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ABSTRACT 

GENÇSOY, Hakan. On The Yield Curve Forecasting: Applications of Conventional and Non-

Conventional Techniques, Ph. D. Dissertation, Ankara, 2025. 

 

Forecasting the yield curves of government debt securities observed in the market is very crucial for both 

economic and financial units. Diebold and Li (2006) show that the AR(1) model makes the best forecasts 

with the Dynamic Nelson Siegel approach. Many researchers have later used this approach with different 

data and models. The differences and new approaches that emerge in the literature reveal the need for a 

more comprehensive study for yield curve forecasts. In this thesis, we forecast the yield curves of 

government bonds of G-7 countries, excluding Japan, for the period 2010-2022 using the Dynamic Nelson 

Siegel approach. We used conventional, non-conventional models, ensemble learning, and forecast 

combination models. Artificial Neural Networks (ANN), which have been frequently used in recent years 

and can investigate the data structure more effectively, have been used in the thesis. In the thesis, unlike 

the literature, we smooth the decay parameter (λ) of the Nelson-Siegel Model with the high-frequency 

Hodrick-Prescott Filter except for the United States. Thus, the λ parameter, like other factors, is included 

in the variables to be forecasted. In this thesis, we increase the flexibility of the yield curves, and the results 

of the forecasts are more meaningful. The results of the thesis are as follows. The yield curve fits the yields 

better with the float λ compared to the constant. In this thesis, we investigate models that make better 

forecasts than the random walk model, we show that although individual models mostly fail, successful 

forecasts can be easily made with forecast combination models we obtain from individual models. We also 

conclude that different ARIMA models can be used instead of AR(1), and that ensemble learning and 

forecast combination approaches can improve the forecasts of individual models. We conclude that ANN 

models are unstable in making successful forecasts. 

Keywords  

Yield Curve, Forecasting, Dynamic Nelson-Siegel, Artificial Neural Network, Forecast Combination   
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ÖZET 

GENÇSOY, Hakan. Getiri Eğrisi Tahmini Üzerine: Geleneksel ve Geleneksel Olmayan 

Tekniklerin Uygulamaları, Doktora Tezi, Ankara, 2025. 

 

Piyasada gözlemlenen devlet iç borçlanma senetlerinin getiri eğrisinin gelecekte ne olacağını tahmin etmek 

hem ekonomik hem de finansal birimleri için çok önemlidir. Diebold-Li (2006) Dinamik Nelson Siegel 

yaklaşımı ile yaptığı çalışmada AR(1) modelinin en iyi tahminleri yaptığını gösterir. Bu yaklaşımı daha 

sonra birçok araştırmacı farklı veri ve modellerde kullandılar. Literatürde ortaya çıkan farklılıklar ve yeni 

yaklaşımlar getiri eğrisi tahminleri için daha kapsamlı bir çalışma yapma ihtiyacı ortaya çıkartır.  Bu 

çalışmada Japonya hariç G-7 ülkelerinin 2010-2022 dönemine ait devlet tahvillerinin getiri eğrilerini 

Dinamik Nelson Siegel yaklaşımı ile tahmin ederiz. Geleneksel, geleneksel olmayan modeller ile birlikte 

topluluk öğrenmesi ve tahmin birleştirmesi modelleri kullandık. Son yıllarda sıkça kullanılan ve veri 

yapısını daha etkin bir şekilde araştırabilen Yapay Sinir Ağları (YSA) tezde kullanılmıştır. Bu tezde 

literatürden farklı olarak, Nelson-Siegel Modelinin bozunma parametresini (λ) birleşik devletlerinki hariç 

yüksek frekanslı Hodrick-Prescott Filtresi ile düzleştiririz. Böylece diğer faktörler gibi λ parametresi de 

tahmin edilecek değişkenlere dahil edilir. Getiri eğrilerinin esnekliğini arttırdığımız bu çalışmada 

tahminlerin sonuçları daha anlamlıdır. Çalışmanın sonuçları şunlardır. Değişken λ ile sabite göre getiri 

eğrisi getirilere daha iyi uyum sağlar. Rassal yürüyüş modelinden daha iyi tahmin yapan modelleri 

araştırdığımız bu tezde bireysel modeller çoğunlukla başarısız olduğu halde bu modellerden elde ettiğimiz 

tahmin birleştirmesi modelleri ile kolaylıkla başarılı tahminler yapılabileceğini gösteririz. Ayrıca AR(1) 

yerine farklı ARIMA modellerinin kullanılabileceği, topluluk öğrenmesi ve tahmin birleştirmesi 

yaklaşımlarının bireysel modellerin tahminleri iyileştirebileceği sonucuna varırız. YSA modellerinin 

başarılı tahminler yapmada istikrarsız olduğu sonucuna varırız. 

Anahtar Sözcükler  

Getiri Eğrisi, Tahmin, Dinamik Nelson-Siegel, Yapay Sinir Ağı, Tahmin Kombinasyonu.  
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INTRODUCTION 

The analysis of preventing economic uncertainties is crucial to manage potential risks 

towards economic crises. In this respect, understanding and adapting to changes in an 

economy over time, as well as well-designed and forward-looking policies are 

fundamental requirements to maintain a sustainable economy and balanced economic 

growth. One of the most important instruments of economic policy design is monetary 

policy and relatedly understanding the term structure of interest rates namely, the yield 

curve formation in an economy which is a well-defined predictor for future economic 

activity. Mishkin (1986) defines the yield curve, particularly as a key indicator of the 

bond market, where curves expresses interest rates of bonds with the same risk, liquidity, 

and tax conditions at different maturities. In other words, the yield curve show interest 

rates for debt contracts at various maturities, where these credit quality conditions 

determine the risk structure of the debt instruments. The risk structure, in turn, causes 

debt instruments with the same maturity to have different interest rates. Just as the 

fundamental production units of an economy are firms, they need to forecast these interest 

rates for planning future production and investments. Additionally, other economic actors 

such as the government, households, and foreigners need to understand the term structure 

of interest rates in order to make forecasts about their consumption and investments where 

debt instruments and the cost of borrowing matter.  

There exist a significant number of studies on the formation of the yield curve particularly 

within finance, asset pricing theory, and macroeconomics literature. In this literature, the 

term structure of interest rates is usually analyzed to determine the relationship between 

maturity and zero-coupon bond yields where such analyses and forecasts allow for better 

controlled financial and economic practices. Within and in parallel with these studies, as 

the research on financial instruments, data structure, market theories, and models evolved, 

the yield curves have emerged as one of the most critical parameters in financial asset 

pricing, risk management, and portfolio management. For instance, the discount rate that 

determines the net value of cash flows is obtained from the yield curve while accurate 

yield curve forecasts reduce the risk of synthetic financial products. Yield curve forecasts 
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further produce better fund and asset-liability management for economic actors in 

establishing their investment strategies. 

Dynamic yield curve analysis is crucial for many purposes such as financial instrument 

pricing and debt restructuring. Government bonds as a fundamental financial instrument 

and relatedly derivative assets are priced and traded based on yield curves. To this end, 

forecasting the term structure of interest rates is crucial for monetary policy applications 

as well as for finance as the information provided by the economic indicators is reflected 

in the yield curve and term structure of interest rates. Obtaining the benchmark interest 

rates that the economy uses as a reference from the yield curve at a certain maturity level, 

rather than from a bond yield traded in the market, would allow for more accurate 

inferences for policy design. Accordingly, yield curve is one of the main instruments of 

central banks and monetary policy applications. On the other hand, short-term interest 

rates are related to monetary policy actions, whereas long-term interest rates are shaped 

by investors' expectations of future economic activities. Additionally, since long-term 

yield rates consist of future short-term interest rate expectations, the entire yield curve is 

related to the monetary policy rate in turn, where the monetary transmission mechanism 

directs the movements of short-term interest rates by influencing long-term interest rates 

over time.  

Many studies investigate the connections between the term structure of the yield curve 

and macroeconomic indicators revealing the relationship between yield curve forecasts 

and business cycles. Level, slope, and curvature factors of the yield curves interact with 

many macroeconomic indicators, particularly inflation, output gap, and capacity 

utilization. Accordingly, market participants closely monitor these latent factors of the 

yield curve. Apart from monitoring, central banks try to change the shape of the yield 

curve from time to time in order to achieve their targets through influencing the financial 

and economic parameters. Therefore, forecasting the term structure of interest rates has 

always been critical for reflecting economic conditions and guiding monetary policy 

implementations.  

Under free market conditions, the yield curve is a true reflection of economic agents' 

views on the state of the economy and their expectations. Since these expectations shape 
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the future or positions taken by economic agents, near-term expectations are determined 

by the state of the yield curve where the yield curve forms a self-determining cycle. This 

cycle provides insights for yield curve analysis and forecasts. With this purpose, many 

models have been constructed to forecast the shape of the yield curve and its dynamics. 

Among them, conventional models such as Box-Jenkins, smoothing, threshold, and 

random walk have the advantages of easy application and interpretable outputs. Because 

of these features, they are usually preferred for the analysis and forecasting of the yield 

curves. However, much of the data in finance does not fit the structure of many 

conventional models. This leads to high forecasting and fitting errors, and many models 

yield worse results than those of the random-walk approach. Irregularities and variations 

in the yield data lead to violations of constraints such as stationarity and no missing data, 

which are the conditions that conventional models require for time series. Therefore, 

using conventional models to forecast yield curves may prevent modeling the actual 

patterns of them. 

Issues with conventional financial data models in the yield curve forecasting have led 

researchers to use artificial intelligence (AI) applications. AI is applied in many financial, 

commercial, and economic fields, such as credit rating, forecasting bankruptcy, stock 

market, exchange rate determination, optimal capital structure, detecting financial crises 

and uncertainties as well as solving complex financial problems. For example, Machine 

Learning (ML) models and particularly Artificial Neural Networks (ANNs) can model 

high-frequency nonlinear financial data and have been of great interest for researchers 

and economic actors. Recently, Forecast Combinations (FC) of conventional and non-

conventional models, and Ensemble Learning (EL) models have been used to 

complement one another. Regarding studies of yield curve forecasting using AI as well 

as the development of Graphics Processing Unit (GPU) technology in the 2000s has 

eliminated hardware problems and expanded the use of deep networks. As technological 

development accelerates, information can be processed faster using AI models making 

ML and ANN approaches more applicable with respect to conventional approaches. 

Motivated by these, this study aims to forecast yield curves of G-7 countries, excluding 

Japan, over the period 2010-2022, mainly using the Dynamic Nelson Siegel (DNS) 

approach applied by Diebold and Li (2006), who forecast the Nelson Siegel (NS) factors 
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as time series. We attempt to forecast yield curves using the conventional and non-

conventional and particularly ANN models as well as using EL and FC approaches. We 

select Canada, Germany, France, Great Britain, Italy, and the United States (US) due to 

data availability for whom enough data exists to estimate latent factors efficiently. This 

thesis makes significant contributions to the existing literature. First of all, with a 

comprehensive approach, applying many models we investigate whether there is a 

conventional model that forecasts the structure of the data more efficiently i.e. better than 

the ANN models do.  Further, keeping the model and parameter range wide, in k-Nearest 

Neighbors (kNN) and ANNs as non-conventional models, a more general optimization 

structure is investigated. Note that the large amount of data and hardware requirements 

for the increased computation volume are the most critical constraints in applying ANN 

models which is also valid for this study. In many studies within the related literature, 

ANN models provide excellent optimization which is supposed to be only coincidental. 

Accordingly, since optimization is problematic in ANN model applications, in this study, 

the structures and parameters are tested using different models. Secondly, we check the 

validity of comprehensive forecast combinations rather than exploring a single model. To 

our knowledge, there exists no study following such an investigation within the related 

literature. Only if the studies on Brazil are excluded, it is observed that the literature is 

limited in terms of the forecast combinations regarding model groups, data period, 

parameters used, etc.  

Next, in contrast to many existing studies, by taking the parameter λ  which denotes the 

decay parameter in Nelson-Siegel’s yield curve model, as a float; and by this way 

including it among the factors to be forecasted instead of considering it as a constant, 

prevents us losing the flexibility of the yield curve. The yield curve flexibility relates with 

factors such as slope and curvature which include λ parameter. Accordingly, in this study, 

the yield curve, which becomes more flexible with a varying λ obtained by using the 

Hodrick Prescott Filter methodology, is expected to eliminate the issue of the non-

coverage of the negative interest rates phenomena arised recently. Last but not least, 

unlike the existing studies, the sliding-window methodology is used to determine if the 

models would provide a random pattern causing them to be dysfunctional in some parts 

of data. The sliding window technique refers to a method of analyzing time series data by 
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using a fixed-size subset of data points that moves through the entire dataset, allowing for 

the examination of changing relationships over time. 

The remainder of this thesis is organized as follows. Chapter 1 labeled as "Yield Curve 

and Yield Curve Forecasting: A Brief Literature" introduces the key definitions and 

concept of the yield curve, term structure theories, and yield curve models as well as the 

forecasting literature. The second chapter labeled as "Considered Forecasting 

Methodologies" overviews conventional, non-conventional, ensemble learning and 

forecasting combination models employed. In Chapter 3 of “Data and Empirical 

Framework”, datasets and methodological frameworks are introduced. The last chapter is 

designed as "Empirical Analyses", where the evaluation methods and the empirical results 

of the models are presented. 
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CHAPTER 1: 

YIELD CURVE AND YIELD CURVE FORECASTING: A BRIEF 

LITERATURE 

The bond market is vital for economic activity financing the activities of companies and 

governments as well as determining the interest rates in an economy. Finance has many 

interest rates such as loans, markets, and benchmark interest rates. Due to the tendency 

of different interest rates to move together, the field of economics refers to a single 

interest rate which is a combination of these rates. Economists refer to this interest rate 

as the yield to maturity (Mishkin, 2021). The most accepted method of measuring the 

term structure of interest rates is yield curves identical to current rates or zero (interest) 

rates. Zero coupons are selected because there is no coupon effect. Zero coupon yields 

are not directly observed in the market; therefore, they must be estimated using yield 

curve models (De Pooter, 2007).  

Yield curve models are designed based on their intended purpose. For instance, in 

macroeconomics, a smoother model is used to analyze the determinants of the curve, 

whereas a method that offers a better fit and considers volatility is preferred for pricing 

securities (Gürkaynak et al., 2007). The model for the yield curve should capture the 

general behavior of interest rates. The mathematical structure of the model determines its 

purpose and how well it fulfills these criteria. The evolution of models over time reflects 

the ongoing efforts to meet these needs.  

This section begins by introducing the key definitions and equations used to develop yield 

curve models. It explains the theories behind the yield curve and the features of its shape. 

It covers models of the yield curve with different purposes and assumptions, their general 

characteristics, and the Dynamic Nelson-Siegel (DNS) model used in this thesis. Also, 

NS factors are mentioned. The section ends with a comprehensive literature review of the 

yield curve forecast methodologies. 
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1.1.  INTEREST RATES 

This title includes the definitions and equations that form the basis of yield curve models. 

The NS model used in this study is derived from these formulas. To begin with, a loan 

issued in the current period (at time t) has an interest rate r (t, T) and is repaid at time T. 

The yield rates at all times T are assembled to produce a yield curve (Davidson, 2014). 

Let the interest rate be constant within each interval but different at different intervals. 

Let r(t) be the instantaneous interest rate, over time interval [0, T], present value P and 

value (V) be 

𝑉(𝑡) = 𝑃. exp (∫ 𝑟(𝑡)𝑑𝑡
𝑇

0
)     (1.1) 

(Campolieti & Makarov, 2014). The yield of a zero-coupon bond is the yield of a single 

payment at maturity and defines the implied yield. If the nominal value of the bond is 1: 

𝑃𝑡(m) = 𝑒
−m𝑟𝑡(𝑚)                (1.2) 

𝑃𝑡(m) is price of the m-period discounted bond. 𝑟𝑡(m) is continuously compounded 

nominal yield to maturity of a zero coupon bond (Diebold & Li, 2006). 

Even if the interest rates between the maturities of the cash flows of a debt instrument are 

different, the rate obtained for equalizing the market value of the debt instrument is called 

yield to maturity (Davidson, 2014). Calculating the yield to maturity can sometimes be 

challenging. Instead, discount-based yields are used (Mishkin, 2021). The discount rate 

is the rate that equalizes the security value that will earn a return at maturity to its present 

value. The discount rate is calculated from the zero coupon yield curve (Akçay et al., 

2012). A discount curve is obtained from the yield curve.  

Forward interest rates are current period equivalents of future zero-coupon rates (Hull, 

2018). Zero-coupon bond rates are forward rates issued at time t0 (Davidson, 2014). The 

instantaneous (nominal) forward curve is obtained from the discount rate: 

𝑓𝑡(m) = −𝑃𝑡
′(m)/𝑃𝑡(m)                  (1.3) 



8 

 

  

(Diebold & Li, 2006). The spot interest rate (yield) is the average forward rate. The 

continuous compounded yield of a zero-coupon bond in period n is  

𝑦𝑡(𝑛) =
1

𝑛
∫ 𝑓𝑡(𝑚)𝑑𝑚
𝑛

0
= 𝑅(𝑚)                   (1.4) 

Where ft(m) defines forward rate and Rt(m) is spot interest rate  (Gürkaynak et al., 2007). 

Since these are data on long-term rates, forward interest rates contain the same 

information as the yield curve if the term premium is not considered (Svensson, 1995). 

1.2.  YIELD CURVE 

Although there is no objection to the definition of the yield curve, the data to be used, 

their transformation, and the yield curve models vary. Using at least ten different 

securities data is recommended to reliably produce a yield curve (Akçay et al., 2012). 

Since zero coupon bond prices are not available in the market for all maturities, 

unobservable rates could be found by estimating the yield curve from the coupon prices 

of observed zero coupon bonds and coupons of coupon bonds (Gürkaynak et al., 2007). 

In generating zero-coupon yield curves for government bonds, zero-coupon bonds, as 

well as coupons of coupon bonds, can be used as inputs for separate security (Hull, 2018). 

However, in coupon bonds, the coupon rate changes the bond's actual maturity, which we 

call the duration. Additionally, if discount and coupon bonds are traded in two markets, 

their pricing dynamics may differ. Therefore, some researchers have stated that coupon 

rates are inappropriate to be used in the yield modeling (Svensson, 1995). 

Yield curves are usually positively sloped but can be formed negatively sloped, flat, or 

very complex (Mishkin, 2021). While interest rates are expected to rise as maturity gets 

longer, long-term rates may be lower for various reasons, such as economic confidence 

(Kožíšek, 2018). The term structure cannot be described as a first-order Markov process 

because investors have information not included in the current yields (Duffee, 2012).  
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Figure 1: Types of Yield Curves 

 

Explanations of the yield curve graphs, examples of which are shown in Figure 1, are as 

follows. (a) A normal yield curve has a positive slope, where yields increase as maturity 

increases. (b) In an inverted yield curve, long-term yields are lower than short-term yields. 

These negatively sloping yield curves are rare. (c) The yield spreads between maturities 

on a flat yield curve are very small. (d) In a humped yield curve, rising interest rates fall 

after reaching the maximum point of curvature and return to their initial levels. (e) In the 

inverted hump yield curve, interest rates slope downward in the short term and then 

increase again in the long term, reaching their initial level in the long term.   

There is a relationship between the shape of the yield curve and the economy. The slope 

combines the term premium and interest rate expectations (and hence, inflation 

expectations). From a horizontal or inverted yield curve, it can be concluded that there is 

an expectation that short-term returns, economic activities, and inflation may decrease in 

the future. Fund holders who think that the economy will enter a recession may find that 

long-term demand for funds may decrease, future interest rates may decrease, and 

therefore higher yields will be obtained in the short term. Another possibility is that the 

contractionary monetary policy that causes the inverted yield curve could only reduce 

interest rates and inflation without causing a slowdown (Central Bank of Türkiye - 

Inflation Report, 2019-II). News of an economic upturn may increase short-term rates, 
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leading to an inverted yield curve (Diebold & Rudebusch, 2013). A flat yield curve may 

signal the expectation of disinflation and slow growth (Central Bank of Türkiye - Inflation 

Report, 2019-II). On the other hand, a steeply sloping yield curve indicates that inflation 

will rise and a loose policy will follow (Mishkin, 2021). Changes in yield curve are signs 

of recession or economic recovery (Diebold & Rudebusch, 2013). 

1.3. STYLIZED FACTS 

The yield curve must have specific properties that must be met to be modeled. In 2006, 

Diebold and Li listed five of these critical properties known as stylized facts. First, yield 

curve is concave and increases in general. The normal yield curve shown in Figure 1(a) 

has these characteristics and possesses the term structure most commonly observed in the 

market. Second, the yield curve may assume various shapes over time, such as upward 

sloping, downward sloping, humped, and inverted-humped. These possible yield curve 

graphs are shown in Figure 1. Third, the yield dynamics are persistent (resilient, less 

volatile), whereas the spread dynamics are less persistent. Fourth, the short-term end of 

the yield curves is more volatile than the long-term end. Fifth, long-term rates are more 

persistent than short-term ones.  

Many different observations have been made regarding the yield behavior. Some of these 

findings, which explain the shape and changes in the yield curve, can be summarized as 

follows. According to convexity in the compound-modified duration of the bond, capital 

loss from an increase in the interest rate is smaller than capital gain from a decrease in 

the rate. This causes the yield curve to become convex and hump-shaped (Gürkaynak et 

al., 2007). Yield curves are generally positively sloped, except when a sharp decrease in 

short-term rates is expected (Hull, 2018). In a developed bond market with a so-called 

"normal" positive yield curve, selling the bond before maturity is possible. In this way, 

despite the decreasing yield ratio as maturity decreases, a higher yield than the short-term 

yield can be obtained by selling the bond before its maturity (Campolieti & Makarov, 

2014). It is rare for interest rates to change in the same way along the yield curve; that is, 

for the curve as a whole to shift by the same amount. The yield curve's slope usually 

changes because of changes in interest rates  (Şişman, 2011).  
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Yield curves are not always expected to have all shapes because of arbitrage, which means 

that debt instruments with different yields can be traded for instant gain. For example, 

according to Davidson (2014), negative nominal interest rates are impossible. Of course, 

negative actual interest rates are also possible. Very low interest rates can be explained 

by low or negative inflation and lack of investment opportunities. However, the negative 

interest rates go beyond these reasons. The reason is that large investors and banks prefer 

to keep treasury bonds or central bank deposits to store their funds electronically despite 

the negative yields (Mishkin, 2021).  

The interest rate risk, which refers to the risk of an asset arising from changes in interest 

rates, increases the risk of bonds with longer maturities. Prices and yields of bonds with 

longer maturities are more volatile because they are more sensitive to changes in interest 

rates (Mishkin, 2021). The risk of the bond is the difference between the actual behavior 

of the short-term rate and the behavior in the risk-free world and is priced positively. 

Interest rate risk is negatively priced because price and rate are negatively related. In the 

risk-free world, interest rates change more and have a larger expected future value (Hull, 

2018).  

Yield curve shows the bond market yield and reflects the market expectations. Interest 

rates are not expected to fluctuate as uncertainty decreases as the redemption date 

approaches. However, because there is more uncertainty in the long term, investors may 

demand a higher yield for this risk. This is why the yield curve typically slopes upwards. 

Sometimes, yields are higher in the short term and are expected to fall in the future 

(Campolieti & Makarov, 2014).  

High yield spreads result in low future yield spreads (Hoogteijling 2020).  According to 

Diebold and Rudebusch (2013), 12-month autocorrelations of yields exhibit persistent 

solid features. However, in contrast to these yield levels, spread autocorrelations, which 

are initially high, decline rapidly and remain smaller than level autocorrelations. 
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1.4. THEORIES FOR TERM STRUCTURE OF INTEREST RATES 

The economic literature attempts to explain why the same debt instruments may have 

different yields. Theories have been developed to explain why the yields differ, instead 

of providing the same yields even if the maturity varies. Three different theories have 

come to the forefront to explain the term structure of yield curves. The expectations theory 

suggests that short-term current yields are the averages of future forward yields. Market 

segmentation theory suggests that short-, medium-, and long-term markets are entirely 

different. The liquidity premium theory suggests that investment in short-term 

instruments is preferred to preserve liquidity, whereas long maturity is preferred for 

borrowing (Hull, 2018).  

The Expectations Theory, explains the empirical properties of the yield curve that (1) 

interest rates move together and (2) if short-term interest rates are low (high), the curve 

is most likely to be positively (negatively) sloped. The Market Segmentation Theory, 

explains the third empirical fact that (3) yield curves are generally positively sloped. Since 

both theories can explain the empirical features that the other cannot, the Liquidity 

Premium Theory was developed by combining the two theories to explain all three 

empirical features (Mishkin, 2021).  

The average of the short-term interest rates that investors expect to realize during the 

maturity of the long-term bond is equal to the interest rate on the long-term bond. Since 

future short-term interest rates are expected to take different values, interest rates at 

different maturities are not equal. In the Expectations Theory, this claim assumes that 

bonds with different maturities are perfect substitutes. According to this theory, short-

term interest rates increase when the yield curve has a positive slope. Moreover, according 

to this theory, since the long-term is expected to be the average of the short-term, interest 

rates in the long term are less volatile than interest rates in the short term. Because extreme 

deviations are expected in the short term, the yields eventually revert to the mean in the 

long term (Mishkin, 2021). 

The Expectations Theory assumes that there is a relationship between the slope and future 

level of yields. Since this relationship is assumed to be linear in many studies, appropriate 
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results could not be obtained from the studies (Modena, 2008). However, based on this 

relationship, indicated by the Expectations Theory, yield forecasting models can be 

established in which only term structure factors are considered inputs (parameters) and 

output. Litterman and Scheinkman (1991) and Jong (2000) claim that interest rate 

forecasts could only be made using term structure factors. Wood and Dasgupta (1995), 

Tappinen (1998), and Abid and Salah (2003) demonstrate this with the models they built 

with spreads and interest rate levels. 

The Expectations Theory does not model the excess yields. This theory considers the risk 

premium constant and uses the average of historical data in its forecast. Although this 

theory does not relate risk premiums to any data, many studies have modeled them using 

macroeconomic data (Hoogteijling, 2020).  

In finance applications, short-term interest rates are a linear function of several 

unobservable factors. In macroeconomics, they are the rates the central bank sets to 

stabilize the economy. Long-term interest rates are determined by the risk premium in 

finance. In contrast, in macroeconomics, they are determined by short-term interest rate 

expectations, and the Expectations Theory does not consider the risk premium mentioned 

in the finance literature. These differences illustrate the disconnection between the 

macroeconomics and finance literature (Diebold & Rudebusch, 2013). Besides, Diebold 

et al. (2006) show that the expectations hypothesis may not always be consistent with 

yield curves.  

Contrary to Expectations Theory, Market Segmentation Theory assumes that the markets 

for bonds with different maturities are entirely separate and fragmented, are not 

substitutes for each other, and that price, supply-demand, and yield expectations do not 

affect each other (Mishkin, 2021). This theory, which argues that the formation of 

different yields in different maturities is due to different markets, is based on the positive 

slope of the curve in market uncertainty theory. According to the market uncertainty 

theory, maturity length and cash flow uncertainty are directly proportional (Akçay et al., 

2012).  

It proposes that long-term interest rates are the sum of the average of short-term interest 

rates suggested by expectations theory and the positive liquidity premium, which is the 
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cost of choosing long-term bonds over short-term ones (Mishkin, 2021). If investors can 

obtain a premium that allows them to bear long-term risk, they may prefer long-term 

bonds to short-term ones (Kožíšek, 2018). Liquidity Premium Theory assumes bond 

markets are substitutes between terms, although not perfect substitutes (Mishkin, 2021). 

According to the liquidity premium theory, the risk premium of long-term bonds is high, 

as expected, and realized yields may differ. As the maturity gets longer, spreads are 

expected to decrease (Akçay et al., 2012). 

According to the Preferred Habitat Theory, which is a version of the liquidity premium 

theory, if investors can earn higher yields, they prefer to buy bonds with maturities they 

do not prefer rather than bonds they prefer. Since investors prefer short-term bonds due 

to their low risk, they prefer long-term bonds only if they can earn higher yields. 

Therefore, the positively sloping liquidity premium increases as the time to maturity 

increases (Mishkin, 2021).  

In the preferred habitat theory, the term premium can also take negative values instead of 

zero. The difference between the long- and short-term in this theory arises because these 

terms have different investors in different markets (Gibson et al., 2010). The no-arbitrage 

constraint in the theory explains shocks to the term structure and the central bank's ability 

to intervene in the yield curve (Kožíšek, 2018).  

1.5. YIELD CURVE MODELS 

Yield curve models are divided into categories, depending on the purpose or perspective. 

Diebold and Li (2006) divide yield curve models into two categories, Dolan (1999) into 

three, and Şişman (2011) into four categories. Diebold and Li (2006) divide yield curve 

models into no-arbitrage and equilibrium models. Accordingly, while no-arbitrage 

models aim at perfect matching in a way that does not allow arbitrage, equilibrium models 

aim to model the dynamics of the current rates. Equilibrium models use affine models 

after deriving yields at other maturities, subject to assumptions regarding the risk 

premium. Ultimately, these curves can be described as stochastic structures expressing a 

probabilistic description of the change in interest rates over time (Fabozzi, 2006).  
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Dolan (1999) divides yield curve models into stochastic, no-arbitrage, principal 

components, and fundamental models. Şişman (2011) divides yield curve models into 

factor models (affine), which are most frequently used because of their ease of calculation 

and flexibility; entire yield curve models, which aim to model the entire curve; market 

models that use market data as variables and can be used in option pricing; and other 

models such as consol models, price kernel models, positive rate models, non-linear 

models. 

The majority of studies use the three categories as (i) affine-equilibrium, (ii) no-arbitrage, 

and (iii) statistical and parametric. Vasicek (1977) and Cox et al. (1985), Duffie and Kan 

(1996) create affine-equilibrium models. Hull and White (1990) and Heath et al. (1992) 

created no-arbitrage models. McCulloch (1971, 1975), Fisher et al. (1995), Vasicek and 

Fong (1982), Nelson and Siegel (1987), Svensson (1994), Bliss (1997), Rezende and 

Ferreira (2011) create statistical and parametric models. 

Affine-equilibrium and no-arbitrage models are dynamic, while statistical and parametric 

models are static (Fabozzi, 2002). Spot interest rate forecasts are crucial parameters for 

portfolio management, whereas interest rate distribution is crucial for derivative pricing 

and risk management. No-arbitrage models prioritize spot fitting and do not contain much 

information about dynamics. On the contrary, equilibrium-affine models attempt to make 

predictions based on short-term dynamics. Unlike the in-sample fit, these models give 

poor results in out-of-sample forecasts (Diebold & Li, 2006). Static models are more 

suitable for out-of-sample forecasts. Models that attempt to construct yield curves with 

latent factors, such as NS, are the most efficient for forecasting (Vela, 2013). This study 

attempts to explain yield curve models according to affine-equilibrium, no-arbitrage and, 

statistical and parametric categories. The NS model is used in the study because it is 

suitable for out-of-sample forecast. We discuss the NS model, which is a parametric 

approach, and the Dynamic Nelson Siegel (DNS) model based on factor forecast under 

separate headings. 
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1.5.1. Affine -Equilibrium Models 

Affine - Equilibrium models are used for derivative and current yields at different 

maturities, including a risk premium. These models first make assumptions for economic 

parameters. They then run a process (stochastic formulation) for short-term interest rates. 

Finally, they explain the interest derived from bond option prices (Hull, 2018). Affine-

equilibrium models model instantaneous dynamics by considering the risk premium (He, 

2013).  

Affine-equilibrium models change short-term returns. The general equation is set up as 

𝑑𝑟(𝑡) = [𝜇0(𝑡) + 𝜇1(𝑡)]𝑑𝑡 + √𝜎0
2(𝑡) + 𝜎1

2(𝑡)𝑟(𝑡)𝑑𝑊(𝑡)
2

             (1.5) 

Where r(t) defines instantaneous short rate at time t, μ is long term mean, dW(t) is the 

Wiener process and, σ is the volatility of the interest rates. These stochastic models consist 

of the sum of the drift and diffusion (Szenczi, 2016). These models assume that yield 

curves are linear functions of several factors (Kostyra & Rubaszek, 2020). These models 

have too many parameters to be optimized (Rodriguez, 2016).  

In single-factor affine-equilibrium models, different shapes can be obtained by modeling 

all yields moving in the same direction but in different amounts (Hull, 2018). The yields 

in these models contain only one uncertainty term.  

Forecasts are more efficient if Affine-equilibrium models include a no-arbitrage property 

and macroeconomic variables (Rezende & Ferreira, 2011). These models try to 

understand the economy based on economic indicators and short-term interest rates 

(Mineo et al., 2020).  

High yields lead to a slowdown in the economy and lower demand for funds, which raises 

yields. Low yields lead to a demand for funds to fall, thereby increasing yields. This 

coercive system is a reversion to the mean in affine-equilibrium models (Hull, 2018). 

 



17 

 

  

1.5.2. No-arbitrage Models 

No-arbitrage models have been developed because the estimated bond prices in affine-

equilibrium models may differ from those in the market (Szenczi, 2016). No-arbitrage 

yield curve models find the points that best fit market data for government bonds. These 

models estimate the current yields by eliminating arbitrage opportunities at different 

maturities. These models are used primarily for derivative pricing. In the short-term rates 

in equilibrium models, the equilibrium model is converted into a no-arbitrage model by 

adding a function of time to the drift (Hull, 2018). 

Affine-equilibrium models do not fit the term structure of current interest rates. This is 

because they found different term structures for different subjective parameters. The yield 

curve may change as the parameter chosen for optimization changes despite the same 

observed data. In equilibrium models, the term structures of today's interest rates are 

outputs. On the other hand, in no-arbitrage models, they are the inputs. In contrast to 

equilibrium models, drift is typically a function of time in no-arbitrage models. This 

ensures that yields in no-arbitrage models exactly fit the term structure (Hull, 2018). 

Unlike static models, these two dynamic model categories (affine-equilibrium and no-

arbitrage) incorporate volatility into the model (He, 2013).   

In macroeconomics, the interest-rate parameter refers to a single variable. It does not 

consider any phenomena such as risk and arbitrage. Conversely, the interest rate 

parameter is set for financial asset pricing, and macroeconomic effects are not considered. 

The no-arbitrage term structure model is an affine model that combines these two areas 

and incorporates the rational expectations theory of the New Keynesian Model. 

According to this model, the level is inflation, and the slope is monetary policy changes 

(Diebold and Rudebusch, 2013). Short-term rates of no-arbitrage models have high 

predictive power for GDP (Kožíšek, 2018).  
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1.5.3. Statistical and Parametric Models 

Statistical and parametric models aim to obtain a curve that best fits observed yield data 

(Tüysüzoğlu, 2013). Statistical or parametric models are linear models, such as 

interpolation and bootstrapping, and nonlinear models, such as Nelson-Siegel and 

Svensson.   

In cubic models, some bonds can distort the yield curve structure. Cubic interpolation 

may include extreme points. However, the Nelson-Siegel model can draw a curve that 

cancels these extreme points (Akıncı et al., 2006).   

Nelson and Siegel (1987) assume that the τ values in the second and third terms (short- 

and medium-term) are equal because of the equation's overparameterization problem. 

Conversely, Bliss (1997) prefers a model with different values of this parameter because 

it provides more flexibility (De Pooter, 2007).  

Models such as Svensson (1994) and Diament (1993) provide more valuable results by 

flattening the long-term portion of the yield curve (Akçay et al., 2012). In Svensson 

(1994), the second curvature improves the long-term fit, leading to more favorable results 

in terms of level and slope. This adjustment improves short-term fitting (Szenczi, 2016). 

In the Svensson (1994) model, decay parameters are assumed to have different values to 

avoid multicollinearity (De Pooter, 2007). 

Björk and Christensen (1999) also propose a second 5-factor model. However, in this 

model, the yield curve does not flatten in the long term by approaching a certain level but 

instead becomes a model with a linear increase (De Pooter, 2007). Table 1 presents the 

yield curve models. 
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Table 1: Yield Curve Models 

 Model Formulas Description 
E

q
u
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ib
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u

m
 -

 A
ff
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e 

M
o

d
el

s 
Rendleman – 

Bartter 
dr = µrdt + σrdw 

μ and σ are constants.  

Merton dr = adt + σdw, rt = r0 + at + σWt a is fixed.  

Dothan dr = σrtdwt, rt = r0e
σWt−

1

2
σ2t

 

It is a model in which interest rates 

change only with the volatility of the 

market.  

GBM drt = µrtdt + σrtdwt µ is the coefficient of the mean. 

Mean - 

Reverting 

(Ornstein-

Uhlenbeck) 

process or 

Vasicek 

drt = θ(µ−rt)dt + σdwt 

rt = r0𝑒
𝛼𝑡 + αμt𝑒𝛼𝑡 +∫σ𝑒𝛼(𝑡−𝑠)dW𝑠

𝑡

0

 

θ gives the speed at which it will 

return to the mean. θ, µ, and σ are 

positive constants. 

Cox-Ingersoll-

Ross (CIR) 

drt = θ(µ−rt)dt + σ√rtdwt 

rt

=
𝜎2

4
(𝑟0

2𝑒−𝑡 + (∫𝑒(𝑡−𝑠)dW𝑠

𝑡

0

)

2

+ 2r0𝑒
−𝑡/2∫𝑒(𝑡−𝑠)dW𝑠

𝑡

0

) 

√rt term is added on the assumption 

that volatility will be high when 

interest rates are high and volatility 

will be low when interest rates are 

low. This model was developed to 

eliminate the possibility of finding a 

negative interest rate in the Vasicek 

model. 

Two-factor 

Markow 
dr=(u-θr)dt+σ1dw1; du= -μudt+σ2dw2 

The level of reversion to the mean 

(u/θ) is not constant. 

N
o

-a
rb

it
ra

g
e 

M
o

d
el

s 

Ho-Lee 
dr = θ(t)dt + σdw 

θ(t) = Ft(0, t) + σ
2t 

Ft are the instantaneous forward 

interest rates. θ(t) ensures the yield 

ratio matches the initial term 

structure model. 

Hull-White 

(One Factor) 

dr = [θ(t) − ar]dt + σdw 

θ(t) = Ft(0, t) + a[F(0, t) − r] 

It ensures full compliance with the 

initial maturity structure of the 

Vasicek model. 

Hull-White 

(Two Factor) 

df(r) = [θ(t) + u − af(r)]dt + σ1dw1 

du = −budt + σ2dw2 

u itself approaches zero. Negative 

yields can be found. 

Black-Derman-

Toy 
dlnr = [θ(t) − a(t)lnr]dt + σ(t)dw 

In practice, σ(t) is fixed and a(t) is 

zero. 

Black-

Karansinski 
dlnr = [θ(t) − a(t)lnr]dt + σ(t)dw 

There is no relationship between σ(t) 

and a(t). 

Interest rate tree 

It contains stochastic processes. It is a 

discrete-time representation of a 

stochastic process for the short term. If the 

time transitions in the tree are ∆t, the rate 

in the tree is the continuously compound 

∆t-period rate. The ∆t-period rate (R) 

similarly follows the stochastic process of 

the instantaneous rate (r), using the 

continuous-time model. 

It includes averages and reversion to 

the mean. 
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Model Formulas Description 

Interpolations 

Linear:    Rc = Ra + (Rb − Ra) ∗
(Tc−Ta)

(Tb−Ta)
  

Logarithmic: Rc = Ra + (Rb − Ra) ∗
ln (

Tc
Ta
)

ln (
Tb
Ta
)
   

Cubic:   Rc = Ra + (Rb − Ra) ∗
(Tc
3−Ta

3)

(Tb
3−Ta

3)
  

Cubic Spline:   

R(Ti) = aRi + bRi+1 + aR′′i + bR′′i+1 

h = Ti+1 − Ti, a =
Ti+1−T

h
 , b =

T−Ti

h
,    

c =
1

6
(a3 − a)h2, d =

1

6
(b3 − b)h2 

 Quadratic:  Rc = Ra + (Rb − Ra) ∗
(Tc
2−Ta

2)

(Tb
2−Ta

2)
 

It observed market returns 

are combined with various 

interpolation models to 

construct yield curves. Ra and 

Rb are the yield on two bonds 

traded in the market, Ta and 

Tb are maturities. For each 

unobserved Tc for each Rc 

interpolation models are 

applied to find the yield. 

Vasicek-Fong 
Yields for all maturities from overnight to 30 

years are calculated from the yields of the selected 

bond basket using the cubic spline method. 

 

Bootstrapping 

•Standard (Cluster) Bootstrapping: The nominal 

rates of standard maturities are found with the 

clustering technique. Cubic splines combine these 

standard maturities to form a nominal yield curve. 

Zero coupon rates are obtained with the 

bootstrapping method.  

•Iterative Bootstrapping: Zero coupon rates are 

calculated for each coupon period. Each time, 

zero-coupon rates are obtained until the bonds 

mature. 

This method is based on 

arbitrage pricing, and prices 

reflect real prices. Despite 

the advantage of not 

requiring optimization, the 

resulting yield curve is a 

discrete function with poor 

estimating power for 

maturities outside the 

sample. 

Echols-Elliot 

ln(1 + y(t,mi)) = 

a + b(mi) + c (
1

mi

) + dci + εi 

It can predict a negative 

interest rate. It is weak out of 

sample. Spot rate estimations 

may fail if there are no 

discounted bonds in the 

sample. 

Diament 𝑅T =
C1(

T
C3
)C4 + C2

(
T
C3
)C4 + 1

 

If the curve has a hump, two 

more parameters are added to 

the formula. 

Mansi-Philip RT = D1 + D2e
(D4T) + D3e

(2D4T) It adapts to all curve shapes 

with this single formula. 

Nelson-Siegel 

R(m) = β0 + β1 (
1 − e−λm

λm
)

− β2 (
1 − e−λm

λm
− e−λm) 

β0, β1, β1 are level, slope, 

and curvature respectively, 

and λ is the maturity of the 

curvature at the point of 

rotation.  

 

Svensson 

(Extended 

Nelson - 

Siegel) 

R(m) = β0 + β1 (
1 − e−λ1m

λ1m
)

− β2 (
1 − e−λ1m

λ1m
− e−λ1m)

+ β3 (
1 − e−λ2m

λ2m
− e−λ2m) 

It adds a second curvature to 

the Nelson-Siegel model. 

Source: Hull, 2018, pp.704-730; Akçay et al., 2012, pp.68-104.    
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1.6. NELSON-SIEGEL (NS) 

Since Expectations Theory expresses current rates as a differential equation of forward 

rates, Nelson and Siegel (1987) derive the yield curve model from the solution of this 

equation. Accordingly, if the forward rate at maturity m is denoted by f(m), the root of 

the second-order differential equations is the solution.  

f(m) = β0 + β1exp (−𝑚 𝜏1⁄ ) + β2exp (−𝑚 𝜏2⁄ )                   (1.6) 

τ1 and τ2 are constants over time. β0, β1, and β2 are coefficients determined by the initial 

conditions. Nelson and Siegel (1987) find that the model contained too many parameters 

to be solved. They assume τ1=τ2=τ in the model to be more parsimonious. The different 

values of τ do not affect the fit of βs. The authors also transform the model into a form 

with equal roots to obtain acceptable results. According to this model,  

f(m) = β0 + β1exp (−𝑚 𝜏⁄ ) + β2[(−𝑚 𝜏⁄ )exp (−𝑚 𝜏⁄ )]               (1.7) 

This equation produces monotonic, humped, and S-shaped forward rate curves. If we 

substitute Equation 1.7 into Equation 1.4, which converts forward rates to spot rates, we 

obtain a Nelson-Siegel yield curve model with equal roots. 

R(m) = β0 + (β1 + β2) [1 − exp(−𝑚 𝜏⁄ )] (𝑚 𝜏⁄ )⁄ − β2exp (−𝑚 𝜏⁄ )   (1.8) 

This equation can produce monotonic, humped, and S-shaped curves just as the forward 

rate curve does. This model can be likened to the sum of a constant and a Laguerre 

function1, which is the multiplication of a polynomial term, the convergence function, 

and an exponential decay term (Nelson & Siegel, 1987). 

Nelson and Siegel (1987) create a set of values for τ to ensure the fitting of yield curves 

and find the values of β for each τ value using the linear least squares method. They 

choose whichever vector (τ, β0, β1, β2) gave the best-fit value.   

                                                      
1 Laguerre function: 𝑥𝑦′′ + (1 − 𝑥)𝑦′ + 𝑛𝑦 = 0, n is not necessarily a nonnegative integer. 
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Nelson and Siegel (1987) interpret the coefficients of this model, which is a quadratic 

function, as β0 long, β1 short, and β2 medium-term components. The long-term parameter 

is constant and has a non-zero limit, the medium-term parameter starts at an upward value 

and decreases towards zero, and the short-term terms start at zero, increase, and then 

decrease to zero. The NS model's interpretation of βs as maturity components is based on 

the l'Hôpital rule: 

lim
𝑚→0

(
1−𝑒−𝑚 𝜏⁄

𝑚 𝜏⁄
) = lim

𝑚→0
𝑒−𝑚 𝜏⁄ = 1,     lim

𝑚→0
(
1−𝑒−𝑚 𝜏⁄

𝑚 𝜏⁄
− 𝑒−𝑚 𝜏⁄ ) = 1 − 1 = 0      (1.9) 

The conclusion drawn from these two equations is that R(0) = β0 + β1. So, at time t=0,    

β0 + β1 is interpreted as a "short ratio."  

lim
𝑚→∞

(
1−𝑒−𝑚 𝜏⁄

𝑚 𝜏⁄
) = 0 =  lim

𝑚→∞
(
1−𝑒−𝑚 𝜏⁄

𝑚 𝜏⁄
− 𝑒−𝑚 𝜏⁄ )                (1.10) 

Based on these two equations, R(∞) = β0. So, at time t=∞, β0 interpreted as a "long ratio." 

The difference between the long- and short-term 

R(∞)-R(0)=β0 − (β0 + β1) = −β1                            (1.11) 

Moreover, it denotes yield spreads and is a proxy for curve steepness (Campolieti & 

Makarov, 2014). 

Due to the computational difficulty of the interest rate term structure, it should be 

performed with the fewest parameters that provide the most explanatory power. Although 

the NS model is not no-arbitrage, it can model interest rates with high performance in in-

sample adjustments and out-of-sample forecasts with three factors (Szenczi, 2016). 

Smoothing in the NS model is effective, avoids overfitting, and provides traceable and 

reliable results (Diebold & Rudebusch, 2013). NS is primarily effective in the discount 

bond market. However, they can adapt to the market conditions and produce more 

accurate forecasts with different yield curves. Despite these positive features, it is not 

easy to calculate the model parameters because of nonlinear optimizations or extreme 

values (Akçay et al., 2012).  



23 

 

  

This model graphs monetary policy expectations in the short term, business cycle 

fluctuation expectations in the medium term, and stable economic interest rates in the 

long term. 𝛽0 gives the long-term interest rate expectation. According to the liquidity 

premium theory, this parameter is the sum of the interest rate and term premium. 𝜏 

determines the point at which the curvature maximizes and the rate at which the slope and 

curvature approach zero as maturity lengthens. 𝛽2 determines the magnitude and direction 

of the curvature.  

NS is more prominent in analyzing and managing fiscal and monetary policies. However, 

NS is not an affine and no-arbitrage model (Aljinovic et al., 2012). Methods that best fit 

the yield data and model the entire yield curve, such as NS and Svensson, use more 

flexible constraints and can achieve better results than no-arbitrage models (Ishii, 2019). 

1.7. DIEBOLD-LI (DYNAMIC NELSON-SIEGEL DNS) 

Diebold and Li (2006) use the NS model, instead of the no-arbitrage or equilibrium 

approaches, to forecast the term structure of government bond yields. They add time as a 

third dimension to a two-dimensional graph of yield and maturity. Thus, they produce 

yield forecasts using NS model parameters.  In this model, which they construct as a 

dynamic factor model, they reinterpret the parameters as the level, slope, and curvature. 

Their forecasts using autoregressive models give better results, especially for long 

horizons.  

In the NS model, (1 − 𝑒−𝑚 𝜏⁄ 𝑡)/(𝑚 𝜏⁄ 𝑡) and 𝑒−𝑚 𝜏⁄ 𝑡 similarly decreases monotonically. 

Hence, β1 + β2 and β2 add similar terms into the model in the Equation 1.8. This not only 

complicates the intuitive interpretation of the factors of the NS model but also leads to 

multicollinearity; thus, forecasts cannot be accurately obtained (Diebold and Li, 2006). 

Diebold and Li (2006) replace 1⁄𝜏 with the term 𝜆 in the NS model and rearrange the yield 

curve model as 

𝑅̂𝑡+ℎ/𝑡(𝑚) = β̂0,𝑡+ℎ/𝑡 + β̂1,𝑡+ℎ/𝑡(
1−𝑒−𝜆𝑚

𝜆𝑚
) + β̂2,𝑡+ℎ/𝑡(

1−𝑒−𝜆𝑚

𝜆𝑚
− 𝑒−𝜆𝑚)    (1.12) 

β̂𝑖,𝑡+ℎ/𝑡 = ĉ𝑖 + Γ̂𝑖. β̂𝑖𝑡                (1.13) 
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Like Nelson and Siegel (1987), Diebold and Li (2006) interpret β0 as long-term, β1 as 

short-term, and β2 as medium-term, but they also call them dynamic latent factors as they 

add the time factor. They also associate these parameters with level, slope, and curvature 

in the curve, respectively. The “(1 − 𝑒−𝜆𝑡𝑚)/𝜆𝑡𝑚” term decreases monotonically from 1 

to 0 as maturity goes from zero to infinity. The “(1 − 𝑒−𝜆𝑡𝑚)/𝜆𝑡𝑚− 𝑒
−𝜆𝑡𝑚” term starts 

at 0, increases, and then decreases back to zero. The coefficient of β0 is always 1. Since 

an increase in β0 leads to the same increase in all maturities, they accept β0 as the level. 

Some authors define the slope of the yield curve as yt(120)-yt(3), whereas others define 

it as yt(∞)-yt(0), with a difference equals to β1. Therefore, β1 is associated with the slope 

of the yield curve. An increase in β1 increases short-term yields more than long-term ones. 

β2 is similar to 2yt(24)-yt(3)-yt(120), so they associate it with curvature. An increase in β2 

affects short and long-term to a lesser extent and medium-terms to a greater extent 

(Diebold & Li, 2006).  

Modeling a large dataset of observed factors as a function of a small dataset is called the 

factor model approach. DNS formulates yield datasets for various maturities with 

unobservable factors (Diebold et al., 2006). The dynamic factor models used in the yield 

curves contain several factors that summarize the price information for almost all the 

bonds. The factors of these models can be tracked statistically better than the yield data. 

These models prevent data mining and provide good out-of-sample forecasting results. 

Financial economic theory recommends the use of a factor structure.  

Although many financial assets exist in the market, their expected returns are related to 

very few factors. For these reasons, dynamic factor models are preferred to summarize 

the price information of many nominal bonds at any given time (Diebold and Rudebusch, 

2013). Early studies considered the level to be the only factor in yield curves. [e.g. 

Macaulay (1938) and Vasicek’s no-arbitrage model (1977)]. The level dominates the 

movement of the yield curves. However, in reality, the yield curve contains more than 

one factor [Litterman & Scheinkman (1991) Willner, (1996) Bliss, (1997)]. Joslin et al. 

(2010) report that the first three principal components (3 factors: level, slope, and 

curvature) explain 95% of yields (Diebold and Rudebusch, 2013). Parsimonious factor 

models provide better results by combining factors in a linear model and forecasting each 

factor as a single time series, as in DNS and similar models. A shortcoming of such 
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models is the lack of a theoretical foundation that incorporates the risk premium (Vela, 

2013). 

DNS models satisfy stylized facts mentioned in the Section 1.3. First, the yield curve 

produced by the DNS model is typically consistent with the averages of β0t, β1t, and β2t. 

As a result, this model demonstrates that the yield curve is generally concave and tends 

to increase. Second, the DNS model allows for the yield curve to take on various shapes 

over time. Third, in DNS, yield dynamics are related to the dynamics of β0t, spread 

dynamics are related to the dynamics of β1t, and β0t is more strongly persistent than β1t. 

Therefore the property, which yield dynamics are persistent (resilient, less volatile), 

whereas the spread dynamics are less persistent, can also be satisfied. Fourth, in DNS, the 

short end is connected to β0 and β1, whereas the long end is connected to β1. Because β1 

alone is expected to be less volatile, DNS is possible to satisfy the property which the 

short-term end of the yield curves is more volatile than the long-term end. Fifth, in DNS, 

long-term rates depend on β0, and short-term rates depend on β0 and β1. As mentioned in 

fact three, β0 is the most persistent factor that may satisfy the property which long-term 

rates are more persistent than short-term ones.  

As seen in these properties, a good dynamic yield curve model is expected to fulfill its 

shape characteristics, ability to take different shapes at different times, strong persistence 

of yields (less volatile and stable), and weak persistence of spreads. It is possible that 

DNS can satisfy all these properties (Diebold & Li, 2006).  

1.7.1. β Factors (β0, β1, β2) 

The level is a highly persistent NS factor. The correlation between the level and inflation 

shows the consistency of the relationship between the yield curve level and inflationary 

expectations, referred to as the Fisher equation (r=i-π) in macroeconomics. The slope and 

curvature factors are not as persistent as the level. The slope has higher persistence and 

lower shock variance among these two factors, with equal unconditional variances. Slope 

and curvature are also related to the business cycle period. The correlation between slope 

and capacity utilization, an indicator of macroeconomic activity, suggests that slope is 

also linked to economic dynamics. However, no link was found between the curvature 
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factor and economic indicators. Moreover, the strong correlations between yt(3)-yt(120) 

and β1 and between 2yt(24)-yt(3)-yt(120) and β2 suggest that the definition of NS 

parameters as slope and curvature is correct (Diebold et al., 2006).  

The autocorrelation between lagged values is expected to be higher for the level factor 

than for other factors. The slope and curvature have more changeable characteristics 

(Szenczi, 2016). However, Duffee (2012) states in his literature survey that the level is 

problematic to forecast statistically, even though it can be forecasted in practice. The 

slope is forecastable, whereas the curvature is unrelated to the level and slope. He also 

notes that the level is unaffected by future excess yields, whereas a flatter curve and more 

curvature imply fewer excess yields. This level is unforecastable because it is unknown 

how much of the risk premium, which can move inversely to the change in yields, will 

reduce the movement in yields. For example, a recession in the economy increases the 

risk premium while reducing short-term interest rates. The term structure emerges 

according to the severity of the decrease and increase. However, the excess yield 

decreases. The slope has a positive relationship with the future excess yields. 

It is unreliable in forecasting medium-term interest rate movements in between short and 

long term (Fama, 1984; Fama-Bliss, 1987; Campbell-Shiller; 1987, 1991). But, 

Campbell-Shiller-Schoenholts (1983), and Mankiw-Summers (1984) find contrary 

findings (Mishkin, 2021). 

1.7.2. Lambda Factor (λ)  

In the DNS model (Equation 1.12), it is expressed λ as 𝜆 = 1⁄𝜏; for small λ, the decline is 

slow, and the curve fits better in the long term, whereas for large λ, the decline is fast, 

and the curve fits better in the short-term. According to Diebold and Li (2006), λ 

determines where the β2𝑡 reaches its maximum. Nelson and Siegel (1987) impose the 

constraints β0>0, β1+β2>0, τ,t>0. In this model, β0 is not affected by β1 or β2. β1 and β2 

are affected by each other through λ. λ is the trade-off between the long and short terms. 

The optimal choice of λ is based on balancing long and short maturities (Szenczi, 2016).  
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No definitive study or theory determines the economic significance or relevance of λ. 

This deterioration parameter affects the yield curve fitting and significantly impacts the 

long-term fitting (Marek, 2015).2  

Figure 2: Effect of λ on Slope (a) and Curvature (b). 

(a)      (b) 

 

In Figure 2.a, the value of the term (1 − 𝑒−𝜆𝑚)/𝜆𝑚 at various maturities is observed as 

λ increases from 0 to 1. As λ approaches 1, the importance of β1 and, hence, share in the 

errors of yields forecasts decreases, especially in longer terms. In other words, if λ is 

forecasted to be 1, the forecast improvement of β1 will not be as effective for yields 

forecasts as at smaller λs.   

In Figure 2.b, the value of the term (1 − 𝑒−𝜆𝑚)/𝜆𝑚 − 𝑒−𝜆𝑚 at various maturities is 

observed as λ increases from 0 to 1. As λ approaches 1, the importance of β2 and, hence, 

share in the error of yields forecasts first increases then decreases, especially for short 

maturities. In other words, if λ is forecasted to be 0, the forecast improvement in β2 will 

not be as effective for yields forecasts as it is at larger λs. This effect increases faster as 

maturity increases and decreases after reaching different points for different maturities.  

 

                                                      
2 Marek used NS: 𝑅(𝑚) = 𝛽0 + 𝛽1 exp(−𝑚𝜆) + 𝛽2[(𝑚𝜆) exp(−𝑚𝜆). 
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1.8. YIELD CURVE MODELS AND FORECASTING YIELD CURVE 

Countries develop models to manage debt instruments and assess the economic impact 

on interest rates. Investors and researchers develop yield curve models suitable for risk 

management and investment decisions and publish their results as data or articles. The 

literature contains many academic studies and comments on digital platforms regarding 

yield curves in many countries.     

Depending on the purpose of the study, some researchers aim for fitting, some for 

forecasting, and some for a balance between the two, and choose the model approach 

according to this goal. In the literature, conventional and non-conventional models 

(mostly ANN models) of forecasting yield curve, related especially with the DNS model 

of Diebold and Li (2006), which is the basis of this thesis, are discussed in two separate 

groups. Finally, studies of ensemble learning and forecast combinations are briefly 

discussed.  

Nelson and Siegel (1987), following Milton Friedman's (1977) recommendation to 

produce a basic statistical model that can describe the entire term structure with a few 

parameters, develop a model that is simple, short, that is, sufficiently parsimonious meant 

to capture all yield curve shapes in a single model, in other words, to represent monotonic, 

humped and S-shaped yield curves in a single formula (Equation 1.8). Using this model, 

Nelson and Siegel obtain yield curves consistent with the United States bond yields for 

the 1981-1982 period with a correlation of 0.96. Moreover, the latent factors in the model 

are immediately adapted to monetary policy changes in 1982.  

Diebold and Li (2006) propose the Dynamic Nelson Siegel (DNS) model to forecast 

monthly US yield curves (Equation 1.12 and 1.13). They propose an AR(1) model to 

forecast the factors in the second Equation 1.13. From the forecasted βs, they again obtain 

the yield curve forecasts. They compare them with VAR (1) model forecasts, using all βs 

as inputs. They forecast 10 different models for dynamic models, emphasizing AR and 

VAR methods. Although RW prevail in the short horizon, DNS using the AR(1) model 

yields better results, especially in the middle horizon and above. They claim that the 

reason forecasts in the short horizon fail to beat RW is mispricing due to insufficient 
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liquid bonds. They also state that, although the model is not no-arbitrage, the smoothness 

of the forecasted yield curves may be an advantage over other models, as it does not lead 

to excessive positive positions. However, while extending the model by adding terms to 

the NS model, is suitable for in-sample fit, it can be said that extended models do not 

guarantee better performance since more conservative models are generally more 

successful in out-of-sample forecasting. Considering this, they, in line with NS, state that 

they chose to base their models on simplicity and parsimony, being based on a theory, not 

needing data mining, and being good at out-of-sample forecasting. This study utilizes the 

Diebold-Li (2006) model. 

Diebold and Li (2006) used US Treasury bond yields between January 1985 and 

December 2000 as data and obtained good results from the DNS model. Although DNS 

does not exactly fit the data, it has become a preferred model for fitting and forecasting 

because its structure protects it from overfitting (Diebold & Rudebusch, 2013). Diebold 

and Rudebusch (2013) claim that most yield curve models have a good theory but give 

poor empirical results or vice versa. Despite successful empirical results, these models 

are not built on a robust theory. Therefore, they prefer the DNS model instead of 

conducting comprehensive research.  

Diebold and Li's (2006) model has been widely studied, and many articles have been 

produced in parallel. However, some also argue that the study used the wrong approach 

and that the model produces inappropriate results. The success of DNS in out-of-sample 

forecasts has always been debated. Guidolin and Thornton (2008) show that DNS is no 

better than RW, even at long horizons.  

Using US data, Rostan et al. (2017) show, that different optimal delay values can be 

selected then the p = 1 value in the DNS-AR(p) model with the Burg (1975)3 approach, 

which is a signal processing model. The Burg approach is used to compare the shape of 

the yield curve (normal, humped, flat, or inverted) using various criteria.  

                                                      
3 In the Burg approach, AR(p) aims to find the best-fitting model that minimizes the error of forward and 

backward forecasts in the time series in a way that satisfies the Levinson-Durbin recursion condition. 
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De Poorter (2007) analyzes US bond yields using the NS model, two-factor model4, Björk 

and Christensen’s (1999) four-factor model5, Bliss’ (1997) three-factor model6, 

Svensson’s (1994) four-factor model, and adjusted Svensson’s (1994) four-factor model 

(β3 is different7) with in-sample fit and out-of-sample forecasts with RW, AR(1), VAR(1) 

methods. De Poorter concludes that the higher the number of factors, the better the fit and 

forecasts. He finds no significant difference between taking λ as fixed for fit and 

estimating it. The iterative approach outperforms the direct forecast approach for the long 

horizons. The four-factor model and adjusted Svensson obtain the best forecast overall 

and in the subsamples. The four-factor VAR model with estimated λ provides a better 

forecast in the long run.  

Using the same data as Diebold and Li (2006), Hays et al. (2012) obtain better forecasts 

than DNS-AR(1) with their proposed FDFM (functional dynamic factor model: a 

combination of DFM and FDA (functional data analysis)) model. Reschenhofer and Stark 

(2019) use DNS-AR(1) (factor and factor spreads) and AR(1) (yield and yield spreads) 

models for US yields and find that AR(1) (yield spreads) outperform RW.  

Povala and Vasıl (2017) forecast German yields using the DNS-AR(1) model, and it could 

not perform better than RW in low interest periods. They state that changing λ or using 

time-varying λ does not affect forecasts.  

Dauwe and Moura (2011) show that for euro swap yield curve, principal component 

analysis (PCA) gives good results in the short term and regression model and PCA in the 

long term in a group of models in which PCA models (AR, regression, regression with 

yield differences), DNS-AR(1) yield regression, yield difference regression, and RW 

models. Because the yields are not stationary, they recommend using PCA as the second 

model and the best forecast.   

                                                      
4 β0𝑡 + β1𝑡 [1 − exp(−𝜆𝑡𝑚)] (𝜆𝑡𝑚)⁄  
5 in addition to NS, β3𝑡 [1 − exp(−2𝜆𝑡𝑚)] (2𝜆𝑡𝑚)⁄  
6 β1 and β2 with different λ’s 
7 In both Svensson and NS, β3 is same but λt is different. Adjusted Svensson [exp(−𝜆2,𝑡𝑚) +

{(2𝜆2,𝑡𝑚) − 1} exp(−2𝜆2,𝑡𝑚)]  
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Frederick and Herzog (2012) include economic indicators in US yields, that the λ of the 

NS model and they find that the Kalman filter captures the yield curve dynamics well and 

that better forecasts could be made with respect to those of RW. Koopman et al. (2010) 

use a simple step function and a spline function for λ. This improves both the fit and 

forecast. He (2013) forecasts the yields of 10-year and 30-year US Treasury bonds using 

NS (λ estimation with Kalman filter), DNS-AR(1), RW, slope regression, AR(1) for 

yields, and VAR(1) for yields. The Kalman filter used to model the yield curve produces 

good results in fitting and forecasting in the dynamic model, particularly in the long term. 

He shows that λ can also be forecasted and is an important factor in the NS model. His 

study obtains better results with a non-constant λ and forecasts than with a fixed λ. He 

states that when λ is fixed in the DNS, βs and λ may fit at inappropriate values, and their 

interpretation and forecasts may not be meaningful. He concludes that estimating λ is 

more appropriate for interpreting economic forecasts and dynamic models.  

Marek (2015), in his study on the estimation of yield curves of US, Eurozone, and UK 

government bonds with DNS-AR(1), obtains λ from Quasi-Newton class with BFGS 

(Broyden-Fletcher-Goldfarb-Shanno) optimization8 and find β’s in the second step. His 

proposed method provides more realistic results in in-sample fit, especially in the long 

term, and in out-of-sample forecasts, especially for data with high volatility. 

Sambasivan and Das (2017) fit and forecast the yield curve with Dynamic Gaussian 

Process (GP)9 better than DNS-AR models for medium and long-term US yields (2 

years—30 years). Joslin et al. (2011) find that dynamic Gaussian models forecast US 

yields better than the VAR model. Reinicke (2019) uses AR(p), PCA, and Dynamic GP 

models to forecast US Treasury bond and German Bundesbank (Bundesbank) yields. 

Dynamic GP forecasts yield the best results. The AR(4) model forecasts better than the 

                                                      
8 Gill and Leonard (2001) 
9 Yield curves can be modeled as functional forms consisting of factors of the term structure. In these 

models, which are formulated as 𝑅 = 𝜙𝛽 + 𝜖, is expressed as: 

Nelson-Siegel Base: 𝜙 = {1,
1−𝑒−𝜆𝑚

𝜆𝑚
,
1−𝑒−𝜆𝑚

𝜆𝑚
− 𝑒−𝜆𝑚} 

Exponential Base: 𝜙 = {1, 𝑒𝜆1𝑚, 𝑒𝜆2𝑚, … }  

Gaussian basis: 𝜙 = {1, 𝑒−𝜆(𝑚1−𝑐)
2
, 𝑒−𝜆(𝑚2−𝑐)

2
, … }. 
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AR(1) model does. Reinicke takes the average of the calculated λ values as constant λ.10 

He uses a multistep (iterative) approach to examine the input data length. 

Castellani and Santos (2006) find similar results in forecasting the 10-year yields of US 

Treasury bonds using conventional models (ARIMA, ECM) and AI models (FL with AI 

approach and manually generated FL, SOM, and MLP). They suggest that instead of 

single models, forecast combination or hybrid models combining ML and statistical 

models should be tried.   

Kožíšek (2018) makes high-frequency US bond yield forecasts via NS parameters. 

LSTM- RV11 give better results than AR(1), VAR(1), and VAR-RV models in daily and 

monthly forecast horizons in level and slope. Kožíšek concludes that using small samples 

(such as annual data) in LSTM reduces the forecasting power. 

Hoogteijling (2020) forecasts US bond yields using linear models (PCR) and ML models 

(RF, NN).12 His proposed a method prevailed in all the models. Putting constraints on the 

models initially increases predictive power. He obtains results contrary to the spanning 

hypothesis, which states that all information about future bond market movements is 

contained in the yield curve. 

Zimmermann et al. (2002) forecast German yield curves better with their proposed ECNN 

(Error correction neural networks) model than the RNN and MLP models. Jacovides 

(2008) finds that MLP and SVM perform better than RW in forecasting daily changes in 

the levels and spreads13 of UK interest rates and 6-month forwards. In the long run, SVM 

is more efficient than MLP in forecasting the direction of interest rates. Tappinen (1998) 

forecasts that the spreads between various maturities in US spot rates are better with MLP 

than with the OLS model. Gerhart et al. (2018) study the forecasts of EURIBOR interest 

                                                      

10 This method was proposed by Arbia and Di Marcantonio (2015). Also Molenaars et al. (2015) found that 

the choice of λ does not affect the efficiency of prediction (Reinicke, 2019).  
11 RV: Realized Varyans. It adds the daily deviation (𝑅𝑉𝛽

𝐷 = ∑ (𝛽𝑡 − 𝛽𝑡−1)
2

𝑡∈𝐷 ) to the model (Kožíšek, 

2018). 

12 He calculated excess yields in models with (– (
𝑚

12
− 1) (𝑅𝑡+12

(𝑚−12) − 𝑅𝑡
(𝑚)) + (𝑅𝑡

(𝑚) − 𝑅𝑡
(12))) ;  

𝑚 ≥ 12, 𝑅: 𝑦𝑖𝑒𝑙𝑑𝑠  formula. Therefore, he estimated risk premiums. 
13 ∆𝑅𝑡+6

𝑚 = 𝑓(𝑆𝑡
(𝑛,𝑚), 𝑅𝑡

𝑚); 𝑆𝑡
(𝑛,𝑚) = (𝑅𝑡

𝑛 − 𝑅𝑡
𝑚)    𝑛 ∈ (6𝑚, 1𝑦, 3𝑦, 5𝑦, 10𝑦, 20𝑦) 
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rates with RW, LSTM, and direction (increase or decrease) forecasts using SVM, RW, 

Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis (QDA). They 

also use the bid-ask spreads. They use an SVM to forecast the upward or downward trends 

of level and slope. The ANN models provide good results, especially for long forecast 

horizons. In addition, adding spreads as data improves forecasting efficiency. The SVM 

yields the best results in terms of classification. Eklind (2020) shows that deep learning 

models (LSTM and TCN) outperform RW in forecasting the bond yields of the Bank of 

England (BOE) and the Bank of Sweden (Svenska Handelsbanken) over medium and 

long horizons. Wood and Dasgupta (1995) obtain an effective result in forecasting the 

UK interbank spot interest rate with MLP.  

Rosadi et al. (2011) obtain Indonesia’s yields by forecasting NS parameters (including 

λ). Regarding the forecast interval, MLP is good in the short term, whereas VAR was 

slightly better in the long term. Vela (2013) cannot demonstrate the superiority of the 

ANN approach in forecasting the NS and NSS factors of the yield curves of four Latin 

American countries (Colombia, Mexico, Peru, Chile) and the US using AR, VAR, and 

FFNN.  

Kostyra and Rubaszek (2020) forecast Polish interbank market swap yields and the RF 

model does not statistically outperform the conventional models. No model could forecast 

a decline in yield levels. The Expectation Hypothesis model, based on the assumption 

that long-term returns are a predictor of short-term returns, yields better results, especially 

in the short term.  

Researchers examine forecast combinations (FC), both theoretically and practically. 

Claeskens et al. (2014) examine what the weights of the forecast combination model 

should be, while Pesaran and Pick (2011) investigate the combination of forecasts from 

different data windows with the same data and model. Andrawis et al. (2011) study the 

combination of short and long-run forecasts. Genre et al. (2013) investigate whether other 

combination methods can make better forecasts than the simple average combination 

method for some economic data. Hyndman et al. (2007) experiment with hierarchy 

modeling in which they first made forecasts at each level and then combine them. Jore et 

al. (2008) try to forecast economic data (growth, inflation, short-term interest rates) using 
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density combinations. Hsiao and Wan (2011) investigate geometric and average 

combinations for the optimal forecast combination. They compare forecast and 

information combinations. Steel (2017) examines model-averaging methods to reduce 

model uncertainty and studied Bayesian and frequency-averaging methods. The 

averaging method has been studied regarding growth, production, and finance.  Adhikari 

and Agrawal (2013) examine forecast combinations to obtain better forecasts in time 

series and show theoretically and practically that choosing the arithmetic mean or median 

in combinations yields good results.  

Rezende and Ferreira (2011) use the five-factor model (they added a second slope to the 

Svensson model with the same λ as the second bend), the NS, Bliss (1997), Svensson 

models for Brazilian yield curves. They forecast the parameters of the models with AR(1), 

VAR(1), and RW and their medians. The RW model provides the best forecasts for the 

short horizon, and the combination model (median) provides the best forecasts for the 

medium and long horizons. The forecasts worsen with an increase in the number of 

parameters. Caldeira et al. (2013) forecast Brazilian future yields using RW, AR(1), 

VAR(1), Bayesian VAR, DNS (with Kalman filter), and DNSS (with Kalman filter) 

models and their combinations (equally weighted, OLS, rank inverse weighted, RMSE 

inverse weighted, MSE inverse weighted). This combination yields better results with 

respect to those from the single models.  

Araújo and Cajueiro (2014) show that forecast combinations for Brazilian yield curves of 

interest swaps are more consistent than forecasts using single models. They make 

forecasts using the AR, VAR, DNS, FSN-ECM (Functional Signal Plus Noise with an 

Equilibrium Correction Model) individual models, the simple mean, trimmed mean, WLS 

(Weighted Least Squares), inverted MSFE, and the worst individual model excluded, and 

the iteration of these methods. They make a comparison with the RW. For the individual 

models, AR gives the best and RW the worst results at the one-month horizon, whereas 

RW gives the best forecasts at other horizons. The models fail during the crisis period. 

Simple combinations yield better results for short horizons whereas WLS provides better 

results for long horizons. Araújo and Cajueiro remove the worst individual model from 

combination-improved forecasts and observe that the inverted MFSE model performs 

well for structural breaks.   
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CHAPTER 2: 

CONSIDERED FORECASTING METHODOLOGIES 

Forecasting involves making predictions about the future with high accuracy using 

current and historical information, patterns, and knowledge (Hyndman et al., 2021). The 

models used for forecasting can be classified into conventional approaches based on 

traditional data analysis and statistical methods, and non-conventional approaches beyond 

these. 

Relying solely on a single model can be problematic. Models that work well in theory 

may not perform well when applied to actual data. Therefore, instead of sticking to a 

single model, exploring and working with various models to find suitable alternatives 

serves as a better approach (Lewis, 2017b). As such, this study utilizes multiple models 

with different theories and structures. 

This chapter explains and compares conventional and non-conventional models. In 

addition, theoretical information about ensemble learning and forecast combination 

methods are also provided. ARIMA, ETS, VAR, RW, threshold models among others for 

conventional approaches, and kNN, some ANN models among others for non-

conventional approaches are used for forecasting.  

2.1. CONVENTIONAL FORECASTING MODELS  

Conventional models usually make forecasts based on historical data using a specific 

structure or form. They are usually simple, understandable, and easy to implement. They 

expect data to follow a normal distribution and certain statistical assumptions.  

Conventional models are used in almost every study to analyze and forecast financial data 

because they use time series. These models can form the basis of the study or be used as 

a criterion for evaluating other models. Regression, smoothing, autocorrelation, vector 

models, threshold models, and RW are the most used conventional models for time series 

forecasting. This section discusses the following models used in this study. They are ETS, 
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TBATS, ARIMA models, ARFIMA, VAR, VECM, TAR, LLAR, LSTAR, SETAR and 

RW. 

2.1.1.  Exponential smoothing (ETS - TBATS) Models 

Time series can be decomposed into their principal components which are trend, 

seasonality, and randomness. Trend is a continuous increase or decrease in the levels of 

a time series, seasonality is the fluctuations with values close to each other in the same 

seasons, and randomness is a part of the time series that represents the residual variations 

left after accounting for the trend and seasonality components of the series. In smoothing 

approaches, the error term can be used instead of randomness. 

Exponential smoothing methods update the components of time series over time. It 

models the exponential decay of past observations as the time difference increases. The 

structure of these methods, which consist of simple exponential, trend, and Holt-Winters, 

and their variations, includes the components of the series and their smoothing formulas. 

These methods form the basis of models such as ETS and TBATS. 

Automatic Exponential Smoothing Method (ETS) combines 18 different exponential 

smoothing methods, including error (E), trend (T), and seasonality (S) components. The 

error component can be multiplicative or additive; the trend component can be absent or 

additive or multiplicative or additive-damped; and the seasonality component can be 

absent or additive or multiplicative. 

The TBATS model is a double seasonal exponential smoothing approach consisting of 

trigonometric seasonal, Box-Cox transformation, ARIMA error, trend, and seasonal 

components. Classical models with a seasonal structure are ineffective in forecasting time 

series where seasonality is not of a simple standard but more complex. This model 

includes time-varying Fourier series. It is an advantageous model for time series with 

multiple, high-frequency, non-integer seasonalities and other effects (Grmanová et al., 

2016). For ETS and TBATS models, see Appendix 1. 
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2.1.2. Box-Jenkins (ARIMA) Models 

A time series is considered autocorrelated if it exhibits a relationship with its past or future 

values at time t. Even the series has high autocorrelation, this current and previous data 

relationship does not necessarily imply causality. Box-Jenkins (1976) developed 

stochastic time series models, a combination of purely stochastic and autocorrelation 

parameters, for forecasting and analyzing time series. In the related literature, the method 

that best applies the ARMA model is the Box-Jenkins (1976) method. ARIMA(p,d,q): 

xt= ∅0+∅1∇𝑑xt-1 + ∅2∇𝑑xt-2 +…+ ∅p∇𝑑xt-p + ɛt - θ1ɛt-1 - θ2ɛt-2 -…- θqɛt-q+ut     (2.1) 

x: time series, ∅: autoregression coefficients, θ: moving average coefficients, ɛ: white 

noise process, p: number of lagged variables, q: number of lagged errors, u: residual, ∇𝑑x: 

dth order difference of x.  

In this modeling, the series should be stationary. Certain conditions may reveal long 

memory in nonlinear time series. In series with long-term dependence, the d value in the 

model is in the range of [-0.5, 0.5]. In this model called Autoregressive Fractional 

Integrated Moving Averages (ARFIMA), the autoregressive function graph decreases 

very slowly. However, spurious long memory can be observed in stationary series. Partial 

non-stationarity is one reason for this problem in threshold models, while the entire series 

is stationary (Kuswanto & Sibbertsen, 2008).  

2.1.3. Vector Autoregression (VAR) Model 

VAR models all variables and their lagged values together. The model is constructed with 

the assumption that the variables affect each other. Impulse-response functions check this 

assumption.  VAR(p) model:  

𝑥𝑡 = ∅0 + ∅1𝑥𝑡−1 +⋯+ ∅𝑝𝑥𝑡−𝑝 + 𝑢𝑡                         (2.2) 

𝑥𝑡 = [𝑥𝑡
1 𝑥𝑡

2… 𝑥𝑡
𝑚]′                                              (2.3) 

𝑢𝑡 = [𝑢𝑡
1 𝑢𝑡

2… 𝑢𝑡
𝑚]′                                              (2.4) 
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p: model degree, m: number of variables, ∅: coefficient matrix. In the model, the 

conditions of 𝑥𝑡
𝑖 (𝑖 = 1…𝑚) being stationary and 𝑢𝑡

𝑖  (𝑖 = 1…𝑚) being white noise and 

their correlation being zero are met, the VAR model is valid. 

The interaction between variables in a VAR model can improve the accuracy of economic 

forecasts. This model also enables the examination of economic innovations and shocks 

(Zivot and Wang, 2007). The VAR model is an approach that analyzes the factor structure 

and the returns of financial assets that are suitable for this model. Since the NS model 

includes a factor structure, the VAR model is one of the most widely used models in yield 

curve forecasting studies, especially in the DNS approach (Diebold & Rudebasch, 2013). 

According to De Pooter (2007), VAR captures factor dynamics better than univariate 

AR(1) models. Building a dynamic model with VAR gives good results for short-term 

forecasts. Conversely, AR can provide good results in short- and long-term forecasts. 

Because the VAR model's forecasts may be poor despite the excellent fit. AR outperforms 

VAR in the DNS model because the correlation of NS factors that need to be estimated 

in VAR is insufficient (Vela, 2013). 

2.1.4. Threshold (TAR-SETAR-LSTAR) and Locally Linear (LLAR) Models 

Several threshold models have been suggested for piecewise autoregressive (AR) 

structures in time series. Additionally, locally AR models can be used for series that 

cannot provide linearity throughout the series. 

The TAR (Threshold AR) (Tong, 1978) approach uses different AR models for series 

with different linear dynamics in different regimes. An m regime, p. degree TAR is 

defined as follows 

𝑥𝑡 =

{
  
 

  
 
∅0,1 + ∑ ∅𝑖,1𝑥𝑡−𝑖

𝑝
𝑖=1 + 𝜎1𝜀𝑡,               𝑥𝑡−𝑑 ≤ 𝑟1 

∅0,2 + ∑ ∅𝑖,2𝑥𝑡−𝑖
𝑝
𝑖=1 + 𝜎2𝜀𝑡,     𝑟1 < 𝑥𝑡−𝑑 ≤ 𝑟2

…
…
…

∅0,𝑚 + ∑ ∅𝑖,𝑚𝑥𝑡−𝑖
𝑝
𝑖=1 + 𝜎𝑚𝜀𝑡,       𝑟𝑚−1 < 𝑥𝑡−𝑑

                     (2.7) 
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where m is determined previously; r is the threshold value, d is the delay parameter, and 

ε is random variable with 0 mean and unit variance (-∞<r1<…<rm<∞ and d>0). 

Parameters are estimated by nonlinear least squares. 

SETAR (Self-Exciting TAR) is a model that expresses a special case of the TAR 

approach. The series' past values determine the TAR model's threshold value. SETAR 

model:  

xt = F1(xt−1, ∅)(1 − I(xt−l > r) + F2(xt−1, ∅)(I(xt−l > r)) + ϵt                (2.8) 

F: autoregressive processes, I: indicator function, r: threshold value. 

The LSTAR (Logistic Smooth Transition AR) model is a generalization of the SETAR 

model. This model includes different regimes and consists of the transition function 

between regimes in its structure (Skalin & Teräsvirta, 1999). 

𝑥𝑡 = (∅1 + ∅10𝑥𝑡 + ∅11𝑥𝑡−𝑑 +⋯++∅1𝐿𝑥𝑡−(𝐿−1)𝑑)(1 − 𝐺(𝑟𝑡, 𝛾, 𝑡ℎ)) +

(∅2 + ∅20𝑥𝑡 + ∅21𝑥𝑡−𝑑 +⋯+ ∅2𝐻𝑥𝑡−(𝐻−1)𝑑)𝐺(𝑟𝑡, 𝛾, 𝑡ℎ) + 𝜀𝑡+𝑠                        (2.9) 

G: logistic function, rt: threshold variable, L: low regime lag parameter, H: high regime 

lag parameter, G: transition function, γ: speed of the transition function. 

LLAR (Locally Linear AR) is the AR model for locally linear time series. It is forecasted 

with d time-lagged time series models with m locally linear autoregressive series: 

𝑥𝑡+𝑠 = ∅0 + ∅1𝑥𝑡 +⋯+ ∅𝑚𝑥𝑡−(𝑚−1)𝑑                             (2.10) 

In the model, 𝑥𝑡 is estimated for an interval of values ϵ at point m (Antonio; 2008). 

2.1.5. Random Walk (RW) 

RW refers to series that do not have a specific systematic structure and are stationary 

concerning the mean. A purely random series has a constant mean. RW is a stochastic 

model that takes the current data to forecast the data as the following 
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𝑥̂n+k=xn+ɛn+k                                                 (2.11) 

where ɛn+k is white noise, and ɛn+k~N(0,σ2). According to Pearson (1906), forecasting 

models should be based on the idealized concept of RW. RW is based on the premise that 

data has an equal probability of going in all directions (Grinstead & Snell, 1997). Users 

of forecasting models want to produce models that make more efficient forecasts than 

RW forecasts (Szenczi, 2016).   

2.2. NON-CONVENTIONAL FORECASTING MODELS 

They generally require more data and more complex structure. They work with fewer 

assumptions and more flexibility. Non-conventional approach involves many ANN 

models that are suitable for forecasting. This section discusses only the models used in 

this study. They are kNN and ANN models which are MLP, NNAR, GRNN, ELM, 

GMDH, RNN, ENN, JNN, LSTM, and GRU. 

2.2.1. k-Nearest Neighbour (kNN)  

In the k-nearest neighbors (kNN), forecast is made with mean value of k nearest data 

points with numerical values. This algorithm is efficient, simple, and easy to understand, 

and it is nonparametric, namely, it makes no assumptions about the probability 

distribution of the data. There are no strict rules for choosing the algorithm's distance 

criterion and parameter k; trial and error is the best approach (Lewis, 2017b).  

In kNN, the distances of the new input to the samples in the training data are calculated 

first. Note that, in this study, Euclidean distance approaches are used to find d. which is 

defined as follows:  

𝑑 = √∑ (𝑥𝑧 − 𝑥𝑖)2
𝑛
𝑖=1                               (2.12) 

where xi is input data, yi is output data, xz is new input to predict.14  

                                                      
14 For other distance measures see: Lewis, N. D. (2017b). Machine Learning Made Easy With R.  
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Next, the k smallest (closest) distances are selected in this study. Based on the calculated 

distances (d), the k neighbors (i.e. x and y values) with the smallest distance (nearest) are 

selected. The average of the target values (y) of the selected k neighbors is calculated. 

𝑦̂ =
1

𝑘
∑ 𝑦𝑙
𝑘
𝑙=1                   (2.13)                          

This mean is the regression value of the new point to be forecasted. Instead of the mean, 

the median or weighted mean can also be used in calculating the forecasted value. The 

value of k greatly affects the performance of the model. Small values of k (e.g. k=1) can 

introduce more noise into the model, while large values of k can help the model to be 

more general. Different distance measures can affect the performance of the model. 

2.2.2. Artificial Neural Networks (ANN) 

Artificial neural networks (ANN) are an important sub-branch of machine learning (ML) 

and a frequently used method in this field. ML, the building blocks of AI, forecasts the 

future by finding patterns from past data. Although many ML models do not give good 

results, they are preferable because they reach results faster and are less costly than 

employing human beings (Hoogteijling, 2020). On the other hand, well-implemented ML 

models are more successful than other approaches in revealing nonlinear relationships in 

financial data and simulating these data (Mitchell, 2006).  

ANNs are mathematical algorithm-based computer systems that automatically develop 

the ability to generate, discover, and create new knowledge without assistance using 

learning methods like the human brain. Instead of ANNs, the terms "connectionist 

networks," "parallel distributed networks," and "neuromorphic systems" are also used. 

(Öztemel, 2016). 
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These algorithms can learn from examples and apply what they have learned. They are 

expressed graphically in network notation. Although the terminology differs, ANNs can 

be likened or adapted to statistical models.15  

Cybenko (1989) introduces the Universal Approximation Theorem for ANNs and shows 

that a single hidden layer neural network with a sigmoid activation function can converge 

any continuous function. Hornik (1991) also proves this true for other arbitrary bounded 

activation functions (Hansson, 2017). According to the Universal Approximation 

Theorem, if an FFNN network has a single hidden layer and a random number of neurons, 

the network converges to any continuous function. The theorem is formulated as follows: 

Given any function f, f∈C(ID) and ϵ>0  

𝐹(𝑥1, … , 𝑥𝐷) = ∑ 𝛼𝑗𝜑
𝑀
𝑗=1 (∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗

𝐷
𝑖=1 )                      (2.14) 

The sets of real constants αj, bj, wij define the integer M. φ(·): bounded, monotonically 

increasing continuous function. ID: D-dimensional [0,1]D hypercube. C(ID): The space of 

the continuous function on ID. j=1,...,M and i=1,...,D. Approximate realization of f(·) for 

all x1 ,x2,...,xD in the input space is  

|𝐹(𝑥1, … , 𝑥𝐷) − 𝑓(𝑥1, … , 𝑥𝐷)| < 𝜖                               (2.15) 

ANNs consist of architecture, activation function, and learning algorithm. ANN 

architecture consists of neurons, the basic unit of the network, and the network structure 

that connects them. One or more input values coming to the neuron are converted into 

output with the help of a function and transmitted to the neuron or neurons as input. The 

neurons of ANNs can be structured in layers. According to their structure, layers can be 

categorized into three main types: input, intermediate (hidden), and output layers. Data is 

sent to the input layer as inputs. The intermediate layers are multiplied by a weight, 

converted into output, and sent to the output layer. These layers may vary depending on 

the preferred architecture and type of ANN. For example, an ANN can be composed of a 

single layer or many different structures, such as a memory cell, Kohonen layer, Grosberg 

                                                      
15 For statistical terminology and artificial neural terminology mappings made by Günay et al. (2007). See 

“Introduction To Single Variable Time Series Analysis”.  
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layer, context layer, and content layer that can be added to the networks. Another type of 

architecture can be established by directly connecting the input layer neurons to the output 

layer (Günay et al., 2007). The architectural structure types of ANNs are shown in Figure 

3. 

Figure 3: ANN Architecture Structure Types 

 

Source: Eğrioğlu et al. (2020).  

Many ANNs and their derivatives have been modeled, and new models have been 

produced according to their purpose of use. In this study, we use feed-forward and feed-

back ANNs with multi-neuron and multi-layer. ANNs with multi-neuron and multi-layer 

are expected to be efficient with nonlinear data. 

Optimizing the adjustable parameters of an ANN is called "training the network" 

(Hansson, 2017). In network training, the connection weights of neurons are determined. 

The ability of the network to generalize as a result of training is called "network learning", 

and the rules to be followed in changing the weights are called "learning rules".  

Advantages of ANNs could be stated as the following. First of all, ANNs give better 

results than econometric models with nonlinear data structures (Bajracharya, 2010). They 

can solve complex problems that are difficult or impossible to model mathematically. No 

prior knowledge is needed in modeling. It is not necessary to know the connections of the 

parameters with each other. There is also no need for assumptions about these connections 

(Öztemel, 2016). ANNs are easy to understand because they do not have a complex theory 

and can make better forecasts (Günay et al., 2007). Even if any neuron does not produce 

useful information, the neuron has fault tolerances that do not leave the whole network 
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dysfunctional (Kuru, 2022). They adapt to the regime change in the data faster than 

conventional models (Gerhart et al., 2018). They can complete missing information. After 

training, they can work with incomplete information (Öztemel, 2016).  ANNs can use 

different learning algorithms. Less affected by noise, chaotic components, and heavy 

queues (Masters, 1993). As a result, ANNs have emerged as an important option for 

forecasting nonlinear yield curves because they can handle any data structure flexibly 

(Vela, 2013). 

On the other hand disadvantages of ANNs could be put forward as the following. First, 

there are too many initial parameters to be selected in ANN (Kaastra & Boyd, 1996). 

Constructing the network and training data requires experience and many decisions, such 

as training termination criterion, number of layers, and neurons, can be made by trial and 

error. Unlike traditional methods, it is not guaranteed to produce optimal solutions 

(Öztemel, 2016). Additionally, the optimized model may not be valid in every dataset 

(Kaastra & Boyd, 1996). Further, training the network takes time and ANNs tend to 

memorize the relationship between variables instead of extracting a general trend from 

the data, as the goal of learning algorithms is to make better predictions. This leads to the 

problem of overfitting (Szenczi, 2016). Optimizations are directly affected by sample data 

selection (Öztemel, 2016). "Black Box" refers to the fact that the network and the results 

cannot be represented or predicted by a theoretical method and that they cannot explain 

how they generate outputs while taking inputs and producing outputs as results (Öztemel, 

2016; Kožíšek, 2018). The fact that the information in the network is hidden or distributed 

in neurons makes it challenging to interpret the behavior and results of ANNs (Atalay & 

Çelik, 2017). The inability to explain the behavior of the network leads to a trust problem. 

ANNs are skilled at identifying relationships in non-linear financial time series data. 

However, interpreting these connections is almost impossible because it is a black box. 

Since there is no certain rule, choosing parameters in optimization by trial and error is 

also referred as black art for ANNs (Castellani & Santo, 2006).   

2.2.2.1. Fundamentals of Neural Networks  

The structure of artificial neural networks (ANNs) involves the computation of neuron 

inputs (referred to as "net"), activation functions, computation of neuron outputs, learning 
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rules dictating weight adjustments, and optimization methods. Many alternative 

approaches have been developed in ANN mathematics. However, since some of these 

approaches are prominent, many sources have treated only ANN algorithms that include 

these approaches as a general structure. For example, the delta learning rule, gradient 

descent optimization method, backpropagation, and calculation of the input of neurons 

are the topics most frequently covered and in this study they are explained in detail.   

ANN aims to find the structural parameters that minimize the cost. For this purpose, a 

model calculates the revised weight ratios with fewer errors according to the selected 

learning rule. Cost function is defined as the following 

Cost(w) = RSS(w) + ϱ𝑙𝑝                                        (2.16) 

𝑙𝑝 𝑛𝑜𝑟𝑚: ‖𝑤‖𝑝 = (∑ |𝑤𝑖|
𝑝

𝑖 )
1

𝑝                                     (2.17) 

where w defines structural parameters, ϱ defines regularization parameter, p is the norm 

degree and RSS is the residuals sum of square. 

In order to achieve this goal, the following mathematical steps are applied to find the best 

weight values (optimization) in ANN training: The network training begins with the 

selection of weights (usually random) and setting the maximum number of 

epochs/iterations. In the feedforward step, the "net" value arriving at each neuron in the 

input, hidden, and output layers is calculated. Then the activation formula in each neuron 

is computed. In the error evaluation step, the error is assessed by continuing the training 

until the error decreases to the predetermined level or until the predetermined number of 

iterations is reached. In the propagation step, the output layer propagates its errors 

backward and calculates error distribution gradients. In the tuning step, weights and 

biases are adjusted through the derivative of the activation function of neurons with error 

distribution gradients. This allows the network to learn (Lewis, 2017a).  

Neurons are the basic processing unit of ANNs. Their functioning can be summarized as 

receiving inputs multiplied by weights that will be optimized in the process of running 

the model, producing an output with a selected activation function, and distributing it to 

the next neurons with weights that will be optimized (Jacovides, 2008).  
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Figure 4: ANN Neuron 

 

Source: Lewis (2017a). 

Neuron, shown in Figure 4, has five basic elements: inputs, weights, sum function, 

activation function, and output. The sum function uses the net input sum, multiplication, 

maximum, minimum, median, pruned mean, majority, cumulative total net input, and 

their variations (Öztemel, 2016). As employed in this study, the weighted sum method is 

prominent in many. 

Layer is a structural component of the network and contains groups of neurons that 

perform different tasks for processing data. Figure 5 shows the layers that make up an 

ANN, the neurons in these layers, and the connections between the neurons. 

Figure 5: ANN Structure 

 

 Source: Lewis (2017a). 

Σ           
Or             

f 

Π 

Activation 
Summation 

Or 

Multiplication 

In
p

u
ts

 X1 
X

2
 

X
n
 

w
1
 

w
2
 

w
n
 

Neuron 

…

…

Input 

Layer  

 

….. 

…… 

Hidden Layer  

 

 

….. 

…… 

Output 

Layer  

 

 
  

:Neuron  :Input Weight : Weight : Output 



47 

 

  

The information coming out of the neurons, also called nodes or units, activates the other 

neuron to which it is connected according to its weight. Input layer neurons distribute the 

inputs to hidden layer or output layer neurons. The hidden layer sends the information 

processed in its neurons to the output layer. Training ANNs can result in outputs with 

very large values, making it difficult to continue training. To avoid what Kaastra and 

Boyd (1996) refer to training paralysis, neurons use an activation function. Each neuron 

contains an activation function that ensures that the threshold value required for the input 

to activate the neuron and the output of the neuron is within a certain range (in ranges 

such as [0,1] or [-1,1]). In a layer, usually, all neurons have the same activation function. 

The neurons combine inputs (usually by taking a weighted sum), produce output with the 

activation function, and send it to the next neurons. Note that, in this study, unless stated 

otherwise, the input of a neuron is calculated (using summation) as  

𝑛𝑒𝑡𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑗 + 𝑏𝑗
𝑛
𝑖=1                                           (2.18) 

w: weights, b: bias. 

The hidden layer increases ANN's efficiency and flexibility. It is not preferred to use 

activation functions in the input and output layers. The activation function to be used in 

the hidden layers should be smooth, monotonically increasing, and differentiable 

(Hutchinson et al., 1994). The number of layers of the network refers to the depth of the 

network (Kožíšek, 2018). As the number of hidden layers increases, the risk of the 

network getting stuck in local minima increases. For this problem, it is recommended not 

to use more than two hidden layers. 

The activation function matches the input and the output. This matching is done with 

linear or nonlinear functions (Eğrioğlu et al., 2020). Logistic (sigmoid) activation 

functions used mostly:  

𝑓(𝑛𝑒𝑡) =  
1

1+exp (−𝑑×𝑛𝑒𝑡)
                                        (2.19) 

net: input values of neurons. d: slope parameter (constant and usually taken as 1). The 

output is in the range [0,1]. This differentiable function facilitates calculations (Lewis, 
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2017a). It is preferred in time series since it has a nonlinear differentiable structure. It 

learns the average behavior of the data well (Klimasauskas, 1993).  

Another activation function used in this study is the Hyperbolic tangent:  

𝑓(𝑛𝑒𝑡) =
exp(𝑛𝑒𝑡)−exp(−𝑛𝑒𝑡)

exp(𝑛𝑒𝑡)+exp(−𝑛𝑒𝑡)
                                      (2.20) 

This function, which produces outputs in the range [-1,1], has the same properties as 

sigmoid but can be preferred for more complex nonlinear problems due to its wider output 

range. Although the function does not trivialize strongly negative inputs, it cannot always 

be claimed to give better results (Lewis, 2017a). This function is used in memory cells in 

the LSTM model.16  

Various optimization algorithms have been developed using different approaches for 

reaching a solution of ANNs (Hansson, 2017). ANN aims to find appropriate weights (w) 

and thresholds (b) for inputs (x). In the error evaluation step, the difference between the 

value found by the neurons and the targeted value is found. For this purpose, the error  

e(t)=y(t)–ŷ(t)                                          (2.21) 

is calculated at any iteration. Figure 6 shows the change in the error surface, and the 

minimum error is searched on this surface with optimization. This search is stopped when 

the error decreases to a certain level or after a specified number of iterations. To reach 

global minimum levels, adjustments are made to the ANN weights. This adjustment 

method and additional structures (e.g. momentum) to be applied to this method provides 

optimization of the ANN.  

 

 

 

                                                      
16 For some other activation functions used in the applications, see Lewis, 2016; Eğrioğlu et al., 2020; 

Öztemel, 2016; Gürsakal, 2017; Chen et al., 2019;  Günay et al., 2007.   
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Figure 6: Error - Weight Graph 

 

Source: Lewis (2017a). 

Delta learning rule aims to minimize the difference between the output and target values. 

Gradient descent is used to minimize the cost (error) function. Backpropagation is a 

gradient descent method adapted to multilayer ANNs. These are used for optimization in 

ANNs. Epoch is the process of running the inputs through the network and optimizing 

the weights once. Batch size is the number of training samples used to train the input data. 

Momentum updates learning parameter. These terms relate to optimization that should be 

selected in the training of ANN models. The general mathematical structure of ANNs, 

which involves all these terms, has been discussed in Appendix 2. In the following 

sections, a brief explanation of feed forward and feed back models, which are ANN 

approaches used in the study are discussed 

2.2.2.2. Feed-Forward Neural Networks (FFNN) 

ANNs that receive output by running the input data forward in the network are called 

Feed Forward Neural Networks (Hansson, 2017). FFNNs are error-tolerant networks that 

can be applied to large data sizes where exact rules are basically not given as constraints. 

These networks, which are usually multilayer, perform nonlinear transformations in their 

hidden layers. In the layers, neurons perform mathematical operations to send data to the 

output neuron while the output neuron collects the incoming data in weighted form 

(Lewis, 2017a). MultiLayer Perceptron (MLP), Neural Network (NNET), Neural 

Network Time Series (NNETAR), Neural Network Nonlinear Autoregressive Model 

(NNETTS), General Regression Neural Network (GRNN), Extreme Learning Machines 
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(ELM), and General Method of Data Handling (GMDH), which are FFNN models with 

the general structure in Figure 5, are the forecast models/algorithms used in this study. 

Many other models can be constructed.  

MultiLayer Perceptron (MLP) is a feed-forward model with hidden layer, and all neurons 

are connected (Hutchinson et al., 1994). It consists of an input layer, a hidden layer or 

layers, and an output layer (Lewis, 2015). In MLP, weights only connect neurons to 

neurons in different layers. Although there is usually one neuron in the output layer, there 

can be more than one depending on modeling or optional (Günay et al., 2007).  

In MLP, also called propagation or backpropagation model, the generalized delta learning 

rule obtains the network output by forward calculation while revising the weight matrix 

by backward calculation (Öztemel, 2016).  

Like other deep learning models, the MLP learns hierarchical representations, progressing 

from high-level features to low-level features (LeCun et al., 2015). Since MLP memorizes 

the dynamics in each sample, it can detect a general pattern that fits the input distribution 

well (Castellani & Santo, 2006).  

For nonlinear data, a multilayer ANN is used because a single-layer network is not 

sufficient. However, a single hidden layer is sufficient for data whose input and output 

data take continuous values. ANN with two hidden layers can be said to have a structure 

that can be used for all types of data. The first layer defines the data i.e. determines the 

field. The second layer combines them with the "AND" function. The output reveals the 

desired result to be obtained from this field. The ANN in this structure converges to the 

constant in the Taylor expansion (Alpaydın, 2010). 

As the number of hidden layers increases in MLP, the interpretation of neurons becomes 

more difficult. If there is only one hidden layer, it can be considered that high weights are 

the connections of positive outcomes, and low weights are the connections of negative 

outcomes. 

Neural Network Auto-Regressive (NNAR): If the nonlinear autoregressive model is 

defined as  
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xt = f(xt-1,…, xt-p) + εt                                            (2.22) 

where f is a nonlinear function, supervised ANNs using (xt-d, … , xt-d-m+1) values as input 

can be expressed as Neural Network Auto-Regressive (NNAR). The ANN representing 

the nonlinear function (f) is trained, and the results are used for forecasts (Stefani et al., 

2017). Initial weights are chosen randomly in the model where missing values can be 

omitted. The average of the forecasts is considered as the result. The iterative forecast 

approach is used for multi-horizon forecasts. 

For this approach, "NNET," "NNETAR," and "NNETTS" functions are executed Neural 

Network Time Series (NNETAR) is a Single hidden layer feedforward neural network 

(SLFN) model that models the forecasting of univariate time series.  The neural network 

nonlinear autoregressive model (NNETTS) is a single hidden layer nonlinear neural 

network model with linear output and delayed values as input.  

General Regression Neural Network (GRNN) consists of input, pattern, summation (two 

neurons), and output (or decision) layers. They are used in linear or nonlinear regression 

predictions with continuous dependent variables. These nonlinear mapping networks are 

fast, robust to extreme values, capable of converging solutions to each function structure 

with sufficient data, and have high performance even with a small number of samples 

(Lewis, 2015).  
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Figure 7: GRNN Model 

 

Source: Lewis (2015). 

Expected value of y:  

E [y|x] =
∫ 𝑦𝑓(𝑥,𝑦)𝑑𝑦
+∞
−∞

∫ 𝑓(𝑥,𝑦)𝑑𝑦
+∞
−∞

                                            (2.23) 

x: attribute, f: compound probability density function.  

GRNN estimates f from the samples. The input layer has k neurons for k features. The 

input layer distributes the inputs to the pattern layer. Activation function used in n number 

of neurons in the pattern layer for n number of observations is  

𝑝𝑖 = exp [−
𝐷2

2𝜎2
]                                               (2.24) 

D2=(X−Xi)
T(X−Xi)                                             (2.25) 

i: neuron, D: Euclidean distance, X: input vector, Xi: ith training input vector, σ: 

smoothing parameter. As σ gets larger, the distribution converges to a multivariate 

Gaussian as the importance of training data away from the predicted values increases and, 

moves away from a Gaussian distribution as σ gets smaller. The neurons in this layer are 

all connected to the two neurons of the summation layer. One neuron of the summation 

layer finds the weighted sum (SN), and the other finds the unweighted sum (SD) of the 

outputs of the pattern layer.  

𝑆𝑁 = ∑ 𝑦𝑖𝑝𝑖
𝑛
𝑖=1                                                   (2.26) 
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𝑆𝐷 = ∑ 𝑝𝑖
𝑛
𝑖=1                                                    (2.27) 

Output layer finds the normalized prediction value by  

𝑌̂𝑖(X) =
𝑆𝑁

𝑆𝐷
                                                     (2.28) 

In GRNN, the error function is MSE and the error minimization method is Conjugate GD. 

(Lewis, 2015).  

It does not assign weights to input variables. It is a local approximator. The relationship 

to be found for predictions does not need to be valid in all data. It is sufficient to determine 

only the parameter σ at the beginning (0<σ≤1) (Gheyas & Smith, 2009).  

Time Series Forecasting with GRNN (GRNNTSF) is an autoregressive neural network 

that forecasts time series with GRNN regression using lagged values as input. 

Extreme Learning Machines (ELM) network is a single hidden layer feed-forward neural 

network (SLFN) that can eliminate the negative features of FFNN, learn faster, and have 

better generalization ability most of the time. It does not have problems such as getting 

stuck in local minima, not being able to choose the optimal learning rate, and overfitting 

(Huang et al., 2006). 

Unlike other ANNs, the training of the model, whose input weights and biases are chosen 

randomly at the beginning, is completed by first calculating the hidden layer output matrix 

and then the output weights (Huang et al., 2006). The calculation is completed by doing 

it all at once instead of gradual error reduction. Randomizing the weights between the 

input and hidden layers and linearizing the rest of the structure significantly increases the 

learning speed. The random feature matching (weight assignment) allows the nonlinear 

part to be passed quickly (Huang et al., 2004).  

This setup of the model is based on the theory that; where N is the number of random 

samples, 𝑁̃ is the number of hidden neurons, activation function is infinitely 

differentiable, and ε>0 is taken as a small number, it is necessary to make  

‖𝐻𝑁×𝑁̃𝑊𝑁̃×𝑚 − 𝑇𝑁×𝑚‖ < 𝜀                                     (2.29) 
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where there will be a number of 𝑁̃ ≤ 𝑁. W: weights connecting hidden layer neurons to 

the output neuron, b: biases of hidden layer neurons, T: target outputs of hidden layer 

neurons (Huang et al., 2006).17  

ELM aims to minimize the size of the weight vector between the hidden layer and the 

output layer simultaneously with the training error (Huang et al., 2012). Using the Moore-

Penrose generalized inverse18 of these weights ensures linearity in the network. It does 

not require updates to the hidden layer parameters (Zhu et al., 2015).  

If the activation functions of the hidden layer in the SLFN are infinitely differentiable, 

selecting the input layers and hidden layer bias will give similar results to gradient-based 

training. By choosing these parameters randomly, the rest of the network structure can be 

operated as a linear model. This essentially allows us to define the output weights as the 

generalized inverse of the output of the hidden layer. The ELM algorithm converges to 

the smallest weight set and error (Huang et al., 2006). ELM has too many neurons in its 

hidden layer for good updating ability (Zhu et al., 2015).  

General Method of Data Handling (GMDH) Type Neural Networks are used to connect 

the MLP structure to a set of p attributes to the target variable. The connection between 

input and output variables is made by the infinite Volterra-Kolmogorov-Gabor 

polynomial.19 A second-order polynomial to be used in a feedforward sensor converges 

to this polynomial (Ivakhnenko, 1971). This approach seems only practical for simple 

                                                      
17 For detailed explanation see Appendix 3 and Appendix 4. 
18 Moore-Penrose solution: AGA=A, GAG=G, (AG)'=AG, (GA)'=GA, then Gnxm (G can be replaced by 

A+), is Moore-Penrose generalized inverse is Amxn. Least squares solution: In the linear equation system 

Ax=y.  

‖𝐴𝑥∗ − 𝑦‖ = min
𝑥
‖𝐴𝑥 − 𝑦‖ 

AϵRm: mxn matrix, yϵRm: vector, xϵRn: least squares solution. Let x be all least squares solutions: ‖𝑥∗‖ ≤
‖𝑥‖ 

must be. If Ax=y and G=A+ then x*=Gy is solution of the general system of linear equations (Rao and 

Mitra, 1971). 
19 Volterra-Kolmogorov-Gabor polinomial:  

𝑦 = 𝑎0∑𝑎𝑖𝑥𝑖

𝑝
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models, as finding a local optimum would interrupt network training and the addition of 

new units (Taušer & Buryan, 2011). 

Figure 8: GMDH Network 

 

In the GRNN model, whose structure is shown in Figure 8, p input attributes are 

transmitted to the first hidden layer from p neurons in the network's input layer. Each 

neuron in the hidden layers and the output layer constructs the quadratic function of all 

binary combinations of the outputs of the neurons in the previous layers. The degree of 

polynomial in the layers is 2l. l: layer order. The number of neurons in the first hidden 

layer is p(p-1)/2. In the first hidden layer, neurons use binary combinations of signals 

from the input layer as input. These signals are transmitted to the next layer using a 

second-order polynomial function. Additionally, the use of a second-order transfer 

function in the next layer causes its output to increase to the fourth order. This same 

process is applied to the next layers. As the layer progresses, the polynomial degree 

increases exponentially. However, at a certain level where the performance improvement 

does not increase sufficiently, the addition of new layers is stopped.  

If the model uses binary combinations of input signals at each layer, it can become 

overextended. However, this issue can be addressed by eliminating neurons in these 

layers. The f functions obtained to reach the target estimate (y) are then compared with 

the Mean Squared Error (MSE) criterion. Neurons with poor estimations are removed, 
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and the f functions that provide the best estimate of the desired quantity are used as input 

in the next layer. This process of comparing neurons and layers and selecting the best 

functions and neurons results in a self-organizing structure in which not all neurons are 

connected to each other (Lewis, 2017a). 

This structure adds layers to the network, causing it to explore the entire state space. This 

structure is different from traditional BP. Figure 9 shows the output of a neuron in the 

first hidden layer. 

Figure 9: GMDH Network Neuron Output  

  𝑥𝑖 

  𝑥𝑗          𝑦𝑖𝑗 = 𝑓(𝑥) = 𝛼 + 𝛼1𝑥𝑖 + 𝛼2𝑥𝑗 + 𝛼3𝑥𝑖
2 + 𝛼4𝑥𝑗

2 + 𝛼5𝑥𝑖𝑥𝑗      (2.30) 

f: linear regression obtained with the training set (xi, xj): possible pairs of attributes p. α's are 

similar to MLP weights. With the test set, first, the coefficients of the f functions, called partial 

descriptors, are found. 

2.2.2.3 Feed-Back Neural Networks 

In FFNNs, neurons only receive signals from the previous layer and transmit them to the 

next layers. Recurrent neural networks (RNN), which are feed-back neural networks, on 

the other hand, are approaches that allow receiving signals from subsequent layers by 

adding a time-delayed structure to feed-forward networks (Szenczi, 2016).  

In RNNs, the back connections of neurons loop their activation. This loop teaches the 

network the concept of time and provides it with a memory. The delay neuron in the 

context layer stores the previous time information and sends it back to the network with 

the next time data (Lewis, 2015). FFNN does not take continuity in time series into 

account. Since RNN models this in its algorithm, it is used in time series forecasting. It 

stores time-dependent information in its hidden layers, allowing it to learn time-

dependent patterns in time series. Since the outputs are affected by lagged inputs, outputs, 

and hidden states in addition to current inputs, RNNs are dynamic (Öztemel, 2016). 

In the RNN, the outputs of the delay unit are used as input to the hidden neurons along 

with the current input. This structure, called short-term memory, keeps the information 

f(x

) 
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obtained by the hidden layers in the network's memory since the activation value and/or 

output value of the hidden layer is given back to the network as input in the training with 

the previous time data (Lewis, 2017a).  

RNNs can be constructed as full recurrent networks, in which there are forward and 

backward connections without specific rules. In these networks, all connections can be 

trained. Alternatively, partial recurrent networks can be created, where the recurrent 

connections are formed only between content units in the hidden layer neurons. There 

have been several models developed in addition to the simple RNN (SRNN) in the RNN 

approach. In this study, forecasts are created using ENN, JNN, LSTM, GRU, and SRNN 

algorithms, and are discussed in separate sections.  

Simple Recurrent Neural Networks (SRNN): To learn patterns in sequential data, the 

SRNN uses an approach that "recurrent" patterns in predictions. The structure is suitable 

for remembering patterns in the short-term past from sequential observations, while the 

long-term past vanishes in training (Namın & Namın, 2018).  

The SRNN algorithm relates the past features of the series as a whole to the outputs 

(Graves, 2012). In this algorithm, BP is applied to the entire past time. This leads to a 

reduction of weight revisions from the current time to the past. SRNN function:  

ht = tanh(whht-1+wxxt+b)                                         (2.31) 

ht: new state, ht-1: previous state, f(.): activation function, xt: current input, wh: previous 

state weight, wx: current input weight.  

Elman Neural Networks (ENN) and Jordan Neural Networks (JNN) include input, context 

(repetitive or delay), hidden, and output layers in their structure (Lewis, 2017a). In the 

context layer, ENN sends the hidden layer outputs to feedback, and JNN sends the output 

layer outputs to feedback (Eğrioğlu & Baş, 2020). These types neural networks learn 

short-term patterns. The structure of these networks is shown in Figure 10. 
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Figure 10: ENN (a) and JNN (b) Models 

(a)      (b) 

Source: Lewis (2017a). 

In these networks, the activation function is not used in the input layer. In the output layer, 

there is a linear activation function where the inputs are collected. In the hidden layer, the 

activation function varies according to preference (Öztemel, 2016). 

The number of neurons in the context layer equals that of the hidden layer, with 

connections established between all neurons of these two layers. Connection weights, 

which repeat the previous values of the hidden layer in Elman networks and the output 

layer in Jordan networks, with values equal to 1 in delay (context) units, serve as memory 

to provide input to the context layer. The information in this memory is given as 

additional input to the hidden layer neurons in the next time step. These networks aim to 

learn sequential and time-varying patterns.   

Unlike MLP, in these networks where previous activation values from the context layer 

are also used, the learning rule is generalized delta, as in MLP. The algorithm in recurrent 

connection weights is the same as MLP. These networks are active in time series. Thanks 

to additional memory units, these networks generally make better predictions than FFNN 

(Adhikari & Agrawal, 2013a). ENN especially successfully models the first-order linear 

data structure. 

Long-Short Term Memory (LSTM) network is a type of RNN with an AR structure where 

the data length can be chosen arbitrarily (Hansson, 2017). While RNN is used for data 

structures with a few lags, the LSTM model has been developed for very long lags. The 

hidden neurons in the RNN model are short-term, while the memory blocks used in the 

LSTM model are long-delay structures. The LSTM model bridges long-term previous 
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information with memory blocks. With these additional features, LSTM is able to learn 

more successful, faster, and longer-term relationships (Lewis, 2017a).  No matter which 

form the autoregressive structure in the data is in, the network has the ability to learn this 

structure. While in an ordinary RNN, the number of feedback loops needs to be 

determined by the implementer, in LSTM this is not necessary (Hansson, 2017). LSTM 

has been successfully used many times in forecasting stocks and indices (Abar, 2022).  

In traditional RNNs, the gradient equivalent to the weight matrix, which has a large 

exponential power due to being multiplied by itself many times, can cause error signals 

to shrink and disappear or grow exponentially fast. This vanishing or explosion causes 

the network to be slow or unable to learn the long-term dependency (Lewis, 2017a).  If 

the errors grow to extremely large values, the weights oscillate on the surface of the error 

graph (see Figure 6) and unstable learning occurs (Hochreiter & Schmidhuber, 1997). 

LSTM solves the problem of vanishing or exploding gradients in RNNs with a memory 

cell. The memory cell prevents information from being lost or corrupted, which ensures 

that the cell's error remains constant or deletes the information of other units (Lewis, 

2017a). The LSTM structure is shown in Figure 11. and the memory block in the structure 

is shown in Figure 12. 

Figure 11: LSTM Network 

 

Source: Lewis (2017a). 
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Figure 12: Memory Block Structure 

 

Source: Lewis (2017a). 

The memory block manages the updating of the block and the retention or exclusion of 

information (Kožíšek, 2018). Memory blocks have connections and gates that send 

signals to the block input and all gates (Eklind, 2020). Its structure also includes a constant 

error loop, output activation function, and surveillance links (Greff et al., 2015). The 

block has multiplicative input, output, forget, and other optional gates. The inputs of the 

block are multiplied by the activation function of the input gate, its outputs are multiplied 

by the output gate, and the previous block is multiplied by the forget gate. The general 

formula for input, forget, and output gates: 

𝑎𝑖
(𝑡)
= 𝜎(𝑏𝑖

𝑎 + ∑ 𝑢𝑖𝑗
𝑎 𝑥𝑗

(𝑡)
𝑗 + ∑ 𝑤𝑖𝑗

𝑎ℎ𝑗
(𝑡−1)

𝑗 )                             (2.32) 

𝑎: input (𝑔), forget (𝑓) and output (𝑜) gates; σ: activation function, x: input, h: current 

hidden layer vector containing the output of all LSTM cells, b: constant, u: input weights, 

w: recurrent weights, i: cell, t: time. Input gate checks for new information coming into 

memory. At the forget gate, if 𝑓𝑖
(𝑡)
= 1 the door opens, if 𝑓𝑖

(𝑡)
= 0, it is closed. If the door 

is open, the cell state is first given as input to the cell, if not, it is not. Cell status revision:  

𝑠𝑖
(𝑡)
= 𝑓𝑖

(𝑡)
𝑠𝑖
(𝑡−1)

+ 𝑔𝑖
(𝑡)
𝜎(𝑏𝑖

𝑓
+∑ 𝑢𝑖𝑗𝑥𝑗

(𝑡)
𝑗 + ∑ 𝑤𝑖𝑗ℎ𝑗

(𝑡−1)
𝑗 )         (2.33) 
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In the addition process on the right side of this equation, the first term represents the cell 

state information controlled by the forgetting gate, and the second term represents the 

input information controlled by the input gate. Cell state information is also calculated at 

the output gate: 

ℎ𝑖
(𝑡)
= 𝑡𝑎𝑛ℎ(𝑠𝑖

(𝑡)
)𝑜𝑖

(𝑡)
                                   (2.34) 

This gate behaves like the RNN hidden layer state (Abar, 2022).   

The forget gate has been added later to block. In memory blocks, the weight of an input 

to the hidden layer is checked. If this input has no effect on the output, it is sent to the 

forget gate and this input in the block is reset to zero (Eklind, 2020). The peephole 

structure has been added to the network decides whether to reset the memory block 

completely by evaluating the inputs coming to the forgetting gate and the outputs coming 

from other cells using its own activation function, which we can call preselection. This 

application with the peephole allows the network to recognize rhythmic patterns in the 

series more effectively (Kožíšek, 2018). 

LSTM can memorize the data sequence. There are algorithms for discarding, filtering, or 

adding data from each cell to subsequent cells. In the forget gate the outputs take a value 

between "0" ("forget everything") and "1" ("keep everything"). The memory gate decides 

which inputs to modify and which new data to store. The sigmoid function is used to 

change data and the tanh function is used to add new data. The output gate decides the 

efficiency of the cell (Namın & Namın, 2018).  

LSTMs contain at least one loop. The number of neurons in the input layer is equal to the 

number of dependent variables (Fischer & Krauss, 2017). It involves many more 

parameters than traditional recurrent networks. LSTM does not require precise tuning of 

its parameters. It is a local approach in both data space and time, which is an advantage 

over other methods with complex training algorithms (Hochreiter & Schmidhuber, 1997).  

In the Gated Recurrent Unit (GRU), a hidden memory structure has been designed to 

record information, instead of using a separate memory cell like in LSTM. This structure 

includes the update gate (z), which combines the forget and input gates of the memory 
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cell to predict how much the previous memory will be used, and the reset gate, which 

learns how to incorporate new inputs with the previous memory. If the previous hidden 

state is not relevant, the reset gate (r) is assigned a value of "0" to reset the GRU. The 

new input (xt) is combined with the previous hidden state and sent to this gate. 

The update gate allows transferring information that should have been kept in the previous 

hidden state to the current hidden unit. This gate avoids the gradient reset and explosion 

problem (Eğrioğlu & Baş, 2020). If the network has found long-term relation, it closes 

the update gate to use memory contents later. The last memory (hidden activation) is 

found by combining the current memory (ℎ̃𝑡) and the weights revised by the previous 

memory update gate using the interpolation method. This network, which has a simpler 

structure than LSTM, can produce the same or better results as LSTM (Lewis, 2017a). 

GRU functions:  

Update gate: 𝑢𝑡 = 𝜎(𝑤𝑢𝑥𝑡 + 𝑟𝑢ℎ𝑡−1 + 𝑏𝑢)                    (2.35) 

Reset gate: 𝑟𝑡 = 𝜎(𝑤𝑟𝑥𝑡 + 𝑟𝑟ℎ𝑡−1 + 𝑏𝑟)                     (2.36) 

GRU memory: 𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐𝑥𝑡 + 𝑟𝑡⊗𝑢𝑐ℎ𝑡−1)               (2.37) 

⊗: kronocker multiplication, 𝑟𝑡⊗𝑢𝑐ℎ𝑡−1 destroys some of the knowledge from the past.  

GRU neuron output: ℎ𝑡 = 𝑢𝑡⊗ℎ𝑡−1 + (1 − 𝑢𝑡) ⊗ 𝑐𝑡               (2.55) 

(Eğrioğlu & Baş, 2020). 

2.3. ENSEMBLE LEARNING 

Ensemble learning (EL) is combining the outputs of a set of learning algorithms (models) 

to forecast data (Pode & Mackworth, 2010). EL is also called learning together in 

harmony (Gürsakal, 2017).  

EL aims to achieve high-performance results by combining the forecasts of individual 

models that may have poor predictive performance. Individual models are often termed 

"weak learners" because they produce forecasts that are only slightly better than random 
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guessing, which is not considered satisfactory. In contrast, EL is considered to produce 

"strong learners". EL is generally more efficient than individual models of similar or 

different types (Lewis, 2017b). EL methods are shown in Figure 13.  

Figure 13: EL Method 

 

In EL, multiple forecasts are made and these forecasts are combined into a single result. 

In a homogeneous EL approach, models of the same type are used, while in a 

heterogeneous approach, models of different types are used. There are also EL approaches 

that combine these two groups. EL learns quickly how the distribution of target values 

changes and can be more accurate than single models (Grmanová et al., 2016).  

Methods such as random forest, boosting, and bagging combine the strengths of simple 

basic models. However, these methods do not include probabilities, are not interpretable, 

and are not simple (Steel, 2017). In this study, the heterogeneous method (stacking) is not 

used and instead homogeneous models are used. 

Tree-based algorithms are the most popular EL. Tree-based learning methods are based 

on decision trees. Decision trees can be defined as simple structures that divide 

observations into specific regions using features in the data set and make predictions from 

each region. However, a single decision tree can often result in high variance and 

therefore low generalization ability. Therefore, tree-based methods allow multiple 

decision trees to be filtered and combined using ensemble methods to obtain more 

complex and more accurate predictions (James et al., 2023). 

Decision Trees (DTs) are simple models used for making decisions. They use tree-shaped 

decision rules to divide data based on specific criteria. DTs are non-parametric and do not 

make assumptions about the underlying data distribution. They model each step of 

decision-making using outcomes and conditions and are easy to interpret. They do not 
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need data normalization, dummy variables, or missing value completion; their 

calculations are simple and fast, and they are effective models for big data. The 

disadvantages are that they are very sensitive to sample data; that is, they are unstable, 

and are prone to overfitting (Lewis, 2017b).  

DTs are obtained by minimizing the generalization error from the data (Rokach & 

Maimon, 2005). These trees are built by selecting the most suitable function based on 

input sets and univariate or multivariate partitioning criteria such as information gain, 

gain ratio, Gini index, or others. The partitioning of the data into subsets is continued until 

the stopping criterion is met or the partition criterion is invalid (Balaban & Kartal, 2018). 

For an explanation of DTs, see Appendix 5. 

Bagging (Bootstrap Aggregating) obtains predictions by generating training sets with the 

bootstrap method to reduce variance and then takes the average of these predictions. 

Bagging is a method that works by relying on a bootstrapped training set to create multiple 

trees. In this method, a random sample is taken from the training data. In this process, 

some observations are usually selected from the same data set in each training cycle and 

some are dropped. DTs are created on this sample. Each decision tree can have high 

variance because they are trained based on only a subset of the data set. However, when 

the predictions of these trees are averaged, the variance of the aggregate predictions is 

significantly reduced. In this way, the results obtained from the base trees provide a more 

reliable and stable prediction (James et al., 2023).  

Bootstrap is an approach that obtains large observation data from a small set of 

observations by resampling. It is used when statistical methods are inadequate or the 

parametric assumption is invalid. It can be used in time series if the data structure is 

independent and identically distributed. The dependence of the series within itself should 

be transferred to the samples produced by bootstrap. If the classical bootstrap model is 

not suitable for this, non-overlapping block, which takes sequential observations of time 

series as a block, moving block, which takes sequential block observations and preserves 

the relationship of these observations, circular block, which turns the data into a sample 

in the form of a circle and applies the bootstrap approach equally weighted on any part of 
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this circle, and stationary block bootstrap approaches using blocks with stationary 

properties of arbitrary lengths have been developed (İslamoğlu, 2020). 

Bagging creates clusters/bag samples by randomly selecting from observations. One 

model is trained with each cluster. Some of the forecast models, such as ETS and ARIMA, 

are trained with clusters. The results are combined with averaging in regression problems 

(Alpaydın, 2010).   

Random Forest (RF) is an EL approach that improves the performance of DTs by 

combining the predictions of many DTs obtained from different samples of the same data. 

Forecast combination is done by averaging in regression problems. RF makes trees that 

are weak learners become strong learners. 

RF is a self-developed version of the bagging method. In this method, instead of the full 

set of predictors used in creating each tree, a randomly selected subset is used for each 

split. This randomness limits the repeated use of a strong predictor in the splitting 

processes in a tree, thus reducing the similarity of the trees to each other. As a result, RF 

provides more independent and reliable results by reducing the correlation of the 

predictions resulting from the similarity of the trees seen in bagging (James et al., 2023). 

RF is mostly efficient and requires almost no parameter or data tuning (Fischer & Krauss, 

2017).  

Random selection of subsamples allows the DTs to be differentiated. Unselected samples 

are used to calculate the forecast error and the weight in the forest. Trees are grown unless 

they need pruning. Finally, the predictions are combined (Lewis, 2017b).   

Although unrelated decision trees are quite sensitive to the training data, when these trees 

are brought together in RF, the results obtained do not increase the bias and do not show 

this sensitivity, thus reducing the variance. They are easy to construct and compute and 

are trained quickly. Missing data can be filled with simple methods. They are effective 

with big data. They are resistant to outliers. Creating a structure that improves predictions 

without increasing bias reduces the problem of overfitting (Lewis, 2017b). 
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Boosting is a performance-enhancing method that combines weak learners with strong 

learners (Lewis, 2017b). In the Boosting approach, the error probability is tried to be 

reduced to the desired level by pushing them by training weak models in order (Alpaydın, 

2010). Bagging is a homogeneous ensemble learning model that learns basic methods 

from different pieces of data while boosting is a homogeneous EL model that adapts after 

each sample or batch of data is generated (Grmanová et al., 2016). In this approach, which 

generally uses DT as the predictor model, unlike RF the growth of trees is not random. 

DT is grown according to the results of previous trees.  

The application of the model is briefly as follows.  First, a simple weak learner 𝑓1(𝑥) 

model is built. x: training data with certain characteristics.  Then at each step, the greedy 

learning function that reduces the error the most is executed. If 𝑓1(𝑥) model is incorrect, 

it will be replaced by a duplicate model (𝑓2(𝑥)) is trained by giving more weight to 

incorrect predictions. Thus 𝑓2(𝑥), he focuses more on 𝑓1(𝑥)'s mistakes and corrects the 

mistakes of the targets he is struggling to find.  In this way, it improves performance by 

better predicting difficult predictions in each iteration. Training is stopped when a certain 

number of iterations or a certain performance level is reached. The last step is to merge 

the results  

𝑓(𝑥) = ∑ 𝛼𝑏𝑓𝑏(𝑥)𝐵
𝑏=1                                            (2.38) 

𝑓𝑏(𝑥): output of weak learner b, α: weight. It gives high weight to high performance 

(Lewis, 2017b).  

Tree-based boosting is an approach based on the sequential growth of decision trees. In 

this method, each new tree is created with incorrect predictions from previous trees. Thus, 

the model constantly tries to overcome its errors. In this process, each tree is adapted to a 

modified version of the original dataset. In boosting, the complexity of each tree can 

usually be controlled, and these smaller trees slowly improve performance by focusing 

on areas where the model is weak. The shrinkage parameter controls the learning rate in 

the process and allows it to focus on the errors of more and different trees. Therefore, 

slow learning processes generally tend to produce stronger and more accurate results 

(James et al., 2023). 
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For the tree based approaches; model is initialized with 𝑓(𝑥) = 0 and ri=yi. r: residuals. 

Then at each b=1,…,B step; first a tree 𝑓𝑏(𝑥) model is built. x: training data with certain 

characteristics. Then update 𝑓 by 𝑓(𝑥) ← 𝑓(𝑥) + 𝜆𝑓𝑏(𝑥). This adds a shrunken version 

of the new tree. Then update ri by 𝑟𝑖 ← 𝑟𝑖 + 𝜆𝑓
𝑏(𝑥𝑖). After the end of this iteration (means 

b =B), the last step is to merge the results  

𝑓(𝑥) = ∑ 𝜆𝑓𝑏(𝑥)𝐵
𝑏=1                                            (2.39) 

𝑓𝑏(𝑥): output of weak learner b, λ: shrinkage parameter (James et al., 2023).  

Boosting is a simple, well-functioning approach that performs optimization without 

complex nonlinearity and careful tuning, is protected from overfitting, and is insensitive 

to redundant information. It has disadvantages such as interpretation difficulty, sensitivity 

to noise, and the possibility of outliers worsening overall performance. Although it 

reduces bias, it has overfitting and hyperparameter selection problems. Many types have 

been designed, such as AdaBoost, CatBoost, LPBoost, GBM, Light GBM, and XGBoost 

(Yakut & Kuru, 2022). The methodologies used in this study are briefly explained below. 

First of all, in model-based boost (boost), the individual model (weak learner) and the 

optimization loss function can be selected as desired. Throughout this study, optimization 

is done with gradient boosting. Gradient Boosting with Component-wise Linear Models 

(glmboost) optimizes component-based linear models (weak learner) with the same 

approach. A generalized additive model by likelihood-based boosting (gamboost) makes 

predictions using the likelihood approach in cases where individual models (weak 

learners) are non-linear. This approach, which gives good results in model outputs with a 

Gaussian distribution, tries to adapt the model residuals to the data at each step with the 

B-spline method. Further, the data to be fitted are selected by deviation or other criterion. 

The adjustments made in this way are improved by adding to the previous ones. Gradient 

Boosting with Regression Trees (blackboost) uses regression trees as weak learners. It 

does the optimization with 'classic' gradient boosting.  Note that, the regressions in the 

model are difficult to interpret because they are “black box” (Hothorn et al., 2023). 
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XGboost (Chen & Guestrin, 2016) is a supervised ML method that combines weak 

Gradient Boosting Machine (GBM) predictions with a boosting approach. They make it 

faster and more accurate against overfitting with parallel processing to strengthen models 

that are weak according to the errors between the prediction and the actual observation 

by iterations. This method, which has the features of tree pruning and working with 

missing data, is more effective than other methods despite overfitting and bias problems 

(Yakut & Kuru, 2022).  

2.4. FORECAST COMBINATION 

Forecast combinations are the process of re-forecasting the results of individual model’s 

forecasts using various methods. Combination can be made directly or by using RF, 

bagging etc. The preference for combinations is based on the expectation that they 

forecast better than the model that forecasts best alone. Uncertainties in modeling the 

dynamics in the data and unmodeled and unpredictable situations reduce the effectiveness 

of forecasts. Combining models for forecasting can eliminate these problems. A 

parameter or dynamic not covered by one model might be covered by another model. The 

combination reduces model risks. Thus, models can cancel each other's negative effects. 

In a time-varying data structure, different models may work better at different times. 

Combinations can reduce forecast biases and errors (Raviv, 2016). 

The forecast error obtained with these approaches can be, at most, as large as the best 

individual model. Moreover, the efficiency of the combination increases as the forecast 

horizon gets longer (Araújo & Cajueiro, 2014). As the efficiency of the models increases, 

the efficiency of the combination also increases (Andrawis et al., 2011). 

It is more efficient to use different approaches for combining them by selecting the 

models that give the best results in groups containing the same approach. These 

combinations can be constructed in different models with different algorithms, different 

parameters, and different input representations. In the regarding literature, it is suggested 

that only one of the models, which has the same approach, should be used in the 

combination, the remaining models and failed models should not be included in the 

combination (Alpaydın, 2010). 
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Methods have been developed that combine averages, weights, regressions, shrinkage 

approaches, information criteria, performance, and many different forecast results. The 

models, which are used in this study, are listed below, where 𝑓𝑐 defines forecast 

combination, N denotes the model number and fi stands for the ith model yet other methods 

can also be constructed for the purpose.  

(i) Simple avarage 

𝑓𝑐 =
1

𝑁
∑ 𝑓𝑖
𝑁
𝑖=1                                            (2.40) 

 

(ii) Median 

𝑓𝑐 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑓𝑖)                                      (2.41) 

 

(iii) Trimmed average: K trim parameter, 

𝑓𝑐 =
1

𝑁−2𝐾
∑ 𝐾𝑓𝑖
𝑁−𝐾
𝑖=𝐾+1                                    (2.42) 

(iv) Winsorized Mean: λ is trim factor; top/bottom 100 × λ% is winsorized measure;  

K = λN to be  

𝑓𝑐 =
1

𝑁
[𝐾𝑓(𝐾+1) + ∑ 𝐾𝑓(𝑖−𝐾)

𝑁−𝐾
𝑖=𝐾+1 ]                   (2.43) 

The simple average is a combination model that can be used as a benchmark. The trimmed 

mean takes the simple average of the remaining models, excluding the models with the 

largest and smallest forecasts. Winsorized Mean limits the effect of outliers on the mean 

by assigning them smaller absolute values according to a given criterion. Mean 

approaches such as median, trimmed mean, and Winsorized Mean are insensitive or less 

sensitive to outliers (Steel, 2017). 

(v) Bates/Granger (1969) weight by variance:   

𝑤𝑖 =
𝜎̂−2(𝑖)

∑ 𝜎̂−2(𝑗)𝑁
𝑗=1

                                          (2.44) 

Bates/Granger does not take into account the correlation between forecasts. 



70 

 

  

(vi) Constrained least squares (CLS) regression: The weights are positive and have the 

constraint of summing to 1. The closeness of the forecasts obtained from the models 

increases the efficiency of the forecast combination. β: coefficient matrix. CLS: 

𝑓𝑐 = 𝛽𝑓𝑖                                                        (2.45) 

(vii) Rank based weighting (Inverse RANK): 

 𝑓𝑐 = ∑ 𝑓𝑖
′𝑁

𝑖=1 ×
𝑅𝑎𝑛𝑘𝑖

−1

∑ 𝑅𝑎𝑛𝑘𝑖
−1𝑁

𝑖=1

                                    (2.46) 

𝑅𝑎𝑛𝑘𝑖
−1 is the order of the model in reverse sorting, done according to the MSE criterion. 

(viii) Eigenvector approachs: The solution of the equation min(w'Σw), where the 

constraint w'w =1 is the model weights. w: weights, Σ: eigenvector. If Σ is unknown, 

replace  

S =
1

𝑇1
∑ (𝑒𝑦𝑡
𝑇1
𝑡=1 − 𝑓𝑡)(𝑦𝑡𝑒

′ − 𝑓𝑡
′)                              (2.47) 

wVC =(e’S-1e)-1S-1e                                           (2.48) 

S is diagonal. e is error. This is the standard method, and there are different variants of 

this approach, such as bias-corrected, trimmed, and trimmed and bias-corrected. Bias 

corrected eliminates bias (by subtracting the column means of the MSPE). 

(ix) With Ensemble Learning models: In Bagging, Boosting and RF models, models can 

be trained with the fitted values of some individual models as input, and forecasts can be 

combined with the forecasts of these models. 

𝐹𝐸𝐿 = 𝐹(𝑓~𝑓1 + 𝑓2 +⋯+ 𝑓𝑘)                                (2.49) 

𝑓𝑐 = 𝐹𝐸𝐿(𝑓~𝑓1 + 𝑓2 +⋯+ 𝑓𝑘)                               (2.50) 

First, the regression model is established with the fitted values of the individual models 

(𝑓1, 𝑓2, … , 𝑓𝑘). Then, this regression (f) model is trained with one of the EL approaches 

(F). In the trained model (FEL), the forecasts of the individual models (𝑓1, 𝑓2, … , 𝑓𝑘) are 

used as new inputs, and new forecasts (𝑓𝑐) are obtained. 
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In forecast combining, the consistency of the approach should take precedence over its 

optimality. Breaks in data dynamics affect the performance of the combination. For this 

reason, Hsiao and Wan (2011) recommend a rolling window approach instead of the fixed 

window or updated window as input data in forecasting.  

Many studies have concluded that the best forecast combination model is the simple 

average of forecasts. If the efficiency of forecasting models is poor, the simple average 

and the choice of the optimal model give very close results. In this case, it is more 

pragmatic to choose the mean (Huang & Lee, 2007). Since using a simple average 

approach does not require the estimation of weights or other parameters, the combination 

does not suffer from the loss or other inconveniences caused by these weights and similar 

forecasts (Adhikari & Agrawal, 2013a). Estimating the weights of the models to be used 

in forecast combining increases the variance. Even the optimal choice of weights may not 

ensure that the variance is lower than the variance of the individual models (Claeskens et 

al., 2014) 
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CHAPTER 3: 

DATA AND EMPIRICAL FRAMEWORK 

In this section, we study the yield curves of developed countries (G-7), excluding Japan. 

This section explains the data scope, and features, estimated factor data, operations 

performed and statistical information on these data, data processing, data-method-

parameter selection, and optimization for forecasting. Unlike many other studies, we use 

daily data. Because obtaining this data is difficult, we directly use the yields at standard 

maturities, which are readily available in financial data terminals. 

3.1. YIELD DATA 

Using fewer maturities in yield curve and unequal spacing of maturities negatively affects 

the forecast performance (Reinicke, 2019). In the yield curve model, Gürkaynak et al. 

(2007) do not use government securities those with features that may imply options, those 

with maturities of less than three months for reasons such as lack of liquidity and different 

markets, and those with trading in a separate market as data.  

This thesis aims to forecast the yield curves of G-7 countries, excluding Japan. Japan is 

excluded from the study due to insufficient data for the selected period. We collect data 

for Canada (CA), Germany (DE), France (FR), the United Kingdom (GB), Italy (IT), and 

the United States (US) from “the investing.com" website for the period over January 

04.01.2010 -30.12.2022. We utilize daily yield data for 11, 17, 17, 17, 17, and 11 different 

standard maturities ranging from three months to 30 years for these countries, 

respectively. We calculate Nelson Siegel latent factors {β0t, β1t, β2t, λt} daily.  

The term ‘missing data’ refers to data that significantly alters the distribution, thereby 

impacting the analysis and reducing the validity of the results (Suthar et al., 2012). 

Various methods such as Monte Carlo, interpolation, jumping, discarding, forward filling, 

and backward filling can address missing data (Akçay et al., 2012). For the empirical 

application part of this thesis, the data source does not provide regarding data for every 

day of maturity. To address this, we fill the missing data with the most recent data from 

the previous days (forward filling). The amount of missing data is less than 1% of the 
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total data and is spread across the entire series period, thus not significantly affecting the 

series. Some standard maturities are not available during the some period and we only 

use them for calculating the NS parameters on days when data are available. Additionally, 

we exclude the data provided on weekends because of the lack of efficient market 

conditions. 

Once the collected data is analyzed, fluctuations, which are not expected from the interest 

rate market, are observed in some maturities on days. This may be due to the inappropriate 

results of the model used to convert market interest rates into yields at standard maturities 

or the use of incorrect data. We adjust such data using a smoothing model. We identify 

yields that change more than three standard deviations, which lasted for at most four days, 

then return to their previous level and replace them with new yields obtained by 

interpolation. Thus, the changes in the series are more reasonable and modellable. For 

this reason, we take this data on changes as yields for the rest of the study. We calculated 

latent factors from these yield data. We use this final data version to calculate the forecast 

error (RMSE) and compare the yield forecasts. As seen in Figure 14 the yield graphs of 

the countries show that long-term yields follow a similar path. 
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Figure 14: Yield Graphs of Countries at Some Maturities 

 

 

3.2. ESTIMATION OF NELSON SIEGEL PARAMETERS  

Nelson-Siegel is a nonlinear model whose parameters have been discussed in previous 

studies. NS models have several solutions. The change in the structure of the yield curve 

over time and the maturity range analyzed may cause problems in the selection of λ in the 

NS model. Even if λ is not optimized well, the NS yield curves estimated by obtaining 

with βs can sometimes provide a better fit than those obtained from the data. (Szenczi, 

2016). There may also be a multicollinearity problem between NS factors. In Nelson-

Siegel's formula (see Equation 1.7), “exp(−𝑚𝜆)” and “[(𝑚𝜆) exp(−𝑚𝜆)]” terms are 

0
1

2
3

4

M
3

0
1

2
3

4

Y
2

2010 2015 2020

Date

0
.5

1
.5

2
.5

3
.5

Y
1

0

CANADA

-1
.0

0
.0

1
.0

2
.0

M
3

0
1

2

Y
2

2010 2015 2020

Date

0
1

2
3

Y
1

0

FRANCE

0
1

2
3

M
3

0
1

2
3

4

Y
2

2010 2015 2020

Date

0
1

2
3

4

Y
1

0

GREAT BRITAIN

0
2

4
6

M
3

0
2

4
6

8

Y
2

2010 2015 2020

Date

1
2

3
4

5
6

7

Y
1

0

ITALY

0
1

2
3

4

M
3

0
1

2
3

4

Y
2

2010 2015 2020

Date

1
2

3
4

Y
1

0

UNITED STATES

-1
.0

0
.0

1
.0

M
3

-1
0

1
2

Y
2

2010 2015 2020

Date

0
1

2
3

Y
1

0

GERMANY



75 

 

  

similar to each other, so this problem arises. (Marek, 2015). These issues complicate the 

choice of an appropriate λ (Gilli et al., 2010). Following three approaches are used to 

estimate the parameters of the NS model.  

(i) By finding the data set that gives the least error with OLS from a specified solution 

space,  

(ii) By choosing a fixed λ and finding the βs that minimize the error from the NS 

converted to a linear model,  

(iii)  Nonlinear methods.  

Note that the third method has problems such as getting stuck in local optima, excessive 

sensitivity to initial values, and high parameter instability, which make it difficult to 

interpret the results (León et al., 2018).  

Determining λ and β using nonlinear models may not smooth the yield curve 

appropriately (Çepni et al., 2018). In NS models, using λ as a float significantly disrupts 

the stationarity of β (Rezende & Ferreira, 2011). If λ is considered a float parameter, the 

efficiency of the fit may increase, while the efficiency of the forecast may decrease, 

leading to significant errors in forecasts (Vela, 2013). Accordingly, some researchers 

have suggested that λ be chosen as a constant parameter. According to Szenczi (2016), to 

improve forecasts, λ should be chosen as a constant, obtained using an optimization 

method that minimizes the multicollinearity between NS factors. The fit of the yield curve 

to the data should be considered. λ is optimized over the medium-term factor. Because 

this optimization choice may affect the fit error in the long and short terms, a balance 

between mid-, long-, and short-term optimization should be considered.   

Rosadi et al. (2011) state that partial or complete estimation can obtain the NS parameters. 

In partial estimation, either λ or β is taken as a constant, and β or λ is estimated. In the 

complete estimation, all parameters are estimated using sequential quadratic 

programming (SQP), the Nelder-Mead simplex method, and similar constrained 

optimization methods.   

In the two-step NS method, which can be used to determine the factors, λ is first 

calibrated. Subsequently, other factors are found. The cost of choosing the two-step 

method is minimal. The one-step NS method estimates the full maximum likelihood by 
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using a Kalman filter. Compared with the two-step method, a one-step estimation using 

the state-space structure is expected to yield better results. The two-step method with a 

calibrated λ is simple, convenient, and numerically stable. However, ignoring the 

estimation error in the first step may distort the result in the second step, resulting in 

worse optimization. However, the one-step method is mathematically and numerically 

challenging to follow, and its results are unreliable (Diebold & Rudebusch, 2013). The 

state-space approach leads to heteroskedasticity, missing data, heavy-tailed data, and 

measurement errors (Diebold et al., 2006).  

Nelson and Siegel (1987) show that finding another τ (=1/ λ) for each dataset has little 

impact on the fit and that it is better to choose one constant τ for the whole dataset. 

Rezende and Ferreira (2011) perform the optimization to find an optimal and fixed value 

of λ with the formula (3.1). 

λ̂ = 𝑎𝑟𝑔 min
λ̂ϵΩ

{
1

𝑁
∑ √

1

𝑇
∑ (y𝑡(m𝑛) − ŷ𝑡(m𝑛, 𝜆, β̂𝑡))

2𝑇
𝑡=1

𝑁
𝑛=1 }    (3.1) 

They find βs for each λ in the number sequence Ω, which are limited to the maturity range 

of the yield data using OLS. From the results, they chose the λ as λ̂ with the lowest RMSE. 

Kožíšek (2018) finds λ with an optimization problem to find  

𝜆 = max
𝜆∈[2,20]

(
1−𝑒−𝜏𝜆

𝜏𝜆
− 𝑒−𝜏𝜆)      (3.2) 

(λ =1, 1.5, 2, . . . 19.5, 20). Diebold and Li (2006) state that the curvature is maximum at 

λ = 0.0609, corresponding to 30 months. Molenaars et al. (2015) repeat Diebold-Li’s 

(2006) λ optimization. However, in the same optimization, they find the exact λ for 30 

months to be 0.0598. 

Marek (2015) finds λ in a two-step approach. In this approach, NS is considered as a 

linear equation, assuming a definite constant λ value. He weights the errors in Equation 

3.1, assuming that there is a difference between old and new observations.  
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Some researchers investigate the adverse effects of choosing a fixed λ and present their 

suggestions. According to Sambasivan and Das (2017), the fit in the NS model is not 

significantly affected by whether λ is a fixed or variable parameter. However, the yield 

curve shapes, providing an idea of the economy's future, can only be forecasted by 

estimating the exponential decay parameter (λ) that determines this shape. According to 

some researchers, Diebold-Li’s (2006) decision to take λ as a constant and remove it as a 

dynamic factor constitutes a flaw in the model. The deterioration rate, curvature peak, 

and location are determined by using λ. Taking a fixed λ eliminates the dynamics of these 

points determined by the curvature in the yield curve (He, 2013).  

Diebold and Rudebusch (2013) argue that the United States bond yields have recently 

been below zero in the short run, suggesting that it is inappropriate to set λ fixed at 0.0609 

and that a time-varying λ can be used in the model so that yield curves can capture the 

curve to fit short-term negative yields. 

Annaert et al. (2013) propose a ridge regression grid search method for finding NS 

parameters. According to this methodology, the λ with the lowest error from the solution 

space is found first. The conditions for the optimal λ are calculated. The coefficient is re-

estimated only in cases in which this condition is satisfied. As long as this condition 

persists, λ remains constant. This method, which provides flexibility to the yield curve, 

also prevents multicollinearity. León et al. (2018) reach the same conclusions using the 

same approach. They perform fitting and forecasting using a roll apply procedure. They 

state that instead of βs estimated with a fixed λ, which is not economically meaningful, 

float λ selection and β values, which can express a connection in economic indicators, 

can be estimated.  

This study calculates the level, slope, and curvature data from the yields and compares 

the findings with the Nelson–Siegel factors. In many studies, λ is taken as a fixed 

parameter, and the other factors are estimated. In this study, due to the aforementioned 

harmful properties of a fixed λ, λ is also one of the factors to be estimated where the 

following approaches are applied:  

(i)  Float λ: Determine the best-fit yield parameters within a specific range.  
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(ii)  Mean λ: Taking the mean of the λ values obtained in the first approach and 

recalculating the β values  

(iii) Median λ: Taking the median of the λ values obtained in the first approach and 

recalculating the β values  

(iv) Mean-median λ: Taking the average of the λ obtained in the second and third 

approaches and recalculating the β's.  

(v) HP Filter λ: Passing the λs obtained in the first approach through the Hodrick-Prescott 

filter and recalculating the β values. 

Accordingly, approach (i) creates a series with a standard increase between the shortest 

and most extended maturity, substitutes the values in this series for λ in the NS model, 

and finds βs using the linear regression method (Equation 3.1). It obtains more precise λ 

values by repeatedly optimizing two consecutive λ values with a slight error. The λ value 

is estimated between 0.001 and 1. For graphs of the obtained parameters, see Figure 15 

and Figure 16 show that the NS parameters fluctuate, which is not expected. This 

approach optimizes the maturity date at the calculated time without considering the 

parameters of the previous or next day. It outputs the parameters with the smallest error 

in the linear regression. In this calculation, where no error tolerance is considered, the 

lowest error is found at different points on each yield curve. These calculations cause the 

parameters to fluctuate. This complicates the estimation of the series and renders results 

useless. Thus, we use alternative approaches to calculate the parameters addressing this 

problem. In these approaches, λ is assumed to be constant or to change slowly, and βs are 

determined by the linear regression method (OLS) over these λ values.  

In approaches (ii), (iii), and (iv), we assume λ to be constant and unchanged throughout 

the series for each country. However, for the reasons mentioned earlier, λ is intended to 

be a time-varying parameter. Therefore, in approach (v), we apply a high-frequency HP 

filter to λ and take the "trend" data of the filter as λ. This approach is more in line with 

the economic and statistical foundations of the yield curve. The change in λ over time 

allows the yield curves to take different shapes and prevents excessive fluctuations in β 

that are inappropriate for the data structure.  
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      Table 2: λ Values of The (ii), (iii), and (iv) Approaches.  

 Country Mean Median (Mean+Median)/2 

CA 0.02975461  0.05250119  0.04112790 

DE 0.03133113  0.04073675  0.03603394 

FR 0.03000278  0.03403735  0.03202006 

GB 0.03586918  0.04254933  0.03920925 

IT 0.03335132  0.03752403  0.03543767 

US 0.03795422  0.05471795  0.04633609 

 

Figure 15: λ Plots of The (i) and (v) Approaches. 

 

 

 

In Figure 15, the graphs show the factors obtained using the five approaches; the level, 

slope, and curvature series are expected to be consistent.  
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Figure 16: Level-β0, Slope-β1, Curvature-β2 Plots of Canada and United States 
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In Figure 16, the series shown in red lines are the parameters obtained from the first 

approach and do not agree with the level, slope, and curvature. The averages and HP filter 

approaches significantly improve this agreement. If we compare below β0 with the level 

(30-year rates), β1 with the slope (the difference of {30 years–3 months}), and β2 with the 

curvature ({2Y-(3 months + 30 years)}), the correlation serves as another proof of this in 

Table 3. 

Table 3: Correlation of Factors with βs 

LAMBDA Level – β0 

Country CA DE FR GB IT US 

Float 0.6696592 0.8635520 0.7125214 0.9371354 0.9313586 0.9630079 

Median 0.9571195 0.9919957 0.9876571 0.9937626 0.9886598 0.9702756 

Mean 0.9875825 0.9961291 0.9900049 0.9956661 0.9913200 0.9856145 

(Median+Mean)/2 0.9777326 0.9945138 0.9889389 0.9948824  0.9901322 0.9797084 

HP Filter 0.9399208 0.9919038 0.9719311 0.9885996 0.9822358 0.2806470 

LAMBDA Slope – β1 

Country CA DE FR GB IT US 

Float 0.7952091 0.7587416 0.4470479 0.9192030 0.8346087 0.9675420 

Median 0.9827336 0.9892613 0.9803132 0.9963625 0.9624464 0.9962506 

Mean 0.9961735 0.9932542 0.9850866 0.9945922 0.9737494 0.9911767 

(Median+Mean)/2 0.9955467 0.9924974 0.9829927 0.9957891 0.9689387 0.9951961 

HP Filter 0.9567684 0.9709881 0.9404475 0.9850681 0.9562312 0.7163594 

LAMBDA Curvature - β2 

Country CA DE FR GB IT US 

Float 0.2921776 0.3441877 0.5018172 0.7935718 0.4332728 0.9253590 

Median 0.7766510 0.8185985 0.5479502 0.7864305 0.8678648 0.9140500 

Mean 0.9682878 0.9206214 0.6742652 0.8721786 0.8934716  0.9828278 

(Median+Mean)/2 0.9135332 0.8805088 0.6153583 0.8353373 0.8813163 0.9610990 

HP Filter 0.6590978 0.8056391 0.8401863 0.9524283 0.6870195 0.3127094 

The following table (See Table 4) shows the error (RMSE) measures of how well the NS 

model fits some yields according to different λ approximations. 
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Table 4: RMSE of Some Forecasted Yields with βs According to All λ Approximations 
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C
A

 

M3 0,050 0,109 0,107 0,103 0,050 

D
E

 

M3 0,070 0,117 0,093 0,103 0,068 

Y1 0,065 0,128 0,107 0,113 0,066 Y1 0,066 0,098 0,082 0,088 0,064 

Y2 0,041 0,093 0,074 0,075 0,043 Y2 0,046 0,092 0,069 0,076 0,050 

Y5 0,046 0,075 0,053 0,060 0,049 Y5 0,040 0,041 0,040 0,039 0,041 

Y10 0,048 0,080 0,083 0,073 0,069 Y10 0,057 0,043 0,068 0,052 0,061 

Y30 0,051 0,071 0,069 0,058 0,070 Y30 0,084 0,110 0,124 0,114 0,110 

Mean 0,050 0,082 0,071 0,070 0,058 Mean 0,050 0,068 0,064 0,063 0,058 

F
R

 

M3 0,096 0,121 0,120 0,120 0,091 

G
B

 

M3 0,082 0,119 0,114 0,115 0,086 

Y1 0,074 0,090 0,084 0,087 0,087 Y1 0,080 0,093 0,088 0,089 0,086 

Y2 0,046 0,095 0,094 0,093 0,065 Y2 0,058 0,121 0,125 0,121 0,069 

Y5 0,064 0,064 0,069 0,066 0,057 Y5 0,060 0,059 0,059 0,059 0,066 

Y10 0,105 0,152 0,155 0,153 0,138 Y10 0,057 0,083 0,084 0,082 0,064 

Y30 0,090 0,160 0,152 0,156 0,146 Y30 0,066 0,088 0,094 0,090 0,076 

Mean 0,080 0,105 0,104 0,104 0,096 Mean 0,058 0,079 0,078 0,077 0,067 

IT
 

M3 0,146 0,187 0,189 0,188 0,163 
U

S
 

M3 0,039 0,109 0,104 0,102 0,421 

Y1 0,108 0,127 0,126 0,126 0,119 Y1 0,039 0,105 0,084 0,089 0,699 

Y2 0,106 0,140 0,142 0,140 0,123 Y2 0,029 0,100 0,088 0,088 0,610 

Y5 0,078 0,074 0,073 0,074 0,077 Y5 0,037 0,097 0,056 0,071 0,627 

Y10 0,085 0,101 0,106 0,103 0,097 Y10 0,059 0,098 0,089 0,090 0,782 

Y30 0,072 0,097 0,094 0,095 0,092 Y30 0,029 0,130 0,070 0,090 0,938 

Mean 0,089 0,101 0,101 0,101 0,097 Mean 0,044 0,093 0,080 0,082 0,732 

As observed in the correlation and RMSE tables (See Table 3 and Table 4), taking λ as a 

constant (median, mean, or the average of these two) makes the βs in the NS model fit 

the yield curve with more error but transforms them into a better forecastable series with 

respect to the first approach. However, the HP Filter approach ensures that the fitting 

error is small, as in the case of the float λ, and produces better forecastable series, as in 

the case of constant parameters. On the other hand, these results cannot be obtained from 

the United States data. For the United States, the HP Filter causes β to be estimated with 

high deviations from the level, slope, and curvature after 2020. Prior to this period, it is 

observed that the parameters are stable without the HP filter in the first approach. For our 

forecasts, we use the HP filter approach for all countries except the United States and the 

original float λ approach for the United States. 
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3.3. DATA FRAMEWORK 

In artificial neural networks (ANNs), enhancement is achieved using big data, making 

high-frequency data to be the preferred choice. However, the feedback effect of volatility 

on the relationship between volatility and yields diminishes its effectiveness when high-

frequency data is used (Dufour et al. 2012). High-frequency yield data may introduce 

statistical problems such as time-varying volatility, conditional variance, fat tails, or 

leptokurtic unconditional distributions (Diebold & Rudebusch, 2013). In this thesis, daily 

data for the countries is considered as high-frequency data where the statistics and graphs 

demonstrate the presence of these issues, and approaches such as ANN are anticipated to 

help address these problems. 

3.3.1. Data Description and Statistics 

Descriptive statistics on data provide preliminary information on the characteristics of the 

series being studied and the selection of appropriate models. Statistical tests and 

regression analyses are considered valid when the stationarity condition is met. In time 

series, stationarity is tested using unit root tests. One of the most widely used methods for 

testing stationarity is the Augmented Dickey-Fuller (ADF) test. Table 5 and Table A.2 

present statistical information on the NS factors, level-slope-curvature components, some 

maturities of the countries, and the ACF and PACF results of their lagged values. Finally, 

Table 5 presents these series' ADF results and stationarity tests of Canada. The other 

countries’ statistics are in Table A.2 in Appendix 9. The fact that the ACF declines over 

time at lagged values, whereas the PACF decays rapidly, indicates that the series in the 

statistics contain an autoregressive structure. Germany (all maturities), France (maturities 

up to fifteen years), the United Kingdom (maturities up to eight years), Italy (maturities 

up to six years), and the United States (maturities up to three months only) have negative 

yields on the same days. According to the NS parameters, yield curves with positive and 

negative slopes are observed for each country. Moreover, the positive and negative 

curvatures indicate that the yield curves can take any shape. According to the ADF tests, 

some parameters are not stationary. 
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Table 5: Descriptive Statistics of Canada Data 

CA MEAN SD MİN MAX ACF(1) ACF(10) ACF(21) ACF(252) PACF(1) PACF(10) ADF 

M3  0,910 0,701 0,028 4,300 0,996 0,956 0,903 -0,064 0,996 -0,006 0,99 

Y1  1,131 0,782 0,120 4,600 0,997 0,963 0,920 -0,022 0,997 -0,004 0,99 

Y2  1,225 0,748 0,151 4,291 0,997 0,969 0,934 0,043 0,997 0,005 0,99 

Y5  1,548 0,723 0,308 3,856 0,997 0,969 0,938 0,179 0,997 0,009 0,96 

Y10 1,979 0,737 0,435 3,741 0,997 0,971 0,943 0,304 0,997 0,007 0,92 

Y30 2,428 0,695 0,888 4,152 0,998 0,975 0,952 0,458 0,998 0,012 0,93 

β0 2,752 0,720 1,251 4,736 0,997 0,973 0,946 0,551 0,997 -0,006 0,57 

β1 -1,908 0,961 -4,90 0,876 0,996 0,959 0,914 0,392 0,996 -0,014 0,32 

β2 -1,008 1,784 -4,14 5,333 0,996 0,961 0,916 0,258 0,996 0,000 0,90 

λ 0,053 0,054 0,010 0,229 0,999 0,987 0,969 0,047 0,999 -0,016 0,01 

Level  2,428 0,695 0,888 4,152 0,998 0,975 0,952 0,458 0,998 0,012 0,93 

Slope  1,518 0,864 -1,49 3,972 0,997 0,963 0,919 0,327 0,997 -0,012 0,63 

Curvature  -0,888 0,778 -2,09 1,689 0,997 0,975 0,949 0,328 0,997 0,002 0,51 

 

3.3.2. Data Selection 

Extending the time series to be used as input in the past provides more information from 

the series and statistical improvement of the models. (Ganguli & Dunnmon, 2017). In a 

time series, keeping the starting point constant and repeatedly making the forecast with 

each new data entry effectively processes the information provided by new data. 

However, repeating the forecasts by shifting the series starting point at each new data 

entry is preferable when comparing results.  The optimal amount of data to be used in the 

models is also related to the location and size of the data break. If this break coincides 

with the end of the data period, the search for the optimal amount of data does not yield 

reliable results (Pesaran & Pick, 2011). In this study, we determine the inputs and the 

number of inputs used in the models according to the optimization results at specific 

intervals.   

3.3.3. Data Pre-Processing 

Data preprocessing reduces noise, learns patterns, and identifies relationships by 

analyzing and transforming data (Kaastra & Boyd, 1996). Transformations stabilize the 

variance and adapt the data to a normal distribution. Logarithmic transformation, 

normalization, and scaling are applied to enhance the model's effectiveness (Lewis, 

2017b). In artificial neural networks, preprocessing of input data is essential 



85 

 

  

(Gajowniczek & Zabkowski, 2017). Scaling protects network training by preventing 

neurons from receiving excessively large or small inputs (Öztemel, 2016). Logarithmic 

transformation is an effective normalization method for positive time series (Lewis, 

2015), and is preferred in cases where variables exhibit right-skewed distributions. 

Transforming variables into proportional data reduces the number of inputs without 

affecting degrees of freedom (Kaastra & Boyd, 1996). 

Normalization standardizes the distribution. The most commonly used normal 

distribution is the Gaussian distribution, in which data standardized as 𝒩(0,1) performs 

better. This transformation is done with 𝑧𝑖 =
𝑥𝑖−𝑥̅

𝜎𝑥
  (Lewis, 2017a). For faster and more 

efficient processing of ANNs, a minimum-maximum normalization transformation can 

be preferred, where the relationship between variables is preserved, but the size of the 

variables is reduced (Li et al., 2001). For scaling bipolar data processing (𝑧𝑖 =

2𝑥𝑖−𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
) or unipolar data processing (𝑧𝑖 =

𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
) methods can be used. Data 

are converted to the [-1,1] scale with bipolar data processing and the [0,1] scale with 

unipolar data processing. Klimasauskus (1991) proposes bipolar data processing for 

prediction. 

Observations visibly separated from other observations are called outliers. Unwanted 

discrepancies in observations are referred to as noise. Noise can be caused by attributes 

that are not considered or by a recording error called teacher noise (Alpaydın, 2010). In 

this study, some of this type of noise is eliminated by smoothing the yield data. In 

addition, the choice of λ (HP Filter approach) eliminates most of the noise and outliers in 

the latent factors. Modeling the anomalies in the data reveals the effectiveness of data 

preprocessing and forecasting methods. 

For the peak curvature to be in the maturity range of the data in the yield curve, λ should 

be estimated in the range [0.001:1]. Therefore, in this study, we perform, in individual 

models, 𝑙𝑜𝑔 (
𝜆−0,001

1−𝜆
) transformation. We convert the forecasts of the new values back to 

values in the range [0.001:1] by applying reverse transformation. Figure 17 below shows 

the distribution of factors in the countries' yield curves. The λ graphs show the logarithmic 

transformation values.  
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Figure 17: Density Graphs of NS Factors 

 

 

 

 

According to the graphs presented in Figure 17, the data generally does not conform to a 

normal distribution and cannot be identified to contain outlier values. We apply the 

Shapiro-Wilk normality test to the data. In all the test results regarding the NS factors of 

the countries, the result of "p-value < 2.2e-16" is obtained implying that none of them fit 

the normal distribution.  
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Based on the optimization results, we select normal, scaled, or logarithmically 

transformed data for most ANN models. We does not apply standard distribution 

transformation, as it do not improve the forecasts. We perform scaling using unipolar data 

processing and apply only this transformation to ANN models that are not optimized 

using these three methods. 

3.3.4. Data Splits 

In the triple separation approach, observations are divided into training, validation, and 

testing, and model selection is performed according to the performance of the validation 

training. The performance of the model is tested where training and testing data 

partitioning are performed against the possibility of finding spurious correlations or 

patterns (Lewis, 2017b).   

The training set is used to optimize the weights of the ANN models. This process is called 

the goodness of fit. The larger the training set, the better the network performance (Zhang 

et al., 1998; Nam and Schafer, 1995). Using training data with large sizes and percentages 

and a delayed input can increase the predictive ability of models (Tealab et al., 2017). As 

data exploration and the number of tests increases, the model increases the probability of 

finding an optimal solution, thereby increasing the danger that the optimal solution will 

exhibit random performance. 

In separation approaches, such as k-partition cross-validation or leave-one-out methods, 

each partition (the part taken for training) obtain different sets of weights and bias values, 

so it can be a problem to determine which set is more appropriate to use. 

In this study, using the sliding window approach, we conduct a training study for a certain 

period, and select the parameters that yield the best results among the model groups and 

use in these models. We take the NS factor series in a specific window, forecast repeatedly 

on the same series as the sliding window, and compare errors with the test data to 

determine which model gave better results. This method also are used in forecasting 

studies using ensemble-learning models. In addition, we employ forecast combination 

(FC) using the models that provide the best results.  
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In this study, each series to be forecasted contains 3389 data points, the first 1000 of 

which we reserve as training data. We reserve the data between 1001 and 1070, the last 

40 of which are the forecast horizons, for daily forecasts for use in optimization. We 

repeat this process every 200 data points. We make forecasts for the following 200 data 

points using we obtain the parameters in the optimization.  

3.4. MODELLING FRAMEWORK 

There are three main uncertainties in economic models. These are the theory uncertainty 

that forms the basis of the economy, which arise with debates about which factors will 

explain an economic structure or indicator; specification uncertainty about how to model 

economic theories; and heterogeneity uncertainty; which refers to whether a model fits 

for different data (Brock et al., 2003).  

Different methods can be followed for forecasting according to the aim of the study. That 

is one-step forecasting without re-forecasting, multi-step forecasting without re-

forecasting, and multi-step forecasting with re-forecasting. Using same input, in the first 

one, every data is forecasted separately; in the second one, a data series is forecasted at 

the same time; and in the last one, the data forecast is performed step-by-step using the 

forecasted data as input again in the forecast (Namın & Namın, 2018). In iterative 

multistep forecasting, the forecast error at short horizons increases when feeding on itself 

at longer horizons. Although direct forecasting does not accumulate errors, it is deprived 

of information from observations lagged by the previous forecast horizon. This increases 

the forecast error (Taieb et al., 2012). Past data and future values are directly related to 

the multi-input, multi-output approach, and forecasts are made simultaneously, which is 

the preferred single-output approach (Sagheer et al., 2021). Short forecast horizons are 

more accurate because they use more recent information (Lewis, 2017a).  

It is supposed that yield curves are indicators that include economic, financial, political, 

and other types of information. In this case, it is not expected to be adequate to use 

information other than the information revealed by the curve as input in the forecasting 

models. For example, according to the expectations hypothesis, yield curve forecasting is 
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based on expectations of short-term returns, and the risk premium is not used as a variable 

in forecasting (Povala & Vasıl, 2017).  

As long-term economic contracts can be made based on future medium-term contract 

prices, cointegration emerges between economic medium and long maturities. Because 

yield curves are also an indicator of economic dynamics, cointegration may occur 

between maturities (Mineo et al., 2020).  This encourages the forecasting of yield curves 

with fewer parameters instead of yields. 

Once the data structure is examined, it is observed that regularity did not occur in almost 

any data; therefore, optimization in parameter selection is performed at regular intervals, 

not once. Our aim is to improve the forecasts by recalibrating a suitable model in one 

period if the goodness of the forecast deteriorates over time despite the change in the data 

structure. We determine the intervals at which the optimizations should be performed 

using the AR model. First, we perform tests on the AR(1) model using different input 

numbers. We repeat these tests for 100, 200, and 300 data points, and we determine the 

number of data points used in each data interval. With this amount of data, we forecast 

40 days for each piece of data. According to the criterion we use in the forecasts, find the 

optimization frequency with the smallest error and apply to all models.   

We use the average of the RMSE values of the validation set of all models (same model 

with different parameter sets) and their forecasts errors at a given forecast horizon to 

select parameters for a short period at fixed intervals. We find the values of the last 

forecasts of the few models that give the best RMSE values and their yields at standard 

maturities, and we calculate the area between the forecasted yield curve and the original 

yield curve. We use the parameters with the smallest area in all latent factors over a 

specific time interval, assuming that they make the best forecast. 
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3.5. PARAMETERS SELECTIONS 

Sample selection, how inputs and outputs are used in the network, the numerical 

representation method of inputs and outputs, the choice of initial values, learning and 

momentum coefficients, the period of revising the weights, the scale of inputs and 

outputs, the stopping criterion, and the topology of the network are practical in the 

performance of the network (Öztemel, 2016).  

The ML algorithm is susceptible to parameter choices. This sensitivity makes it difficult 

to make practical adjustments in the parameter selection (Hoogteijling, 2020). ANN 

researchers and practitioners try to set theoretical or experience-based rules for selecting 

parameters, such as several neurons, layers, and initial weights. However, these rules are 

subjective, and their effectiveness is debated by comparing them with approaches such as 

random selection, grid search, and stepwise increase or decrease. However, these rules 

are subjective, and their effectiveness is debated by comparing them with approaches 

such as random selection, grid search, and stepwise increase or decrease.  

In deep learning, if the number of neurons in the layer increases, the risk of overfitting 

increases, as the modeling can increase the learning of patterns and noise, not statistical 

connections. Therefore, out-of-sample forecast performance is decreased. The number of 

neurons should be increased as the number of patterns increases without reducing the 

generalization capability. The number of layers should be chosen to learn all the data 

patterns that will benefit the model's performance. As the data features become more 

complex, more hidden layers are used to utilize each level of data features in training. An 

ANN assumes that it has efficient capacity utilization, where each neuron learns a 

different feature of the inputs. The number of neurons is chosen accordingly (Lewis, 

2016). Networks with fewer neurons in more than one hidden layer may have an 

advantage over multi-neuron networks with a single hidden layer. This is because 

modeling with fewer parameters can generalize better. 

The hidden layer units determine the analyzed data's characteristics, capture the data's 

systematics, and provide a curvilinear mapping between the input and output. Cybenko 

(1989) and Hornik et al. (1989) suggest a single hidden layer for complex nonlinear data. 
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In general, one to four hidden layers are recommended (Kaastra & Boyd, 1996). Lippman 

(1987), Cybenko (1988), and Lapades and Faber (1988) show that using three or more 

hidden layers does not improve the forecast results. Trial and error are the preferred 

methods for determining the number of units (neurons) of hidden layers. It is 

recommended that this number be at least 10. Some determine this number using specific 

methods.20 Tang and Fishwick (1993) claim that the number of hidden units does not 

affect the forecast performance (Günay et al., 2007). Any proposed number standard is 

based on the researchers' experience. The best method is trial and error. However, the 

training set must be considered when selecting the number of neurons. The number of 

neurons determines the number of weights of the network, and if there is insufficient 

training set data, the problem of overfitting arises. Klimasauskas (1993) states that the 

number of hidden layer neurons should be enough to have at least five times as much 

training data as the number of weights. 

Tang and Fishwick (1993) relate the number of input units to the number of 

autoregressive (AR) terms. In contrast, Zhang et al. (1998) disagree because the MA 

model does not include AR terms. While Sharda and Potil (1992) and Tang and Fishwick 

(1993) find 12 input units for monthly data and 4 for quarterly data to be intuitively 

appropriate, Eğrioğlu et al. (2008) show that setting the number of input units of seasonal 

data equal to its period does not give good results. Lachtermacher and Fuller (1995) state 

that taking too many inputs is not good for a forecast horizon, which is 1, but it is suitable 

for a forecast horizon, which is more than one. Zhang et al. (1998) claim that parameters 

should be determined with curvilinear regression studies. 

To increase the performance, the network topology can be experimented step-by-step by 

narrowing from large to small or expanding from small to large (Öztemel, 2016). 

Goodfellow et al. (2016) state that the grid search method is used in the hyperparameter 

selection of an ANN if the number of parameters to be determined is three or fewer. 

                                                      
20 If number of inputs is n, for number of hidden units Lippman (1987) and Hecth (1990) chose 2n+1; Wong 

(1991) chose 2n; Tang and Fishwick (1993), Kong (1991) chose n/2 (Günay et al., 2007). Baily and 

Thompson (1990) suggested n.3/4; Katz (1992) suggested from n.3/2 to 3n; Ersoy (1990) suggested up to 

2n. Another criterion for choosing the number of neurons can be (number of inputs + outputs)/2 or its square 

root (Lewis, 2015). In selecting the number of neurons in single hidden layer neural networks, √(n×m) (n: 

input, m: output neurons) is one of the approaches used (named pyramid rule). Moreover, this number can 

vary between half and 2 times this formula. 
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Eklind (2020) states that although random selection facilitates the operation of the ANN, 

he could not comment on the difference with grid search. Reviewing previous studies, 

Bergstra and Bengio (2012) state that searching hyperparameters randomly yields the 

same results as a grid search, but is more efficient regarding computational cost. If a 

parameter selected in a random search fails, the failure can be eliminated immediately by 

replacing it. A grid search is reliable for parameters of low dimensionality. In a grid 

search, there is the problem of testing parameters that change is less critical than those 

whose change is necessary. Larochelle et al. (2007) train ANNs with random search in 

less time than grid search and obtain better results on most data. The fact that an ANN 

depends on hardware capacity causes a significant disadvantage in the trial-and-error 

approach. 

Another strategy to avoid getting stuck in local optima in ANNs is to choose random 

weights for the initialization. Because choosing different initial weights changes the 

results, it is preferable to run the ANNs many times with these different weights and 

average the results. However, this method does not guarantee optimal results (Szenczi, 

2016). It is recommended to randomly assign initial weights within a specific range 

(usually [-1,0.1] is preferred). It is observed that if this range is wide, the network 

continuously navigates at the local optima. In contrast, if it is narrow, it causes an increase 

in the number of iterations required to find the solution. If the learning rate 

(η), which determines the step of change of the weights, is large, the network oscillates 

around the local optima on the error surface. If it is small, the learning time increases. 

This ratio is mainly preferred in the range [0.2,0.4] (Öztemel, 2016).  

Overfitting can be prevented by using more data, stopping training after reaching the 

minimum test error or dropout, or adding a penalty term for an increased fit (Gürsakal, 

2017). Masters (1993) states that it is more appropriate to try to expand the training data 

first instead of stopping the training in case of a performance decrease in training because 

the approach of stopping the training when the error starts to increase during the training 

of ANNs focuses on the result instead of the cause, and the alternative cost is much higher. 

A new and expanded test set should also be created.   
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The training is stopped if no further improvement can be made in error owing to training 

with random weights in the ANN training. This is known as the convergence approach. 

Another approach that can be used to stop training is training-test interruption, where the 

network is tested by stopping training at specific iterations. If there is not enough 

improvement, training is resumed. However, with this approach, it is possible that the 

result may not be better if training is continued. However, the convergence approach does 

not accept the overtraining criterion. The aim is to achieve a global minimum. The 

training-test interruption approach, on the other hand, avoids overfitting by controlling 

the training by interrupting it. However, this approach has difficulty in choosing the 

number of iterations and finding the optimal training test interruption (Kaastra & Boyd, 

1996).  

According to the literature, there is no difference in the efficiency between grid search 

and random selection in parameter selection. In this study, we periodically perform 

parameter selections in many models. Random selection requires considerable attention 

and effort because it must be performed manually. In this study, it is necessary to apply 

the random selection approach many times. For this reason, we use a systematic grid 

search method to calculate the errors of the predictions based on a certain number of 

selected parameters. We use the parameter group that provides the best results according 

to the error criterion in the forecasting models until the following optimization. We do 

not use the early stopping method because it does not sufficiently benefit ANNs. The 

experiments we conduct with the data show that early stopping does not significantly 

affect the model training. Although the selected parameters cannot find a good error value 

in the training, we do not apply this approach because we try other alternatives, as 

recommended by Masters (1993). 
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CHAPTER 4: 

EMPIRICAL ANALYSES 

This section presents a comparison of the forecasting model results. The section begins 

by elaborating on the comparative framework and detailing the methodological approach, 

statistical parameters, and analytical procedures for the evaluation. We utilize a total of 

62 distinct models. A few of them are identical and differ only in their epoch or iteration 

counts. Owing to the large number of models, there are many results when comparing NS 

factors and yield curves, as well as many forecast graphs. Given the constraints of this 

study, a comprehensive display of all the models is not feasible. Instead, the analysis 

proceeds in two phases. The first phase involves individually examining approaches, such 

as evaluating all FFNNs. The second phase entails a comparative assessment of the most 

influential models identified using the different approaches. The RW model serves as a 

benchmark in various assessment procedures. 

4.1. EVALUATION METHODS 

RMSE is considered suitable for evaluating the fit of the NS model (Szenczi, 2016). This 

metric, commonly employed in yield curve forecasting models, exhibits sensitivity to data 

levels (Reinicke, 2019). As an absolute measure of errors and a second-order loss 

function, the RMSE requires model errors to conform to the Gaussian distribution to 

effectively compare the model performance. Furthermore, when comparing models, it is 

crucial to assess how the distribution changes based on the forecast horizon (Szenczi, 

2016). The RMSE is not affected by the number of forecasts, making it suitable for model 

comparison (Hyndman and Koehler, 2006). In this study, we compute along with RMSE, 

other error measures such as MAE, MASE, and SMAPE for the forecast outcomes. 

𝑅𝑀𝑆𝐸 (Root Mean Squared Error) = √
1

𝑛
∑ (𝑥𝑡 − 𝑥̂𝑡)2
𝑛
𝑡=1     (4.1) 

𝑀𝐴𝐸 (Mean Absolute Error) =
1

𝑛𝑡𝑒𝑠𝑡
∑ |𝑥𝑡 − 𝑥̂𝑡|
𝑛𝑡𝑒𝑠𝑡
𝑡=1                      (4.2) 

𝑀𝐴𝑃𝐸 (Mean absolute percentage error) =
100

𝑛𝑡𝑒𝑠𝑡
∑ |

𝑥𝑡−𝑥̂𝑡

𝑥𝑡
|𝑛𝑡𝑒𝑠𝑡

𝑡=1          (4.3) 
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𝑆𝑀𝐴𝑃𝐸  (Symmetric MAPE) = 200 ×
1

𝑛𝑡𝑒𝑠𝑡
∑

|𝑥𝑡−𝑥̂𝑡|

|𝑥𝑡|+|𝑥̂𝑡|
𝑛𝑡𝑒𝑠𝑡
𝑡=1      (4.4) 

𝑀𝐴𝑆𝐸 (Mean Absolute Scaled Error) =
1

𝑛𝑡𝑒𝑠𝑡
∑ |

𝑥𝑡−𝑥̂𝑡
1

𝑛−1
∑ |𝑥𝑡−𝑥𝑡−𝑚|
𝑛
𝑖=𝑚+1

|𝑛𝑡𝑒𝑠𝑡
𝑡=1   (4.5) 

MASE measures performance relative to the naive forecast. M is period value in seasonal 

series; in non-seasonal series, it is “1”. The MAPE measure is skewed to the right because 

of extreme outliers, which can yield misleading comparison results (Gajowniczek and 

Zabkowski, 2017). Consequently, we do not use the MAPE measure. We opt for SMAPE, 

a metric that assesses relative errors, to examine percentage discrepancies among time 

series with different absolute values (Grmanová et al., 2016). 

Evaluating model effectiveness across all models relies on total error measurements. If 

we express 𝑦𝑡+ℎ(𝑚𝑖) as data of the entire yield curve at horizon h and a yield curve as 

𝑥𝑡 = 𝑦𝑡+ℎ(𝑚𝑖), using the RMSE criterion, we convert the entire model's error into a 

single value. Merging all maturities into a single series to compute an error is not 

exclusive to RMSE. We also use this consolidation approach for other assessment 

metrics. 

We further evaluate the magnitude of the area between the forecasted and actual yield 

curves as an additional error metric. A smaller area indicates a closer alignment between 

the forecasted yield curves derived from the NS factor forecasts and actual curves. This 

measurement can be interpreted as an indicator of a model's forecasting effectiveness and 

overall predictive capability. The area calculation depicted in Figure 18 serves multiple 

purposes. It is used to identify the optimal optimization frequency, establish the parameter 

sets for model implementation, and evaluate the effectiveness of the forecasts. 
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Figure 18: Area Between The Actual and Forecasted Yield Curves 

 

The computation of the area involves summing the basic geometric shapes found between 

the actual and forecasted yields at the standard maturities depicted in the graph. Appendix 

8 contains the code used for area calculation. 

Hypothesis tests are utilized to examine the data structure and establish statistical 

differences in forecast errors. Hypothesis rejection occurs when the probability associated 

with the calculated statistical value in the test is exceptionally low. In the case of VAR(1) 

models, a causality test is implemented; in the Granger causality test, H0 defines that there 

is no causality and H0 is rejected when p<pcritical. However, in the opposite case, it is not 

possible to definitively state "There is causality". These tests are inadequate for 

examining nonlinear associations. As demonstrated in Appendix 9, the Granger Causality 

Test results reveal that causality is not universally applicable among the factors utilized 

as inputs in VAR(1) models. This may account for the inefficiency of the forecasts 

generated by the VAR(1) model. 

When implementing these statistical analyses, we apply the t-test, Wilcoxon, and 

Diebold-Mariano (1995) tests to examine the forecast errors associated with NS factors 

in yield curves. We undergo each model's individual comparisons with the RW using 

these analytical methods. The t-test tests whether the valid sample and population means 

are different. The test explores the impact of random variation by explicitly focusing on 

sampling errors. When the test statistic exceeds the critical value (t>tcritical), it indicates a 

statistically significant difference between the means that cannot be attributed to chance 

alone (Ghatak, 2017). 
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The Wilcoxon signed-rank test is a nonparametric test that checks whether the error of 

the best model is statistically lower than that of other models. This test is more appropriate 

when forecast errors are not normally distributed (Grmanová et al., 2016). The Wilcoxon 

test statistically tests the difference between the performances of the two models. Let A 

and B be two models.   

Wilcoxon test: 𝑊+ = ∑ 𝐼(𝑢𝑖 > 0)𝑅𝑎𝑛𝑘(|𝑢𝑖|)
𝑀
𝑖=1           (4.6) 

ui = SMAPEB(i) − SMAPEA(i)            (4.7) 

M is the number of observations or forecasts, and I is the indicator (sign) function 

(Andrawis et al., 2011). 

The Diebold-Mariano (DM) test statistic tests the hypothesis that there is a statistical 

difference between the forecast errors of the two models (Castellani and Santo, 2006).  

Diebold-Mariano test: 

𝐷𝑀 =
𝑑̅

√2𝜋𝑓̂𝑑(0)
𝑛

            (4.8) 

d(t) = g(e1t) - g(e2t)        (4.9) 

g(t) is a loss function (exponential, logarithmic, quadratic, etc.). e1t and e2t are forecast 

errors of the models. 𝑓𝑑(0) =
1

2𝜋
∑ 𝛾𝑑(𝑘)
∞
𝑘=−∞  is spectral density estimate at the zero 

point. γ is autocovariance and k is a lag step. The test statistic (DM) has a standard normal 

distribution; 𝐷𝑀~𝒩(0,1). If the p-value is large, no difference is concluded (Eğrioğlu 

& Baş, 2020). Forecast errors can be subject to asymmetric penalties. The DM test 

indicates that the covariance of the differences between the losses of the models must be 

stationary for the two models to be considered the same (Szenczi, 2016). The loss function 

does not necessarily need to be symmetric or quadratic. Correlations may exist among 

forecast errors, and their means may deviate from zero. Additionally, the error distribution 

may not adhere to a Gaussian distribution. 

Algorithms that model time series should be able to predict patterns outside the data time 

interval and find a statistical confidence interval in predictions. Many ANN methods can 
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only be effective in the time interval of the training data, and even if a confidence interval 

is desired, they cannot withstand a statistical distribution and will not be reliable.  

In this study, we forecast NS factors as a univariate time series, except for the VAR(1) 

model (all used as input). We forecast using the sliding window method at a daily 

frequency of 2279 (2239 in FC versions 2 and 3). The forecast horizon is 40 days and 

there are 12 forecasting periods. Forecasts have three dimensions: day, forecast horizon 

and yields of standard maturities in forecasted yield curves. We calculate three types of 

errors in this study. First, we obtain individual RMSE error values using the NS factor 

forecasts. In the calculation made with data in the forecast horizon, which is the interval 

from 1 to i (i=1,…,40), for each day, we create RMSE matrices of size 40 × 2279 (40 × 

2239 in FC versions 2 and 3).  

Second, we calculate the area error of the yield curves obtained from the factor forecasts 

for each day and forecast horizon. For the calculation, we create an area matrix of size 40 

× 2279 (40 × 2239 in FC versions 2 and 3). Third, we calculate the absolute errors and 

RMSE values of the standard maturity yields obtained from the factor forecasts for the 

entire forecast horizon, day, or all for each forecast horizon, and forecasting period. We 

also calculate the MAE, SMAPE, and MASE for all these yields for each forecast horizon. 

In the calculation, we create an error matrix of size 1x2279 (1x2239 in FC versions 2 and 

3) for the daily dimension, 40x1 for all of them for each forecast horizon, and 40x12 for 

each forecasting period and each forecast horizon.  

Figure 19 represents any model's factor forecasts or yield curve (𝑦̂𝑖,ℎ is series of yield 

curve forecasts of the ith day in the hth horizon).  

Figure 19: Forecasted Yields Matrix 

𝑦̂1,1 𝑦̂1,2 ⋯ ⋯ 𝑦̂1,200 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝑦̂1,2279
𝑦̂2,1 𝑦̂2,2 ⋯ ⋯ 𝑦̂2,200 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝑦̂2,2279
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
𝑦̂ℎ,1 𝑦̂ℎ,2 ⋯ ⋯ 𝑦̂ℎ,200 ⋯ 𝑦̂ℎ,𝑘 ⋯ ⋯ ⋯ ⋯ 𝑦̂ℎ,2279
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑦̂40,1 𝑦̂40,2 ⋯ ⋯ 𝑦̂40,200 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝑦̂40,2279

 

              j=1                        j=12 
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For factors, we calculate the RMSE value for the forecast horizon and forecasting period 

(of 40x12 size) and daily (of 2279 or 2239 size). For yield curves, we calculate the 

absolute error for the forecast horizon and forecasting period (of 40x12 size) and only 

daily (2279 or 2239 size). Besides, we calculate the error measures only according to the 

forecast horizon (of 40x1 size). We compare and test these matrices and series obtained 

from the models with those of the RW model. Thus, we investigate the effectiveness of 

the models in terms of the forecast horizon, forecasting period, etc. In comparisons made 

with the RW model, we take those whose error is lower than RW as "1" and those whose 

error is higher as "0”. Thus, we find that the number of days, yield curves, forecast 

horizons, and forecasting periods result in less error than RW. We also test the hypotheses 

regarding whether the models provide better results than RW with 95% confidence 

intervals. We design the following hypotheses:  

H0: RWAREA ≤ MODELAREA.  

H1: RWAREA > MODELAREA.  

The hypothesis is tested using t-test, Wilcoxon, and DM tests.  

 

H0: RWRMSE ≤ MODELRMSE.  

H1: RWRMSE > MODELRMSE.  

The hypothesis is tested using t-tests and Wilcoxon tests.  

 

H0: RWMAE ≤ MODELMAE.  

H1: RWMAE > MODELMAE.  

We test this hypothesis using t-test, Wilcoxon, and DM tests. In these tests, if the error is 

lower than that of RW, we write "1" (i.e., acceptance of H0) and "0” vice versa, where we 

calculate the number of better forecasts. 

4.2. PARAMETER OPTIMIZATION 

Structural changes in time-series data can increase the model fit and forecast errors if the 

model parameters remain static. ARIMA techniques model time series by analyzing 

temporal variations. Thus, utilizing the AR(1) model is the most basic method for 

identifying intervals in which parameter adjustments should be implemented. 
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Forecasts are generally anticipated to be more accurate for shorter horizons. However, it 

is undesirable for models to exhibit substantial increases in error as the forecast horizon 

increases. Specific parameter configurations may sometimes yield favorable outcomes 

for near-term forecasts but show significant error growth over longer horizons. 

Conversely, other parameter sets may produce consistent error levels across all the 

forecast periods. The equal-weighted error criterion is inappropriate for eliminating some 

parameter sets with reasonable early forecasts if they can have worse late forecasts. In 

contrast, the other parameter sets that start the forecast horizon by worse forecasting have 

reasonably forecasts. Therefore, we select parameters with relatively good initial 

forecasts that do not introduce an overestimation error as the forecast horizon lengthens. 

Rather than employing uniform weights for parameter selection, we implement a 

weighted sum that diminishes as the forecast horizon increases. The weight is set at 1 for 

a one-day forecast horizon and systematically decreases arithmetically to 0.25 for a 40-

day forecast horizon. We apply this weighting scheme exclusively during parameter 

selection. When comparing model forecasts, we revert to using equal weights. 

We followed the same practice in the test set to determine the models' optimization 

frequency and parameter sets. Each country has 3389 data. We reserve the first 1000 data 

for the first optimization. To determine the number of inputs, we create parameter sets 

with 200, 400, 600, 800, and 1000 alternative numbers of input data and other parameters, 

with the last data set being the 1000th data. We use a multistep method to estimate each 

NS factor with these parameter sets at the 40-day forecast horizons (between 1001 and 

1040). We repeat these forecasts five more times for every six data points in the test data. 

We determine the RMSE values of the 40-day forecasts of each parameter set on each 

forecast day and average them. Depending on the number of parameter sets, we find the 

yield curves and their weighted-area error measures from the last day's forecasts only, 

using the first few parameter sets that provide the lowest average RMSE for each forecast. 

We use the parameter sets of the NS factors with the lowest weighted area error as the 

input to forecast the following data until optimization. We repeat these practices in 

subsequent optimizations. Some models are inherently inaccurate regarding parameter 

sets, and we exclude these sets from the alternatives.  If the chosen optimal parameter set 

fails when we use it for forecasting the series, we use the next-best alternative parameter 

set that does not fail. 
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We find the AR(1) model forecasts of the NS factors for 100, 200, and 300 data points 

with inputs between 200 and 1000 to determine the optimization frequency. We obtain 

the yield curves from these univariate series forecasts using the NS formula. We find the 

weighted sum of the areas between the forecasted and actual yield curves over the forecast 

horizon. We forecast the model over the forecasting period using the number of inputs 

with the smallest total error. We then compare the area between the actual and forecasted 

curves to find the optimization frequency that gives the best results and obtain averaging 

tables (See Appendix 10). For each country, we calculate the average area for each 

forecast horizon. Although the results are very close, optimization at a frequency of 200 

data points yields the least error at almost all horizons in Great Britain, short and medium 

horizons in Canada, medium and long horizons in Germany, and short horizons in France 

and the United States. Therefore, we optimize every 200 data points in this study. We 

repeat the optimization process for every 200 data points, starting from the 1000th data 

point. Using the parameters obtained in the optimization, we forecast the following 200 

data points. The training, testing, and forecast phases of each series involved 12 iterations. 

Table 6 presents the designated models, inputs, and parameter sets to be implemented in 

this study. 
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Table 6: Considered Models, Inputs, and Parameter Sets 

(a) Conventional Models 

 

 

 

 

 

 
  

MODEL INPUT INPUT PARAMETERS OPTIMIZATION 
OPTIMIZATION PARAMETERS 

(Alternatives) 
C

O
N

V
E

N
T

IO
N

A
L

 M
O

D
E

L
S

 

Auto ARIMA (AA), AR(1), 

ARFIMA
Univariate TS NS Parameters (Individually) Number of inputs 200,400,600,800,1000 

ARIMA (p,d,q) Univariate TS NS Parameters (Individually) 

Number of inputs 200,400,600,800,1000 

p,q 0,1,2 

D 0,1 

ETS-TBATS Univariate TS NS Parameters (Individually) 

Number of inputs 200,400,600,800,1000 

Model ETS, TBATS 

Lambda "auto", "NULL" 

LLAR-LSTAR-SETAR Univariate TS NS Parameters (Individually) 

Number of inputs 200,400,600,800,1000 

M (embedding dimension) 2,4,10 

eps (neighborhood size)  1,2,4,10,20 

delay (Time Delay) 0,1 

TAR Univariate TS NS Parameters (Individually) 

Number of inputs 200,400,600,800,1000 

p1, p2 (AR order of the 

lower-upper regime) 
1,2 

RW Univariate TS NS Parameters (Individually)     

VAR(1) Multivariate TS NS Parameters of country Number of inputs 200,400,600,800,1000 
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(b) Non-Conventional Models 

 MODEL INPUT INPUT PARAMETERS OPTIMIZATION 
OPTIMIZATION PARAMETERS 

(Alternatives) 

N
O

N
-C

O
N

V
E

N
T

IO
N

A
L

 M
O

D
E

L
S

 

kNN Univariate TS NS Parameters (Individually) 

Number of inputs 200,400,600,800,1000 

Lag number of inputs 2,3,4,5,10,20,40 

a string "median," "weighted," "mean." 

ELM-ELM-A Univariate TS 

NS Parameters (Individually) Number of inputs 200,400,600,800,1000 

ELM:5, ELM-A: 40 (Number of 

networks to train) 

Number of hidden nodes 10,20,50,80, ”NULL” 

scaled data original, [0,1] scaled 

ENN-ENN-A /JNN-JNN-A / 

MLP-MLP-A

Lagged variables 

of univariate TS 
NS Parameters (Individually) 

Number of inputs 200,400,600,800,1000 

Lag number of inputs 2,4,10,20 

Maximum of 

iterations to learn 

ENN-JNN-MLP:1000;                                    

ENN-A-JNN-A-MLP-A:5000 

Number of hidden nodes 

and layers 

first layer: 4,8,20;                                 

second layer: 0,4,8,20  (not for JNN, 

JNN-A) 

parameters for the learning 

function 
.001,.005,.01,.05,.1 

scaled data original, [0,1] scaled, normalization 

NNET-NNET-A

Lagged variables 

of univariate TS 
NS Parameters (Individually) 

Number of inputs 200,400,600,800,1000 

Lag number of inputs 2,4,10,20 

Maximum of 

iterations to learn 
NNET:5000; NNET-A:20000 

Number of hidden nodes 

and layers 
4,8,20 

parameter for weight decay 0, 0.000001 

RNN-RNN-A /LSTM / GRU

Lagged variables 

of univariate TS 
NS Parameters (Individually) 

Number of inputs 200,400,600,800,1000 

Lag number of inputs 4,10,20 

Number of 

iterations 

RNN:80; RNN-A:300;  

LSTM-GRU:50 

Number of hidden nodes 

and layers 

first layer: 4,8,20;                           

second layer: 4,8,20  (not for LSTM, 

GRU) 

learning rate to be applied 

for weight iteration  
.001,.005,.01,.025,.05 
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NNETAR-NNETAR-A

Lagged variables 

of univariate TS 
NS Parameters (Individually) 

Number of inputs 200,400,600,800,1000 

Lag number of inputs 2,4,10,20 

Number of hidden nodes 4,8,20 

number of 

networks to fit 

with different 

random starting 

weights 

NNETAR:20; NNETAR-A:50 

parameter for weight decay .001,.005,.01,.05,.1 

scaled data original, [0,1] scaled, normalization 

Lambda "auto", "NULL" 

GRNN-GRNNTSF
Lagged variables 

of univariate TS 
NS Parameters (Individually) 

Number of inputs 200,400,600,800,1000 

Lag number of inputs 2,4,10,20 

scaled data original, [0,1] scaled, normalization 

sigma (smooth function 

scalar) 
.01,.05,.1,.5,.1,2,3,4 

GMDH
Lagged variables 

of univariate TS 
NS Parameters (Individually) 

Number of inputs 200,400,600,800,1000 

Lag number of inputs 2,4,10,20 

scaled data original, [0,1] scaled, normalization 

Number of hidden layers 1,2,3 

NNETTS Univariate TS NS Parameters (Individually) 

Number of inputs 200,400,600,800,1000 

scaled data original, [0,1] scaled, normalization 

Number of hidden nodes 4,8,20 

embedding dimension 2,4,10,20 

thDelay (Time Delay) 0,1,5 

forecasting steps 0,1,5 
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(c) Ensemble Learning Models 

 MODEL INPUT INPUT PARAMETERS OPTIMIZATION 
OPTIMIZATION PARAMETERS 

(Alternatives) 
E

N
S

E
M

B
L

E
 

L
E

A
R

N
IN

G
 

BAGGING  

(forecast package). 
Univariate TS NS Parameters (Individually) 

Number of inputs 200,400,600,800,1000 

Function ETS- AUTO ARIMA 

RANDOM FOREST 

MODELS  

(randomForest packages)

Lagged variables of univariate 

TS 
NS Parameters (Individually) Number of inputs 200,400,600,800,1000 

Output and residuals of AR(1) 

model 
  

Forecast trend by AR(p) 

Number of trees 500,5000 

Trend and cycle of HP filter P 1,2,3 

XGB (forecastxgb package) Univariate TS NS Parameters (Individually) Number of inputs 200,400,600,800,1000 

 

(d) Forecast Combination Models 

 MODEL INPUT INPUT PARAMETERS 
OPTIMIZATI

ON 

OPTIMIZATION 

PARAMETERS 

(Alternatives) 

OUTPUT 

F
O

R
E

C
A

S
T

 C
O

M
B

IN
A

T
IO

N
 FORECAST 

COMBINATION 

(forecastComb 

package) –  

Version 1. 

Univariate TS NS Parameters (Individually) Optimization: 

Parameters are 

selected from 

individual 

models results 

(13 models’ 

fitted and 

forecasts). 

All models are recalculated using 

1000-day data, but parameters are 

taken from individual model 

optimizations. The best-

performing individual model 

alternatives in parentheses are 

used in forecast combining.  

1) SA, 2) 

CLS, 3) 

EIG1, 4) 

EIG2, 5) 

EIG3, 6) 

InvW, 7) 

MED, 8) TA, 

9) WA * 

Fitted values of 

individual 

models 

Individual Models: 1) ARIMA (ARIMA, AUTO 

ARIMA, ARFIMA, AR(1)), 2) ETS (ETS, TBATS), 3) 

ELM (ELM, ELM-A), 4) ENN (ENN, ENN-A), 5) JNN 

(JNN, JNN-A), 6) GRNN, 7) MLP (MLP, MLP-A), 8) 

NNET, 9) NNETAR (NNETAR, NNETAR-A), 10) 

RNN (RNN, RNNA), 11) RW, 12) TAR, 13) VAR.

FORECAST 

COMBINATION 

(forecastComb 

package) –  

Version 2. 

Univariate TS NS Parameters (Individually) 

Models are 

selected from 

individual 

models results  

  

The best-performing individual 

model alternatives in parentheses 

are used in forecast combining.  

1) BG**, 2) 

CLS, 3) 

InvW, 4) 

MED, 5) TA, 
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Forecasts of 

individual 

models

1) ARIMA (ARIMA, AUTO ARIMA, ARFIMA, 

AR(1)), 2) ETS (ETS, TBATS), 3) ELM (ELM, ELM-

A), 4) ENN (ENN, ENN-A), 5) JNN (JNN, JNN-A), 6) 

GRNN, 7) MLP (MLP, MLP-A), 8) NNET, 9) 

NNETAR (NNETAR, NNETAR-A), 10) RNN (RNN, 

RNNA), 11) RW, 12) TAR, 13) VAR.

6) WA, 7) 

SA 

FORECAST 

COMBINATION 

(forecastComb 

package) –  

Version 3.

Univariate TS NS Parameters (Individually) Models are 

selected from 

individual 

models results  

  

The best performing of the 

individual model alternatives in 

parentheses are used in forecast 

combining   

1) BG, 2) 

CLS, 3) 

InvW, 4) 

MED, 5) SA, 

6) TA, 7) 

WA 

Forecasts of 

individual 

models

Individual Models: 1) ARIMA (ARIMA, AUTO 

ARIMA, ARFIMA, AR(1)), 2) ETS (ETS, TBATS), 3) 

ELM (ELM, ELM-A), 4) ENN (ENN, ENN-A), 5) RW, 

6) NNET OR NNETAR (NNETAR, NNETAR-A), 

FORECAST 

COMBINATION 

(forecast package) 

– Version 4.  

Univariate TS NS Parameters (Individually) 
Number of 

inputs 
200,400,600,800,1000 

 

Models 

AUTO.ARIMA, ETS, THETAM (Theta method 

model), NNETAR, STLM (Seasonal Decomposition of 

Time Series by Loess), TBATS. 

Weights 
"equal", "insample.errors", 

"cv.errors" 

BOOSTING  

(mboost package). 

Univariate TS NS Parameters (Individually) 
Number of 

inputs 
200,400,600,800,1000 

Fitted values of 

individual 

models 

AR(1), ETS, TBATS, RW, ELM, NNETAR Model 
glmboots, gamboost, mboost, 

blackboost 

RANDOM 

FOREST 

MODELS  

(randomForest 

packages)
 

 

Univariate TS NS Parameters (Individually) 
Number of 

inputs 
200,400,600,800,1000 

Two models: 

randomFores

t, cforest 

Fitted values of 

individual 

models for 

«cforest» and 

«ramdomForest» 

AR(1), ETS, TBATS, RW, ELM, NNETAR number of trees 500,5000 ( for randomForest) 

*SA: Simple Avarage, CLS: Constrained Least Squares, EIG1: Standard Eigenvector, EIG2: Bias-Corrected Eigenvector, EIG3: Trimmed Eigenvector, InvW: Inverse 

Rank, MED: Median, OLS: Ordinary Least Squares, TA: Trimmed Mean, WA: Winsorized Mean 

* BG: Bates/Granger (1969) 

Note: “…-A” means alternative number of networks to train/epoch/iteration/… etc. in Model-A
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4.3. RESULTS 

In this study, we first employ Conventional Models because of the abovementioned 

advantages. Although Diebold-Li (2006) takes "p" as 1 in AR(p) model, we also consider 

other alternatives of Box-Jenkis approaches to forecasting models, taking the possibility 

that changing this parameter may improve the forecasts in some cases into account. With 

the "auto.Arima" function, the parameters "p,d,q" are determined freely each time, 

whereas with the ARIMA(p,d,q) model, we determine the parameters by optimizing. We 

also apply the ARFIMA model if the factors have a long-run structure.  

Unlike most studies in the regarding literature, in this thesis, instead of the yields 

themselves, we accept the NS factors, which are shown to be related to macroeconomic 

parameters in the economics literature, as inputs in RW, and we calculate yields from the 

forecasts of these factors with the NS model.  

Once we examine the error graphs and values21, we observe that the Auto ARIMA model 

generally forecasts better than the other Box-Jenkins approaches. On the other hand, the 

ARIMA and ARFIMA models have high forecasting errors. Auto ARIMA produces 

much higher error forecasts on some days especially as the forecast horizon increases. 

We understand that these highly erroneous forecasts are due to the inability to make 

effective forecasts for one of the β factors in some optimizations. For example, the 

forecast errors of β2 in Canada, β0 in France, and β1 in Great Britain are high on certain 

days. AR(1) has less error in βs; however, we generally forecast the yield curve more 

effectively with Auto ARIMA in terms of area and tests. VAR(1) has more errors and 

extreme results than the Box–Jenkins approach. The model exhibits extreme errors, 

particularly as the forecast horizon increases.      

In general, the TAR model is more effective22. This is because of the extreme errors that 

other threshold models occasionally made in the β0 forecast. The TAR model is more 

                                                      
21 For the sake of brevity we do not include these results here/in this thesis. Data includes four latent factors 

for each six country. 24 series must be forecasted by every model. All series have error matrices have 

dimension 40 x 2279. In addition, yield curve have matris too. Also, graphs of these matrices and test result 

are produced. Showing these result in this thesis would be problematic. 
22 For the sake of brevity we do not include these results here/in this thesis. 



108 

 

  

  

stable and has fewer errors. In contrast, the other threshold models show an exponential 

increase in error as the forecast horizon lengthens, significantly deteriorating their 

efficiency.   

Using the ETS-TBATS exponential smoothing method, we produce the best forecasts 

with no extreme errors compared with RW23. In conventional models, ETS-TBATS 

methods, which provide good whole yield curve forecasts, and RW can generally obtain 

better results than the Box-Jenkins approach, but vice versa for βs.  

The non-conventional models employed are kNN, feed-forward (FFNN), and feed-back 

(RNN) models. The kNN model yields results with increasing errors as the forecast 

horizon increases24. In ANN models, because of the time-consuming nature of 

optimization, in some models, the parameters to be used, which are found through 

optimization, remain constant. We make alternative forecasts using the same parameters 

and more epochs/iterations. Thus, we observe whether forecasts improve as the number 

of cycles increases.  

FFNN models, including EML, ELMA, GMDH, GRNN, MLP, MLP-A, NNET, and 

NNET-A, are compared25. ELM models produce stable and good (low error) forecasts 

over the entire series. The fact that the GMDH has a considerable number of extreme 

forecasting errors, significantly as the forecast horizon increases, and that the MLP model 

errors increase regionally (in some forecasting periods) across all forecast horizons, 

significantly reduces the overall forecasting efficiency of these models. NNET models 

and GRNN (except Italy) locally have error increases for some factors and yield curve. 

When the test results are compared with RW, the ELM and GRNN models are more 

efficient.  

We compare FFNN models with time-series algorithms in terms of their functions26. 

NNETAR models are generally the models with the least error and have the least error 

for most days. They have better results in the tests, except for some parts of some factors 

                                                      
23 For the sake of brevity we do not include these results here/in this thesis. 
24 For the sake of brevity we do not include these results here/in this thesis. 
25 For the sake of brevity we do not include these results here/in this thesis. 
26 For the sake of brevity we do not include these all results here/in this thesis. 
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in terms of the factor basis and area criterion. The NNETTS model occasionally produces 

extreme errors. In addition, this model has a relatively high error rate in all forecast 

horizons. The GRNNTSF model has relatively high forecast errors for all the forecast 

horizons. These errors increase as the forecast horizon increases. NNETAR models stand 

out in the tests against the RW model's forecast results and overall error measure.  

When we analyze recurrent models27, RNN, RNN-A, GRU, and LSTM models have more 

errors than ENN, ENN-A, JNN, and JNN-A regarding factors and yield curves in general 

and all forecast horizons. The JNN and JNN-A models exhibit high errors in some 

regions. We believe this is because the input parameters obtained due to optimization in 

that historical interval worsen the forecasts.  

In Ensemble Learning (EL) models, we use NS factors as univariate inputs for Bagging 

and Extreme Gradient Boosting (XGB) models, whereas their lagged values are inputs in 

the RF model. We examine EL approaches that use individual models as inputs in the 

forecast combination approach. In the RF model with the AR(1) model, we formulate the 

fitted values and residual values found by using the AR(1) model from the NS factors as 

input and output and use the AR(1) forecasts as new inputs. In the RF model with the 

Hodrick Prescott (HP) filter28, we formulate trend and cycle values found with the HP 

filter as input and output and use AR(1) forecasts of trend values as new inputs. The 

models in this group generally produce stable forecasts without extreme errors. Therefore, 

we can say that it generally yields better results than the individual models. Canada, 

Germany, France, and the United States’s bagging models agree with this approach. 

Regarding the area error measure, Great Britain and Italy’s bagging models outperform 

the RW model in the mid- and long-forecast horizons. Individually, βs have a weaker 

forecast performance. 

Forecast combinations are created using five different approaches29. By “Version”s we 

mean forecast combinations made with different inputs. We give all versions we 

employed and their inputs, parameters, and models, in Table 6. In Version 1, the SA 

                                                      
27 For the sake of brevity we do not include these results here/in this thesis. 
28 We use HP filter for factors in this model. 
29 For the sake of brevity we do not include these all results here/in this thesis. 
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model has high errors looking at the overall forecasts for all forecast horizons. The EIG3 

and EIG4 models made exact forecasts as RW. The EIG1 and EIG2 models generally 

produce extreme local errors. Thus, the CLS model is superior. The errors in the other 

models are slightly higher. When we compare the RMSE measure calculated for each 

forecasting period with that of the RW model in β factors and area measure, we obtain 

the best results by the CLS model and the WA and MED models in λ. In Appendix 11, 

Table A.4.(a) shows the models with the best test results for area criteria. In the DM test, 

the CLS model outperforms the daily forecast horizon and forecasting period. The INVW 

model outperforms the forecasting period. In the t-test and Wilcoxon test, the INVW, SA, 

TA, and WA models yield satisfactory results. In the FC derived from the fit values of 

the models, the problem of model error trade-off in the forecast error can be an essential 

factor. The model error should not be small and the forecast error should be significant. 

However, a significant model error is undesirable, even if the forecast error is small. This 

suggested that these models are not dominant in the data, and their forecasts are unreliable 

(Szenczi, 2016).  

In Version 2, the first striking result of the approach is that the forecasts of the factors 

outperform the RW model at short forecast horizons30. Even if SA makes extreme error 

forecasts, unlike the first approach, SA is not always the worst model for forecasting β 

factors. However, in contrast to the first approach, the forecast errors of CLS are higher. 

Regarding the factor and yield curve forecasts, we can say that the MED model generally 

yields better results at short and medium forecast horizons and the BG model at long 

horizons. The INVW model is better for Great Britain and Italy in the medium- and long-

run. Despite these promising results, the INVW and BG models also produce extreme 

forecast errors. The tests for the area criteria are presented in Table A.4.(b) (See Appendix 

11). Although the MED model is superior in the DM tests, SA is prominent in the other 

tests.  

In version 3, we remove models that produce extreme errors, such as RNN. Although this 

choice makes forecasts more stable in terms of errors, the efficiency of the forecasts is 

reduced31. Because there are no model which has extreme errors in this approach, the 

                                                      
30 For the sake of brevity we do not include these results here/in this thesis. 
31 For the sake of brevity we do not include these all results here/in this thesis. 
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results of the models are closer. This approach is superior to RW, particularly for short 

and medium forecast horizons. Again, SA is not always the model with the worst results 

in forecasting β factors. The CLS model produces more errors than the other models do. 

Regarding the factor and yield curve forecasts, we can say that the MED model generally 

yields better results at short forecast horizons. The MED and BG models provide better 

results for medium and long forecast horizons. The INVW model is occasionally better 

for medium and long forecast horizons. The results of the tests are presented in Table 

A.4.(c) (See Appendix 11). The superiority of the BG and SA models comes to the fore 

in the tests. 

FC Version 4 provides promising results in tests against the forecast results of the RW 

model. The Canada, Germany, and France’s models outperform the RW model in 

forecasting periods and daily tests (ttest, wtest, and DM) (See Table 7). 

FC Version 5 uses the EL method for forecasting32. In the Boosting, Conditional RF, and 

RF models, we re-forecast with individual models: AR (1), ETS, TBATS, RW, ELM, and 

NNETAR, and calculate the fitted values. We use fitted values as input and forecast by 

using the forecast value of the individual models as a new input. In the boosting model, 

we use gradient boosting with regression trees, gradient boosting for additive models, and 

gradient boosting with component-wise linear model approaches in the optimizations and 

choose according to the results. We can see that the boost model errors are higher than 

those of the others. We also observe that approaches that use the fitted values of individual 

models as input generally yield the worst results.  

FC versions 3, 4, and 5 generally produce stable forecasts without extreme errors.33 To 

see how ANN models affect, we repeat FC versions 1,2 and 3 by excluding these models. 

In the DM tests, the ANN models mainly improved their forecast accuracy in short 

horizons in Version 2 and all horizons in Version 3. In both versions, we see these 

improvements in the forecasts of βs for short forecast horizons and λ for all horizons (the 

United States only in short horizons). It also increases the efficiency of the CLS of version 

                                                      
32 For the sake of brevity we do not include these all results here/in this thesis. 
33 For all versions, see Table 7. 
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1 in the forecasting factors. Other models of Version 1 sometimes yield much better 

results. 

4.4. CONCLUDING REMARKS 

In this study, we use 62 different models or alternatives. We forecast all four factors of 

six countries by all models separately. We must produce at least 1488 graphs, error 

matrices… etc. It is impossible to show all the results and graphs of all models. In 

addition, some models make worse forecasts than others for each forecast horizon and 

period. Eliminating these models will simplify the presentation of the results and make 

the comparison between good models more understandable. For this purpose, we use the 

RW model as a benchmark. We divide the factor series into 12 periods and calculate the 

errors of all yields for each model for each forecast horizon and period using the methods 

described at the beginning of this section. For example, the calculation of the total yield 

error is based on TRMSFE, TMAFE, TMASFE, and TSMAPFE. We calculate the error 

values of all models at the forecast horizons according to these formulas, as shown in 

Appendix 12. Table A.5 in Appendix 12 is ranked according to the TRMSFE values. In 

Table A.5, this ranking does not change sufficiently for other error measures to affect 

grouping and evaluation. In some models, contrary to the general situation, extremely 

erroneous forecasts can be made at a few points, which leads to an overestimation of the 

forecast error of the entire series. However, the opposite situation may occur. We attempt 

to differentiate the models according to whether they always, occasionally, or never make 

good forecasts. We base this differentiation on the RW forecast errors. Thus, we eliminate 

some of the models as mentioned above.  

Accordingly, we find kNN, MLP (and MLP-A), NNET (and NNET-A), NNETTS, 

GMDH, RNN (and RNN-A), LSTM, and GRU to be inefficient models with high error 

forecasts in every dimension (daily, forecast horizon and yields of standard maturities) 

and we eliminate these non-conventional models.34 We further consider the RMSE of the 

NS factors and the area error measures of the yield curves and hypothesis tests in this 

elimination process. They have high forecast errors (See Table A.5). According to the 

                                                      
34 For the sake of brevity we do not include these all results here/in this thesis. 



113 

 

  

  

analysis, the kNN model does not make extremely inaccurate forecasts; however, it does 

not generally make better forecasts. The GMDH model results in extreme errors for some 

forecast horizons.  

The GRU model, which is claimed to be better than LSTM, generally leads to worse 

forecasts. The RNN-A model with increased epochs obtains more inaccurate results than 

the RNN model, whereas MLP-A vs. MLP and NNET-A vs. NNET obtain almost 

identical results.  

We eliminate the EIG1, EIG2, and EIG3 models of the FC(Version 1) approach35. 

Because EIG3 obtains the same results as RW, the EIG2 model is mainly identical to RW, 

and the forecasts are highly inaccurate in the remaining parts. EIG1 produces exact 

forecasts as RW, but some countries make poor forecasts in one period or good forecasts 

for only a few days, which is insignificant in the comparisons. We conclude this result by 

comparing the tests with RW. We see that similiarities by results of total forecast errors 

in Table A.5. We compare each model in the FC(Version 2) models with Version 3 

models36, and because the errors of Version 2 are always higher, we also eliminate 

Version 2 models. We conclude that the models that produce extreme errors must be 

excluded. The SA model in version 1 always has higher errors than the other versions 

because the forecasts of some of the individual models in version 1 are used as highly 

inaccurate inputs, and these errors are directly incorporated into the SA model. Therefore, 

we eliminate this model.   

We compare the results of the TAR model with those of the LLAR-LSTAR-SETAR 

approachs. The TAR model almost consistently outperformed the LLAR-LSTAR-

SETAR approachs in terms of forecast efficiency. Therefore, we also eliminate the 

LLAR-LSTAR-SETAR models. We compare the GRNN and GRNNTSF models and 

eliminate GRNNTSF because RNN is always superior. We also eliminate the RF-C 

(cforest) model, as it almost always obtained worse results than the other RF models.  

                                                      
35 For the sake of brevity we do not include these all results here/in this thesis. 
36 For the sake of brevity we do not include these all results here/in this thesis. 
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We compare the forecasting models designed with their alternatives in each country 

separately and eliminate less-efficient alternatives. We select ELM in Germany, Great 

Britain, and the United States; ELM-A in other countries; ENN in Germany, Great 

Britain, Italy, and the United States; ENN-A in other countries; JNN in Great Britain, 

Italy, and the United States; JNN-A in other countries; and NNETAR in Canada and 

France, NNETAR-A in other countries. We eliminate these alternatives.   

Using elimination methods, we exclude 29 different models from the comparison. Thus, 

the number of models to be analyzed is reduced from 62 to 33. Among these models, 

there are still models constructed using the same approach, but they are not eliminated. 

Therefore, we select models representing this approach from the models using the same 

approach. The selection is based on the forecast error measures and hypothesis testing. 

To compare the efficiency of the models, we select those that give the best results.   

In FC(Version 3) models, for all series, according to the forecasting periods and forecast 

horizon, the results of the hypothesis tests and values, such as the forecast error area 

measure of yields, we compare TRMSFE and the results of the hypothesis tests with each 

other and with the RW model. The MED and BG models generally provide the best 

results. Although other FC models are sometimes ahead, we can say that this is due to a 

slight difference and does not affect the ranking of the approach. As the MED and BG 

models can represent FC(Version 3), we exclude the other five models. We perform the 

same study in Version 1 and select the CLS model.   

Because the XGB model is a special boosting approach and appears to provide more 

accurate forecasts than the BOOST model, we select the XGB model and exclude the 

BOOST model from the comparisons.  

We also exclude the ARFIMA and ARIMA models because they generally rank lower 

than the other autoregression approaches, their error values are high, and their test results 

are insufficient compared with those of the Auto Arima and AR(1) models. Therefore, 

we analyze Auto ARIMA and AR(1) in the results.  

Among the RF models, we select the RF and RF-AR (RF-HP for the United States) 

models. We observe that RF-AR provides better results at short and medium forecast 
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horizons and RF long horizons (all horizons for the United States) compared to other RF 

models.    

As a result of these selections, we reduce the number of models from 33 to 19. We 

summarize the forecast results of these models in Table 7. We compare the values with 

RW in Table 7. We obtain NS factors table from the RMSE values of the factor forecasts. 

We show the number of RMSERW>RMSEMODEL at "1-10", "11-20", "21-30", and "31-40" 

forecast horizons and at all forecast horizons (calculated daily) in Table 7. In the AREA 

columns of Table 7, we directly and individually compare each area with RW. 

In the hypotheses test columns of Table 7, we show that models provide better results 

than RW in terms of the entire full forecast horizon (as in the daily RMSE calculations of 

the factors) and the forecasting periods in each forecast horizon. We show this in Table 7 

as the daily sum (D.SUM). In Table 7, the models and periods with more numbers indicate 

fewer errors than RW. We have 120 forecast horizons for every ten periods, 480 forecast 

horizons for all periods, and 2279 forecast days (2239 in FC version 3). We also have a 

22790 (22390 in FC version 3) area for every ten periods and a 91160 (89560 in FC 

version 3) area for all periods. If the numbers we find are more than half of the total 

numbers, we consider the model to be more efficient than RW. These are shown in bold 

font in Table 7. In the remainder of this section, we discuss only the models listed in Table 

7. 
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 Table 7: The Forecasting Period and Day Numbers Which Have Better RMSE, Tests and Area Errors of Models than RW 
Canada β0 β1 β2 λ AREA 

MODEL 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 

AA 35 34 37 37 143 42 29 15 15 101 31 26 30 31 118 120 120 120 120 480 10339 10632 10960 11533 43464 

AR(1) 36 44 50 50 180 39 50 50 58 197 70 76 80 80 306 30 30 30 30 120 11258 9718 9357 9310 39643 

ELM 10 12 7 21 50 28 21 19 30 98 24 30 39 50 143 120 113 104 99 436 8273 7545 7910 8486 32214 

ENN 17 24 30 28 99 7 12 13 12 44 19 36 30 20 105 103 101 87 85 376 7663 7706 8195 8542 32106 

ETS/TBATS 30 24 33 20 107 32 44 40 35 151 54 53 51 63 221 120 120 120 120 480 10921 11348 11673 12167 46109 

GRNN 8 9 1 10 28 0 0 16 26 42 4 16 26 13 59 17 21 30 37 105 5392 5767 6276 6756 24191 

JNN 10 12 16 13 51 6 0 0 3 9 9 6 10 33 58 108 110 110 100 428 7680 7898 9055 9637 34270 

NNETAR 5 12 21 38 76 6 10 17 34 67 7 32 29 24 92 79 60 40 40 219 8262 7677 8541 9118 33598 

TAR 37 37 30 24 128 23 28 40 40 131 28 50 57 50 185 120 118 110 110 458 10382 9906 10210 10870 41368 

VAR(1) 3 10 7 0 20 0 0 0 4 4 6 1 0 0 7 73 69 52 50 244 4785 5808 6299 6717 23609 

BAG 2 3 8 14 27 16 30 27 33 106 0 0 0 0 0 120 120 120 120 480 10202 10957 11240 11650 44049 

FC(V4) 32 34 43 53 162 39 34 43 50 166 67 64 72 57 260 120 120 120 120 480 10894 11091 11269 12044 45298 

RF 6 24 29 22 81 1 15 27 22 65 14 31 26 20 91 6 20 20 20 66 8991 9068 9292 9539 36890 

F-AR 18 12 16 20 66 2 20 31 35 88 21 46 53 57 177 19 20 20 20 79 9461 8874 8404 8240 34979 

XGB 4 7 30 32 73 1 20 24 35 80 7 11 19 26 63 1 0 0 0 1 8631 9373 9902 10043 37949 

FC(V1).CLS 61 63 61 68 253 64 71 74 82 291 75 79 82 84 320 120 120 120 120 480 11565 12486 12664 13133 49848 

FC(V3).BG 110 93 18 10 231 116 100 12 10 238 120 99 23 5 247 120 120 109 58 407 9662 9528 10009 10644 39843 

FC(V3).MED 113 95 16 10 234 110 91 3 0 204 118 100 25 0 243 120 120 44 10 294 10106 9396 9710 9693 38905 

 T_TEST_err W_TEST_err DM_TEST_err DMTEST_area 

 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 

AA 8 20 21 24 73 561 0 11 20 23 54 433 7 25 27 25 84 959 6 10 15 31 62 1013 

AR(1) 9 10 10 10 39 432 0 0 0 1 1 416 8 10 10 10 38 687 26 20 20 20 86 788 

ELM 0 0 0 0 0 453 0 0 0 0 0 406 1 0 0 0 1 585 9 8 0 0 17 647 

ENN 4 8 10 10 32 421 3 10 10 10 33 413 5 10 10 10 35 559 3 10 10 10 33 591 

ETS/TBATS 11 43 60 69 183 614 0 3 11 28 42 449 7 32 38 43 120 1129 7 27 22 29 85 1070 

GRNN 0 0 0 0 0 255 0 0 0 0 0 237 0 0 0 0 0 337 0 0 0 0 0 384 

JNN 0 3 29 30 62 502 0 6 12 20 38 466 0 3 19 30 52 594 1 2 18 27 48 632 

NNETAR 0 13 14 10 37 456 0 9 10 10 29 406 0 8 10 10 28 603 1 14 15 10 40 613 

TAR 1 25 30 30 86 527 2 10 13 35 60 479 4 17 30 30 81 773 7 16 21 34 78 899 

VAR(1) 0 0 0 0 0 236 0 0 0 0 0 216 0 0 0 0 0 342 0 0 0 0 0 416 

BAG 10 38 38 44 130 629 2 19 30 24 75 521 9 24 37 34 104 1022 0 0 2 20 22 995 

HYBRİD 20 45 53 65 183 575 0 12 17 20 49 488 10 41 59 68 178 1112 11 35 38 48 132 1034 

RF 0 5 10 12 27 452 0 0 5 10 15 442 0 2 10 10 22 717 0 0 16 22 38 704 

RF-AR 0 3 2 0 5 284 0 0 0 0 0 270 0 0 0 0 0 448 0 12 15 10 37 577 

XGB 0 0 0 0 0 389 0 0 0 0 0 360 0 0 0 0 0 723 0 0 0 0 0 693 

FC(V1).CLS 39 65 75 85 264 31 0 0 0 0 0 30 32 55 60 74 221 1274 22 36 38 41 137 1176 

FC(V3).BG 0 8 19 49 76 551 0 0 17 20 37 506 0 5 17 34 56 815 2 0 27 46 75 815 

FC(V3).MED 1 10 19 43 73 391 0 0 0 0 0 373 0 3 14 36 53 750 5 0 18 34 57 776 
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Germany β0 β1 β2 λ AREA 

MODEL 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 

AA 25 28 16 10 79 33 37 25 33 128 70 58 46 43 217 120 120 120 120 480 10757 11546 12212 12873 47388 

AR(1) 12 10 13 20 55 50 50 51 60 211 58 50 40 40 188 20 20 20 20 80 10586 10224 9541 9064 39415 

ELM 19 20 20 25 84 20 20 22 27 89 34 50 50 47 181 119 101 78 59 357 8774 8011 7697 7567 32049 

ENN 10 10 10 18 48 3 28 30 38 99 11 35 53 40 139 101 92 86 90 369 7549 7856 8355 8595 32355 

ETS/TBATS 27 24 21 20 92 38 31 30 30 129 56 59 57 57 229 120 120 120 120 480 11131 11948 12809 13344 49232 

GRNN 4 11 11 11 37 0 18 20 16 54 8 39 50 42 139 1 0 0 0 1 5976 7100 7521 7513 28110 

JNN 9 10 14 30 63 16 30 40 40 126 12 29 30 28 99 87 87 72 70 316 7835 8255 8821 9384 34295 

NNETAR 0 9 21 27 57 9 20 20 20 69 14 30 30 29 103 91 78 65 53 287 8510 8904 9703 9788 36905 

TAR 36 47 56 42 181 33 37 39 40 149 48 65 52 50 215 110 110 100 98 418 10273 10280 10164 10183 40900 

VAR(1) 4 20 20 26 70 2 18 23 30 73 8 10 35 36 89 92 90 90 80 352 6994 7632 7561 7247 29434 

BAG 3 0 6 23 32 1 10 20 20 51 12 14 27 27 80 120 120 120 120 480 10453 11178 11660 12221 45512 

HYBRİD 44 49 50 48 191 44 30 44 54 172 60 60 66 60 246 119 120 120 120 479 11147 12188 12725 12973 49033 

RF 0 20 35 30 85 5 28 37 33 103 5 26 47 60 138 0 0 0 0 0 8375 8639 8858 9185 35057 

RF-AR 5 22 34 40 101 12 34 40 40 126 19 51 43 38 151 23 20 20 20 83 8416 8327 8054 7713 32510 

XGB 0 0 10 10 20 2 23 34 36 95 16 43 51 54 164 0 0 0 0 0 7954 8861 8824 8855 34494 

FC(V1).CLS 34 27 30 30 121 76 65 56 47 244 95 96 80 88 359 116 110 110 116 452 11727 12610 12798 13221 50356 

FC(V3).BG 110 84 13 7 214 118 93 18 10 239 110 90 12 0 212 120 120 105 44 389 10152 10925 11694 12093 44864 

FC(V3).MED 110 86 7 0 203 120 101 19 10 250 110 85 8 0 203 120 120 45 10 295 10429 10640 10843 10986 42898 
 T_TEST_err W_TEST_err DM_TEST_err DMTEST_area 

MODEL 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 

AA 24 36 35 40 135 662 4 19 34 40 97 616 26 31 37 52 146 1198 18 19 14 24 75 1138 

AR(1) 18 20 20 13 71 547 0 6 10 1 17 537 9 17 20 14 60 828 16 20 20 15 71 825 

ELM 4 10 10 10 34 523 0 1 17 20 38 502 0 10 10 10 30 597 4 10 10 10 34 627 

ENN 0 6 10 13 29 376 0 6 10 12 28 360 0 6 10 14 30 492 7 10 10 10 37 560 

ETS/TBATS 41 61 52 60 214 639 3 23 36 40 102 580 41 60 54 60 215 1256 28 54 50 54 186 1188 

GRNN 0 5 16 20 41 342 0 0 10 8 18 335 0 3 10 19 32 483 0 9 10 17 36 494 

JNN 2 10 11 17 40 445 0 8 11 22 41 427 0 10 17 23 50 543 4 10 12 26 52 590 

NNETAR 0 0 0 7 7 470 0 0 0 0 0 435 0 0 0 0 0 594 0 0 0 0 0 704 

TAR 5 20 22 23 70 717 1 2 0 0 3 647 5 15 19 10 49 907 0 3 10 10 23 848 

VAR(1) 1 18 17 18 54 681 0 16 25 27 68 617 0 15 16 18 49 819 0 0 0 0 0 522 

BAG 13 24 39 40 116 699 8 23 30 36 97 644 17 30 30 38 115 1093 7 12 16 20 55 1054 

HYBRİD 35 62 65 60 222 770 2 31 42 40 115 684 38 64 62 60 224 1215 22 45 60 60 187 1138 

RF 0 0 0 0 0 388 0 0 0 0 0 373 0 0 0 0 0 621 0 0 1 2 3 630 

RF-AR 0 1 4 4 9 440 0 3 9 0 12 380 0 2 9 0 11 551 2 8 14 7 31 586 

XGB 0 0 0 0 0 379 0 0 0 0 0 363 0 0 0 0 0 630 0 0 0 0 0 615 

FC(V1).CLS 60 60 68 80 268 5 0 0 0 0 0 3 57 62 61 74 254 1288 13 40 43 50 146 1183 

FC(V3).BG 6 20 26 41 93 733 0 3 18 30 51 680 4 20 30 46 100 1049 9 20 27 41 97 991 

FC(V3).MED 11 10 21 23 65 640 0 0 4 20 24 603 5 10 16 25 56 959 14 19 21 37 91 917 
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France β0 β1 β2 λ AREA 

MODEL 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 

AA 13 8 16 20 57 22 26 30 33 111 50 39 58 30 177 120 120 120 120 480 10580 10868 11082 11297 43827 

AR(1) 21 21 30 30 102 49 55 60 60 224 65 52 60 51 228 40 40 40 40 160 11014 10350 10029 9821 41214 

ELM 20 22 31 30 103 20 31 40 40 131 8 16 30 39 93 120 120 120 120 480 7797 7084 7534 7712 30127 

ENN 0 2 10 10 22 20 30 26 26 102 22 24 30 30 106 109 114 120 120 463 7378 6395 6825 7022 27620 

ETS/TBATS 37 40 42 40 159 35 33 23 17 108 53 42 45 35 175 120 120 120 120 480 11659 12468 12690 12905 49722 

GRNN 3 14 18 13 48 0 17 20 20 57 10 15 19 39 83 6 20 20 20 66 5224 5895 6534 7275 24928 

JNN 0 21 23 36 80 11 31 48 50 140 25 33 35 40 133 110 110 110 110 440 7097 7060 7444 7439 29040 

NNETAR 0 4 14 29 47 18 14 28 39 99 15 29 15 16 75 114 120 113 110 457 7914 7398 7816 8275 31403 

TAR 21 25 20 20 86 26 30 24 17 97 20 22 20 28 90 120 120 120 120 480 9700 9102 9265 9534 37601 

VAR(1) 0 0 0 0 5 0 0 0 9 9 0 0 9 10 19 118 110 110 103 441 2622 3253 3761 4592 13912 

BAG 2 1 3 18 24 0 7 15 23 45 5 8 23 25 61 120 120 120 120 480 9971 10575 10790 11016 42352 

HYBRİD 36 23 40 40 139 42 40 40 40 162 55 52 59 53 219 120 120 120 120 480 11226 11631 12121 12485 47463 

RF 0 11 33 40 84 0 16 27 26 69 9 12 34 39 94 0 0 0 0 0 8814 9519 10114 10211 38658 

RF-AR 0 15 20 27 62 14 50 50 50 164 27 55 52 49 183 12 0 0 0 12 9245 8966 8487 8563 35261 

XGB 0 0 14 24 38 0 5 17 26 48 8 17 26 44 95 0 0 0 0 0 8622 9345 9849 10210 38026 

FC(V1).CLS 72 67 62 76 277 59 56 68 62 245 93 101 93 95 382 88 100 110 113 411 12419 13041 13339 13383 52182 

FC(V3).BG 110 85 17 10 222 114 85 13 10 222 113 94 11 0 218 120 120 117 85 442 8836 8642 9234 9694 36406 

FC(V3).MED 110 89 20 10 229 118 87 13 10 228 119 94 11 0 224 120 120 102 26 368 9813 9552 9812 9831 39008 

  T_TEST_err W_TEST_err DM_TEST_err DMTEST_area 

MODEL 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 

AA 17 22 25 31 95 349 0 9 19 14 42 288 16 30 30 29 105 993 17 30 30 25 102 993 

AR(1) 4 10 10 10 34 466 2 2 4 14 22 382 19 10 15 20 64 780 18 10 20 24 72 876 

ELM 0 7 10 10 27 417 13 7 10 10 40 389 7 6 10 10 33 511 3 10 10 10 33 606 

ENN 0 0 6 10 16 267 6 0 3 10 19 266 3 0 6 10 19 377 2 0 3 10 15 448 

ETS/TBATS 12 35 42 50 139 376 0 2 14 34 50 321 18 36 42 50 146 1126 25 32 42 50 149 1152 

GRNN 0 0 9 11 20 286 3 0 0 2 5 267 2 0 5 11 18 434 2 6 19 20 47 467 

JNN 0 0 4 4 8 338 0 0 10 3 13 310 0 0 10 3 13 504 0 8 10 3 21 571 

NNETAR 0 0 0 6 6 356 0 0 0 12 12 339 0 0 0 16 16 507 0 0 0 20 20 552 

TAR 0 17 20 20 57 460 8 0 0 0 8 447 4 8 15 11 38 676 4 13 12 10 39 772 

VAR(1) 0 0 0 0 0 196 0 0 0 0 0 204 0 0 0 0 0 225 0 0 0 0 0 220 

BAG 3 17 20 29 69 563 0 4 20 20 44 515 4 20 20 20 64 978 1 12 20 20 53 938 

HYBRİD 19 34 44 56 153 530 0 7 20 23 50 437 19 28 50 60 157 1067 14 15 35 40 104 1089 

RF 0 7 10 10 27 395 0 0 0 0 0 340 0 9 10 9 28 797 0 0 0 0 0 763 

RF-AR 1 9 10 10 30 392 5 9 0 5 19 362 6 10 10 10 36 558 8 10 10 10 38 633 

XGB 0 0 0 0 0 358 0 0 0 0 0 309 0 0 0 0 0 753 0 0 0 0 0 738 

FC(V1).CLS 30 46 52 41 169 58 0 0 10 10 20 50 33 50 50 48 181 1223 29 43 49 35 156 1203 

FC(V3).BG 3 10 20 20 53 532 3 0 3 8 14 541 3 1 16 20 40 749 4 0 0 3 7 751 

FC(V3).MED 5 10 10 20 45 560 8 10 10 10 38 573 11 10 16 21 58 824 5 0 0 8 13 807 
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Great Britain β0 β1 β2 λ AREA 

MODEL 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 

AA 23 28 27 26 104 51 45 30 30 156 29 27 48 48 152 120 120 120 120 480 11297 12024 12158 12435 47914 

AR(1) 21 34 40 48 143 20 20 42 42 124 51 50 54 60 215 30 30 30 30 120 10670 9934 9981 9651 40236 

ELM 4 0 0 8 12 23 28 40 40 131 26 32 50 44 152 120 102 83 72 377 7679 6259 6380 6475 26793 

ENN 0 3 11 20 34 0 18 30 30 78 3 17 28 30 78 96 90 90 71 347 7100 6807 7116 7481 28504 

ETS/TBATS 41 44 46 44 175 40 35 49 47 171 60 67 56 64 247 120 120 120 120 480 11500 11984 12297 12650 48431 

GRNN 3 10 14 16 43 0 6 28 32 66 4 18 32 35 89 7 11 14 20 52 5570 6536 6964 6936 26006 

JNN 7 10 9 16 42 0 16 40 40 96 17 26 34 26 103 61 50 50 59 220 7063 6123 5879 6191 25256 

NNETAR 3 2 17 22 44 1 17 25 37 80 13 20 24 41 98 90 82 63 45 280 7979 7617 8108 8116 31820 

TAR 20 20 18 17 75 17 27 40 40 124 34 40 40 34 148 120 116 110 100 446 9848 9127 8663 8281 35919 

VAR(1) 8 0 8 10 26 0 0 11 20 31 5 10 10 10 35 70 62 60 60 252 6803 7905 7988 7333 30029 

BAG 0 4 17 24 45 3 10 13 16 42 5 10 10 14 39 120 120 120 120 480 4637 8991 12500 16264 42392 

HYBRİD 35 48 34 30 147 31 23 21 37 112 41 40 40 40 161 120 120 120 120 480 4919 9664 13506 17318 45407 

RF 1 10 20 26 57 1 13 37 41 92 2 20 32 37 91 0 4 10 10 24 5095 9713 13831 17700 46339 

RF-AR 10 17 20 20 67 9 27 30 36 102 27 50 50 49 176 15 13 20 20 68 5174 10738 13371 12963 42246 

XGB 0 5 11 19 35 8 19 44 52 123 2 21 43 46 112 0 0 0 0 0 4856 9498 13542 17458 45354 

FC(V1).CLS 59 56 63 55 233 57 62 71 64 254 76 82 81 86 325 119 112 110 110 451 12153 12993 13409 13814 52369 

FC(V3).BG 110 77 5 2 194 119 91 15 10 235 117 82 18 10 227 120 118 106 45 389 9161 8900 9214 9304 36579 

FC(V3).MED 110 80 8 0 198 117 90 17 10 234 117 89 18 10 234 120 120 58 12 310 9453 8851 8862 8610 35776 

  T_TEST_err W_TEST_err DM_TEST_err DMTEST_area 

MODEL 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 

AA 35 51 60 54 200 525 0 0 7 20 27 447 33 39 47 50 169 1168 5 25 35 46 111 1066 

AR(1) 10 10 2 0 22 488 0 0 0 0 0 477 10 1 0 0 11 729 17 15 10 0 42 812 

ELM 0 0 8 10 18 405 0 9 10 6 25 390 0 9 10 10 29 465 0 5 9 7 21 498 

ENN 0 0 0 0 0 326 0 0 0 0 0 307 0 0 0 0 0 434 0 0 0 0 0 435 

ETS/TBATS 29 36 49 73 187 408 0 8 0 8 16 350 39 47 38 55 179 1165 28 30 39 45 142 1091 

GRNN 0 0 0 0 0 363 0 0 0 0 0 366 0 0 0 0 0 452 0 0 0 0 0 477 

JNN 0 0 0 0 0 332 0 0 0 0 0 311 0 0 0 0 0 400 0 0 0 0 0 380 

NNETAR 0 0 3 1 4 456 0 0 0 0 0 435 0 0 2 0 2 573 0 0 7 10 17 567 

TAR 1 0 0 0 1 444 0 9 6 0 15 435 0 0 0 0 0 642 3 0 0 0 3 683 

VAR(1) 5 10 13 30 58 479 6 24 21 5 56 470 5 18 20 27 70 540 6 10 10 10 36 575 

BAG 4 18 24 32 78 610 0 4 5 20 29 565 0 14 17 39 70 1027 0 0 55 113 168 800 

HYBRİD 15 30 33 43 121 514 5 19 15 4 43 480 22 40 22 23 107 951 0 3 95 120 218 872 

RF 0 0 1 6 7 414 0 0 0 0 0 394 0 0 0 0 0 674 0 10 103 120 233 880 

RF-AR 0 0 0 0 0 474 0 0 0 0 0 454 0 0 0 0 0 555 0 23 88 88 199 761 

XGB 0 0 0 0 0 462 0 0 0 0 0 431 0 0 0 0 0 764 0 7 93 120 220 850 

FC(V1).CLS 59 61 69 75 264 13 0 0 0 0 0 12 56 55 59 63 233 1332 23 33 40 24 120 1223 

FC(V3).BG 0 2 5 10 17 473 0 0 0 0 0 450 0 0 0 3 3 731 0 0 0 3 3 703 

FC(V3).MED 12 7 7 10 36 484 0 0 0 0 0 469 8 1 0 0 9 726 11 7 0 0 18 668 
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Italy β0 β1 β2 λ AREA 

MODEL 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 

AA 25 16 28 25 94 21 8 4 4 37 38 42 53 56 189 120 120 120 120 480 11675 11654 11872 11881 47082 

AR(1) 38 34 30 30 132 40 40 41 49 170 53 66 60 52 231 10 10 10 10 40 9558 9033 8877 8478 35946 

ELM 9 10 10 20 49 25 22 27 25 99 16 9 18 20 63 114 108 90 90 402 8433 8050 8403 8388 33274 

ENN 8 10 22 30 70 14 20 25 27 86 13 18 20 25 76 108 110 110 110 438 7034 7181 7530 7819 29564 

ETS/TBATS 34 18 11 14 77 36 50 33 25 144 16 18 8 17 59 120 120 120 120 480 11368 11010 11335 11809 45522 

GRNN 3 8 5 2 18 8 16 10 10 44 3 14 27 33 77 0 3 0 0 3 6527 7308 7670 8033 29538 

JNN 0 22 40 46 108 10 1 12 20 43 4 15 21 44 84 118 120 115 110 463 6810 7613 8151 8750 31324 

NNETAR 17 21 20 20 78 14 17 10 10 51 17 9 22 20 68 99 110 98 80 387 8552 8277 8107 8402 33338 

TAR 34 22 20 20 96 20 20 20 20 80 26 20 20 29 95 120 120 120 118 478 10049 9427 9404 9100 37980 

VAR(1) 1 9 10 10 30 1 37 31 32 101 0 0 3 10 13 110 95 81 86 372 5841 6195 5764 5575 23575 

BAG 7 22 30 34 93 3 22 27 22 74 2 11 19 21 53 120 120 120 120 480 3925 8648 12760 16518 41851 

HYBRİD 39 35 39 35 148 46 50 50 50 196 45 33 30 30 138 120 120 120 120 480 4138 9418 13946 18255 45757 

RF 0 0 0 0 0 0 12 22 35 69 2 32 37 42 113 0 0 0 0 0 4520 10362 14756 18380 48018 

RF-AR 7 21 25 34 87 18 40 40 40 138 13 38 50 50 151 8 0 0 0 8 4418 10591 13663 14478 43150 

XGB 4 9 10 18 41 7 17 35 50 109 10 25 33 49 117 0 0 0 0 0 4294 9819 14460 18423 46996 

FC(V1).CLS 47 54 54 52 207 58 67 78 70 273 84 86 81 67 318 105 110 108 110 433 12296 12543 12788 13262 50889 

FC(V3).BG 110 87 19 10 226 110 85 18 10 223 119 87 26 10 242 120 120 118 69 427 9482 9582 9798 10152 39014 

FC(V3).MED 110 92 14 10 226 110 79 10 10 209 120 86 23 10 239 120 116 27 10 273 10055 9927 9552 9597 39131 

  T_TEST_err W_TEST_err DM_TEST_err DMTEST_area 

MODEL 1-10 11-20 21-30 
31-

40 
SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 

21-

30 
31-40 SUM D.SUM 

AA 24 23 27 40 114 639 0 0 9 25 34 565 22 21 21 30 94 1089 18 18 30 22 88 1048 

AR(1) 14 20 20 20 74 562 0 1 11 14 26 529 6 13 20 20 59 734 10 17 27 30 84 721 

ELM 0 0 0 0 0 507 0 1 0 0 1 461 1 0 0 1 2 638 1 0 1 10 12 660 

ENN 0 0 7 20 27 381 0 0 9 19 28 354 0 0 9 20 29 464 0 0 13 20 33 522 

ETS/TBATS 18 11 19 16 64 487 0 0 4 18 22 449 16 14 31 30 91 1068 11 8 16 34 69 995 

GRNN 0 0 9 15 24 314 0 3 9 11 23 294 0 0 9 10 19 450 0 8 18 20 46 499 

JNN 0 0 0 0 0 383 0 0 0 0 0 334 0 0 0 0 0 521 0 0 3 10 13 555 

NNETAR 0 0 7 10 17 459 0 0 10 14 24 455 0 0 9 10 19 580 0 0 9 10 19 634 

TAR 3 0 1 10 14 561 0 0 0 0 0 521 0 0 0 4 4 698 10 12 0 5 27 775 

VAR/VECM 0 0 0 0 0 291 0 0 0 0 0 267 0 0 0 0 0 370 0 0 0 0 0 220 

BAG 9 24 20 20 73 637 1 5 22 30 58 573 9 28 30 30 97 986 0 0 63 110 173 792 

HYBRİD 35 33 43 40 151 548 0 7 16 20 43 492 30 32 40 41 143 1015 0 3 94 120 217 854 

RF 0 0 0 0 0 384 0 0 0 0 0 373 0 0 0 0 0 611 0 9 104 120 233 956 

RF-AR 2 5 18 16 41 488 0 0 11 10 21 436 0 4 13 10 27 590 0 26 87 106 219 746 

XGB 6 6 16 16 44 482 0 0 6 20 26 438 0 6 17 20 43 758 0 7 101 120 228 926 

FC(V1).CLS 57 80 79 80 296 19 0 0 0 0 0 14 56 80 79 80 295 1231 32 57 49 66 204 1166 

FC(V3).BG 4 10 11 30 55 588 3 7 12 20 42 558 4 15 12 24 55 815 4 18 15 31 68 828 

FC(V3).MED 2 20 10 10 42 515 3 6 10 10 29 480 6 10 10 10 36 792 1 16 18 16 51 790 
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United States β0 β1 β2 λ AREA 

MODEL 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 1-10 11-20 21-30 31-40 SUM 

AA 60 34 26 22 142 58 65 50 49 222 59 74 64 46 243 56 66 64 52 238 10143 10115 10272 10127 40657 

AR(1) 20 20 20 27 87 14 0 10 12 36 40 27 11 10 88 41 40 40 40 161 8957 7555 7188 7073 30773 

ELM 8 10 10 15 43 5 18 20 20 63 16 10 10 17 53 22 29 30 30 111 5737 5125 5064 5230 21156 

ENN 4 10 10 23 47 7 2 0 0 9 26 39 34 30 129 3 9 14 22 48 6418 6545 6466 6723 26152 

ETS/TBATS 65 56 50 54 225 74 65 64 42 245 78 89 88 90 345 71 93 66 63 293 10758 10625 10541 10005 41929 

GRNN 10 0 0 16 26 3 2 19 15 39 19 27 35 42 123 11 22 37 33 103 4532 5373 5813 6050 21768 

JNN 6 0 8 20 34 6 6 0 2 14 18 23 23 34 98 20 31 23 28 102 7315 7372 7633 7960 30280 

NNETAR 8 8 10 19 45 3 7 6 10 26 8 4 13 18 43 7 3 10 16 36 6946 6180 6251 6314 25691 

TAR 19 32 40 38 129 23 36 37 12 108 43 20 17 11 91 52 45 40 31 168 8718 7866 7656 7347 31587 

VAR(1) 36 28 26 30 120 50 57 56 49 212 11 10 10 10 41 33 54 35 25 147 8478 8057 8062 8029 32626 

BAG 19 14 3 12 48 23 29 36 36 124 45 57 47 31 180 18 30 34 26 108 10211 9967 9711 9565 39454 

HYBRİD 47 59 50 42 198 69 69 56 50 244 48 43 40 40 171 68 72 59 49 248 10035 9927 10375 10740 41077 

RF 13 9 20 20 62 21 16 15 22 74 25 30 41 46 142 14 20 34 41 109 7683 7880 8684 8998 33245 

RF-HP 5 13 41 49 108 9 21 32 45 107 21 16 19 22 78 53 50 47 42 192 7881 8642 8003 7316 31842 

XGB 5 19 24 31 79 1 16 24 30 71 19 25 35 40 119 6 23 28 33 90 7942 8866 9588 9941 36337 

FC(V1).CLS 77 70 75 65 287 55 62 64 62 243 96 72 72 65 305 67 56 59 64 246 11104 11421 11586 11837 45948 

FC(V3).BG 110 79 5 8 202 115 84 2 0 201 107 69 21 5 202 113 84 19 10 226 8916 8784 8885 8690 35275 

FC(V3).MED 110 78 5 8 201 118 88 2 0 208 98 71 21 5 195 120 83 21 10 234 9072 8911 9395 9214 36592 

  T_TEST_err W_TEST_err DM_TEST_err DMTEST_area 

MODEL 1-10 11-20 21-30 
31-

40 
SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 21-30 31-40 SUM D.SUM 1-10 11-20 

21-

30 
31-40 SUM D.SUM 

AA 10 30 33 40 113 489 0 20 30 31 81 446 7 28 40 40 115 938 0 10 33 36 79 874 

AR(1) 0 10 10 10 30 263 0 0 0 0 0 197 0 1 10 2 13 397 2 4 10 13 29 544 

ELM 0 0 0 0 0 178 0 0 0 0 0 167 0 0 0 0 0 222 0 0 0 0 0 342 

ENN 0 0 0 0 0 207 0 0 0 0 0 194 0 0 0 0 0 292 0 0 0 0 0 370 

ETS/TBATS 9 10 9 10 38 261 0 0 3 7 10 242 9 6 9 10 34 860 5 5 1 7 18 862 

GRNN 0 0 0 0 0 195 0 0 0 0 0 159 0 0 0 0 0 298 0 0 0 0 0 339 

JNN 0 0 7 10 17 319 0 0 9 10 19 301 0 0 8 10 18 437 0 5 14 10 29 508 

NNETAR 0 0 0 0 0 216 0 0 0 0 0 177 0 0 0 0 0 289 0 0 0 0 0 384 

TAR 0 0 0 0 0 293 0 0 0 0 0 265 0 0 0 0 0 414 0 0 0 0 0 580 

VAR(1) 0 12 31 30 73 526 0 12 29 30 71 510 0 12 30 30 72 646 1 15 25 15 56 655 

BAG 10 23 30 30 93 444 7 21 30 23 81 393 12 23 30 24 89 940 0 22 13 10 45 799 

HYBRİD 0 3 23 25 51 382 0 0 10 20 30 329 0 4 17 20 41 891 0 0 9 18 27 840 

RF 0 0 0 0 0 307 0 0 0 0 0 265 0 0 0 0 0 533 0 0 0 1 1 564 

RF-A 0 2 10 12 24 221 0 0 0 0 0 186 0 0 0 0 0 320 0 9 10 11 30 462 

XGB 0 0 0 0 0 330 0 0 0 0 0 289 0 0 0 0 0 610 0 0 0 0 0 602 

FC(V1).CLS 20 17 19 25 81 0 0 0 0 0 0 0 20 22 22 21 85 1107 1 0 19 27 47 993 

FC(V3).BG 0 0 2 19 21 316 0 0 0 11 11 284 0 0 0 17 17 536 0 0 14 12 26 621 

FC(V3).MED 0 0 7 14 21 285 0 0 0 6 6 260 0 0 2 6 8 594 0 0 10 11 21 658 
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In Table 7, we compare the Auto ARIMA and AR(1). Accordingly, Auto ARIMA is 

superior in every comparison, except for the βs of Canada, France, Great Britain, and 

Italy. The TAR model is statistically worse than autoregressive models and according to 

hypothesis tests in Table 7, except for the long horizon of Canada. The TAR model also 

has a better βs forecast than AR(1). 

In Table 7. ENN, GRNN, VAR(1), and ELM (except for some βs) do not provide good 

results and are not worse than autoregressive models. VAR(1) is slightly more efficient 

in the United States, but not as efficient as in Auto ARIMA. ELM is usually an ANN 

model that produces the best factor results.  

According to Table 7, bagging model appears to have an advantage over RW for medium 

and long forecast horizons. This advantage disappears with NS factors and forecasting 

period tests. Including the forecasting factors, the FC(Version 4) model is one of the best 

models for RW. RF seems to provide better results than RW in Great Britain and Italy in 

medium and long horizons. One can say that the RF model yields better results with 

AR(1) as the input. However, this is not always reflected in the tests.  

We see that ETS/TBATS is less efficient than FC(Version 4) in factors other than the 

United States in Table 7. We can say that the ETS/TBATS and FC(Version 4) models 

perform well compared to the other models except for the FC(Version 1)-CLS, 

FC(Version 3)-MED, and FC(Version 3)-BG models.  

The FC models outperform RW in terms of factors and yield curves at short and medium 

forecast horizons in Table 7. FC(Version 1)-CLS, on the other hand, achieves good results 

at almost all forecast horizons, and in the tests, this superiority is observed at medium and 

long horizons. The fact that models such as FC(Version 1)-CLS, FC(Version 4), and 

ETS/TBATS, which give good results, are sometimes worse in the daily comparison 

(D.SUM columns in Table 7) in the tests is thought to be due to the fact that the daily 

forecast series are very good in certain parts, not in all horizons. 

Diebold and Li (2006) state that they use monthly frequency data because the skewness 

and kurtosis of the daily frequency data do not comply with the normal distribution, which 

negatively affects the forecasts. Table 8 shows the skewness and kurtosis values of the 
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data used in this study according to the daily and monthly frequencies. We observe that 

converting the frequency to monthly can disrupts these momentums even more. 

Therefore, reducing the frequency would not have a positive effect on some forecasts. 

Unexpectedly, RW is effective for non-normally distributed data.    

Table 8: Kurtosis and Skewness Value for Daily and Monthly Factor Data 

DAILY MONTHLY 

Kurtosis Skewness Kurtosis Skewness 

  β0 β1 β2 λ β0 β1 β2 λ β0 β1 β2 λ β0 β1 β2 λ 

CA 2,60 3,85 3,98 5,97 0,33 0,10 0,98 2,02 4,52 3,68 5,09 13,64 -0,52 0,38 1,51 3,12 

DE 2,01 2,51 5,38 23,94 0,34 -0,28 0,91 4,53 1,94 3,43 11,11 42,37 0,25 0,57 2,69 6,12 

FR 1,77 2,18 3,79 4,90 0,19 0,08 0,52 1,05 2,58 6,63 10,43 68,68 0,16 -0,22 2,43 7,51 

GB 1,92 2,05 2,35 6,85 0,24 -0,20 -0,08 1,78 2,10 2,15 7,84 127,00 0,02 0,01 1,75 10,68 

IT 2,04 2,01 7,35 3,30 0,31 0,02 1,40 0,10 2,19 2,38 4,00 8,68 0,39 -0,09 1,13 1,88 

US 2,73 2,16 2,65 32,15 0,38 0,08 0,40 4,94 2,69 2,13 2,78 34,03 0,35 0,12 0,43 5,21 

According to the NS model, the long term should correspond to β0, and the short term 

should correspond to the sum of β0 and β1 (See Equation 1.9 and Equation 1.10). The 

FC(Version 3)-MED model makes the best forecasts for β0 for short and medium forecast 

horizons, and the FC(Version 1)-CLS and RW models make the best forecasts for long 

forecast horizons. FC(Version 3)-MED forecasts the best sum of β0 and β1, which 

corresponds to the short term for short forecast horizons, and FC(Version 1)-CLS model 

forecasts for medium and long forecast horizons37. 

  

                                                      
37 For the sake of brevity we do not include these all results here/in this thesis. 
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CONCLUSION 

Interest rates are fundamental to the economy and finance, where the yield curves derived 

from interest rates provide crucial information for various fields. The development of 

financial markets and the rapid growth of money market volumes further highlight the 

significance of these curves. This study mainly focuses on forecasting yield curves, which 

is essential for constructing and managing the future and finances on an economy. In 

order to achieve accurate forecasts, the Nelson-Siegel factors are forecasted effectively 

where we recognize that solely relying on Diebold-Li’s AR(1) model may not suffice for 

optimal forecasting of yield curves. To this aim, in addition to conventional models, we 

employ non-conventional approaches such as ANN and k-nearest neighbors (kNN). 

Further, we explore forecast combinations that integrate multiple models to enhance the 

accuracy instead of limiting ourselves to a single model. 

This study analyzes daily yield data of G-7 countries, excluding Japan, over the period 

2010-2022 focusing on the maturities from three months to 30 years. We examine the 

implications of treating the Nelson-Siegel Model’s λ parameter as a constant and 

criticisms of the constant value proposed by Diebold and Li (2006). Varying parameter λ 

disrupts the stationarity of the β parameters, which diminishes the efficiency of 

forecasting. On the contrary, maintaining a constant λ inhibits the curvature and slope 

components' dynamic nature, thereby compromising the yield curves' flexibility and, 

potentially preventing negative yields where multicollinearity issues in the slope and 

curvature terms might arise. To address this concern, we apply the Hodrick-Prescott (HP) 

filter to λ (excluding the United States data), resulting in slowly varying λ values that 

reflect economic realities more accurately and align with Nelson-Siegel’s theory, 

ultimately enhancing the reliability of our forecasts. 

In this study, we categorize the data into training, testing, and forecasting. We determine 

the parameters through optimization in a specific sequence. With a multistep approach, 

we allow errors tend to accumulate as the forecast horizon increases. However, because 

of the absence of the correlation in the lagged values of the data, we cannot anticipate 

effective results from direct forecasting methods, which either by forecasting one step at 

each time, or by simultaneously forecasting the entire horizon. In this study, using a 
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multistep approach, we use the sliding window methodology to forecast a 40-day horizon. 

Note that since random search techniques could be time-consuming, and in ANNs many 

parameters should be estimated, these networks are essentially black boxes where 

identifying the parameters to focus on might be challenging. Thus, in this study, we favor 

grid search for parameter optimization where it is a more systematic approach. 

In this thesis we generate forecasts of yield curves using 62 models across conventional, 

non-conventional, ensemble learning (EL), and forecast combination (FC) groups. We 

discard some models because they perform inadequately or yield more significant 

inaccuracies compared to other models using similar approaches. Accordingly, we are 

left with and assess 19 models based on total yield and yield curve area errors. We 

compare those remaining models based on the NS factors and forecast errors such as 

TRMSFE (total root mean square forecast error) calculated over the entire yield curve. 

We utilize error criteria and area errors to assess whether the models outperform random 

walk (RW). Once compared with RW, models including MLP (and MLP-A), GMDH, 

RNN (and RNN-A), LSTM, GRU, NNET (and NNET-A), KNN, NNETTS, and FC 

(Version 1)-EIG2 consistently perform poorly across all forecast horizons and periods, 

ranking at the bottom according to total error criteria (such as TRMSFE). Besides, the 

lackluster performance of some recurrent ANNs might be attributed to the large number 

of parameters that require an estimation. In these models, increasing the number of epochs 

does not improve forecasts. 

According to our further results, models such as ARFIMA, ARIMA, LLAR-LSTAR-

SETAR, GRNNTSF, BOOSTING, RF-C, RF-M, and RF-HP (RF-AR in the United 

States), along with all models of FC (Version 2) and FC (Version 1)-EIG1, FC (Version 

1)-SA, FC (Version 1)-TA, FC (Version 1)-WA, FC (Version 1)-INVW, FC (Version 1)-

MED, FC (Version 3)-CLS, FC (Version 3)-SA, FC (Version 3)-TA, FC (Version 3)-

WA, and FC (Version 3)-INVW display greater inaccuracies with respect to the other 

models within the same approaches. Additionally, the FC (Version 1)-EIG3 produces 

exactly the same forecasts as RW. Thus, we exclude these models from further 

comparisons. Accordingly, we select the alternative epoch/iteration providing the best 

forecasts among the ELM, ENN, JNN, and NNETAR models while excluding the rest. 

We conclude that the most successful model compared to the RW in all countries is FC 
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(Version 1)-CLS. This model, which makes fewer forecast errors compared to RW in 

most day data, also surpasses RW in the Diebold-Mariano tests (except for the United 

States sample). The ETS/TBATS and FC (Version 4) models follow the FC (Version 1)-

CLS model. Furthermore, the EL-based models in Great Britain and Italy are effective 

for longer forecast horizons where they outperform RW in all tests.  

One should note that while the AR(1) model used by Diebold and Li (2006) is effective 

for short-term forecasting; using Auto ARIMA might yield even better results. 

Accordingly, one notable finding of this study is that among all the models under 

investigation, those incorporating autoregressive algorithms, such as NNETAR, and RF-

AR, whether selected or eliminated, tend to perform better compared to the other models 

in their respective categories. In terms of the forecast horizons, our results show that the 

FC (Version 3)-MED produces the best forecasts for Nelson-Siegel Model’s β0 factor, 

which refers to the long term, in both the short- and medium-forecast horizons. In 

contrast, the FC (Version 1)-CLS and the RW model perform better for long-term 

forecasts. For the sum of β0 and β1, which refers to the short term, the FC (Version 3)-

MED gives the most accurate forecasts in short forecast horizons. Lastly, the FC (Version 

1)-CLS model is more effective for medium and long forecast horizons as it emphasizes 

fewer extreme errors.  

Looking at the business cycles, in times of economic or financial crisis, any data with RW 

approach produces a stable forecast which means it is of low variance and close to the 

average of sample, helping prevent misforecasts from impacting subsequent forecast 

periods. According to the Expectations Hypothesis, long-term yields also follow RW as 

long as the short-term yields follow an RW path (Mishkin, 2007). One research on yield 

curve forecasting by Guidolin and Thornton (2008) demonstrates that the RW method 

yields better results for long- and short-term horizons. However, in this study, we identify 

a forecast combination approach that outperforms RW. 

In this thesis, we also achieve a forecastable λ factor with minimal error. Accordingly, 

we do not isolate this factor from its economic and theoretical context, which ensures a 

strong correlation between the β parameters and latent factors of the yield curve. As a 

result, our forecasts typically demonstrate only slight deviations from actual data, apart 
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from those caused by the inherent structures of the models. We note that models 

forecasted for the United States, where the λ factor is not smoothed using the HP filter, 

tend to perform less effectively with respect to those for other countries. This finding 

could be attributed to the extreme fluctuations in United States data in more recent 

periods, which contribute to higher errors in the λ factor across all the models. 

This study presents several key findings to the related literature. First, we develop a 

variable λ approach that offers a better fit for yield data with respect to that with the 

constant λ method, resulting in a more flexible yield curve. Second, we identify 

autoregressive models that perform better than the AR(1) model. Third, our ANN models 

do not consistently outperform the other individual forecasting models. Fourth, we 

enhance the forecasts from the autoregressive model using ensemble learning-based 

methods. Finally, we conclude that some FC approaches outperform RW models. 

Additionally, we observe that using ANN models as inputs improves the forecasts of the 

FC models. 

Results of this study provide several significant conclusions and insights. First of all, 

suppose that an individual model encounters high forecast errors while the training data 

does not exhibit extreme errors. In such case, the overall error of the forecast combination 

model might increase. Yet, if the model consistently produces extreme forecast errors, its 

weight in forecast combination decreases, leading to improved forecasts. Thus, our results 

suggest selecting individual models with stable forecasting performance and utilizing 

them as inputs in forecast combinations in order to benefit from the diversity of models. 

Once we examine the results of the forecast combinations, models with high and variable 

errors, such as RNN in FC (Version 1), reduce the efficiency of the forecasts. On the other 

hand, the FC (Version 1)-CLS model, which excludes these models makes better 

forecasts. Moreover, the ANN models show significant improvements in forecast 

accuracy, particularly in shorter horizons for Version 2 of FC and across all horizons for 

Version 3 of FC. 

Next, one should theoretically expect that the Vector Autoregression (VAR) model yield 

the best results because of the relationship between the Nelson-Siegel (NS) factors. 

However, in this thesis, we find that the weak relationship between these NS factors 
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hinders the effectiveness of the VAR model. Furthermore, the VAR model requires 

estimating more parameters than autoregressive models where it seems that the 

relationship between the NS factors is not sufficiently robust for optimal parameter 

estimation. Additionally, we assert that increasing the number of epochs or iterations in 

ANN models has an inconsistent impact on forecasting. In this study, the models 

developed with varying epochs/iterations demonstrate that increasing these numbers does 

not necessarily improve the forecasting performance. Relatedly, the variability in 

outcomes across different countries, along with the lack of a theoretical foundation for 

this choice, could be defined as a limitation of this study.  

One should further note that models of the yield curve constructed from simple data may 

struggle to fully incorporate interest rate dynamics. That is although the term structure of 

interest rates is expected to accurately reflect the rational expectations of economic 

agents, numerous economic and international factors influence the yield curve dynamics. 

Thus, in a further research, we can explore models such as the Nonlinear Autoregressive 

Exogenous (NARX) model which uses exogenous data. Besides, within the context of 

ANNs, we can also enhance network complexity, utilize more lagged values, and improve 

the training data as future work. Note that, ANNs are designed as forecast-oriented 

structures, and many studies have shown that they can identify patterns. They forecast 

bending over long horizons more effectively compared to models such as Box-Jenkins, 

which tend to converge to a constant over time in shorter horizons. In this study, ANNs 

generally underperform other models achieving this capability even if we can see this 

effectiveness occasionally. This study further shows that some models which forecast 

factors poorly can produce good yield curve forecasts. This is because of the fact that 

these factors can cancel each other's forecasting errors due to their connections within a 

model. Such connections specifically arise between β0 and β1 of Nelson-Siegel, where the 

errors from the two datasets can eliminate each other's total error within a model.  

Last but not least, in this study, the Extreme Learning Machine (ELM) model performs 

better than other ANNs. This result suggests that it might be useful to create algorithms 

that blend different methods instead of adhering to traditional ANN structures, such as 

specific neurons and linear structure found in the ELM model. Besides, in a future 

framework we may develop hybrid models that can simultaneously estimate the 
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parameters from multiple models within one model. Moreover, in future research, we may 

also check ANN structures that combine different types of neurons and functions within 

their design.  

Overall, the results of this study show that although the theoretical framework of the 

models utilized to forecast yield curves is robust, they rarely demonstrate statistical 

success across our entire sample. Most models tend to achieve partial success in certain 

forecast periods or horizons. Despite the failures of most individual models, it can be 

argued that some of them may still be useful thanks to their statistical information, which 

can enhance the efficiency of other models when combined. We can harness this utility 

by combining forecasts or incorporating various components, such as the forecast 

horizon, period, and the impact of different factors on the overall success of the forecasts. 

To sum up, this thesis briefly demonstrates that better forecasts of yield curves could be 

obtained by employing forecast combinations, rather than using conventional and non-

conventional individual models. Furthermore, including the λ parameter of the NS factors 

among the factors to be forecasted rather than taking it as constant, improves the forecast 

performance. 
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APPENDIX 1: SMOOTHING METHODS 

A.1.a. SMOOTHING METHODS 

x: time series, L: level component, b: growth component, s: seasonal component.      

*Simple Exponential Smoothing: 1≥ α≥0.  

𝑦̂𝑡+1 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑦̂𝑡                      (A.1.1) 

*Holt Linear Trend Exponential Smoothing:  

𝑦̂𝑡+ℎ = ℓ̂𝑡 + ℎ𝑏̂𝑡                             (A.1.2) 

ℓ̂𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)𝑦̂𝑡                              (A.1.3) 

𝑏̂𝑡 = 𝛽(ℓ̂𝑡 − ℓ̂𝑡−1) + (1 − 𝛽)𝑏̂𝑡−1                (A.1.4) 

It is used in time series with trend. It performs level and trend update. 1> 𝛼, 𝛽>0. Initial 

values are found by linear trend regression. 𝛼: smoothing coefficient of the mean, 𝛽 

smoothing coefficient of the slope. Holt's two-parameter exponential smoothing 

technique does not use a second smoothing formula and only performs trend smoothing.  

*Damped Trend Exponential Smoothing:  

𝑦̂𝑡+ℎ = ℓ̂𝑡 + (∅ + ∅
2 + ∅ℎ)𝑏̂𝑡                         (A.1.5) 

ℓ̂𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)(ℓ̂𝑡−1 − ∅𝑏̂𝑡−1)                 (A.1.6) 

𝑏̂𝑡 = 𝛽(ℓ̂𝑡 − ℓ̂𝑡−1) + (1 − 𝛽)∅𝑏̂𝑡−1               (A.1.7) 

It adds the damping parameter to the Holt smoothing.   

* Holt-Winters' Exponential Smoothing:    

1) Additive:  

𝑦̂𝑡+ℎ = ℓ̂𝑡 + ℎ𝑏̂𝑡 + 𝑠𝑡+ℎ−𝑚(𝑘+1)                                   (A.1.8) 

ℓ̂𝑡 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼)(ℓ̂𝑡−1 + 𝑏̂𝑡−1)                        (A.1.9) 
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𝑏̂𝑡 = 𝛽(ℓ̂𝑡 − ℓ̂𝑡−1) + (1 − 𝛽)𝑏̂𝑡−1                          (A.1.10) 

𝑠𝑡 = 𝛾(𝑦𝑡 − ℓ̂𝑡−1 − 𝑏̂𝑡−1) + (1 − 𝛾)𝑠𝑡−𝑚                    (A.1.11) 

It is used for time series with trend and seasonality. It adds a seasonal component update 

to the Holt smoothing and a seasonal term to the forecast equation. m: period, k: integer 

part of (h-l)/m. The initial value is found by the additive decomposition method. This 

system of equations is used for point forecasts in all methods.  

2) Multiplicative:  

𝑦̂𝑡+ℎ = (ℓ̂𝑡 + ℎ𝑏̂𝑡)𝑠𝑡+ℎ−𝑚(𝑘+1)                             (A.1.12) 

ℓ̂𝑡 = 𝛼(𝑦𝑡 𝑠𝑡−𝑚⁄ ) + (1 − 𝛼)(ℓ̂𝑡−1 + 𝑏̂𝑡−1)                  (A.1.13) 

𝑏̂𝑡 = 𝛽(ℓ̂𝑡 − ℓ̂𝑡−1) + (1 − 𝛽)𝑏̂𝑡−1                        (A.1.14) 

𝑠𝑡 = 𝛾(𝑦𝑡 (ℓ̂𝑡−1 − 𝑏̂𝑡−1)⁄ ) + (1 − 𝛾)𝑠𝑡−𝑚                  (A.1.15) 

In two methods Λs are found by MSE minimization.   

*HW damped exponential smoothing update equations:  

1) Additive:  

𝑦̂𝑡+ℎ = ℓ̂𝑡 + (∅ + ∅
2 + ∅ℎ)𝑏̂𝑡 + 𝑠𝑡+ℎ−𝑚(𝑘+1)                   (A.1.16) 

ℓ̂𝑡 = 𝛼(𝑦𝑡 − 𝑠𝑡−𝑚) + (1 − 𝛼)(ℓ̂𝑡−1 + ∅𝑏̂𝑡−1)                 (A.1.17) 

𝑏̂𝑡 = 𝛽(ℓ̂𝑡 − ℓ̂𝑡−1) + (1 − 𝛽)∅𝑏̂𝑡−1                       (A.1.18) 

𝑠𝑡 = 𝛾(𝑦𝑡 − ℓ̂𝑡−1 − ∅𝑏̂𝑡−1) + (1 − 𝛾)𝑠𝑡−𝑚                   (A.1.19) 

2) Multiplicative:  

𝑦̂𝑡+ℎ = (ℓ̂𝑡 + (∅ + ∅
2 + ∅ℎ)𝑏̂𝑡)𝑠𝑡+ℎ−𝑚(𝑘+1)                   (A.1.20) 

ℓ̂𝑡 = 𝛼(𝑦𝑡 𝑠𝑡−𝑚⁄ ) + (1 − 𝛼)(ℓ̂𝑡−1 + ∅𝑏̂𝑡−1)                  (A.1.21) 

𝑏̂𝑡 = 𝛽(ℓ̂𝑡 − ℓ̂𝑡−1) + (1 − 𝛽)∅𝑏̂𝑡−1               (A.1.22) 
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𝑠𝑡 = 𝛾(𝑦𝑡 (ℓ̂𝑡−1 − ∅𝑏̂𝑡−1)⁄ ) + (1 − 𝛾)𝑠𝑡−𝑚                    (A.1.23) 

Simple Exponential Smoothing can be expressed as: ɛt= xt -ℓ̂𝑡−1 or   

𝑦𝑡 = ℓ̂𝑡−1 + 𝜀1;           ℓ̂𝑡 = ℓ̂𝑡−1 + 𝛼𝜀1                 (A.1.24) 

In multiplicative:  

𝑦𝑡 = ℓ̂𝑡−1(1 + 𝜀1);         ℓ̂𝑡 = ℓ̂𝑡−1(1 + 𝛼𝜀1).              (A.1.25) 

Error here calculated by  

𝜀𝑡 =
𝑥𝑡−𝑥̂𝑡−1

𝑥̂𝑡−1
                        (A.1.26) 

(Eğrioğlu & Baş, 2020; İslamoğlu, 2020; Hyndman & Khandakar, 2008) 
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A.1.b. ETS (N:None; A: Additive, Ad: Additive Damped) 

 

Source: Hyndman and Athanasopoulos (2021). 

A.1.c. TBATS 

 Reduced forms:  ϕp(L)η(L)y(ω)
t = θq(L)δ(L)εt, L: lag operatör. 

 

Source: De Livera et al. (2011). 
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APPENDIX 2: MATHEMATICAL STRUCTURE OF ARTIFICIAL 

NEURAL NETWORK 

A.2.a. EPOCH 

The number of epochs is the number of times the entire training sample is used in the 

model (Kožíšek, 2018).  The selection of epochs is a critical and problematic issue in 

training models. Researchers often study the impact of the number of epochs on training 

performance. One key question is whether increasing the number of epochs always leads 

to improved performance. For instance, Namın and Namın (2018) demonstrated that 

increasing the number of epochs in LSTM had a stochastic effect on the results. To 

address the challenge of selecting the optimal number of epochs, researchers explore 

alternative parameters, adjust the step size, modify error and activation functions, and 

consider different algorithms. (Lewis, 2015).  

At the beginning of network training, the error usually decreases rapidly. (See Figure 6). 

When the error of the network starts to increase again, the model suffers from overfitting 

if it is not stopped early. The trained model obtained as a result of early stopping is used 

in the test data. This is one of the effective methods against overfitting (Lewis, 2016). 

However, there is a risk that the this point may be the local optimum instead of the global 

optimum. Another solution to this problem is to limit the number of iterations (Öztemel, 

2016). 

A.2.b. BATCH SIZE 

 In machine learning training, the data is divided into batches, with each batch 

representing a subset of the training data (Namın & Namın, 2018). In traditional 

Backpropagation used in artificial neural networks (ANNs), the gradient is calculated for 

each neuron and epoch. However, in the case of large networks or datasets, this process 

requires considerable computation. Batching involves computing the gradient for several 

training data or groups of training data together (simultaneously) rather than for each 

individual training data. When using batching in training, multiple samples are passed in 

forward/backward signal transmission within a single epoch (Lewis, 2017a). 
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For recurrent neural networks (RNNs), the batch size refers to the number of training 

samples used in the back-and-forth transmission of RNN signals in order to perform 

weight updates. In ML, a large batch of input data requires more computation and 

memory, whereas a small batch can lead to highly variable parameters and local minima 

problems (Hoogteijling, 2020). Choosing a larger size reduces the generalization and 

performance ability as a result of less use in the training of certain input group 

characteristics that need to be explored in the network (Kožíšek, 2018).  

A.2.c. DELTA AND DELTA BAR DELTA LEARNING 

Some ANN models used in the study were trained with delta and delta bar delta learning 

rules. Delta learning rule aims to minimize the difference between the output and target 

values. For this, it revises the weight by taking the derivative of error (E) with respect to 

its weight. Weight revision formulas:  

∆𝑤𝑖𝑗 = η
𝜕𝐸

𝜕𝑤𝑖𝑗
= η(𝑜𝑗 − 𝑑𝑗)

𝜕𝑓(𝑛𝑒𝑡𝑗)

𝜕𝑛𝑒𝑡𝑗
𝑥𝑖                   (A.2.1) 

𝑜𝑗 = 𝑓(𝑛𝑒𝑡𝑗)                          (A.2.2) 

𝐸 =
1

2
(𝑜𝑗 − 𝑑𝑗)

2                      (A.2.3) 

η: learning parameter, x: neuron input, o: neuron output, d: target value ( )ij: from neuron 

i to neuron j, f: aktivation function.  The weights are changed at each calculation by the 

delta rule expressed as the system of equations  

wi+1=wi+∆wi                       (A.2.4) 

∆wi=η×xi×e                       (A.2.5) 

(Jacovides, 2008) 

In the delta bar delta learning rule, the learning parameter is found separately for each 

weight. Weight revision formulas: 
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∆w𝑖𝑗
(𝑘)
= η𝑖𝑗

(𝑘)
(𝑘)(o𝑗

(𝑘)
− 𝑑𝑗

(𝑘)
)
𝜕𝑓(𝑛𝑒𝑡𝑗

(𝑘)
)

𝜕𝑛𝑒𝑡
𝑗
(𝑘) 𝑥𝑖                  (A.2.6) 

η𝑖𝑗
(𝑘)
= η𝑖𝑗

(𝑘)
− ∆η𝑖𝑗

(𝑘)
                          (A.2.7) 

∆η𝑖𝑗
(𝑘)
=

{
 
 

 
 𝐴               ; 𝐷𝑖𝑗

(𝑘−1) 𝜕𝐸

𝜕𝑤
𝑖𝑗
(𝑘) > 0

−𝜑η𝑖𝑗
(𝑘)
; 𝐷𝑖𝑗

(𝑘−1) 𝜕𝐸

𝜕𝑤
𝑖𝑗
(𝑘) < 0

         0     ;  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                 

                    (A.2.8) 

𝐷𝑖𝑗
(𝑘−1)

= (1 − 𝜃)
𝜕𝐸

𝜕𝑤
𝑖𝑗
(𝑘−1) + 𝜃

𝜕𝐸

𝜕𝑤
𝑖𝑗
(𝑘−2)                     (A.2.9) 

k: iteration number. φ, θ and A: constant.  (Eğrioğlu et al., 2020).  

A hidden layer is used in ANNs to model data with a piecewise continuous function 

relationship between input and output. Hornik et al. stated that an ANN with hidden layers 

that converge to this continuous function can be found in a data space of any dimension 

(Lewis, 2017a). 

Optimization can be challenging when the error function is neither convex nor concave. 

If the second-order derivative (Hessian matrix) of the error function is not positive or 

negative semi-definite, the training can become stuck at local minima. The minimum 

error found by the network is influenced by the error surface, meaning that it depends on 

where the network starts training on this surface.(Lewis, 2017a). 

A.2.d. GRADIENT DESCENT (GD) 

Since slope is the derivative of curves in mathematics, derivatives of the loss function are 

used in this approach (Gürsakal, 2017). The GD attempts to minimize the network error 

by an iterative update of the parameters. In GD, weights increase (decrease) if the partial 

derivative is negative (positive). The learning rate determines the size of the steps of these 

updates (Lewis, 2017a). In GD, the learning rate can be made adjustable instead of fixed.  

(Alpaydın, 2010).  
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The search direction, step length (𝑎) and new output are calculated at each iteration until 

the stopping condition is met or up to a certain number.  

𝑑(𝑘) = ∇𝑓(𝑥(𝑘)                            (A.2.10) 

𝑥(𝑘+1) = 𝑥(𝑘) + 𝑎(𝑘)𝑑(𝑘)                    (A.2.11) 

d(k): search direction, x(k): point, ∇: gradient (Eğrioğlu et al., 2020). 

Iterative optimization is performed to find the minimum value of RSS. For this purpose, 

the weight function in the cost gradient (objective function) is tried to be minimized with 

a quadratic solution using Taylor's Theorem (Ghatak, 2017). 

If the derivative of the error function can be taken in ANN,  

𝐸𝑡(𝑤|𝑥, 𝑦) =
1

2
(𝑦 − 𝑜)2 =

1

2
[𝑦 − (𝑤𝑜)]2                 (A.2.13) 

equality represents the error, while in the gradient descent,  

∆𝑤(𝑘) = 𝜂(𝑦 − 𝑜)𝑥(𝑘)                       (A.2.14) 

𝑤𝑘+1=𝑤𝑘+∆𝑤𝑘                             (A.2.15) 

indicates revision (x,y): data sample, k=0,…,m is weight revision (Alpaydın, 2010). If 

𝑤(𝑘) takes a value that underestimates the effect of x in the regression, then the effect of 

feature j (i.e. network connectivity) on (𝑦 − 𝑜) becomes positive. The 𝑤(𝑘+1) value will 

be increased (Ghatak, 2017). 

In GD, each iteration is done with the entire dataset. Since recalculating the gradients 

with samples with similar data structures in these updates will lead to the same results, 

stochastic gradient descent (SGD) can be applied by randomly selecting single samples 

at each iteration to avoid unnecessary computation. This method usually provides much 

faster training. SGD with decreasing learning rate converges in the same way as GD. It 

finds general or global minima in non-convex loss functions (Lewis, 2017a).  
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Newton Method uses a quadratic approximation for the objective function. Search 

direction, which is the difference with the Gradient Descent approach,  is expressed with 

𝑑(𝑘) = −[∇2𝑓(𝑥(𝑘))]
−1
∇𝑓(𝑥(𝑘))            (A.2.16) 

∇2𝑓(𝑥(𝑘)): is the Hessian matrix of the objective function at x(k). If this matrix is positive 

definite, d(k) indicates a decrease. Weight regression: 

𝑤(𝑘+1) = 𝑤(𝑘) − [∇2𝑓(𝑤(𝑘))]
−1
∇𝑓(𝑤(𝑘))                    (A.2.17) 

The algorithm is the same as the GD except for the search direction (Eğrioğlu et al., 2020). 

Levenberg-Marquardt, which revises the weights only once in an epoch, is an algorithm 

that combines the steepest descent method, which finds the global optimum most shortly 

and aims for the smallest steps, and the Gauss-Newton method, which finds the global 

optimum by the second order derivative of the total error function (Szenczi, 2016). Gauss-

Newton algorithm is wanted to avoid the disadvantages of this large dimension. Weight 

revision:  

𝑤(𝑘+1) = 𝑤(𝑘) − [𝐽′𝐽 + 𝜇]−1𝐽′𝑒                      (A.2.18) 

Jacobian matrix (J), μ (Marquardt constant) (Eğrioğlu at al., 2020). The Levenberg-

Marquardt training algorithm can be fast with good data scaling, as in steepest descent, 

and can be advantageous with large data, as in Gauss-Newton (Szenczi, 2016).  

The LM algorithm does not calculate the Hessian matrix. It is a second-order derivative, 

so it calculates fast. The Jacobian matrix is calculated. It is the first-order derivative of 

the network errors. It makes Newton-like adjustments (Ruiz et al., 2016). 

A.2.e. BACKPROPAGATION (BP) 

The gradual adjustment of the weights backward from the output to minimize the error 

sum of the network is called error propagation or backpropagation (Lewis, 2017a). BP 

(generalized delta rule) is the search for a gradual reduction with the steepest descent 
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approach on the surface of the error space (See Figure 6) to minimize the sum of the error 

squares (Pade & Mackworth, 2010). It optimizes the preferred error function according 

to the characteristics of the data set without constraints (Günay et al., 2007).    

BP makes repeated updates with the derivative of the function used in the network to 

converge to the minimum error in ANN (Eklind, 2020). BP calculates the distance 

between the output of the ANN and the target output. It then uses this error measure to 

determine the associated error of the previous neurons. This error propagation is carried 

back to the input layer. The backward error propagation is then utilized to adjust the 

weights and intercepts (Lewis, 2017a). 

Weight revision of k neurons of the hidden layer:  

∆wj,k(t)=η×yh(t)×δh(t)                             (A.2.19) 

The error reduction term δk(t), which replaces e(t) in the perceptron approach, is obtained 

by multiplying the derivative of the activation function by the error (ϵ). 

δℎ(t) =
𝜕y𝑘(t)

𝜕𝑥ℎ(t)
× ϵℎ(t)                          (A.2.20) 

(Jacovides, 2008). The derivatives of the error function only require multiplying the deltas 

by the inputs (Hansson, 2017).  Changes are made in the bias value with the same formula 

and procedures as in the weight. Error calculation of hidden layer neuron: 

δ𝑗(t) =
𝜕yℎ(t)

𝜕xℎ(t)
× ∑ δℎ(𝑡)

𝑙
𝑘=1 𝑤𝑗,ℎ(𝑡)                 (A.2.21) 

l: number of output neurons (Jacovides, 2008).  

A.2.f. BACKPROPAGATION REVISION FORMULAS 

Hidden-Output layers weights (v instead of w to avoid confusion with input-hidden layer): 

𝑣𝑗
(𝑡+1)

= 𝑣𝑗
(𝑡)
+ ∆𝑣𝑗

(𝑡+1)
= 𝑣𝑗

(𝑡)
+ 𝜂 (−

𝜕𝐸

𝜕𝑣𝑗
)                    (A.2.22) 
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𝜕𝐸

𝜕𝑣𝑗
=

𝜕𝐸

𝜕𝑜𝑙

𝜕𝑜𝑙

𝜕𝑛𝑒𝑡𝑜

𝜕𝑛𝑒𝑡𝑜

𝜕𝑣𝑗
                             (A.2.23) 

𝜕𝐸

𝜕𝑣𝑗
= −(𝑑𝑙 − 𝑜𝑙)⏟      

𝜕𝐸

𝜕𝑜𝑙

𝑜𝑙⏟
𝜕𝑜𝑙
𝜕𝑛𝑒𝑡𝑜

(1 − 𝑜𝑙)𝑜𝑑𝑗⏟      
𝜕𝑛𝑒𝑡𝑜
𝜕𝑣𝑗

                 (A.2.24) 

𝑣𝑗
(𝑡+1)

= 𝑣𝑗
(𝑡)
+ 𝜂(𝑑𝑙 − 𝑜𝑙)𝑜𝑙(1 − 𝑜𝑙)𝑜𝑑𝑗                     (A.2.26) 

Output layer bias weights: 

𝑏𝑜
(𝑡+1)

= 𝑏𝑜
(𝑡)
+ 𝜂 (−

𝜕𝐸

𝜕𝑏𝑜
)                       (A.2.27) 

𝜕𝐸

𝜕𝑏𝑜
=

𝜕𝐸

𝜕𝑜𝑙

𝜕𝑜𝑙

𝜕𝑛𝑒𝑡𝑜

𝜕𝑛𝑒𝑡𝑜

𝜕𝑏𝑜
                          (A.2.28) 

𝜕𝐸

𝜕𝑏𝑜
= −(𝑑𝑙 − 𝑜𝑙)𝑜𝑙(1 − 𝑜𝑙)                    (A.2.29) 

𝑏𝑜
(𝑡+1)

= 𝑏𝑜
(𝑡)
+ 𝜂(𝑑𝑙 − 𝑜𝑙)𝑜𝑙(1 − 𝑜𝑙)                  (A.2.30) 

Input-hidden layers weights:  

𝑤𝑖𝑗
(𝑡+1)

= 𝑤𝑖𝑗
(𝑡)
+ ∆𝑤𝑖𝑗

(𝑡+1)
= 𝑤𝑖𝑗

(𝑡)
+ 𝜂 (−

𝜕𝐸

𝜕𝑤𝑖𝑗
)         (A.2.31) 

𝜕𝐸

𝜕𝑤𝑖𝑗
=

𝜕𝐸

𝜕𝑜𝑙

𝜕𝑜𝑙

𝜕𝑛𝑒𝑡𝑜

𝜕𝑛𝑒𝑡𝑜

𝜕𝑜𝑑𝑗

𝜕𝑜𝑑𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑤𝑖𝑗
                   (A.2.32) 

𝜕𝐸

𝜕𝑤𝑖𝑗
= −(𝑑𝑙 − 𝑜𝑙)𝑜𝑙(1 − 𝑜𝑙)𝑣𝑗𝑜𝑑𝑗(1 − 𝑜𝑑𝑗)𝑥𝑙𝑖                   (A.2.33) 

𝑤𝑖𝑗
(𝑡+1)

= 𝑤𝑖𝑗
(𝑡)
+ 𝜂(𝑑𝑙 − 𝑜𝑙)𝑜𝑙(1 − 𝑜𝑙)𝑣𝑗

(𝑡+1)
𝑜𝑑𝑗(1 − 𝑜𝑑𝑗)𝑥𝑙𝑖          (A.2.34) 

Hidden layer bias weights: 

𝑏𝑗
(𝑡+1)

= 𝑏𝑖𝑗
(𝑡)
+ 𝜂 (−

𝜕𝐸

𝜕𝑏𝑖𝑗
)                         (A.2.35) 

𝜕𝐸

𝜕𝑏𝑗
=

𝜕𝐸

𝜕𝑜𝑙

𝜕𝑜𝑙

𝜕𝑛𝑒𝑡𝑜

𝜕𝑛𝑒𝑡𝑜

𝜕𝑜𝑑𝑗

𝜕𝑜𝑑𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑛𝑒𝑡𝑗

𝜕𝑏𝑗
                             (A.2.36) 
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𝜕𝐸

𝜕𝑏𝑗
= −(𝑑𝑙 − 𝑜𝑙)𝑜𝑙(1 − 𝑜𝑙)𝑣𝑗𝑜𝑑𝑗(1 − 𝑜𝑑𝑗)                   (A.2.37) 

𝑏𝑑𝑗
(𝑡+1)

= 𝑏𝑑𝑗
(𝑡)
+ 𝜂(𝑑𝑙 − 𝑜𝑙)𝑜𝑙(1 − 𝑜𝑙)𝑣𝑗

(𝑡+1)
𝑜𝑑𝑗(1 − 𝑜𝑑𝑗)           (A.2.38) 

(Eğrioğlu et al., 2020).  

A.2.g. STANDARD BACK PROPAGATION (BP) ALGORITHM  

1) Initial parameters are determined (η, ε, maxit).  

2) t=0 (iteration)  

3) k=0 (cycle)  

4) k=k+1  

5) If k<maxit, go to "6". If not, the process is finished.  

6) In iterations except, k=0 If the condition |𝑇𝐸𝑘 − 𝑇𝐸𝑘−1| < 𝜀 is met, the process is 

finished. TE: Total Error. If not, it is continued. 𝑇𝐸𝑘 = ∑
1

2
𝑒𝑙
2𝑛

𝑙=1 = ∑
1

2
(𝑜𝑙 − ℎ𝑙)

2𝑛
𝑙=1 .  

7) l=0 learning counter.  

8) l=l+1  

9) t=t+1  

10) If l<n, go to "11", otherwise go to "4".  

11) For the current training sample, the output of the network is calculated with steps "3"-

"6".  

12) Weights and biases between the hidden and output layer are revised. 

13) Weights and biases between input and hidden layer are updated (Eğrioğlu et al., 

2020). 

While BP is simplified as the derivative of the error function with respect to the weights 

in feed-forward ANN, this derivative is multiplied in recurrent ANN in parallel with its 

repetitive structure (Lewis, 2017a). Global minimum avoidance and convergence speed 

efficiency in BP are limited (Adhikari & Agrawal, 2013b). 
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A.2.h. MOMENTUM 

The learning rate determines how quickly the parameters change in each cycle, while the 

momentum determines how quickly the previously calculated parameter values are 

updated. If parameter changes in the same direction happen one after the other, these 

changes accumulate and can potentially skip local minima (Hoogteijling, 2020). A large 

learning rate leads to fast learning but may cause training to miss the global minimum, 

resulting in poor performance or no learning at all. Conversely, choosing a small learning 

rate may lead to a longer time to find the minimum (Lewis, 2017a).  

Momentum adds the previous revision to the weight revision at a certain rate.  

𝑤𝑖𝑗
(𝑘+1) = 𝑤𝑖𝑗

(𝑘) + ∆𝑤𝑖𝑗
(𝑘+1) + ∆γ𝑤𝑖𝑗

(𝑘)
                 (A.2.39) 

γ: momentum constant. When the training reaches the optimal point, the derivative sign 

changes, due to the significant oscillation of the error surface. This change has an inverse 

effect on the weight adjustment, reducing the step length or increasing it.(Eğrioğlu et al., 

2020). 

With a high rate of momentum, there is a risk of skipping global minima along with local 

minima. If chosen at a low rate, it may lose the ability to skip local minima. Finding the 

appropriate optimum value by trial and error may be preferable. The learning rate should 

be reduced if the momentum is chosen high (Lewis, 2017a). Momentum memorizes the 

values of the previous weight update. It flattens the error surface (Alpaydın, 2010).  
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APPENDIX 3:  SINGLE HIDDEN LAYER FEED-FORWARD 

NEURAL NETWORK (SLFN)  

N: number of random samples, (𝑥𝑖 , 𝑡𝑖): random samples.With random hidden neurons 

∑ 𝑊𝑖𝑓𝑖(𝑥𝑗)
𝑁̃
𝑖=1 = ∑ 𝑊𝑖𝑓(𝑤𝑖 ∙ 𝑥𝑗 + 𝑏𝑖)

𝑁̃
𝑖=1 = 𝑜𝑗 ,    𝑗 = 1, … , 𝑛              (A.3.1) 

𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛]
𝑇 ∈ 𝑅𝑛, 𝑡𝑖 = [𝑡𝑖1, 𝑡𝑖2, … , 𝑡𝑖𝑚]

𝑇 ∈ 𝑅𝑚                  (A.3.2) 

𝑁̃: number of hidden neurons, f(·): activation function. 𝑤𝑖 = [𝑤𝑖1, 𝑤𝑖2, … , 𝑤𝑖𝑛]
𝑇: 

connection weight of input neurons with hidden neuron i. 𝑊𝑖 = [𝑊𝑖1,𝑊𝑖2, … ,𝑊𝑖𝑚]
𝑇: 

weights connecting hidden neuron i to the output neuron, bi: bias of hidden neuron i. 

SLFN error: ∑ ‖𝑜𝑗 − 𝑡𝑗‖
𝑁
𝑗=1 = 0. If N neurons are randomly selected in this model 

∑ 𝑊𝑖𝑓(𝑤𝑖 ∙ 𝑥𝑗 + 𝑏𝑖)
𝑁̃
𝑖=1 = 𝑡𝑗  equality is obtained. HW=T matrix. 

𝐻(𝑤1, … , 𝑤𝑁̃ , 𝑏1, … , 𝑏𝑁̃ , 𝑥1, … , 𝑥𝑁) =

[
 
 
 
 
𝑓(𝑤1 ∙ 𝑥1 + 𝑏1)………𝑓(𝑤𝑁̃ ∙ 𝑥1 + 𝑏𝑁̃)
………………………………………… . . .
………………………………………… . . .
…… . . ………………………………… . . .
𝑓(𝑤1 ∙ 𝑥𝑁 + 𝑏1)………𝑓(𝑤𝑁̃ ∙ 𝑥𝑁 + 𝑏𝑁̃)]

 
 
 
 

𝑁×𝑁̃

 

          ith hidden layer output                           (A.3.3) 

H: hidden layer output matrix.  

𝑊 =

[
 
 
 
 
𝑊1
𝑇

.

.

.
𝑊𝑁̃
𝑇
]
 
 
 
 

𝑁̃×𝑚

 and 𝑇 =

[
 
 
 
 
𝑡1
𝑇

.

.

.
𝑡𝑁
𝑇]
 
 
 
 

𝑁×𝑚

             (A.3.4) 

Let a standard SLFN network have N hidden neurons and an infinitely differentiable 

activation function. If this network is trained with N random (𝑥𝑖 ∈ 𝑅
𝑛, 𝑡𝑖 ∈ 𝑅

𝑚) samples, 

according to the continuous probability distribution 𝑤𝑖 ∈ 𝑅
𝑛, 𝑏𝑖 ∈ 𝑅 are randomly 

selected. From the output of the hidden layer ‖𝐻𝑊 − 𝑇‖ = 0 can be formulated. If ε>0 

is taken as a small number, there are the required number of 𝑁̃ ≤ 𝑁 making 

‖𝐻𝑁×𝑁̃𝑊𝑁̃×𝑚 − 𝑇𝑁×𝑚‖ < 𝜀 in the same way. 
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APPENDIX 4: ELM NETWORK 

Minimization of the cost function in SLFN, 

‖𝐻(𝑤̂1, … , 𝑤̂𝑁̃ , 𝑏̂1, … , 𝑏̂𝑁̃)𝑊̂ − 𝑇‖ = min
𝑤𝑖,𝑏𝑖,𝛽

‖𝐻(𝑤1, … , 𝑤𝑁̃ , 𝑏1, … , 𝑏𝑁̃)𝑊 − 𝑇‖  (A.4.1) 

According to this,  

𝐸 = ∑ (∑ 𝑊𝑖𝑓(𝑤𝑖 ∙ 𝑥𝑗 + 𝑏𝑖)
𝑁̃
𝑖=1 − 𝑡𝑗)

2
𝑁
𝑗=1                  (A.4.2) 

If we train SLFN according to this cost; 𝑤̂𝑖, 𝑏̂𝑖 , 𝑊̂(𝑖 = 1,… , 𝑁̃)  parameters can be found. 

*Gradient-based solution: If H is unknown, in gradient-based learning                           

weights and biases is revised with  

𝜔𝐾 = 𝜔𝐾−1 − 𝜂
𝜕𝐸(𝜔)

𝜕𝜔
                           (A.4.3) 

to minimize  

‖𝐻𝑊 − 𝑇‖ = 0                                 (A.4.4) 

𝜔 = (𝑤𝑖,𝑊𝑖, 𝑏𝑖): parameter set, η: learning rate.  

*Minimum norm least squares solution: In training, input weights and hidden layer bias 

can be left constant without revision. The H matrix can remain constant after initially 

assigning random parameters. The cost function minimization becomes linear. 

‖𝐻(𝑤1, … , 𝑤𝑁̃ , 𝑏1, … , 𝑏𝑁̃)𝑊̂ − 𝑇‖ = min
𝛽
‖𝐻(𝑤1, … , 𝑤𝑁̃ , 𝑏1, … , 𝑏𝑁̃)𝑊 − 𝑇‖   (A.4.5) 

With the cost function, 𝑊̂ is found. Solution of this equation is  

𝑊̂ = 𝐻†𝑇                       (A.4.6) 

𝐻† is the generalized inverse of H. If 𝑁̃ = 𝑁, when 𝑤𝑖, 𝑏𝑖 chosen at random H is an 

inverted square matrix and the SLFN error can approach zero with training. But most of 
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the time 𝑁̃ ≪ 𝑁 becomes. H is a non-square matrix. Therefore 𝑤𝑖, 𝑏𝑖,𝑊𝑖(𝑖 = 1,… , 𝑁̃) 

parameters and HW=T solution may not exist. In SLFN with N sigmoid hidden neurons, 

if bi is set optimally, it can be trained with N observations by assigning random weights. 

The number of hidden neurons required here must be  

∑ 𝑠𝑖
𝐿
𝑖=1 ≫ 𝑚𝑎𝑥𝑖(𝑠𝑖)                             (A.4.7) 

and common hidden neurons should not be shared. In ELM, SVD (singular value 

decomposition) can be used in any case to find the Moore-Penrose generalized inverse of 

matrix H. The iterative method contradicts the search and non-iteration property of ELM. 

The orthogonal project method can be used if HTH is not singular and  

H†=(HTH)-1HT                           (A.4.8) 

 (Huang et al., 2006). Regularized ELM is solved with  

𝑊 = 𝐻𝑇(
𝐼

𝜆
+ 𝐻𝐻𝑇)−1𝑇                     (A.4.9) 

I: unit matrix λ: regularization factor found by cross-validation in training (Zhu et al., 

2015). 
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APPENDIX 5: DECISION TREES 

In decision trees, similar data are partitioned in the same branch. In tree-based methods, 

the results of individual decision trees are combined. Individual decision trees have bias 

and variance problems (Hoogteijling, 2020). In traditional decision trees, a local optimum 

is found at each node. However, depending on the decision made at the next node, the 

result of the previous decision may be sub-optimal. Universal algorithms can only 

approximate The global optimum tree (Lewis, 2017b).  

The Classification and Regression Trees (CART) (Breiman et al., 1984) approach builds 

a model from the training sample for a fixed classifier or regression that makes piecewise 

predictions. It selects the good tree using a penalization criterion.  

The decision tree (DT) regression approach divides the feature space into subgroups or 

leaves. Simple regressions model the data samples grouped in each leaf. In particular, a 

network node is taken to process all the data and then partitioned according to its optimal 

function. 

𝜃∗ = argmin
𝜃

𝑁𝐿

𝑁𝑎
𝐻(𝐵𝐿(𝜃)) +

𝑁𝑅

𝑁𝑎
𝐻(𝐵𝑅(𝜃))                       (A.5.1) 

𝑁𝐿 , 𝑁𝑅 ∈ [𝑁𝑚𝑖𝑛, 𝑁𝑎]. L: left, R: right, N: number of data. For each leaf a, regression 

model is constructed with the univariate observation mean. 

𝑦̂ =
1

𝑁𝑎
∑ 𝑦𝑎,𝑖
𝑁𝑎
𝑖=1                           (A.5.2) 

𝑦̅𝑎,𝑗 =
1

𝑁𝑎
∑ 𝑦𝑎,𝑖,𝑗
𝑁𝑎
𝑖=1 , ∀𝑗 = 1, … ,𝑚                  (A.5.3) 

𝐻(𝑥𝑎) =
1

𝑚𝑁𝑎
∑ ∑ (𝑦𝑎,𝑖,𝑗 − 𝑦̅𝑎,𝑗)

2𝑁𝑎
𝑖=1

𝑚
𝑗=1                        (A.5.4) 

(Burger & Moura, 2015). 

Entropy, one of the methods used in data partitioning in decision trees, measures 

randomness.  
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𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋) = ∑ −𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)
𝑘
𝑖=1                       (A.5.5) 

pk: the probability that an sample belongs to class k.  

𝑝𝑖 =
|𝐶𝑖,𝑋|

|𝑋|
                            (A.5.6) 

Entropy can be considered as a measure to find homogeneity (Lewis, 2017b).  

The ID3 Decision Tree approach is the simplest decision tree approach using categorical 

attributes. The criterion for tree building is information gain.  

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝐺𝑎𝑖𝑛(𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐴(𝑋)           (A.5.7) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐴(𝑋) = ∑
|𝑋𝑗|

|𝑋|
𝑣
𝑗=1 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋𝑗)               (A.5.8) 

Ci: number of classes, i=1,…,k; Ci,X: set of observations of class Ci in X, ǀ·ǀ: number of 

observations. This criterion is the information gain that a partition A in the tree can 

provide (Balaban & Kartal, 2018).  

 C4.5 Decision Tree approach; uses the partition criterion as a criterion.  

𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝐴(𝑋) = −∑
|𝑋𝑗|

|𝑋|
𝑣
𝑗=1 ∗ 𝑙𝑜𝑔2 (

|𝑋𝑗|

|𝑋|
)           (A.5.9) 

A: training data attribute. This measure indicates the information that can be obtained by 

dividing A into v parts. The attribute with the highest gain according to  

Gain Rate(A) =
Information Gain(A)

Partition Information (A )
               (A.5.10) 

ratio is selected as a node. The numerical equivalent of the attributes of the observations 

can be dichotomized (≤θ and >θ) according to a threshold value (θ). Further partitioning 

can be done using other methods. Threshold value can be taken as the midpoint in the 

forms of  

𝜃𝑖 =
𝑣𝑖+𝑣𝑖+1

2
                       (A.5.11) 
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Another approach is the largest value that does not exceed the average value can be 

selected in the form of  

𝜃𝑖 = 𝑚𝑎𝑥 {𝑣|𝑣 ≤
𝑣𝑖+𝑣𝑖+1

2
}                      (A.5.12) 

(Berzal at al., 2004).  
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APPENDIX 6: PLOTS OF LEVEL, SLOPE, AND CURVATURE VS 

NS FACTORS  

Figure A.1: Level-β0, Slope- β1, Curvature- β2 Plots Of Germany, France, Great 

Britain And Italy 
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APPENDIX 7: DESCRIPTIVE STATISTICS  

 Table A. 1: Descriptive Statistics of Some Yields and Yield Curve Factors Data 
Germany MEAN SD MİN  MAX ACF(1) ACF(10) ACF(21) ACF(252) PACF(1) PACF(10) ADF 

M3  -0,266 0,502 -1,226  1,871 0,996 0,960 0,915 0,476 0,996 0,026 0,99 

Y1  -0,152 0,627 -0,941  2,633 0,996 0,960 0,919 0,366 0,996 0,010 0,99 

Y5  0,263 0,897 -0,953  2,819 0,997 0,972 0,946 0,522 0,997 0,017 0,99 

Y10    0,889 1,073 -0,801  3,497 0,998 0,981 0,963 0,640 0,998 0,015 0,99 

Y30 1,516 1,130 -0,437  4,111 0,998 0,983 0,967 0,686 0,998 0,018 0,99 

β0 1,983 1,280 -0,199  4,748 0,999 0,985 0,969 0,713 0,999 0,022 0,96 

β1 -2,225 0,950 -4,759  0,515 0,997 0,965 0,934 0,628 0,997 0,029 0,05 

β2 -2,521 1,378 -4,991  4,026 0,994 0,930 0,863 0,327 0,994 0,038 0,40 

λ 0,041 0,043 0,021  0,323 0,994 0,937 0,868 0,003 0,994 0,003 0,99 

Level  1,516 1,130 -0,437  4,111 0,998 0,983 0,967 0,686 0,998 0,018 0,99 

Slope  1,782 0,790 -0,095  3,828 0,997 0,966 0,928 0,622 0,997 0,003 0,04 

Curvature  -1,443 0,719 -2,854  1,340 0,995 0,952 0,913 0,403 0,995 0,009 0,74 

 
France MEAN SD MİN MAX ACF(1) ACF(10) ACF(21) ACF(252) PACF(1) PACF(10) ADF 

M3  -0,191 0,503 -1,031 1,889 0,996 0,960 0,924 0,487 0,996 0,012 0,99 

Y1  -0,069 0,645 -0,835 2,790 0,997 0,960 0,916 0,373 0,997 -0,005 0,99 

Y5  0,546 0,988 -0,775 3,045 0,998 0,977 0,956 0,603 0,998 0,010 0,99 

Y10    1,255 1,229 -0,638 3,788 0,999 0,987 0,973 0,723 0,999 0,004 0,99 

Y30 2,165 1,134 0,325 4,469 0,999 0,986 0,971 0,717 0,999 0,022 0,99 

β0 2,713 1,196 0,561 5,133 0,999 0,986 0,970 0,723 0,999 0,007 0,82 

β1 -2,851 0,924 -4,956 0,276 0,997 0,967 0,927 0,601 0,997 -0,010 0,06 

β2 -3,253 1,197 -5,839 1,288 0,993 0,920 0,858 0,322 0,993 -0,004 0,26 

λ 0,034 0,013 0,015 0,084 0,998 0,975 0,948 0,409 0,998 -0,001 0,99 

Level  2,165 1,134 0,325 4,469 0,999 0,986 0,971 0,717 0,999 0,022 0,99 

Slope  2,356 0,778 0,908 3,981 0,997 0,971 0,939 0,626 0,997 0,017 0,16 

Curvature  -1,939 0,645 -3,220 0,649 0,993 0,935 0,883 0,388 0,993 0,022 0,61 

 
Great 

Britain MEAN SD MİN MAX ACF(1) ACF(10) ACF(21) ACF(252) PACF(1) PACF(10) ADF 

M3  0,508 0,480 -0,091 3,545 0,994 0,937 0,866 -0,103 0,994 0,003 0,99 

Y1  0,544 0,567 -0,175 4,240 0,992 0,943 0,887 -0,038 0,992 -0,030 0,99 

Y5  1,138 0,777 -0,137 4,688 0,996 0,957 0,911 0,251 0,996 -0,017 0,98 

Y10    1,786 0,982 0,102 4,501 0,997 0,974 0,946 0,499 0,997 -0,015 0,99 

Y30 2,479 1,099 0,549 4,892 0,999 0,984 0,967 0,657 0,999 0,001 0,99 

β0 2,917 1,189 0,831 5,324 0,999 0,986 0,970 0,702 0,999 -0,010 0,98 

β1 -2,311 1,169 -4,748 0,598 0,998 0,977 0,949 0,697 0,998 -0,022 0,01 

β2 -3,304 1,867 -7,367 4,245 0,996 0,961 0,935 0,585 0,996 -0,010 0,02 

λ 0,043 0,019 0,022 0,120 0,997 0,969 0,935 0,198 0,997 -0,004 0,93 

Level  2,479 1,099 0,549 4,892 0,999 0,984 0,967 0,657 0,999 0,001 0,99 

Slope  1,970 1,049 0,101 4,158 0,998 0,983 0,965 0,724 0,998 -0,013 0,17 

Curvature  -1,743 1,029 -3,419 2,572 0,998 0,977 0,962 0,672 0,998 -0,017 0,01 

 
Italy MEAN SD MİN MAX ACF(1) ACF(10) ACF(21) ACF(252) PACF(1) PACF(10) ADF 

M3  0,168 0,809 -0,804 6,407 0,996 0,944 0,865 0,495 0,996 -0,037 0,01 

Y1  0,616 1,158 -0,583 6,508 0,998 0,971 0,934 0,531 0,998 -0,040 0,73 

Y2  1,006 1,395 -0,571 7,979 0,998 0,974 0,945 0,573 0,998 -0,020 0,82 

Y5  1,875 1,573 -0,139 7,825 0,998 0,981 0,962 0,608 0,998 -0,008 0,96 

Y10    2,839 1,580 0,483 7,311 0,999 0,986 0,972 0,649 0,999 0,005 0,98 

Y30 3,694 1,425 1,393 7,677 0,999 0,990 0,979 0,717 0,999 -0,008 0,96 

β0 4,183 1,388 1,834 7,684 0,998 0,987 0,973 0,708 0,998 0,018 0,52 

β1 -4,039 0,982 -6,502 -1,402 0,995 0,942 0,866 0,474 0,995 -0,020 0,01 

β2 -2,188 2,294 -5,739 12,31 0,988 0,881 0,793 0,259 0,988 0,008 0,01 

λ 0,038 0,010 0,008 0,062 0,998 0,976 0,948 0,161 0,998 -0,004 0,91 

Level  3,694 1,425 1,393 7,677 0,999 0,990 0,979 0,717 0,999 -0,008 0,96 

Slope  3,526 0,892 0,901 5,897 0,996 0,946 0,879 0,540 0,996 -0,046 0,01 

Curvature  -1,849 0,979 -3,289 2,243 0,989 0,904 0,839 0,240 0,989 0,027 0,29 
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US MEAN SD MİN MAX ACF(1) ACF(10) ACF(21) ACF(252) PACF(1) PACF(10) ADF 

M3  0,631 0,933 -0,046 4,457 0,997 0,970 0,934 0,288 0,997 0,009 0,99 

Y1  0,815 1,017 0,041 4,788 0,997 0,973 0,941 0,243 0,997 -0,012 0,99 

Y2  1,017 0,963 0,105 4,728 0,997 0,976 0,947 0,220 0,997 -0,012 0,99 

Y5  1,603 0,791 0,192 4,448 0,996 0,968 0,933 0,137 0,996 0,003 0,93 

Y10 2,249 0,731 0,512 4,247 0,996 0,965 0,928 0,184 0,996 0,002 0,87 

Y30 2,970 0,765 1,066 4,834 0,997 0,973 0,946 0,401 0,997 -0,004 0,85 

β0 3,363 0,833 1,315 5,307 0,997 0,975 0,951 0,518 0,997 0,001 0,64 

β1 -2,792 1,231 -5,163 -0,113 0,996 0,973 0,949 0,689 0,996 -0,048 0,33 

β2 -2,348 2,410 -6,347 5,405 0,994 0,962 0,929 0,456 0,994 -0,054 0,61 

λ 0,055 0,070 0,005 0,598 0,975 0,836 0,762 0,020 0,975 -0,039 0,09 

Level  2,970 0,765 1,066 4,834 0,997 0,973 0,946 0,401 0,997 -0,004 0,85 

Slope  2,339 1,183 -0,868 4,695 0,998 0,978 0,951 0,627 0,998 -0,020 0,50 

Curvature  -1,568 1,185 -3,591 1,962 0,998 0,985 0,967 0,462 0,998 -0,026 0,53 
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APPENDIX 8: AREA FUNCTION FOR R SOFTWARE 

function(t, x1, x2){ 

  a.f <- matrix(NA, nrow = (length(t)-1), ncol = 1) 

  for (i in 1:(length(t) - 1)) { 

    if ((x1[i] - x2[i]) * (x1[i+1] - x2[i+1]) <0) { 

      a.f[i,] <- (t[i+1] - t[i]) * ((abs(x1[i] - x2[i]) + abs(x1[i+1] - x2[i+1])) / 2- 

                                   abs(x1[i]-x2[i]) * abs(x1[i+1] - x2[i+1]) / (abs(x1[i]- x2[i]) +   

   abs(x1[i+1] - x2[i+1]))) 

    }else{ 

      a.f[i,] <- (t[i+1] - t[i]) * (abs(x1[i] - x2[i]) + abs(x1[i+1] - x2[i+1])) / 2 

    }     

  } 

  return(sum(a.f)) 

} 
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APPENDIX 9: GRANGER CAUSALITY TEST 

Table A.2: Granger Causality Test 
P 1 P 2 p value P 1 P 2 p value P 1 P 2 p value P 1 P 2 p value P 1 P 2 p value P 1 P 2 p value P 1 P 2 p value 

CA.b0 CA.b1 0,863956 DE.b0 DE.b1 0,000000 FR.b0 FR.b1 0,004413 GB.b0 GB.b1 0,978902 IT.b0 IT.b1 0,000000 TR.b0 TR.b1 0,679174 US.b0 US.b1 0,774750 

CA.b0 CA.b2 0,000001 DE.b0 DE.b2 0,000000 FR.b0 FR.b2 0,000000 GB.b0 GB.b2 0,000000 IT.b0 IT.b2 0,000000 TR.b0 TR.b2 0,065771 US.b0 US.b2 0,681870 

CA.b0 CA.l 0,294846 DE.b0 DE.l 0,013690 FR.b0 FR.l 0,000000 GB.b0 GB.l 0,000022 IT.b0 IT.l 0,001175 TR.b0 TR.l 0,421256 US.b0 US.l 0,019801 

CA.b1 CA.b0 0,000009 DE.b1 DE.b0 0,000000 FR.b1 FR.b0 0,017760 GB.b1 GB.b0 0,000000 IT.b1 IT.b0 0,000000 TR.b1 TR.b0 0,000009 US.b1 US.b0 0,815532 

CA.b1 CA.b2 0,000494 DE.b1 DE.b2 0,000000 FR.b1 FR.b2 0,000000 GB.b1 GB.b2 0,630640 IT.b1 IT.b2 0,015100 TR.b1 TR.b2 0,000757 US.b1 US.b2 0,000016 

CA.b1 CA.l 0,036548 DE.b1 DE.l 0,361638 FR.b1 FR.l 0,001024 GB.b1 GB.l 0,004765 IT.b1 IT.l 0,000009 TR.b1 TR.l 0,000733 US.b1 US.l 0,216129 

CA.b2 CA.b0 0,000015 DE.b2 DE.b0 0,000000 FR.b2 FR.b0 0,001864 GB.b2 GB.b0 0,000000 IT.b2 IT.b0 0,000002 TR.b2 TR.b0 0,730891 US.b2 US.b0 0,045325 

CA.b2 CA.b1 0,055121 DE.b2 DE.b1 0,000000 FR.b2 FR.b1 0,031936 GB.b2 GB.b1 0,000000 IT.b2 IT.b1 0,000213 TR.b2 TR.b1 0,000046 US.b2 US.b1 0,004692 

CA.b2 CA.l 0,545208 DE.b2 DE.l 0,035063 FR.b2 FR.l 0,000031 GB.b2 GB.l 0,253004 IT.b2 IT.l 0,414755 TR.b2 TR.l 0,123689 US.b2 US.l 0,000001 

CA.l CA.b0 0,164854 DE.l DE.b0 0,000000 FR.l FR.b0 0,000000 GB.l GB.b0 0,000000 IT.l IT.b0 0,000000 TR.l TR.b0 0,002477 US.l US.b0 0,154431 

CA.l CA.b1 0,000000 DE.l DE.b1 0,000000 FR.l FR.b1 0,000049 GB.l GB.b1 0,000000 IT.l IT.b1 0,000063 TR.l TR.b1 0,000000 US.l US.b1 0,519174 

CA.l CA.b2 0,200106 DE.l DE.b2 0,000000 FR.l FR.b2 0,000000 GB.l GB.b2 0,000000 IT.l IT.b2 0,000000 TR.l TR.b2 0,000075 US.l US.b2 0,008966 

CA.b0 US.b0 0,000000 DE.b0 US.b0 0,000000 FR.b0 US.b0 0,000000 GB.b0 US.b0 0,000000 IT.b0 US.b0 0,000001 TR.b0 US.b0 0,067153 US.b0 DE.b0 0,102881 

CA.b0 US.b1 0,000000 DE.b0 US.b1 0,000000 FR.b0 US.b1 0,000000 GB.b0 US.b1 0,000000 IT.b0 US.b1 0,002097 TR.b0 US.b1 0,033923 US.b0 DE.b1 0,947937 

CA.b0 US.b2 0,001123 DE.b0 US.b2 0,000000 FR.b0 US.b2 0,000000 GB.b0 US.b2 0,000194 IT.b0 US.b2 0,028513 TR.b0 US.b2 0,332514 US.b0 DE.b2 0,810501 

CA.b0 US.l 0,009051 DE.b0 US.l 0,027947 FR.b0 US.l 0,053331 GB.b0 US.l 0,139362 IT.b0 US.l 0,521802 TR.b0 US.l 0,528017 US.b0 DE.l 0,019433 

CA.b1 US.b0 0,029184 DE.b1 US.b0 0,000000 FR.b1 US.b0 0,001256 GB.b1 US.b0 0,000000 IT.b1 US.b0 0,000000 TR.b1 US.b0 0,117660 US.b1 DE.b0 0,118625 

CA.b1 US.b1 0,000000 DE.b1 US.b1 0,000000 FR.b1 US.b1 0,000000 GB.b1 US.b1 0,000000 IT.b1 US.b1 0,000186 TR.b1 US.b1 0,154162 US.b1 DE.b1 0,268598 

CA.b1 US.b2 0,000022 DE.b1 US.b2 0,000000 FR.b1 US.b2 0,000000 GB.b1 US.b2 0,000000 IT.b1 US.b2 0,000191 TR.b1 US.b2 0,001657 US.b1 DE.b2 0,614019 

CA.b1 US.l 0,565722 DE.b1 US.l 0,520406 FR.b1 US.l 0,803250 GB.b1 US.l 0,477768 IT.b1 US.l 0,624111 TR.b1 US.l 0,001397 US.b1 DE.l 0,216109 

CA.b2 US.b0 0,022949 DE.b2 US.b0 0,000648 FR.b2 US.b0 0,450431 GB.b2 US.b0 0,000000 IT.b2 US.b0 0,002500 TR.b2 US.b0 0,949751 US.b2 DE.b0 0,158342 

CA.b2 US.b1 0,593166 DE.b2 US.b1 0,083912 FR.b2 US.b1 0,092498 GB.b2 US.b1 0,000000 IT.b2 US.b1 0,004807 TR.b2 US.b1 0,207242 US.b2 DE.b1 0,333523 

CA.b2 US.b2 0,246758 DE.b2 US.b2 0,334381 FR.b2 US.b2 0,000007 GB.b2 US.b2 0,000000 IT.b2 US.b2 0,012654 TR.b2 US.b2 0,103512 US.b2 DE.b2 0,981300 

CA.b2 US.l 0,017879 DE.b2 US.l 0,000031 FR.b2 US.l 0,000000 GB.b2 US.l 0,000766 IT.b2 US.l 0,053946 TR.b2 US.l 0,102530 US.b2 DE.l 0,028781 

CA.l US.b0 0,000000 DE.l US.b0 0,000000 FR.l US.b0 0,000000 GB.l US.b0 0,000000 IT.l US.b0 0,000000 TR.l US.b0 0,000000 US.l DE.b0 0,366687 

CA.l US.b1 0,000000 DE.l US.b1 0,066407 FR.l US.b1 0,000000 GB.l US.b1 0,000000 IT.l US.b1 0,000000 TR.l US.b1 0,000021 US.l DE.b1 0,439886 

CA.l US.b2 0,000185 DE.l US.b2 0,000000 FR.l US.b2 0,000000 GB.l US.b2 0,000000 IT.l US.b2 0,000000 TR.l US.b2 0,013254 US.l DE.b2 0,722056 

CA.l US.l 0,000000 DE.l US.l 0,000000 FR.l US.l 0,000000 GB.l US.l 0,000000 IT.l US.l 0,000000 TR.l US.l 0,000000 US.l DE.l 0,000000 
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APPENDIX 10: AREA ERRORS OF AR(1) MODEL 

Table A.3: Area Errors of AR(1) Model for 100, 200 and 300 Forecasting Periods 

CA 
100 200 300 DE 100 200 300 FR 100 200 300 GB 100 200 300 IT 100 200 300 US 100 200 300 

1 19,61 18,01 18,03 1 15,23 15,22 15,22 1 28,45 28,40 28,45 1 17,93 17,93 18,00 1 21,68 23,08 20,60 1 15,74 15,58 15,76 

2 22,63 21,09 21,12 2 18,38 18,39 18,37 2 30,50 30,47 30,47 2 21,66 21,65 21,77 2 26,84 28,02 25,84 2 20,59 20,38 20,60 

3 25,46 23,98 24,02 3 21,18 21,24 21,22 3 32,44 32,48 32,39 3 25,06 25,04 25,25 3 31,30 32,49 30,40 3 24,92 24,72 24,90 

4 28,02 26,67 26,72 4 23,94 24,00 23,98 4 34,23 34,29 34,15 4 28,15 28,11 28,37 4 35,36 36,50 34,53 4 28,88 28,78 28,88 

5 30,34 29,08 29,14 5 26,34 26,39 26,38 5 35,91 36,04 35,81 5 30,96 30,86 31,18 5 38,93 39,96 38,18 5 32,54 32,57 32,51 

6 32,40 31,23 31,32 6 28,61 28,59 28,70 6 37,53 37,70 37,40 6 33,50 33,40 33,81 6 42,39 43,37 41,70 6 35,99 36,15 35,95 

7 34,40 33,32 33,45 7 30,58 30,60 30,74 7 39,14 39,41 38,99 7 35,96 35,83 36,25 7 45,65 46,64 45,10 7 39,37 39,70 39,42 

8 36,29 35,29 35,46 8 32,46 32,49 32,74 8 40,72 41,09 40,60 8 38,20 38,06 38,47 8 49,00 50,01 48,47 8 42,39 42,89 42,46 

9 38,01 37,11 37,31 9 34,39 34,45 34,71 9 42,33 42,75 42,21 9 40,42 40,26 40,65 9 52,18 53,24 51,61 9 45,50 46,16 45,49 

10 39,74 38,95 39,22 10 36,24 36,33 36,57 10 43,90 44,46 43,79 10 42,61 42,41 42,78 10 55,31 56,42 54,72 10 48,42 49,23 48,51 

11 41,56 40,88 41,17 11 38,13 38,27 38,54 11 45,57 46,23 45,44 11 44,85 44,60 45,05 11 58,18 59,31 57,50 11 51,41 52,32 51,53 

12 43,35 42,77 43,10 12 39,97 40,15 40,41 12 47,09 47,88 46,96 12 47,05 46,72 47,31 12 61,02 62,11 60,24 12 54,20 55,32 54,47 

13 45,12 44,67 45,04 13 41,82 42,05 42,29 13 48,63 49,55 48,52 13 49,19 48,81 49,62 13 63,76 64,94 62,91 13 56,99 58,34 57,45 

14 46,89 46,55 46,98 14 43,64 43,81 44,12 14 50,11 51,16 49,99 14 51,38 50,91 51,83 14 66,50 67,68 65,48 14 59,63 61,18 60,23 

15 48,51 48,30 48,75 15 45,32 45,50 45,81 15 51,66 52,90 51,53 15 53,52 52,98 54,05 15 69,08 70,36 68,10 15 62,17 63,88 62,94 

16 50,19 50,03 50,54 16 46,94 47,16 47,44 16 53,19 54,58 53,06 16 55,63 54,96 56,12 16 71,56 72,89 70,36 16 64,58 66,47 65,56 

17 51,78 51,72 52,21 17 48,56 48,73 49,10 17 54,65 56,15 54,59 17 57,74 56,91 58,26 17 73,97 75,35 72,67 17 66,84 68,91 67,99 

18 53,48 53,48 53,99 18 50,12 50,22 50,74 18 56,07 57,70 56,10 18 59,80 58,80 60,32 18 76,28 77,79 74,97 18 69,05 71,31 70,49 

19 55,21 55,28 55,75 19 51,70 51,73 52,40 19 57,62 59,34 57,66 19 61,72 60,56 62,37 19 78,74 80,34 77,41 19 71,25 73,73 73,03 

20 56,86 56,98 57,46 20 53,28 53,28 54,00 20 59,21 61,06 59,28 20 63,66 62,38 64,34 20 81,14 82,85 79,76 20 73,47 76,16 75,50 

21 58,54 58,67 59,19 21 54,84 54,77 55,57 21 60,78 62,70 60,85 21 65,54 64,12 66,30 21 83,55 85,36 82,06 21 75,65 78,53 77,90 

22 60,19 60,36 60,85 22 56,34 56,23 57,15 22 62,30 64,29 62,37 22 67,42 65,84 68,24 22 85,91 87,70 84,43 22 77,85 80,92 80,37 

23 61,95 62,11 62,62 23 57,66 57,57 58,52 23 63,66 65,74 63,87 23 69,08 67,35 69,95 23 88,21 90,07 86,74 23 80,02 83,28 82,78 

24 63,65 63,82 64,28 24 58,92 58,81 59,86 24 65,05 67,23 65,35 24 70,80 68,93 71,77 24 90,47 92,46 88,90 24 82,11 85,48 85,06 

25 65,34 65,53 65,94 25 60,29 60,11 61,24 25 66,45 68,71 66,76 25 72,47 70,49 73,56 25 92,64 94,77 91,01 25 84,07 87,68 87,23 

26 66,96 67,20 67,58 26 61,66 61,44 62,59 26 67,80 70,19 68,23 26 74,14 72,02 75,27 26 95,03 97,22 93,32 26 86,09 89,82 89,39 

27 68,48 68,77 69,11 27 62,92 62,66 63,89 27 69,07 71,65 69,67 27 75,82 73,55 77,03 27 97,38 99,62 95,66 27 88,04 91,92 91,49 

28 70,02 70,26 70,55 28 64,25 63,92 65,23 28 70,41 73,15 71,10 28 77,47 75,03 78,77 28 99,63 102,02 97,94 28 89,95 94,01 93,56 

29 71,46 71,76 72,02 29 65,59 65,21 66,57 29 71,73 74,65 72,59 29 79,24 76,63 80,59 29 101,88 104,46 100,20 29 91,83 96,07 95,50 

30 72,75 73,08 73,32 30 66,92 66,47 67,86 30 73,11 76,17 74,06 30 80,95 78,22 82,40 30 104,15 106,75 102,52 30 93,68 98,05 97,56 

31 73,97 74,32 74,54 31 68,23 67,67 69,17 31 74,51 77,73 75,59 31 82,67 79,77 84,19 31 106,44 109,04 104,82 31 95,43 99,94 99,46 

32 75,25 75,63 75,81 32 69,53 68,86 70,52 32 75,83 79,22 77,05 32 84,28 81,24 85,90 32 108,71 111,39 107,09 32 97,17 101,86 101,41 

33 76,56 76,90 77,10 33 70,88 70,01 71,85 33 77,13 80,67 78,47 33 85,94 82,78 87,69 33 110,75 113,42 109,18 33 99,01 103,89 103,41 

34 77,83 78,16 78,34 34 72,13 71,15 73,13 34 78,40 82,12 79,83 34 87,52 84,26 89,34 34 112,95 115,52 111,50 34 100,76 105,80 105,31 

35 79,03 79,35 79,50 35 73,38 72,31 74,40 35 79,70 83,56 81,18 35 89,00 85,62 90,92 35 115,22 117,68 113,83 35 102,44 107,55 107,12 

36 80,21 80,57 80,74 36 74,63 73,47 75,72 36 80,96 84,95 82,53 36 90,39 86,91 92,40 36 117,41 119,85 116,06 36 104,10 109,23 108,89 

37 81,36 81,83 82,00 37 75,97 74,64 77,12 37 82,10 86,22 83,82 37 91,80 88,26 94,01 37 119,55 121,94 118,22 37 105,71 110,91 110,69 

38 82,52 83,11 83,28 38 77,27 75,77 78,52 38 83,34 87,53 85,08 38 93,33 89,69 95,67 38 121,52 124,06 120,23 38 107,41 112,66 112,41 

39 83,61 84,31 84,53 39 78,52 76,88 79,90 39 84,55 88,85 86,31 39 94,87 91,13 97,39 39 123,52 126,14 122,29 39 109,06 114,32 114,19 

40 84,75 85,53 85,77 40 79,64 77,84 81,11 40 85,72 90,11 87,50 40 96,36 92,53 99,01 40 125,52 128,16 124,29 40 110,79 116,13 116,03 



175 

 

  

  

APPENDIX 11: THE BEST FORECAST COMBINATION MODELS 

Table A.4: The Best Forecast Combination Models of FC Version 1 

  t-testi Wilcoxon testi DM testi 

  

Forecast 

horizon 

(days) 

Forecasting 

period (Every 

200 data period) 

Forecast 

horizon 

(days) 

Forecasting 

period (Every 

200 data period) 

Forecast 

horizon 

(days) 

Forecasting period 

(Every 200 data 

period) 

CA TA TA WA WA CLS CLS 

DE INVW SA INVW SA CLS CLS 

FR INVW WA INVW WA CLS CLS 

GB SA SA SA SA CLS CLS 

IT SA WA INVW WA CLS CLS 

US WA NONE WA NONE CLS CLS 

 

Table A.5: The Best Forecast Combination models of FC Version (2) 

  t-testi Wilcoxon testi DM testi 

  

Forecast 

horizon 

(days) 

Forecasting 

period (Every 200 

data period) 

Forecast 

horizon 

(days) 

Forecasting 

period (Every 200 

data period) 

Forecast 

horizon 

(days) 

Forecasting 

period (Every 200 

data period) 

CA MED BG BG BG MED MED 

DE BG INVW BG MED BG MED 

FR INVW SA INVW MED MED SA 

GB SA SA SA BG MED SA 

IT SA WA SA SA MED MED, TA 

US WA MED WA MED, BG BG BG 

 

Table A.6:The Best Forecast Combination models of FC Version (3) 

  t-testi Wilcoxon testi DM testi 

  

Forecast 

horizon 

(days) 

Forecasting 

period (Every 200 

data period) 

Forecast 

horizon 

(days) 

Forecasting 

period (Every 200 

data period) 

Forecast 

horizon 

(days) 

Forecasting 

period (Every 200 

data period) 

CA CLS, BG CLS, BG CLS CLS CLS, BG BG 

DE BG BG BG BG BG WA, TA 

FR SA SA SA SA MED SA 

GB SA NONE SA NONE INVW SA 

IT BG BG BG BG SA BG 

US SA SA CLS SA MED INVW 
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APPENDIX 12 THE ERRORS OF YIELD CURVE FORECASTS  

Table A.7: Canada’s The Errors of Yield Curve Forecasts for All Yields at Some 

Forecast Horizons  

 

CA - 1 day RMSE MAE MASE SMAPE CA - 20 day RMSE MAE MASE SMAPE CA - 40 day RMSE MAE MASE SMAPE

RW 0,067 0,051 0,215 0,054 RW 0,193 0,134 0,569 0,122 HYBRID 0,291 0,203 0,859 0,204

FC(V1).EIG3 0,067 0,051 0,215 0,054 FC(V1).EIG3 0,193 0,134 0,569 0,122 RW 0,292 0,200 0,849 0,175

FC(V1).CLS 0,067 0,051 0,215 0,054 BAGGING 0,194 0,139 0,589 0,143 FC(V1).EIG3 0,292 0,200 0,849 0,175

FC(V1).EIG1 0,067 0,051 0,215 0,054 HYBRID 0,194 0,137 0,580 0,135 BAGGING 0,294 0,207 0,881 0,206

ETS/TBATS 0,067 0,051 0,215 0,054 FC(V1).CLS 0,195 0,135 0,573 0,123 ETS/TBATS 0,295 0,198 0,841 0,177

HYBRID 0,067 0,051 0,216 0,054 ETS/TBATS 0,196 0,136 0,576 0,129 FC(V1).CLS 0,295 0,201 0,854 0,177

AR(1) 0,067 0,051 0,216 0,054 Auto.ARIMA 0,209 0,146 0,614 0,163 RF 0,306 0,216 0,916 0,203

Auto.ARIMA 0,067 0,051 0,216 0,055 RF 0,211 0,152 0,646 0,152 XGB 0,309 0,214 0,916 0,197

TAR 0,068 0,051 0,218 0,054 FC(V1).MED 0,212 0,150 0,637 0,136 FC(V1).MED 0,315 0,217 0,921 0,190

FC(V3).MED 0,068 0,051 0,221 0,055 XGB 0,215 0,151 0,646 0,148 FC(V3).BG 0,316 0,215 0,927 0,203

FC(V1).MED 0,068 0,051 0,218 0,054 FC(V3).BG 0,215 0,151 0,649 0,148 FC(V3).INVW 0,317 0,216 0,929 0,204

FC(V3).WA 0,069 0,052 0,222 0,055 FC(V1).TA 0,216 0,152 0,645 0,137 FC(V3).MED 0,318 0,218 0,937 0,195

FC(V3).TA 0,069 0,052 0,222 0,055 FC(V3).INVW 0,216 0,151 0,649 0,147 FC(V1).TA 0,318 0,219 0,929 0,192

FC(V1).TA 0,069 0,052 0,219 0,054 FC(V3).MED 0,217 0,151 0,649 0,142 FC(V3).TA 0,319 0,217 0,930 0,195

FC(V3).BG 0,069 0,052 0,223 0,056 FC(V3).WA 0,217 0,151 0,650 0,141 FC(V3).WA 0,319 0,217 0,930 0,195

FC(V1).WA 0,069 0,052 0,220 0,055 FC(V3).TA 0,217 0,151 0,650 0,142 FC(V1).WA 0,321 0,221 0,935 0,194

FC(V3).INVW 0,069 0,052 0,224 0,056 AR(1) 0,218 0,154 0,654 0,143 FC(V3).CLS 0,326 0,225 0,962 0,229

FC(V3).SA 0,069 0,052 0,224 0,056 FC(V1).WA 0,219 0,154 0,652 0,139 FC(V2).MED 0,327 0,227 0,981 0,199

LL/LST/SET-AR 0,069 0,052 0,222 0,056 FC(V1).INVW 0,219 0,156 0,667 0,145 FC(V3).SA 0,328 0,222 0,951 0,199

BAGGING 0,069 0,052 0,222 0,056 FC(V3).SA 0,221 0,153 0,658 0,145 Auto.ARIMA 0,331 0,223 0,931 0,247

GMDH 0,070 0,052 0,222 0,057 FC(V2).MED 0,224 0,158 0,684 0,147 AR(1) 0,336 0,234 0,994 0,209

FC(V2).MED 0,070 0,052 0,225 0,057 FC(V2).CLS 0,227 0,159 0,690 0,148 FC(V1).INVW 0,336 0,222 0,947 0,194

FC(V3).CLS 0,071 0,053 0,230 0,058 FC(V3).CLS 0,229 0,162 0,692 0,171 FC(V2).WA 0,340 0,231 1,001 0,203

ELM-A 0,072 0,055 0,232 0,060 FC(V2).TA 0,232 0,163 0,704 0,151 FC(V2).TA 0,343 0,232 1,001 0,202

ELM 0,072 0,055 0,233 0,060 FC(V2).WA 0,233 0,164 0,707 0,152 RF-C 0,343 0,231 0,974 0,214

ARFIMA 0,073 0,055 0,232 0,059 TAR 0,233 0,160 0,682 0,154 ENN 0,344 0,255 1,099 0,263

NNET-AR-A 0,073 0,055 0,234 0,060 RF-C 0,233 0,161 0,677 0,153 ENN-A 0,352 0,257 1,100 0,266

NNET-AR 0,073 0,055 0,235 0,060 RF-HP 0,236 0,168 0,716 0,163 BOOSTING 0,359 0,249 1,019 0,239

RF-A 0,074 0,057 0,243 0,064 FC(V2).INVW 0,237 0,166 0,720 0,156 RF-HP 0,366 0,254 1,078 0,232

RF 0,077 0,058 0,247 0,062 ENN 0,252 0,185 0,790 0,199 RF-M 0,370 0,253 1,016 0,227

FC(V1).INVW 0,080 0,061 0,260 0,068 RF-A 0,254 0,179 0,763 0,180 FC(V1).SA 0,373 0,260 1,118 0,238

XGB 0,080 0,060 0,256 0,067 RF-M 0,259 0,183 0,739 0,177 NNET-AR 0,375 0,256 1,068 0,242

ENN-A 0,083 0,060 0,254 0,070 ENN-A 0,259 0,186 0,788 0,209 NNET-AR-A 0,377 0,256 1,069 0,240

FC(V2).TA 0,084 0,062 0,266 0,070 FC(V1).SA 0,263 0,196 0,848 0,195 ARIMA 0,406 0,273 1,188 0,250

FC(V2).WA 0,085 0,062 0,267 0,071 NNET-AR 0,264 0,187 0,785 0,192 RF-A 0,411 0,285 1,204 0,267

ENN 0,085 0,063 0,269 0,079 BOOSTING 0,266 0,187 0,765 0,184 ARFIMA 0,443 0,312 1,294 0,281

FC(V2).CLS 0,088 0,064 0,275 0,071 NNET-AR-A 0,267 0,187 0,786 0,191 ELM-A 0,466 0,309 1,271 0,325

RF-HP 0,088 0,067 0,284 0,075 FC(V2).SA 0,272 0,197 0,850 0,190 GRNN 0,467 0,328 1,435 0,315

RF-C 0,090 0,065 0,274 0,069 FC(V2).CLS 0,288 0,191 0,819 0,188 ELM 0,470 0,313 1,295 0,332

FC(V2).INVW 0,099 0,070 0,302 0,078 FC(V1).EIG1 0,293 0,143 0,597 0,125 JNN-A 0,471 0,279 1,179 0,261

JNN 0,114 0,074 0,313 0,090 ARFIMA 0,305 0,214 0,897 0,203 NNET-A 0,489 0,338 1,394 0,348

RF-M 0,124 0,095 0,387 0,103 ARIMA 0,320 0,210 0,904 0,195 NNET 0,492 0,340 1,404 0,347

FC(V2).SA 0,128 0,094 0,406 0,111 ELM-A 0,321 0,215 0,889 0,234 GRNN-TSF 0,496 0,356 1,532 0,342

FC(V1).SA 0,130 0,100 0,429 0,120 ELM 0,324 0,217 0,900 0,240 JNN 0,498 0,298 1,244 0,284

BOOSTING 0,142 0,092 0,376 0,094 JNN-A 0,380 0,209 0,878 0,202 FC(V1).EIG1 0,509 0,216 0,894 0,180

JNN-A 0,152 0,082 0,349 0,110 GRNN 0,385 0,266 1,150 0,279 MLP-A 0,687 0,560 2,494 0,438

FC(V2).CLS 0,156 0,091 0,390 0,104 NNET 0,397 0,266 1,097 0,280 KNN 0,701 0,511 1,986 0,506

GRNN 0,188 0,127 0,542 0,170 NNET-A 0,406 0,269 1,110 0,283 MLP 0,712 0,581 2,588 0,451

VAR(1) 0,199 0,127 0,537 0,125 KNN 0,414 0,309 1,272 0,344 TAR 0,741 0,271 1,109 0,227

ARIMA 0,208 0,102 0,433 0,091 GRNN-TSF 0,416 0,295 1,270 0,300 LSTM 0,761 0,561 2,261 0,514

VAR/VECM 0,221 0,133 0,564 0,130 JNN 0,431 0,239 0,995 0,224 FC(V2).CLS 0,807 0,276 1,162 0,248

NNETTS 0,225 0,141 0,587 0,201 MLP-A 0,625 0,510 2,273 0,409 RNN 0,832 0,555 2,413 0,460

GRNN-TSF 0,226 0,158 0,679 0,196 MLP 0,649 0,530 2,360 0,421 GRU 0,932 0,618 2,638 0,525

NNET-A 0,236 0,127 0,524 0,141 VAR/VECM 0,653 0,305 1,263 0,284 RNN-A 0,965 0,708 3,362 0,502

NNET 0,236 0,127 0,524 0,141 LL/LST/SET-AR 0,668 0,195 0,815 0,165 NNETTS 1,118 0,422 1,672 0,377

KNN 0,264 0,178 0,750 0,217 LSTM 0,694 0,513 2,067 0,486 FC(V2).INVW 1,490 0,264 1,115 0,205

MLP-A 0,554 0,453 2,023 0,378 RNN 0,767 0,505 2,191 0,437 FC(V2).SA 1,509 0,300 1,253 0,238

MLP 0,580 0,474 2,118 0,390 NNETTS 0,775 0,305 1,241 0,314 FC(V2).CLS 1,866 0,268 1,124 0,200

RNN-A 0,585 0,389 1,685 0,348 GRU 0,876 0,585 2,497 0,511 VAR/VECM 19 0,967 2,676 0,384

LSTM 0,629 0,463 1,858 0,456 RNN-A 0,903 0,656 3,071 0,478 LL/LST/SET-AR 89 3,120 5,017 0,226

RNN 0,642 0,396 1,684 0,388 GMDH 67 1,681 3,284 0,208 GMDH 43662 544 1,215 0,303

GRU 0,818 0,549 2,344 0,495 VAR(1) 330 7,102 4,229 0,277 FC(V1).EIG2 9E+05 5E+04 4,230 0,201

FC(V1).EIG2 8,524 0,461 1,409 0,062 FC(V1).EIG2 4E+05 2E+04 4,231 0,146 VAR(1) 2E+06 4E+04 4,832 0,376
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Table A.8: Germany’s The Errors of Yield Curve Forecasts for All Yields at Some 

Forecast Horizons  

 

DE - 1 day RMSE MAE MASE SMAPE  DE - 20 day RMSE MAE MASE SMAPE  DE - 40 day RMSE MAE MASE SMAPE

RW 0,058 0,041 0,235 0,188 FC(V4) 0,171 0,114 0,645 0,377 FC(V4) 0,245 0,158 0,901 0,470

FC(V1).EIG3 0,058 0,041 0,235 0,188 ETS/TBATS 0,171 0,114 0,647 0,384 RW 0,253 0,161 0,911 0,473

ETS/TBATS 0,058 0,042 0,235 0,188 RW 0,172 0,114 0,646 0,380 FC(V1).EIG3 0,253 0,161 0,911 0,473

FC(V4) 0,058 0,042 0,235 0,187 FC(V1).EIG3 0,172 0,114 0,646 0,380 FC(V1).CLS 0,255 0,164 0,926 0,477

FC(V1).CLS 0,058 0,042 0,236 0,188 FC(V1).CLS 0,173 0,115 0,652 0,382 FC(V3).BG 0,255 0,166 0,944 0,488

AR(1) 0,058 0,042 0,235 0,188 FC(V1).EIG1 0,174 0,116 0,655 0,383 ETS/TBATS 0,257 0,161 0,911 0,465

FC(V1).EIG1 0,059 0,042 0,236 0,188 FC(V1).MED 0,183 0,121 0,678 0,397 FC(V1).EIG1 0,257 0,165 0,935 0,479

FC(V3).MED 0,059 0,042 0,239 0,190 FC(V1).TA 0,184 0,122 0,684 0,403 FC(V3).INVW 0,264 0,172 0,978 0,502

Auto.ARIMA 0,059 0,042 0,238 0,189 FC(V3).BG 0,184 0,125 0,708 0,403 FC(V3).WA 0,264 0,171 0,969 0,492

TAR 0,059 0,042 0,239 0,189 FC(V3).MED 0,184 0,126 0,715 0,406 FC(V3).TA 0,264 0,171 0,970 0,492

FC(V3).WA 0,059 0,042 0,241 0,191 FC(V1).WA 0,185 0,123 0,688 0,407 FC(V1).TA 0,264 0,168 0,936 0,483

FC(V3).TA 0,059 0,042 0,241 0,191 FC(V3).WA 0,186 0,125 0,710 0,401 FC(V1).WA 0,264 0,168 0,935 0,483

FC(V1).MED 0,059 0,042 0,238 0,190 FC(V3).TA 0,186 0,125 0,711 0,401 FC(V1).MED 0,265 0,169 0,942 0,480

FC(V1).TA 0,060 0,042 0,239 0,192 FC(V1).INVW 0,187 0,128 0,718 0,417 FC(V1).INVW 0,265 0,174 0,970 0,502

FC(V2).MED 0,060 0,042 0,243 0,192 FC(V2).MED 0,187 0,127 0,726 0,412 FC(V3).MED 0,266 0,174 0,989 0,499

FC(V1).WA 0,060 0,042 0,239 0,192 AR(1) 0,187 0,126 0,703 0,401 FC(V2).WA 0,269 0,180 1,031 0,523

FC(V3).SA 0,060 0,043 0,244 0,193 FC(V3).INVW 0,189 0,128 0,726 0,410 FC(V3).SA 0,270 0,176 0,993 0,507

FC(V3).BG 0,060 0,043 0,245 0,194 FC(V3).SA 0,191 0,129 0,729 0,412 FC(V2).MED 0,270 0,178 1,018 0,509

FC(V3).INVW 0,060 0,043 0,245 0,194 FC(V2).WA 0,192 0,132 0,757 0,430 FC(V3).CLS 0,280 0,186 1,060 0,533

ELM-A 0,060 0,043 0,242 0,192 BAGGING 0,198 0,128 0,722 0,405 RF 0,283 0,187 1,065 0,527

ELM 0,060 0,043 0,243 0,192 FC(V2).TA 0,198 0,134 0,764 0,431 AR(1) 0,285 0,187 1,022 0,509

BAGGING 0,060 0,043 0,244 0,192 FC(V2).CLS 0,203 0,130 0,742 0,415 XGB 0,285 0,191 1,083 0,540

GMDH 0,060 0,043 0,243 0,194 RF-C 0,205 0,143 0,783 0,456 ARIMA 0,288 0,178 0,995 0,503

LL/LST/SET-AR 0,062 0,044 0,247 0,194 FC(V3).CLS 0,211 0,143 0,811 0,444 RF-C 0,292 0,197 1,064 0,544

ARFIMA 0,063 0,045 0,253 0,201 Auto.ARIMA 0,212 0,134 0,756 0,416 BOOSTING 0,303 0,215 1,180 0,598

FC(V3).CLS 0,063 0,045 0,257 0,199 XGB 0,212 0,145 0,823 0,447 RF-M 0,308 0,208 1,099 0,579

NNET-AR-A 0,067 0,048 0,268 0,207 RF 0,213 0,141 0,802 0,434 FC(V1).SA 0,314 0,227 1,253 0,647

NNET-AR 0,067 0,048 0,269 0,208 RF-A 0,216 0,145 0,798 0,453 ENN 0,315 0,217 1,218 0,602

RF-A 0,068 0,050 0,283 0,217 RF-HP 0,217 0,145 0,810 0,453 BAGGING 0,320 0,189 1,062 0,507

RF 0,070 0,049 0,279 0,210 FC(V2).INVW 0,221 0,137 0,781 0,432 ELM 0,325 0,229 1,252 0,620

ENN-A 0,072 0,050 0,283 0,219 ARIMA 0,222 0,134 0,756 0,424 ELM-A 0,326 0,232 1,262 0,631

FC(V1).INVW 0,073 0,055 0,308 0,239 ELM-A 0,223 0,157 0,864 0,489 NNET-AR 0,327 0,217 1,205 0,583

XGB 0,074 0,053 0,298 0,225 ELM 0,225 0,157 0,865 0,483 RF-HP 0,327 0,204 1,127 0,558

FC(V2).WA 0,074 0,053 0,304 0,234 BOOSTING 0,230 0,163 0,903 0,498 NNET-AR-A 0,328 0,217 1,203 0,582

FC(V2).TA 0,075 0,054 0,311 0,238 RF-M 0,233 0,164 0,876 0,512 RF-A 0,330 0,216 1,164 0,577

ARIMA 0,076 0,050 0,284 0,207 VAR(1) 0,238 0,143 0,806 0,428 Auto.ARIMA 0,347 0,199 1,117 0,516

ENN 0,081 0,056 0,316 0,237 FC(V1).SA 0,245 0,186 1,034 0,580 GRNN 0,366 0,251 1,452 0,651

FC(V2).CLS 0,081 0,053 0,308 0,232 FC(V2).SA 0,246 0,152 0,865 0,486 ARFIMA 0,377 0,229 1,244 0,583

RF-HP 0,084 0,061 0,343 0,244 NNET-AR 0,251 0,172 0,951 0,495 VAR(1) 0,403 0,216 1,205 0,534

FC(V2).INVW 0,089 0,058 0,333 0,248 NNET-AR-A 0,251 0,173 0,953 0,497 ENN-A 0,404 0,254 1,435 0,621

RF-C 0,092 0,063 0,353 0,265 ENN 0,256 0,178 0,995 0,521 GRNN-TSF 0,409 0,280 1,635 0,700

JNN 0,104 0,067 0,373 0,266 ARFIMA 0,268 0,165 0,904 0,478 JNN 0,434 0,253 1,397 0,622

FC(V2).SA 0,106 0,079 0,455 0,324 GRNN 0,273 0,192 1,105 0,545 FC(V2).CLS 0,536 0,246 1,377 0,589

JNN-A 0,113 0,064 0,357 0,249 FC(V2).CLS 0,278 0,173 0,983 0,490 NNETTS 0,566 0,319 1,775 0,721

VAR(1) 0,120 0,070 0,396 0,274 JNN 0,303 0,204 1,132 0,566 JNN-A 0,579 0,265 1,488 0,605

BOOSTING 0,127 0,074 0,419 0,286 GRNN-TSF 0,318 0,221 1,280 0,590 RNN 0,674 0,383 2,236 0,765

FC(V1).SA 0,140 0,114 0,638 0,421 ENN-A 0,333 0,202 1,134 0,533 NNET 0,692 0,375 2,090 0,746

GRNN 0,141 0,094 0,537 0,326 JNN-A 0,381 0,195 1,093 0,523 LSTM 0,693 0,418 2,140 0,835

RF-M 0,153 0,110 0,598 0,416 KNN 0,409 0,313 1,727 0,761 NNET-A 0,695 0,378 2,099 0,749

FC(V2).CLS 0,167 0,084 0,483 0,293 NNETTS 0,488 0,265 1,468 0,629 GRU 0,708 0,457 2,271 0,909

GRNN-TSF 0,180 0,119 0,673 0,367 RNN 0,612 0,334 1,948 0,721 KNN 0,742 0,559 2,978 1,014

KNN 0,244 0,175 0,965 0,513 NNET 0,614 0,318 1,768 0,655 MLP-A 0,745 0,625 3,546 1,338

NNETTS 0,293 0,148 0,837 0,423 NNET-A 0,615 0,319 1,772 0,656 MLP 0,775 0,652 3,679 1,341

RNN 0,509 0,248 1,432 0,596 LSTM 0,641 0,387 1,983 0,798 RNN-A 0,815 0,577 3,647 1,040

RNN-A 0,525 0,320 1,945 0,718 GRU 0,651 0,427 2,122 0,882 FC(V2).TA 6,615 0,301 1,466 0,526

NNET 0,534 0,226 1,266 0,467 MLP-A 0,710 0,593 3,366 1,304 FC(V2).CLS 26 0,807 3,053 0,505

NNET-A 0,534 0,226 1,267 0,467 RNN-A 0,735 0,518 3,283 0,991 FC(V2).INVW 37 1,054 3,577 0,526

GRU 0,589 0,395 1,967 0,855 MLP 0,737 0,618 3,490 1,308 FC(V2).SA 48 1,325 3,999 0,582

LSTM 0,593 0,362 1,852 0,769 TAR 1,568 0,183 0,994 0,429 TAR 570 13 6,698 0,543

MLP-A 0,672 0,558 3,176 1,267 GMDH 17 0,543 2,460 0,505 GMDH 2605 92 7,914 0,659

MLP 0,703 0,588 3,334 1,280 FC(V1).EIG2 3E+08 1E+07 8,947 0,397 FC(V1).EIG2 7E+08 2E+07 8,936 0,491

FC(V1).EIG2 5912 140 8,295 0,204 LL/LST/SET-AR 1E+19 2E+17 5,263 0,458 LL/LST/SET-AR 2E+43 5E+41 5,152 0,572
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Table A.9: France’s The Errors of Yield Curve Forecasts for All Yields at Some 

Forecast Horizons  

 

FR - 1 day RMSE MAE MASE SMAPE  FR - 20 day RMSE MAE MASE SMAPE  FR - 40 day RMSE MAE MASE SMAPE

RW 0,107 0,071 0,295 0,253 RW 0,197 0,128 0,534 0,371 ETS/TBATS 0,269 0,178 0,741 0,468

FC(V1).EIG3 0,107 0,071 0,295 0,253 FC(V1).EIG3 0,197 0,128 0,534 0,371 FC(V4) 0,276 0,179 0,746 0,468

FC(V1).EIG1 0,107 0,071 0,295 0,253 FC(V1).EIG1 0,197 0,128 0,534 0,371 FC(V1).EIG1 0,278 0,179 0,748 0,460

AR(1) 0,107 0,071 0,295 0,254 ETS/TBATS 0,197 0,129 0,538 0,382 RW 0,278 0,179 0,747 0,460

ETS/TBATS 0,107 0,071 0,295 0,254 FC(V4) 0,197 0,129 0,537 0,381 FC(V1).EIG3 0,278 0,179 0,747 0,460

FC(V4) 0,107 0,071 0,295 0,254 FC(V1).CLS 0,198 0,128 0,533 0,372 FC(V1).CLS 0,280 0,179 0,746 0,461

FC(V1).CLS 0,107 0,071 0,295 0,253 FC(V1).MED 0,210 0,139 0,575 0,394 XGB 0,287 0,192 0,801 0,488

Auto.ARIMA 0,108 0,071 0,296 0,255 FC(V1).WA 0,211 0,139 0,578 0,396 FC(V3).BG 0,290 0,193 0,813 0,504

TAR 0,108 0,071 0,297 0,256 FC(V1).TA 0,211 0,139 0,577 0,395 FC(V3).TA 0,291 0,193 0,813 0,497

ARFIMA 0,108 0,073 0,302 0,258 AR(1) 0,212 0,142 0,587 0,400 FC(V3).WA 0,292 0,193 0,812 0,496

FC(V1).MED 0,108 0,071 0,295 0,250 FC(V3).MED 0,212 0,141 0,591 0,406 FC(V1).WA 0,292 0,191 0,794 0,487

FC(V1).WA 0,108 0,071 0,296 0,251 FC(V3).TA 0,213 0,142 0,598 0,409 FC(V3).MED 0,292 0,192 0,810 0,494

FC(V3).MED 0,108 0,071 0,301 0,255 FC(V3).WA 0,213 0,142 0,598 0,408 FC(V1).TA 0,293 0,191 0,794 0,485

FC(V1).TA 0,108 0,071 0,296 0,251 FC(V2).MED 0,215 0,146 0,614 0,426 FC(V3).INVW 0,294 0,196 0,823 0,506

BAGGING 0,109 0,072 0,299 0,256 BAGGING 0,215 0,137 0,571 0,393 RF 0,295 0,195 0,818 0,503

FC(V2).MED 0,109 0,072 0,302 0,255 FC(V3).BG 0,215 0,144 0,603 0,419 FC(V1).MED 0,295 0,193 0,801 0,488

FC(V3).WA 0,109 0,072 0,303 0,257 XGB 0,218 0,146 0,610 0,411 FC(V3).SA 0,298 0,197 0,827 0,500

FC(V3).TA 0,109 0,072 0,303 0,257 FC(V3).INVW 0,218 0,145 0,610 0,421 FC(V2).MED 0,300 0,204 0,860 0,525

ELM-A 0,109 0,072 0,300 0,254 FC(V3).SA 0,218 0,146 0,613 0,418 FC(V2).TA 0,309 0,211 0,890 0,548

GMDH 0,109 0,072 0,299 0,258 RF 0,219 0,145 0,608 0,413 FC(V2).WA 0,309 0,212 0,892 0,549

ELM 0,109 0,072 0,300 0,254 FC(V1).INVW 0,222 0,150 0,620 0,430 AR(1) 0,310 0,208 0,856 0,514

LL/LST/SET-AR 0,109 0,072 0,302 0,257 FC(V2).TA 0,223 0,153 0,642 0,448 FC(V3).CLS 0,314 0,216 0,908 0,560

FC(V3).BG 0,109 0,073 0,306 0,261 ARIMA 0,223 0,150 0,622 0,429 RF-C 0,319 0,219 0,896 0,557

FC(V3).SA 0,109 0,073 0,307 0,261 FC(V2).WA 0,223 0,153 0,644 0,450 ARIMA 0,322 0,210 0,869 0,525

FC(V3).INVW 0,109 0,073 0,307 0,260 RF-C 0,226 0,157 0,647 0,448 BAGGING 0,322 0,200 0,829 0,496

NNET-AR-A 0,110 0,074 0,307 0,256 RF-HP 0,232 0,157 0,648 0,439 NNET-AR 0,325 0,226 0,929 0,560

NNET-AR 0,110 0,074 0,307 0,256 FC(V3).CLS 0,238 0,161 0,678 0,462 NNET-AR-A 0,326 0,228 0,935 0,563

FC(V3).CLS 0,112 0,075 0,315 0,267 RF-A 0,244 0,166 0,676 0,453 RF-HP 0,343 0,227 0,924 0,552

RF-A 0,113 0,077 0,323 0,274 NNET-AR 0,251 0,174 0,715 0,474 ENN 0,346 0,251 1,056 0,633

RF 0,113 0,077 0,322 0,272 NNET-AR-A 0,252 0,175 0,717 0,474 RF-M 0,349 0,240 0,980 0,586

XGB 0,117 0,080 0,334 0,277 Auto.ARIMA 0,252 0,155 0,646 0,421 BOOSTING 0,363 0,262 1,078 0,608

ARIMA 0,118 0,079 0,329 0,280 RF-M 0,261 0,187 0,767 0,516 RF-A 0,367 0,245 0,982 0,576

FC(V1).INVW 0,119 0,080 0,333 0,293 BOOSTING 0,266 0,190 0,784 0,493 ENN-A 0,368 0,264 1,108 0,646

ENN-A 0,120 0,081 0,339 0,287 ARFIMA 0,273 0,174 0,714 0,447 GRNN 0,381 0,264 1,081 0,598

FC(V2).WA 0,120 0,082 0,345 0,294 ELM-A 0,273 0,190 0,780 0,500 ARFIMA 0,382 0,240 0,974 0,546

FC(V2).TA 0,121 0,082 0,346 0,294 ELM 0,273 0,191 0,782 0,503 ELM 0,385 0,268 1,094 0,619

RF-HP 0,123 0,086 0,357 0,295 ENN 0,280 0,200 0,835 0,544 ELM-A 0,387 0,269 1,099 0,618

RF-C 0,124 0,087 0,361 0,310 ENN-A 0,288 0,205 0,852 0,546 GRNN-TSF 0,422 0,297 1,231 0,658

FC(V2).CLS 0,133 0,086 0,362 0,302 GRNN 0,289 0,207 0,848 0,529 FC(V1).INVW 0,423 0,207 0,856 0,516

ENN 0,133 0,093 0,386 0,321 FC(V1).SA 0,292 0,214 0,868 0,592 Auto.ARIMA 0,423 0,241 1,001 0,544

FC(V2).INVW 0,143 0,091 0,381 0,321 TAR 0,292 0,168 0,705 0,456 JNN-A 0,451 0,289 1,135 0,629

BOOSTING 0,143 0,088 0,369 0,294 GRNN-TSF 0,353 0,250 1,030 0,591 JNN 0,498 0,329 1,290 0,699

FC(V2).SA 0,156 0,114 0,472 0,396 JNN-A 0,377 0,227 0,887 0,529 NNET 0,524 0,360 1,426 0,749

RF-M 0,169 0,131 0,541 0,435 JNN 0,413 0,258 1,008 0,598 NNET-A 0,547 0,370 1,465 0,758

GRNN 0,175 0,129 0,534 0,403 NNET-A 0,449 0,302 1,188 0,661 GRU 0,675 0,485 1,766 0,878

FC(V1).SA 0,177 0,137 0,558 0,449 KNN 0,454 0,338 1,385 0,761 MLP-A 0,737 0,613 2,579 1,131

GRNN-TSF 0,228 0,153 0,631 0,424 NNET 0,455 0,303 1,193 0,662 MLP 0,758 0,625 2,629 1,135

KNN 0,249 0,166 0,692 0,473 NNETTS 0,497 0,268 1,067 0,592 KNN 0,830 0,619 2,446 1,023

NNETTS 0,253 0,171 0,682 0,456 GRU 0,634 0,451 1,642 0,841 FC(V1).SA 0,863 0,276 1,114 0,655

FC(V2).CLS 0,265 0,143 0,592 0,397 MLP-A 0,704 0,580 2,441 1,096 LSTM 0,952 0,550 2,274 0,793

JNN-A 0,269 0,120 0,471 0,304 MLP 0,725 0,592 2,492 0,000 RNN 1,007 0,665 2,796 1,013

JNN 0,275 0,129 0,506 0,336 FC(V2).CLS 0,735 0,240 0,981 0,555 NNETTS 1,138 0,344 1,354 0,671

NNET 0,334 0,201 0,792 0,456 FC(V2).INVW 0,823 0,177 0,734 0,466 RNN-A 1,150 0,919 4,018 1,303

NNET-A 0,335 0,202 0,798 0,458 LSTM 0,924 0,518 2,142 0,754 FC(V2).CLS 4,810 0,403 1,553 0,671

VAR(1) 0,551 0,288 1,039 0,571 RNN 0,955 0,608 2,555 0,953 TAR 10 0,761 2,746 0,583

GRU 0,597 0,423 1,539 0,808 RNN-A 1,098 0,865 3,783 1,264 GMDH 182 4,819 6,010 0,662

MLP-A 0,671 0,551 2,344 1,077 FC(V2).CLS 1,128 0,180 0,744 0,454 FC(V2).INVW 247 5,466 6,101 0,565

MLP 0,694 0,568 2,407 1,088 LL/LST/SET-AR 1,431 0,232 0,928 0,489 LL/LST/SET-AR 345 7,909 4,535 0,606

RNN-A 0,735 0,492 2,115 0,940 FC(V2).SA 1,949 0,223 0,904 0,527 FC(V2).CLS 354 7,748 6,562 0,561

RNN 0,771 0,422 1,761 0,765 GMDH 6,791 0,435 1,546 0,530 FC(V2).SA 486 11 6,902 0,615

LSTM 0,901 0,488 2,020 0,717 VAR(1) 202 4,707 5,738 0,756 VAR(1) 5E+05 1E+04 7,826 0,845

FC(V1).EIG2 1,571 0,207 0,911 0,357 FC(V1).EIG2 3E+07 1E+06 4,627 0,465 FC(V1).EIG2 6E+07 3E+06 4,635 0,548
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Table A.10: Great Britain’s The Errors of Yield Curve Forecasts for All Yields at 

Some Forecast Horizons  

 

GB - 1 day RMSE MAE MASE SMAPE  GB - 20 day RMSE MAE MASE SMAPE  GB - 40 day RMSE MAE MASE SMAPE

ETS/TBATS 0,077 0,054 0,289 0,117 FC(V1).CLS 0,230 0,146 0,785 0,229 FC(V1).CLS 0,330 0,202 1,086 0,292

RW 0,077 0,054 0,289 0,116 RW 0,230 0,146 0,786 0,229 RW 0,330 0,202 1,087 0,292

FC(V1).EIG1 0,077 0,054 0,289 0,116 FC(V1).EIG1 0,230 0,146 0,786 0,229 FC(V1).EIG1 0,330 0,202 1,087 0,292

FC(V1).EIG3 0,077 0,054 0,289 0,116 FC(V1).EIG3 0,230 0,146 0,786 0,229 FC(V1).EIG3 0,330 0,202 1,087 0,292

FC(V1).CLS 0,077 0,054 0,289 0,116 ETS/TBATS 0,236 0,149 0,798 0,232 ETS/TBATS 0,336 0,205 1,102 0,295

Auto.ARIMA 0,078 0,054 0,289 0,117 FC(V4) 0,240 0,151 0,811 0,238 XGB 0,338 0,214 1,151 0,319

AR(1) 0,078 0,054 0,289 0,117 AR(1) 0,246 0,159 0,837 0,274 RF 0,340 0,219 1,175 0,327

FC(V4) 0,078 0,054 0,289 0,117 RF 0,248 0,163 0,877 0,265 FC(V4) 0,346 0,212 1,140 0,309

TAR 0,078 0,055 0,293 0,120 XGB 0,251 0,161 0,866 0,259 ARIMA 0,354 0,229 1,187 0,359

FC(V1).MED 0,079 0,054 0,291 0,117 ARIMA 0,257 0,169 0,883 0,285 FC(V3).TA 0,357 0,226 1,220 0,342

FC(V3).MED 0,079 0,054 0,297 0,119 BAGGING 0,258 0,156 0,840 0,250 FC(V3).WA 0,358 0,226 1,221 0,342

FC(V1).TA 0,079 0,054 0,292 0,117 Auto.ARIMA 0,259 0,156 0,838 0,244 FC(V3).BG 0,358 0,226 1,226 0,337

FC(V1).WA 0,079 0,055 0,292 0,117 FC(V1).INVW 0,260 0,163 0,866 0,257 FC(V3).INVW 0,358 0,225 1,217 0,340

ARFIMA 0,080 0,055 0,295 0,118 FC(V3).MED 0,265 0,163 0,882 0,265 FC(V3).MED 0,359 0,227 1,224 0,342

FC(V2).MED 0,080 0,055 0,300 0,120 FC(V3).TA 0,268 0,166 0,903 0,268 FC(V3).SA 0,360 0,228 1,226 0,348

FC(V3).WA 0,080 0,056 0,305 0,121 FC(V2).MED 0,269 0,168 0,912 0,268 AR(1) 0,364 0,233 1,205 0,368

FC(V3).TA 0,080 0,056 0,305 0,121 FC(V3).WA 0,269 0,167 0,905 0,269 FC(V1).MED 0,365 0,226 1,189 0,317

ELM-A 0,081 0,056 0,300 0,124 FC(V1).WA 0,269 0,164 0,869 0,252 FC(V1).WA 0,365 0,229 1,207 0,326

BAGGING 0,081 0,056 0,301 0,121 FC(V1).TA 0,269 0,164 0,865 0,250 FC(V1).TA 0,366 0,229 1,203 0,323

ELM 0,081 0,056 0,300 0,124 FC(V3).BG 0,270 0,168 0,911 0,265 FC(V2).MED 0,369 0,235 1,272 0,349

LL/LST/SET-AR 0,082 0,056 0,300 0,121 FC(V1).MED 0,270 0,162 0,859 0,246 FC(V1).INVW 0,373 0,227 1,203 0,323

FC(V3).SA 0,084 0,059 0,321 0,126 RF-HP 0,271 0,175 0,918 0,292 RF-C 0,382 0,250 1,306 0,368

FC(V3).BG 0,085 0,058 0,319 0,126 FC(V3).SA 0,272 0,170 0,918 0,275 RF-M 0,390 0,256 1,296 0,364

FC(V3).INVW 0,086 0,058 0,320 0,126 FC(V3).INVW 0,272 0,168 0,910 0,267 FC(V3).CLS 0,391 0,247 1,331 0,365

RF-A 0,086 0,061 0,327 0,136 FC(V2).TA 0,272 0,173 0,943 0,285 BAGGING 0,392 0,222 1,189 0,320

GMDH 0,087 0,056 0,301 0,120 FC(V2).WA 0,272 0,173 0,945 0,284 Auto.ARIMA 0,394 0,224 1,209 0,323

RF 0,087 0,060 0,322 0,130 RF-A 0,274 0,178 0,932 0,285 RF-HP 0,395 0,248 1,289 0,359

NNET-AR-A 0,087 0,059 0,316 0,126 RF-C 0,281 0,184 0,968 0,290 GRNN 0,401 0,264 1,369 0,409

NNET-AR 0,088 0,059 0,317 0,126 RF-M 0,285 0,193 0,989 0,300 GRNN-TSF 0,404 0,265 1,375 0,390

XGB 0,089 0,062 0,333 0,137 FC(V2).SA 0,299 0,195 1,068 0,315 BOOSTING 0,411 0,272 1,397 0,433

FC(V1).INVW 0,093 0,065 0,346 0,152 GRNN 0,300 0,204 1,059 0,341 FC(V1).SA 0,412 0,269 1,402 0,366

FC(V2).WA 0,094 0,065 0,354 0,149 FC(V3).CLS 0,306 0,188 1,016 0,292 NNET-AR 0,419 0,275 1,482 0,423

FC(V2).TA 0,095 0,066 0,359 0,150 VAR(1) 0,313 0,209 1,163 0,318 RF-A 0,421 0,276 1,406 0,402

ARIMA 0,097 0,066 0,349 0,137 BOOSTING 0,315 0,207 1,075 0,342 NNET-AR-A 0,421 0,274 1,480 0,422

RF-HP 0,102 0,071 0,381 0,153 FC(V1).SA 0,316 0,206 1,077 0,314 JNN-A 0,421 0,294 1,577 0,407

FC(V3).CLS 0,110 0,064 0,349 0,136 ARFIMA 0,316 0,192 0,988 0,294 JNN 0,434 0,306 1,622 0,449

FC(V2).CLS 0,115 0,070 0,384 0,140 GRNN-TSF 0,321 0,213 1,109 0,339 ARFIMA 0,437 0,271 1,368 0,378

JNN-A 0,120 0,069 0,371 0,136 JNN 0,330 0,235 1,254 0,366 ENN 0,444 0,269 1,433 0,399

RF-C 0,125 0,081 0,431 0,158 ELM 0,332 0,224 1,145 0,364 VAR(1) 0,454 0,300 1,647 0,410

JNN 0,125 0,074 0,397 0,144 FC(V2).INVW 0,334 0,183 0,995 0,279 ELM 0,457 0,314 1,570 0,460

FC(V2).SA 0,138 0,096 0,524 0,204 ELM-A 0,336 0,227 1,157 0,363 ELM-A 0,463 0,318 1,584 0,460

FC(V2).INVW 0,140 0,079 0,431 0,160 NNET-AR 0,343 0,210 1,127 0,341 ENN-A 0,472 0,284 1,498 0,412

GRNN 0,142 0,100 0,520 0,224 NNET-AR-A 0,344 0,209 1,124 0,339 MLP-A 0,690 0,500 2,614 0,529

RF-M 0,145 0,110 0,569 0,215 JNN-A 0,344 0,230 1,229 0,338 MLP 0,691 0,499 2,566 0,536

BOOSTING 0,157 0,097 0,510 0,200 FC(V2).CLS 0,361 0,179 0,969 0,269 NNET 0,728 0,400 2,111 0,541

FC(V1).SA 0,159 0,113 0,598 0,226 ENN 0,368 0,224 1,190 0,361 NNET-A 0,729 0,401 2,113 0,542

GRNN-TSF 0,170 0,113 0,589 0,239 ENN-A 0,422 0,239 1,250 0,369 LSTM 0,776 0,499 2,385 0,578

ENN 0,179 0,086 0,459 0,168 KNN 0,533 0,384 2,009 0,552 GRU 0,861 0,578 2,773 0,657

KNN 0,188 0,123 0,656 0,238 MLP-A 0,636 0,458 2,395 0,503 RNN-A 0,919 0,730 4,163 0,657

ENN-A 0,204 0,083 0,442 0,154 MLP 0,639 0,458 2,351 0,509 RNN 0,947 0,673 3,533 0,695

NNETTS 0,208 0,116 0,610 0,227 FC(V2).CLS 0,648 0,231 1,228 0,321 KNN 0,977 0,701 3,398 0,796

VAR(1) 0,213 0,119 0,642 0,182 NNET 0,654 0,334 1,762 0,464 NNETTS 1,472 0,548 2,699 0,542

FC(V2).CLS 0,295 0,118 0,640 0,201 NNET-A 0,656 0,335 1,765 0,466 FC(V2).SA 16 0,682 2,424 0,381

MLP 0,573 0,404 2,081 0,467 TAR 0,672 0,210 1,093 0,298 FC(V2).WA 16 0,655 2,341 0,363

MLP-A 0,574 0,404 2,102 0,466 LSTM 0,724 0,456 2,179 0,546 FC(V2).TA 16 0,655 2,343 0,364

NNET 0,579 0,220 1,169 0,295 GRU 0,821 0,542 2,601 0,630 FC(V2).INVW 60 1,828 3,277 0,359

NNET-A 0,579 0,220 1,170 0,295 RNN-A 0,891 0,688 3,936 0,624 FC(V2).CLS 78 2,316 3,396 0,351

RNN-A 0,617 0,427 2,369 0,492 RNN 0,913 0,623 3,275 0,655 FC(V2).CLS 178 4,906 3,763 0,396

LSTM 0,688 0,417 2,001 0,504 NNETTS 1,257 0,403 2,029 0,445 TAR 182 5,241 3,836 0,427

RNN 0,761 0,471 2,456 0,559 LL/LST/SET-AR 23 0,835 2,604 0,327 GMDH 194 4,669 3,644 0,502

GRU 0,774 0,503 2,414 0,602 GMDH 23 0,866 2,977 0,357 LL/LST/SET-AR 5E+04 906 3,735 0,438

FC(V1).EIG2 2,260 0,104 0,525 0,119 FC(V1).EIG2 1E+07 4E+05 4,974 0,236 FC(V1).EIG2 3E+07 7E+05 4,969 0,298
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Table A.11: Italy’s The Errors of Yield Curve Forecasts for All Yields at Some 

Forecast Horizons  

 

IT - 1 day RMSE MAE MASE SMAPE  IT - 20 day RMSE MAE MASE SMAPE  IT - 40 day RMSE MAE MASE SMAPE

RW 0,087 0,064 0,167 0,180 RW 0,276 0,188 0,493 0,337 RW 0,394 0,276 0,724 0,435

FC(V1).EIG3 0,087 0,064 0,167 0,180 FC(V1).EIG3 0,276 0,188 0,493 0,337 FC(V1).EIG3 0,394 0,276 0,724 0,435

FC(V4) 0,087 0,064 0,167 0,181 FC(V1).CLS 0,276 0,189 0,495 0,339 FC(V1).CLS 0,394 0,278 0,727 0,438

FC(V1).CLS 0,087 0,064 0,167 0,180 FC(V1).EIG1 0,278 0,189 0,496 0,339 FC(V1).EIG1 0,397 0,279 0,732 0,438

FC(V1).EIG1 0,087 0,064 0,167 0,180 FC(V3).MED 0,287 0,201 0,530 0,368 FC(V3).BG 0,405 0,294 0,777 0,487

Auto.ARIMA 0,088 0,064 0,168 0,185 FC(V3).BG 0,289 0,204 0,539 0,386 FC(V3).MED 0,407 0,293 0,774 0,473

FC(V3).MED 0,088 0,064 0,169 0,184 FC(V3).WA 0,289 0,202 0,532 0,375 FC(V3).TA 0,409 0,294 0,775 0,479

TAR 0,088 0,065 0,169 0,183 FC(V3).TA 0,289 0,202 0,533 0,376 FC(V3).WA 0,410 0,294 0,776 0,479

FC(V1).MED 0,088 0,065 0,170 0,184 ETS/TBATS 0,291 0,196 0,512 0,349 FC(V3).INVW 0,416 0,303 0,798 0,497

FC(V1).TA 0,089 0,065 0,171 0,183 FC(V4) 0,295 0,197 0,515 0,352 XGB 0,418 0,298 0,783 0,470

FC(V1).WA 0,089 0,065 0,171 0,183 FC(V3).INVW 0,295 0,210 0,553 0,396 FC(V2).MED 0,420 0,297 0,786 0,469

ETS/TBATS 0,090 0,065 0,169 0,181 FC(V1).MED 0,298 0,211 0,553 0,383 ETS/TBATS 0,421 0,287 0,750 0,447

FC(V2).MED 0,090 0,065 0,172 0,186 FC(V2).MED 0,300 0,209 0,552 0,373 FC(V1).MED 0,427 0,313 0,816 0,502

ELM-A 0,091 0,067 0,175 0,199 AR(1) 0,301 0,208 0,543 0,363 RF 0,427 0,314 0,829 0,498

ELM 0,092 0,068 0,177 0,201 XGB 0,301 0,211 0,556 0,378 FC(V3).SA 0,430 0,311 0,818 0,501

ARFIMA 0,092 0,068 0,177 0,190 FC(V1).TA 0,303 0,217 0,566 0,389 FC(V2).WA 0,432 0,305 0,807 0,484

BAGGING 0,092 0,067 0,176 0,187 FC(V3).SA 0,305 0,217 0,571 0,401 FC(V1).TA 0,433 0,320 0,835 0,503

FC(V3).WA 0,093 0,067 0,177 0,192 FC(V1).WA 0,305 0,218 0,569 0,391 FC(V4) 0,435 0,285 0,745 0,454

FC(V3).TA 0,094 0,067 0,178 0,193 FC(V2).TA 0,306 0,214 0,564 0,385 FC(V1).WA 0,436 0,323 0,843 0,506

NNET-AR-A 0,095 0,068 0,179 0,192 FC(V2).WA 0,307 0,215 0,568 0,389 AR(1) 0,436 0,314 0,818 0,482

NNET-AR 0,095 0,069 0,180 0,192 BAGGING 0,309 0,208 0,542 0,374 FC(V1).INVW 0,440 0,327 0,852 0,510

FC(V3).BG 0,099 0,070 0,185 0,198 RF 0,311 0,223 0,588 0,402 RF-HP 0,453 0,331 0,861 0,499

FC(V3).INVW 0,099 0,071 0,188 0,201 RF-HP 0,313 0,223 0,583 0,394 FC(V3).CLS 0,456 0,332 0,877 0,539

RF-A 0,101 0,075 0,195 0,208 FC(V3).CLS 0,322 0,231 0,609 0,434 BAGGING 0,459 0,314 0,816 0,490

XGB 0,103 0,076 0,199 0,208 RF-A 0,322 0,224 0,582 0,383 FC(V2).TA 0,463 0,307 0,813 0,483

RF 0,104 0,075 0,197 0,204 FC(V1).INVW 0,327 0,236 0,616 0,412 ARIMA 0,465 0,336 0,887 0,502

FC(V3).SA 0,105 0,075 0,198 0,211 RF-M 0,343 0,258 0,686 0,475 RF-M 0,472 0,356 0,941 0,573

FC(V3).CLS 0,106 0,074 0,197 0,208 RF-C 0,346 0,248 0,649 0,427 RF-C 0,481 0,345 0,896 0,521

AR(1) 0,113 0,073 0,191 0,191 BOOSTING 0,351 0,257 0,669 0,452 BOOSTING 0,487 0,363 0,939 0,558

LL/LST/SET-AR 0,119 0,071 0,186 0,191 Auto.ARIMA 0,354 0,210 0,548 0,365 RF-A 0,490 0,352 0,905 0,511

FC(V2).TA 0,119 0,082 0,216 0,218 ARIMA 0,355 0,250 0,665 0,421 NNET-AR-A 0,507 0,375 1,003 0,588

FC(V2).WA 0,120 0,082 0,217 0,219 NNET-AR-A 0,381 0,272 0,722 0,481 NNET-AR 0,507 0,375 1,001 0,587

FC(V2).CLS 0,121 0,084 0,222 0,213 NNET-AR 0,385 0,273 0,724 0,479 GRNN 0,514 0,376 0,983 0,560

FC(V1).INVW 0,123 0,086 0,224 0,213 ARFIMA 0,387 0,265 0,680 0,425 ENN 0,515 0,381 0,985 0,589

RF-HP 0,124 0,089 0,233 0,229 ELM-A 0,389 0,281 0,721 0,472 GRNN-TSF 0,524 0,383 1,037 0,548

RF-C 0,124 0,087 0,230 0,228 ELM 0,390 0,284 0,729 0,480 FC(V1).SA 0,540 0,412 1,067 0,616

GMDH 0,127 0,067 0,175 0,185 GRNN 0,397 0,282 0,738 0,480 ENN-A 0,545 0,404 1,044 0,602

FC(V2).INVW 0,130 0,090 0,239 0,225 ENN 0,411 0,293 0,751 0,509 ARFIMA 0,545 0,375 0,955 0,524

ARIMA 0,137 0,094 0,250 0,240 GRNN-TSF 0,425 0,303 0,820 0,489 ELM-A 0,568 0,405 1,030 0,588

BOOSTING 0,141 0,089 0,232 0,224 ENN-A 0,430 0,304 0,783 0,512 ELM 0,568 0,410 1,043 0,600

GRNN 0,163 0,113 0,297 0,267 FC(V2).SA 0,434 0,263 0,693 0,451 Auto.ARIMA 0,583 0,317 0,821 0,473

FC(V2).SA 0,166 0,124 0,327 0,287 FC(V1).SA 0,435 0,324 0,842 0,535 JNN-A 0,606 0,406 1,059 0,568

RF-M 0,172 0,135 0,364 0,351 JNN-A 0,453 0,314 0,822 0,506 JNN 0,679 0,431 1,133 0,567

ENN-A 0,190 0,102 0,264 0,254 FC(V2).CLS 0,457 0,229 0,603 0,395 MLP-A 1,041 0,838 2,191 0,871

FC(V2).CLS 0,190 0,117 0,309 0,276 JNN 0,507 0,334 0,875 0,512 RNN 1,059 0,764 2,000 0,794

ENN 0,200 0,119 0,305 0,293 FC(V2).INVW 0,638 0,241 0,634 0,409 NNET 1,081 0,663 1,723 0,759

GRNN-TSF 0,215 0,142 0,379 0,322 KNN 0,709 0,492 1,270 0,704 NNET-A 1,094 0,671 1,744 0,762

JNN 0,231 0,118 0,308 0,256 MLP-A 0,987 0,791 2,065 0,846 MLP 1,132 0,896 2,322 0,891

FC(V1).SA 0,247 0,169 0,442 0,364 NNET 0,988 0,557 1,441 0,664 GRU 1,241 0,868 2,215 0,874

VAR(1) 0,259 0,165 0,435 0,302 NNET-A 0,991 0,561 1,451 0,667 KNN 1,357 0,911 2,250 0,920

KNN 0,310 0,212 0,554 0,411 RNN 0,993 0,692 1,813 0,751 LSTM 1,375 0,914 2,337 0,838

JNN-A 0,316 0,148 0,384 0,303 MLP 1,081 0,851 2,203 0,873 RNN-A 1,375 1,009 2,714 0,913

NNETTS 0,532 0,276 0,710 0,440 NNETTS 1,176 0,550 1,389 0,699 NNETTS 2,631 0,855 2,073 0,835

NNET 0,718 0,309 0,806 0,436 GRU 1,197 0,819 2,090 0,850 FC(V2).SA 41 2,068 3,224 0,562

NNET-A 0,722 0,313 0,815 0,439 RNN-A 1,321 0,937 2,522 0,869 FC(V2).CLS 53 2,550 3,574 0,506

RNN 0,738 0,497 1,299 0,645 LSTM 1,337 0,860 2,198 0,803 FC(V2).INVW 82 3,269 4,103 0,520

RNN-A 0,873 0,577 1,535 0,692 VAR(1) 1,387 0,374 0,956 0,510 GMDH 90 2,750 3,416 0,626

MLP-A 0,928 0,742 1,958 0,815 FC(V2).CLS 1,679 0,315 0,825 0,478 VAR(1) 215 5,302 5,241 0,655

MLP 1,025 0,804 2,108 0,844 GMDH 2,254 0,373 0,942 0,456 FC(V2).CLS 219 5,511 5,582 0,584

GRU 1,150 0,775 1,977 0,826 TAR 3,023 0,408 1,027 0,452 TAR 416 16 5,647 0,598

LSTM 1,305 0,812 2,076 0,779 LL/LST/SET-AR 236 6,626 4,503 0,446 LL/LST/SET-AR 3E+06 8E+04 5,522 0,576

FC(V1).EIG2 40,19 2,128 3,036 0,212 FC(V1).EIG2 5E+07 3E+06 5,801 0,371 FC(V1).EIG2 1E+08 5E+06 5,806 0,470



181 

 

  

  

Table A.12: United States’ The Errors of Yield Curve Forecasts for All Yields at 

Some Forecast Horizons  

 

US - 1 day RMSE MAE MASE SMAPE  US - 20 day RMSE MAE MASE SMAPE  US - 40 day RMSE MAE MASE SMAPE

RW 0,054 0,039 0,096 0,078 RW 0,204 0,134 0,330 0,156 RW 0,321 0,207 0,510 0,212

FC(V1).CLS 0,054 0,039 0,096 0,078 FC(V1).EIG3 0,204 0,134 0,330 0,156 FC(V1).EIG3 0,321 0,207 0,510 0,212

FC(V1).EIG3 0,054 0,039 0,096 0,078 FC(V1).CLS 0,204 0,134 0,330 0,156 FC(V1).CLS 0,321 0,207 0,510 0,212

ETS/TBATS 0,057 0,041 0,101 0,085 ETS/TBATS 0,213 0,139 0,344 0,173 ETS/TBATS 0,333 0,218 0,539 0,239

AR(1) 0,058 0,042 0,103 0,083 BAGGING 0,213 0,143 0,356 0,196 BAGGING 0,333 0,226 0,564 0,265

VAR(1) 0,058 0,042 0,104 0,084 Auto.ARIMA 0,221 0,146 0,363 0,202 FC(V4) 0,348 0,231 0,571 0,279

BAGGING 0,058 0,042 0,104 0,087 FC(V4) 0,227 0,149 0,367 0,197 Auto.ARIMA 0,353 0,233 0,583 0,279

Auto.ARIMA 0,058 0,042 0,102 0,088 XGB 0,257 0,172 0,426 0,239 XGB 0,364 0,239 0,589 0,286

FC(V4) 0,061 0,042 0,104 0,086 FC(V1).INVW 0,260 0,176 0,430 0,227 RF 0,370 0,242 0,597 0,290

ARFIMA 0,062 0,045 0,110 0,092 RF 0,262 0,176 0,433 0,242 FC(V1).INVW 0,382 0,256 0,624 0,287

FC(V1).MED 0,062 0,043 0,107 0,084 VAR(1) 0,269 0,186 0,460 0,289 FC(V3).MED 0,389 0,250 0,621 0,271

TAR 0,063 0,045 0,111 0,099 FC(V3).BG 0,278 0,178 0,443 0,217 FC(V3).WA 0,399 0,257 0,638 0,288

FC(V3).MED 0,066 0,045 0,114 0,089 FC(V3).MED 0,285 0,178 0,443 0,214 FC(V3).TA 0,399 0,257 0,638 0,289

FC(V1).TA 0,066 0,047 0,115 0,092 FC(V3).INVW 0,288 0,184 0,458 0,229 FC(V3).BG 0,400 0,258 0,642 0,277

FC(V2).MED 0,066 0,045 0,113 0,086 FC(V3).TA 0,290 0,183 0,454 0,230 FC(V3).INVW 0,413 0,266 0,660 0,293

FC(V3).WA 0,068 0,047 0,117 0,091 FC(V3).WA 0,290 0,183 0,454 0,230 VAR(1) 0,416 0,287 0,705 0,375

FC(V1).WA 0,068 0,048 0,117 0,092 FC(V1).MED 0,290 0,189 0,460 0,235 FC(V3).SA 0,426 0,274 0,675 0,313

FC(V3).TA 0,068 0,047 0,118 0,091 FC(V1).TA 0,296 0,197 0,477 0,245 FC(V1).TA 0,428 0,287 0,694 0,313

FC(V3).BG 0,068 0,048 0,120 0,096 FC(V1).WA 0,299 0,199 0,482 0,248 FC(V1).MED 0,429 0,282 0,681 0,308

FC(V3).INVW 0,069 0,048 0,121 0,097 FC(V2).MED 0,300 0,193 0,479 0,219 FC(V1).WA 0,431 0,289 0,699 0,316

FC(V3).SA 0,071 0,050 0,125 0,097 FC(V3).SA 0,302 0,194 0,479 0,250 FC(V2).MED 0,432 0,282 0,699 0,285

GMDH 0,075 0,048 0,119 0,105 ARFIMA 0,311 0,215 0,511 0,253 FC(V1).SA 0,453 0,315 0,757 0,349

RF 0,078 0,056 0,137 0,119 RF-HP 0,320 0,201 0,484 0,257 RF-C 0,460 0,304 0,719 0,354

FC(V3).CLS 0,081 0,053 0,133 0,107 RF-C 0,321 0,217 0,515 0,281 ENN 0,461 0,312 0,772 0,369

FC(V1).INVW 0,082 0,060 0,147 0,130 FC(V1).SA 0,336 0,238 0,574 0,305 FC(V2).CLS 0,472 0,307 0,764 0,352

RF-A 0,087 0,061 0,150 0,136 RF-M 0,337 0,225 0,535 0,250 FC(V3).CLS 0,479 0,300 0,747 0,332

FC(V2).WA 0,087 0,061 0,154 0,121 FC(V3).CLS 0,343 0,212 0,528 0,265 RF-M 0,482 0,318 0,756 0,318

FC(V2).TA 0,089 0,063 0,157 0,123 FC(V2).CLS 0,349 0,219 0,544 0,286 ARFIMA 0,484 0,331 0,776 0,354

NNET-AR-A 0,091 0,058 0,142 0,112 AR(1) 0,361 0,235 0,568 0,276 NNET-AR-A 0,496 0,351 0,852 0,454

RF-HP 0,091 0,064 0,157 0,144 NNET-AR-A 0,368 0,251 0,609 0,353 NNET-AR 0,496 0,350 0,851 0,456

XGB 0,091 0,063 0,156 0,140 NNET-AR 0,373 0,252 0,612 0,355 JNN-A 0,502 0,318 0,780 0,362

NNET-AR 0,092 0,058 0,143 0,113 ENN 0,376 0,251 0,621 0,327 RF-HP 0,515 0,330 0,780 0,349

ELM-A 0,097 0,066 0,162 0,124 JNN-A 0,380 0,237 0,590 0,296 ENN-A 0,517 0,337 0,827 0,420

ELM 0,097 0,066 0,162 0,126 ENN-A 0,387 0,255 0,625 0,355 ARIMA 0,521 0,347 0,860 0,351

FC(V2).CLS 0,098 0,065 0,163 0,112 BOOSTING 0,392 0,272 0,640 0,401 JNN 0,530 0,336 0,824 0,414

JNN 0,109 0,070 0,171 0,144 ARIMA 0,394 0,252 0,622 0,273 BOOSTING 0,530 0,379 0,881 0,492

FC(V2).INVW 0,109 0,073 0,183 0,123 JNN 0,410 0,245 0,603 0,324 AR(1) 0,562 0,371 0,887 0,386

RF-C 0,121 0,084 0,203 0,162 RF-A 0,424 0,279 0,672 0,322 GRNN-TSF 0,585 0,401 0,943 0,467

ARIMA 0,128 0,081 0,200 0,122 GRNN-TSF 0,476 0,321 0,755 0,420 GRNN 0,586 0,374 0,877 0,397

RF-M 0,136 0,099 0,239 0,170 GRNN 0,480 0,299 0,701 0,355 ELM 0,644 0,439 1,027 0,458

ENN-A 0,140 0,070 0,173 0,144 ELM 0,485 0,327 0,774 0,380 RF-A 0,644 0,433 1,021 0,430

FC(V2).SA 0,145 0,109 0,271 0,179 ELM-A 0,503 0,343 0,819 0,380 NNET-A 0,664 0,442 1,042 0,516

FC(V1).SA 0,157 0,116 0,283 0,225 KNN 0,507 0,368 0,903 0,479 ELM-A 0,673 0,465 1,100 0,463

LL/LST/SET-AR 0,166 0,064 0,156 0,123 NNET 0,577 0,357 0,842 0,444 NNET 0,674 0,444 1,048 0,509

ENN 0,167 0,088 0,216 0,162 NNET-A 0,578 0,360 0,847 0,448 MLP-A 0,810 0,610 1,512 0,519

FC(V2).CLS 0,185 0,089 0,224 0,148 NNETTS 0,640 0,386 0,913 0,470 MLP 0,837 0,635 1,578 0,537

BOOSTING 0,197 0,116 0,282 0,203 MLP-A 0,740 0,557 1,383 0,495 LSTM 0,890 0,630 1,407 0,606

GRNN 0,253 0,153 0,365 0,200 MLP 0,765 0,580 1,444 0,513 KNN 0,926 0,659 1,590 0,662

JNN-A 0,254 0,117 0,287 0,190 LSTM 0,810 0,571 1,274 0,577 RNN 0,997 0,694 1,800 0,556

KNN 0,265 0,185 0,450 0,297 RNN 0,939 0,624 1,614 0,525 NNETTS 1,152 0,573 1,303 0,541

NNETTS 0,315 0,203 0,491 0,329 GRU 1,099 0,782 1,663 0,756 GRU 1,184 0,847 1,799 0,783

GRNN-TSF 0,320 0,181 0,428 0,281 RNN-A 1,156 0,794 2,170 0,561 RNN-A 1,200 0,851 2,361 0,577

NNET 0,376 0,190 0,454 0,259 FC(V2).WA 1,817 0,241 0,579 0,241 FC(V1).EIG1 112 3,448 2,256 0,250

NNET-A 0,376 0,190 0,455 0,260 FC(V2).TA 1,817 0,241 0,579 0,242 GMDH 205 5,574 2,196 0,438

RNN 0,643 0,446 1,122 0,501 FC(V2).CLS 1,877 0,230 0,551 0,220 TAR 3262 68 2,207 0,384

MLP-A 0,674 0,516 1,290 0,486 FC(V2).SA 1,921 0,287 0,683 0,284 FC(V2).TA 6798 132 2,693 0,306

MLP 0,694 0,533 1,336 0,496 GMDH 3,247 0,331 0,769 0,336 FC(V2).WA 6798 132 2,693 0,307

RNN-A 0,715 0,511 0,000 0,497 FC(V2).INVW 3,570 0,276 0,643 0,235 FC(V2).CLS 7069 141 2,816 0,282

LSTM 0,725 0,514 1,150 0,551 TAR 4,515 0,303 0,680 0,284 FC(V2).SA 7092 147 2,860 0,340

GRU 1,018 0,725 1,539 0,733 FC(V1).EIG1 79 2,408 2,021 0,192 FC(V2).INVW 1E+04 268 2,806 0,300

FC(V1).EIG2 2,396 0,184 0,411 0,106 FC(V1).EIG2 3E+06 8E+04 3,015 0,184 FC(V1).EIG2 7E+06 2E+05 3,017 0,240

FC(V1).EIG1 18,36 0,505 0,910 0,107 LL/LST/SET-AR 2E+21 4E+19 4,500 0,310 LL/LST/SET-AR 8E+64 2E+63 4,500 0,418
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APPENDIX 13: ORIGINALITY REPORT 
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APPENDIX 14:  ETHICS COMMISSION FORM 

 

 



185 

 

  

  

 


