
REPUBLIC OF TURKEY
HACETTEPE UNIVERSITY

INSTITUTE OF HEALTH SCIENCES

THE SAMPLE SIZE CALCULATION IN

CLINICAL TRIALS AND COMPARISONS WITH

CLASSICAL APPROACHES

Ebru ÖZTÜRK

Program of Biostatistics
MASTER OF SCIENCE

ANKARA
2018





REPUBLIC OF TURKEY
HACETTEPE UNIVERSITY

INSTITUTE OF HEALTH SCIENCES

THE SAMPLE SIZE CALCULATION IN

CLINICAL TRIALS AND COMPARISONS WITH

CLASSICAL APPROACHES

Ebru ÖZTÜRK

Program of Biostatistics
MASTER OF SCIENCE

ADVISOR
Prof. Ergun KARAAĞAOĞLU

CO-ADVISOR
Assit. Prof. Nimet Anıl DOLGUN

ANKARA
2018









vi

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to my advisor Prof. Ergun
Karaağaoğlu for support, guidance, motivation and patience during thesis study.
It has always been an honour for me to be his student.
I would like to present my grateful thanks to my examining committee members:
Prof. Reha Alpar, Prof. Mehtap Akçil Ok, Assoc. Prof. Jale Karakaya and
Assist. Prof. Sevilay Karahan for their valuable time to review my study.
I would also like to acknowledge my dear fellow, Elif Akça with my best wishes
and hopes to be together in the future
I would like to thank Duygu Aydın Haklı, Merve Başol and Dinçer Göksülük for
their nice friendship and kind supports. Special thanks to Dinçer Göksülük for
sharing LATEX template with me. I would thank to all members of Hacettepe
University Department of Biostatistics.
My warm and sincere thanks to my best friend, Öznur Demirel for her warm
friendship, inspirational soul and supporting my dreams.
Finally, I would like to represent to my deepest thanks to my dear family for their
unconditional love, support and patience. Without them, I could not success to
finish this thesis.



vii

ABSTRACT

Öztürk, E. Sample Size Calculation in Clinical Trials and Comparisons
with Classical Approach. Hacettepe University Institute of Health
Sciences, MSc. Thesis in Biostatistics, Ankara, 2018. Clinical trials are
well-planned studies. One of the earlier steps in clinical trials is the determination
of sample size. The question "how many subjects should be used?" must be an-
swered carefully by considering many important aspects of the study. Some of the
clinical trials might be too expensive. Besides, in some of them, finding subjects
may be difficult to include clinical trials. For such these reasons, it is not efficient
including either too few or too many subjects in clinical trials. Therefore, sample
size calculation is an important issue in clinical trials due to ethical, economic
and scientific reasons. There are several factors that affect the sample size such
as study design, trial objectives or clinical important difference. In this thesis,
we give an overview of sample size calculation in clinical trials. Parallel group
and cross-over study designs are taken into account. We also considered equal-
ity, superiority, non-inferiority and equivalence trials for two samples. First, we
gave proofs of sample size calculations with both known and population variance.
Then, we show numeric examples to clarify sample size calculation. Additionally,
we share how these calculations are carried out RStudio. We also create simula-
tion scenarios under different distributions, trial objectives, sample size with the
clinical important difference and specified effect sizes to compare observed power.
We show that the observed power is highest in non-inferiority trials compared to
superiority and equality trials based on same clinical important difference, Type
I error, study design and sample size. The observed power is higher in cross-over
design compared to parallel group design with same clinical important difference,
Type I error, trial objective and sample size. The responses are created under
different distributions, however; there is no considerable effect of different distri-
butions on observed power.

Key Words: Sample size calculations, clinical trials, observed power, paral-
lel group design, cross-over design.
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ÖZET

Öztürk, E. Klinik Denemelerde Örneklem BüyüklüğüHesaplamaları ve
Klasik Hesaplama Yöntemleri ile Karşılaştırılması. Hacettepe Üniver-
sitesi Sağlık Bilimleri Enstitüsü, Biyoistatistik Programı Yüksek Lisans
Tezi, Ankara, 2018. Klinik araştırmalar iyi planlanması gereken çalışmalardır.
Çalışmanın başında, örneklem büyüklüğünün hesaplanması çalışmanın önemli
adımlarındandır. "Çalışmada en az kaç kişi bulunmalıdır?" sorusu çalışmanın
önemli yönleri ele alınarak dikkatlice cevaplandırılmalıdır. Bazı klinik araştırmaların
maliyeti çok yüksek olabilir. Bununla birlikte, bazı klinik araştırmalarda ise
çalışmaya katılacak kişilerin bulunması zor olabilir. Bu ve buna benzer nedenler-
den dolayı klinik denemelerde örneklem büyüklüğü çok az ya da çok fazla olma-
malıdır. Örneklem büyüklüğünün belirlenmesi ekonomik, etik ve bilimsel neden-
lerle önemli bir konudur. Örneklem büyüklüğünü deneme amacı, deseni ve etki
büyüklüğü gibi çeşitli faktörler etkilemektedir. Bu tezde, klinik araştırmalarda
örneklem büyüklüğü hesaplamasına genel bir bakış sunulmuştur. Klinik den-
emelerde birincil değişkene ait ölçümlerin sürekli ve iki yanıtlı veri tipinde ol-
ması durumu ele alımıştır. Klinik deneme düzeni olarak paralel düzen ve çapraz
geçişli düzen üzerinde durulmuştur. Bilinen ve bilinmeyen evren varyansları ile
örneklem büyüklüğünün nasıl hesaplanacağı ispatlar ve sayısal örneklerle göster-
ilmiştir. Bunlara ek olarak, bu hesaplamaların RStudio programı kullanılarak
nasıl yapıldığına değinilmiştir. Farklı dağılımlar, deneme amaçları ve örnek-
lem büyüklükleri,gözlenen güç ve belirli etki büyüklükleri ile karşılaştırmak için
simülasyon senaryoları oluşturulmuştur. Aşağı olmayış denemelerinde gözlenen
güç üstünlük ve eşitlik denemelerine göre en yüksektir. Aynı Tip I hata, deneme
amacı ve örneklem büyüklüğüne sahip çapraz geçişli denemelerde gözlenen güç
paralel grup denemelerine göre daha yüksektir. Farklı dağılımların gözlenen güç
üzerinde önemli bir etkisi bulunamamıştır.

Anahtar Kelimeler: Örneklem büyüklüğü hesaplaması, klinik deneme, gözle-
nen güç, paralel grup deneme deseni, çapraz geçişli deneme
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1 INTRODUCTION

Clinical trial is the study conducted on people prospectively that the par-
ticipants receive the treatments (initiatives) determined within the framework of
a protocol. These treatments or initiatives might be a medical product such as
a drug or device, or a process (diet, etc.) that may change the behavior of the
participant. A new medical approach is compared against a standard approach
that already exists or against a placebo. Sometimes, two methods currently in
use can be compared in some clinical trials.

When researchers design a clinical trial, first question is that how many
subjects are needed in this trial. When a new product or approach is tested it is
unknown whether it is beneficial, harmful, or different from existing alternatives
(including placebo). For this reason, accurate determination of sample size in
clinical trials is very important in order to ensure that people benefit from better
treatment or are protected against worse treatment.

There are three main reasons underlying the determination of sample size
which are economic reasons (1), ethical reasons (1) and scientific reasons (2),
respectively.

• Economic reasons:An undersized study, the clinically significant results
might not be obtained due to inadequate data. Therefore, the study might
result in waste of resources. In spite of the fact that statistical significance
could be achieved with a smaller sample size, a study with an oversized
sample causes waste of resources by taking more subjects (1).

• Ethical reasons: An oversized study might be unethical as large number
of subjects might be exposed to treatment that has unknown capability. For
an undersized study, it may not be possible to notice clinically meaningful
difference due to too small sample size. Therefore, an undersized study
also might be unethical based on usage of subjects and other resources.
In another words, subjects may be exposed to treatment with unknown
efficacy (1).

• Scientific reasons: An undersized study, clinically important results might
not be detected statistically through small sample size. On the other hand,
an oversized study might enable to obtain statistically significant results
without considering clinical importance (2).

In conclusion, the determination of the sample size in clinical trials is
important in terms of the validity, reliability and ethical integrity of the study
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design.
Several factors play a role in determining sample size in clinical trials.

These are trial objective, primary end point, study design, effect size, variability
in population, type I error, type II error and other factors such as drop out ratio
(3).

In this study, we will discuss the case where the primary end points in
the clinical trials are continuous and binary. Parallel group and cross-over study
designs will be emphasized on hypothesis testing in clinical trials. The purpose
of this study is to highlight the importance of sample size calculation
for clinical trials. Besides, figuring out how the sample size changes
according to the trial objectives (equality, superiority, etc.) and study
designs (parallel group and cross-over designs) with respect to known
and unknown population variance. Moreover, simulation scenarios are
created under different distributions, trial objectives, sample size with
different clinically important difference and specified effect sizes that
is worth detecting observed power.

The plan of this thesis is as follows: In Chapter 2, general information of
methods is given. In Chapter 3, material and methods are discussed. In Chapter
4, the results are demonstrated. Finally, the discussion and conclusion follow in
Chapter 5 and Chapter 6.
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2 GENERAL INFORMATION

In this chapter, the background information relating to the factors that
affect sample size in clinical trials is presented.

2.1 Study Design

According to Good Clinical Practice Guidelines (GCP), the overall plan
and design of a clinical trial should be clearly defined in the protocol (4). A well-
organized protocol involves study design, trial objectives, subject inclusion and
exclusion criteria, treatment schedule, trial endpoints and statistical methods.
Study design and trial objectives are directly related with statistical methods
(5). Therefore, determining study design is crucial in clinical trials. In this
study, we point out parallel group and cross-over designs.

2.1.1 Parallel Group Design

Each subject is randomly assigned and receive only one treatment in par-
allel group design (5). Suppose one wants to compare a standard treatment with
a new treatment within a parallel group design. To reach this aim, some of the
subjects are assigned to only new treatment and rest of the them are assigned
to only standard treatment. At the end of the trial, the results of the two in-
dependent groups are obtained for comparison. In parallel group design, more
than two treatments can be compared such as new treatment, standard treatment
and placebo. However, in this thesis we focus only on comparing two different
treatments. In Figure 2.1, an example of two-group parallel design with one new
treatment and one standard treatment is shown.
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Figure 2.1. Parallel Group Design

2.1.2 Cross-over Design

Each subject receives each treatment in different periods in a cross-over
design. In order to determine the order, according to which the treatments will
be received by the subjects, treatment sequences are created. At the beginning
of the study, subjects are randomly assigned to one of the treatment sequences.
If comparing the effect of a new treatment with the one of a standard one by
a cross-over design is of interest, some of the patients take the new treatment
(sequence 1) while the others receive the standard treatment (sequence 2). After
the washout period, which is defined to be the adequate length to erode the ef-
fect of treatments in the first period, the subjects under study will get the other
treatment, they have not received yet, in the second period. In Figure 2.2, an
illustration of cross-over design is given.
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Figure 2.2. Cross-over Design

2.2 Trial Objective

For calculating the necessary sample size, deciding on the objective of the
trial, that is related to the statistical hypothesis tests conducted in clinical trials,
is another crucial point. The null and the alternative hypotheses are determined
according to the trial objective. In this thesis, we focus on equality, superiority,
non-inferiority and equivalence trial objectives.

2.2.1 Equality Trials

In equality trials, researchers investigate whether there is a difference be-
tween two different treatments or not (3). In this thesis, to illustrate two differ-
ent treatments we used the terms "new treatment" and "standard treatment".
Assume µN and µS represents the mean values of the new treatment and the
standard treatment, respectively. The null and alternative hypotheses can be
written:

H0 : µN = µS versus H1 : µN ̸= µS. (2.1)

The rejection of the null hypothesis implies that the new treatment is not equal
to the standard one.
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2.2.2 Superiority Trials

In clinical trials, we might point out that the effect of the new treatment
is better than the standard one (3). The null and alternative hypotheses is shown
as:

H0 : µN − µS ≤ δ versus H1 : µN − µS > δ. (2.2)

where δ represents the clinically important difference. If null hypothesis is re-
jected, then new treatment is superior to standard treatment. If δ is equal to
zero, then this hypothesis named as statistical superiority.

2.2.3 Non-Inferiority Trials

In non-inferiority, trials we would like to investigate if the new treatment is
not worse than the standard treatment (3). The null and alternative hypotheses
can be written as:

H0 : µS − µN ≤ δ versus H1 : µS − µN > δ. (2.3)

If the null hypothesis is rejected, one should conclude that the effect of the new
treatment is non-inferior compared to the standard one. To clarify this statement,
difference between new treatment and standard treatment is less than δ. As a
result, new treatment is not worse than the standard treatment.

2.2.4 Equivalence Trials

In some clinical trials, the aim is to show that there is no clinically mean-
ingful difference between the two treatments which means that the two treatments
under investigation are equivalent (3). Therefore, for testing equivalence, the hy-
potheses are written as:

H0 : |µN − µS| ≥ δ versus H1 : |µN − µS| < δ (2.4)

If the null hypothesis is rejected, there is no clinically important difference be-
tween the new treatment and the standard one which implies that the effects of
these treatments are equivalent.
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2.3 Primary End Point

In a clinical trial, the primary objective of the trial is assessed to test the
hypothesis. An end point is set to indicate the efficacy and reliability of the trial
(3). The sample size calculations rely on whether the primary endpoint variable
is continuous, ordinal, binary or survival (time or probability). In this thesis,
only continuous and binary variables are taken into account.

2.4 Effect Size

Deciding the effect size is another crucial step when determining the sample
size. The main aim of calculation of the sample size is to satisfy an adequate power
to reject the null hypothesis when the alternative hypothesis is true. For clinical
trials, effect size is also known as clinically important difference. If this difference
increases, then sample size would decrease.

2.5 Variability in Population

Variance estimation is one of the important steps of sample size calculation.
The concerned variance is the variance of the variable of the primary end point.
For variance estimation, retrospective data and previous studies are used (3).
Variance is one of the components of sample size equations.

2.6 Type I and Type II Errors

In Table 2.1, decision table of hypothesis testing is given.

Table 2.1. Decision Table for Hypothesis Testing

Decision
Truth

H0 is true H0 is not true
Fail to reject H0 Correct decision Type II Error (β)

Reject H0 Type I Error (α) Correct decision

Type I error (α) is the probability of rejecting H0 accidentally which means
that rejecting H0 when H0 is true. On the other hand, Type II error (β) is the
probability of failing to reject H0 accidentally which implies failing to reject H0

when H0 is not true. Power is the probability of finding the effect in case of
there exist an effect in a study. Power (1-β) which is identified for an alternative
hypothesis is rejecting H0 when H0 is not true. Power is inversely related with
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Type II error. In hypothesis testing, we want to decrease the probability of Type
I and Type II errors to increase the probability of correct decisions.

The type I error, type II error and power are represented as:

• α =P(type I error)=P(Reject H0 | H0 is true)

• β=P(type II error)=P(Fail to reject H0 | H0 is not true)

• Power=1-β=P(Reject H0 | H0 is not true)
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3 MATERIAL and METHODS

In this chapter, the proof and calculations of sample size under different
trial objectives and study designs are given with respect to whether population
variance is known or not.

3.1 Parallel Group Design

Sample size calculations are given for continuous and binary primary end
points with respect to different trial objectives with parallel group design.

3.1.1 Equality Trials

In equality trials, we investigate whether or not the effect of two treatments
are same.

Continuous Primary End Point

Suppose xij represents the observed value of the jth subject in the ith

treatment group where j = 1, 2, 3, . . . , n and i = 1, 2. Assume xij is normally
independently distributed with µi and σi in the ith group. x̄ and S2 represents
the sample mean and the pooled sample variance, respectively.

x̄i. =
1

ni

ni∑
j=1

xij and S2 =
1

n1 + n2 − 2

2∑
i=1

nj∑
j=1

(xij − x̄i.)
2 (3.1)

Suppose ϵ = µ1−µ2 represents the true mean difference between new treatment(µ1)
and standard treatment (µ2). As it is stated in Chapter 2.2.1, for equality trials
ϵ is equal to 0. Therefore, hypotheses are constructed for equality trials as

H0 : ϵ = 0 and H1 : ϵ ̸= 0. (3.2)

Assume that the distributions of the response of the two treatments are as follows:
X1 ∼ N(µ1, σ2) and X2 ∼ N(µ2, σ2). The sample means of two treatments are
distributed normally based on Central Limit Theorem. Assume that sample sizes
of the treatment groups are n1 and n2. Population variances are known and ho-
mogeneous for the both of the treatment groups presented with σ2. Therefore, the
distribution of the sample means are X̄1 ∼ N(µ1, σ

2/n1) and X̄2 ∼ N(µ2, σ
2/n2).

As a result, the distribution of the difference between sample means can be writ-
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ten as the following:

X̄1 − X̄2 ∼ N(µ1 − µ2,
σ2

n1

+
σ2

n2

) (3.3)

Under the null hypothesis (H0:ϵ=0), the test statistic would be:

z0 =
x̄1. − x̄2.√

σ2

n1
+ σ2

n2

(3.4)

According to the test statistic, if |z0| > zα/2 reject H0. Under the alternative
hypothesis (H1:ϵ ̸= 0), the test statistic would be represented as:

z1 =
x̄1. − x̄2. − ϵ√

σ2

n1
+ σ2

n2

(3.5)

If one can try to write the relationship between the test statistics under the null
hypothesis and the alternative hypothesis, the following equation is obtained:

z0 = z1 +
ϵ√

σ2

n1
+ σ2

n2

(3.6)

The type II error can be written with respect to test statistics z0 and z1.

β = P (|z0| ≤ zα/2) = P (−zα/2 ≤ z0 ≤ zα/2)

= P (−zα/2 ≤ z1 +
ϵ√

σ2

n1
+ σ2

n2

≤ zα/2)

= P (−zα/2 −
ϵ√

σ2

n1
+ σ2

n2

≤ z1 ≤ zα/2 −
ϵ√

σ2

n1
+ σ2

n2

)

= Φ(zα/2 −
ϵ√

σ2

n1
+ σ2

n2

)− Φ(−zα/2 −
ϵ√

σ2

n1
+ σ2

n2

)

(3.7)

ϕ represents the cumulative density function of normal distribution. As a result
of Equation 3.7, the corresponding power (1-β) would be written as:

1− β = 1− [Φ(zα/2 −
ϵ√

σ2

n1
+ σ2

n2

)− Φ(−zα/2 −
ϵ√

σ2

n1
+ σ2

n2

)]

= 1− Φ(zα/2 −
ϵ√

σ2

n1
+ σ2

n2

) + Φ(−zα/2 −
ϵ√

σ2

n1
+ σ2

n2

)

= Φ(
ϵ√

σ2

n1
+ σ2

n2

− zα/2) + Φ(zα/2 −
ϵ√

σ2

n1
+ σ2

n2

)

(3.8)
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The second term in Equation 3.8 is neglected as it’s too small (6). Power would
be found in Equation 3.9.

1− β ≈ Φ(
ϵ√

σ2

n1
+ σ2

n2

− zα/2) (3.9)

Therefore, the corresponding power can be written in Equation 3.10.

zβ =
ϵ√

σ2

n1
+ σ2

n2

− zα/2 (3.10)

Allocation ratio of two groups is demonstrated with r. Let say n1 = rn2. To find
the sample size with 1-β, Equation 3.10 should be solved with respect to n2.

n2 =
(zβ + zα/2)

2(1 + r)σ2

rϵ2
(3.11)

Therefore, sample size of clinical trial for one group is found as in Equation 3.11
(6).

If the population variance (σ2) is unknown, one can use sample variance
(S2). S2 leads to use of t distribution. Under the null hypothesis the test statistic
will be:

t0 =
x̄1. − x̄2.

S
√

1
n1

+ 1
n2

(3.12)

H0 is rejected when |t0|>tα/2,(n1+n2−2). Under the alternative hypothesis, since
ϵ does not equal to 0, t distribution turns out non-central t distribution. Non-
central t distribution is general form of student t distribution. In this case,
standard normal distribution (Z) and Chi-square distribution with degrees of

freedom f (V) are written as Z =

√
(n1+n2−2)(x̄1.−x̄2.−µ1−µ2)

σ
and V = (n1+n2−2)S2

σ2 .
Moreover, Z and V are statistically independent. The non-central t distribution
can be written in terms of Z and V distributions as:

Tf,θ =
Z + θ√
V/f

(3.13)

θ and f symbolize the non-centrality parameter and the degrees of freedom of
non-central t distribution, respectively. For equality trials, θ=|ϵ|/σ. If ϵ is added
and dropped to the numerator and σ is divided by both the numerator and the
denominator of the test statistic x̄1.−x̄2.−(µ1−µ2)

S/
√

(n1+n2−2)
, the corresponding test statistic
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would be similar to non-central t distribution.√
(n1 + n2 − 2)(x̄1. − x̄.2 − µ1 − µ2 − ϵ)/σ +

√
(n1 + n2 − 2)ϵ/σ

S/σ

=
Z + θ√

V/(n1 + n2 − 2)
= T(n1+n2−2),θ (3.14)

In Equation 3.14, we show obtaining non-central t distribution via standard nor-
mal distribution and chi square distribution (6). Under H1,this statistic would
follow a non-central t distribution with the non-centrality parameter of θ and the
degrees of freedom f which are equal to |ϵ|

σ
and n1 + n2 − 2, respectively. If the

cumulative distribution function of non-central t distribution is presented with
Gf,θ(t) which is equal to P (Tf,θ ≤ t). Therefore, the power for equality trials can
be found in Equation 3.15.

1− β = 1− P (|Tf,θ| ≤ tα/2,(n1+n2−2))

= 1− P (−tα/2,(n1+n2−2) ≤ Tf,θ ≤ tα/2,(n1+n2−2))

= 1− Tn1+n2−2[tα/2,(n1+n2−2)|θ] + Tn1+n2−2[−tα/2,(n1+n2−2)|θ]

(3.15)

Second term is neglected again. Power would be equal to in Equation 3.16
(6).

1− β = 1− Tn1+n2−2[tα/2,(n1+n2−2)|θ] (3.16)

Chow and his colleagues (6) provide a table as for solving Equation 3.16. That
table is given in Table 3.1.
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Table 3.1. Smallest n with T2r−2[tα/2,(2r−2)|
√
nθ/

√
(1 + 1/r)]

r=1 r=2
α=2.5% α=5% α=2.5% α=5%

1-β 1-β 1-β 1-β
θ 80% 90% 80% 90% 80% 90% 80% 90%

0.30 176 235 139 191 132 176 104 144
0.32 155 207 122 168 116 155 92 126
0.34 137 183 108 149 103 137 81 112
0.36 123 164 97 133 92 123 73 100
0.38 110 147 87 120 83 110 65 900
0.40 100 133 78 108 75 100 59 810
0.42 90 121 71 98 68 90 54 740
0.44 83 110 65 90 62 83 49 670
0.46 76 101 60 82 57 76 45 620
0.48 70 93 55 76 52 70 41 570
0.50 64 86 51 70 48 64 38 520
0.52 60 79 47 65 45 59 35 480
0.54 55 74 44 60 42 55 33 450
0.56 52 68 41 56 39 51 31 420
0.58 48 64 38 52 36 48 29 390
0.60 45 60 36 49 34 45 27 370
0.65 39 51 30 42 29 38 23 310
0.70 34 44 26 36 25 33 20 270
0.75 29 39 23 32 22 29 17 240
0.80 26 34 21 28 20 26 15 210
0.85 23 31 18 25 17 23 14 190
0.90 21 27 16 22 16 21 12 170
0.95 19 25 15 20 14 19 11 150
1.00 17 23 14 18 13 17 10 140
1.05 16 21 12 17 12 15 9 130
1.10 15 19 11 15 11 14 9 120
1.15 13 17 11 14 10 13 8 110
1.20 12 16 10 13 9 12 7 100
1.25 12 15 9 12 9 11 7 90
1.30 11 14 9 11 8 11 6 90
1.35 10 13 8 11 8 10 6 80
1.40 10 12 8 10 7 9 6 80
1.45 9 12 7 9 7 9 5 70
1.50 9 11 7 9 6 8 5 70
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Binary Primary End Point

Suppose xij (3) represents the binary response jth subject in the ith treat-
ment group where j=1,2,3,...,n and i=1,2. For a fixed i, xij are independent iden-
tically distributed with Bernoulli P (xij = 1) = pi represented as Xij ∼ Ber(pi)

(3). Moreover, pi is unknown, it is estimated by the observed proportion of each
treatment.

p̂i =
1

ni

ni∑
j=1

xij (3.17)

The difference between the true proportion responses is represented with ϵ =

p1 − p2. For equality trials, hypotheses are written as H0 : ϵ = 0 and H1 : ϵ ̸= 0.
In this study, we only consider calculations based on normal approximation to
binomial.Therefore, under the null hypothesis, the test statistic would be:

z0 =
p̂1 − p̂2√

p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n2

(3.18)

Reject H0 if |z0| > zα/2. Moreover, under the alternative hypothesis which indi-
cates ϵ ̸= 0, power can be found from Equation 3.19

1− β ≈ Φ(
|ϵ|√

p1(1− p1)/n1 + p2(1− p2)/n2

− zα/2) (3.19)

To reach a power of 1-β, the following equation should be solved (6).

zβ =
|ϵ|√

p1(1− p1)/n1 + p2(1− p2)/n2

(3.20)

If we consider n1=rn2, n2 is found in Equation 3.21 (6):

n2 =
(zβ + zα/2)

2

ϵ2
[
p1(1− p1)

r
+ p2(1− p2)] (3.21)

3.1.2 Superiority Trials

In superiority trials, the aim is to show that the effect of the one of the
treatment is superior to other one.



15

Continuous Primary End Point

Hypotheses of superiority trials are:

H0 : ϵ ≤ δ versus H1 : ϵ > δ. (3.22)

where δ > 0. The hypothesis test becomes one-sided as seen in Equation 3.22.
Under the null hypothesis, the test statistic would be:

z0 =
x̄1. − x̄2. − δ√

σ2

n1
+ σ2

n2

(3.23)

According to this test statistic, if z0 > zα reject H0. Under the alternative hy-
pothesis the test statistic is (ϵ > δ):

z1 =
(x̄1. − x̄2.)− (ϵ− δ)√

σ2

n1
+ σ2

n2

(3.24)

If z0 is written with respect to z1, the following equation will appear:

z0 = z1 +
ϵ− δ√
σ2

n1
+ σ2

n2

(3.25)

The probability of type II error and the power function can be written as by using
Equation 3.25:

β = P (z0 ≤ zα) = P (z1 +
ϵ− δ√
σ2

n1
+ σ2

n2

≤ zα)

= P (z1 ≤ zα − ϵ− δ√
σ2

n1
+ σ2

n2

)

= Φ(zα − ϵ√
σ2

n1
+ σ2

n2

)

(3.26)

1-β will be equal to:

1− β = 1− Φ(zα − ϵ− δ√
σ2

n1
+ σ2

n2

)

= Φ(
ϵ− δ√
σ2

n1
+ σ2

n2

− zα)

(3.27)
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Suppose n1 = rn2, then the minimum sample size is written in Equation 3.28 (6).

n2 =
(zα + zβ)

2(1 + r)σ2

r(ϵ− δ)2
(3.28)

If σ2 is unknown, then non-central t distribution should be used for sample size
calculation.

t0 =
x̄1. − x̄2. − δ

S
√

1
n1

+ 1
n2

(3.29)

Reject H0 if t0 > tα,(n1+n2−2). Under H1, this statistic would follow a non-central
t distribution with the non-centrality parameter of θ and degrees of freedom f
which are equal to (ϵ−δ)

σ
and n1 + n2 − 2, respectively. Therefore, power can be

found for equality trials in Equation 3.30.

1− β = 1− P (Tf,θ ≤ tα,(n1+n2−2))

= 1− P (Tf,θ ≤ tα,(n1+n2−2))

= 1− Tn1+n2−2[tα,(n1+n2−2)|θ]

(3.30)

Table 3.1 can be used for this situation (6).

Binary Primary End Point

For superiority trials, hypotheses are written as H0 : ϵ ≤ δ and H1 : ϵ > δ.
Therefore, under the null hypothesis, the test statistic would be:

z0 =
p̂1 − p̂2 − (ϵ− δ)√

p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n2

(3.31)

Reject H0 if z0 > zα. Moreover, the under the alternative hypothesis which
indicates ϵ > δ, power can be found from Equation 3.32 as:

1− β ≈ Φ(
ϵ− δ√

p1(1− p1)/n1 + p2(1− p2)/n2

− zα) (3.32)

To reach a power of 1-β, the following equation should be solved with respect to
n2 (6).

zβ =
ϵ− δ√

p1(1− p1)/n1 + p2(1− p2)/n2

(3.33)
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If we consider n1=rn2, n2 is found by Equation 3.34 (6):

n2 =
(zβ + zα)

2

(ϵ− δ)2
[
p1 × (1− p1)

r
+ p2 × (1− p2)] (3.34)

3.1.3 Non-inferiority Trials

In non-inferiority trials, as it is stated in Chapter 2.2.3, that aim is to
show the effect of the one of the treatment is non-inferior to the other one. The
proof of sample size calculation is same with the superiority trials. ϵ = µ1 − µ2

in non-inferiority trials.

Continuous Primary End Point

Hypotheses of non-inferiority trials are:

H0 : ϵ ≤ δ versus H1 : ϵ > δ. (3.35)

Suppose n1 = rn2, then the minimum sample size is written in Equation 3.36 (6):

n2 =
(zα + zβ)

2(1 + r)σ2

r(ϵ− δ)2
(3.36)

If σ2 is unknown, then non-central t distribution should be used for sample size
calculation. Power can be found for equality trials by Equation 3.37.

1− β = 1− Tn1+n2−2[tα,(n1+n2−2)|θ] (3.37)

Table 3.1 can be used for this situation (6).

Binary Primary End Point

For non-inferiority trials, hypotheses are written as H0 : ϵ ≤ δ and H1 :

ϵ > δ. The sample size is found by in Equation 3.38.

n2 =
(zβ + zα)

2

(ϵ− δ)2
[
p1 × (1− p1)

r
+ p2 × (1− p2)] (3.38)

3.1.4 Equivalence Trials

In equivalence trials, it is investigated that two treatments neither superior
nor non-inferior to to each other. Both treatments have equivalent effects.
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Continuous Primary End Point

The hypotheses for equivalence can be written as:

H0 : |ϵ| ≥ δ vs. H1 : |ϵ| < δ. (3.39)

The null hypothesis of test for equivalence leads to two the null hypotheses that
are

H01 : ϵ ≤ −δ vs. H11 : ϵ > −δ and

H02 : ϵ ≥ δ vs. H12 : ϵ < δ. (3.40)

According to the two the null hypotheses, the test statistics under the null hy-
potheses are indicated below:

z01 =
x̄1. − x̄2. + δ√

σ2

n1
+ σ2

n2

and z02 =
x̄1. − x̄2. − δ√

σ2

n1
+ σ2

n2

(3.41)

H01 and H02 are rejected if z01 > zα and z02 < −zα, respectively. Under
the alternative hypotheses, the test statistics are:

z11 =
x̄1. − x̄2. − (ϵ+ δ)√

σ2

n1
+ σ2

n2

and z12 =
x̄1. − x̄2. − (ϵ− δ)√

σ2

n1
+ σ2

n2

(3.42)

Power of hypotheses testings are found based on two different the alternative
hypothesis. Therefore, to reach the power with 1-β, β divided by β1 and β2

(β1 + β2 = β).

1− β1 ≈ Φ(
ϵ+ δ√
σ2

n1
+ σ2

n2

− zα)1− β2 ≈ Φ(
ϵ− δ√
σ2

n1
+ σ2

n2

− zα) (3.43)

By summing up type II errors, power of hypothesis testing is found as in Equation
3.44.

2− β1 − β2 = Φ(
ϵ+ δ√
σ2

n1
+ σ2

n2

− zα) + Φ(
ϵ− δ√
σ2

n1
+ σ2

n2

− zα)

2− β1 − β2 = 2Φ(
δ − |ϵ|√
σ2

n1
+ σ2

n2

− zα)
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2− β = 2Φ(
δ − |ϵ|√
σ2

n1
+ σ2

n2

− zα)

1− β

2
= Φ(

δ − |ϵ|√
σ2

n1
+ σ2

n2

− zα) (3.44)

To find the minimum required sample size, the following equation should be solved
with respect to sample size.

zβ/2 =
δ − |ϵ|√
σ2

n1
+ σ2

n2

− zα (3.45)

Lets say n1 = rn2. To find sample size with 1-β, Equation 3.45 should be solved
with respect to n2.

n2 =
(zβ/2 + zα)

2(1 + r)σ2

r(δ − |ϵ|)2
(3.46)

Similarly, if the population variance is unknown, then using non-central t distri-
bution is applicable based on the sample variance.

t01 =
x̄1. − x̄2. + δ

S
√

1
n1

+ 1
n2

and t02 =
x̄1. − x̄2. − δ

S
√

1
n1

+ 1
n2

(3.47)

Reject H0 if t01 > tα,n1+n2−2 or t02 < −tα,n1+n2−2. Under the alternative hypothe-
ses;

1− β = 1− Tn1+n2−2(tα,n1+n2−2 |
δ − ϵ

S
√

1
n1

+ 1
n2

)− Tn1+n2−2(tα,n1+n2−2 |
δ + ϵ

S
√

1
n1

+ 1
n2

)

1− β = 2Tn1+n2−2(tα,n1+n2−2 |
δ − |ϵ|

S
√

1
n1

+ 1
n2

)− 1

2− β = 2Tn1+n2−2(tα,n1+n2−2 |
δ − |ϵ|

S
√

1
n1

+ 1
n2

)

1− β/2 = Tn1+n2−2(tα,n1+n2−2 |
δ − |ϵ|

S
√

1
n1

+ 1
n2

)

(3.48)

Sample size can be found by using Table 3.1 (6).
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Binary End Point

The hypotheses for equivalence can be written as:

H0 : |ϵ| ≥ δ vs. H1 : |ϵ| < δ. (3.49)

The null hypothesis of test for equivalence leads to two the null hypotheses that
are

H01 : ϵ ≤ −δ vs. H11 : ϵ > −δ and

H02 : ϵ ≥ δ vs. H12 : ϵ < δ (3.50)

Then the two the null hypotheses, the test statistics under the null hypotheses
are indicated below.

z01 =
p̂1 − p̂2 − δ√

p̂1×(1−p̂1)
n1

+ p̂2×(1−p̂2)
n2

and z02 =
p̂1 × p̂2 + δ√

p̂1×(1−p̂1)
n1

+ p̂2×(1−p̂2)
n2

(3.51)

H0 is rejected if z01 > zα or z02 < −zα . Under the alternative hypotheses the
test statistics are:

z11 =
p1 − p2 − (ϵ+ δ)√
p1×(1−p1)

n1
+ p2×(1−p2)

n2

and z12 =
p1 − p2 − (ϵ− δ)√
p1×(1−p1)

n1
+ p2×(1−p2)

n2

(3.52)

Power of these hypotheses presented separately as 1− β1 and 1− β2 where
β = β1 + β2

1− β1 ≈ Φ(
ϵ+ δ√

p1×(1−p1)
n1

+ p2×(1−p2)
n2

− zα) and

1− β2 ≈ Φ(
ϵ− δ√

p1×(1−p1)
n1

+ p2×(1−p2)
n2

− zα)

2− β1 − β2 = Φ(
ϵ+ δ√

p1×(1−p1)
n1

+ p2×(1−p2)
n2

− zα) + Φ(
ϵ− δ√

p1×(1−p1)
n1

+ p2×(1−p2)
n2

− zα)

2− β = 2Φ(
δ − |ϵ|√

p1×(1−p1)
n1

+ p2×(1−p2)
n2

− zα)

1− β/2 = Φ(
δ − |ϵ|√

p1×(1−p1)
n1

+ p2×(1−p2)
n2

− zα) (3.53)
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As a result, to find the minimum sample size, the following equation is needed to
solve:

zβ/2 =
δ − |ϵ|√

p1×(1−p1)
n1

+ p2×(1−p2)
n2

− zα (3.54)

If the allocation ratio is taken as r, the sample size is found as following (6):

n2 =
(zβ/2 + zα)

2

(δ − |ϵ|)2
[
p1 × (1− p1)

r
+ p2 × (1− p2)] (3.55)

3.2 Cross-Over Trials

In this section, we give sample size calculations 2x2 m replicated cross-over
trials for continuous and binary primary end points.

3.2.1 Equality Trials

In equality trials, we investigate whether or not the effect of the two treat-
ments are same when all subjects take both of the treatments.

Continuous Primary End Point

Suppose yijkl is continuous response of jth subject (j=1,2,...,n) in ith se-
quence (i=1,2) with kth treatment (k=1,2) on lth replicate (l=1,2,...,m).

yijkl = µk + γik + sijk + eijkl (3.56)

µk represents the effect of kth treatment(1,2), γik represents the fixed effect of
the ith sequence in kth treatment, sijk represents the random effect of the jth
subject in the ith sequence on lth replicate. Assume there is no interaction effect
between sequence and treatment. Joint distribution of (sij1, sij2) is assumed as
a bivariate normal random variable with mean 0 and covariance matrix:

∑
=

[
σ2
BT ρσBTσBR

ρσBTσBR σ2
BR

]
(3.57)

where σ2
BT represents variance between subjects for "new treatment" group while

σ2
BR represents the variance between subjects for "standard treatment" group.

Moreover, ρ represents the correlation between subjects in "new treatment" and
"standard treatment" groups. If σ2

D is defined as the variation based on the effect
between subject and treatment interaction, which represents the heteroscedastic-
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ity of subject random effect between new treatment and standard treatment.

σ2
D = σ2

BT + σ2
BR − 2ρσBTσBR (3.58)

Under the assumption of eij1l and eij2l are independent normally distributed with
mean 0 and variances σ2

WT and σ2
WR, respectively. σ2

WT and σ2
WR are reflects the

variability within two different treatments.

ȳijk. =
1

m
(yijk1 + yijk2 + ...+ yijkm) and dij = ȳij1. − ȳij2. (3.59)

Suppose ϵ =µ2-µ1 (new treatment-standard treatment). An unbiased estimates
of ϵ̂ is written as:

ϵ̂ =
1

2n

2∑
i=1

n∑
j=1

dij (3.60)

Under the model 3.56, ϵ̂ ∼ N(ϵ, σ2
m/2n). σ2

m represents the within subject stan-
dard deviation. The formulation of σ2

m is:

σ2
m = σ2

D + σ2
WT + σ2

WR (3.61)

Since σ2
m is usually unknown, we need to use unbiased estimate of σ2

m. An unbi-
ased estimate of σ̂2

m is:

σ̂2
m =

1

2n− 2

2∑
i=1

n∑
j=1

(dij − d̄i.)
2

where, d̄i. =
1

n

n∑
j=1

dij (3.62)

For equality trials, we figure out H0 : ϵ = 0 or H0 : ϵ ̸= 0. Under the null
hypothesis, test statistic can be written as:

z0 =
x̄1. − x̄2.√
σ2
m/2n

(3.63)

If |z0| > zα/2, H0 is rejected. Under the alternative hypothesis the test statistic
is:

z1 =
x̄1. − x̄2. − ϵ√

σ2
m/2n

(3.64)

If one can try to write the relationship between the test statistics under the null
hypothesis and the alternative hypothesis, the following equation is obtained:
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z0 = z1 +
ϵ√

σ2
m/2n

(3.65)

The type II error can be written with respect to test statistics z0 and z1:

β = P (|z0| ≤ zα/2) = P (−zα/2 ≤ z0 ≤ zα/2)

= P (−zα/2 ≤ z1 +
ϵ√

σ2
m/2n

≤ zα/2)

= P (−zα/2 −
ϵ√

σ2
m/2n

≤ z1 ≤ zα/2 −
ϵ√

σ2
m/2n

)

= Φ(zα/2 −
ϵ√

σ2
m/2n

)− Φ(−zα/2 −
ϵ√

σ2
m/2n

)

(3.66)

As a result of Equation 3.66, power (1-β) would be written as:

1− β = 1− [Φ(zα/2 −
ϵ√

σ2
m/2n

)− Φ(−zα/2 −
ϵ√

σ2
m/2n

)]

= 1− Φ(zα/2 −
ϵ√

σ2
m/2n

) + Φ(−zα/2 −
ϵ√

σ2
m/2n

)

= Φ(
ϵ√

σ2
m/2n

− zα/2) + Φ(zα/2 −
ϵ√

σ2
m/2n

)

(3.67)

Second term in Equation 3.67 is neglected as it’s too small (6). Therefore, power
would be found in Equation 3.68.

1− β ≈ Φ(
ϵ√

σ2
m/2n

− zα/2) (3.68)

The sample size can be found by solving Equation 3.69 (6) with respect to n.

zβ =
ϵ√

σ2
m/2n

− zα/2 (3.69)

The sample size is written in Equation 3.70.

n =
(zα/2 + zβ)

2σ2
m

2ϵ2
(3.70)

If σ2
m is unknown, the test statistic under H0 is calculated in Equation 3.71,

t0 =
x̄1. − x̄2.√
σ̂m

2/2n
(3.71)
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If t0 > t(α/2,2n−2), H0 is rejected. Then the power of hypothesis test would be
found with non-centrality parameter θ (θ = |ϵ|√

σ2
m/2n

):

1− β = 1− T2n−2(tα/2,2n−2|
ϵ√

σ2
m/2n

) (3.72)

The sample size for non-central distribution approach can be found from Table
3.1 (6).

Binary Primary End Point

Suppose yijkl is binary response of jth subject (j=1,2,...,n) in ith sequence
(i=1,2) with kth treatment (k=1,2) on lth replicate (l=1,2,...,m). Under the as-
sumption of no period, sequence or carry-over effect, P (yijkl = 1) = pk. Suppose
ϵ =p2-p1 (new treatment-standard treatment).

ȳijk. =
1

m
(yijk1 + yijk2 + ...+ yijkm) and dij = ȳij1. − ȳij2. (3.73)

An unbiased estimate of ϵ̂ is

ϵ̂ =
1

2n

2∑
i=1

n∑
j=1

dij, (3.74)

Based on Central Limit Theorem ϵ̂ asymptotically normally distributed as N(0, σ2
d).

σ2
d is unbiased estimate of the variance of ϵ̂. σ̂2

d is estimated as in Equation 3.75:

σ̂2
d =

1

2n− 2

2∑
i=1

n∑
j=1

(dij − d̄i.)
2 (3.75)

For equality trials, hypotheses are written as H0 : ϵ = 0 and H1 : ϵ ̸= 0. In this
study, we only take calculations based on normal approximation to binomial into
account. Therefore, under the null hypothesis, the test statistic would be:

z0 =
p̂1 − p̂2√
σ̂2
d/2n

(3.76)

Reject H0 if |z0| > zα/2. Moreover, under the alternative hypothesis, which
indicates ϵ ̸= 0 power can be found from Equation 3.77:

1− β ≈ Φ(
|ϵ|√
σ̂2
d/2n

− zα/2) (3.77)



25

To reach a power of 1-β, following equation should be solved (6).

zβ =
|ϵ|√
σ̂2
d/2n

− zα/2 (3.78)

Minimum sample size required for cross-over equality design is found in Equation
3.79 (6):

n =
(zβ + zα/2)

2σ̂2
d

2ϵ2
(3.79)

3.2.2 Superiority Trials

For superiority trials, we figure out that new treatment is superior to
standard treatment.

Continuous Primary End Point

H0 : ϵ ≤ δ or H1 : ϵ > δ. Under the null hypothesis, test statistic can be
written as:

z0 =
x̄1. − x̄2. − δ√

σ2
m/2n

(3.80)

If z0 > zα, H0 is rejected. Under the alternative hypothesis the test statistic is:

z1 =
x̄1. − x̄2. − (ϵ− δ)√

σ2
m/2n

(3.81)

If one can try to write the relationship between the test statistics under the null
hypothesis and the alternative hypothesis, the following equation is obtained.

z0 = z1 +
ϵ√

σ2
m/2n

(3.82)

The type II error can be written with respect to test statistics z0 and z1.

β = P (z0 ≤ zα) = P (z0 ≤ zα)

= P (z1 +
ϵ√

σ2
m/2n

≤ zα)

= P (z1 ≤ zα − ϵ√
σ2
m/2n

)

= Φ(zα − ϵ√
σ2
m/2n

)

(3.83)
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As a result of Equation 3.83, power (1-β) would be written as:

1− β = 1− Φ(zα − ϵ√
σ2
m/2n

)

= Φ(
ϵ√

σ2
m/2n

− zα)
(3.84)

Sample size can be found by solving Equation 3.85 regarding to n (6).

zβ =
ϵ√

σ2
m/2n

− zα (3.85)

The minimum required sample size is written in Equation 3.86.

n =
(zα + zβ)

2σ2
m

2(ϵ− δ)2
(3.86)

If σ2
m is unknown, the test statistic under H0 is calculated in Equation 3.87,

t0 =
x̄1. − x̄2. − δ√

σ̂m
2/2n

(3.87)

If t0 > t(α/2,2n−2), H0 is rejected. Then power of hypothesis test would be found
with non centrality parameter θ (θ = ϵ−δ√

σ2
m/2n

).

1− β = 1− T2n−2(tα,2n−2|
ϵ− δ√
σ2
m/2n

) (3.88)

Sample size for non-central distribution approach can be found from Table 3.1 (6).

Binary Primary End Point

For superiority trials, hypotheses are written as H0 : ϵ ≤ δ and H1 :

ϵ > δ. In this study, we only take into account calculations based on normal
approximation to binomial. Therefore, under the null hypothesis the test statistic
would be:

z0 =
p̂1 − p̂2√
σ̂2
d/2n

. (3.89)

Reject H0 if z0 > zα. Moreover, under the alternative hypothesis which indicates



27

ϵ ̸= 0 power can be found from Equation 3.90.

1− β ≈ Φ(
ϵ− δ√
σ̂2
d/2n

− zα) (3.90)

To reach a power of 1-β, minimum sample size required for cross-over superiority
design is found in Equation 3.91 (6):

n =
(zβ + zα)

2σ̂2
d

2(ϵ− δ)2
(3.91)

3.2.3 Non-Inferiority Trials

In non-inferiority trials, it is investigated that new treatment is not worse
than standard one.

Continuous Primary End Point

For non-inferiority trials, we figure out H0 : ϵ ≤ δ or H1 : ϵ > δ. Obtaining
sample size calculations are same with superiority trials.

n =
(zα + zβ)

2σ2
m

2(ϵ− δ)2
(3.92)

If σ2
m is unknown, the non-central t distribution approach is used. Power can be

calculated as follows:

1− β = 1− T2n−2(tα,2n−2|
ϵ− δ√
σ2
m/2n

) (3.93)

Sample size for non-central distribution approach can be found from Table 3.1
(6).

Binary Primary End Point

For non-inferiority trials, hypotheses are written as H0 : ϵ ≤ δ and H1 :

ϵ > δ.
n =

(zβ + zα)
2σ̂2

d

2(ϵ− δ)2
(3.94)

3.2.4 Equivalence Trials

In equivalence trials, it is investigated that two treatments neither superior
nor non-inferior to to each other. Both treatments have equivalent effects.
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Continuous Primary End Point

The hypotheses for equivalence can be written as:

H0 : |ϵ| ≥ δ vs. H1 : |ϵ| < δ. (3.95)

The null hypothesis of test for equivalence leads to two the null hypotheses that
are:

H01 : ϵ ≤ −δ vs. H11 : ϵ > −δ and

H02 : ϵ ≥ δ vs. H12 : ϵ < δ. (3.96)

According to the two the null hypotheses, the test statistics under the null hy-
potheses are indicated below.

z01 =
x̄1. − x̄2. + δ√

σ2
m/2n

and z02 =
x̄1. − x̄2. − δ√

σ2
m/2n

(3.97)

H01 and H02 are rejected if z01 > zα and z02 < −zα, respectively. Under
the alternative hypotheses the test statistics are:

z11 =
x̄1. − x̄2. − (ϵ+ δ)√

σ2
m/2n

and z12 =
x̄1. − x̄2. − (ϵ− δ)√

σ2
m/2n

(3.98)

Power of hypotheses testings are found based on two different the alternative
hypothesis. Therefore, to reach power with 1-β, β divided as β1 and β2 (β1+β2 =

β).

1− β1 ≈ Φ(
ϵ+ δ√
σ2
m/2n

− zα) and 1− β2 ≈ Φ(
ϵ− δ√
σ2
m/2n

− zα) (3.99)

2− β1 − β2 = Φ(
ϵ+ δ√
σ2
m/2n

− zα) + Φ(
ϵ− δ√
σ2
m/2n

− zα)

2− β1 − β2 = 2Φ(
δ − |ϵ|√
σ2
m/2n

− zα)

2− β = 2Φ(
δ − |ϵ|√
σ2
m/2n

− zα)

1− β

2
= Φ(

δ − |ϵ|√
σ2
m/2n

− zα) (3.100)
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To find minimum required sample size should be solved with respect to sample
size.

zβ/2 =
δ − |ϵ|√
σ2
m/2n

− zα (3.101)

To find sample size with 1-β, Equation 3.101 should be solved with respect to n.

n =
(zα + zβ/2)

2σ2
m

2(δ − |ϵ|)2
(3.102)

Similarly, if population variance is unknown, then using non-central t distribution
is used based on sample variance. Power functions of equivalent trial is written
as following:

1− β = 1− Tn1+n2−2(tα,n1+n2−2 |
δ − ϵ√
σ2
m/2n

)− Tn1+n2−2(tα,n1+n2−2 |
δ + ϵ√
σ2
m/2n

)

2− β = 2Tn1+n2−2(tα,n1+n2−2 |
δ − |ϵ|√
σ2
m/2n

)

1− β/2 = Tn1+n2−2(tα,n1+n2−2 |
δ − |ϵ|√
σ2
m/2n

) (3.103)

Sample size can be found by using Table 3.1 (6).

Binary End Point

The hypotheses for equivalence can be written as:

H0 : |ϵ| ≥ δ vs. H1 : |ϵ| < δ. (3.104)

The null hypothesis of test for equivalence leads to two the null hypotheses that
are

H01 : ϵ ≤ −δ vs. H11 : ϵ > −δ and

H02 : ϵ ≥ δ vs. H12 : ϵ < δ. (3.105)

According to the two the null hypotheses, the test statistics under the null hy-
potheses are indicated below.

z01 =
p̂1 − p̂2 − δ√

σ̂2
d/2n

and z02 =
p̂1 − p̂2 + δ√

σ̂2
d/2n

(3.106)

H0 is rejected if z01 > zα or z02 < −zα . Under the alternative hypotheses the
test statistics are:
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z11 =
p1 − p2 − (ϵ+ δ)√

σ̂2
d/2n

and z12 =
p1 − p2 − (ϵ− δ)√

σ̂2
d/2n

(3.107)

Power of these hypothesis presented separately as 1 − β1 and 1 − β2 where β =

β1 + β2

1− β1 ≈ Φ(
ϵ+ δ√
σ̂2
d/2n

− zα) and 1− β2 = Φ(
ϵ− δ√
σ̂2
d/2n

− zα)

2− β = 2Φ(
δ − |ϵ|√
σ̂2
d/2n

− zα)

1− β/2 = Φ(
δ − |ϵ|√
σ̂2
d/2n

− zα) (3.108)

As a result to find minimum sample size the following equation is needed to solve:

δ − |ϵ|√
σ̂2
d/2n

− zα = zβ/2 (3.109)

Sample size is found as following (6):

n =
(zα + zβ/2)

2σ2
d

2(δ − |ϵ|)2
(3.110)

3.3 Numeric Examples

Numeric examples of sample size calculations under different trial objec-
tives and study designs are given with respect to whether population variance
is known or not. For those numeric examples, solution is also given by using
"TrialSize" package (7) in for RStudio (8) version 1.0.136.

3.3.1 Parallel Group Design

Numeric examples are given for continuous and binary primary end points
with respect to different trial objectives with parallel group design.

Numeric Examples for Equality Trials in Parallel Group Design

Continuous Primary End Point

A researcher wants to show that the effect of the new drug to decrease
cholesterol level is similar to standard drug. To achieve this, mean responses
of low density lipoprotein (LDL) of two treatments are compared. It is ex-
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pected (from previous studies) that the difference between two treatment is
0.05mmol/dL. Standard deviation of the population is assumed as 0.1 mmol/dL.
Type I and II errors are taken as 0.05 and 0.20. Allocation ratio is one (6). The
minimum required sample size to test equality of these treatments can be found
by applying Equation 3.11 in below.

n2 =
(zβ + zα/2)

2(1 + r)σ2

rϵ2
=

(1.96 + 0.84)2 2 0.12

0.052
= 62.72 ≈ 63

Minimum sample size is 63 for each group based on calculation. If the population
variance is unknown, Table 3.1 can be used. Let keep all parameters same in
a numeric example with assuming the standard deviation for sample is also 0.1
mmol/dL. From Table 3.1, by taking non-centrality parameter θ = 0.05

0.1
= 0.5,

α = 0.025 (as hypothesis testing for equality trials is two sided, α = 0.05/2 =

0.025) and 1-β=0.80, minimum sample size found as 64 for each group. From
"TrialSize" package, the required minimum sample size is found as 62.79≈ 63 for
each group based on Equation 3.11.

R Codes for Equality Trials for Parallel Group Design with Continuous End
Point

>twoeq=TwoSampleMean . Equal i ty ( alpha =0.05 , beta=0.20 ,
+ sigma =0.1 , k=1,margin=0.05)
>twoeq
[ 1 ] 6 2 . 7 9 1 04

According to R codes, alpha, beta, sigma, k and margin represent Type I
error, Type II error, population standard deviation, allocation rate and expected
difference between means of the two groups.

Binary Primary End Point

A pharmaceutical company wants to investigate the efficacy, safety, and
tolerability of two antibacterial agents. The objective of this study is to search
whether there is skin infection or not.To test the equality of two agents, pilot study
is conducted. According to the pilot study, the proportions of the two agents of
two antibacterial agents are found as p1=0.65 and p2=0.85 (ϵ=0.85-0.65=0.2).
Type I error and Type II error are taken as 0.05 and 0.20, respectively (6). For
equal sample size allocation, the minimum sample size is found by using Equation
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3.21.

n2 =
(zβ + zα/2)

2

ϵ2
[
p1(1− p1)

r
+ p2(1− p2)]

=
(0.84 + 1.96)2

0.22
[
0.65(1− 0.65)

1
+ 0.85(1− 0.85)] = 69.58 ≈ 70

Minimum sample size is 70 for each group based on calculation. From
"TrialSize" package, the required minimum sample size is found as 69.65≈ 70 for
each group as seen in below.

R Codes for Equality Trials for Parallel Group Design with Binary End
Point

>TwoSampleProportion . Equal i ty ( alpha =0.05 , beta=0.20 ,
+ p1=0.85 , p2=0.65 ,k=1, de l t a =0.2)
[ 1 ] 6 9 . 6 5 8 81

Alpha, beta, p1, p2, k and delta represent Type I error, Type II error,
proportions, allocation ratio and difference between proportions of two groups in
R codes.

Numeric Examples of Superiority Trials in Parallel Group Design

Continuous Primary End Point

The same numeric example with equality trial is investigated under same
scenario. Additionally, superiority margin that is clinically meaningful differ-
ence to show the superiority, is accepted 0.01 mmol/dL. For equal sample size
allocation, the minimum sample size is found by using Equation 3.28.

n2 =
(zα + zβ)

2(1 + r)σ2

r(ϵ− δ)2

=
(1.64 + 0.845)2 2 0.12

(0.05− 0.01)2
= 77.19 ≈ 78

The minimum sample size is 78 for each group based on calculation. We consider
standard deviation for sample is also 0.1 mmol/dL. From the Table 3.1, by taking
non-centrality parameter as θ = 0.05−0.01

0.1
= 0.4, α = 0.05 (as hypothesis testing

for superiority trials is one sided) and 1-β=0.80, the minimum sample size found
as 78 for each group. From "TrialSize" package, the required minimum sample
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size is found as 77.28≈ 78.

R Codes for Superiority Trials for Parallel Group Design with Continuous
End Point

>twosup=TwoSampleMeans . NIS ( alpha =0.05 , beta=0.20 ,
+ sigma =0.1 , k=1, de l t a =0.01 , margin=0.05)
>twosup
[ 1 ] 7 7 . 2 8 1 97

In superiority trials,alpha, beta, sigma, k, delta and margin represent Type
I error, Type II error, the population standard deviation, the allocation rate, the
superiority margin (clinically importance difference) and the expected difference
between means of two groups.

Binary Primary End Point

The same numeric example with equality trial is investigated. For superi-
ority trial, 0.1 is accepted as clinically meaningful difference to show superiority
of one of the agent (δ = 0.1). If sample size allocation is considered as one, by
using Equation 3.34 the minimum sample size is found as below.

n2 =
(zβ + zα)

2

(ϵ− δ)2
[
p1 × (1− p1)

r
+ p2 × (1− p2)]

=
(0.84 + 1.64)2

(0.2− 0.1)2
[
0.65(1− 0.65)

1
+ 0.85(1− 0.85)] = 218.34 ≈ 219

The minimum sample size is 219 for each group based on calculation. From "Tri-
alSize" package, the required minimum sample size is found as 219.48≈220 as
stated in the below.

R Codes for Superiority Trials for Parallel Group Design with Binary End
Point

>TwoSampleProportion . NIS ( alpha =0.05 , beta=0.20 ,
+ p1=0.85 , p2=0.65 , k=1, de l t a =0.2 , margin=0.1)
[ 1 ] 2 1 9 . 4 8 08

Alpha, beta, p1, p2, k, delta and margin represent Type I error, Type
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II error, the population proportions, the allocation ratio, the difference of two
proportions and the clinically meaningful difference to show superiority.

Numeric Examples of Non-inferiority Trials in Parallel Group
Design

Continuous Primary End Point

The same numeric example with equality trial is investigated. 0.01 mmol/dL
is accepted non-inferiority margin (δ = −0.01). For equal sample size allocation,
the minimum sample size is found by using Equation 3.36.

n2 =
(zα + zβ)

2(1 + r)σ2

r(ϵ− δ)2

=
(1.64 + 0.845)2 2 0.12

(0.05− (−0.01))2
= 34.31 ≈ 35

The minimum sample size is 35 for each group based on calculation. For unknown
population variance, considering standard deviation for sample as 0.1 mmol/dL,
non-centrality parameter is calculated as θ = 0.05−(−0.01)

0.1
= 0.6. From Table 3.1,

with θ=0.5, α=0.5 and β=0.2, minimum sample size found as 36. From "Trial-
Size" package, the required minimum sample size is found 34.35≈ 35

R Codes for Non-Inferiority Trials for Parallel Group Design with Contin-
uous End Point

>twonon=TwoSampleMeans . NIS ( alpha =0.05 , beta=0.20 ,
+ sigma =0.1 , k=1, de l t a =−0.01 , margin=0.05)
>twonon
[ 1 ] 3 4 . 3 4 7 54

Arguments of non-inferiority trials are same with arguments of superiority
trials in R.

Binary Primary End Point

The same numeric example with equality trial is investigated. 0.1 is ac-
cepted as clinically meaningful difference to show non-inferiority of new treatment(δ=-
0.1). With equal sample size allocation, the minimum sample size to show non-
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inferiority is found as 3.38.

n2 =
(zβ + zα)

2

(ϵ− δ)2
[
p1 × (1− p1)

r
+ p2 × (1− p2)]

=
(0.84 + 1.64)2

(0.2− (−0.1))2
[
0.65(1− 0.65)

1
+ 0.85(1− 0.85)] = 24.26 ≈ 25

The minimum sample size is 25 for each group based on calculation. From "Tri-
alSize" package, the required minimum sample size is found as 24.38≈25

R Codes for Non-Inferiority Trials for Parallel Group Design with Binary
End Point

>TwoSampleProportion . NIS ( alpha =0.05 , beta=0.20 ,
+ p1=0.85 , p2=0.65 , k=1, de l t a =0.2 , margin=−0.1)
[ 1 ] 2 4 . 3 8 6 75

Arguments of non-inferiority trials are also same with arguments of supe-
riority trials in R for binary end point.

Numeric Examples of Equivalence Trials in Parallel Group De-
sign

Continuous Primary End Point

Same research topic is investigated in equality trial. It is expected (from
previous studies) that the difference between two treatment is 0.01 mmol/dL.
Standard deviation of the population is assumed as 0.1 mmol/dL. 0.05 mmol/dL is
accepted as to show the equivalence limit. By taking equal sample size allocation
in Equation 3.46, the minimum sample size can be calculated as below:

n2 =
(zβ/2 + zα)

2(1 + r)σ2

r(δ − |ϵ|)2

=
(1.28 + 1.64)2 2 0.12

(0.05− |0.01|)2
= 106.94 ≈ 107

The minimum sample size is 107 for each group based on calculation. We assume
sample standard deviation as 0.1 mmol/dL for unknown population variance.
Therefore, θ = 0.05−|0.01|

0.1
= 0.4, by taking β = 0.10 (As β is divided by two due to

two the alternative hypotheses) and α = 0.05, 108 subjects are needed for each
group. From "TrialSize" package, the required minimum sample size is found as



36

107.05≈ 108.

R Codes for Equivalence Trials for Parallel Group Design with Continuous
End Point

>twopareq=TwoSampleMeans . Equivalence ( alpha =0.05 ,
+ beta=0.20 , sigma =0.1 , k=1, de l t a =0.05 , margin=0.01)
>twopareq
[ 1 ] 1 0 7 . 0 4 81

Arguments in equivalent trials are same with in superiority trials.

Binary End Point

The same illustration is investigated in equality trials. According to the
pilot study, the proportions of the two agents of two antibacterial agents are
found as p1=0.65 and p2=0.75 (ϵ=0.75-0.65=0.1). Moreover, 0.2 is accepted as
the clinically meaningful difference to say these two treatments are equivalent
(δ=0.2). Considering equal sample size allocation, minimum required sample size
can be found by using Equation 3.55 as in below.

n2 =
(zβ/2 + zα)

2

(δ − |ϵ|)2
[
p1(1− p1)

r
+ p2(1− p2)]

=
(1.28 + 1.64)2

(0.2− |0.1|)2
(0.75× 0.25 + 0.65× 0.35) = 353.84 ≈ 354

The minimum sample size is 356 for each group based on calculation. From "Tri-
alSize" package, the required minimum sample size is found as 355.40≈ 356.

R Codes for Equivalence Trials for Parallel Group Design with Binary End
Point

>TwoSampleProportion . Equivalence ( alpha =0.05 , beta=0.20 ,
+ p1=0.85 , p2=0.65 , k=1, de l t a =0.2 , margin=−0.1)
[ 1 ] 2 4 . 3 8 6 75
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3.3.2 Cross-Over Trials

We discuss numeric examples of sample size calculations 2x2 m replicated
cross-over trials for continuous and binary primary end points in this section.

Numeric Examples of Equality Trials in Cross-Over Study De-
sign

Continuous Primary End Point

Suppose a 2x2 (m=1) cross-over design to compare effect of new treatment
and standard treatment to cholesterol level. A researcher wants to show that the
effect of the new drug to decrease cholesterol level is similar to standard drug. To
achieve this, mean responses of low density lipoprotein (LDL) of two treatments
are compared. It is expected (from previous studies) that the difference between
two treatment is 0.05 mmol/dL. Within subject standard deviation of the pop-
ulation is assumed as 0.1 mmol/dL. Type I and II errors are taken as 0.05 and
0.20 (6). The minimum required sample size to test equality of these treatments
can be found by applying Equation 3.70 in below:

n =
(zα/2 + zβ)

2σ2
m

2ϵ2
=

(1.96 + 0.84)20.12

2× 0.052
= 15.68 ≈ 16

The minimum sample size is 16 based on calculation. For the unknown variance
case, assume unbiased estimation of within subject standard deviation of the sam-
ple to be 0.1 mmol/dL. From Table 3.1, by taking non-centrality parameter as
θ = 2|0.05|

0.1
= 1.0 with α=0.025 (α=0.05 is divided by 2 as for two-sided hypothesis

test) and β=0.20, 16 subjects are needed. By using "TrialSize" package, 15.70≈
minimum 16 subjects are required as stated in below.

R Codes for Equality Trials for Cross-Over Group Design with Continuous
End Point

>twocseq=TwoSampleCrossOver . Equal i ty ( alpha =0.05 ,
+ beta=0.20 , sigma =0.1 , margin=0.05)
>twocsup
[ 1 ] 1 9 . 3 2 0 49

Alpha, beta, sigma and margin represent Type I error, Type II error, the
population within subject standard deviation and the expected difference between
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means of two treatments as for R codes.

Binary Primary End Point

A pharmaceutical company wants to investigate the efficacy, safety, and
tolerability of two antibacterial agents. The objective of this study is that whether
there is skin infection or not. 2x2 cross-over design is constructed. According to
pilot study, proportion of two antibacterial agents are found as p1=0.65 and
p2=0.85 (ϵ=0.85-0.65=0.2). Type I error, Type II error and σd are taken as 0.05,
0.20 and 0.7 respectively (6). To test equality the minimum sample size is found
by using Equation 3.79.

n =
(zβ + zα/2)

2σ̂2
d

2ϵ2

=
(0.84 + 1.96)20.72

2× 0.22
= 48.02 ≈ 49

The minimum sample size is 49 based on calculation. From "TrialSize" package,
the required minimum sample size is found as 48.07≈49.

R Codes for Equality Trials for Cross-Over Design with Binary End Point

>TwoSampleSeqCrossOver . Equal i ty ( alpha =0.05 , beta=0.20 ,
+sigma =0.49 , sequence=2, de l t a =0.2)
[ 1 ] 4 8 . 0 7 4 39

Alpha, beta, sigma, sequence and delta represent Type I error, Type II
error, variance, number of treatment sequence and difference between proportions
from pilot study.

Numeric Examples of Superiority Trials in Cross-Over Study De-
sign

The same numeric example with equality trial is investigated. 0.01 is
accepted superiority margin (δ = 0.01). The minimum sample size is found by
using Equation 3.86 for testing superiority.

n =
(zα + zβ)

2σ2
m

2(ϵ− δ)2

=
(1.64 + 0.84)20.12

2× (0.05− 0.01)2
= 19.22 ≈ 20
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The minimum sample size is 35 based on calculation. If population variance is
unknown, assume unbiased estimation of within subject standard deviation for
sample is 0.01 mmol/dL. From Table 3.1, θ = 2(0.05−0.01)

0.1
= 0.8, 21 subjects are

needed. By using "TrialSize" package, 19.32≈ minimum 20 subjects are required.

R Codes for Superiority Trials for Cross-Over Group Design with Contin-
uous End Point

>twocssup=TwoSampleCrossOver . NIS ( alpha =0.05 ,
+ beta=0.20 , sigma =0.1 , d e l t a =0.01 , margin=0.05)
>twocssup
[ 1 ] 1 9 . 3 2 0 49

According to R codes, alpha, beta, sigma, delta and margin represent Type
I error, Type II error, population within subject standard deviation, superiority
margin and expected difference between means of two treatments.

Binary Primary End Point

The same numeric example with equality trial is investigated. 0.1 is ac-
cepted as clinically meaningful difference to show superiority of new treatment(δ=0.1).
Minimum sample size to show superiority is found as in Equation 3.91.

n =
(zβ + zα)

2σ̂2
d

2(ϵ− δ)2

=
(0.84 + 1.64)20.72

2× (0.2− 0.1)2
= 150.69 ≈ 151

Minimum sample size is 152 based on calculation.From "TrialSize" package, the
required minimum sample size is found as 151.47≈152.

R Codes for Superiority Trials for Cross-Over Design with Binary End
Point

>TwoSampleSeqCrossOver . NIS ( alpha =0.05 , beta=0.20 ,
+sigma =0.49 , sequence=2, de l t a =0.2 ,margin=0.1)
[ 1 ] 1 5 1 . 4 7 27

Alpha, beta, sigma, sequence, delta and margin represent Type I error,
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Type II error, variance, treatment sequence, difference between proportions from
pilot study and superiority margin.

Numeric Examples of Non-Inferiority Trials in Cross-over Study
Design

The same numeric example with equality trial is investigated. 0.01 mmol/dL
change is accepted non-inferiority margin (δ = −0.01). The minimum sample size
is found by using Equation 3.92 for testing non-inferiority:

n =
(zα + zβ)

2σ2
m

2(ϵ− δ)2

=
(1.64 + 0.84)20.12

2× (0.05− (−0.01)2
= 8.54 ≈ 9

Minimum sample size is 9 based on calculation. For unknown variance, if 0.1 is
taken as unbiased estimation of within subject standard deviation non-centrality
parameter is calculated as θ = 2(0.05−(−0.01))

0.1
= 1.2 From Table 3.1, 10 subjects are

needed. By using "TrialSize" package, 8.59 ≈ minimum 9 subjects are required.

R Codes for Non-Inferiority Trials for Cross-Over Group Design with Con-
tinuous End Point

>twocsno=TwoSampleCrossOver . NIS ( alpha =0.05 ,
+ beta=0.20 , sigma =0.1 , d e l t a =−0.01 , margin=0.05)
>twocsno
[ 1 ] 8 . 5 8 6685

Arguments of R codes are same with superiority trials.

Binary Primary End Point

The same numeric example with equality trial is investigated. 0.1 is ac-
cepted as clinically meaningful difference to show non-inferiority of new treatment(δ=-
0.1). Minimum sample size to show non-inferiority is found as in Equation 3.94.

n =
(zβ + zα)

2σ̂2
d

2(ϵ− δ)2

=
(0.84 + 1.64)20.72

2× (0.2− (−0.1))2
= 16.74 ≈ 17
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Minimum sample size is 17 based on calculation. From "TrialSize" package, the
required minimum sample size is found as 16.83≈17.

R Codes for Non-Inferiority Trials for Cross-Over Design with Binary End
Point

>TwoSampleSeqCrossOver . NIS ( alpha =0.05 , beta=0.20 ,
+sigma =0.49 , sequence=2, de l t a =0.2 ,margin=−0.1)
[ 1 ] 1 6 . 8 3 0 29

Arguments of R codes in non-inferiority trials are same with superiority
trials.

Numeric Examples of Equivalence Trials in Cross-over Study De-
sign

Continuous Primary End Point

Same research topic is investigated in equality trial. It is expected (from
previous studies) that the difference between two treatment is 0.01 mmol/dL.
Within subject standard deviation of the population is assumed as 0.1 mmol/dL.
0.05 mmol/dL is accepted as to show the equivalence limit. From Equation 3.102,
the minimum sample size can be calculated as below:

n =
(zα + zβ/2)

2σ2
m

2(δ − |ϵ|)2

=
(1.64 + 1.28)20.12

2× (0.05− |0.01|)2
= 26.65 ≈ 27

Minimum sample size is 27 based on calculation. For unknown population vari-
ance cases, if we find unbiased estimation of within subject standard deviation as
0.1, from Table 3.1, θ = 2(0.05−|0.01|)

0.1
= 0.8, with α=0.05 and β=0.10 (β=0.20 is

divided by two due to two the null hypothesis), 28 subjects are needed. By using
"TrialSize" package, 26.76≈ minimum 27 subjects are required as stated in below.
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R Codes for Equivalence Trials for Cross-Over Group Design with Contin-
uous End Point

>twocsequ=TwoSampleCrossOver . Equiva lence ( alpha =0.05 ,
+ beta=0.20 , sigma =0.1 , d e l t a =0.05 , margin=0.01)
>twocsequ
[ 1 ] 2 6 . 7 6 2 02

Arguments in equivalence trials are same with superiority trials.

Binary End Point

The same numeric example with equality trial is investigated. According
to pilot study, proportion of two antibacterial agents are found as p1=0.75 and
p2=0.85 (ϵ=0.85-0.75=0.1). 0.20 is accepted as clinically meaningful difference
to show the effect of those of treatments are equivalent (δ=0.2). The minimum
sample size is found by using Equation 3.110 for testing equivalence.

n =
(zα + zβ/2)

2σ2
d

2(δ − |ϵ|)2
=

=
(1.28 + 1.64)20.72

2× (0.2− |0.1|)2
= 208.90 ≈ 209

Minimum sample size is 209 based on calculation.From "TrialSize" package, the
required minimum sample size is found as 209.81≈210.

R Codes for Equivalence Trials for Cross-Over Design with Binary End
Point

>TwoSampleSeqCrossOver . Equivalence ( alpha =0.05 ,
+ beta=0.20 , sigma =0.49 , sequence=2, de l t a =0.2 ,margin=0.1)
[ 1 ] 2 0 9 . 8 1 43

Arguments of R codes for equivalence studies are same as in superiority
trials.
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Table 3.2. Results of Numeric Example for Continuous Primary End Point
Parallel Group Design 2x2 Cross-over Design
Equality Superiority Non-inferiority Equivalence Equality Superiority Non-inferiority Equivalence

Formulation 63×2 78×2 35×2 107×2 16 20 9 27
Non-central t table 64×2 78×2 36×2 108×2 16 21 10 28

R 63×2 78×2 35×2 108×2 16 20 9 27

Table 3.3. Results of Numeric Example for Binary Primary End Point
Parallel Group Design 2x2 Cross-over Design
Equality Superiority Non-inferiority Equivalence Equality Superiority Non-inferiority Equivalence

Formulation 70×2 219×2 25×2 304×2 49 151 17 209
R 70×2 219×2 25×2 305×2 49 152 17 210

In Table 3.2 and 3.3, the sample sizes calculated with different tools are
represented based on numeric examples. With regarding to standard normal
distribution approach, non-central t distribution approach (by using Table 3.1)
and using R program, sample sizes are almost same with each other in each trial
objective for different primary end points.

3.4 Simulation Scenarios

3.4.1 Fixed Clinical Importance Effect

In this part, we create simulation scenarios with respect to different sample
sizes, distributions, trial objectives and study designs. Suppose a scenario such
that new drug and standard drug are compared in parallel group and cross-over
designs whether effect of decrease headache pain is same or not. The means of
new drug and standard drug obtained from pilot study are 2.5 and 2, respec-
tively (ϵ=0.5). By taking known population variance, β and α 4, 0.2 and 0.05.
The minimum required sample sizes are stated in Table 3.4 and 3.5 for parallel
group(with taking allocation ratio as 1) and cross-over designs.

Table 3.4. Minimum Required Sample Size for Parallel Group Design

Trial objective δ (Superiority or Non-inferiority margin) Minimum sample size
Equality - 252

Superiority 0.1 310
Non-inferiority 0.1 138

Table 3.5. Minimum Required Sample Size for Cross-over Design

Trial objective δ (Superiority or Non-inferiority margin) Minimum sample size
Equality - 63

Superiority 0.1 78
Non-inferiority 0.1 35
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Simulation scenarios are formed based on following assumptions:

• Generate two independent distributions with n=10, 30, 50, 100, 150, 200,
250, 300 from Normal distributions X∼N(2.5,4) and Y∼N(2,4).

• Generate two independent distributions with n=10, 30, 50, 100, 150, 200,
250,300 from X is distributed as lognormal with mean 2.5 and variance 4
and Y∼ N(2,4).

• Generate two independent distributions with n=10, 30, 50, 100, 150, 200,
250, 300 from lognormal distribution with means 2.5, and 2 and variance 4.

• Generate two independent distributions with n=10, 30, 50, 100, 150, 200,
250, 300 from X is distributed as lognormal with mean 2.5 and variance 4
and Y∼Exp(0.5).

To reach intended mean and variance of lognormal distributions, we consider
two-parameter lognormal distribution. Suppose a random variable Y has a log-
normal distribution with where µ location parameter and σ shape parameter if
ln(Y)∼N(µ,σ2). The distribution of lognormal distribution is as following (9).

f(y) =
1√

2π × σ × y
exp

(
−(ln(y)− µ)2

2× σ2

)
, y > 0 (3.111)

Based on Equation 3.111, mean and variance of lognormal distribution can be
found by using location and scale parameters.

E(Y ) = exp(µ+
1

2
× σ2)

V ar(Y ) = exp(2× (µ+ σ2))− exp(2× µ+ σ2) (3.112)

For specified mean and variance of lognormal distribution, if Equation 3.112 is
solved with respect to µ and σ, one can get parameters of lognormal distribution.
Then, lognormal distribution could be generated easily.

3.4.2 Fixed Effect Sizes

We apply simulation scenarios with respect to different sample sizes, dis-
tributions, trial objectives and study designs. For all conditions, we specify effect
sizes as small, medium and large which are equal to 0.2, 0.5 and 0.8, respectively
(10).
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• Generate two independent distributions with n=10, 30, 50, 100, 150, 200,
250, 300 from Normal distributions by taking into consideration small,
medium and large effect sizes.

• Generate two independent distributions with n=10, 30, 50, 100, 150, 200,
250, 300 from lognormal and normal distribution considering small, medium
and large effect sizes.

• Generate two independent distributions with n=10, 30, 50, 100, 150, 200,
250, 300 from lognormal distributions based on small, medium and large
effect sizes.

• Generate two independent distributions with n=10, 30, 50, 100, 150, 200,
250, 300 from lognormal and exponential distribution considering small,
medium and large effect sizes.
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4 RESULTS

In this chapter, simulation results are given. According to simulation sce-
narios that are given in Chapter3, we try to detect in how many trials we get
reach at least 80% of power over 10000 replications for each of the simulation sce-
narios of equality, superiority and non-inferiority cases. We used "pwr" package
(11).

4.1 Simulation Results

4.1.1 Fixed clinical Importance Effect

In Tables 4.1, 4.2 and 4.3, we present the rate of number of samples whose
power is more than 80% with parallel group under different trial objectives, sam-
ple sizes and different distributions. To get observed power, two sample t test
approach is applied.

Table 4.1. Simulation Results in Equality Trials for Parallel Group Design
Equality Trials

Response of New Drug Response of Standard Drug n=10 n=30 n=50 n=100 n=150 n=200 n=250 n=300
X∼N(2.5,4) Y∼N(2,4) 0.0074 0.0287 0.0566 0.1519 0.2619 0.3839 0.4900 0.6023
X∼Lognormal(µ=0.67,σ=0.70) Y∼N(2,4) 0.0002 0.0053 0.0179 0.1013 0.2266 0.3584 0.4827 0.6033
X∼Lognormal(µ=0.67,σ=0.70) Y∼Lognormal(µ=0.35,σ=0.83) 0.0132 0.0299 0.0551 0.1460 0.2605 0.3854 0.4932 0.6056
X∼Lognormal(µ=0.67,σ=0.70) Y∼Exp(0.5) 0.0134 0.0315 0.0590 0.1465 0.2568 0.3828 0.4881 0.6084

Table 4.2. Simulation Results in Superiority Trials for Parallel Group Design
Superiority Trials

Response of New Drug Response of Standard Drug n=10 n=30 n=50 n=100 n=150 n=200 n=250 n=300
X∼N(2.5,2) Y∼N(2,2) 0.0156 0.0417 0.0647 0.1375 0.2317 0.3143 0.3969 0.4843
X∼Lognormal(µ=0.67,σ=0.70) Y∼N(2,2) 0.0238 0.0469 0.0731 0.1421 0.2142 0.3030 0.3790 0.4834
X∼Lognormal(µ=0.67,σ=0.70) Y∼Lognormal(µ=0.35,σ=0.83) 0.0170 0.0355 0.0638 0.1389 0.2190 0.3055 0.3971 0.4867
X∼Lognormal(µ=0.67,σ=0.70) Y∼Exp(0.5) 0.0210 0.0437 0.0680 0.1380 0.2265 0.3139 0.3993 0.4829

Table 4.3. Simulation Results in Non-inferiority Trials for Parallel Group Design
Non-Inferiority Trials

Response of New Drug Response of Standard Drug n=10 n=30 n=50 n=100 n=150 n=200 n=250 n=300
X∼N(2.5,2) Y∼N(2,2) 0.0268 0.0901 0.1500 0.3579 0.5398 0.7019 0.8034 0.8777
X∼Lognormal(µ=0.67,σ=0.70) Y∼N(2,2) 0.0363 0.0909 0.1588 0.3483 0.5358 0.6957 0.8086 0.8852
X∼Lognormal(µ=0.67,σ=0.70) Y∼Lognormal(µ=0.35,σ=0.83) 0.0287 0.0848 0.1552 0.3609 0.5421 0.7054 0.8060 0.8832
X∼Lognormal(µ=0.67,σ=0.70) Y∼Exp(0.5) 0.0277 0.0882 0.1577 0.3528 0.5449 0.6868 0.8031 0.8818

According to Tables 4.1, 4.2 and 4.3, when the sample size increases, the
likelihood that we get 80% power increases. In Table 3.4, we give the minimum
required sample sizes in each group to reach 80% power for the scenario we
created. Therefore, if we compare the results of the observed power in Tables
4.5, 4.6 and 4.7 with Table 3.4, as to show superiority we need larger sample
than equality and non-inferiority, the fewest observed power is obtained from
for superiority trials. On the other hand, since we need smaller sample in non-



47

inferiority trials, the highest rate of reaching 80% of observed power in non-
inferiority trials.
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Figure 4.1. Simulation Results for Responses of Both Groups are Normally Dis-
tributed for Parallel Group Design
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Figure 4.2. Simulation Results for Responses of Groups Have Lognormal and
Normal Distributions for Parallel Group Design
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Figure 4.3. Simulation Results for Responses of Both Groups Have Lognormal
Distribution for Parallel Group Design
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Figure 4.4. Simulation Results for Responses of Groups Have Lognormal and
Exponential Distributions for Parallel Group Design
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Figures 4.1, 4.2, 4.3 and 4.4 are given to show same results by using box
plots. We draw the plots in Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 by using
"ggplot2" package (12) in RStudio. In these figures, dashed red line represents the
place of 80% power. Moreover, to highlight the effect of different trial objectives,
under same scenario, the results of observed power are plotted in same figure for
different trial objectives. Moreover, from these plots, same interpretations from
Tables 4.1,4.2 and 4.2 are easily obtained.

For cross-over design, we also follow same path of parallel group design.
We assume that there is no carry-over effect and interactions between subjects,
treatments and periods. The reason of considering these assumptions is using the
paired t test approach. In Tables 4.4, 4.5 and 4.6, we give the rate of number
of samples whose power is more than 80% with cross-over design under different
trial objectives, sample sizes and different distributions.

Table 4.4. Simulation Results in Equality Trials for Cross-over Design
Equality Trials

Response of New Drug Response of Standard Drug n=10 n=30 n=50 n=100 n=150 n=200 n=250 n=300
X∼N(2.5,2) Y∼N(2,2) 0.3368 0.5104 0.6153 0.7835 0.8808 0.9391 0.9646 0.9803
X∼Lognormal(µ=0.67,σ=0.70) Y∼N(2,2) 0.3163 0.4875 0.6057 0.7821 0.8766 0.9399 0.9803 0.9811
X∼Lognormal(µ=0.67,σ=0.70) Y∼Lognormal(µ=0.35,σ=0.83) 0.3239 0.5071 0.6224 0.7909 0.8805 0.9385 0.9655 0.9811
X∼Lognormal(µ=0.67,σ=0.70) Y∼Exp(0.5) 0.3183 0.4897 0.6020 0.7810 0.8734 0.9365 0.9682 0.9807

Table 4.5. Simulation Results in Superiority Trials for Cross-over Design
Superiority Trials

Response of New Drug Response of Standard Drug n=10 n=30 n=50 n=100 n=150 n=200 n=250 n=300
X∼N(2.5,2) Y∼N(2,2) 0.3108 0.4531 0.5387 0.6985 0.8127 0.8697 0.9108 0.9407
X∼Lognormal(µ=0.67,σ=0.70) Y∼N(2,2) 0.2903 0.4334 0.5378 0.6998 0.8021 0.8723 0.9132 0.9440
X∼Lognormal(µ=0.67,σ=0.70) Y∼Lognormal(µ=0.35,σ=0.83) 0.2918 0.4489 0.5484 0.7020 0.8068 0.8700 0.9133 0.9432
X∼Lognormal(µ=0.67,σ=0.70) Y∼Exp(0.5) 0.2998 0.4427 0.5452 0.7012 0.8036 0.8679 0.9062 0.9415

Table 4.6. Simulation Results in Non-inferiority Trials for Cross-over Design
Non-Inferiority Trials

Response o New Drug Response of Standard Drug n=10 n=30 n=50 n=100 n=150 n=200 n=250 n=300
X∼N(2.5,2) Y∼N(2,2) 0.3847 0.6106 0.7164 0.8964 0.9548 0.9815 0.9935 0.9969
X∼Lognormal(µ=0.67,σ=0.70) Y∼N(2,2) 0.3609 0.5887 0.7247 0.8913 0.9579 0.9847 0.9936 0.9977
X∼Lognormal(µ=0.67,σ=0.70) Y∼Lognormal(µ=0.35,σ=0.83) 0.3733 0.6093 0.7431 0.8909 0.9554 0.9821 0.9935 0.9977
X∼Lognormal(µ=0.67,σ=0.70) Y∼Exp(0.5) 0.3751 0.6100 0.7364 0.8951 0.9590 0.9813 0.9936 0.9966

In Tables 4.4, 4.5 and 4.6, same pattern in parallel group is observed.
Therefore, when the sample size increases, the likelihood that we get 80% power
increases. Similarly, in Table 3.5, we give the minimum required sample sizes in
each group to reach 80% power for the scenario we created. Likewise in parallel
group design, the minimum required subjects was calculated highest to fewest
respectively, in superiority, equality and non-inferiority trials. As a result, in
non-inferiority trials, we get 80% power with less number of samples compared to
equality and superiority trials. Similarly, we give box plots of simulation results.
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Figure 4.5. Simulation Results for Responses of Both Groups are Normally Dis-
tributed for Cross-over Design
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Figure 4.6. Simulation Results for Responses of Groups Have Lognormal and
Normal Distributions for Cross-over Design
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Figure 4.7. Simulation Results for Responses of Both Groups Have Lognormal
Distribution for Cross-over Design
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Figure 4.8. Simulation Results for Responses of Groups Have Lognormal and
Exponential Distributions for Cross-over Design
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From Figures 4.5, 4.6, 4.7 and 4.8, the number of samples reaching over
80% of power is obtained from highest to fewest in non-inferiority, equality and
superiority trials, respectively. We can conclude that:

• The observed power is higher in non-inferiority trials compared to equality
and superiority trials considering that same clinical important difference,
study design, Type I error and sample size.

• The observed power is higher in cross-over design compared to parallel
group design with same clinical important difference, Type I error, sample
size and trial objectives.

• There is no remarkable difference between distributions of groups. The
observed powers are similar in different distribution under same with same
clinical important difference, Type I error, sample size, trial objectives and
study designs.

4.1.2 Fixed Effect Sizes

In Tables 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 and 4.14, we show the ratio
of number of samples whose power is more than 80% with parallel group and
cross-over designs under different trial objectives, sample sizes and different dis-
tributions based on specified effect sizes.To get observed power, two sample t test
and paired t test approaches are used.

Table 4.7. Simulation Results when Both Groups Normally Distributed in Par-
allel Group Design

Effect Size Trial Objective n=10 n=30 n=50 n=100 n=150 n=200 n=250 n=300

d=0.2
Equality Trials 0.0058 0.0185 0.0322 0.0842 0.1443 0.2116 0.2748 0.3570
Superiority Trials 0.0142 0.0394 0.0658 0.1379 0.2212 0.3074 0.3923 0.4861
Non-Inferiority Trials 0.0168 0.0414 0.0687 0.1393 0.2196 0.3112 0.4060 0.4849

d=0.5
Equality Trials 0.0315 0.1818 0.3812 0.7660 0.9365 0.9872 0.9971 0.9994
Superiority Trials 0.0723 0.2774 0.5001 0.8482 0.9661 0.9948 0.9990 0.9999
Non-Inferiority Trials 0.0712 0.2861 0.5011 0.8478 0.9681 0.9940 0.9990 0.9999

d=0.8
Equality Trials 0.1160 0.6046 0.8851 0.9975 1.0000 1.0000 1.0000 1.0000
Superiority Trials 0.2121 0.7156 0.9347 0.9995 0.9999 1.0000 1.0000 1.0000
Non-Inferiority Trials 0.2055 0.7148 0.9339 0.9993 1.0000 1.0000 1.0000 1.0000
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Table 4.8. Simulation Results for Responses of Groups Have Lognormal and
Normal Distribution in Parallel Group Design

Effect Size Trial Objective n=10 n=30 n=50 n=100 n=150 n=200 n=250 n=300

d=0.2
Equality Trials 0.0054 0.0154 0.0281 0.0810 0.1383 0.2139 0.2822 0.3638

Superiority Trials 0.0079 0.0314 0.0602 0.1383 0.2235 0.3124 0.3957 0.4933
Non-Inferiority Trials 0.0098 0.0340 0.0636 0.1383 0.2215 0.3166 0.4117 0.4877

d=0.5
Equality Trials 0.0248 0.1785 0.3855 0.7667 0.9342 0.9861 0.9967 0.9991

Superiority Trials 0.0615 0.2807 0.5079 0.8496 0.9660 0.9940 0.9988 0.9999
Non-Inferiority Trials 0.0631 0.2912 0.5108 0.8479 0.9658 0.9933 0.9984 1.0000

d=0.8
Equality Trials 0.1113 0.6090 0.8853 0.9968 1.0000 1.0000 1.0000 1.0000

Superiority Trials 0.2138 0.7233 0.9316 0.9991 0.9999 1.0000 1.0000 1.0000
Non-Inferiority Trials 0.2053 0.7195 0.9336 0.9988 1.0000 1.0000 1.0000 1.0000

Table 4.9. Simulation Results of Responses of both Groups Have Lognormal
Distribution in Parallel Group Design

Effect Size Trial Objective n=10 n=30 n=50 n=100 n=150 n=200 n=250 n=300

d=0.2
Equality Trials 0.0112 0.0196 0.0333 0.0812 0.1397 0.2105 0.2803 0.3567

Superiority Trials 0.0167 0.0355 0.0636 0.1388 0.2191 0.3060 0.3967 0.4877
Non-Inferiority Trials 0.0181 0.0388 0.0648 0.1424 0.2173 0.3126 0.4046 0.4854

d=0.5
Equality Trials 0.0299 0.1774 0.3811 0.7720 0.9346 0.9872 0.9971 0.9992

Superiority Trials 0.0950 0.3453 0.5800 0.8931 0.9814 0.9978 0.9998 1.0000
Non-Inferiority Trials 0.0677 0.2865 0.5036 0.8501 0.9657 0.9933 0.9979 1.0000

d=0.8
Equality Trials 0.1139 0.6045 0.8855 0.9975 1.0000 1.0000 1.0000 1.0000

Superiority Trials 0.2073 0.7199 0.9324 0.9992 1.0000 1.0000 1.0000 1.0000
Non-Inferiority Trials 0.2056 0.7190 0.9347 0.9987 1.0000 1.0000 1.0000 1.0000

Table 4.10. Simulation Results for Responses of Groups Have Lognormal and
Exponential Distribution in Parallel Group Design

Effect Size Trial Objective n=10 n=30 n=50 n=100 n=150 n=200 n=250 n=300

d=0.2
Equality Trials 0.0113 0.0209 0.0376 0.0835 0.1422 0.2157 0.2783 0.3701

Superiority Trials 0.0211 0.0434 0.0682 0.1378 0.2267 0.3140 0.4005 0.4835
Non-Inferiority Trials 0.0181 0.0429 0.0650 0.1374 0.2172 0.3084 0.3954 0.4755

d=0.5
Equality Trials 0.0335 0.1778 0.3682 0.7664 0.9330 0.9871 0.9980 0.9999

Superiority Trials 0.1138 0.3761 0.6164 0.9180 0.9874 0.9989 0.9998 1.0000
Non-Inferiority Trials 0.0656 0.2868 0.5037 0.8533 0.9675 0.9946 0.9992 0.9997

d=0.8
Equality Trials 0.1141 0.6003 0.8813 0.9982 1.0000 1.0000 1.0000 1.0000

Superiority Trials 0.2090 0.7266 0.9351 0.9988 1.0000 1.0000 1.0000 1.0000
Non-Inferiority Trials 0.2073 0.7316 0.9338 0.9996 1.0000 1.0000 1.0000 1.0000
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Table 4.11. Simulation Results when Both Groups Normally Distributed in
Cross-Over Design

Effect Size Trial Objective n=10 n=30 n=50 n=100 n=150 n=200 n=250 n=300

d=0.2
Equality Trials 0.1315 0.2106 0.2585 0.3445 0.4285 0.5043 0.5629 0.6276

Superiority Trials 0.1503 0.2258 0.2869 0.3975 0.4892 0.5535 0.6200 0.6866
Non-Inferiority Trials 0.1488 0.2363 0.2868 0.4028 0.4860 0.5644 0.6253 0.6766

d=0.5
Equality Trials 0.2255 0.4806 0.6451 0.8637 0.9533 0.9857 0.9944 0.9983

Superiority Trials 0.2875 0.5322 0.7034 0.8956 0.9648 0.9901 0.9975 0.9994
Non-Inferiority Trials 0.2821 0.5375 0.7010 0.8942 0.9668 0.9895 0.9964 0.9992

d=0.8
Equality Trials 0.3810 0.7749 0.9220 0.9945 0.9996 1.0000 1.0000 1.0000

Superiority Trials 0.4666 0.8120 0.9436 0.9977 0.9998 1.0000 1.0000 1.0000
Non-Inferiority Trials 0.4649 0.8178 0.9422 0.9975 0.9999 1.0000 1.0000 1.0000

Table 4.12. Simulation Results for Responses of Groups Have Lognormal and
Normal Distribution in Cross-Over Design

Effect Size Trial Objective n=10 n=30 n=50 n=100 n=150 n=200 n=250 n=300

d=0.2
Equality Trials 0.1291 0.2109 0.2631 0.3547 0.4378 0.5077 0.5715 0.6304

Superiority Trials 0.1397 0.2312 0.2933 0.4009 0.4941 0.5620 0.6226 0.6880
Non-Inferiority Trials 0.1441 0.2389 0.2973 0.4100 0.4920 0.5678 0.6310 0.6808

d=0.5
Equality Trials 0.2304 0.4882 0.6539 0.8618 0.9481 0.9836 0.9935 0.9978

Superiority Trials 0.2960 0.5402 0.7064 0.8953 0.9646 0.9898 0.9962 0.9991
Non-Inferiority Trials 0.2897 0.5536 0.7079 0.8910 0.9653 0.9886 0.9956 0.9993

d=0.8
Equality Trials 0.3955 0.7756 0.9212 0.9933 0.9997 1.0000 1.0000 1.0000

Superiority Trials 0.4859 0.8190 0.9395 0.9969 0.9998 1.0000 1.0000 1.0000
Non-Inferiority Trials 0.4724 0.8180 0.9419 0.9962 0.9999 1.0000 1.0000 1.0000

Table 4.13. Simulation Results of Responses of both Groups Have Lognormal
Distribution in Cross-Over Design

Effect Size Trial Objective n=10 n=30 n=50 n=100 n=150 n=200 n=250 n=300

d=0.2
Equality Trials 0.1236 0.2004 0.2513 0.3426 0.4327 0.5066 0.5613 0.6276

Superiority Trials 0.1349 0.2226 0.2863 0.3890 0.4892 0.5550 0.6229 0.6821
Non-Inferiority Trials 0.1332 0.2260 0.2801 0.4008 0.4835 0.5625 0.6303 0.6771

d=0.5
Equality Trials 0.2238 0.4780 0.6477 0.8662 0.9502 0.9854 0.9939 0.9982

Superiority Trials 0.3306 0.6008 0.7636 0.9315 0.9823 0.9963 0.9991 0.9999
Non-Inferiority Trials 0.2719 0.5450 0.7050 0.8936 0.9653 0.9894 0.9965 0.9992

d=0.8
Equality Trials 0.3796 0.7712 0.9249 0.9945 0.9997 1.0000 1.0000 1.0000

Superiority Trials 0.4693 0.8191 0.9407 0.9969 0.9997 1.0000 1.0000 1.0000
Non-Inferiority Trials 0.4610 0.8188 0.9434 0.9967 0.9998 1.0000 1.0000 1.0000
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Table 4.14. Simulation Results for Responses of Groups Have Lognormal and
Exponential Distribution in Cross-Over Design

Effect Size Trial Objective n=10 n=30 n=50 n=100 n=150 n=200 n=250 n=300

d=0.2
Equality Trials 0.1242 0.1973 0.2429 0.3359 0.4227 0.5031 0.5612 0.6286

Superiority Trials 0.1431 0.2252 0.2865 0.3962 0.4891 0.5616 0.6207 0.6823
Non-Inferiority Trials 0.1329 0.2342 0.2860 0.3952 0.4795 0.5556 0.6244 0.6759

d=0.5
Equality Trials 0.2111 0.4663 0.6337 0.8630 0.9498 0.9856 0.9959 0.9988

Superiority Trials 0.3539 0.6383 0.7946 0.9515 0.9887 0.9982 0.9995 0.9998
Non-Inferiority Trials 0.2740 0.5435 0.7055 0.8995 0.9668 0.9892 0.9962 0.9989

d=0.8
Equality Trials 0.3779 0.7682 0.9228 0.9957 0.9996 1.0000 1.0000 1.0000

Superiority Trials 0.4661 0.8251 0.9420 0.9956 0.9998 1.0000 1.0000 1.0000
Non-Inferiority Trials 0.8513 0.9972 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

According to fixed effect sizes (Table 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13
and 4.14 ):

• There is also no significant differences with different distributions.

• It is not surprising to get that the the lowest observed power is related to
small effect size.

• When effect size increases, the likelihood of obtaining 80% of observed power
is also increases.

• The observed power is also higher in cross-over design compared to parallel
group design.
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5 DISCUSSION

According to GCP (4), clinical trial is "any investigation in human subjects
intended to discover or verify the clinical, pharmacological and/or other pharma-
codynamic effects of an investigational product(s), and/or to identify any adverse
reactions to an investigational product(s), and/or to study absorption, distribu-
tion, metabolism, and excretion of an investigational product(s) with the object of
ascertaining its safety and/or efficacy. The terms clinical trial and clinical study
are synonymous".

As the volume of medical research increases, the number of conflicting
findings and consequences increases. Although the observed differences might
show true differences, the results differ from the sampling variability, as all studies
are performed on a certain number of subjects. In order to control Type II error
or to estimate the precision of trial, calculating sample size becomes inevitable
(13).

According to guideline of statistical principals for clinical trials (14) in The
International Council for Harmonisation of Technical Requirements for Pharma-
ceuticals for Human Use (ICH), sample size calculation should be written in detail
in a study protocol.

The philosophy behind the sufficiency of sample size is to reduce the pos-
sibility that the value or the decision to be reached randomly and increase the
likelihood of the real situation in the society (15). As clinical trials are very ex-
pensive, consuming a lot time and resources, sample size consideration for clinical
trials is more significant. Mickenautsch (16) reported from the systematic review
of clinical trials is that one of the reasons imprecision of results of clinical trials
is based on small sample size.

Sample size in clinical trials is affected by study design, trial objective,
effect size, Type I and Type II errors, variability in population and other factors
such as drop-out rate (3).

As it is stated in Chapter 3 and 4, for the calculations of sample size,
researchers need to be informed about variability in and clinical meaningful dif-
ference in the population. The information about the population can be obtained
from a pilot study or investigators’ knowledge (17). For pilot studies, as sample
size is small, variability could change widely. To overcome instability of sample
size, using Bayesian approach to calculate sample size for comparing means is
suggested by Wang and his colleges (18). They state that sample size calculation
can be considered as a decision problem and use a loss or utility function.

Julious and Owen (19) give another approach for sample size calculation.
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This approach enables the estimation of imprecise sample variance for investi-
gators. They indicate that with unknown population variance, sample variance
S2 should be estimated. S2 with a few degrees of freedom (m<200) have an im-
portant effect on sample size. Therefore, if the degrees of freedom of estimated
variance is few, then the formulations they suggest can be used.

We consider only one primary end point in this study. However, in some
clinical trials, dealing with two or more co-primary end points might satisfy better
evaluation. There has been increasing trend about comparing more than one
primary end points in pharmaceutical drug research. There exist several methods
to deal with co-primary end points. However, performing these methods are not
easy due to complicated mathematics and programming (20). In the paper of
Sugitima et al. (20), they give useful formulations and tables in parallel group
design for two treatments with continuous co-primary end points.

In this thesis, we take known and unknown population variances cases into
account. For known population variance cases we used standard normal distribu-
tion approach while for unknown population variance cases we used non-central
t distribution approach. Moreover, we conduct simulation study to understand
the
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6 CONCLUSION

"Statistical analysis allows us to put limits on our uncertainty, but not
to prove anything" (21). As this quote explains, we try to decrease uncertainty
in statistics. Sample size calculation gives this chance to investigators at the
beginning of study for trying to reduce Type II error.

Determination of sample size is especially crucial in clinical trials. De-
veloping a new treatment or a new drug takes several years from the beginning
of discovering a new agenda. Moreover, it is expensive. Economic, ethical and
scientific problems might arise in clinical trials if investigators do not create a
detailed plan for trials at the beginning of the study. Sample size calculation
is one of the steps of clinical trials. There are several factors that play role in
calculation of sample size as stated in Chapter 3.

In the light of the information provided, the aim of this thesis is to put
an emphasis on significance of sample size calculation for clinical trials. In Chap-
ter 3, we show how to obtain formulations of sample size with regarding to the
trial objectives (equality, superiority, etc.) and study designs (parallel group and
cross-over) with respect to known and unknown population variance. For known
and unknown population variance cases, standard normal distribution approach
and non-central t distribution approach are used, respectively. We give numerical
examples to make clarify the sample size calculations and show that the sample
sizes obtained from standard normal distribution and non-central t distribution
approaches are close to each other. We also present how these calculations are
calculated by using RStudio. In Chapter 4, we create simulation scenarios un-
der different distributions, trial objectives, sample sizes and specified effect sizes
to compare observed power. We present that the observed power is higher in
non-inferiority trials than in superiority and equality trials based on same clinical
important difference, Type I error, study design and sample size. The observed
power is higher in cross-over design compared to parallel group design with same
clinical important difference, Type I error, trial objective and sample size. Each
subject "serves as her or his own control" and within-subject variability is gen-
erally lower than between-subject variability, the increased efficiency might be
achieved in cross-over trials. However, cross-over design is not applicable in each
clinical trials. For cross-over design, the disease should be chronic and stable and
treatments should result alleviate the disease condition (22). Moreover, when the
effect size increases, the observed power also increases. The different distributions
of responses do not create considerable difference to take into account.
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