counting 

process function C(t) is said to be a Poisson process, in alignment with Poisson distribution 

function provided in Eq.(3.35). 
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In repairable systems’ reliability applications, instead of hazard rate used in non-repairable 

systems, the intensity of failures is called the Rate of Occurrence of Failures (ROCOF). 

ROCOF must not be understood as the failure rate of a single random variable. The ROCOF 

is especially critical in the modeling of repairable systems because of the fact that it 

represents sequence of numerous failures [45]. 

For a counting process with C(t) = the number of failures in (0, t], the mean number of 

failures to time t is: 

𝑊(𝑡)  =  𝐸[𝐶(𝑡)]           (3.12) 

And the ROCOF is: 

𝑤(𝑡)  =  
𝑑

𝑑𝑡
 𝑊(𝑡)          (3.13) 

Another aspect that should be considered is the outcome of the repair activity. The repaired 

system is observed in one of the following conditions depending on the effect of the repair 

on failure rate of the repairable system [46]: 

1. “As good as new” condition, which occurs after a “perfect repair”. After the repair, 

repaired system returns to its new/unused condition. This repair process is referred 

as “Renewal Process”. 

2. “As bad as old” condition, which occurs after a “minimal repair”. The failure rate of 

the repaired system is the same both prior to and after the repair. This repair process 

is referred as “Non-Homogenous Poisson Process (NHPP)”. 

3. Neither “as good as new” nor “as bad as old” condition, but in an intermediate 

condition, which occurs after an imperfect repair. The failure rate of the repaired 

system decreases to a certain extent, but it is not as low as a new one. This repair 

process is referred as “Generalized Renewal Process”. 

3.1.4. Failure Time Distributions 

Various types of statistical distributions used to represent failure times and reliability 

function are described in Section 3. Depending on the characteristics of the item in 

consideration, some statistical distributions tend to represent the failure times better than 

others. Commonly used failure time distributions will be discussed in this section. 

3.1.4.1. Normal (Gaussian) Distribution 

Normal distribution is mainly applied to two general cases. The first one is the analysis of 

items failing due to wear, such as mechanical devices. Mostly, the wear-and-tear failure time 
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distribution is similar enough to assume normal distribution for predicting or assessing 

reliability. The second one is the inspection of manufactured items and validation of their 

specifications. Since two parts manufactured according to the same technical specification 

cannot be absolutely the same, tiny differences between these parts leads to an inconsistency 

in systems built by those parts. This variation should be regarded as an important fact during 

the design process in order to prevent the system from not meeting the specification 

requirements due to this variability effect. Also, the deviations in reliability values of 

electronic component parts are assumed to be normally distributed [42].  

The PDF of the normal distribution is given by; 

𝑓(𝑡) =
1

𝑠√2𝑝
𝑒 [−

1

2
. (

𝑡−µ

𝜎
)

2

] with −∞ < 𝑡 < ∞        (3.14) 

where µ = the population mean 

σ = the population standard deviation 

Generally normal distribution is converted to standard normal distribution for the ease of 

calculations, with the aid of below transformation reliability function can be defined as: 

𝑓(𝑧) =
1

√2𝑝
𝑒

(
−𝑧2

2
)
 with µ = 0 and 𝜎2 = 1 

𝑧 =
𝑡 − µ

𝜎
 

𝑓(𝑡) =
𝑓(𝑍)

𝜎
 

 𝐹(𝑡) = P[𝑇 ≤ 𝑡] = ∫
1

𝜎√2𝜋
𝑒[−

1

2
(

𝑡−µ

𝜎
)2]𝑑𝑡

𝑡

−∞
        (3.15) 

𝑅(𝑡) = 1 − 𝐹(𝑡) 

and the failure rate function can be defined as; 

 𝜆(𝑡) = −
𝑅′(𝑡)

𝑅(𝑡)
=

1

𝜎
 

𝑓(
𝑡−µ

𝜎
)

1−𝐹(
𝑡−µ

𝜎
)
         (3.16) 

However, normal distribution allows negative values which are not suitable for modelling a 

failure time distribution. In order to overcome this, “Truncated Normal” distribution with a 

lower bound of 0 is used, if required, in modelling failure time distributions. The reliability 

and failure rate functions are given below, for 𝑡 > 0: 
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 𝑅(𝑡) = 𝑃𝑟(𝑇 > 𝑡 ǀ 𝑇 > 0) =
𝐹(

𝑡−µ

𝜎
)

𝐹(
µ

𝜎
)

         (3.17) 

 𝜆(𝑡) = −
𝑅′(𝑡)

𝑅(𝑡)
=

1

𝜎
 

𝑓(
𝑡−µ

𝜎
)

1−𝐹(
𝑡−µ

𝜎
)
         (3.18) 

3.1.4.2. The Lognormal Distribution 

The lognormal distribution is the normal distribution with ln(t) as the variate. It is generally 

used in reliability analysis of semi-conductors and fatigue life of some mechanical 

components as well as maintainability analysis to represent repair time [42]. The PDF of a 

lognormal distribution with µ is the mean and σ is the standard deviation of ln(t) provided 

that 𝑡 > 0 is given by; 

𝑓(𝑡) =
1

𝜎𝑡√2𝜋
𝑒

[−
1

2
(

𝑙𝑛(𝑡)−µ

𝜎
)

2
]
          (3.19) 

where;  mean = 𝑒(µ+
𝜎2

2
)
 

standard deviation = [𝑒(2µ+2𝜎2) − 𝑒(2µ+𝜎2)]
1/2

 

And the CDF is given by; 

𝐹(𝑡) = P[𝑇 ≤ 𝑡] = P[𝑙𝑛 (𝑇) ≤ 𝑙𝑛 (𝑡)] 

Using Eq.(3.2), 

𝑅(𝑡) = 𝑃[𝑇 > 𝑡] = 𝑃[𝑙𝑛 (𝑇) > 𝑙𝑛 (𝑡)] = 𝑃 (
𝑙𝑛 (𝑇)−µ

𝜎
>

𝑙𝑛 (𝑡)−µ

𝜎
) =⌽ (

µ−𝑙𝑛 (𝑡)

𝜎
)          (3.20) 

with ⌽ is the distribution function of the standard normal distribution. 

As 𝑡 approaches to infinity, 𝜆(𝑡) approaches to zero. This specific property of failure rate 

function makes it ideal for representing repair time, which implies that initially the repair 

rate is increasing, but over time it begins to decrease and reaches zero at infinity. As for real 

life examples, it is fair to assume that if a repair is completed in a limited period of time then 

the repair conducted is rather a simple one; however as repair time increases, it means that 

there are serious problems and it is likely that the repair time will further increase as the 

severity of the problem increases [43]. 

3.1.4.3. Exponential Distribution 

Exponential distribution is one of the most important distributions in reliability analysis and 

is used almost solely for reliability prediction and failure time distributions of electronic 

equipment [47]. Its importance comes from the fact that the hazard rate generated by 



22 

 

exponentially distributed failure times is constant. Referring to Fig.9 (The Bathtub Curve), 

this characteristic of exponential distribution can be realistically induced to useful life period 

of certain type of items. 

The advantages of the exponential distribution include: 

 Having only one parameter, which can be easily estimated (λ), 

 Being mathematically tractable, 

 Being widely applied in numerous field of studies, 

 Having additive property, as the sum of a number of independent exponentially 

distributed variables is also exponentially distributed [42]. 

Exponential distribution is specifically used for: 

 Items with constant failure rates over time, 

 Complex and repairable itmes with limited redundancy, 

 Items used for some time so that the early failures occurred during "infant 

mortalities" have diminished or “burned in” and entered in "useful life" phase[42]. 

The PDF of exponential distribution for 𝑡 > 0 is formulated below: 

𝑓(𝑡) = 𝜆𝑒−𝜆𝑡          (3.21) 

where λ represents failure rate of the subject item. 

The reliability function and MTTF can be found as; 

𝑅(𝑡) = P(𝑇 > 𝑡 ) = ∫ 𝑓(𝑢)𝑑𝑢 = 𝑒−𝜆𝑡∞

𝑡
        (3.22)

 MTTF = ∫ 𝑅(𝑡)𝑑𝑡 = ∫ 𝑒−𝜆𝑡𝑑𝑡 =
1

𝜆

∞

0

∞

0
        (3.23) 

It can be seen that MTTF formula does not involve time. Hence, the failure rate of a new 

item and a used item do not differ if their failure time data has an exponential distribution. 

In other words, the subject item is “as good as new” as long as it functions. For this reason, 

the exponential distribution is said to have ”no memory” [43]. 

3.1.4.4. Gamma Distribution 

The gamma distribution is used in the field of reliability for items that can have partial 

failures, and a specific number of partial failures must be observed prior to complete item 

failure (e.g., redundant systems). It is also used to model the time to consecutive number of 
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failures when the time to failure is exponentially distributed [42]. The PDF of gamma 

distribution is defined as: 

𝑓(𝑡) =
𝜆

𝛤(𝛼)
(𝜆𝑡)𝛼−1𝑒−𝜆𝑡          (3.24) 

where; 𝜆 =
µ

𝜎2
  (failure rate for total failure) and 𝛼 = λµ (number of partial failures 

for total failure) 

  µ = mean of data 

  α = standard deviation 

  𝛤(𝛼) = ∫ 𝑥𝛼−1𝑒−𝑥𝑑𝑥
∞

0
 (gamma function) 

and MTTF, which is the mean: 

MTTF =
𝛼

𝜆
          (3.25) 

For 𝛼 = 1, gamma distribution becomes exponential distribution. The CDF of gamma 

distribution is (for α being an integer):  

𝐹(𝑡) = ∑
(𝜆𝑡)𝑘

𝑘!
𝑒−𝜆𝑡∞

𝛼=𝑘          (3.26) 

For this CDF, the reliability function and failure rate function can be written as: 

𝑅(𝑡) = 1 − 𝐹(𝑡) = ∑
(𝜆𝑡)𝑛

𝑛!
𝑒−𝜆𝑡𝛼−1

𝑛=0                (3.27)

 ℎ(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
=

𝜆(𝜆𝑡)𝛼−1𝑒−𝜆𝑡

𝛤(𝛼)

∑
(𝜆𝑡)𝑛

𝑛!
𝑒−𝜆𝑡𝛼−1

𝑛=0

               (3.28) 

The gamma distribution can also be used to represent an increasing or decreasing failure 

rate. If α > 1, h(t) increases; and α < 1, h(t) decreases [42]. 

3.1.4.5. Weibull Distribution 

The Weibull distribution is especially useful in the field of reliability engineering since it is 

able to model a broad spectrum of failure distribution characteristics for various types of 

items. Different values of the shape parameter of Weibull distribution (β) can be used to 

model different types of distributions. For instance; 

 β<1 represents Gamma distribution, 

 β=1 represents Exponential distribution, 

 β=2 represents Lognormal distribution, 

 β=3.5 approximates Normal distribution [42],  
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Its fame in reliability community arises from 1) its flexibility in modeling failure rates, 2) it 

is easy to calculate, 3) it adequately describes many physical life processes [45]. These 

properties makes Weibull distribution one of the most widely used distribution in the field 

of reliability [43], even for repairable systems [48]. A 3-parameter Weibull distribution PDF 

can be defined as: 

𝑓(𝑡) =
𝛽

𝛼
(

𝑡−𝛾

𝛼
)

𝛽−1

𝑒
[−(

𝑡−𝛾

𝛼
)

𝛽
]
         (3.29) 

where; β is the shape parameter, 

 α is the scale parameter, 

 γ is the location parameter 

However, generally in reliability analysis failure is assumed to start at t = 0, hence γ is set to 

0. In this case the PDF becomes; 

𝑓(𝑡) =
𝛽

𝛼
(

𝑡

𝛼
)

𝛽−1

𝑒
[−(

𝑡

𝛼
)

𝛽
]
         (3.30) 

The reliability and failure rate functions are: 

𝑅(𝑡) = 𝑒
[−(

𝑡

𝛼
)

𝛽
]
          (3.31) 

ℎ(𝑡) =
𝛽

𝛼
(

𝑡

𝛼
)

𝛽−1

          (3.32) 

It can be noticed that when t = α, Eq. (3.31) drops to: 

𝑅(𝛼) = 𝑒[(−1)𝛽] =
1

𝑒
= 0.3679 

which is independent of β. The point where t = α is called as characteristic life because of 

this independency. 

The MTTF and median of Weibull distribution are; 

MTTF = ∫ 𝑅(𝑡)𝑑𝑡 = 𝛼 𝛤 (
1

𝛽
+ 1)

∞

0
         (3.33) 

𝑅(tm) = 0.5 → tm = 𝛼(𝑙𝑛2)
1

𝛼         (3.34) 

3.1.4.6. Poisson Distribution 

The Poisson describes the number of failures observed up to time t when the system is 

repairable and the time between failure occurrences are independent and identically 
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distributed exponentially with rate λ [45]. The probability distribution of Poisson distribution 

is given below: 

𝑓(𝑡) = 𝑃[𝑍 = 𝑛] = 𝑒−𝜆 𝜆𝑛

𝑛!
          (3.35)

    

where Z is a non-negative integer variable. 

Expected value, which is the mean, is 

𝐸(𝑍) = 𝜆           (3.36) 

3.2. Reliability Modelling and Prediction Methods 

Reliability modeling’s purpose is to build an accurate model of a system, in order to solve 

the problems in predicting, estimating, and optimizing the reliability of the system where 

reliability prediction investigates the usage of these models, previous experience with similar 

systems, engineering judgment, with an endeavor to predict the reliability of a system [49]. 

The efforts regarding modeling and predicting reliability shall begin early in defining the 

configuration phase in order to help the user to evaluate the design and to provide a 

foundation for item reliability allocation and providing precedence of corrective actions. 

Reliability models and the predicted values must be revised in the presence of an important 

change in the system’s design, the amount of available design details, environmental 

requirements, stress and failure rate data, or user’s service profile [50]. 

Reliability modelling and prediction methods can be divided into two groups, namely 

qualitative and quantitative. Where qualitative methods aim to validate the various failure 

modes and causes that leads to the unreliability of a system, quantitative methods use actual 

failure data in alignment with appropriate mathematical models to produce numerical 

estimates of system reliability [49]. 

3.2.1. Qualitative Methods 

Qualitative methods includes techniques like failure modes and effects analysis (FMEA) and 

failure modes effects and criticality analysis (FMECA). 

The FMECA is a reliability prediction technique which investigates the potential failure 

modes within a system and its components, to analyze the effects of each failure on the 

component and/or system performance. All possible failure modes are classified in 

accordance with its impact on operation success and personnel/equipment safety. FMECA 

consists of two different analyses, FMEA and the criticality analysis. Experience gained by 
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conducting a FMECA can guide the fault detection, fault isolation,  technical documentation 

development activities and so on [51]. FMEA or FMECA is often performed as the first step 

in system reliability evaluations and generally it is used in assessments of the failure risk 

during the design phase [43]. FMECA technique is also widely used in aviation [52]–[55]. 

3.2.2. Quantitative Methods 

Qualitative methods includes techniques like fault and event trees, Reliability Block 

Diagrams (RBDs), Monte Carlo Simulation and life data analysis (a.k.a. Weibull analysis). 

Fault tree and event tree analyses are two of the fundamental tools used in quantitative 

system analysis where both methodologies provide a visual representation of a system in 

Boolean coherence.  Event tree uses forward logic by initiating an unusual event and 

propagating this event within the subject system by taking into account all potential paths in 

which it can have an influence on the behavior of that system, whereas fault tree works with 

backward logic. Given a specific failure of a system which is called as the top event, the 

component failures which lead to the system failure are investigated. Using the Boolean 

operations such as “and”, “or” and “not”, which set of component failures may result in the 

top event can be detected [45]. Fault tree and event tree analyses are generally based on data 

generated by qualitative reliability analysis tools such as FMEA or FMECA. 

A RBD is a graphical illustration of a system expressing the function of the system and 

points out the rational interconnections of components required to perform this function [43]. 

The purpose of the RBD is to help people to visually interpret the various series and/or 

parallel block path combinations resulting in item success in a simple way. A sound 

comprehension of the item's mission description and user’s service profile is needed in order 

to generate a RBD [50]. RBD is useful for gaining insight on how the system’s components 

function and how the system operation is affected by these functions, and identifying the 

types and levels of data and other information required for further quantitative reliability 

analyses [49]. However, RBD cannot be easily applied to complex systems with many 

components or systems with various failure modes. 

The Monte Carlo Simulation (MCS) method is a widely used modelling tool for investigating 

complex systems, due to its high competence in achieving a more convenient adherence to 

reality [56]. MCS can be applied by simulating times between failure occurrences scenario 

for a system by using an appropriate computer package. MCS cannot be conducted by itself, 

the system must be represented by an appropriate model, such as a RBD, flow diagram or a 
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BN. Random failure times are created in the model by MCS, in alignment with the estimated 

failure distributions of the components in the system [43]. MCS is also used in estimating 

reliability of aviation products, such as engines [57].  

Despite probabilistic reliability models can be calculated with MCS methods, diagnostic 

inference and “explaining away” cannot be structured in MCS methods as BN models. BN’s 

can implement algorithms that can perform more complex probabilistic inference (see 

Section 2.6). A broad overview of Bayesian reliability models is provided in the following 

Section. 

3.3. Bayesian Reliability 

Bayesian models and BNs have been commonly used in reliability analysis as they provide 

flexibility in modeling reliability and failure times, and in incorporating expert knowledge. 

BNs are probabilistic models which allow graphical representations of complex Bayesian 

models. Bayesian models can be generally represented as BNs. 

Langseth and Portinale [37] and Kakhzak et al. [58] compared traditional reliability 

modelling and reliability analysis models such as RBDs and fault-trees to BNs, and showed 

that BNs have many advantages over these approaches. These advantages include efficient 

calculation schemes, intuitive and compact representations, better model fitting and ability 

to act as a decision support tool [59]. 

In this section, we review previous studies that build a BN model for reliability analyses and 

various types of priors that were used for prior distribution parameters in Bayesian failure 

time analysis. 

3.3.1. Bayesian Network Models for Reliability Analyses 

Fault trees and event trees are special cases of BNs, thus BNs may be easily transformed 

from fault trees and event trees representing complex system models [41]. Therefore, the 

most common method for integrating BN models into reliability analyses is using fault trees 

from previous studies for the systems of interest. There are various studies converting fault-

trees into BNs [37], [60], [61]. A typical conversion from a fault tree into a BN is given in 

Fig.11.  

This notion is also applicable for RBDs and transforming RBDs into BNs is also used in the 

literature. In this representation, each block is converted into a Bayesian node and the 

reliability of the system can be retrieved by using probability propagation methods. This 

representation enables one to build a model for complex systems and show their 
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dependencies between failures, which are difficult to attain with common reliability analysis 

methods [62]. 

 

 

Figure 11 BN Representation of a Fault Tree [63] 

Predicting reliability earlier in the life cycle of the subject system, using supplier’s design 

and manufacturing process capability as evidence, is a useful way of improving reliability 

predictions and enhancing reliability [64]. Previous studies mostly used supplier evaluation 

done by experts as prior information, in order to predict reliability of systems prior to their 

field to service.  
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Bouissou et al. [7] proposed a BN model for reflecting the capability of the system ensuring 

safety. The BN model involves several nodes for evaluating appropriateness of system 

specifications, supplier experience and system performance and it calculates the safety 

critical system’s capability of ensuring safety.  

Sigurdsson et al. [36] proposed using binary nodes representing environmental factors, 

supplier quality, similarity of the product with existing products and testing requirements. 

The proposed BN model acts as a decision support tool in determining whether reliability 

requirements of a complex system during conceptual design phase are met or not.  

Neil et al. [64] developed an extensive BN software tool for predicting reliability of non-

combat military land vehicles during both tender, design and testing phases. The model is 

capable of combining historical data for similar vehicles, design and production capability 

of the supplier and data gathered during trial and acceptance tests for the vehicle. The model 

incrementally predicts the reliability of the vehicle by evaluating several nodes for historical 

data, supplier’s design and manufacturing quality assessment, project management 

parameters such as risks and schedule compress and testing data. The BN model is intended 

to serve as a decision support tool for the decision makers. Yet, a precise description of the 

model is not shared due to property rights. 

Bayesian approach is also widely used for estimating the parameters of the failure time 

distribution of the system, especially when the training data is small. The differences 

between Bayesian and frequentist parameter learning methods become negligible as the 

sample size grows. However, when the data are scarce, Bayesian estimates based on 

informative prior distributions are often less uncertain than those estimated by frequentist 

methods [38]. A BN representation of a typical Bayesian for estimating failure time 

distribution is shown in Fig.12. This model is built in AgenaRisk.  
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Figure 12 Bayesian Parameter Estimation for Normal Distribution 

In Fig.12, ‘mean’ and ‘variance’ nodes represent the parameters of the distribution that are 

estimated from the data. The parameter uncertainty of these nodes are also modelled as these 

nodes represent the whole probability distribution of the estimated parameters. Each 

‘observation’ node is a child of these nodes and instantiated with the observed failure times. 

The ‘predictive value’ node represents the predictive distribution based on the posterior 

parameters with the data. Censored data can also be easily represented in BN models as well 

(see Section 5.1.3). 

In Bayesian parameter estimation models, ‘informative’ prior distributions that represent 

expert knowledge or ‘ignorant’ prior distributions that represent no information about 

parameters have to be defined for the parameters that aimed to be estimated. Different prior 

distributions used for Weibull parameter estimation is discussed in the following section.   



31 

 

3.3.2. Priors for Failure Time Distributions 

Two parameter Weibull distribution is a common type of distribution used in modeling 

various types of components’ failure times (see Section 3.2.1.5 for a review of Weibull 

distribution). In Bayesian failure time models, a prior distribution has to be defined for the 

parameters of the Weibull distribution. However, defining an informative prior is 

challenging and several considerations must be made before determining an informative 

prior [38]. Therefore this section focuses on priors used for Bayesian two parameter Weibull 

failure time analysis.  

Many Bayesian reliability models use “conjugate prior distributions” [65] as they offer 

convenient properties for calculating the posterior distributions in the model. Conjugate prior 

distributions are the prior distributions that take the identical functional form as the posterior 

distribution [38]. In BN models, the DD algorithm (see Section 2.6) can be used to compute 

the posteriors of continuous variables, and this algorithm does not require the use of 

conjugate priors.   

Using a conjugate prior offers convenient properties for calculating its posterior. A conjugate 

prior does not exist for Weibull distribution [14] hence many different prior distributions 

and different forms of shape and scale parameters used in previous studies [14]–[17]. Erto 

and Giorgio [15] provides a detailed review of the prior distributions used for the Weibull 

distribution. Soland [14] used discrete prior for the shape parameter and continuous gamma 

distribution for scale parameter. Erto and Giorgio [15] used uniform prior for the shape 

parameter and the inverse Weibull distribution on quantiles of scale parameter. Erto and 

Giorgio [16] also suggested using continuous-uniform prior for the shape parameter and 

inverted generalized gamma prior for the scale parameter. Banerjee and Kundu [17] used the 

gamma distribution as prior on both the scale and shape parameters. However, none of these 

studies used BN models or the DD algorithm hence their primary focus was on mathematical 

calculations of the posteriors. Therefore, the use of these priors may be difficult for users 

and domain experts, who may not have statistical background. Since the DD offers us a fairly 

general approach for calculating the posteriors of BNs with most types of continuous 

distributions, we primarily focus on building an intuitive BN model that is cognitively easy 

for the domain experts and users in this thesis. Furthermore, there is a large demand in the 

field of reliability for Bayesian methods estimating Weibull model parameters as long as 

they are easy to adopt [15]. 
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Some distributions, such as the uniform distribution, are defined within an interval and they 

assign zero probabilities outside these intervals. When such distributions are used as prior 

distributions, they impose a constraint on the possible values that the variable can take. 

Determining such constraints on shape and scale parameters is a crucial task when selecting 

priors for those parameters. Uniform distribution is commonly used as a prior on the shape 

parameter. If the domain experts have prior information on failure rate trend of the system, 

they can use a uniform distribution for shape parameter with [0.5,1] interval for improving 

systems, [1,3] interval for worsening systems and, [0.5,2] interval when they have limited 

information about the failure trend of the system [15]. A wide interval like (0,10] can be 

used for situations where the developer has no prior knowledge of the failure pattern. A 

range of values that the shape parameter can take theoretically (i.e. 0 to infinity) are not 

recommended as priors in this case, as large amount of data is required to revise such priors 

[15]. While the shape prior usually is discretized or has a uniform distribution, the scale prior 

often have different types of distributions as described above.   
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4. DATA COLLECTION AND ANALYSIS 

The case study is about an aircraft operator that has a fleet of aircraft with the same model. 

The maintenance of the aircraft fleet is also done by the operator. These maintenance actions 

are replacing failed components with a serviceable one and if the component is repairable, 

sending them for repair to an approved facility. The operator records the maintenance actions 

performed on the aircrafts and spare part requests associated with these actions. While 

procuring the aircrafts, the operator receives DLEs for the aircraft and its components from 

the aircraft manufacturer. However, these estimates are single point values, therefore it does 

not reflect their underlying distribution and these estimates may be too conservative or 

extreme. Furthermore, in aviation, generally the design and/or the manufacturing of many 

components are done by sub-contractors of the aircraft manufacturer and this increases the 

uncertainty for the operator. As a result, design estimates alone have limited use for the 

operator. Alternatively, the operator can analyze data stored from maintenance actions and 

spare part requests to estimate and predict reliability. However, the data alone may not 

provide an accurate reliability estimate especially if the aircrafts in the fleet are relatively 

young and a large amount of data is not available. 

The aim of this section is to describe and analyze the information and data available to the 

operator for such reliability estimations. This data will be used on the proposed BN model 

in the following section. In order to provide a better understanding of the data structure 

related to the aircraft reliability, Section 4.1 presents the general terms about decomposition 

of the aircraft structure. We conducted a written interview with two leading aviation 

companies to examine how DLEs are prepared by the aircraft manufacturers and to clarify 

the definition of parameters in the data. The results of these interviews are presented in 

Section 4.2. Then, we analyze the data collected by the operator and convert this raw data 

into useful data for reliability analysis. This process is explained in Section 4.3. Finally, we 

performed data analysis for times between failure occurrences on this useful data and shared 

the results in Section 4.4. 

4.1. Structure of Aircraft Systems 

Aircrafts are complex machines. Even a small-sized aircraft (up to 1000 kg) is made of 

thousands of parts. Hence, the parts of aircrafts are hierarchically classified to deal with the 

complexity. Fig.13 shows a typical hierarchical breakdown structure of an aircraft. 
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Figure 13 Typical Aircraft Structure Breakdown 

A description of each element in Fig.13 is shown below: 

 The component: Components are the smallest replaceable parts from an operational 

point of view. Although components often contain multiple parts, these parts are not 

considered in the reliability analysis as only the whole component is replaced during 

maintenance. 

 The sub-system: Sub-systems may consist of a small or a large number of 

components. They are simply decomposition of systems into smaller pieces. Sub-

systems are represented in technical documentation as sub-ATA chapters. For 

instance, ATA 52-10 stands for “passenger/crew doors” and ATA 52-20 stands for 

“emergency exit doors”. 

 The system: It is the equivalent of an ATA chapter used in aviation. For example, 

ATA 22 stands for “auto flight system” whereas ATA 28 stands for “fuel system”. 

 The main system: A generic name used for the sake of this study. It is composed of 

numerous systems (ATA Chapters). For example, fuselage or the propulsion, which 
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are composed of a combination of ATA Chapters, are referred as main systems (MSs) 

within the scope of this thesis. In our case study, the aircraft analyzed is composed 

of four MSs. 

 The aircraft: The highest level of the hierarchy, which is composed of multiple main 

systems. The main focus of the analysis is to estimate the reliability and to predict 

the failure distribution of the aircraft. 

The aircraft manufacturer often provides a DLE value at the aircraft and at a limited level of 

this hierarchy. However, the method for defining these estimates and their semantics are not 

thoroughly described to the operator. In the following section, we conduct an interview with 

leading aircraft manufacturers to get a better understanding of these estimates and other 

metrics regarding reliability.  

4.2. Pre-Data Processing 

The reliability data and procedures applied for reliability estimation in aerospace industry 

are classified due to strategic importance and property rights. A written interview given in 

Appendix-1, was conducted with two of the world’s leading aviation companies, namely 

Airbus and Leonardo, to find answers to these questions: 

1. What does the DLE provided by aircraft manufacturers exactly represent? 

2. What type of reliability estimation and prediction procedures are applied for aircrafts 

that are already in service? 

3. What kind of data is classified as failure and what kind of data is not? What details 

should be taken into account while dealing with failure data analysis of aviation 

products? 

The answers provided by these companies are discussed in the following subsections. 

4.2.1. Pre-Service Reliability Efforts 

Before having the aircrafts in-service, a DLE is provided to the operator, which is usually 

the MTBF of the aircraft. The interviewees from the leading aviation companies indicated 

that DLE is predicted at the earlier stages of development of the aircraft and updated as more 

details become available. The main sources of historical data for this value comes from 

“MIL-HDBK-217F” [49] for electronic and “Non-Electronic Parts Reliability Data (NPRD) 

95” for non-electronic components. These documents contain historical information of 

failure rates for electronical and mechanical components respectively. In addition to these 
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information, data provided by subcontractor (if applicable), expert judgement and stress 

analysis are taken into consideration as well.  

After determining a DLE value for each major component, the values are gathered from 

bottom levels of the hierarchy to top levels for the whole aircraft by assuming constant 

failure rate (exponentially distributed) for each component. This assumption enables 

calculating the overall failure rate of the aircraft by simply adding failure rates of each 

component as shown below. The MTBF of the aircraft is simply the inverse of this overall 

failure rate: 

𝜆𝑐1 + 𝜆𝑐2 + ⋯ + 𝜆𝑐𝑛 = 𝜆𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡              (4.1) 

Apart from these procedures, the aviation companies indicated that they use fault trees and 

event trees mainly for safety analysis of aircrafts, but not for reliability analysis. 

4.2.2. In-Service Reliability Efforts:  

In the aviation industry, a simple empirical approach is usually adopted for estimating the 

reliability of aircrafts that are in-service. This empirical approach defines the “in-service 

MTBF” as total hours of operation divided by number of failure occurrences for each 

component. It can be inferred as the mean value of the failure times, therefore it is called as 

MTBF. Exponential (constant) failure rate is usually assumed for in-service MTBF 

calculations as well. A Weibull analysis is performed only for special occasions, i.e. for high 

valued items with high failure rates, when it is considered to be cost-effective. 

In our interviews, we also examined how leading aviation companies define ‘failure’ in 

reliability analysis. They define failure as a reason of a maintenance action to correct a failed 

condition that is not originated from an external factor (bird strike, user fault etc.). A failure 

in reliability analysis also exclude maintenance actions resulting from consumable material 

failures (like o-rings, bolts, rivets, seals etc.) and planned/scheduled maintenance actions. 

The aircraft manufacturers also mentioned in the interviews that the main factors affecting 

in-service reliability efforts in a negative manner are lack of available data and lack of 

sources for verification of this data. 

In this section, the common efforts applied by aircraft manufacturers to both pre-service and 

in-service reliability calculations are briefed. In the following section, the raw data received 

from the operator is examined and pre-processed for reliability analysis in accordance with 

the information obtained from these interviews.  
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4.3. Data Classification Process 

The data used throughout this study is collected by the operator, from operations of the fleet 

of aircraft in last two years. The model of the aircraft and the operator is not revealed due to 

request of the data provider.  In addition, the data provided is obfuscated, in order not to 

reflect the actual values. 

The structure of the aircraft system levels and their description are provided in Section 4.1, 

the types of maintenance actions widely applied in aviation industry and their definitions 

are: 

 Preventive Maintenance: These actions, as known as planned maintenance, require 

shutting down the operational system and are applied to increase the duration of its 

lifetime, times between failure occurrences and/or its reliability [49].  

 Corrective Maintenance: These actions are taken after failure of the system, in 

order to bring a failed system back to its functional state. It may include repair or 

replacement of all failed parts and components vital for satisfactory operation of the 

item [49]. This is also called unplanned maintenance. 

Aircraft manufactures and operators collect data from maintenance actions performed on the 

aircrafts. Apart from being responsible to aviation authorities to do so, the operator also uses 

this data to provide insight for operations like flight planning. They also store which material 

is requested along with these maintenance actions. This information is very valuable 

especially for logistics planning and spare parts stock level optimization. Every failure of an 

aircraft results in a corrective action (see Section 4.2.2) and typically every corrective 

maintenance action results in a spare part request. Therefore spare part requests is a good 

indicator of failure occurrences. In other words, almost all spare part requests arise from 

corrective maintenance requirements. In this study, we analyze the data of material requests 

due to the maintenance of the aircraft. A summary of the variables in this dataset is shown 

in Table-2. 
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Table-2 Details of the Observed Data 

Name Description 

Aircraft No. Tail number of the subject aircraft. 

Aircraft Last Failure Occurrence 

Flight Hour 

The flight hour record of the aircraft during the 

previous failure occurrence. 

Aircraft Failure Occurrence 

Flight Hour 

The flight hour record of the aircraft during the 

observed failure occurrence. 

Flight Hour Difference 
Time passing between the last two failure occurrence 

flight hours. 

Data Entry Reference Generic number for the data entry.  

Date of Failure Occurrence The date that failure occurrence is observed. 

Main System The main system associated with the failure. 

ATA Chapter ATA Chapter associated with the failure. 

Component Nomenclature Name of the failed component. 

Component Part Number Part number of the failed component. 

Type of Maintenance Action Preventive (scheduled) or corrective (unscheduled) 

Type of Corrective Action for 

Failed Component 

The action issued to the failed component. This can be 

replacing failed component and sending it for a repair 

for repairable components or replacement for non-

repairable ones. 

 

The dataset contained about 2.500 spare part requests at the component level of the aircraft 

hierarchy. However, this data has to be pre-processed in accordance with the failure 

definition used by the leading aviation companies (see Section 4.2). The steps of the data 

preprocessing is shown in Fig.14.  
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Figure 14 Data Classification Process Flowchart 

The results of data pre-processing are described below: 

 All data for consumable part replacements are discarded, since replacement of such 

parts are not considered as failure, 

 Data for non-repairable part requests for planned maintenance activities are 

discarded since they are regarded as normal outcome of the maintenance, 

 Data for repairable part requests for planned maintenance activities are stored as 

right-censored failure data, because of the fact that these parts might have failed in 

the future but they are replaced, 
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 Data for repairable part requests for unplanned maintenance activities are stored as 

failure data, 

 Data remaining after analyzing abovementioned steps is investigated one-by-one 

basis, by detecting each components details in Illustrated Parts Catalogue3 (IPC) of 

the aircraft, an example IPC page is provided in Fig.15. If the subject components 

has influence on that MS or the aircraft itself, from mission, flight and landing safety 

perspectives, then the specific entry is stored as failure data and if not that entry is 

discarded, 

 For all these records, flight hour of the aircraft is considered as the driver of the 

failures, regardless of the type of component, 

 Despite MSs are repairable components; number of failure occurrences in a given 

time interval, which leads to a NHPP is not of interest for this study, 

The main parameter to be estimated is time to failure, hence the distribution of times between 

failure occurrences are investigated. 

 

 

Figure 15 An Example IPC Document For Aquila A211 Aircraft4 

                                                 
3 An IPC is a technical document of the aircraft containing the technical drawings of the aircraft in detail, 

specifying details of each component that the user may need to remove from the aircraft for continuing 

operation. 
4 The reference document can be downloaded online: (date of access 28 April 2018) 

 http://www.aquila-aero.com/fileadmin/downloads/01_manuals/illustrated-parts-

catalogue/A211_Model_AT01-100/PC-AT01-1030-110_A02_2016-03-31_TRs_incorporated.pdf 
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After pre-processing the data with these steps, our resulting dataset contained spare part 

requests of 353 components. We can identify the main system associated with each of these 

requests. The main challenges faced during this data process are;  

 Despite the fact that several failures of aircraft or a specific main system cannot occur 

at the same instant, many of these failures cannot be recorded in an exact timeliness 

manner.  

 Some of the failures cannot be observed until after post-flight maintenance. 

Therefore, many failures occurred during operation are recorded for the same flight 

hour of that aircraft.  

 In order to simplify the analysis and limit the scope of this study, failures attained by 

components are all linked to the MS level. The subject model of the aircraft is divided 

to four MSs by the aircraft manufacturer. This fact leads to removal of some failures 

recorded for the same flight hour of that MS. 

This section summarized the procedure to transform raw data provided by the operator into 

usable data for reliability analyses purposes. The following section presents a statistical 

failure time analysis for this data. 

4.4. Data Analysis 

The failure data obtained for four MSs decomposed from the aircraft, as per the ground rules 

defined in Section 4.3 is analyzed via R5 and Weibull++6 software. The following 

assumptions are made before commencing data analysis: 

1. The aircrafts are at the early stages of their life cycles (~5%). Therefore system aging 

is considered negligible.  

2. The failed part is replaced upon failure and all MSs are composed of numerous 

components.  

3. In accordance with first and second assumptions, each repair activity is assumed to 

bring each MS to “as good as new” condition (see Section 3.1.3). 

We are interested in predicting the distribution of failure times. However, standard 

approaches for predicting reliability of repairable systems calculates expected number of 

failures in a specified interval. Therefore, even each MS is a repairable system, as per “as 

                                                 
5 R is an open source software developed by CRAN. 
6 Weibull++, Reliasoft Inc. 



42 

 

good as new” assumption, we regard each failure as time to failure data and conduct a failure 

time analysis in this section accordingly. 

The initial step for analyzing the failure data is to determine the appropriate type of 

distribution for this data. Both “Distribution Wizard” function available in Weibull++ and 

“fitdistcens” function from “fitdistrplus” package for censored data in R are used for the 

analyses. Most common types of distributions for continuous data, namely Weibull, gamma, 

normal, lognormal, exponential are tested for validity. Explanations for details of the values 

calculated in ranking these distributions in the aforementioned software are as follows; 

Weibull++ software uses below parameters for ranking types of distributions: 

 AVGOF: Average Goodness-of-Fit (AVGOF) parameter is calculated based on 

Kolmogorov-Smirnov (KS) test results. Typically smaller values for KS are 

generally preferred as they demonstrate that the difference between the points and 

the line are small. The equation solves for the difference (D-value) between the real 

data points and the line drawn by estimated parameters. 

 AVPLOT: Average Plotted Error (AVPLOT) parameter calculates the normalized 

correlation coefficient (rho). It represents the normalized least square distance 

between real data points and the line drawn by estimated parameters. Typically 

smaller values for AVPLOT are generally preferred as they indicate that the distance 

between actual data points and the line represented by estimated parameters are 

small. 

 LKV: Likelihood value (LKV) takes smaller values if estimated distribution better 

represents the distribution of data points. 

R “fitdistcens” function uses a different set of parameters for providing indications for a 

better type of distribution: 

 Log-likelihood: Logarithm of likelihood value, smaller values for log-likelihood 

means the estimated distribution better represents the distribution of data points. 

 AIC (Akaike Information Criterion): AIC compares the quality of a collection of 

statistical models to each other. AIC rewards log-likelihood and penalizes model 

complexity. This property enables AIC to avoid overfitting. Lower values of AIC are 

preferred  [38]. Although the AIC chooses the best model from a set, it is not a 

measure of absolute quality. 
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 BIC (Bayesian Information Criterion): BIC, also referred as Schwarz Bayesian 

Criterion (SBC), is an index used in Bayesian statistics to choose between two or 

more alternative models. BIC is a similar metric to AIC which rewards log-likelihood 

and penalizes complexity [38].  

Above parameters are generally used in determining the best type of distribution fitting to 

the failure data of each main system along with plotted curves for estimated distribution. 

4.4.1. Main System#1 

Failure data for MS1 consists of 147 inputs, where 140 of them are associated with 

unplanned maintenance (uncensored) and 7 are planned maintenance (right censored) data. 

The results for details of calculation in determining type of life distribution are given in 

Fig.16-18 and Table-3 to Table-5. These results indicate that Weibull and gamma 

distributions better fit the failure data of MS1.  

 

Figure 16 MS1 Failure Data. 

Table-3 Weibull++ Distribution Wizard Results for MS1 

Distribution AVGOF AVPLOT LKV Rank 

1P-Exponential 65.639 2.181 -584.509 3 

Normal 99.708 7.750 -632.344 4 

Lognormal 34.541 2.010 -588.254 2 

2P-Weibull 46.179 2.274 -583.362 1 

Gamma 48.768 2.336 -582.993 1 
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Table-4 R “fitdistcens” Results for MS1 

Distribution AIC BIC Loglikelihood 

Exponential 1168.388 1171.378 -583.194 

Normal 1274.485 1280.466 -635.242 

Lognormal 1183.858 1189.839 -589.929 

Weibull 1169.049 1175.029 -582.524 

Gamma 1168.646 1174.627 -582.323 

 

Figure 17 MS1 MLE Distribution Plot-1 

 

Figure 18 MS1 MLE Distribution Plot-2 
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Table-5 Estimated Parameter Results of “fitdistcens” for MS1 
Distribution  Parameter Estimate Std.Error 

Weibull 
shape 1.080 0.070 

scale 22.666 1.842 

Gamma 
shape 1.155 0.124 

rate 0.053 0.007 

Lognormal 
meanlog 2.604 0.093 

sdlog 1.112 0.066 

Normal 
mean 22.121 1.709 

sd 20.642 1.206 

Exponential rate 0.046 0.004 

 

4.4.2. Main System#2 

Failure data for MS2 consists of 45 inputs, where all of them are associated with unplanned 

maintenance (uncensored). The results for details of calculation in determining type of life 

distribution are given in Fig.19-21 and Table-6 to Table-8. These results indicate that 

gamma, Weibull and exponential distributions better fit the failure data of MS2.  

 

Figure 19 MS2 Failure Data 

Table-6 Weibull++ Distribution Wizard Results for MS2 

Distribution AVGOF AVPLOT LKV Rank 

1P-Exponential 1.202 2.498 -232.557 3 

Normal 75.178 7.980 -251.546 5 

Lognormal 78.440 5.609 -237.432 4 

2P-Weibull 4.907 2.322 -232.288 2 

Gamma 6.980 2.245 -232.153 1 
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Table-7 R “fitdistcens” Results for MS2 

Distribution AIC BIC Loglikelihood 

Exponential 467.115 468.922 -232.557 

Normal 507.080 510.693 -251.540 

Lognormal 478.853 482.467 -237.427 

Weibull 468.577 472.190 -232.288 

Gamma 468.305 471.919 -232.153 

 

 

Figure 20 MS2 MLE Distributions Plot-1 

 

 

Figure 21 MS2 MLE Distributions Plot-2 



47 

 

Table-8 Estimated Parameter Results of “fitdistcens” for MS2 
 Distribution Parameter Estimate Std.Error 

Weibull 
shape 0.918 0.110 

scale 62.181 10.610 

Gamma 
shape 0.851 0.155 

rate 0.013 0.003 

Lognormal 
meanlog 3.476 0.218 

sdlog 1.463 0.154 

Normal 
mean 64.582 9.655 

sd 64.770 6.827 

Exponential rate 0.015 0.002 

 

4.4.3. Main System#3 

Failure data for MS3 consists of 109 inputs, where 108 of them are associated with 

unplanned maintenance (uncensored) and 1 is planned maintenance (right censored) data. 

The results for details of calculation in determining type of life distribution are given in 

Fig.22-24 and Table-9 to Table-11. These results indicate that gamma, Weibull and 

exponential distributions better fit the failure data of MS3.  

 

Figure 22 MS3 Failure Data 

Table-9 Weibull++ Distribution Wizard Results for MS3 

Distribution AVGOF AVPLOT LKV Rank 

1P-Exponential 13.158 2.163 -475.201 1 

Normal 99.242 7.119 -516.850 3 

Lognormal 47.912 2.747 -479.323 2 

2P-Weibull 15.924 2.403 -475.142 1 

Gamma 19.678 2.467 -475.097 1 
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Table-10 R “fitdistcens” Results for MS3 

Distribution AIC BIC Loglikelihood 

Exponential 949.116 951.807 -473.558 

Normal 1035.307 1040.689 -515.653 

Lognormal 959.424 964.806 -477.712 

Weibull 950.978 956.361 -473.489 

Gamma 950.872 956.255 -473.436 

 

 

Figure 23 MS3 MLE Distributions Plot-1 

 

Figure 24 MS3 MLE Distributions Plot-2 
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Table-11 Estimated Parameter Results of “fitdistcens” for MS3 
 Distribution Parameter Estimate Std.Error 

Weibull 
shape 1.028 0.077 

scale 29.727 2.929 

Gamma 
shape 1.062 0.128 

rate 0.036 0.005 

Lognormal 
meanlog 2.840 0.113 

sdlog 1.172 0.080 

Normal 
mean 29.446 2.728 

sd 28.449 1.927 

Exponential rate 0.034 0.003 

 

4.4.4. Main System#4 

Failure data for MS4 consists of 52 inputs, where 48 of them are associated with unplanned 

maintenance (uncensored) and 4 are planned maintenance (right censored) data. The results 

for details of calculation in determining type of life distribution are given in Fig.25-27 and 

Table-12 to Table-14. These results indicate that gamma and Weibull distributions are better 

fits for the failure data of MS4. 

 

Figure 25 MS4 Failure Data 

Table-12 Weibull++ Distribution Wizard Results for MS4 
Distribution AVGOF AVPLOT LKV Rank 

1P-Exponential 18.289 2.866 -248.576 2 

Normal 95.948 8.577 -268.244 4 

Lognormal 61.237 4.274 -252.775 3 

2P-Weibull 2.889 2.552 -248.354 1 

Gamma 3.457 2.5815 -248.286 1 
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Table-13 R “fitdistcens” Results for MS4 

Distribution AIC BIC Loglikelihood 

Exponential 490.648 492.599 -244.324 

Normal 534.429 538.331 -265.214 

Lognormal 502.486 506.389 -249.243 

Weibull 492.277 496.179 -244.139 

Gamma 492.096 495.998 -244.048 

 

 

Figure 26 MS4 MLE Distributions Plot-1 

 

Figure 27 MS4 MLE Distributions Plot-2 
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Table-14 Estimated Parameter Results of “fitdistcens” for MS4 
 Distribution Parameter Estimate Std.Error 

Weibull 
shape 0.934 0.107 

scale 53.299 8.478 

Gamma 
shape 0.878 0.156 

rate 0.016 0.004 

Lognormal 
meanlog 3.338 0.198 

sdlog 1.396 0.142 

Normal 
mean 56.055 7.653 

sd 54.592 5.381 

Exponential rate 0.018 0.003 

 

4.4.5. Data Analysis Summary 

Table-3 to Table-14, and Fig.16-27 shows that gamma and Weibull distributions provides 

an adequate fit to the failure data of the main systems. We will use Weibull distribution to 

model the failure times of MSs in our BN model due to reasons including the following:  

 Weibull distribution is a flexible statistical distribution that is able to represent 

different phases of the bath-tub curve. Both exponential and gamma distributions can 

be represented as a unique form of Weibull distribution. 

 Weibull distribution is the most common distribution used in failure data analysis. 

Many previous studies in aviation industry has also adapted Weibull distributions 

(see Section 3). 

 The log-likelihood, AIC, BIC values and ranks of the distributions do not constitute 

a significant difference between the gamma and Weibull distributions. 

The estimated Weibull shape parameters in this section indicate that: 

 failure rate of MS1 is almost constant, with a slight trend of an increasing nature, 

which is the expected behavior since it is mainly made of static components prone to 

ageing, 

 failure rate of MS2 is decreasing, 

 failure rate of MS3 is approximately constant, which is the expected behavior 

because of the fact that it is mainly made of electronic components, 

 failure rate of MS4 is decreasing. 

In this section, we have fitted the MLE parameters to the classified data for various types of 

distributions and plotted their graphical representations. Also, details of fitted distribution 

parameters are provided. In the following section, a BN model incorporating expert 
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judgement, DLEs and failure data in predicting both main system and the aircraft itself is 

proposed and a cross-validation of the BN is performed with the dataset.  
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5. PROPOSED MODEL AND VALIDATION 

Predicting the reliability of aircrafts, especially in early stages of their operation, is a 

challenging task. This is mainly due to lack of available data to the analyst and experience 

of the operator. For accomplishing this task, only available sources of information for the 

user are DLE values provided by the aircraft manufacturer and failure data recorded by the 

user. Therefore, an approach combining both these two aspects would provide useful 

information for not limited to failure prediction but also to maintenance planning and spare 

parts stock level optimization. In this section, firstly we propose a novel BN model that 

enhances reliability prediction by combining expert judgement regarding design and 

manufacturing qualities of the supplier and actual failure data. 

In Section 3.3, we reviewed various BN approaches for reliability prediction. Among these 

studies, Neil et al. [64], Bouissou et al. [7] and Song [66] are the most relevant studies to the 

model we propose in this thesis.  Bouissou et al. [7] proposed a subjective model evaluating 

the vendor’s capability of achieving design reliability requirements with discrete nodes. This 

is done by assessment of vendor’s qualifications including design quality and manufacturing 

process quality. In our model, similar discrete nodes are generated representing design and 

manufacturing qualities but the discrete nodes are transformed into numeric intervals with a 

specified proportion of the DLE.  Neil et al. [64] proposed a similar but an extensive 

approach through a hybrid BN model. We also update the expert judgement parameters with 

failure data, yet in a more cognitive manner. Song [66] proposed an inference based model 

focused on predicting parameters of the assumed distribution by enabling expert judgement 

to be used as the median of Weibull distribution and serving as prior for scale parameter. 

We expand the use of this approach by using the DLE as the median prior and adjusting its 

value and uncertainty with categorical variables representing expert judgement. In 

comparison to previous studies, the proposed model provides the following advantages: 

 Combines Design Life Estimates, Failure Data and Expert Knowledge: Our 

model combines different forms of information, including categorical expert 

judgement, DLEs and specifications, failure and maintenance data to provide 

reliability and failure time predictions with their uncertainty. Expert judgement 

regarding design and manufacturer estimate defines the precision and accuracy of 

DLEs, and the censored and non-censored failure data is used to review these 

estimates based on Bayesian propagation.  
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 Offers a Cognitively Simpler Approach for Incorporating Expert Knowledge: 

Our model uses Weibull distributions to represent failure times of systems. A main 

challenge in Bayesian reliability studies is to elicit informative prior parameters for 

Weibull parameters as it is difficult to visualize and describe what especially scale 

parameter represents. Our model aims to overcome this challenge by eliciting 

categorical information about designer and manufacturer quality from experts and 

transform this information to define the value and uncertainty of the median value of 

the Weibull distribution. These categorical variables are simpler to elicit as the 

domain experts can easily relate them to the reliability problem.  

 Offers a Flexible Framework for Defining Prior Distributions: Our model is able 

to incorporate practically any statistical distribution for defining parameters, without 

the need for conjugacy, as it is solved by the DD algorithm. This enables us to 

examine the use of different forms of prior distributions. For example, we used a 

triangular distribution for the shape parameter which was compatible with the results 

of our failure data analysis in Section 4.4 and different from the prior distributions 

used for shape parameter in previous studies. 

In the remainder of this section, the details of the model structure and parameters are shown 

in Section 5.1. In Section 5.2, we validate the model by calculating the Mean Squared Errors 

(MSEs) and compare MSE scores of the proposed BN model to those obtained by MLE, 

DLE value provided by the vendor and standard empirical approach. We also validate the 

proposed approach by KS tests taking into account Kaplan-Meier (KM) Empirical CDF 

(ECDF), CDF solution obtained by the proposed model and MLE.  

5.1. Model Structure and Parameters 

The main goal of this study is to provide a modelling framework that combines the aircraft 

manufacturer parameters and fleet data to accurately predict the reliability of the aircraft 

fleet.  Our model predicts the reliability and the failure time of different main systems in the 

aircraft and then predicts time to failure of the entire aircraft by combining these predictions. 

In Section 4.4, we showed that the failure data of aircraft systems fits the two parameter 

Weibull distribution which is a flexible and commonly used distribution in reliability 

analysis. Therefore, our model aims to predict the two parameters of Weibull distribution 

based on failure data, DLE and expert judgement. Moreover, it enables the use of censored 

data for these estimations. Fig. 28 shows the BN structure of the model that estimates the 

main system-level reliability. This model is divided into four fragments: 
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 Weibull parameter nodes, 

 Expert judgement nodes, 

 Failure data nodes, 

 Aircraft level reliability prediction nodes 

In the remainder of this section, we describe each of these fragments. 

Figure 28 Proposed Model - Main Systems Fragment 

5.1.1. Expert Judgement Nodes 

Expert judgement nodes models the uncertainty due to the designer and manufacturer of 

each main system. The aircraft vendor typically provides a single point estimate that 

represents mean or median for the distribution of failure data of subject main system. The 

most critical task is to define the uncertainty associated with this single point value, where 

BN approach is a suitable approach for this task.  

Based on past experience, the operator or the subject matter expert may have an opinion 

about the designer; implying a higher or a lower times between failure occurrences should 
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be expected because of that specific designer’s credibility, or its ability to compute DLE 

values accurately. The main goal of building these nodes is to convert a single point DLE 

provided by the aircraft manufacturer into a distribution reflecting our belief in the accuracy 

and precision of this DLE value through assessment of its designer’s and manufacturer’s 

reputations.  

In our model, the belief about designer’s reputation adjusts the expected value of the DLE 

parameter. Fig.29 shows an illustration of this concept. If the designer is considered to be 

reputable and have high quality designs, the model assumes that the design estimates can be 

higher than the DLE parameter. Similarly, if the designer is considered to be unreliable, the 

parameter is adjusted to a lower value.  

 

Figure 29 Effect of Design Quality on DLE 

The belief about manufacturer reputation adjusts the precision around the expected value of 

the DLE value. Fig.30 shows an illustration of this. If the manufacturer is considered to have 

high quality standards, our model decreases the variance around the design estimate, whereas 

if the manufacturer is unreliable, the variance is increased. In other words, accuracy of the 

DLE is associated with the quality of the designer and precision of the DLE is associated 

with quality of the manufacturer. 
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Figure 30 Effect of Manufacturing Quality on DLE 

We used a truncated normal distribution for representing uncertainty associated with DLE, 

which allows us to easily implement the mean and variance concepts of it. The lower bound 

of this distribution is set to 0, in order to avoid negative numbers (see Section 3.1.4.1). There 

is no limitation for the upper bound. The mean of this distribution is based on DLE and 

expert judgement about designer quality. The variance of this distribution is based on DLE 

and expert judgement regarding manufacturer quality.  

In other words, the rationale behind selecting the truncated normal distribution as the prior 

distribution for DLE is based on the simple engineering judgment that 1) the accuracy of 

design estimate is associated with the quality of the designer and 2) precision of this design 

estimate is associated with quality of the manufacturer. This truncated normal distribution 

defines the median of Weibull distribution, which is described in more detail in Section 

5.1.2. 

 

Figure 31 Expert Judgement Nodes 
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In the aviation industry, a single company generally does not design and manufacture all the 

components of the aircraft. The aircraft manufacturer may only design certain components 

and manufacturing of these components may be done by a subcontractor. In some cases, 

such as propulsion systems or avionics systems, both design and manufacturing may be done 

by the subcontractor, only the requirements of these activities are provided by the aircraft 

vendor. Therefore, different expert judgement nodes are present for all MS reliability 

prediction components in our model. 

Fig.31 shows the fragment of the model that represents the expert judgement about design 

and manufacturer quality. Ordinal nodes, with three levels: low, medium and high and five 

levels: very low, low, medium high and very high were used for reflecting expert judgement 

on both design and manufacturing qualities. The details of each variable in this fragment are 

given below. 

 Design Life Estimate (DLE): This node represents a single point value provided by 

the vendor for the failure times of each main system. This node is always observed 

in the BN.  

 Design Quality: This node represents our designer’s capability. In other words, it 

shows whether design of the main system is in alignment with the provided design 

reliability requirements. The value of this node represents the belief about the 

accuracy of the DLE. Combined with DLE, the resulting distribution is used as the 

mean of truncated normal distribution for DLE. A higher quality in design is 

expected to result in a higher probability of the system achieving or exceeding its 

target design value, thus a higher truncated normal mean value as given in Fig.29. 

 Mean (DLE): This node represents the parameter uncertainty regarding the expected 

value of the DLE. We used uniform distributions that depends on the DLE and the 

design quality for its parameters. For example, if the designer quality is low, the 

model assumes the expected value of the DLE has a uniform distribution between 

0.25 * DLE and 0.75 * DLE. Table-15 to Table-17 shows the parameters of this node.  

 Manufacturing Quality: This node defines the trust we have in the manufacturer, 

capable of manufacturing the main system in accordance with the provided design. 

Combined with the DLE, manufacturing quality defines the variance around the 

DLE. A higher quality in manufacturing is expected to result in failure data with low 

variation, thus a lower variance as shown in Fig.30. 
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 Variance (DLE): This node represents the parameter uncertainty regarding the 

variance of the design estimate. It also has a uniform distribution that depends on the 

DLE and manufacturing quality. Table-15 to Table-17 shows the parameters of this 

node. For example, if the manufacturer quality is high this node has a uniform 

distribution between (0.0001 * DLE)2 and (0.25 * DLE)2. 

The proposed BN gives us flexibility in modelling expert judgement nodes. Therefore, we 

have tested three alternative BN models for defining lower and upper bounds of expert 

judgement nodes. The details of these lower and upper bounds are provided in Table-15 to 

Table-17, and the abbreviations for these models are provided below along with meanings 

of possible extensions to the root names: 

 3W: 3-Level Expert Judgement Nodes, Wide Lower and Upper Bounds 

 3N: 3-Level Expert Judgement Nodes, Narrow Lower and Upper Bounds 

 5N: 5-Level Expert Judgement Nodes, Narrow Lower and Upper Bounds 

o TRI: Triangular shape distribution with (0.5 Left, 1.0 Middle, 2.0 Right), 

o UNI: Uniform shape distribution (0.5-2.0), 

o PRI: Prior level with highest calculated probability is selected for expert 

judgement nodes, 

o NOPRI: No prior level is selected for expert judgement nodes. 

Table-15 Variance and Mean Lower and Upper Bound Values for DLE (3W Model) 
Level of Quality Variance (DLE) Mean (DLE) 

Low Uniform ((0.5*DLE)2,(1.25*DLE)2) Uniform (0.25*DLE,0.75*DLE) 

Medium Uniform ((0.25*DLE)2,(0.5*DLE)2) Uniform (0.75*DLE,DLE) 

High Uniform ((0.0001*DLE)2,(0.25*DLE)2) Uniform (DLE,1.75*DLE) 

 

Table-16 Variance and Mean Lower and Upper Bound Values for DLE (3N Model) 
Level of Quality Variance (DLE) Mean (DLE) 

Low Uniform ((0.1*DLE)2,(1.00*DLE)2) Uniform (0.5*DLE,0.75*DLE) 

Medium Uniform ((0.05*DLE)2,(0.1*DLE)2) Uniform (0.75*DLE,1*DLE) 

High Uniform ((0.0001*DLE)2,(0.05*DLE)2) Uniform (1*DLE,1.5*DLE) 

 

Table 17 Variance and Mean Lower and Upper Bound Values for DLE (5N Model) 
Level of Quality Variance (DLE) Mean (DLE) 

Very Low Uniform ((0.25*DLE)2,(1.00*DLE)2) Uniform (0.5*DLE,0.625*DLE) 

Low Uniform ((0.1*DLE)2,(0.25*DLE)2) Uniform (0.625*DLE,0.75*DLE) 

Medium Uniform ((0.05*DLE)2,(0.1*DLE)2) Uniform (0.75*DLE,1*DLE) 

High Uniform ((0.01*DLE)2,(0.05*DLE)2) Uniform (1*DLE,1.25*DLE) 

Very High Uniform ((0.0001*DLE)2,(0.01*DLE)2) Uniform (1.25*DLE,1.5*DLE) 
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The conditional parameters of mean and variance are defined based on computational 

experiments that are described in Section 5.2. 

5.1.2. Weibull Parameter Nodes 

This fragment contains the parameters of the time between failures distribution of the system 

(see Fig.32). We use Weibull distribution to model time between failures. The Weibull 

distribution can be defined by the shape and scale parameters. Each node in this fragment is 

described in the remainder of this section.  

 

Figure 32 Weibull Parameter Nodes 

5.1.2.1. Shape 

Shape parameter determines the slope of failure rate curve of the Weibull distribution and it 

can take values within the interval (0, ∞). General approach is to limit this interval if we 

have knowledge about the failure rate of subject system and use uniform distribution within 

this interval or to use discrete values for shape parameter [15]. 

In Section 4.4, we have observed that the shape parameter of each main system lies in the 

interval of [0.5, 2]. This interval can be used for all type of failure rate trends (increasing, 

decreasing and constant) and it is also widely used in the literature [15]. Furthermore, the 

failure data analyses indicate a higher density for the shape parameter around the region of 

point 1. This also applies to most of the life cycle of the subject system in the bath tub curve 

(See Section 3.1). Therefore, a triangular distribution is selected as prior on [0.5, 2] interval 

with [0.5 Left, 1 Middle, 2 Right]. This results in a denser distribution around 1, as intended. 

The effect of triangular distribution selection is also analyzed by comparing results with 

uniform distribution on the same interval. The details are provided in Section 5.2.  

5.1.2.2. Scale 

Introducing prior knowledge on a scale parameter is a more difficult task than introducing 

prior knowledge on shape parameter as the shape parameter often depends on the age of the 

system. In aircraft fleets, DLE of the main systems is usually the only prior information 

available. 
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To define the possible values that scale parameter can take, prior knowledge regarding DLE 

resulting in a truncated normal distribution (see Section 5.1.1) is set as the median of Weibull 

distribution.  

We represented the prior expert judgement as median parameters due to the following 

reasons:  

 Median values has been used to represent expert judgement in previous literature 

[66], 

 It provides both ease in computation, compared to mean value of Weibull distribution 

whose formula involves gamma function as given in Eq. (3.33), which is harder to 

compute in dynamic discretization, 

 It is a reasonable approximation in the sense that value provided by the aircraft 

manufacturer is regarded as 50% below – 50% above value.  

This resulting DLE with truncated normal distribution is simply transformed into scale 

parameter by using Eq.(3.34) for median of Weibull distribution and together with shape 

parameter, the resulting Weibull distribution is used as the failure distribution of that MS.  

5.1.3. Failure Data Nodes 

This fragment of the model has a typical Bayesian parameter learning structure for 

estimating Weibull parameters (see Fig.33). The prior belief and parameter uncertainty of 

both shape and scale parameters defined in the previous fragment. A separate node is 

introduced in the BN to the model for each failure data, each of these failure nodes have a 

Weibull distribution and their parents are shape and scale variables. Failure data is 

instantiated for each of these nodes to predict the posteriors of the shape and scale parameters 

based on current failure data. 

The model is able to learn from censored data. This operation is done easily with the use of 

an additional logical node named “censor” that takes the value TRUE if the failure time is 

greater than the parent’s value, and then this node is instantiated as TRUE. In AgenaRisk the 

expression of the censor node is modelled as follows: 

IF(Failure Time > Planned Maintenance; TRUE; FALSE) 
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Figure 33 Failure Data Nodes 

5.1.4. Aircraft Reliability Prediction Nodes 

The failure time distributions predicted for each MS as per Section 5.1.2 are combined in 

order to reflect the prediction about the failure time distribution of the aircraft. Associated 

node for each main system failure time prediction is provided in Fig.34. 

 

Figure 34 Predicted Failure Time Node for MSs 

Our case study has four MSs and any failure occurring in any of the main systems is critical 

and results in failure of the whole aircraft. In other words, there is an OR logical relation 

between MS failures and aircraft failure in our case. Therefore, the aircraft failure time is 

defined as follows: 

Aircraft Failure = min(Predicted Failure MS1, …, Predicted Failure MS4) 

 

Figure 35 Main System and Aircraft Failure Time Prediction Nodes  
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Our model can be easily expanded to incorporate a larger number of systems and different 

kinds of logical relations as seen in Bayesian fault trees. 

5.1.5. Model Summary 

This section illustrates the use of the proposed model by using a simple example. In this 

example, the operator has collected data about three failures and one planned maintenance 

for a main system. The DLE of this main system, provided by the aircraft manufacturer, is 

30 flight hours.  The domain experts believe that the manufacturing quality of this system is 

high but they have no prior belief regarding the design quality.   

 

Figure 36 Model Solution - MS Fragment 

The parameters to be estimated are Weibull shape and scale parameters, leading to time to 

failure distribution of the main system. The shape has only prior information about the 

interval that lies within and the shape of the distribution within that interval. As observed 

failure data showed us, shape parameter seems to approach to 1. Therefore, a triangular 

distribution with (0.5 Left, 1.0 Middle and 2.0 Right), clustered around this value is chosen. 
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The scale parameter is calculated by the distributed form of DLE for that the main system 

which is introduced as the median value of the Weibull distribution. The distributed form of 

DLE is obtained by pre-defined intervals in accordance with expert judgement node levels 

(see Section 5.1.1). Hence, the mean and variance is defined by these quality nodes via DLE 

provided by the aircraft manufacturer. Following this transition, distributed DLE is 

transformed into the scale parameter in accordance with Eq.(3.34). This equation holds both 

the shape and median values for scale calculation, both distributed DLE and shape becomes 

the parent node of scale parameter. This process is completed prior to evidence insertion, in 

the form of failure data. 

Next, we enter observed failure and maintenance data to the model, which will be used to 

update this prior belief on the shape and scale parameters. In Fig.36, three failures are 

observed and the time between these failures are respectively 30, 35 and 27 flight hours. 

Moreover, a planned maintenance was performed during the observed interval and this is 

modelled as a censored data in Fig.36.  

Another important aspect of the model is that expert judgement nodes are involved in 

calculations both ways, meaning that if the analyst has a belief regarding the quality of the 

designer or manufacturer, he or she can adapt priors for the level of aforementioned quality 

nodes. If expert judgement nodes are instantiated, then this instantiation limits the interval 

that the affected node can take value in. Further calculations are performed only within this 

interval. If the domain experts do not have any belief regarding the designer and 

manufacturer quality, these nodes can be left unobserved. In Fig.36, the domain expert thinks 

that the manufacturing quality is high and he does not have any prior belief about the design 

quality. After entering the observations regarding failure times, maintenance times and 

expert judgement, the posteriors of the unobserved variables were calculated by using the 

DD algorithm implemented in AgenaRisk software (see Section 2.6 for details). 

The final output of each MS is the time to failure distribution defined by shape and scale 

parameters of the calculated Weibull distribution and for the whole aircraft. The time to 

failure distribution of the aircraft is predicted by combining the failure prediction of each 

MS as shown in Fig.37. 
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Figure 37 Model Solution - Aircraft Fragment 

The details of the validation process for the proposed model will be explained in the next 

section. 

5.2. Model Validation 

Previous section described the model structure and parameters in detail and this section 

presents the model’s performance by using 5-Fold Validation. This approach divides the 

data, which consists of failure data and right censored data (see Section 4.3), into 5 intervals 

with approximately equal total number of flight hours. Additionally, the time passed between 

last failure and end of interval flight hour for each aircraft are regarded as right censored 

data, similar to planned maintenance activities. The reason in doing so is that this situation 

is regarded as no failure until end of observation period. Then, a prediction for next interval’s 

failure data is calculated by the proposed model with the current dataset. All presented tables 

and figures in this section reflects the differences between the predicted values compared to 

dataset observed within the next interval. 

In Section 5.2.1, MSE scores obtained from different reliability prediction approaches along 

with the proposed model are provided for comparison. In addition, we evaluated the 

proposed model with different types of prior distributions for shape parameter, and MSEs 

for each of these models are also shown.  

In Section 5.2.2, figures representing KM ECDF, CDF solution calculated by the proposed 

model and CDF of the MLE Weibull estimate for each main system of the aircraft are 

provided along with KS Test results. 
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In Section 5.2.3, figures representing KM ECDF and CDF solution calculated by the 

proposed model at aircraft level are provided along with graphical results, and these results 

are summarized. 

5.2.1. Mean Squared Error (MSE) Scores 

MSE is the difference between observed value and the estimated (or predicted) value 

squared, as given in Eq.(5.1) 

MSE =
∑ (𝑂𝑖−𝐸𝑖)2𝑛

𝑖

𝑛
            (5.1) 

where Oi is observed value, Ei is estimated value and n is number of observed data. 

The proposed model estimates the whole predictive probability distribution of failure but 

MSE needs a point value for prediction. We used mean of the predictive distribution in the 

MSE as this represents the expected value of the prediction [38]. We compared the proposed 

model’s performance with three different reliability prediction approaches. These are: 

 Mean value of the Weibull distribution estimated by the frequentist MLE, which is 

re-calculated for each interval with available data, 

 Empirical MTBF (EMTBF) value calculated as per procedure defined in Section 

4.2.2 for each interval with available data, 

 DLE value provided by the aircraft manufacturer. This is a constant value that does 

not change in different folds (intervals) of cross-validation. 

The observed failure data for the next interval is used for the calculations and this process is 

repeated for each MS for all intervals from 1 to 5. All of the MSE scores including alternative 

models (see Section 5.1.1) are provided in Appendix-2 and best model selection comparison 

tables are provided in Appendix-3.  

We also compared the effect of using different prior distributions on the shape parameter. 

General approach in selecting prior distribution for shape parameter of Weibull distribution 

is uniform distribution with intervals depending on the trend of failure rate of subject system 

(see Section 5.1). In this section, we use triangular distribution with (0.5 Left, 1.0 Middle, 

2.0 Right) as a shape prior and compare its performance with the traditional uniform shape 

prior in the same interval with (0.5 Lower – 2.0 Upper). The MSE scores of best models 

selected in accordance with MSE scores presented in Appendix-2 and Appendix-3 with 

triangular shape prior (3W_TRI_PRI model) and uniform shape prior (3W_UNI_PRI model) 

are presented in Table-18.  



67 

 

Table-18 Average MSE Scores for 3W Model for Different Prior Shape Distributions 
MS# 3W_TRI_PRI 3W_UNI_PRI 

MS1 541.628 541.552 

MS2 4936.445 4987.628 

MS3 784.805 784.649 

MS4 3282.107 3335.201 

 

For MS1 and MS3, the MSs with highest number of failure data available (see Section 4.4), 

both models give approximately the same MSE scores with just slight differences that can 

be considered insignificant. This is due to the fact that as sample data size increases, both 

triangularly and uniformly distributed shape parameters converges to the same value, thus 

neutralizing the importance of selected prior distribution type. However, for MSs with 

smaller sample data sizes available, like MS2 and MS4 (see Section 4.4), selection of 

triangular distribution clustered around 1 provides significantly better results. We have 

concluded that selecting prior distribution for shape parameter as “Triangular (0.5 Left, 1.0 

Middle, 2.0 Right)” is a more appropriate representation of real life reliability prediction 

process than uniform distribution in the same interval because; 

 We have observed that the failure rates of MSs of subject aircraft fleet approaches to 

a constant state with increasing failure data. This means that shape parameter of 

Weibull distribution is approaching to 1. A distribution with higher PDF values 

around this value is observed to provide better results for subject MSs, 

 More unlikely regions in shape parameter are given less probability, thus saving both 

calculation accuracy and effort. 

In the rest of Section 5.2, validation process is conducted for only the best model 

(3W_TRI_PRI, which is abbreviated as 3W from now on). MSE scores of 3W model along 

with Weibull distribution MLE, EMTBF and DLE are presented in Table-19. 

An important characteristic of BN models is that they are capable of providing a prediction 

with no failure data by just using the expert knowledge encoded in the prior distributions of 

the model. Interval 1 in Table-19 represents the MSE of failure data in Interval 1 where the 

model prediction is generated just based on expert knowledge without using any failure data. 

Data-driven frequentist approaches, such as MLE and EMTBF, cannot provide any 

prediction for Interval 1. For this reason, MSE scores for Interval 1 are not included in 

average MSE calculations. However, MSE scores obtained at this interval can be interpreted 

as a display for accuracy of DLE value provided by the aircraft manufacturer. A summary 
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for average MSE scores for all main systems are provided in Table-19 and average MSE 

scores are provided in Fig.38 for comparison. The performance rank of each method in these 

experiments is shown in parentheses in Table-19.  

Table-19 MSE Scores for All Intervals 

MS# 
Sample 

Size 

Predicted 

Interval 
3W EMTBF MLE DLE 

MS1 

0 Interval 1 319.815 (1) - - 464.870 (2) 

41 Interval 2 224.858 (2) 245.302 (3) 223.949 (1) 386.836 (4) 

75 Interval 3 660.322 (3) 574.827 (1) 607.316 (2) 1038.982 (4) 

105 Interval 4 639.449 (1) 652.942 (3) 640.562 (2) 836.363 (4) 

128 Interval 5 772.979 (3) 675.163 (1) 730.334 (2) 1206.753 (4) 

 Average 541.628 (3) 503.986 (1) 516.990 (2) 832.989 (4) 

MS2 

0 Interval 1 933.191 (1) - - 940.945 (2) 

12 Interval 2 3282.976 (1) 7238.167 (4) 4053.381 (3) 3549.454 (2) 

19 Interval 3 7446.317 (1) 9985.779 (4) 8461.069 (3) 8097.792 (2) 

34 Interval 4 2083.038 (3) 3152.776 (4) 1315.115 (2) 879.354 (1) 

43 Interval 5 3962.189 (3) 4595.177 (4) 3765.123 (1) 3785.948 (2) 

 Average 4936.445 (2) 6781.905 (4)  5218.664 (3) 4934.429 (1) 

MS3 

0 Interval 1 928.447 (2) - - 901.474 (1) 

29 Interval 2 619.014 (1) 625.248 (3) 645.019 (4) 620.875 (2) 

50 Interval 3 728.581 (3)  727.095 (1) 771.427 (4) 727.274 (2) 

75 Interval 4 252.715 (1) 398.661 (4) 294.588 (2) 387.330 (3) 

90 Interval 5 1139.944 (2) 1189.841 (4) 1132.457 (1) 1151.235 (3) 

 Average 784.805 (1) 822.019 (4) 806.538 (3) 806.325 (2) 

MS4 

0 Interval 1 1919.202 (2) - - 1825.156 (1) 

14 Interval 2 6021.869 (1) 7211.521 (3) 8118.653 (4)  7070.257 (2) 

26 Interval 3 2617.388 (2) 3422.765 (4) 2564.556 (1) 2647.683 (3) 

42 Interval 4 1793.172 (3) 2163.449 (4) 1710.554 (1) 1782.508 (2) 

50 Interval 5 2432.785 (1) 2733.672 (4) 2529.688 (2) 2723.915 (3) 

 Average 3282.107 (1) 3994.490 (4) 3785.734 (3)  3618.342 (2) 

 

 

Figure 38 Average MSE Scores 
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We observed different behavior patterns for each MS. MS1 and MS3 has highest number of 

observed failure data and they approach to a constant failure rate. MS2 and MS4 has 

relatively smaller number of observed failure data and they have a decreasing failure rate 

(see Section 4.4). Still, there are fluctuations in the observed data and mean times between 

failure occurrences vary with each interval. As for DLEs, they provide worst average MSE 

score in MS1 and best average MSE score in MS2. They provide intermediate results for 

other MSs. However, our 3W model provides consistently low average MSE scores for all 

MSs. 

The data-driven approaches, i.e. EMTBF and MLE, respectively has the best and second 

best MSE score for MS1. The performance of our model is close to EMBTF and MLE. . The 

DLE value is approximately three times less than the mean value of failure times observed 

for MS1 and it is the worst approach for predicting failure time distribution of MS1. Dataset 

available for MS1 is the largest one compared to other ones.  Also, the DLE value provided 

by the manufacturer is very low compared to observed failure times. As a consequence, 3W 

model continues to underestimate the failure time distribution throughout the analysis since 

3W updates the prediction with data based on prior information provided by the aircraft 

manufacturer. Even in this condition, 3W model adapts to data and provides much better 

predictions than DLE. 

DLE value for MS2 is the most accurate value provided by the aircraft manufacturer among 

four main systems as it can be seen from Table-19. DLE gives the best average MSE score 

for MS2 with a negligible difference with the average MSE score of 3W model. In initial 

intervals, 3W model provides better results but as data size increases, the mean of failure 

time distribution approaches to the DLE. MLE begins to provide better results with 

increasing data size for MS2 as well and EMTBF is the worst approach for MS2. 

For MS3, our 3W model provides best results on average even with relatively larger sample 

sizes. Its performance goes slightly down after sample sizes of 75 in interval 3. 3W and DLE 

has the best and second best results respectively for MS3. The performance of MLE 

increases as the size of the training data grows.  

For MS4, 3W model also has the best MSE scores with a considerable difference than DLE, 

which has the second best results. The performance of the MLE seems to differ between 

different intervals and it has the third best average score. EMTBF has the worst MSE score 

for MS4 as well. 
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By investigating the results of MSE scores in Table-19, we have concluded that: 

 3W model is able to predict the failure time distribution better than any other 

approach studied within the scope of this thesis. Furthermore, 3W model never 

provided the worst result for any of the intervals and for any of the main systems. 

We have concluded that the main advantage of 3W model is its adaptive nature for 

consistently being the best approach or providing errors very close to the best 

approach with: 

o Smaller and larger sample sizes, 

o Inaccurate and accurate DLE values, 

o Fluctuations in the dataset within different intervals. 

This shows the robustness of 3W model. 

 Data-driven approaches, i.e. MLE and EMTBF’s performances increase as the 

training data grows. This trend is expected for purely data-driven approaches. 

However data-driven approaches give high errors with sample sizes less than 50. The 

pattern of failure times can change between different intervals due to random 

behavior of the failure data. This is partly due to the limited availability of data and, 

differences between accumulated flight hours and failure patterns of different 

aircrafts. Data driven approaches are severely affected by such changes as only a 

limited failure data is available to learn such behavior with small sample sizes. 3W 

model is more robust to such changes as it also uses domain knowledge. 

In this Section, MSE scores of 3W model along with DLE, EMTBF and MLE approaches 

are presented. Table-18 and Table-19, and Fig.38 shows that the proposed model provides a 

better reliability prediction method than DLE value provided by the aircraft manufacturer. It 

consistently provides better results in overall as well, compared to data driven approaches 

such as MLE and EMTBF methods which are investigated within the scope of this study. 

Even if DLE values provided by the aircraft manufacturer, which is directly imposed to the 

model as prior information, are significantly worse of better than the actual data, 3W model 

is robust enough to adapt to actual data and provide better overall MSE performance. 

Furthermore, we have concluded that selecting prior distribution for shape parameter as 

“Triangular (0.5 Left, 1.0 Middle, 2.0 Right)” is a more appropriate representation of real 

life reliability prediction process than uniform distribution in the same interval for the subject 

aircraft fleet. 
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5.2.2. Main System Level Goodness-of-Fit (GOF) 

In this Section, the GOF of the predictive distribution calculated by the proposed model is 

investigated by: 

 Plotting failure time CDFs obtained by 3W model and MLE along with KM ECDF 

calculated by dataset including the data of the predicted interval, on the same graph, 

 Performing one sample KS GOF test between 3W model’s CDF and MLE CDF 

versus KM ECDF 

for each MS and for each predicted fold (interval) of the 5-Fold Cross Validation. 

Kaplan-Meier reliability estimator is a non-parametric estimator for reliability function, 

typically used for data sets containing right censored data. If there are no right censored data 

in the data set, Kaplan-Meier estimator simply draws down to usual empirical distribution 

function[45]. Kaplan-Meier reliability estimator is calculated by Eq.(5.2) and KM ECDF is 

equal to Kaplan-Meier reliability estimator’s value subtracted from 1. 

R(t) = ∏ (1 −
1

ti
)i⃓ti<t            (5.2) 

One sample KS test simply compares two CDFs and measure the supremum (absolute value 

of the maximum distance between two curves) distance. The test statistic is this maximum 

difference. The test hypothesis is: 

H0: both CDFs come from the same distribution 

H1: both CDFs does not come from the same distribution 

and KS test statistic is given in Eq.(5.3). 

𝐷𝑚𝑎𝑥 = max(1≤𝑖≤𝑛) |𝐹(𝑥𝑖)  −  𝐹(𝑦𝑖)|           (5.3) 

where xi is the ECDF, yi is the compared CDF, n is the sample size. 

If this Dmax value is above a critical value (Dcrit) of the KS statistic, then the hypothesis that 

the true distribution is F(yi) can be rejected. The KS test does not depend on type of 

distribution, because it only depends on the statistical properties of F(xi) and F(yi). Thus, KS 

test is a GOF test which is applicable to all continuous distributions [45]. Dcrit values for test 

statistic can be found for up to n=40 and for sample sizes larger than 40; Dcrit is calculated 

by dividing 1.63, 1.36, 1.22, 1.14 and 1.07 by square root of “n” for confidence levels of 

0.01, 0.05, 0.10, 0.15 and 0.20 respectively [67]. 
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In addition to the regular test statistic and confidence levels, other parameters which be 

interpreted as indicators of GOF are also provided. Total area between curves (TABC) given 

in Eq.(5.4) and average distance between curves (Dave), given in Eq.(5.5) are tabulated to 

give a broader opinion regarding GOF of 3W model’s solution compared with MLE’s. 

TABCf = 𝐴𝑓 − 𝐴𝐾𝑀 𝐸𝐶𝐷𝐹 with, 

𝐴 = ∑ (𝑥𝑖+1−𝑥𝑖
𝑛
𝑖 ) ∗

(𝐹𝑥𝑖+1
+𝐹𝑥𝑖

)

2
           (5.4) 

where; A is the total area lying under the curve of function F calculated from trapezoidal 

rule, F is the CDF of interest and: 

𝐷𝑎𝑣𝑒𝑓
=

𝑇𝐴𝐵𝐶𝑓

𝑥𝑚𝑎𝑥
  with 𝑥𝑚𝑎𝑥 = min(𝑥)  s . t.  (𝐹𝑥 = 1  & 𝐾𝑀 𝐸𝐶𝐷𝐹𝑥 = 1 )          (5.5) 

Fig.39-42 involve graphs of: 

 KM ECDF, calculated for each interval of four main systems as per Eq.(5.2) by using 

“survival” package in R software, 

 3W model’s CDF solution, calculated for each interval of four MS by using 

AgenaRisk software, 

 MLE CDF solution in accordance with distribution parameters calculated for each 

interval of four main systems by using “fitdistrplus” package in R software, 

The DD algorithm implemented in AgenaRisk calculated continuous variables by optimally 

discretizing them, hence the CDFs of the 3W model has the step-wise discrete form in 

Figs.39-42. Using a low convergence threshold on the DD algorithm allowed us to obtain 

results with a large number of discretized states that accurately approximate the continuous 

distribution (see Section 2.6). Hence, we have used that KS test statistic to assess GOF. 
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Figure 39 MS1 Prediction Results 

Table-20 MS1 KS Test Results 
Data Interval Test Statistic 3W MLE 

Interval 2 

(Sample 

Size: 75) 

Dmax 0.134 0.115 

Dcrit 0.141 0.124 

P-Value >10% >20% 

TABC 1.297 1.363 

Dave 0.006 0.006 

Interval 3 

(Sample 

Size: 105) 

Dmax 0.206 0.135 

Dcrit 0.159 0.159 

P-Value <1% >1% 

TABC 7.379 4.553 

Dave 0.034 0.021 

Interval 4 

(Sample 

Size: 128) 

Dmax 0.162 0.092 

Dcrit 0.144 0.095 

P-Value <1% >20% 

TABC 6.659 3.409 

Dave 0.031 0.016 

Interval 5 

(Sample 

Size: 147) 

Dmax 0.148 0.091 

Dcrit 0.134 0.094 

P-Value <1% >15% 

TABC 6.319 3.537 

Dave 0.030 0.017 
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Figure 40 MS2 Prediction Results 

Table-21 MS2 KS Test Results 
Data Interval Parameter 3W MLE 

Interval 2 

(Sample 

Size: 19) 

Dmax 0.458 0.5840 

Dcrit 0.363 0.3630 

P-Value <1% <1% 

TABC 100.419 116.1878 

Dave 0.263 0.3048 

Interval 3 

(Sample 

Size: 34) 

Dmax 0.270 0.379 

Dcrit 0.270 0.270 

P-Value >1% <1% 

TABC 27.221 41.491 

Dave 0.055 0.084 

Interval 4 

(Sample 

Size: 43) 

Dmax 0.141 0.229 

Dcrit 0.160 0.240 

P-Value >20% >1% 

TABC 9.624 18.510 

Dave 0.010 0.019 

Interval 5 

(Sample 

Size: 45) 

Dmax 0.082 0.186 

Dcrit 0.160 0.200 

P-Value >20% >5% 

TABC 2.141 7.159 

Dave 0.002 0.007 
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Figure 41 MS3 Prediction Results 

Table-22 MS3 KS Test Results 
Data Interval Parameter 3W MLE 

Interval 2 

(Sample 

Size: 50) 

Dmax 0.153 0.198 

Dcrit 0.160 0.230 

P-Value >15% >1% 

TABC 4.167 7.325 

Dave 0.013 0.023 

Interval 3 

(Sample 

Size: 75) 

Dmax 0.096 0.181 

Dcrit 0.124 0.188 

P-Value >20% >1% 

TABC 0.352 6.472 

Dave 0.001 0.020 

Interval 4 

(Sample 

Size: 90) 

Dmax 0.182 0.155 

Dcrit 0.172 0.172 

P-Value <1% >1% 

TABC 8.526 5.724 

Dave 0.040 0.027 

Interval 5 

(Sample 

Size: 109) 

Dmax 0.118 0.085 

Dcrit 0.130 0.103 

P-Value >5% >20% 

TABC 4.938 1.852 

Dave 0.023 0.009 
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Figure 42 MS4 Prediction Results 

Table-23 MS4 KS Test Results 
Data Interval Parameter 3W MLE 

Interval 2 

(Sample 

Size: 26) 

Dmax 0.272 0.361 

Dcrit 0.320 0.320 

P-Value >1% <1% 

TABC 26.401 54.107 

Dave 0.069 0.142 

Interval 3 

(Sample 

Size: 42) 

Dmax 0.160 0.338 

Dcrit 0.170 0.250 

P-Value >20% <1% 

TABC 8.537 25.290 

Dave 0.009 0.025 

Interval 4 

(Sample 

Size: 50) 

Dmax 0.185 0.273 

Dcrit 0.190 0.230 

P-Value >5% <1% 

TABC 17.815 26.425 

Dave 0.018 0.026 

Interval 5 

(Sample 

Size: 52) 

Dmax 0.123 0.171 

Dcrit 0.150 0.190 

P-Value >20% >5% 

TABC 9.689 16.419 

Dave 0.010 0.016 
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For MS1, Fig.39 and Table-20 show that MLE provides a better fit than 3W BN model. 

However, we have shown that the reason behind this degradation is linked with inaccuracy 

of DLE value (see Section 5.2.1). Apart from this, we observed that MLE GOF performance 

gradually increases as sample data size increases, in alignment with MSE scores. Both 3W 

and MLE curves start with very similar plots, but MLE starts fitting to the KM ECDF much 

better as sample size increases. It is worth noting that best Dave value is reached for both 

CDFs at prediction for interval 2, then this value increases even if sample data size increases. 

For MS2, Fig-40 and Table-21 show that 3W performance is significantly better than MLE 

performance. With scarce data (interval 2), both methods do not provide a significantly good 

fit for the data and gradually they begin accurately representing MS2 failure distribution. 

DLE value for MS2 is the most accurate data (see Section 5.2.1) and this results in almost 

overlapping 3W CDF with KM ECDF at interval 5. The Dmax value is almost the half of Dcrit 

value for confidence level of 0.20 and Dave is 0.0021, which are the best results obtained in 

this study. 

KM ECDF of MS3 is the most stable KM ECDF curve among four main systems as it can 

be seen from Fig.41. This is because this main system is mainly composed of electrical 

components and a constant failure rate can be assumed. As for the KS test results, from 

Table-22 it can be seen that 3W has much better prediction with less amount of data (from 

50 to 75), then MLE starts performing better than 3W. Considering the sample data sizes (≥ 

90) within the intervals that MLE over performed, this is an expected outcome. We have 

expected a certain threshold for number of observations that MLE starts to perform better 

than 3W. Therefore, this situation is not due to degradation of proposed model’s performance 

but due to improvement in MLE’s performance with increasing sample size. 

For MS4, Fig.42 and Table-23 show that 3W performance is significantly better than MLE 

performance. In fact, 3W excels MLE in each interval for every test statistic for MS4. Even 

with scarce data (=26), 3W can be considered a good fit for KM ECDF at a low confidence 

level of 0.01, but this confidence level rapidly increases with increase in sample data size. 

This also proves that the proposed model is working exactly as it is intended. The sudden 

increase in Dave values of both predictions in interval 4 is also considered as a common defect 

found in MS4 during interval 4. 

By analyzing graphs from Fig.39-42 and KS test results from Table-20 to Table-23 all 

together, we have showed that: 
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 For 63% of the intervals evaluated, Dmax value of 3W model’s CDF solution is less 

than MLE’s. For 69% of those intervals, Dave value of 3W model’s CDF solution is 

less than MLE’s.  The results of the 3W model are better than MLE’s especially when 

the sample size is smaller than 50. 

 For sample sizes larger than 50, MLE tends to provide better results on average. This 

is expected, as BN model revises a DLE and expert judgement prior based on data. 

When the DLE is inaccurate, the 3W model adapts to data slower than MLE.   

 For approximately 75% of the evaluated intervals, 3W model provides a good fit for 

the actual distribution. MLE has similar results with lower confidence levels. 

This section compared the reliability predictions and GOF for the main systems of the 

aircraft. The following section presents the results for the reliability prediction of the whole 

aircraft. 

5.2.3.  Aircraft Level Goodness-of-Fit (GOF) 

This section presents GOF results of the 3W model and MLE for the failure times of the 

whole aircraft rather than its individual MSs. Our dataset records the failures in each MS 

rather than the whole aircraft, and aircraft failure may include failures from multiple MS 

failures. Therefore, we firstly re-arranged the dataset by combining MS failure times to 

represent the failure times of the whole aircraft. Next, we plotted the CDF graphs and 

calculated TABC and Dave results by using the same approach described in Section 5.2.2. 

Fig.43 involves graphs of 3W CDF, MLE CDF and KM ECDF solutions obtained at aircraft 

level and Table-24 presents TABC and Dave results. Only TABC and Dave results are 

tabulated because all reliability prediction calculations are done based on MS level and errors 

obtained at each MS are accumulated to the predicted failure distribution of aircraft, giving 

very large Dmax values for both 3W model’s CDF solution and MLE’s. Therefore, we have 

limited the scope of aircraft level validation to only showing that graphs obtained at aircraft 

level are in alignment with MSE scores and KS test statistics at MS level.  
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Figure 43 Aircraft Level Prediction Results 

Table-24 Aircraft-Level CDF Analysis Results 
Data Interval 

(Sample Size) 
Test Statistic 3W MLE 

Interval 2 

(Sample 

Size: 145) 

TABC 2.040 5.725 

Dave 0.037 0.104 

Interval 3 

(Sample 

Size: 231) 

TABC 4.380 5.920 

Dave 0.066 0.089 

Interval 4 

(Sample 

Size: 278) 

TABC 5.169 5.201 

Dave 0.085 0.085 

Interval 5 

(Sample 

Size: 353) 

TABC 5.235 5.099 

Dave 0.086 0.084 

 

From Fig.43, it can be seen that 3W model’s CDF and MLE’s are constantly under predicting 

the failure distribution of aircraft fleet. On the other hand, from Table-24 it can be concluded 

that 3W model’s CDF has lower Dave values for all intervals except interval 5. Dave of 3W 
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model is also gradually increasing, which aligns with increasing errors and Dmax values with 

increasing sample size. MLE’s Dave is decreasing and as simple size increases, has better 

results than 3W model’s CDF solution for interval 5 prediction. This outcome is consistent 

with the results obtained in Section 5.2.1 and Section 5.2.2.  

In this Section, we have evaluated the MSE scores obtained by different reliability prediction 

methods and compared them with solutions obtained through our proposed model. Together 

with the KS test results, we have concluded that proposed model solution is actually a good 

fit for prediction of failure distributions of the MSs and is an effective alternative. Then we 

cross-checked the obtained results’ validity at the aircraft level and observed that a similar 

trend exists between 3W model’s solution and MLE’s. In this respect, we evaluate that 

validation of the model is completed and the proposed BN model is shown to be a better 

method for predicting failure distribution of aircrafts compared with MLE, DLE and 

EMTBF, especially around sample sizes of 50 for each MS. 
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6. CONCLUSION 

In this thesis, we have proposed a BN model which incorporates both failure data, 

manufacturer design specifications and expert judgement for estimating and predicting the 

time to failure distributions of the subject aircraft model. The proposed BN model is 

composed of categorical nodes representing the quality of the design and manufacturing, and 

continuous nodes representing shape and scale parameters of the Weibull distribution 

reflecting the time to failure distribution of the subject system. The DLEs values provided 

by the aircraft manufacturer are used incorporated as prior knowledge for the Weibull 

parameters. The design and manufacturing quality nodes adjusts the expected value and 

variance around the DLE.  

Before building the model, we have pre-processed the raw data provided by the operator 

which involves maintenance actions and spare parts requests to a format suitable for making 

reliability analysis. We have conducted interviews with leading aviation companies to have 

an improved understanding of the information in the data and reliability analysis techniques 

used in the industry. Afterwards, we have performed ‘frequentist’ time to failure analyses to 

main systems of this aircraft fleet by using the MLE method. This enabled us to examine the 

failure behavior of different MS of aircraft. MLE method also served as a benchmark for our 

proposed model.   

We have evaluated the proposed BN model and compared it to MLE and other approaches 

by using MSE scores and by comparing the proposed solution’s CDF with KM ECDF 

calculated from actual data. We showed that the proposed BN model provides a better overall 

performance than data-driven approaches such as MLE and the manufacturer’s reliability 

estimates i.e. DLE, when sample size is relatively small. Also, proposed model is robust to 

inaccuracy of DLE values and the fluctuations in the data.   

The benefits of the proposed model include 1) providing a robust approach for predicting 

failure 2) providing a structured model that explicitly represents the relation between failure 

data and expert knowledge to predict fleet reliability 3) combining  manufacturer provided 

data with failure data to estimate failure distributions accounting for uncertainty 4) using 

categorical variables that can be easily interpreted by domain experts to incorporate expert 

knowledge 4) ability to infer manufacturer and designer qualities based on failure data 5) 

incorporating different types prior distributions for the Weibull distribution parameters.  
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For future work, we plan to expand the scope of the model to handle lower levels of hierarchy 

of aircraft systems. We have observed degradation of the proposed model’s performance 

from MS level to aircraft level. This is because of accumulation of errors in a bottom to top 

approach. By analyzing the subject systems in a deeper level, lower errors can be obtained 

which will lead to lower accumulated errors at aircraft level as well. Therefore, we consider 

deepening the analysis into lower levels of the aircraft systems. 

We also plan to adapt dynamic BNs to better model the temporal changes in the behavior of 

the failure data. This would also enable the prior knowledge for expert judgement nodes to 

adopt changing levels in different intervals. We have observed increase and decreases in the 

mean values of time to failure distributions of observed data. This unstable trend could be 

due to the logistics and maintenance support provided by the aircraft manufacturer during 

the service of the aircraft fleet. Further studies may be conducted for incorporating a different 

trend in levels of quality nodes or a separate node for representing the in-service support 

quality so that the expert judgement continues to have a sufficient effect on the posterior 

distributions throughout the analysis intervals. This study can be extended for dynamic or 

object oriented BN models with data divided into calendar time intervals. 

Finally, we have observed that the DLE could be inaccurate and this can negatively affect 

the performance of the BN. The use of expert judgment priors that are less prone to DLE 

value can be investigated. 
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APPENDICES 

Appendix-A: Written Interview Questions 

 

WRITTEN INTERVIEW QUESTIONS 

(The answers will be used for solely academic purposes) 

1- With which method aircraft level real MTBF is calculated? (e.g. Monte Carlo 

simulation, Reliability Block Diagram, [Dynamic] Fault Tree Analysis, Power Law, 

Weibull Distribution, [Non] Homogeneous Poisson Process) Please provide calculation 

steps and details. 

2- Which kind of failures are incorporated into aircraft level real MTBF calculations? 

Please briefly describe your company’s procedure of MTBF calculations along with 

answers to below questions. 

a. Are consumable material failures included? 

b. Are ground critical or not critical failures included? 

c. Are planned maintenance activities incorporated into these calculations? 

d. Are user/external factors-originated failures considered in these calculations? 

If answer to any of above questions is yes, then please provide details on how these are 

incorporated into the calculations. 

3- How are the design MTBF for aircraft components calculated? (e.g. component/vendor 

historic information, expertise, testing, analysis, combination of different aspects) 

Please provide procedure details. 

4- Is there any reference publications, studies or examples that is used by your company 

or that you would recommend? Please provide details regarding how your company 

benefits from these documents. Please provide any abovementioned document provided 

that they are unclassified. 

Please include your name, title and signature to your answers. 
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Appendix-B: MSE Scores of Alternative BN Models 

 

MS# 
Expert 

Judgement 

Distribution 

on Shape 

Parameter 

Predicted 

Interval 
3N 3W 5N 

MS1 

PRI 

TRI 

Interval 1 349.585 319.815 331.308 

Interval 2 223.803 224.858 223.893 

Interval 3 670.364 660.322 668.928 

Interval 4 640.192 639.449 640.143 

Interval 5 778.535 772.979 778.232 

Average 545.444 541.628 545.006 

UNI 

Interval 1 333.362 303.520 315.443 

Interval 2 223.855 224.968 223.954 

Interval 3 670.213 659.907 668.777 

Interval 4 640.195 639.447 640.143 

Interval 5 778.535 772.979 778.232 

Average 545.420 541.552 544.985 

NOPRI 

TRI 

Interval 1 407.318 395.228 408.569 

Interval 2 223.706 224.186 223.697 

Interval 3 671.909 672.773 674.483 

Interval 4 640.310 640.088 640.325 

Interval 5 779.163 777.930 779.271 

Average 545.998 546.055 546.716 

UNI 

Interval 1 393.526 378.579 397.433 

Interval 2 223.741 224.308 223.731 

Interval 3 671.782 672.595 674.329 

Interval 4 640.310 640.088 640.325 

Interval 5 779.163 777.930 779.271 

Average 545.975 546.047 546.686 
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MS# 
Expert 

Judgement 

Distribution 

on Shape 

Parameter 

Predicted 

Interval 
3N 3W 5N 

MS2 

PRI 

TRI 

Interval 1 933.357 933.191 933.383 

Interval 2 3295.455 3282.976 3290.481 

Interval 3 7528.741 7446.317 7072.401 

Interval 4 1933.121 2083.038 2954.755 

Interval 5 3940.361 3962.189 3950.085 

Average 4934.631 4936.445 4959.213 

UNI 

Interval 1 998.447 997.521 1812.750 

Interval 2 3357.494 3300.434 3110.792 

Interval 3 6972.877 7465.836 7144.549 

Interval 4 2097.641 2235.078 3164.445 

Interval 5 3980.410 3998.339 3984.220 

Average 4757.991 4987.628 5023.024 

NOPRI 

TRI 

Interval 1 1065.612 1210.953 1052.596 

Interval 2 3175.075 3137.987 3152.701 

Interval 3 7200.945 7103.994 7155.605 

Interval 4 2490.969 2669.402 2614.143 

Interval 5 4012.700 4046.358 4032.866 

Average 4922.638 4925.154 4932.696 

UNI 

Interval 1 1216.367 1492.300 1180.004 

Interval 2 3211.282 3142.990 3192.740 

Interval 3 7189.569 7144.717 7150.204 

Interval 4 2623.095 2805.757 2733.239 

Interval 5 4041.411 4074.994 4056.622 

Average 4956.885 4978.421 4965.717 
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MS# 
Expert 

Judgement 

Distribution 

on Shape 

Parameter 

Predicted 

Interval 
3N 3W 5N 

MS3 

PRI 

TRI 

Interval 1 893.102 928.447 900.750 

Interval 2 618.531 619.014 625.838 

Interval 3 737.996 728.581 731.385 

Interval 4 268.460 252.715 247.390 

Interval 5 1134.807 1139.944 1136.308 

Average 787.904 784.805 785.182 

UNI 

Interval 1 897.692 910.028 922.139 

Interval 2 618.180 618.553 619.343 

Interval 3 737.930 728.367 731.702 

Interval 4 266.994 252.789 247.408 

Interval 5 1134.807 1139.944 1136.308 

Average 787.616 784.650 783.891 

NOPRI 

TRI 

Interval 1 1159.239 1271.588 1139.645 

Interval 2 624.318 623.307 621.182 

Interval 3 728.031 727.896 729.611 

Interval 4 269.937 261.100 268.359 

Interval 5 1135.723 1138.771 1135.675 

Average 786.569 786.206 786.163 

UNI 

Interval 1 1261.846 1393.283 1222.405 

Interval 2 625.071 624.141 621.820 

Interval 3 727.961 727.820 729.469 

Interval 4 270.120 261.314 268.480 

Interval 5 1135.723 1138.771 1135.675 

Average 786.733 786.389 786.272 
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MS# 
Expert 

Judgement 

Distribution 

on Shape 

Parameter 

Predicted 

Interval 
3N 3W 5N 

MS4 

PRI 

TRI 

Interval 1 1919.398 1919.202 1919.378 

Interval 2 6547.422 6021.869 6547.769 

Interval 3 2591.028 2617.388 2976.203 

Interval 4 1774.063 1793.172 1781.157 

Interval 5 2435.938 2432.785 2434.316 

Average 3398.620 3282.107 3540.264 

UNI 

Interval 1 2005.237 2005.345 2005.291 

Interval 2 6398.717 6074.665 6400.344 

Interval 3 2699.923 2717.229 2698.665 

Interval 4 1802.377 1819.625 1809.056 

Interval 5 2433.283 2432.042 2432.543 

Average 3405.686 3335.201 3406.419 

NOPRI 

TRI 

Interval 1 2055.943 2183.520 2033.317 

Interval 2 6470.838 6062.004 6463.579 

Interval 3 2739.270 2831.063 2768.083 

Interval 4 1843.795 1869.289 1863.805 

Interval 5 2433.638 2436.110 2436.220 

Average 3443.819 3382.020 3456.148 

UNI 

Interval 1 2169.058 2362.682 2138.853 

Interval 2 6480.348 6392.648 6465.390 

Interval 3 2844.215 2960.258 2869.077 

Interval 4 1866.725 1888.669 1880.275 

Interval 5 2434.897 2437.888 2437.616 

Average 3488.196 3513.201 3496.289 
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Appendix-C: Best Model Selection Tables 

 

Triangular Shape Distribution (TRI) 

 

Expert 

Judgement 
MS# 3N 3W 5N 

PRI 

MS1 3 1 2 

MS2 1 2 3 

MS3 3 1 2 

MS4 2 1 3 

Ave 2.25 1.25 2.5 

NOPRI 

MS1 1 2 3 

MS2 1 2 3 

MS3 3 2 1 

MS4 2 1 3 

Ave 1.75 1.75 2.5 

 

MS# 3N_NOPRI 3W_NOPRI 3W_PRI 

MS1 Ave 545.998 546.055 541.628 

MS2 Ave 4922.638 4925.154 4936.445 

MS3 Ave 786.569 786.206 784.805 

MS4 Ave 3443.819 3382.020 3282.107 

 

MS# 3N_NOPRI 3W_NOPRI 3W_PRI 

MS1 Rank 2 3 1 

MS2 Rank 1 2 3 

MS3 Rank 3 2 1 

MS4 Rank 3 2 1 

Ave 2.25 2.25 1.5 
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Uniform Shape Distribution (UNI) 

 

Expert 

Judgement 
No Prior 3N 3W 5N 

PRI 

MS1 3 1 2 

MS2 1 2 3 

MS3 3 2 1 

MS4 2 1 3 

Ave 2.25 1.5 2.25 

NOPRI 

MS1 1 2 3 

MS2 1 3 2 

MS3 3 2 1 

MS4 1 3 2 

Ave 1.5 2.5 2 

 

MS# 3N_NOPRI 3W_PRI 

MS1 Ave 545.975 541.552 

MS2 Ave 4956.885 4987.628 

MS3 Ave 786.733 784.649 

MS4 Ave 3488.196 3335.201 

 

MS# 3N_NOPRI 3W_PRI 

MS1 Rank 2 1 

MS2 Rank 1 2 

MS3 Rank 2 1 

MS4 Rank 2 1 

AVE 1.75 1.25 
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