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ABSTRACT

TORUS KNOTS AND CONTACT SURGERIES

İREM ÖZGE SARAÇ

Master of Science, Department of Mathematics

Supervisor: Assoc. Prof. Dr. Sinem ONARAN

July 2018, 64 pages

A closed curve homeomorphic to the unit circle S1 in a 3-manifold is called a knot. In

particularly, a knot that can be drawn on a torus without intersecting itself is called

a torus knot. In this thesis, we study torus knots and their topological properties,

invariants and polynomials. We study Dehn surgery on torus knots in topological 3-

manifolds. Then, we study contact 3-manifolds. We study a special class of Legendrian

knots which have topological knot type as torus knots. The aim of this thesis is to

study lens spaces by using contact surgery techniques. For this purpose, obtaining lens

spaces L(4m+3, 4) by Legendrian surgery along the negative torus knots T(2,−(2m+1))

where m ≥ 1 are studied in detail.

Keywords: Torus knot, contact structure, Legendrian knot, contact surgeries
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ÖZET

TORUS DÜĞÜMLERİ VE KONTAKT AMELİYATLAR

İREM ÖZGE SARAÇ

Yüksek Lisans, Matematik Bölümü

Tez Danışmanı: Doç. Dr. Sinem ONARAN

Temmuz 2018, 64 sayfa

3-manifoldlar içerisinde kendi kendisini kesmeyen kapalı eğrilere düğüm denir. Özel

olarak, 2-boyutlu torus üzerinde kendi kendisini kesmeyecek şekilde çizilebilen düğüm

tiplerine torus düğümleri denir. Bu tezde topolojik 3-manifoldlar içerisindeki torus

düğümlerinin yanı sıra kontakt 3-manifoldlar içerisindeki Legendre torus düğümleri

çalışılacaktır. Torus düğümlerinin topolojik özellikleri, değişmezleri ve polinomları

çalışılıp hesaplanacaktır. Torus düğümlerine yapılan topolojik Dehn ameliyatları ve

Legendre düğümlerine yapılan kontakt ameliyatlar çalışılacaktır. Bu tezde Legen-

dre torus düğümleri de çalışılmıştır. Bu tezin amacı lens uzaylarını kontakt ameliyat

tekniklerini kullanarak çalışmaktır. Bu amaçla, m ≥ 1 olmak üzere L(4m + 3, 4)

lens uzaylarının T(2,−(2m+ 1)) negatif torus düğümlerine Legendre kontakt ameliyat

yapılarak elde edilme tekniği detaylı olarak incelenmiştir.

Anahtar Kelimeler: Torus düğümü, kontakt yapı, Legendre düğümü, kontakt ameliy-

atlar

ii



ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Assoc. Prof. Dr. Sinem

ONARAN for her valuable knowledge and comments, for her motivation, and for her

patience and understanding.

I would like to thank The Scientific and Technical Research Council of Turkey
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1 INTRODUCTION

Knot theory is one of the main fields of topology in mathematics. A knot in a

3-manifold can be thought as a simple knotted circle which is a main example of 1-

manifolds. Classification of knots is an important problem in knot theory. W. Thurston

divides all knots into three groups which are torus knots, satellite knots and hyperbolic

knots [1]. Torus knots are a member of special class of knots where one can draw on a

torus without any self-intersection. In this thesis, torus knots are studied in detail.

Distinguishing two knots is another important problem in knot theory. Invariants

are used to show that two knots are different. Polynomials are one of the most im-

portant invariants. The first polynomial invariant was invented by J. Alexander in

1928 [2]. It is called Alexander polynomial which is an invariant such that each knot

corresponds to a polynomial. He showed that if the Alexander polynomials of two

knots are different, then they are different. Another powerful polynomial invariant was

introduced by V. Jones [3]. He also gave a formula for Jones polynomials of torus knots

[4].

Several techniques are used to obtain 3-manifolds. However, the most important

technique is Dehn surgery which was introduced by Max Dehn. Dehn surgery applied

to a knot is an operation such that a tubular neighborhood of the knot is taken out in

a given manifold, and by using homeomorphism of its neighborhood it is glued back.

So, a new 3-manifold is formed, and this provides to understand 3-manifolds better.

Lickorish and Wallace demonstrated that each closed, orientable 3-manifold is attained

by surgery applied to some links in S3 [5] [6].

Dehn surgery on a 3-manifold can give a different 3-manifold, but Kirby moves on

a 3-manifold do not change the manifold. These moves were defined by Robion Kirby.

[7]. The first move is taking a connected sum with S3 or canceling. The second move

is done by sliding one component of the framed link on another.

Lens spaces can be obtained by an operation called Dehn surgery applied to knots

in many ways. Moser classified the lens spaces that are result of Dehn surgery ap-

plied to torus knots [8]. Unlike Moser, Bailey & Rolfsen presented the first example

for obtaining the lens space L(23, 7) by an integral surgery along an iterated cable

knot which is not a torus knot [9]. The fact that surgeries on which knots give lens

spaces is an important problem. Culler, Gordon, Luecke and Shalen showed that there
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are at most two surgery coefficients which give a lens space in case of different knots

from torus knots [10]. In the simplest sense, the lens space L(m,n) is constructed by

(−m/n)-surgery along an unknot in 3-sphere. Rasmussen reached an important con-

clusion about this problem. He showed that there is only one way to obtain the lens

space L(4m+3, 4) by a single integral surgery on 3-sphere. He showed that −(4m+3)-

surgery along T(2,−(2m+ 1)) is the only integral surgery which gives L(4m+ 3, 4) in

[11].

Contact structures take place on smooth and odd dimensional manifolds, and these

are maximally non-integrable two plane fields distributed all over the manifold. Marinet

gave a proof that there is a contact structure on every 3-manifold [12]. There are two

categories for contact 3-manifolds which are overtwisted and tight [13], [14]. Similar to

topological 3-manifolds, contact 3-manifolds include knots which are Legendrian knots

and transverse knots.

A knot in a contact 3-manifold that it is tangent to contact planes everywhere is

a special kind of knots that are called Legendrian knots. Similar to topological knots,

Legendrian knot classification is an important problem. Many mathematicians studied

on Legendrian knot classification in tight contact 3-manifolds. The first Legendrian

knot classification result was given by Eliashberg & Fraser. They classified Legendrian

unknots in standard tight S3 [15], see also [16]. After Eliashberg and Fraser, Legendrian

torus knots were classified based on Legendrian isotopy by Etnyre and Honda. They

also classified the figure eight knot in standard tight contact S3 [17]. Their classification

theorems of Legendrian torus knots are given in this thesis. Legendrian torus knots

which exist in other contact 3-manifolds different than S3 are also studied. Onaran

classified Legendrian positive torus knots in universally tight contact lens spaces [18].

Moreover, Legendrian knot classification problem in overtwisted contact 3-manifolds

is another important problem. Classification of exceptional unknots in overtwisted S3

was given by Eliashberg and Fraser [16]. The first nontrivial knot type classification

was done by Geiges and Onaran [19]. Exceptional torus knots were classified in over-

twisted S3 in [19].

Contact surgery is a surgery operation which can be applied to Legendrian knots

in contact 3-manifolds. Similar to Dehn surgery which is a topological operation, a

contact surgery applied to Legendrian knots constructs new contact 3-manifolds. The

2



fact that every closed contact 3-manifolds can be formed by (±1)-contact surgery in

standard tight contact S3 was shown by Ding & Geiges [20].

In this thesis, lens spaces obtained by a single contact surgery with contact framing

(−1) applied to a single Legendrian negative torus knot are studied. Also, contact

surgery techniques given by Geiges and Onaran in [21] are studied.

In Section 2 Background section, the main definitions and examples are well noted.

After defining knots which are the fundemental examples of 1-manifolds, definitions

and examples of torus knots are given. Some polynomial invariants of torus knots are

introduced, and examples are given. Also, definition of surfaces is given, and then

Seifert surfaces for torus knots are constructed. Dehn surgery and Kirby moves are

presented with main examples. Contact 3-manifolds are introduced. Legendrian knots

in contact 3-manifolds and their classical invariants are given with examples.

In Section 3 Legendrian Torus Knots section, definition of Legendrian torus knots

and classification theorems of Legendrian torus knots in [17] are given. Also, contact

surgery techniques and classical invariants of Legendrian knots from surgery diagrams

are introduced. In the same section, lens spaces are studied by using contact surgery

techniques. The proof of obtaining lens spaces L(7, 4) by contact (−1)-surgery along

Legendrian left handed trefoil in some contact structure on 3-sphere [21] is given. Also,

the general case, the proof of obtaining lens spaces L(4m+3, 4) by contact surgery with

contact framing (−1) applied to Legendrian T(2,−(2m+ 1)) in some contact structure

on 3-sphere [21] is studied in detail.

Finally in Section 4 Conclusion section, contact surgery techniques are analyzed to

obtain lens spaces from Legendrian negative torus knots. Some open problems about

Legendrian torus knots are listed.
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2 BACKGROUND

2.1 Knots in the 3-Sphere

Definition 2.1.1. [22] A simple closed curve in 3-sphere S3 which does not have a

self-intersection is called a topological knot in S3 up to isotopy.

Example 2.1.1. Some examples of knots are given in the Figure 1. The unknot or

the trivial knot which has no crossing is the simplest knot. The next one is a right

handed trefoil knot which has 3 crossings. Also, figure eight is another example of a

knot which has 4 crossings.

Figure 1: Unknot, right handed trefoil knot and figure 8 knot in S3.

2.2 Knot Types in the 3-Sphere

Before 1974, it had been known to exist only two classes of knots which were torus

and satellite knot. Robert Riley proved that figure 8 knot was hyperbolic [23]. After

Robert Rilley, William Thurston showed that all knots are either torus knots, sattelite

knots or hyperbolic knots [1].

Definition 2.2.1. [24] A knot which one can draw on the torus so that it has no

self-intersecting is called a torus knot.

Torus knots will be studied comprehensively in Chapter 2.3.

Definition 2.2.2. [22] Assume that K1 is a knot inside a solid torus and K2 is any

knot different from the unknot. The solid torus is cut from a meridian of it. A knot

which is obtained from gluing the solid torus which has the form of the knot K2 is

named as a satellite knot. The second knot K2 is called the companion knot.

Example 2.2.1. [22] Let K1 be a trefoil in a solid torus and K2 be a figure 8. The

composite knot K1#K2 in the Figure 2 is an example of satellite knots.

4



Figure 2: The composite knot K1#K2.

Definition 2.2.3. [22] Consider a knot K in the 3-sphere S3. It is called a hyperbolic

knot on condition that 3-manifold S3 \K is a hyperbolic 3-manifold. (A 3-manifold is

called a hyperbolic if there is a metric which has a constant curvature −1 on it.)

Example 2.2.2. [23] Figure 8 is an example of hyperbolic knots.

Theorem 2.2.1. [1] “(Classification of Knots) All knots fall into three categories of

knots that are satellite knots, hyperbolic knots, and the last category that is the torus

knots.”

2.3 Torus Knots in the 3-Sphere

Example 2.3.1. Right handed trefoil is the main example of torus knots.

Figure 3: Right handed trefoil on a torus.

Every torus knot is represented by (l,m)-torus knot for relatively prime integers l

and m.

Definition 2.3.1. [22] A (l,m)-torus knot means that the knot on the torus that

wraps l times in the meridional direction and m times in the longitudinal direction

for relatively prime integers l and m. It is denoted by T(l,m). If both l and m are

positive, T(l,m) is called a positive torus knot. If one of these two integers is negative,

it is called a negative torus knot.
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In this thesis, negative torus knots are denoted by T(l,−m) for positive integers

l,m. Also, the positive torus knots T(l,m) where m > l > 0, and the negative torus

knots T(l,−m) where m > l > 0 will be studied.

Longitude

Meridian

Figure 4: A longitude and meridian on a torus.

Example 2.3.2. Right handed trefoil is a positive torus knot denoted by T(2, 3). Left

handed trefoil is a negative torus knot denoted by T(2,−3). Both of them intersect the

longitude 2 times and the meridian 3 times.

Figure 5: T(2, 3) and T(2,−3).

Theorem 2.3.1. [22] “A torus knot T(l,m) and a torus knot T(m, l) are equal for

relatively prime integers l, m.”

The process of proving this theorem is given in [22]. Assume that a (m,n)-torus

knot is taken. In this process, a disk which does not intersect the knot is removed from

the torus. The torus with one boundary is converted to two interconnected bands.

The shorter band represents a meridian of the torus, and the longer one represents

a longitude of the torus. The two bands is turned inside out one by one, and this

corresponds to a new torus. Then, the longer band represents a meridian of the new

torus and the shorter one represents a longitude of the new torus. So, the torus knot

T(l,m) equals the torus knot T(m, l) on the new torus [22].
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Figure 6: Torus with one boundary and two interconnected bands.

In knot theory, distinguishing knots is the most important problem. To show that

two knots are not same, some invariants of knots are needed. Invariants of knots do not

change under isotopy, and they are independent of knot diagrams. Crossing number,

unknotting number and knot polynomial are some examples of invariants of knots.

Definition 2.3.2. [22] The minimum crossing number considered in all topological

diagrams of a given knot K is named as the crossing number of the knot K. It is

denoted by cK .

Example 2.3.3. Since knots with crossing number 1 and knots with crossing number

2 are isotopic to the simplest knot which is the unknot, the first nontrivial knot that is

the right handed trefoil knot has crossing number equals to 3, and given in Figure 7.

Figure 7: Right handed trefoil T(2, 3) with 3 crossings.

Definition 2.3.3. [22] Consider a knot K. If one can find a topological diagram of

K so that changing c crossings converts K into the unknot, and there is no diagram

such that changing crossings less than c converts the knot K into the unknot, then the

number c is named as the unknotting number for K . It is denoted by uK .

Theorem 2.3.2. [25]“The crossing number of a torus knot T(l,m) is c = min{l(m−

1),m(l − 1)} where l, m≥ 2.”
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Example 2.3.4. The crossing number of a right handed trefoil T(2, 3) which is given

in Figure 7 can be found as 3 = min{2(3− 1), 3(2− 1)} by Theorem 2.3.2.

Theorem 2.3.3. [26] “The unknotting number of a torus knot T(l,m) is u =
1

2
(l −

1)(m− 1) for positive integer l and m.”

Example 2.3.5. The unknotting numbers of T(2, 3) knot is 1 by Theorem 2.3.3.

Figure 8: Unknotting number is 1.

2.3.1 Seifert Surfaces of Torus Knots

Definition 2.3.4. [27] Topological connected 2-manifold is called a surface.

Example 2.3.6. 2-dimensional sphere S2 and torus T 2 are examples of surfaces.

Figure 9: 2−dimensional sphere S2 and torus T 2.

Definition 2.3.5. [22] If a consistent normal vector can be chosen at each point on

a surface, then the surface is called an orientable surface. Otherwise, it is called a

non-orientable surface.

Definition 2.3.6. [22][28] A surface with n-boundary is a surface such that one can

obtain by taking out the interiors of n disjoint disks from a surface without boundary.

Also, a compact surface without boundary is called closed surface.

Example 2.3.7. 2-dimensional sphere S2 is an orientable surface without boundary

since it has an outward normal vector at each point on it. However, Möbius band is
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a non-orientable surface with 1-boundary since it does not have a consistent normal

vector at each point on it.

Figure 10: Orientable surface S2 and non-orientable surface Möbius band.

Definition 2.3.7. [22] The number of holes in a surface is called the genus. A surface

with genus g is denoted by Σg. Use Σn
g to denote a genus g surface with n-boundary

components.

Definition 2.3.8. Take two surfaces S1 and S2. Take a disc D1 on S1 and a disc D2 on

S2. The interior of these discs are removed from the surfaces. Then, two surfaces with

boundary S1 \ int(D1) and S2 \ int(D2) are glued via a homeomorphism along their

boundaries. This operation is called connected sum of two surfaces and the resulting

new surface is denoted by S1#S2.

Definition 2.3.9. [29] Consider a genus g closed surface Σg. One can define the Euler

characteristic of Σg is by χ(Σg) = V −E +F , where V is the total number of vertices,

E is the total number of edges and F is the total number of faces in a triangulation of

Σg.

Lemma 2.3.1. [22] “The Euler characteristic of a closed orientable surface of genus g

is χ(Σg) = 2− 2g.”

Proof. Apply induction on the genus g.

i) Closed surfaces with genus g = 0 homeomorphic to the 2-dimensional surface S2.

Closed surfaces with genus g = 1 homeomorphic to the torus T 2. Triangulations

of the surfaces S2 and T 2 are given in Figure 11, respectively.
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Figure 11: Triangulations of the surfaces S2 and T 2, respectively.

The Euler characteristics of S2 and T 2 are χ(S2) = V −E + F = 6− 12 + 8 = 2

and χ(T 2) = V −E + F = 1− 3 + 2 = 0. So, the formula χ(Σg) = 2− 2g is true

for genus g = 0 and g = 1.

ii) Assume that the given formula χ(Σg) = 2 − 2g is true for genus g = n − 1. By

the assumption,

χ(Σ(n−1)) = 2− 2(n− 1).

A surface with genus g = n is obtained from the surface Σn−1 by taking a con-

necting sum with torus T 2. So,

χ(Σn) = χ(Σ(n−1)#T
2) = 2− 2(n− 1)− 1 + 0− 1 = 2− 2n.

In 1934 the following theorem was proved by Herbert Seifert with an algorithm

which is called Seifert Algorithm. Seifert Algorithm is an algorithm that constructs an

orientable surface with boundary for a given knot such that the surface has a boundary

as the given knot. Seifert algorithm has several steps:

1) Determine an orientation for a projection of the knot K.

2) Resolve all crossings of K to find Seifert circles which are obtained from elimi-

nating the crossings as shown in Figure 12.

3) All Seifert circles are boundaries of disks at different heights in a plane.

4) Connect disks via twisted bands corresponding to the crossing of K to obtain a

surface which has a boundary component K [30].
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Figure 12: Eliminating crossings.

Theorem 2.3.4. [30] “Every oriented knot in S3 is a boundary of an orientable sur-

face.”

In other words, this theorem says that for every knot K in S3 there exists an orientable

surface Σ such that ∂Σ = K.

Definition 2.3.10. [24] Consider a knot in S3. An orientable surface with one bound-

ary component that is the given knot is called a Seifert surface.

If a disk is removed from a surface without boundary, the Euler characteristic

decreases by 1 since removing a disk means removing a face in a triangulation of the

given surface. Therefore, the Seifert surface has Euler characteristic that is χ(Σ1
g) =

χ(Σg)− 1 = 1− 2g.

Example 2.3.8. A Seifert surface of T(2, 3) is obtained by Seifert algorithm in Figure

13.

Figure 13: Seifert algorithm.

A Seifert surface is homotopic to the one in Figure 14:

Figure 14: Homotopy.
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So, the Euler characteristic of a Seifert surface given in Figure 13 is

χ(T(2, 3)) = V − E + F = 2− 3 + 0 = −1.

Then, χ(T(2, 3)) = 1− 2g = −1 and the genus of this Seifert surface of T(2, 3) is 1.

Example 2.3.9. The Seifert circles of T(2, 5) are obtained by resolving crossings of

T(2, 5) in Figure 15.

Figure 15: T(2, 5) and Seifert circles of it.

A Seifert surface of T(2, 5) is obtained by connecting these two Seifert circles via

5 twisted bands. A Seifert surface of T(2, 5) which is constructed using Figure 15 is

homotopic to Figure 16:

Figure 16: Homotopy type of a Seifert surface of T(2, 5).

So, the Euler characteristic is in Figure 16

χ(T(2, 5)) = V − E + F = 2− 5 + 0 = −3.

Then, χ(T(2, 5)) = 1− 2g = −3 and the genus of this Seifert surface of T(2, 5) is 2.

Example 2.3.10. A Seifert circles of (2,m)-torus knot are obtained by resolving cross-

ings of T(2,m) in Figure 17 where m ≥ 2.
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Figure 17: T(2,m) and Seifert circles of T(2,m).

A Seifert surface of T(2,m) is obtained by connecting these two Seifert circles via

m twisted bands. The Euler characteristic of T(2,m) is

χ(T(2,m)) = V − E + F = 2−m+ 0 = 2−m.

Then, χ(T(2,m)) = 1 − 2g = 2 −m and the genus of this Seifert surface of T(2,m) is

(m− 1)/2.

Example 2.3.11. The Seifert circles of (3, 4)-torus knot are obtained by resolving

crossings of T(3, 4) in Figure 18.

Figure 18: T(3, 4) and Seifert circles of it.

A Seifert surface of T(3, 4) is obtained by connecting these 3 Seifert circles via 5

twisted bands. A Seifert surface of T(3, 4) obtained from Figure 18 is homotopic to the

following graph given in Figure 19:

Figure 19: Homotopy type.
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So, the Euler characteristic of the Seifert surface in Figure 18 is

χ(T(3, 4)) = V − E + F = 3− 8 + 0 = −5.

Then, χ(T(3, 4)) = 1− 2g = −5 and the genus of this Seifert surface of T(3, 4) is 3.

Definition 2.3.11. Consider all Seifert surfaces of a given knot. Then, the genus for

the given knot is the genus of the Seifert surfaces among all which has the minimal

genus.

Theorem 2.3.5. [24] “The genus of a torus knot T(l,m) is
(l − 1)(m− 1)

2
for coprime

positive integers l, m.”

2.3.2 Seifert Framing of Knots

Definition 2.3.12. [22] [28] A set which consists of disjoint knots is called as a a link.

Example 2.3.12. Unlink and Hopf link in Figure 20 are examples of links, respectively.

Both have two link components which are unknots.

Figure 20: Unlink and Hopf link.

Definition 2.3.13. [22] [28] A sign with ±1 value for each crossing of a given knot

or link can be given in Figure 21. The linking number between L1 and L2, denoted by

lk(L1, L2), is defined as the half of the total sign of each crossings between L1 and L2.

+1 -1

Figure 21: +1 crossing and −1 crossing.

Definition 2.3.14. [28] Consider a null-homologous knot in a 3-manifold, and consider

a Seifert surface of the given knot. Take a parallel push of the knot which stays on
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the Seifert surface, and the linking number of the knot and its parallel push off is zero.

Then, the parallel push off is the Seifert framing of the knot.

Example 2.3.13. A Seifert surface of an unknot U is a disc. The Seifert framing of

U is given in Figure 22.

Figure 22: Seifert framing of the unknot.

2.3.3 Some Polynomials of Torus Knots

In knot theory, classifying knots is the fundamental aim. There are some invariants

to show whether any two knots are different or not. Polynomials are one of the most

important invariants. Each knot corresponds to a polynomial which is an invariant

for the knot since it is the same for any diagram of the knot. In this section, some

polynomials of T(l,m)-torus knots will be studied.

2.3.3.1 Alexander Polynomial of Torus Knots

In 1928, J. Alexander discovered the first polynomial invariant which corresponds to

knots [2]. This polynomial is called Alexander polynomial. Alexander defined it by

labeling the regions which are bounded by the arcs of a knot diagram. After Alexander,

K. Reidemeister gave a first description of the Alexander polynomial based on the arcs.

Now, there are many definitions of it in different ways [31].

Consider an oriented knot K which has n crossings that are labelled 1, 2, . . . , n.

Let each arc of it be labelled y1, y2, . . . , yn. Form an n × n matrix M where rth row

represents rth crossing, and ith column represents arc yi of K. If the linking number of

rth crossing is positive, as appearing in Figure 23 (a), the entries of M are

mri = 1− τ

mrj = −1

15



mrk = τ

and mrs = 0 for s 6= i, j, k. Otherwise,

mri = 1− τ

mrj = τ

mrk = −1

and mrs = 0 for s 6= i, j, k. See Figure 23 [31].

y
i

y k

yj yy

yk

ij

(a) (b)

Figure 23: Positive and negative crossing.

Definition 2.3.15. [31] Form the (n−1)×(n−1) matrix from the associated matrix M

described above by deleting nth row and nth column of M . It is named as the Alexander

matrix of the knot. It is denoted by AK . The Alexander matrix has determined denoted

by ∆K(t). This determinant is called the Alexander polynomial of the knot.

Example 2.3.14. The associated matrix M of trefoil T(2, 3) obtained by Figure 24 is:

M =


1− τ −1 τ

τ 1− τ −1

−1 τ 1− τ


3×3

y1

y

y

2

3

1

2

3

Figure 24: A labelling of the arcs and crossings of trefoil.
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Then, the Alexander matrix of T(2, 3) is:

AT(2,3) =

 1− τ −1

τ 1− τ


The Alexander polynomial of T(2, 3) is ∆T(2,3)(t) = |AT(2,3)| = τ 2 − τ + 1.

Example 2.3.15. The associated matrix M of T(2, 5) obtained by Figure 25 is:

M =



1− τ τ 0 0 −1

−1 1− τ τ 0 0

0 −1 1− τ τ 0

0 0 −1 1− τ τ

τ 0 0 −1 1− τ


3×3

1

2

3

4

5

y
1

y2

y3

y5

y4

Figure 25: A labeling of the arcs and crossings of T(2, 5).

Then, the Alexander matrix of T(2, 5) is

AT(2,5) =


1− τ τ 0 0

−1 1− τ τ 0

0 −1 1− τ τ

0 0 −1 1− τ


3×3

.

Thus, the Alexander polynomial of T(2, 5) is ∆T(2,5)(τ) = |AT(2,5)| = τ 4−τ 3 +τ 2−τ+1.

Torus knots T(2, 3) and T(2, 5) are different torus knots because of their different

Alexander polynomials.

Example 2.3.16. [31] The Alexander matrix of T(2,m) by Figure 26 where gcd(2,m) =
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1 is:

AT(2,m) =



1− τ −1 0 0 · · · τ

τ 1− τ −1 0 · · · 0

0 τ 1− τ −1 · · · 0
...

1− t −1

0 · · · · · · 0 τ 1− τ


(m−1)×(m−1)

1

2 y1y2

y

m
m

Figure 26: A labeling of the arcs and crossings of T(2,m).

By induction on m > 0, the Alexander polynomial of T(2,m) is

∆T(2,m)(τ) = |AT(2,m)| = τm−1 − τm−2 + . . .+ τ 2 − τ + 1.

Then, the Alexander polynomial of T(2,m) is

∆T(2,m)(τ) =
(τm + 1)

(τ + 1)
.

Theorem 2.3.6. “[24] Consider a torus knot T(l,m). The formula of Alexander poly-

nomial which is

∆T(l,m)(τ) =
(τ |lm| − 1)(τ − 1)

(τ |l| − 1)(τ |m| − 1)
.”

2.3.3.2 Jones Polynomial of Torus Knots

V. Jones discovered another knot polynomial which is called Jones polynomial in 1984

[3]. He found the new polynomial for knots when he was studying on operator algebra

which is not related to knot theory.

Definition 2.3.16. [22] Consider an oriented knot or link diagram. One of crossings

on the knot diagram is resolved according to K+, K− and K0 given in Figure 27.
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+ - 0
K K K

Figure 27: Resolving link or knot projections.

The Jones polynomial of K is a Laurent polynomial such that it satisfies the fol-

lowing conditions:

1) Vu(τ) = 1, where u is a trivial knot

2) τ−1VK+(τ)− τVK−(τ) = (τ 1/2 − τ−1/2)VK0(τ) (Skein relation).

Example 2.3.17. The red crossing of positive Hopf link H in Figure 28 is a positive

crossing. So, let say H = K+. Then, K− and K0 is obtained by resolving the red

crossing of H according to Figure 28. Here K− is the unlink with two components u2

and K0 is the unknot u.

+ - 0K K K=H =u2
=u

Figure 28: K+, K− and K0.

Then, Hopf link satisfies the Skein relation:

τ−1VH(τ)− τVu2 = (τ 1/2 − τ−1/2)Vu(τ)

τ−1VH(τ) + τ(−τ−1/2 − τ 1/2) = (τ 1/2 − τ−1/2).

Therefore, the Jones polynomial of Hopf link is VH(τ) = −τ 1/2 − τ 5/2.

Example 2.3.18. Consider the right handed trefoil T (2, 3) in Figure 29. Since the red

crossing in Figure 29 is a positive crossing, assume that K+ is T(2, 3). To find Jones
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polynomial of T(2, 3), the red crossing is resolved according to K− and K0. As seen in

Figure 29, K− and K0 are the unknot u and the positive Hopf link H, respectively.

K+=T(3,2) K -=u K0 =H

Figure 29: The right handed trefoil (K+), the unknot (K−) and the positive Hopf link

(K0) .

By the Skein relation,

τ−1VT(2,3) − τVu = (τ 1/2 − τ−1/2)VH

VH(t) = −τ 1/2 − τ 5/2 computed in Example 2.3.17.

τ−1VT(2,3) − τ = (τ 1/2 − τ−1/2)(−τ 1/2 − τ 5/2)

The Jones polynomial of T(2, 3) is VT(2,3)(τ) = −τ 4 + τ 3 + τ .

Lemma 2.3.2. “[4] Consider a torus knot T(l,m). The Jones polynomial is

V(l,m)(τ) =
t(l−1)(m−1)/2

1− τ 2
(1− τm+1 − τm+1 + τ l+m).”

2.4 Dehn surgery along a knot

Dehn surgery was introduced by Max Dehn in 1910. When he started to study for

constructing Poincaré spaces, he found a new method that is called Dehn surgery, and

today his method is very useful to study 3-manifolds. Roughly, Dehn surgery applied to

a knot in S3 is an operation such that a tubular neighbourhood of the knot is removed,

and then glued back it to the knot exterior along their boundaries via a homoeomor-

phism. Generally, Dehn surgery along a link in a 3-manifold is an operation such that

a tubular neighbourhood of each component of the link is removed, and then these

neighbourhoods are glued back via homeomorphisms of their neighbourhoods. After
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Dehn, Lickorish and Wallace demonstrated that each closed, orientable 3-manifold is

attained by surgery applied to some links in S3 [5] [6], for this reason Dehn surgery is

important to understand topological 3-manifolds.

Definition 2.4.1. [32] Consider a closed and orientable topological 3−manifold M .

Consider a knot K ⊂M . N(K) is a tubular neighbourhood of K. i.e. N(K) ∼= S1×D2.

The boundary is a torus ∂(N(K)) ∼= S1 × S1. The tubular neighbourhood N(K) is

removed from M . A new solid torus is glued to the knot exterior M \ N(K) via a

diffeomorphism h : ∂(S1 × D2) → ∂(M \ N(K)). Then, a new closed orientable 3-

manifold M ′ is obtained where M ′ = M ∪h (S1 × D2). This operation is named as

Dehn surgery applied to the given knot K. The new manifold M ′ changes depending

on the diffeomorphism h.

If M = S3, a surgery applied to the knot K is identified by coprime integers

(p, q). A solid torus S1 × D2 can be considered as the union of a 3-dimensional 2-

handle and a 3-handle. Since a 3-handle is glued by an unique way, the gluing map is

determined by the gluing curve {a}× ∂D2 that is an embedded simple closed curve in

∂(S3 \N(K)), and let β = h({a}×∂D2) ∈ ∂(S3 \N(K)). Homology class of the curve

β ∈ H1(∂(S3 \ N(K),Z)) ∼= H1(S1 × S1,Z) ∼= Z ⊕ Z, and there are two homological

generator curves on ∂(S3 \N(K)) which are meridian m and longitude l. A meridian

m is a curve on ∂(S3 \ N(K)) which bounds a disc in (S3 \ N(K)), and it is a basis

element for H1(∂(S3 \N(K). A longitude l is another curve on (S3 \N(K)) which is

determined according to the Seifert framing of K, i.e. lk(K, l) = 0. Then, curves on

∂(S3 \ N(K)) are identified by two coprime integers p and q, and the gluing map is

defined by the following homeomorphism.

h : ∂(S1 ×D2)→ ∂(S3 \N(K))

{a} × ∂D2 7→ β = qm + pl

This operation is named as (p/q)-surgery along K [33].

Example 2.4.1. [28] [34] Consider an unknot K in S3 and the tubular neighbourhood

of K; N(K) = S1 × D2. N(K) is removed from S3, then a solid torus S3 \ N(K) ∼=

S1 ×D2 is obtained. The gluing map for the 0-surgery on K is:

h : ∂(S1 ×D2)→ ∂(S1 ×D2);h(α) = qm + pl = m
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0/1

Figure 30: Obtaining S1 × S2 by a Dehn Surgery .

Then, 0-surgery on K is S1 × S2.

Example 2.4.2. [28] [34] The result of ∞-surgery on the unknot K is S3. The gluing

map for the 1/0 =∞-surgery is:

h : ∂(S1 ×D2)→ ∂(S1 ×D2);h(α) = qm + pl = l.

1/0

Figure 31: Obtaining S3 by a Dehn Surgery .

Thus, S3 is obtained by 1/0-Dehn Surgery.

Example 2.4.3. [28] The conclusion of (+1)-surgery applied to T(2, 3) and (−1)-

surgery applied to T(2,−3) in S3 is the Poincaré manifold, respectively [28]. However,

these Poincaré manifolds have opposite orientations.

+1 -1

Figure 32: Obtaining Poincaré manifold by a Dehn surgery.

Example 2.4.4. [28] The lens space L(m,n) is a result of a Dehn surgery with Seifert

framing (−m/n) applied to an unknot in S3.
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-m/n

Figure 33: Obtaining L(m,n).

Theorem 2.4.1. “[32] Every lens space L(m,n) is a result of a surgery diagram as in

Figure 34 where −m/n = [s1, . . . , sk] is the continued fraction decomposition.

[s1, . . . , sk] =: s1 −
1

s2 −
1

s3 − . . .
1

sk

. ”

.     .     .

1 2 3 kk-1s s s s s

Figure 34: Surgery diagram for L(m,n) .

Example 2.4.5. In Figure 35, the result of each three surgery diagrams in S3 is the

lens space L(7, 4) .

-7/4 -2 -4 -1 -3 -4

(a) (b) (c)

Figure 35: Obtaining L(7, 4) from different Dehn Surgery diagrams.

As seen in Figure 35, there are many ways to obtain L(7, 4). However, Rasmussen

showed that the only way to obtain L(7, 4) by applying an integral surgery on an only

one knot in S3 is a surgery with framing (−7) applied to the left handed trefoil given

in Figure 36 [11].
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-7

Figure 36: Obtaining L(7, 4) by a Dehn Surgery .

2.5 Kirby Moves

Different surgeries applied to different knots may result in the same manifold. Kirby

moves are used for showing the resulting manifolds that are the same. For more

explanation see [7], [32] and [34].

Definition 2.5.1. [7][32] Kirby moves are the following two operations on a given link

L such that the manifold stay the same.

1) Kirby move 1 (KM1): Attach or remove an unknot with Seifert framing ±1 which

have no intersection with the other components of L. This movement equivalent

to taking a connected sum of S3 and a manifold or canceled, which results in the

same manifold M ; M = M#S3.

L L U
+- 1

Figure 37: Kirby move 1.

2) Kirby move 2 (KM2): Slide one components of a link over another. Given L1

and L2 which are knots with Seifert framing f1 and f2, respectively. Sliding L1

over L2 is substituting L# ∪ L2 for L1 ∪ L2 where L# = L1#cL
′
2 and L′2 is a

parallel push of L2 such that it links with L′2 with f2 times. The band c connects

L1 to L′2 as in Figure 38. After this slide, the framing of L1 unchanges while the

framing of L2 changes and the framing of L# is:

f# = f1 + f2 + 2lk(L1, L2)
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L1 L2

L

f2times

L2

c

Figure 38: Kirby move 2.

Definition 2.5.2. [7] [32] The operation removing an unknot with the framing ±1

from a link L is named as blow-down, otherwise adding an unknot with framing ±1 to

L is named as blow-up, see Figure 39.

+- 1

one full left 
or right twist

+- 1

Figure 39: General ±1 blowing up/blowing down.

Example 2.5.1. After blow-downs, the given framed link converts into an unlink with

three components whose framings are 1. Since (+1)-surgery on the unknot is S3, the

framed link in Figure 40 represents S3.

= =
blow-down blow-down

2 2 21 1 1 1 1 1

Figure 40: Converting a framed link into an unlink via blow-down.

2.6 Contact 3-manifolds

Assume that M is a 3-manifold. Consider its tangent space TpM at p ∈M . More-

over, consider its tangent bundle TM . TM =
⋃
p∈M TpM .
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Definition 2.6.1. [35] A 2-plane field ξ on a 3-manifold M is named as a contact

structure if there exists a 1-form α : TM → R such that locally ξ = kerα = {v ∈

TM | α(v) = 0} and α ∧ dα 6= 0. Also, such 1-form α is named as a contact form.

Definition 2.6.2. [35] A 3-manifold M is named as a contact 3-manifold if there exists

a contact structure ξ on M . It is denoted by the pair (M, ξ).

Example 2.6.1. [36] Let ξstd = kerα in R3 where 1-form α = dz − ydx. Since

α ∧ dα = (dz − ydx) ∧ d(dz − ydx)

= (dz − ydx) ∧ d(dz)− d(ydx) (since d is a linear map)

= (dz − ydx) ∧ (−dy ∧ dx) (since d(dz) = 0)

= (dz − ydx) ∧ (dx ∧ dy) (since −dy ∧ dx = dx ∧ dy)

= (dz ∧ dx ∧ dy)− (ydx ∧ dx ∧ dy)︸ ︷︷ ︸
=0

(since dx ∧ dx = 0)

= dz ∧ dx ∧ dy 6= 0,

the 1-form α is a contact form. So, ξstd is a contact structure on R3. Also, ξstdp at any

point p is generated by the following set:

kerαp = span
{ ∂

∂y
,
∂

∂x
+ y

∂

∂z

}
⊂ TR3

where αp : TpR3 → R and TpR3 = span
{ ∂

∂x
,
∂

∂y
,
∂

∂z

}
at each point p ∈ R3.

 

Figure 41: Standard contact structure on R3.
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Example 2.6.2. [36] For a 1-form α1 = dz+xdy, ξ1 = kerα1 is also a contact structure

on R3. Indeed, 1-form α1 is a contact form:

α1 ∧ dα1 = (dz + xdy) ∧ d(dz + xdy)

= (dz + xdy) ∧ d(dz) + d(xdy) (since d is a linear map)

= (dz + xdy) ∧ (dx ∧ dy) (since d(dz) = 0)

= (dz ∧ dx ∧ dy) + (xdy ∧ dx ∧ dy)︸ ︷︷ ︸
=0

(since dy ∧ dy = 0)

= dz ∧ dx ∧ dy 6= 0.

So, ξ1 is a contact structure on R3. At any point p, ξ1p is generated by the following

set:

kerα1p = span
{ ∂

∂x
,
∂

∂y
− x ∂

∂z

}
⊂ TR3

where α1p : TpR3 → R and TpR3 = span
{ ∂

∂x
,
∂

∂y
,
∂

∂z

}
at each point p ∈ R3.

Example 2.6.3. [36] An another sample of a contact structure on R3 is the symmetric

contact structure ξsym = kerα2 where 1-from α2 = dz − ydx + xdy. Indeed, 1-from

α2 = dz − ydx+ xdy is a contact form:

α2 ∧ dα2 = (dz − ydx+ xdy) ∧ d(dz − ydx+ xdy)

= (dz − ydx+ xdy) ∧ d(dz)− d(ydx) + d(xdy) (since d is a linear map)

= (dz − ydx+ xdy) ∧ (−dy ∧ dx+ dx ∧ dy) (since d(dz) = 0)

= (dz − ydx+ xdy) ∧ (2dx ∧ dy) (since −dy ∧ dx = dx ∧ dy)

= (dz ∧ 2dx ∧ dy) = 2dx ∧ dy ∧ dz 6= 0.

So, ξsym is a contact structure on R3. At any point p, ξsym is generated by the following

sets:

ξsymp = kerα2p = span
{
x
∂

∂x
+ y

∂

∂y
, y

∂

∂z
+

∂

∂x

}
if y 6= 0

ξsymp = kerα2p = span
{
x
∂

∂x
+ y

∂

∂y
, x

∂

∂z
− ∂

∂y

}
if x 6= 0

ξsymp = kerα2p = span
{ ∂

∂x
,
∂

∂y

}
if x = y = 0.

where α2p : TpR3 → R and TpR3 = span
{ ∂

∂x
,
∂

∂y
,
∂

∂z

}
at any point p ∈ R3. In

cylindrical coordinates, we put x = rcosθ and y = rsinθ where r and θ are as in the

Figure 42.
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(x,y,z)=(r,0,z)

Figure 42: Cylindrical coordinates.

Then, we find dx = cosθdr − rsinθdθ and dy = sinθdr + rcosθdθ. Now, substitute

x, y, dx and dy in the 1−form α2.

α2 = dz − ydx+ xdy = dz − rsinθ(cosθdr − rsinθdθ) + rcosθ(sinθdr + rcosθdθ)

= dz + r2dθ.

Therefore, the contact 1-form α2 = dz + r2dθ is in cylindrical coordinates.

 

Figure 43: Symmetric contact structure on R3.

Example 2.6.4. [35][36] For a 1-form α3 = cosrdz + rsinrdθ in R3 with cylindrical

coordinates, ξot = kerα3 is another contact structure on R3. Indeed, 1−form α3 is a
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contact form:

dα3 = d(cosrdz + rsinrdθ)

= −sinrdr ∧ dz + cosrd(dz) + (sinr + rcosr)dr ∧ dθ + rsinrd(dθ)

= −sinrdr ∧ dz + (sinr + rcosr)dr ∧ dθ (since d(dz) = d(dθ) = 0).

Now, we will compute α3 ∧ dα3.

α3 ∧ dα3 = (cosrdz + rsinrdθ) ∧ (−sinrdr ∧ dz + (sinr + rcosr)dr ∧ dθ)

= cosrsinrdz ∧ dr ∧ dθ + rcos2rdz ∧ dr ∧ dθ − rsin2rdθ ∧ dr ∧ dz

= cosrsinrdz ∧ dr ∧ dθ + rcos2rdz ∧ dr ∧ dθ + rsin2rdz ∧ dr ∧ dθ

= (cosrsinr + r)dz ∧ dr ∧ dθ

=

(
cosrsinr

r
+ 1

)
dz ∧ dr ∧ dθ 6= 0 (If r > 0,

cosrsinr

r
+ 1 > 0 )

So, ξot is a contact structure on R3. Also, ξotp at any point p is generated by the

following set:

kerα3p = span
{ ∂

∂r
,−rsinr ∂

∂z
+ cosr

∂

∂θ

}
⊂ TR3

where α3p : TpR3 → R and TpR3 = span
{ ∂

∂r
,
∂

∂θ
,
∂

∂z

}
at each point p = (r, θ, z) ∈ R3.

 

Figure 44: The overtwisted contact structure on R3.

Example 2.6.5. [36] [33] Consider 1-form α∼ = xdy − ydx + wdz − zdw on the unit

3-sphere S3 ⊂ R4.

α∼ ∧ dα∼ = (xdy − ydx+ wdz − zdw) ∧ d(xdy − ydx+ wdz − zdw)

= (xdy − ydx+ wdz − zdw) ∧ (2dx ∧ dy + 2dw ∧ dz)

= 2xdy ∧ dw ∧ dz − 2ydx ∧ dw ∧ dz + 2wdx ∧ dy ∧ dz − 2dx ∧ dy ∧ dw.
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The tangent space TpS
3 can be generated by the following set{
∂

∂x1

− x1

y1

∂

∂y1

,
∂

∂x2

− x2

y2

∂

∂y2

,
∂

∂x1

− x1

y2

∂

∂y2

}
.

On this basis for the tangent space TpS
3, α∼ ∧ dα∼ 6= 0. So, α∼ is a contact form and

ξstd = ker(α∼) is a contact structure on S3. This contact structure ξstd is called the

standard contact structure on S3, and this contact 3-manifold is denoted by (S3, ξstd).

Definition 2.6.3. [35] Consider two contact 3−manifolds (M1, ξ1) and (M2, ξ2). As-

sume there exists a map Φ : M1 →M2 which is a diffeomorphism such that dΦp(ξ
1
p) =

ξ2
Φ(p) for all p ∈ M1 where dΦp : TpM

1 → TΦ(p)M
2, then the two contact 3−manifolds

are called contactomorfic.

[33] In the previous examples of contact structures on R3, (R3, ξstd), (R3, ξ1) and

(R3, ξsym) are all contactomorfic contact structures on R3.

Example 2.6.6. [33] (R3, ξ1) and (R3, ξsym) are contactomorphic via a diffeomorphism

Φ : (R3, ξ1) → (R3, ξsym) such that Φ(x, y, z) = (x,
y

2
, z +

xy

2
) = (x′, y′, z′). The

differential of Φ for a point p ∈ R3 is a linear map dΦp : TpR3 → TΦ(p)R3 as the

following:

dΦp(w1, w2, w3) =


1 0 0

0 1/2 0

y/2 x/2 1


︸ ︷︷ ︸

JΦp


w1

w2

w3


︸ ︷︷ ︸

[w]β

.

where w = (w1, w2, w3) ∈ TpR3 and β =
{ ∂

∂x′
,
∂

∂y′
,
∂

∂z′

}
is a basis for TpR3. From

Example 2.6.2 and Example 2.6.3, the contact plane ξ1p and ξsymp at any point p are

generated by the sets
{ ∂

∂x
,−x ∂

∂z
+
∂

∂y

}
and

{
x′

∂

∂x′
+y′

∂

∂y′
, y′

∂

∂z′
+

∂

∂x′

}
where y′ 6= 0,

respectively.

dΦp(
∂

∂x
) =


1 0 0

0 1/2 0

y/2 x/2 1




1

0

0

 =


1

0

y/2


=

∂

∂x′
+
y

2

∂

∂z′

=
∂

∂x′
+ y′

∂

∂z′
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and

dΦp(
∂

∂y
− x ∂

∂z
) =


1 0 0

0 1/2 0

y/2 x/2 1




0

1

−x

 =


0

1/2

−x/2


=

1

2

∂

∂y′
− x

2

∂

∂z′

=
1

2

∂

∂y′
− x′

2

∂

∂z′

where y′ 6= 0. So,

dΦp(ξ1p) = span
{ ∂

∂x′
+ y′

∂

∂z′
,
1

2

∂

∂y′
− x′

2

∂

∂z′

}
= span

{ ∂

∂x′
+ y′

∂

∂z′
,
(1

2

∂

∂y′
− x′

2

∂

∂z′

)
+

x′

2y′

( ∂

∂x′
+ y′

∂

∂z′

)}
= span

{ ∂

∂x′
+ y′

∂

∂z′
,

1

2y′
(
x′

∂

∂x′
+ y′

∂

∂y′
)}

= span
{ ∂

∂x′
+ y′

∂

∂z′
, x′

∂

∂x′
+ y′

∂

∂y′

}
= ξsymp .

Therefore, the diffeomorphism Φ is a contactomorphism from (R3, ξ1) to (R3, ξsym).

Theorem 2.6.1. (Darboux’s Theorem)[37] “Let M be a contact 3-manifold M and

p be a point on M . Then, there exists a neighbourhood U ⊂ M of p such that it is

contactomorphic to a neighbourhood V of p1 = (0, 0, 0) in (R3, ξstd).”

2.7 Tight and Overtwisted Contact Manifolds

2.7.1 Overtwisted Contact Manifolds

Definition 2.7.1. [35] Suppose that there is a disk D which is embedded in (M, ξ).

Assume that its boundary which is denoted by ∂D is tangent to contact planes ξ

everywhere such that contact framing and Seifert framing of ∂D are equal. Then D is

called an overtwisted disc.

Example 2.7.1. In Example 2.6.4, the disc D = {(r, θ, z) ∈ R3|z = 0, r ≤ π} is an

overtwisted disc in (R3, ξot). Its boundary D is tangent to the contact planes every-

where.
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Figure 45: The overtwisted disc in (R3, ξ0t).

Definition 2.7.2. [35] If there exists an overtwisted disc in a contact 3-manifold, then

such a contact 3-manifold is called an overtwisted contact manifold.

Example 2.7.2. In Example 2.6.4, the contact manifold (R3, ξot) is an example of an

overtwisted contact 3-manifold since it has an embedded overtwisted disc in (R3, ξot).

2.7.2 Tight Contact Manifolds

Definition 2.7.3. [35] If a contact 3-manifold (M, ξ) does not have any overtwisted

disc in it, then it is called a tight contact 3-manifold.

Example 2.7.3. In Example 2.6.1 and Example 2.6.3, the contact 3-manifolds (R3, ξstd)

and (R3, ξsym) are examples of tight contact manifolds [14]. In these two contactomor-

phic contact manifolds, the contact planes twists slowly.

2.8 Legendrian knots in the 3−sphere

In a contact 3-manifold, a knot which is tangent to contact 2-planes in each place

is called a Legendrian knot [38]. We will study Legendrian knots in contact S3 in this

section.

Definition 2.8.1. [35][38] Let L be a knot in (M, ξ) which is an embedded S1. The

knot is called a Legendrian knot provided that the tangent space at p is in ξp;

TpL ∈ ξp for all p ∈ L. In other words, an embedded curve ϕ : S1 → M which is a

parameterization of L satisfies this condition: ϕ′(θ) ∈ ξϕ(θ) where ϕ′ : TθS
1 → Tϕ(θ)M

is a linear map for all θ ∈ S1.
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Darboux proved that every contact structure is locally contactomorphic to (R3, ξstd).

We can think a Legendrian knot L in R3 as a Legendrian knot in S3 since S3 is obtained

from R3 by adding a point at infinity to R3, L ⊂ S3 = R3 ∪ {p}.

Front projection is a projection map such that it projects curves in R3 to xz-plane.

It is useful to picturize the knots.

Definition 2.8.2. [35] Let ϕ(θ) = (x(θ), y(θ), z(θ)) be a parameterized curve in

(R3, ξstd). The front projection of the curve ϕ is the curve ϕf (θ) = (x(θ), z(θ)).

Take a Legendrian knot L in (R3, ξstd). A parameterization ϕ of L is defined as:

ϕ : S1 → R3; θ 7→ (x(θ), y(θ), z(θ)).

Suppose that ϕ is a C1 immersion which means that ϕ is differentiable and its

derivative dpϕ : TpS
1 → Tϕ(p)R3 is an injective map for each point p ∈ S1. By definition

of a Legendrian knot, ϕ′(θ) = (x′(θ), y′(θ), z′(θ)) ∈ ξstdϕ(θ) . Since ξstd = ker(dz − ydx),

the following equation is obtained:

z′(θ)− y(θ)x′(θ) = 0. (1)

Legendrian knots in (R3, ξstd) can be pictured by their front projections. The image

of ϕf (θ) : S1 → R2 : θ 7→ (x(θ), z(θ)) where ϕ is a parameterization of L is named as

the front projection of L. Though ϕ was an immersion, the front projection ϕf is not

an immersion. If x′(θ) vanishes, z′(θ) also vanishes from Equation (1). So, if the front

projection ϕf was an immersion, then x′(θ) must never 0. Thus, the front projection

of L does not have vertical tangencies.

For a generic C1 smooth L if x′(θ) = 0, then the point θ is an isolated point where

there exists a well-defined horizontal tangent line in the front projection of L. Such

points are named as generalized cusps.

Moreover, y-coordinate of ϕ can be regenerated from Equation (1):

y(θ) =
z′(θ)

x′(θ)
(2)

Thus, a front projection of a Legendrian knot has three properties. The first one is

that it does not have vertical tangencies. The second one is that its sole non-smooth

points are generalized cusps, and the third one is that the slope of the overcrossing is

smaller than the slope of the undercrossing in the front projection. [38].
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Example 2.8.1. The front projections of a Legendrian unknot and a Legendrian right

handed trefoil are given in Figure 46, respectively.

Figure 46: Legendrian unknot and Legendrian right handed trefoil knot.

Theorem 2.8.1. [38] For every topological knot K ⊂ S3, there exists a Legendrian

knot representing the knot K.

Proof. Any topological knot K can be converted into a Legendrian representative by

the following movements.

Figure 47: The movements of converting any topological knot into a Legendrian knot.

Example 2.8.2. Topological left handed trefoil is converted into Legendrian left

handed trefoil by the movements in Figure 47.
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Figure 48: A Legendrian realization of a left handed trefoil knot.

2.8.1 Contact Framing of Legendrian Knots

Definition 2.8.3. [33] [35] Consider a Legendrian knot L ⊆ (M, ξ). Consider a non-

zero vector field v and perpendicular to L. Parallel push of L in the direction v which

stays in ξ is called a contact framing of L.

Example 2.8.3. Let L be a Legendrian unknot in (R3, ξstd). The vector field v =
∂

∂z
is perpendicular to the standard contact planes ξstd. The parallel push of L in direction

v is the contact framing of L seeing in Figure 49.

L

L1

Figure 49: Contact framing of a Legendrian unknot.

2.9 Invariants of Legendrian Knots

2.9.1 Topological Knot Type

[38] Legendrian knot’s topological knot type is an invariant for the knot.

Example 2.9.1. Legendrian left handed trefoil is given in Figure 50. It is different

from the knot in Figure 51 since both have different knot types. The knot type of the

Legendrian knot in Figure 51 is a right handed trefoil.
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Figure 50: The knot type of Legendrian left handed trefoil.

Figure 51: The knot type of Legendrian right handed trefoil.

2.9.2 Thurston-Bennequin Invariant

Definition 2.9.1. [38] Consider a Legendrian knot L in (M, ξ). Assume that L is null-

homologous. Measurement of the twisting contact plane ξ around L is called Thurston-

Bennequin invariant denoted by tb(L) . In other words, Thurston-Bennequin invariant

is the twisting contact framing as regards the Seifert framing of the knot.

Consider a Legendrian knot which is null-homologous in (R3, ξstd). Take a non-zero

vector field v transverse to ξstd. Take a parallel push of the knot in the direction of v

which stays in contact planes. Then, Thurston-Bennequin invariant tb(L) is defined

as the linking between the knot and its parallel push off. Crossings between the knot

and its parallel push off are obtained at the crossings and the cusps of the knot. In

this situation, the following formula is obtained:

tb(L) = lk(L,L1) = writhe(ϕf (L))− 1

2
(total number of cusps in ϕf (L)).

Here writhe number is the right number which is sum of signs of each crossing in the

front projections.

Example 2.9.2. Consider a Legendrian unknot U in Figure 52(a). The vector field

v =
∂

∂z
is always perpendicular to ξstd. A parallel push of U in the direction

∂

∂z
is U ′
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in Figure 52(b). Then, the Thurston-Bennequin invariant of U is lk(U,U ′) = −2, or

tb(U) = writhe(ϕf (L))− 1

2
(# cusps) = 0− 1

2
4 = −2.

(a) (b)

U

U‘

Figure 52: Legendrian unknot and parallel push off of it.

2.9.3 Maximal Thurston-Bennequin Invariant

Definition 2.9.2. The maximal Thurston-Bennequin invariant of the knot type K is

the maximum of Thurston-Bennequin invariants over all Legendrian presentation of

the knot type K. It is denoted by maximaltb(K).

2.9.4 Rotation Number Invariant

Definition 2.9.3. [38] Consider an oriented Legendrian knot which is null-homologous.

Consider its Seifert surface Σ1
g. A trivial two dimensional tangent bundle is obtained

by the restriction of contact planes ξ to Σ1
g. A trivialization ξ|L = L × R2 is derived

from the trivialization of ξ|Σ1
g
. Take a vector field v which has the following properties:

1) It is non-zero,

2) It is tangent to the knot,

3) It points in the same direction as the knot.

Then, v can be considered as the set of non-zero vectors in R2. The winding number

of v is defined as the rotation number of L. It is denoted by rot(L).

Consider an oriented Legendrian knot in (R3, ξstd). The vector field w =
∂

∂y
is

a non-zero part of ξstd. The trivialization of the knot is formed by using w. Take

a vector field v which satisfies three conditions above. Then, the rotation number

rot(L) is equivalent to the signed number of how many times w and v point in the

same direction. If v passes w counter clockwise, it is called (+1). Otherwise, it is (−1).
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If the cusp is going down, the intersection will be positive. Otherwise, it is negative.

In this process, the number of times v intersects both w and −w is counted. For this

reason, it must be divided by two to find rot(L). Let Cu be the total number of up

cusps in the front projection. Let Cd be the total number of down cusps in the front

projection. Then, rotation number of the knot is

rot(L) =
1

2
(Cd − Cu).

Example 2.9.3. The Legendrian unknots with two different orientations U1 and U2 are

given in Figure 53. The rotation number of U1 in Figure 53(a) is rot(U1) =
1

2
(3−1) = 1,

and the rotation number of U2 in Figure 53(b) is rot(U2) =
1

2
(1− 3) = −1. Therefore,

the rotation number depends on the orientation.

(a) (b)

Figure 53: Oppositely oriented Legendrian unknot.

Example 2.9.4. Consider Legendrian right handed trefoil and Legendrian left handed

trefoil in Figure 54 in (R3, ξstd). They are different Legendrian knots because their

classical invariants are different.

Figure 54: Legendrian trefoil knots.

Classical invariants for the Legendrian right trefoil Lr are the following:

tb(Lr) = writhe(ϕf (Lr))−
1

2
(#cusps in ϕf (Lr)) = 3− 1

2
4 = 1

rot(Lr) =
1

2
(Cd − Cu) =

1

2
(2− 2) = 0.
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Classical invariants for the Legendrian left handed trefoil Ll are the following:

tb(Ll) = writhe(ϕf (Ll))−
1

2
(#cusps in ϕf (Ll)) = −3− 1

2
6 = −6

rot(Ll) =
1

2
(Cd − Cu) =

1

2
(4− 2) = 1.

2.10 Stabilizations

Stabilization for Legendrian knots is defined in (R3, ξstd), and performed locally

on the front projection of Legendrian knots. By Darboux’s theorem, Legendrian knot

stabilization operation can be done locally in any contact 3-manifold (M, ξ) [38].

Definition 2.10.1. [38] Consider an oriented Legendrian knot. The operation to

convert the knot into another Legendrian knot having equal topological knot type with

L by locally applying the movements in Figure 55 is called a stabilization. Adding

down cusps is named as a positive stabilization, and adding up cusps is named as a

negative stabilization. They are denoted by P+(L) and N−(L), respectively.

+

-

P

N

Figure 55: Positive and negative stabilization.

In the positive stabilization, the number of down cusps are increased by 2. In the

negative stabilization, the number of up cusps are increased by 2. Although the knot

type stays equal after the stabilization, the other two invariants alter as:

tb(P+(L)) = tb(L)− 1, tb(N−(L)) = tb(L)− 1

and

rot(P+(L)) = rot(L) + 1, rot(N−(L)) = rot(L)− 1.

Example 2.10.1. Consider the given Legendrian T(2, 3) in (R3, ξ) in Figure 54. Thurston-

Bennequin invariant of Legendrian T(2, 3) is tb = 1. Rotation number of Legendrian
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T(2, 3) is rot = 0. After a positive stabilization P+ in Figure 56(a), the classical in-

variants are tb(P+) = 0 and rot(P+) = 1. After a negative stabilization N− in Figure

56(b), the classical invariants are tb(N−) = 0 and rot(N−) = −1.

(b)(a)

Figure 56: A positive stabilization P+ of Legendrian T(2, 3). A negative stabilization

N−(L) of Legendrian T(2, 3).

2.11 Classification Types of Legendrian Knots

Legendrian knots are classified by two ways which are by contactomorphism and

by Legendrian isotopy.

Definition 2.11.1. [38] Consider two oriented Legendrian knots L1 and L2 in (M3, ξ).

If there exists a map ϕ from (M, ξ) to (M, ξ) so that ϕ(L1) = L2 and so that ϕ is a

contactomorphism and ϕ is isotopic to the identity function, then two knots L1, L2 are

called Legendrian isotopic knots.

Definition 2.11.2. [38] Consider two Legendrian knots L1 & L2 in (M, ξ). On the

condition that there is a contactomorphism ϕ from (M, ξ) to (M, ξ) such that ϕ(L1) =

L2, then L1 and L2 are equivalent up to contactomorphism.

2.12 Homotopy Invariants of Contact Structures

There can be one contact structure or more on a 3-manifold. Some invariants are

necessary to distinguish contact structures on 3-manifolds. There are two homotopy

invariants of contact structures on closed, orientable 3-manifolds. These are the d2-

invariant and the d3-invariant and these invariants are defined in [39].

The Euler class d2-invariant determines the homotopy over 2-skeleton of a closed,

orientable 3-manifold. The other one is d3-invariant of ξ which is a rational number such

that it determines the homotopy obstruction over the 3-skeleton of the 3-manifold. In
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other words, any two homotopic 2-plane fields over the 2-skeleton of a closed, orientable

3-manifold are homotopic over the 3-manifold if and only if their d3-invariants are the

same [39].

These two homotopy invariants of ξ can be computed by using surgery diagrams.

In this thesis, calculation of these two invariants will not be given. Calculation of these

invariants are given in detail [39], [40].

Followings are two useful lemmas for determining types of contact 3-manifolds.

Lemma 2.12.1. [40] The d3-invariant of ξstd given in Example 2.6.5 on S3 is d3(ξstd) =

−1

2
.

Lemma 2.12.2. [40] The d3-invariant of ξot on S3 obtained by contact surgery with

contact framing (+1) applied to the unknot with tb(L) = −2 and rot(L) = 1 in

(S3, ξstd) is d3(ξot) =
1

2
. Note that ξot is overtwisted.

2.13 Knots in Overtwisted Contact 3-Manifolds

Definition 2.13.1. [16] Take a Legendrian knot K in an overtwisted (M, ξ). If the

complement (M \K, ξ|M\K) is tight, then it is called an exceptional knot . Otherwise,

it is called a loose knot.

Example 2.13.1. Boundary of an overtwisted disc in an overtwisted manifold is an

example of a loose knot. In fact, it is a loose unknot.

3 Legendrian Torus Knots

3.1 Classification of Legendrian torus knots in (S3, ξstd)

Classification problem is an important problem for Legendrian knots. Classification

problem is studied by many mathematicians. For example, in 1998, Eliashberg and

Fraser classified Legendrian unknot in (S3, ξstd) [15]. Then, in 2001 Etnyre & Honda

gave the classification of Legendrian torus knots. They also classified Legendrian figure

eight knot in (S3, ξstd) in the same paper. Many mathematicians studied other Leg-

endrian knots in other contact 3-manifolds, too. Linear Legendrian curves in contact

3-torus T 3 were classified by Ghiggini in [41]. Furthermore, Legendrian torus knots
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in other contact 3-manifolds are studied by Onaran. Legendrian positive torus knots

in universally tight contact structures on lens spaces were classified in [18]. Recently,

classification problem of Legendrian knots in overtwisted S3’s has also been studied.

Eliashberg and Fraser classified exceptional unknots in overtwisted S3’s in [16]. Clas-

sification of Legendrian rational unknots in lens spaces L(p, 1) for odd p was done by

Etnyre and Baker in [42]. The same classification for any value of p was done by Geiges

and Onaran in [43]. First nontrivial knot type classifications was also done by Geiges

and Onaran. Exceptional Legendrian torus knots in overtwisted S3’s are classified in

[19].

Definition 3.1.1. [17] Assume that S3 is formed by two solid tori U and V , i.e.

S3 = U ∪T V where T is the common boundary of solid tori U and V . If µ and λ are

the unique curves which bound a disk in U and V , respectively, and µ and λ are two

homological generator curves on T , then any simple closed curve on T is in the form

lµ+mλ for relatively prime integers l and m. The simple closed curve lµ+mλ is called

a (l,m)-torus knot in S3. A Legendrian T(l,m) torus knot in (S3, ξstd) is a Legendrian

knot having knot type as T(l,m) torus knot.

Etnyre and Honda classified Legendrian torus knots in (S3, ξstd) in [17].

Theorem 3.1.1. “[17] Two oriented Legendrian torus knots in (S3, ξstd) are Legen-

drian isotopic if and only if they have the same classical invariants.”

Example 3.1.1. By Theorem 3.1.1, the following two realizations of Legendrian left

handed trefoil in (S3, ξstd) with tb = −6 and rot = 1 are Legendrian isotopic because

their classical invariants are the same.

Figure 57: Two realizations of Legendrian left handed trefoil in (S3, ξstd).

There are two types of Legendrian torus knots: positive Legendrian torus knots

and negative Legendrian torus knots.
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3.1.1 Positive Legendrian Torus Knots

Definition 3.1.2. A Legendrian torus knot T(l,m) in (S3, ξstd) where gcd(l,m) = 1 is

called a positive Legendrian torus knot if l,m > 0 .

In this thesis, positive Legendrian torus knots T(l,m) where m > l > 0 are studied.

The following theorem of Etnyre and Honda is about Legendrian positive torus knots.

Theorem 3.1.2. [17] “ If L is an oriented Legendrian T(l,m) knot where m > l > 0,

then the rotation number of L with maximaltb(L) = lm − l − m is rot(L) = 0. If

tb(L) = ml −m − l − k where k is a non-negative integer, then rot(L) ∈ {−k,−k +

2, . . . , k}.”

Legendrian right handed trefoil in standard contact S3 has the maximal Thurston-

Bennequin invariant maximaltb(Lr) = 1. Theorem 3.1.2 gives a table of the invariants

of Legendrian torus knots which have the same topological knot type. In this table,

every dot represents a pair of invariants of Legendrian torus knots, and every arrow

corresponds to a stabilization. For example, a table of the invariants of Legendrian

T(2, 3) where the knot is denoted by Lr is given Figure 58. Its maximal Thurston-

Bennequin invariant maximaltb(Lr) = 1 which is unique and it has the rotation number

rot(Lr) = 0.

-3 -2 -1 0 1 2 3rot=
1

0

-1

-2

tb=

Figure 58: Table of some Legendrian right handed trefoils with pairs of invariants.

The unique positive Legendrian T(2, 3) knot with maximaltb(Lr) = 1 and rot(Lr) =

0, the positive Legendrian T(2, 3) knot with maximaltb(Lr) = 0 and rot(Lr) = 1, and

the positive Legendrian T(2, 3) knot with maximaltb(Lr) = 0 and rot(Lr) = −1 are

given in Figure 59(a), Figure 59(b) and Figure 59(c), respectively.
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(a) (b) (c)

Figure 59: Three Legendrian realizations of positive right handed trefoil.

3.1.2 Negative Legendrian Torus Knots

Definition 3.1.3. A Legendrian torus knot T(l,m) in (S3, ξstd) where gcd(l,m) = 1 is

called a negative Legendrian torus knot if l < 0 and m > 0, or l > 0 and m < 0.

In this thesis, negative Legendrian torus knots T(l,−m) where m > l > 0 are

studied. The following theorem of Etnyre and Honda is about Legendrian negative

torus knots.

Theorem 3.1.3. [17] “ If L is an oriented Legendrian T(l,−m) where m > l > 0, then

the rotation number of L with maximaltb(L) = −lm is rot(L) ∈ {±(m− l−2lk) : k ∈

Z, 0 ≤ k ≤ (m− l)
l
}. ”

Legendrian left handed trefoil in standard contact S3 has the maximal Thurston-

Bennequin invariant maximaltb(Ll) = −6. Theorem 3.1.3 gives a table of the invariants

of Legendrian torus knots which have the same topological knot type. For example,

a table of the invariants of Legendrian T(2,−3) where the knot is denoted by Ll is

given Figure 60. There are two Legendrian T(2,−3) with maximaltb(Lr) = −6. Their

rotation numbers are rot(Lr) = ±1.

-3 -2 -1 0 1 2 3rot=
tb= -6

-7

-8

Figure 60: Table of some Legendrian left handed trefoils with pairs of invariants.
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The negative Legendrian T(2,−3) with maximaltb(Lr) = −6, and rot(Lr) = −1 can

be seen in Figure 61(a). The negative Legendrian T(2,−3) with maximaltb(Lr) = −6,

and rot(Lr) = 1 can be seen in Figure 61(b).

(a) (b)

Figure 61: Table of some Legendrian left handed trefoils with pairs of invariants.

3.2 Contact Surgery in Contact 3-Manifolds Along Legen-

drian Knots

Contact surgery applies to Legendrian knots while Dehn surgery applies to topo-

logical knots. To apply a contact surgery to a Legendrian knot L in (M, ξ), first a

tubular neighbourhood of the Legendrian knot is removed. Then, a new tight solid

torus is glued to the exterior M \L along the boundaries via a homeomorphism of the

tight solid torus such that one can extended the contact structure on M over the solid

torus [20], [40].

When a contact 3-manifold (S3, ξstd) is considered, contact surgery applied to a

Legendrian knot L is determined by coprime integers (p, q). Take a tubular neigh-

bourhood N(L). Homological generators of (S3 \ N(L), ξstd) are the meridian m and

the longitude l which come from the contact framing. Contact surgery applied to L

is gluing a tight solid torus (S1 ×D2, ξ′) to (S3 \N(L), ξstd) along boundaries via the

gluing map g:

g : ∂(S1 ×D2, ξ′)→ ∂((S3 \N(L)), ξstd)

{a} × ∂D2 7→ qm+ pl.

Therefore, after the contact surgery along L, a new contact 3-manifold (M, ξ) = ((S3 \

N(L)), ξstd) Ug (S1 ×D2, ξ′) is formed.

Definition 3.2.1. A contact surgery with contact framing (−1) applied to a Legen-

drian knot is called a Legendrian surgery.
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Theorem 3.2.1. [20] “Every closed and contact 3-manifold can be formed by contact

surgery with contact framing (±1) applied to a Legendrian link in (S3, ξstd). ”

Theorem 3.2.2. [40] “Contact surgery with contact framing (+1) applied to a Legen-

drian unknot with tb = −1 and rot = 0 is the tight contact 3-manifold (S1 × S2, ξ).”

Theorem 3.2.3. [44] “If a contact manifold (M1, ξ1) is formed by a Legendrian surgery

in a tight (M, ξ), then (M1, ξ1) is also tight.”

Observe that the result of a contact surgery can be overtwisted although the man-

ifold on which the surgery is applied is tight.

Example 3.2.1. [40] In Figure 62, the Legendrian unknot L in the standard contact

structures on S3 produces an overtwisted S3.

+1 -1

(a) (b)

Figure 62: (a) Contact (+1)-surgery and (b) −1-Dehn surgery.

The classical invariants of L in Figure 62(a) is tb(L) = −2 and rot(L) = 1,

and contact framing of L is (+1). By definition of Thurston-Bennequin invariant, L

has Seifert framing −1. So, the contact (+1)-surgery applied to the Legendrian knot

L corresponds to topological Dehn surgery with surgery coefficient −1 applied to a

topological unknot in Figure 62(b). Thus, the resulting manifold is S3. In Figure

63(a), Legendrian unknot L′ with contact framing c and tb(L′) = −1 is the boundary

of an overtwisted disc. Indeed, its Seifert framing is also c by Kirby move 1 as seeing

Figure 63(b) after converting the contact surgery diagram into topological surgery

diagram. Since tb(L′) = c − c = 0, L′ bounds an overtwisted disc by definition of an

overtwisted disc. Therefore, S3 in Figure 62(a) is an overtwisted manifold.
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+1

(a) (b)

L’

L

-1

c-1

-1 c

KM1

c

Figure 63: (a) Contact surgery diagram and (b) topological surgery diagram.

Lemma 3.2.1. “[45] (Cancellation Lemma) Take a Legendrian knot in (M, ξ) and take

its parallel push. Then, contact surgery with contact framing (−1) applied to the knot

and contact surgery with contact framing (+1) applied to its parallel push off cancel

each other. The resulting manifold (M1, ξ1) and (M, ξ) are contactomorphic.”

Lemma 3.2.2. Consider a loose knot. Then, contact (p/q)-surgery applied to the

loose knot always results in an overtwisted contact 3-manifold.

Proof. Since the given knot is a loose knot, the complement of the knot is an overtwisted

contact 3-manifold. So, an overtwisted disc exists in the complement. Contact (p/q)-

surgery along the loose knot can be done far away from this overtwisted disc in the

complement. Then, the overtwisted disc in the complement of L remains after the

contact (p/q)-surgery along the loose knot so that the resulting manifold is overtwisted.

Therefore, any contact surgery along a loose knot is always overtwisted.

3.3 Classical Invariants of Legendrian Knots from Surgery Di-

agrams

Definition 3.3.1. [43] [46] Let the surgery link L = K1 ∪K2 ∪ . . . ∪Kn in (S3, ξstd)

be a contact (±1)-surgery representation of closed and contact 3-manifold (M, ξ) such

that L is an oriented link with the integral surgery coefficients fi = tb(Ki)± 1 of each

components Ki where i = 1, 2, . . . , n. Take a Legendrian knot K0 in (S3, ξstd) disjoint

from L. Then the matrix

A = (ai,j) =

fi ;i = j

lk(Ki, Kj) ;i 6= j
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is called the linking matrix of L, and the matrix

A0 = (ai,j) =


0 ;i = j = 0

fi ;i = j 6= 0

lk(Ki, Kj) ;i 6= j

is called an extended linking matrix. In other words, A0 is the linking matrix of K0∪K.

Lemma 3.3.1. [46] [43] “ Let the surgery link L = K1∪K2∪ . . .∪Kn be a contact (±)-

surgery representation of (M, ξ). Take a Legendrian knot K0 in (S3, ξstd) disjoint from

L. The Thurston-Bennequin invariant of K0 in (M, ξ) is tb(K0) = tb0(K0) +
detA0

detA
where tb0(K0) is the Thurston-Bennequin invariant of K0 before the surgery. The

rotation number of K0 in (M, ξ) is rot(K0) = rot0(K0)− < rot, A−1 · lk > where

rot0(K0) is the rotation number of K0 before the surgery, rot is the vector of rotation

numbers, and lk is the vector of linking numbers between K0 and Ki for i = 1, 2, . . . , n.”

Lemma 3.3.1 above is Lemma 6.6 of [46] and Lemma 2 of [43]. This lemma extended

to more general contact 3-manifolds in [47], see Lemma 6.4 of [47]. See also Theorem

4.3 in [48] for computing rotation number in contact surgery diagrams.

3.4 Contact Surgery along Legendrian Torus Knots

Before studying contact surgery along Legendrian torus knots, Dehn surgery along

torus knots is studied in this section. In 1971, Moser studied Dehn surgery applied to

torus knots.

Theorem 3.4.1. “ [8] Take a torus knot T(l,m) in S3 where |m| > l > 0 and M is

the new manifold which is obtained by a topological Dehn surgery with framing (−q/p)

applied to the torus knot. Assume σ = lmp+ q.

1) When |σ| 6= 0, M is a Seifert manifold such that it is singularly fibered by simple

closed curves over S2 with singularities of types α1 = m, α2 = l and α3 = |σ|.

2) When σ = ±1, there are only two singular fibers of types α1 = m and α2 = l,

and M is the Lens space L(|q|, pl2).

3) When |σ| = 0, M is L(l,m)#L(m, l), and it is not singularly fibered.”
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It is shown that there are different ways to obtain lens space L(7, 4) in Example

2.4.5. Similarly, there are different ways to obtain the lens space L(7, 4) by a surgery

along a (l,m)-torus knot T(l,m) in S3 for relatively prime integer l, m.

At this point, Rasmussen gave an important result. He proved that the only way

to obtain the lens space L(7, 4) by an integral surgery on S3 is (−7)-surgery along

a left handed trefoil knot. Rasmussen gave the generalization of this result in [11].

Rasmussen states his result in [11] in terms of positive torus knots, here in this thesis,

the same result in terms of negative torus knots is stated.

Corollary 3.4.1. [11] “The sole way to obtain the lens space L(4m+ 3, 4) by a topo-

logical integral surgery applied to a single knot in S3 is an integral surgery with framing

−(4m+ 3) applied to T(2,−(2m+ 1)).”

In contact perspective, there are three tight contact structures on contact L(7, 4).

Plamenevskaya claimed that only one tight contact structure of the total three tight

contact structures on the contact lens space L(7, 4) can be realized by contact surgery

with contact framing (−1) applied to a Legendrian T(2,−3) in some contact structure

on S3 using Rasmussen’s result [49]. Geiges and Onaran showed that there is a mistake

in Plamenevskaya’s result in [21]. They showed that all three contact structures which

are tight on the lens space L(7, 4) can be obtained by a single contact surgery with

contact framing (−1) applied to a Legendrian left handed trefoil in S3. Also, they

generalized the result for the lens spaces L(4m+ 3, 4) in [21].

In this chapter, the results of Geiges and Onaran and their surgery techniques in

[21] are studied in detail.

3.4.1 Contact Structures on Contact Lens Spaces

Honda, independently Giroux gave the exact number of tight contact structures

that can exist on special class of 3-manifolds which are lens spaces [50] [51].

Theorem 3.4.2. “[50] [51] Let L(p, q) be a lens space where p > q > 0 and gcd(p, q) =

1. The exact number of contact structures which are tight on a given lens space is

(r0 − 1)(r1 − 1) . . . (rk − 1)
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where the ri ≥ 2 which are the terms in the following continued fraction expansion

p

q
= r0 −

1

r1 −
1

r2 − · · ·
1

rk

=: [r0, . . . , rk].”

3.4.2 Contact Lens Space L(7, 4)

In this section, contact 3-manifold L(7, 4) and the three tight contact structures on

it analyzed by using contact surgery techniques in [21] for understanding lens spaces

and contact surgery techniques better.

Theorem 3.4.3. [21] All three tight contact structures on the lens space L(7, 4) can

be formed via an only one (−1)-contact surgery applied to a Legendrian realization of

T(2,−3) in some contact structure on S3.

Proof. There are three different tight contact structures ξ1, ξ2, ξ3 on L(7, 4) by Theorem

3.4.2 where the continued fraction is
7

4
= 2 − 1

4
=: [2, 4]. Their d3-invariants are

d3(ξ1) = d3(ξ2) = −2/7 and d3(ξ3) = 0 which are calculated in [21]. Two of them have

the same d3-invariants but their d2-invariants are different. Using their d2-invariants,

they are distinguished. The contact structure ξ3 is different from ξ1 and ξ2 since

d3(ξ3) = 0 6= −2/7 = d3(ξ1) = d3(ξ2).

There are many ways to obtain the lens space L(7, 4). However, Rasmussen showed

in Corollary 3.4.1 that there is an only one way to obtain L(7, 4) by an integral surgery

on S3 that is a (−7)-surgery along T(2,−3) in S3 .

Legendrian T(2,−3) having Thurston-Bennequin invariant tb = sf − cf = −7 −

(−1) = −6 in (S3, ξstd) or an exceptional left handed trefoil knot in an overtwisted S3

have to be considered if a single (−1)-contact surgery along Legendrian left handed

trefoil T(2,−3) in some contact structure on S3 is used for getting L(7, 4).

The maximal Thurston-Bennequin invariant of Legendrian T(2,−3) in (S3, ξstd) is

maximaltb = −6 by Theorem 3.1.3. There are two different realizations of T(2,−3)

with maximaltb = −6. Their rotation numbers are ±1 which are shown in Figure 64.
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(a) (b)

Figure 64: Two different realizations of Legendrian left handed trefoil with tb = −6 in

(S3, ξstd).

The results of (−1)-contact surgeries along the two Legendrian left handed trefoils

in (S3, ξstd) give two different contact structures ξ1 and ξ2 on the lens space L(7, 4) such

that d3(ξ1) = d3(ξ2) = −2/7, but their d2-invariants are different because their rotation

numbers are different. So, ξ1 and ξ2 are different by Lisca and Matić [52]. In this

thesis, calculation of d3-invariant will not be done, but the detailed calculations of d3-

invariants can be found in [21]. Also, these two different contact manifolds (L(7, 4), ξ1)

and (L(7, 4), ξ2) are tight by Theorem 3.2.3.

The other realization of T(2,−3) is an exceptional knot K which is given in Figure

65 in an overtwisted contact S3. The given surgery diagram is overtwisted S3 since its

d3-invariant is 3/2 which is different from −1/2. This invariant is calculated in detail

in [21].

-1

-1

-1

+1
+1
K

K
K

K

K

K

1

2

3

4

5

Figure 65: An exceptional left handed trefoil in an overtwisted S3.

Contact surgery with contact framing (−1) is applied to the knot K in Figure 65 to

show that it is an exceptional knot in an overtwisted contact S3. By the cancellation
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lemma, contact surgery with contact framing (−1) cancels contact surgery with contact

framing (+1) applied to the parallel push off of the knot. Contact surgery with contact

framing (+1) applied to Legendrian unknot results in the tight S1 × S2 by Theorem

3.2.2. By Wand’s theorem, remaining other contact surgeries with contact framing

(−1) result in a tight contact structure by Theorem 3.2.3. So, contact surgery with

contact framing (−1) applied to the knot K is a tight contact manifold. So, K must

be an exceptional knot in an overtwisted S3 by Lemma 3.2.2.

Kirby moves is used to show that the exceptional realization of the left handed trefoil

K in Figure 65 corresponds to a topological left handed trefoil as seeing in Figure 66 and

67. To find the Thurston-Bennequin invariant of the knot K in the surgered manifold,

the linking matrix of the surgery is formed as follows according to Definition 3.3.1.

Seifert framings of Ki for each i = 1, 2, 3, 4, 5 are obtained as 0, 0,−3,−3,−2 from

Figure 65, respectively. Also, the linking numbers lk(Ki, Kj) = −1 for i, j = 1, 2, 3, 4

and lk(K5, Kj) = 0 for j = 1, 2, 3 and lk(K5, K4) = −1. Then, using Definition 3.3.1

the linking matrix and the extended linking matrix of the knot K can be found as the

following.

A =



0 −1 −1 −1 0

−1 0 −1 −1 0

−1 −1 −3 −1 0

−1 −1 −1 −3 −1

0 0 0 −1 −2



A0 =



0 −1 −1 −1 −1 0

−1 0 −1 −1 −1 0

−1 −1 0 −1 −1 0

−1 −1 −1 −3 −1 0

−1 −1 −1 −1 −3 −1

0 0 0 0 −1 −2



Thus, using Lemma 3.3.1 the Thurston-Bennequin invariant of the exceptional left

handed trefoil in the surgery diagram in Figure 65 is tb(K) = tb0(K) +
detA0

detA
=

−1 +
5

−1
= −6 where the Thurston-Bennequin invariant of K before the surgery is
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tb0(K) = −1.

Contact surgery with contact framing (−1) applied to the exceptional left handed

trefoil knot K in the overtwisted S3 gives another tight contact structure ξ3 on L(7, 4)

such that d3(ξ3) = 0. The detailed calculations of d3-invariants can be found in [21].

Therefore, the three different tight contact structures ξ1, ξ2, ξ3 on L(7, 4) can be

observed by contact surgery with contact framing (−1) applied to the Legendrian left

handed trefoil knots in Figure 64, and the exceptional Legendrian T(2,−3) in Figure

65. The tight contact structures ξ1 and ξ2 on L(7, 4) come from contact surgery with

contact framing (−1) applied to Legendrian left handed trefoil knots in the standard

tight contact S3 in Figure 64(a) and Figure 64(b), respectively. The other tight contact

structure ξ3 on the contact lens space L(7, 4) is obtained by contact (−1)-surgery along

exceptional left handed trefoil in an overtwisted contact structure on S3 in Figure 65.

-1
0

0
-3

-3

-2

1
-2

-2

-2
1 1

0
-2

-2

-2

1

0 -2

-2

-2

11

-1

-2

+1
-1

-1

-2

-1

+1

-1

-2

0

-2

+2

0

Figure 66: Kirby moves for the exceptional left handed trefoil in an overtwisted S3.
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Figure 67: Handle slides for the exceptional left handed trefoil in an overtwisted S3.

3.4.3 Contact Lens Spaces L(4m+ 3, 4)

In this section, contact 3-manifold L(4m + 3, 4) where the integer m ≥ 1 and the

number of tight contact structures on it analyzed by using contact surgery techniques

in [21] for understanding lens spaces and contact surgery techniques better. Note that

m = 1 case, L(7, 4) case, is already studied in previous Section 3.4.2.

Theorem 3.4.4. “ [21] Each tight contact structures on the lens space L(4m + 3, 4)

can be formed via a single Legendrian surgery along a suitable Legendrian realization

of T(2,−(2m+ 1)) in some contact structure on S3 where m ≥ 1.”

Proof. There are 3m tight contact structures ξ1, ξ2, . . . , ξ3m on L(4m+ 3, 4) by The-

orem 3.4.2 where the continued fraction is
4m+ 3

4
= m+ 1− 1

4
=: [m+ 1, 4].

Similar to the case where m = 1, the lens space L(7, 4), there are many ways to

obtain the lens space L(4m+3, 4) for m ≥ 1. However, Rasmussen showed in Corollary

3.4.1 that there is an only one way to obtain L(4m+ 3, 4) by an integral surgery on S3

that is a −(4m+ 3)-surgery along a negative torus knot T(2,−(2m+ 1)) in S3 .

Legendrian T(2,−(2m + 1)) with tb = sf − cf = −(4m + 3)− (−1) = −(4m + 2)

in (S3, ξstd), or an exceptional T(2,−(2m+ 1)) in some overtwisted contact structures

on S3 should be found if a (−1)-contact surgery along a Legendrian T(2,−(2m + 1))

in some contact structure on S3 is used for getting L(4m+ 3, 4).
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The maximal Thurston-Bennequin invariant for Legendrian T(2,−(2m + 1)) in

(S3, ξstd) is maximaltb = −(4m + 2) by Theorem 3.1.3. There are 2m Legendrian

T(2,−(2m+ 1)) with maximaltb = −(4m+ 2) such that their rotation numbers are in

the following set

rot ∈ {−2m+ 1,−2m+ 3, . . . , 2m− 3, 2m− 1}.

The results of contact (−1)-surgery along these 2m Legendrian negative torus knots

T(2,−(2m + 1)) in (S3, ξstd) give 2m different contact structures ξ1, ξ2, . . ., ξ2m on

L(4m + 3, 4). These 2m contact structures are different since they come from 2m

Legendrian T (2,−(2m+ 1)) knots having the same Thurston-Bennequin invariant but

having different rotation numbers. Then, this will correspond to different contact

structures on L(4m + 3, 4) by [52]. In other words, these 2m contact structures are

different by their different rotation numbers. Also, the 2m different contact structures

are tight by Theorem 3.2.3.

The remaining m realizations of T(2,−(2m + 1)) have to be exceptional knots in

some overtwisted contact structures on S3 in Figure 68, and they are given in [46].

This surgery diagrams in Figure 68 give overtwisted contact structures on S3 since

d3 = 2a+ 3/2 6= −1/2 for a ∈ N0. It is calculated in detail in [21].

.
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Figure 68: Exceptional realizations of T(2,−(2m+ 1)) where m = a+ b+ 1, a, b ∈ N0.

Similar to the case L(7, 4), contact surgery with contact framing (−1) applied to the
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exceptional torus knots K in Figure 68 gives a tight contact manifold by the cancella-

tion lemma. So, the realisations of T(2,−(2m+ 1)) must be exceptional in overtwisted

S3 by Lemma 3.2.2.

The exceptional torus knots K in Figure 68 correspond to the topological torus

knots T(2,−(2m + 1)) by Kirby moves. The given surgery diagram in Figure 68 cor-

responds to the topological surgery diagram which is similar to the surgery diagram

in Figure 66 where the −(m + 1) = −n-framing occurs instead of the (−2)-framing.

The exceptional torus knots K in Figure 68 separates from the surgery link by using

1 + n handle slides instead of the 1 + 2 slides in Figure 67. Then, the topological

T(2,−(2m+1)) in S3 is obtained. The surgery linking matrix and the extended matrix

of K are used for showing Thurston-Bennequin invariant of the knot K in Figure 68.

By using Definition 3.3.1, the linking matrix of K is

A =



0 −1 −1 −1 0

−1 0 −1 −1 0

−1 −1 −3 −1 0

−1 −1 −1 −3 −1

0 0 0 −1 −(m+ 1)


.

Also, by using Definition 3.3.1 again, the extended linking matrix of K is

A0 =



0 −1 −1 −1 −1 0

−1 0 −1 −1 −1 0

−1 −1 0 −1 −1 0

−1 −1 −1 −3 −1 0

−1 −1 −1 −1 −3 −1

0 0 0 0 −1 −(m+ 1)


.

Thus, the classical invariants of K can be computed by Lemma 3.3.1.

tb(K) = tb0(K) +
detA0

detA
= −1 +

−3 + 4(m+ 1)

−1
= −(4m+ 2)

where the Thurston-Bennequin invariants of the knot K in unsurgered manifold is by

tb0(K) = −1. The rotation numbers can be computed by

rot(K) = rot0(K)− < rot, A−1 · lk >
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rot(K) = 0− < (0, 0, 1, 1, b− a)t, A−1 · (−1,−1,−1,−1, 0)t >

rot(K) = −(4m+ 3) + 2(b− a) = −(4m+ 3) + 2(m− 1− 2a)

for the integer m ≥ 1 and for the numbers a, b ∈ N ∪ {0}, a + b = m − 1 by Lemma

3.3.1. So, the rotation numbers of K in modulo(4m+ 3) is:

rot(K) = −(4m+ 3) + 2(m− 1− 2a) ≡ 2(m− 1− 2a) mod(4m+ 3)

where 0 ≤ a ≤ m − 1. Then, there are m distinct rotation numbers of K in the

following set

rot(K) ∈ {−2m+ 2,−2m+ 6, . . . , 2m− 6, 2m− 2}.

Contact surgery with contact framing (−1) applied to the exceptional negative

torus knots T(2,−(2m + 1)) in some overtwisted contact structures on S3 gives the

other m tight contact structures ξ2m+1, . . . , ξ3m on L(4m + 3, 4). These m tight

contact structures are different since they are obtained by Legendrian T (2,−(2m+ 1))

having the same Thurston-Bennequin invariant but having different rotation numbers.

So, ξ2m+1, . . . , ξ3m are different by Lisca and Matić [52]

Therefore, the 3m tight contact structures ξ1, ξ2, . . . , ξ3m on L(4m + 3, 4) can be

observed by a single contact surgery with contact framing (−1) applied to Legendrian

T(2,−(2m + 1)) in (S3, ξstd) and the exceptional negative torus knots in Figure 68 in

some overtwisted contact structures on S3. The tight contact structures ξ1, . . . , ξ2m

on L(4m + 3, 4) come from contact surgery with contact framing (−1) applied to

Legendrian T(2,−(2m + 1)) with Thurston-Bennequin invariant tb = −(4m + 2) in a

standard contact structure on S3 and their rotation numbers are in the set {−2m +

1,−2m+ 3, . . . , 2m− 3, 2m− 1} . The other m tight contact structure ξ2m+1, . . . , ξ3m

on L(4m + 3, 4) come from contact surgery with contact framing (−1) applied to

exceptional negative torus knot T(2,−(2m+1)) in some overtwisted contact structures

on S3 in Figure 68.
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4 Conclusion

During the historical development of contact topology, lens spaces are obtained by

surgery, but deciding which knots are used is the real problem. Many mathematicians

studied on this problem. As noted by Moser in [8], the lens spaces obtained by Dehn

surgery along torus knots were classified. In another respect, Rasmussen showed in

[11] that there is only one way to produce a special class of lens spaces which are

L(4m+ 3, 4) by an integral surgery.

This thesis helps to understand lens spaces by using contact surgeries. This study

highlighted the importance of learning contact surgery techniques.

There are lots of ways to obtain lens spaces, but how to obtain a lens space by a

single contact surgery along a single knot is a problem. Also, how to obtain all tight

contact structures on the lens space is another problem. In this thesis, the lens spaces

that are obtained by a contact surgery with contact framing (−1) applied to a single

Legendrian negative torus knot are studied. Also, the techniques for obtaining all tight

contact structures on the lens space are learned.

For this purpose, it is studied how to be formed lens spaces L(4m+3, 4) by a contact

surgery with contact framing (−1) applied to a single Legendrian negative torus knot.

Also, the fact that tight contact structures which are different on L(4m + 3, 4) result

from Legendrian surgery along Legendrian realisations of Legendrian negative torus

knot is examined to understand 3-manifold L(4m + 3, 4) better. The contact surgery

techniques given by Geiges and Onaran are learned during the study [21].

For future research, the question of how to classify negative Legendrian torus knots

in universally tight lens spaces will be studied. It would be also interesting to study

on surgeries along positive Legendrian torus knots. In the future work, the following

listed open problems are planned to be studied.

Open Problem 1: Classify negative Legendrian torus knots in universally tight

lens spaces.

Open Problem 2: Study surgeries along positive Legendrian torus knots.
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