ZAYIF KAYA KÜTLELERİNDE TASARLANAN BİR KARAYOLU TÜNELİNİN ÜÇ BOYUTLU NÜMERİK ANALİZLERLE İNCELENMESİ (EVCİLER VARYANTI TÜNELİ, BALIKESİR, TÜRKİYE)

INVESTIGATION OF A HIGHWAY TUNNEL DESIGNED IN WEAK ROCK MASSES BY THREE DIMENSIONAL NUMERICAL ANALYSES (EVCILER VARIANT TUNNEL, BALIKESIR, TURKEY)

HANİFE BÜŞRA TUNCA PARLAR

PROF. DR. CANDAN GÖKÇEOĞLU Tez Danışmanı

Hacettepe Üniversitesi Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliğinin Jeoloji Mühendisliği Anabilim Dalı için Öngördüğü YÜKSEK LİSANS TEZİ olarak hazırlanmıştır.

Değerli aileme ve çok sevgili eşime,

ÖZET

ZAYIF KAYA KÜTLELERİNDE TASARLANAN BİR KARAYOLU TÜNELİNİN ÜÇ BOYUTLU NÜMERİK ANALİZLERLE İNCELENMESİ (EVCİLER VARYANTI TÜNELİ, BALIKESİR, TÜRKİYE)

HANİFE BÜŞRA TUNCA PARLAR Yüksek Lisans, Jeoloji Mühendisliği Bölümü Tez Danışmanı: Prof. Dr. Candan GÖKÇEOĞLU Ağustos 2024, 149 sayfa

Türkiye'nin jeolojik ve topografik yapısı, karayolu ulaşımında tünel ihtiyacını doğurmaktadır. Son yıllarda karayolu güzergahlarında yüksek yarmalardan kaçınılarak tünel alternatifi değerlendirilmektedir. Ancak tünel imalatının en önemli noktası doğru analiz ve doğru projelendirmedir. Gerekli arazi ve laboratuvar çalışmalarının ardından elde edilen verilerin analizlerinin doğru şekilde yapılması imalat aşamasında karşılaşılabilecek her türlü birim ve jeolojik yapı için doğru bir projelendirmeye yardımcı olur.

Tünel proje tasarımında en sık kullanılan analiz programları sadece iki boyutlu analiz yapımına imkan tanımaktadır. Bu da tünelin ve tünel açımının ortama etkisi nedeniyle yetersiz kalmaktadır. Tünel imalatının sorunsuz şekilde tamamlanabilmesi, tünelin açılacağı ortamın jeolojik-jeoteknik özelliklerinin mümkün olan en doğru şekilde modellenmesine bağlıdır. Bu da elde edilen verilerin üç boyutlu modellenmesi ile sağlanmaktadır.

Bu çalışmada Balıkesir ilinin Edremit ilçesinde zayıf kaya kütlelerinde tasarlanan Evciler Varyant tünelinin üç boyutlu nümerik analizi yapılmıştır. Nümerik analizlerde FLAC 3D yazılımı kullanılmıştır. Analizlerin sonuçlarına göre tespit edilen deformasyon değerlerine uygun kazı destek sistemi tasarlanmıştır.

Anahtar Kelimeler: Tünel, Üç Boyutlu Model, Zayıf Kaya, Nümerik Analiz, Balıkesir Danışman: Prof. Dr. Candan GÖKÇEOĞLU, Hacettepe Üniversitesi, Jeoloji Mühendisliği Bölümü

ABSTRACT

INVESTIGATION OF A HIGHWAY TUNNEL DESIGNED IN WEAK ROCK MASSES BY THREE DIMENSIONAL NUMERICAL ANALYSES (EVCİLER VARIANT TUNNEL, BALIKESIR, TURKEY)

HANİFE BÜŞRA TUNCA PARLAR

Master of Science, Department of Geological Engineering Supervisor: Prof. Dr. Candan GÖKÇEOĞLU August 2024, 149 pages

Turkey's geological and topographical structure, raises the need for road transport in the tunnel. In recent years, the tunnel alternative has been evaluated by avoiding high cuts on the highway routes. However, the most important point of tunnel construction is correct analysis and correct project planning. Correct analysis of the data obtained after the necessary field and laboratory studies helps to design an accurate project for any unit and geological structure that may be encountered during the manufacturing phase.

The most frequently used analysis programs in tunnel project design only allow twodimensional analysis. This is insufficient due to the effect of the tunnel and tunnel opening on the environment. The trouble-free completion of the tunnel construction depends on modeling the geological-geotechnical characteristics of the environment in which the tunnel will be opened in the most accurate way possible. This is achieved by threedimensional modeling of the data obtained.

In this study, three-dimensional numerical analysis of the Evciler Varyant tunnel designed in weak rock masses in Edremit district of Balıkesir province was performed. FLAC 3D software was used for numerical analysis. The excavation support system has been designed in accordance with the deformation values determined based on the analysis results.

Key Words: Tunnel, Three Dimensional Model, Weak Rocks, Numerical Analysis, Balıkesir

TEŞEKKÜR

Bilgisi, tecrübesi, ilgisi ve nezaketi ile en zor zamanlarda dahi yanımda olarak fikirlerimi ve çalışmalarımı şekillendiren, vizyonumu ve ufkumu genişleten, öğrencisi olmaktan her zaman gurur duyacağım çok değerli danışman hocam Prof. Dr. Candan GÖKÇEOĞLU'na;

Tezimin çalışma bölgesine ait veri tabanının oluşturulmasında ve jeolojik raporların hazırlanmasında bilgi, kaynak ve önerilerini paylaşan, mesleki bilgi ve tecrübesini benimle paylaşarak tezimin şekillenmesi konusunda desteğini hiçbir zaman esirgemeyen Karayolları Genel Müdürlüğü Araştırma ve Geliştirme Dairesi Başkanlığı Jeolojik Hizmeler Şubesi Müdürü Sayın Aydın DURUKAN'a;

Tecrübelerini ve bilgilerini benimle paylaşarak, desteğini esirgemeyen ve tezimin her aşamasında titizlikle tüm sorularıma cevap veren Ebu Bekir AYGAR'a;

Yüksek Lisans aşamasında bilgi birikimleriyle sorularıma cevap veren, desteklerini esirgemeyen Murat OKTAY'a, Sevda GÜNEY'e, Hüseyin DEMİRBİLEK'e ve Dr. Kürşat TOKGÖZOĞLU'na;

Sabır, sevgi ve özveri ile eğitim hayatımın her anında yanımda olan en büyük destekçim Annem Leyla TUNCA'ya ve aramızda olmasa da tüm hücrelerimde yaşamaya devam eden Babam Metin TUNCA'ya;

Tanıştığımız günden beri varlığıyla hayatımın her anını güzelleştiren, her türlü zorlukta varlığıyla bana destek olan, hayatı paylaşmaktan büyük mutluluk duyduğum sevgili eşim Yavuz Emre PARLAR'a ve tezimi hazırlama sürecinde dünyaya gelen canım kızım Güneş PARLAR'a sonsuz teşekkürlerimi sunarım.

İÇİNDEKİLER

ÖZET	i
ABSTRACT	ii
TEŞEKKÜR	iii
İÇİNDEKİLER	iv
ÇİZELGELER	vii
ŞEKİLLLER	ix
SİMGELER VE KISALTMALAR	xii
1. GİRİŞ	1
1.1. Çalışmanın Amacı	1
1.2. Çalışma Alanının Özellikleri	2
1.2.1. İklim ve Bitki Örtüsü	8
1.2.2. Morfoloji	9
2. ÇALIŞMA ALANI JEOLOJİSİ ve DAHA ÖNCEKİ ÇALIŞMALAR	11
2.1. Tünellerle Alakalı Daha Önceki Çalışmalar	11
2.2. Çalışma Alanı Jeolojisi	12
2.3. Stratigrafi	14
2.3.1. Hallaçlar Volkaniti	14
2.3.2. Yürekli Dasiti (Tmy)	15
2.3.3. Şapçı Volkaniti (Tmş)	15
2.3.4. Soma Formasyonu (Tmso)	16
2.3.5. Alüvyon (Qal)	16
2.3.6. Yamaç Molozu (Qym)	17
2.4. Yapısal Jeoloji	18
2.5. Depremsellik	19
2.6. Hidrojeoloji	21
3. MATERYAL VE YÖNTEM	22
3.1. Arazi Çalışmaları	23
3.1.1. Jeoteknik Amaçlı Sondaj Çalışmaları	23
3.2. Laboratuvar Araştırmaları	24
3.3. Kaya Kütlelerinin Jeolojik-Jeoteknik Özelliklerinin Tanımlanması	26
3.3.1. Kaya Kütlesi Sınıflama Sistemi - (RMR)	26

3.3.2. Jeolojik Dayanım İndeksi (GSI)	27
3.3.3. Q Sınıflama Sistemi	29
3.3.4. Kaya Kütlesi İçin Deformasyon Modülü ve Sabitlerin Tespit Edilmesi	30
3.3.5. NATM (New Austrian Tunnelling Method) Sınıflama Sistemi	31
4. BULGULAR VE TARTIŞMALAR	32
4.1. Arazi ve Laboratuvar Deneyleri	32
4.1.1. Sondaj Çalışmalarından Elde Edilen Veriler	32
4.1.2. Laboratuvar Deneylerinden Elde Edilen Değerler	33
4.1.2.1. Birim Hacim Ağırlık Deneyi	33
4.1.2.2. Nokta Yükü İndeksi (Is50)	33
4.1.2.3. Tek Eksenli Basınç Dayanımı	34
4.2. Tünel Giriş Portal Bölgesi Parametrelerinin Seçimi	34
4.3. Kaya Kütle Sınıflama Sistemi (RMR)	35
4.3.1. Jeolojik Dayanım İndeksi (GSI)	39
4.3.2. Q Sınıflama Sistemi	41
4.3.3. Tasarıma Esas Parametreler	42
4.3.4. Kaya Malzeme Katsayısı (mi)	42
4.3.4.1. Tek Eksenli Sıkışma Dayanımı (σc)	42
4.3.4.2. Birim Hacim Ağırlık (γ)	42
4.3.4.3. Deformasyon Modülü (Em)	43
4.4. Tünel Eksen Parametrelerinin Seçimi	44
4.4.1. Kaya Kütle Sınıflama Sistemi (RMR)	45
4.4.2. Jeolojik Dayanım İndeksi (GSI)	48
4.4.3. Q Sınıflama Sistemi	50
4.4.4. Tasarıma Esas Parametreler	51
4.4.4.1. Kaya Malzeme Sabiti (mi)	51
4.4.4.2. Tek Eksenli Sıkışma Dayanımı (σc)	51
4.4.4.3. Birim Hacim Ağırlık (γ)	51
4.4.4.4 Elastisite Modülü (Em)	52
4.5. Tünel Çıkış Portal Bölgesi Parametrelerinin Seçimi	54
4.5.1. Kaya Kütle Sınıflama Sistemi (RMR)	55
4.5.2. Jeolojik Dayanım İndeksi (GSI)	58
4.5.3. Q Sınıflama Sistemi	60
4.6. Tasarıma Esas Parametreler	61

4.6.1. Kaya Malzeme Sabiti (mi)	61
4.6.2. Tek Eksenli Sıkışma Dayanımı (σc)	61
4.6.3. Birim Hacim Ağırlık (γ)	61
4.6.4. Elastisite Modülü (Em)	62
4.7. Yeni Avusturya Tünel Açma Yöntemi ve Destek Sistemi (NATM)	65
4.7.1. Birincil Destekleme Sistemi	66
4.7.2. Birincil Destekleme Sisteminde Kullanılan Elemanlar	66
4.7.2.1. Püskürtme Betonu	66
4.7.2.2. Çelik Hasır	66
4.7.2.3. Çelik İksa	67
4.7.2.4. Süren Boruları veya Demir Çubukları	67
4.7.2.5. Kaya Bulonları	67
4.7.3. İkincil Destekleme Sistemi	67
4.8. Tünel Kazısının Sayısal Modellemesi	68
4.8.1. Tasarım Yöntemi ve Esasları	68
4.8.2. Tünel Destek Sistemlerinin Analitik Çözümler ve Nümerik Ana	lizler İle
Belirlenmesi	68
4.9. Sonlu Elemanlar Yöntemi ve FLAC Yazılımı	76
4.10. Analizlerin Değerlendirilmesi	87
5. SONUÇ VE ÖNERİLER	88
KAYNAKLAR	89
EKLER	92
EK-1. Tablolar	92
EK-2. Sondaj Logları	100
EK-3. Karot Sandık Fotoğrafları	116
EK-4. Laboratuvar Deney Sonuçları	128
ÖZGEÇMİŞ	131

ÇİZELGELER

Çizelge 2.1. Sondajlarda karşılaşılan yeraltısuyu seviyeleri	.21
Çizelge 3.1. Çalışmaya konu alanda gerçekleştirilen arazi ve laboratuvar deneyleri	. 22
Çizelge 3.2. Açılan sondaj kuyuları özet tablosu	. 23
Çizelge 3.3. Sondaj kuyularından elde edilen deney sonuçları	. 25
Çizelge 3.4. GSI Sınıflama Sistemi Diyagramı [24]	. 28
Çizelge 4.1. Açılan sondajlara ait Ortalama TKV ve Ortalama RQD değerlerinin göst	terir
özet tablo	. 33
Çizelge 4.2. Nokta Yükü Dayanımı Testi Sonuçları	. 34
Çizelge 4.3. Giriş Portal Bölgesi için RMR Kaya Kütle Sınıflandırma Sistemi [30]	. 37
Çizelge 4.4. RMR Puan durumuna göre kaya kütlesi sınıfları	. 38
Çizelge 4.5. RMR Puan durumuna göre tahmini kaya kütlesi parametreleri	. 39
Çizelge 4.6. Jeolojik Dayanım İndeksi (GSI) diyagramı vasıtasıyla parametrelerin	
belirlenmesi [23]	. 40
Çizelge 4.7. Eksen Bölgesi için RMR Kaya Kütle Sınıflandırma Sistemi [33]	. 47
Çizelge 4.8. RMR Puan durumuna göre kaya kütlesi klasları	. 48
Çizelge 4.9. RMR Puan durumuna göre tahmini kaya kütlesi parametreleri	. 48
Çizelge 4.10. Jeolojik Dayanım İndeksi (GSI) diyagramı ile parametrelerin atanması	
[23]	. 49
Çizelge 4.11. Çıkış Bölgesi için RMR Kaya Kütle Sınıflandırma Sistemi [33]	. 57
Çizelge 4.12. RMR Puan durumuna göre kaya kütlesi sınıfları	. 58
Çizelge 4.13. RMR Puan durumuna göre tahmini kaya kütlesi parametreleri	. 58
Çizelge 4.14. Jeolojik Dayanım İndeksi (GSI) diyagramı ile parametrelerin	
belirlenmesi	. 59
Çizelge 4.15. Tünel giriş, eksen ve çıkış kesimleri tasarıma esas özet parametreler	. 64
Çizelge 4.16. Tünel kesimlerine ait elde edilen parametreler	. 64
Çizelge 4.17. Kapalı sistem eşitlikleri (Hoek ve Brown 1980; Hoek, 2012)	. 68
Çizelge 4.18. Tahkimat kapasite formülleri (Hoek ve Brown 1980; Brady ve Brown,	
1985)	. 70
Çizelge 4.19. C2 sınıfı destek sistemi detayları	. 72
Çizelge 4.20. Destek Sistemi Basınçları	. 72
Çizelge 4.21. Analitik çözüm sonuçları	. 72

Çizelge 4.22. C2 sınıfı destek sistemi detayları	.74
Çizelge 4.23. Destek sistemi basınçları	.74
Çizelge 4.24. Analitik çözüm sonuçları	.74
Çizelge 4.25. Püskürtme betonunda kullanılan parametreler	.77
Çizelge 4.26. İç kaplama betonunda kullanılan parametreler	.77
Çizelge 4.27. Süren parametreleri	.77
Çizelge 4.28. Zemin parametreleri giriş kesimi	.79
Çizelge 4.29. Zemin parametreleri çıkış kesimi	.79

ŞEKİLLLER

Şekil 1.1. Çalışmaya konu alanın Karayolları haritasındaki gösterimi [2]3
Şekil 1.2. Çalışmaya konu alanın Google Earth uygulaması üzerinde gösterimi [3] 4
Şekil 1.3. Tünel tip kesiti [1]4
Şekil 1.4. Sol tüp jeolojik profil [1]6
Şekil 1.5. Sağ tüp jeolojik profil [1]7
Şekil 1.6. Balıkesir İlinin 1938 - 2020 yılları arası; ortalana minimum ve maksimum
sıcaklık değerlerine ait grafik [5]8
Şekil 1.7. Balıkesir ilinin 1938-2020 yılları arası aylık yağış miktarları [5]9
Şekil 1.8. Çalışma alanının morfolojik durumunu gösteren, güneybatıdan bakış açısıyla
alınmış üç boyutlu uydu görüntüsü [6]10
Şekil 1.9. Çalışma alanında D-B doğrultulu, morfolojiyi gösterir 2 boyutlu kesit [6]10
Şekil 2.1. Çalışmaya konu alanın ve yakın çevresinin 1:25.000 ölçekli MTA
haritasındaki konumu14
Şekil 2.2. Çalışmaya konu alanın ve çalışma alanının yakınının stratigrafik kolon istifi.
Şekil 2.3. Çalışmaya konu alanın ve yakın çevresinin MTA 1/2500000 ölçekli Balıkesir
(NJ 35-3) paftası diri fay haritasındaki konumu [13] 19
Şekil 2.4. Çalışma alanının Türkiye deprem tehlikesi haritasındaki konumu [14] 20
Şekil 2.5. Çalışmaya konu alanın Türkiye deprem haritasındaki konumu ve yer ivmesi
değeri [14]20
Şekil 2.6. İnceleme alanında yakın tarihte meydana gelen depremlerin gösterimi [15]. 21
Şekil 3.1. Sondajlardan elde edilen numunelerin karot sandığına dizilmiş görüntüsü [1].
Şekil 3.2. Q Sistemi için revizyona uğramış tünel desteği sistemi diyagramı [27] 30
Şekil 4.1. Evciler Tüneli giriş kesimi uzaktan görünümü
Şekil 4.2. SK-5 ve SK-6 için kaya malzemesi dayanım puanları
Şekil 4.3. SK-5 ve SK-6 için RQD (%) puanı
Şekil 4.4. SK-5 ve SK-6 için süreksizlik aralığı (mm) puanları
Şekil 4.5. Abaktan elde edilen GSI değeri D=0 örselenme faktörüne göre elde edilen
parametreler

Şekil 4.6. Rezidüel GSI değeri ve D=0 örselenme faktörüne göre elde edilen	
parametreler	44
Şekil 4.7. SK-7 sondajı 30.00-45.00 m arası karot sandığı görünümü [1]	45
Şekil 4.8. SK-7 için kaya malzemesi dayanım puanları	46
Şekil 4.9. SK-7 için RQD (%) puanı	46
Şekil 4.10. SK-7 için süreksizlik aralığı (mm) puanları	46
Şekil 4.11. Abaktan elde edilen GSI değeri ve D=0 örselenme faktörüne göre elde edil	len
parametreler	52
Şekil 4.12. Rezidüel GSI değeri ve D=0 örselenme faktörüne göre elde edilen	
parametreler	53
Şekil 4.13. Abaktan elde edilen GSI değeri ve D=0.6 örselenme faktörüne göre elde	
edilen parametreler	53
Şekil 4.14. Rezidüel GSI değeri ve D=0.6 örselenme faktörüne göre elde edilen	
parametreler	54
Şekil 4.15. SK-9 Sondajı 12.00-26.00m arası	54
Şekil 4.16. Çıkış kesiminde gözlemlenen Yürekli Dasiti'ne ait mostralar	54
Şekil 4.17. SK-8 ve SK-9 için kaya malzemesi dayanım puanları	55
Şekil 4.18. SK-8 ve SK-9 için RQD (%) puanı	56
Şekil 4.19. SK-8 ve SK-9 için süreksizlik aralığı (mm) puanları	56
Şekil 4.20. Abaktan seçilen GSI değeri ve D=0 örselenme faktörüne göre elde edilen	
parametreler	62
Şekil 4.22. Tünel boyuna deformasyon eğrisi-C2 sınıfı (Giriş kesimi)	72
Şekil 4.23. Zemin karakteristik eğrisi ve plastik zon yarıçapı	73
Şekil 4.24. Zemin-destek reaksiyon eğrileri	73
Şekil 4.25. Tünel boyuna deformasyon eğrisi-C2 sınıfı (Giriş kesimi)	75
Şekil 4.26. Zemin karakteristik eğrisi ve plastik zon yarıçapı	75
Şekil 4.27. Zemin-destek reaksiyon eğrileri	76
Şekil 4.28. FLAC 3D ile oluşturulmuş olan nümerik analiz modeli	79
Şekil 4.29. Üst yarı, alt yarı ve invert kazı kademeleri	80
Şekil 4.30. Destek sistemi elemanları	80
Şekil 4.31. Düşey deformasyon	81
Şekil 4.32. Boyuna deformasyon	82
Şekil 4.33. Yatay yer değiştirme	83
Şekil 4.34. Düşey yer değiştirme.	84

Şekil 4.35. Boyuna yer değiştirme	. 85
Şekil 4.36. Yatay yer değiştirme	. 86

SİMGELER VE KISALTMALAR

Simgeler

a	Malzeme Sabiti
c	Kohezyon
Ei	Kaya malzemesinin elastisite modülü
Em	Kaya kütlesinin deformasyon modülü
F	Güvenlik Katsayısı
σ	Normal Gerilme
σc	Kaya malzemesinin tek eksenli sıkışma dayanım
σ1'	Eksenel Gerilim
σ3'	Yanal Basınç
Φ	İçsel sürtünme açısı
γ	Birim hacim ağırlık
0	Derece

Kısaltmalar

cm	Santimetre
m	Metre
GSI	Jeolojik Dayanım İndeksi
Is	Nokta Yükü Dayanım İndeksi
Is(50)	50 mm çapında örnek için Nokta Yükü Dayanım İndeksi
ISRM	Uluslararası Kaya Mekaniği Birliği
KGM	Karayolları Genel Müdürlüğü
kN	Kilo Newton
LL	Likit Limit
MPa	Megapascal
mi	Hoek-Brown kaya sabiti değeri
mm	Milimetre

PI	Plastisiste İndeksi
PL	Plastik Limit
RMR	Kaya Kütle Sınıflama Sistemi
RQD	Kaya kalite göstergesi
UCS	Kaya malzemesinin tek eksenli sıkışma dayanımı
TKV	Toplam Karot Verimi
SK	Sondaj Kuyusu
SPT	Standart Penetrasyon Testi

1. GİRİŞ

Nüfus artışı, teknolojide yaşanan gelişmeler ve buna bağlı olarak toplumun artan ihtiyaçları beraberinde bazı gereksinimler doğurmaktadır. Otomotiv sektörünün gelişmesine bağlı olarak trafikteki artan araç sayısı ve insanların konforlu seyahat ihtiyacı standartları yüksek, gelişmiş karayolu ağına gereksinimi arttırmıştır. Karayolu inşası için özellikle son zamanlarda ülke ekonomisinden büyük kaynaklar ayrılmaktadır.

Ülkemizin coğrafik yapısı, jeolojik geçmişi düşünüldüğünde genç ve engebeli bir morfolojik yapıya sahiptir. Karayolu güzergah tasarımında yolun kullanım amacına göre standartları ve bu standartta olması için sahip olması gereken bazı özellikler vardır. Mevcut topogafik yapıda ve istenen standartlarda tasarlanan ulaşım yollarında dolgu ve yarma kesitlerinin yanı sıra tünel, viyadük, köprü vb. sanat yapıları gereksinimi doğmaktadır. Engebenin çok olduğu yerlerde uzun tulde yüksek yarma kesitleri ortaya çıkmaktadır. Uzun tulde yüksek şevli yarma teşkilinin zorluğu zaman içerisinde bir sanat yapısı olan tünel ihtiyacını doğurmuştur. Tünel imalatı için, tünelin açılacağı ortam hakkında proje aşamasında doğru ve eksiksiz arazi, laboratuvar ve büro çalışması gerekmektedir. Arazi ve büro çalışmalarından elde edilen verilerle doğru analiz yaparak imalat aşamasında karşılaşılabilecek ortamla çok benzer bir durum ortaya konmalıdır. Mühendisliğin genel ilkeleri olan güvenilir, ekonomik ve uygulanabilir çözümler üretebilmek için doğru analizler yapılması büyük önem taşımaktadır.

1.1. Çalışmanın Amacı

Jeolojik anlamda kaya kütlesi, yerindeki kayaç ve bu kayaçtaki süreksizliklerin birlikteliğini ifade eder. Kaya kütlelerinin sınıflandırılması ise jeomekanik özelliklerine ve dayanım değerine göre yapılmaktadır. Kaya kütlesinin dayanımı, kütlenin süreksizliklerine, kayanın fiziksel özelliklerine ve kayanın yenilmeden sağlam durabildiği maksimum gerilmeyle ölçülmektedir.

Doğada denge halinde durduğu kabul edilen kaya kütlelerinde tasarlanacak bir mühendislik yapısı için kaya kütlesine ait tüm özelliklerin en doğru şekilde araştırılması gerekmektedir. Bu özelliklerin araştırılması amacıyla numune olarak alınacak kaya malzemesinin; türü, dokusu ve yapısı, bozunması, sertliği, dayanımı, porozitesi, yoğunluğu, poisson oranı gibi özelliklerinin doğru olarak belirlenmesi büyük önem taşımaktadır.

Bu tezin amacı, Balıkesir-Edremit Devlet Yolu güzergahında Km:38+627-38+835 aralığında (Sağ Tüp: Km: 38+633-38+820, 187 m; Sol Tüp: Km:38+627-38+835, 208 m) bulunan zayıf kaya kütlelerinde projelendirilecek olan Evciler Varyantı Tüneli'nin jeolojik ve jeoteknik açıdan incelenmesi, üç boyutlu nümerik analizlerinin yapılması, olası duraysızlık hallerinin belirlenmesi ve bu hallerdeki çözüme yönelik önerilerin ortaya konmasıdır. Yapılan bu çalışmada, Karayolları Genel Müdürlüğü tarafından yürütülen "Balıkesir-Edremit Yolu Evciler Varyantı Etüt ve Proje Danışmanlık Hizmetleri İşi" dahilinde gerçekleştirilen sondaj kuyusu ve laboratuvar çalışmaları verilerinin bir kısmı kullanılmıştır [1].

1.2. Çalışma Alanının Özellikleri

Projelendirmesi yapılacak olan Evciler Tüneli, Balıkesir ili İvrindi ilçesi sınırları içinde yer almaktadır. Tünel güzergahı, mevcut Balıkesir Edremit Devlet Yolu'nun Km. 38+000-39+579 ve Km:40+195-40+600 arası geçişi için tasarlanmıştır. İlgili kesimde yer alan Çoban Tepe, Balıkesir Edremit Yolu- Evciler Yolu ayrımının güneyinde; sivri bir burun topoğrafyası sergilemekte olup, Evciler Tüneli ile bu topoğrafyanın geçilmesi planlanmaktadır. Evciler Tünelinin genel yönelimi KB-GD yönündedir. Proje alanının yer belirleme haritası aşağıdaki şekilde verilmiştir (Şekil 1.1.) (Şekil 1.2.).

Şekil 1.1. Çalışmaya konu alanın Karayolları haritasındaki gösterimi [2].

Şekil 1.2. Çalışmaya konu alanın Google Earth uygulaması üzerinde gösterimi [3].

Şekil 1.3. Tünel tip kesiti [1].

Evciler Tüneli çift tüp olarak tasarlanmıştır. Tünelin giriş ve çıkış portalları ile mevcut devlet yolu bağlantısı, yeni yapılacak yaklaşım köprüleri ile sağlanacaktır. Sağ tüp, Km:38+633'te yaklaşık 250 m kotunda başlayıp, 187 m boyunca %1,50 boyuna sabit eğimle ilerleyerek Km:38+820'de yaklaşık 253 m kotunda sona ermektedir. Sol tüp ise Km:38+627'de yaklaşık 250 m kotunda başlayıp, 208 m boyunca %1,50 eğimle ilerleyerek Km:38+835'te yaklaşık 253 m kotunda sona netrektedir. Sol tüp ise Km:38+835'te yaklaşık 253 m kotunda başlayıp, 208 m boyunca %1,50 eğimle ilerleyerek Km:38+835'te yaklaşık 253 m kotunda sona sona netrektedir.

Projenin Özellikleri:

Karayolu Adı	: Balıkesir - Edremit Devlet Yolu
Tünel Adı	: Evciler Tüneli (T-1 Tüneli)
Tünel Uzunluğu	: Sağ Tüp (Km: 38+633-38+820) 187 m
	: Sol Tüp (Km:38+627-38+835) 208 m
Tünel Tipi	: At Nalı Kesit / Çift tüp
Tünel Boyuna Eğimi	: % 1,50
Yolun Cinsi	: Devlet yolu
Yolun Sınıfı	: 1. Sınıf
Şerit Genişliği	: 2 x 3,5 m
Banket Genişliği	: 2 x 0,50 m
Tünel İçi Yatay Gabari	: 8 m
Tünel Sağ ve Sol Tüp arası mesafe	: Eksenler arası 30 m

Tünel güzergahının jeolojik profili ise Şekil 1.4. ve Şekil 1.5.'te verilmiştir.

Şekil 1.4. Sol tüp jeolojik profil [1].

Şekil 1.5. Sağ tüp jeolojik profil [1].

1.2.1. İklim ve Bitki Örtüsü

Balıkesir ilinde üç farklı iklim tipi beraber görülür. Ege kesimi kıyılarında Akdeniz iklimi, kuzey kesimlerde Marmara iklimi ve iç kesimlerde karasal iklim. Kıyı bölgelerinde yaz ve kış sıcaklıkları arasında büyük farklar bulunmazken, iç kesimlerde bu farklar belirgin şekilde artar. Doğuda yer alan yüksek dağlık alanlarda kışlar sert geçerken yazlar serindir. Yıllık yağış miktarı 540 ile 740 mm arasında değişmektedir.

Balıkesir'de Marmara, Akdeniz ve karasal iklimin etkileri belirgindir. Bu durum, ilin farklı bölgelerinde farklı bitki örtülerinin bulunmasına yol açar. Balıkesir'in yüzölçümünün yaklaşık %30'u, yani yaklaşık 650 bin hektarı ormanlarla kaplıdır. Bu ormanlar genellikle Dursunbey, Sındırgı, Edremit, Balya ve Burhaniye ilçelerinde yoğunlaşmıştır. İlin yaklaşık %32'si çayır ve mera alanlarından oluşurken, arazilerin %23'ü tarıma elverişlidir. Kalan %15 ise zeytinlikler, sebze ve meyve bahçeleriyle kaplıdır. Edremit bölgesinde, 500 metreye kadar olan yüksekliklerde zeytinlikler bulunurken, daha yüksek alanlarda karaağaç ve kızılağaç ormanları yaygındır [4].

Şekil 1.6. Balıkesir İlinin 1938 - 2020 yılları arası; ortalana minimum ve maksimum sıcaklık değerlerine ait grafik [5].

Şekil 1.7. Balıkesir ilinin 1938-2020 yılları arası aylık yağış miktarları [5]

1.2.2. Morfoloji

Çalışma alanı, İvrindi Ovası olarak adlandırılan alanın kuzeyinde bulunmaktadır. Kocaçay havzasının tabanını oluşturan İvrindi Ovası'nın kuzeyinde Manyas Ovası, doğusundan Balıkesir Ovası ve kuzeybatısında Şap Dağı bulunmaktadır. Alanın, kuzeybatı ve güneydoğusunda dağlık alanlarla sınırlandırılmış olan alan genel olarak KD-GB doğrultusunda bir uzanış göstermektedir.

Çalışma alanına konu tünelin, 3 boyutlu morfolojik durumu Şekil 1.8'de de görülmektedir. Apik olmayan bir arazide teşkil edilmesi planlanan tünelin Şekil 1.9'da GB doğrultulu kesiti sunulmuştur.

Şekil 1.8. Çalışma alanının morfolojik durumunu gösteren, güneybatıdan bakış açısıyla alınmış üç boyutlu uydu görüntüsü [6].

Şekil 1.9. Çalışma alanında D-B doğrultulu, morfolojiyi gösterir 2 boyutlu kesit [6].

2. ÇALIŞMA ALANI JEOLOJİSİ ve DAHA ÖNCEKİ ÇALIŞMALAR

2.1. Tünellerle Alakalı Daha Önceki Çalışmalar

LuoBu ve diğerleri [7] Çin'de inşa edilen tünellerde 3 boyutlu nümerik modelleme uygulamalarını incelemişlerdir. Nümerik yöntemler 1970'lerin ortalarından itibaren kullanılsa da, başlangıçta sadece inceleme yapılan alanın spesifik bir bölümüne dair bilgi sağlıyordu. Ancak, üç boyutlu sonlu elemanlar analiz teknikleri daha ayrıntılı sayısal hesaplamalar yapılmasına olanak tanımıştır. Bu çalışmada, zayıf dayanımlı kayaç kütlelerinin boylamsal deformasyon profilleri geri analiz yöntemi vasıtasıyla değerlendirilmiştir. Mingyazi Tüneli örneğinde uygulanan yöntem, tünel stabilitesine ilişkin nümerik veriler sağlamıştır.

Aygar ve Gökçeoğlu [8], Ankara-İzmir Yüksek Hızlı Tren Projesi'nde Afyonkarahisar-Banaz kesiminde bulunan ve zayıf kiltaşı, killi kum, zayıf çimentolanmış kumtaşı ve siltli çakıllı siltli kilde açılacak olan T4 Tünelini incelemişlerdir. Çalışmalarında düşük örtü kalınlığı (10 m-35 m) koşullarındaki şiddetli deformasyon ve stabilite sorunlarını ele alarak sonlu farklar yöntemi kullanarak analizler gerçekleştirmişlerdir. Bu çalışmada, zayıf zemin koşullarında inşa edilen sığ tüneller için hem yetersiz/etkisiz destek sistemlerinin hem de yeterli destek sistemlerinin özellikleri incelenmektedir. Bunun yanı sıra, tünelin yapısı ve destek sistemine dair karşılaşılan problemler detaylı bir şekilde ele alınmaktadır. Analitik çözümler ile 3D sayısal analizlerin sonuçları karşılaştırılmış ve 3D sayısal analizlerin sağladığı avantajlar tartışılmıştır. Zayıf zeminlerde tünel yüzeyi ve tavan stabilitesinin, genel tünel stabilitesi açısından taşıdığı önem ve gereklilik vurgulanmıştır.

Gökçeoğlu ve diğerleri [9], Ankara ile İstanbul'u birbirine bağlayan Yüksek Hızlı Tren Projesi kapsamındaki zayıf zemin koşullarındaki T2 Doğançay Tüneli'ni incelemişlerdir. Tünel, amfibolit ve metakuvarsitler içerisinde açılmaktadır. Zayıf zemin ve kohezyonsuz birimler içerisinde açılan tünelin destek sistemi tasarımı için çeşitli analizler yaparak önerilerde bulunmuşlardır. Bu çalışmalarında, araştırmacılar kohezyonsuz ve çok zayıf zemin koşullarında açılan tünellerde tünel ayna ve tavan stabilitesinin önemine dikkat çekmişlerdir.

Koçkar ve Akgün [10], tünel destek sistemi dizaynı için yöntem geliştirmek amacıyla Antalya-Alanya arasındaki iki karayolu tünelini incelemişlerdir. Bu inceleme kapsamında, zayıf kayaç kütleleri olan şist, fillit ve limonit kayaçlarının yer aldığı tünel giriş bölgelerinde kinematik ve limit denge analizleri yapılmıştır. Bu çalışmada, kaya kütlesinin jeomekanik özellikleri ve çekme dayanımı parametreleri GSI değeri kullanılarak tespit edilmiştir. Su basıncının etkisi de modele dahil edilerek, kaya şevlerinin yenilme durumları kinematik ve limit denge analizleri ile incelenmiştir. Yüksek foliasyonlu, düzensiz eklemli şevlerde dairesel yenilme koşulları ile karşılaştırılmış ve bu duraysızlaşan şevlerde ters analiz modeli geliştirilmiştir. GSI yöntemi vasıtasıyla ulaşılan sonuçlar ters analiz çıktıları ile karşılaştırılmış ve bilgisayar programları yardımıyla tünel bölümlerinde deformasyon ve stres koşullarına karşılık destek sistemlerinin etkileşimleri incelenmiştir.

Xing Yan ve diğerleri [11], yeraltı kazılarında kaya kütlesinin kararlılığını çeşitli sayısal modeller ile irdelemişlerdir. Yaptıkları çalışmalarında, göçmenin ardından kayaç kütlelerinin davranışları, süreksizliklerin mekanik nitelikleri, kazı ve destek bölümleri 3 boyutlu sayısal analiz yöntemleri yardımıyla ayrı ayrı incelenmiş ve sonuçlar sunulmuştur. İnceleme alanında faylar, dayklar, çatlaklar ve kırıklar gibi önemli jeolojik unsurlar mevcuttur. Nümerik analiz yöntemiyle veriler toplanmış, ilgili bilgisayar programına girilmiş ve gerilim ile basınç analizleri yapılmıştır. Tüm veriler, kazı alanında elde edilen gerçek değerlerle karşılaştırılmış ve 3 boyutlu nümerik analizlerin yeraltı tünel kazılarında etkili bir şekilde kullanılabilir olduğu gösterilmiştir.

2.2. Çalışma Alanı Jeolojisi

Biga Yarımadası olarak bilinen bölgede, Tersiyer öncesine ait kayaçlar, KD-GB yönünde uzanan ve tektonik olarak birbirleriyle ilişkili kuşaklarda görülmektedir. Stratigrafik olarak farklı istiflerden oluşur. Farklı jeolojik birimlerden meydana gelen bu bölgeler; doğudan batı yönüne sırasıyla İzmir İli-Ankara İli Zonu, Sakarya İli Zonu, Çetmi Melanjı ve Ezine Zonu olarak adlandırılmaktadır.

Fındıklı Formasyonu, amfibolitli gnays, mermer ve amfibolitin ardışık olarak sıralanmasıyla oluşur. Altınoluk mermer üyesi de bu formasyonun bir parçasıdır. Üzerinde bulunan Sutüven Formasyonu, Kazdağ masifinin üstünde yer alır. İçeriğinde mermer, amfibolit mercekleri içeren sillimanit gnays, biyotit gnays, granitik gnays ve yer yer migmatit içeren tabakalardan oluşur. Bunun üzerinde, Geç Paleozoyik yaşlı Kalabak Birimi, tektonik dokanakla yerleşmiştir. Kalabak Birimi, düşük dereceli metamorfitlerden oluşur ve içerisinde Çarmık metagranidiyoriti, mermer ve metaserpantinit mercekli fillit ile şistlerin yer aldığı Torasan

Formasyonu ve mermer ardalanmalı mattüf ile tremolit-aktinolit şistleri içeren Sazak Formasyonu bulunur.

Kalabak Biriminin üstünde, Triyas yaşlı Karakaya Kompleksi bulunur. Bu kompleks, arkozik kumtaşları ve kiltaşları içeren ardışık istifler, çört mercekli grovaklar, Orhanlı Grovakları, yeşil bazaltik kayaçlar ve tüflerden oluşan Mehmetalan Formasyonu, kahve-haki renkli spilitik bazalt, aglomera ve tüflerin yoğun olduğu Çal Formasyonu ve en üstte kireçtaşı tabakaları içeren Camialan Kireçtaşları ile karakterizedir. Karakaya Kompleksi ile tektonik dokanaklı olan Balya Formasyonu, arkozik kumtaşı ve Holobialı şeyllerden meydana gelir. Geç Triyas yaşlı olan bu formasyon, Bayırköy Formasyonu tarafından uyumsuz dokanakla örtülür. Bayırköy Formasyonu, karasal-sığ denizel konglomera, kumtaşı, çamurtaşı ve kireçtaşlarından oluşan Liyas yaşlı bir birimdir. Bu formasyonu üzerinde, Geç Jura-Erken Kretase yaşlı platform kireçtaşları içeren Bilecik Formasyonu yer alır ve onun üzerinde ise Hotriviyen-Albiyen yaşlı hemipelajik, mikritik kireçtaşı ve kiltaşı ardışıklı Pınar Formasyonu bulunur.

Geç Kretase yaşlı ofiyolitli kayaçlardan oluşan Çetmi Melanjı, paftada tektonik zonlarda bulunmaktadır. Temel kayaçlar üzerinde uyumsuz olarak yer alan Tersiyer birimleri arasında, Orta-Geç Eosen yaşlı bazalt, bazaltik andezit ve geçişli volkanoklastiklerden oluşan Şahinli Formasyonu yer alır. Bu formasyon içinde, volkanoklastikler ve kumtaşı-kiltaşından oluşan Bilaller Üyesi bulunmaktadır. Erdağ Volkaniti çoğunlukla Geç Eosen yaşlı bazaltlardan meydana gelir. Biga Yarımadasında Oligosen dönemi boyunca volkanik faaliyet devam etmiştir. Bu döneme ait Bağburun volkanitleri (andezitik lav, ignimbirit, aglomera ve az miktarda volkanoklastikler) ve Hallaçlar Volkanitleri (andezitik ve dasitik bileşimli birimler) Oligosen yaşlı volkanitlerdir. Hallaçlar Volkaniti kısım kısım altere olmuştur ve etkinliği Erken Miyosene kadar sürmüştür. Bu alterasyonun nedeni, Oligosen-Erken Miyosen aralığında bölgeye yerleşen Oligo-Miyosen granitoyidleri olarak gösterilmektedir. Erken Miyosen birimlerini uyumsuz dokanakla örten, Geç Miyosen yaşlı konglomera, kumtaşı, kiltaşı ve kireçtaşlarından oluşan gölsel çökeller İlyasbaşı Formasyonu olarak adlandırılır. Tüm bu birimleri uyumsuz olarak Kuvaterner yaşlı alüvyal çökeller örtmektedir [1].

Proje sahasının yer aldığı Bölge, MTA 1:500.000 ölçekli Jeoloji Haritaları İzmir paftası ve 1/25 000 ölçekli Balıkesir İ18-c2 paftası üzerine işaretlenmiş olup, ölçeksiz olarak aşağıdaki şekillerde verilmiştir.

Şekil 2.1. Çalışmaya konu alanın ve yakın çevresinin 1:25.000 ölçekli MTA haritasındaki konumu.

2.3. Stratigrafi

Biga Yarımadası olarak adlandırılan alanda Tersiyer öncesi kayaçlar, KD-GB doğrultusunda uzanan ve birbirleriyle tektonik olarak ilişkili kuşaklarda mostra vermektedir. Stratigrafik olarak farklı istiflerin oluşturduğu bu zonlar bu bölgeler; doğudan batı yönüne sırasıyla İzmir İli-Ankara İli Zonu, Sakarya İli Zonu, Çetmi Melanjı ve Ezine Zonu olarak sıralanabilir. Bu temel birimler üzerine uyumsuz olarak yerleşen Tersiyer yaşlı volkanosedimanter kayaçlar çalışma alanındaki temel kayaçları teşkil etmektedir.

2.3.1. Hallaçlar Volkaniti

Hallaçlar Volkaniti olarak adlandırılan kayaçlar, bazaltik andezitik lavlar, piroklastikler ve yer yer altere olmuş andezitlerden oluşur. Bu birim, geniş alanlarda Kalkım, Pazarköy ve Yenice civarında yüzeylenmiştir. Mostralar incelendiğinde, aşırı derecede alterasyona uğradıkları gözlenir ve arazide beyaz, sarı, kahverengi ve kırmızı renkler dikkat çeker. Kayaçlar genellikle hipokristalin porfirik dokuya sahiptir ve içerdikleri mineraller arasında plajiyoklaz, biyotit, klinopiroksen, alkali feldspat ve apatit bulunur. Kalsit, klorit ve serpantin gibi ikincil mineraller de rastlanabilir. Plajiyoklazlar genellikle iri-orta taneli ve özşekillidir ve yer yer foliasyonlu zonlanma gösterirler. Biyotitlerin özşekilli-yarı özşekilli olduğu ve opaklaşma ve kloritleşme izleri taşıdığı görülür. Klinopiroksenlerde ise kenarlardan itibaren bozulmalar gözlenir ve öz şekilsiz kalıntılar şeklinde görünürler.

Karbonatlaşma, kloritleşme ve sınırlı miktarda serpantin benzeri minerallere dönüşüm gibi değişiklikler klinopiroksenlerde de gözlemlenmektedir. Kalan malzeme genellikle devitrifiye volkanik cam ve mineral mikrolitlerden oluşur. Geç Oligosen döneminde başlayan volkanik etkinlik, Erken Miyosen'e kadar devam etmiştir.

2.3.2. Yürekli Dasiti (Tmy)

Yürekli Dasiti, gri ve beyaz renklerde olup, kuvars ve biyotit mineralleri bakımından zengin asidik bileşimli lav ve piroklastiklerden oluşur. Bu birim, Hallaçlar Köyü güneyi, İvrindi İlçesi'nin güney kesimleri ve Yürekli Köyü civarında gölsel çökellerle ardalanmış şekilde yayılım gösterir. Yürekli Köyü ve çevresinde, seri halinde volkanik domlar oluşmaktadır. Mikroskobik incelemelerde, dasit ve riyolit şeklinde tanımlanan kayalar görülmüştür. Hipokristalin porfirik dokuya sahip lavlarda, kuvars, plajiyoklaz, alkali feldspat, biyotit, apatit ve opak mineraller önemli fenokristallerdir. Kayaçlar, orta taneli ve özşekilli-yarı özşekilli feldispatlar, özşekilsiz kuvars mineralleri ve özşekilli-yarı özşekilli biyotit minerallerini içerir. Plajiyoklazlarda polisentetik ikizlenme ve bazı örneklerde zonlanma gözlenirken, biyotit minerallerinde hafif opaklaşma meydana gelmiştir. Kalan hamur kısmı genellikle devitrifiye volkan camı ve mineral mikrolitlerinden oluşur. Bu birim, Hallaçlar Volkaniti üzerine yerleşmiştir.

2.3.3. Şapçı Volkaniti (Tmş)

Şapçı Volkaniti olarak adlandırılan birim, beyaz renkli ve yer yer ignimbiritik özellikler taşıyan kalın asidik tüflerle başlar ve ardından asidik lavlar ve piroklastik malzemelerle devam eden volkanizmanın son evrelerini oluşturan andezitik lavlar ve piroklastiklerden oluşur. Bu volkanik hareket, Büyük Şapçı, Küçük Şapçı (Balıkesir) köyleri ile Balya İlçesi arasında ve Balıkesir ili kuzeyindeki İbirler Köyü civarında geniş bir alanı kapsar. Büyük Şapçı ve İbirler Köyü'nün güneyinde, volkanizmanın belirgin çıkış noktaları bulunur. Şapçı Volkaniti örnekleri mikroskobik olarak incelendiğinde, ilk evre ürünlerinin riyodasit ve son evre ürünlerinin andezit olduğu tanımlanmıştır. Riyodasitler, hipokristalin porfirik dokuya sahip olup, plajiyoklaz, klinopiroksen, biyotit, apatit, alkali feldspat ve opak mineraller içerir. Andezit olarak tanımlanan son evre ürünleri ise hipokristalin dokuludur ve plajiyoklaz, klinopiroksen, biyotit, alkali feldspat ve opak mineraller içerir. Volkanizma Erken

Miyosen yaşındadır ve Hallaçlar Volkaniti Büyük Şapçı Köyü çevresinde üzerlenirken, bu birim Yürekli Dasiti birimi tarafından uyumsuz olarak da üzerlenmektedir.

2.3.4. Soma Formasyonu (Tmso)

Balıkesir'in güneyinde, Biga Yarımadası'nın iç kesimlerinde yüzeylenen Soma Formasyonu, genellikle marn, silttaşı, kumtaşı ve kireçtaşlarından oluşan bir birimdir.

Çamköy'de, çamurtaşı, marn, silttaşı, tüf, kumtaşı ve kireçtaşlarından oluşan bir birimde, kireçtaşlarının içinde stramolitler bulunur. Çoraklı, Büyük Bostancı köyü ve Çinge Köylerinde gözlenen Soma Formasyonu, kireçtaşlarından, tüften ve silis yumrularından oluşmaktadır. Çamköy'de ise, silttaşı ve kumtaşı ardalanması görülür ve bu istifte düzlemsel paralel katmanlı, dalga ripıllı, çapraz katmanlı, düzlemsel ve tekne türü çapraz katmanlı silttaşı ve kumtaşları yer alır. Formasyona ait kireçtaşlarında fosillere rastlanmış olup, bu fosillere dayanarak formasyonun Miyosen yaşında olduğu belirlenmiştir.

2.3.5. Alüvyon (Qal)

Gözlenen alüvyon birimi, dereler tarafından taşınan silt, kum, çakıl ve blok gibi deritik malzemelerin, düşük eğimli geçişlerdeki dere yataklarında çökmesi ve birikmesi sonucu oluşur. Bu birim çimentosuzdur ve çakıl ve bloklar genellikle yuvarlak veya yarı yuvarlaktır. Kuvaterner yaşlı olan bu birim, anakayayı uyumsuz bir şekilde örter ve yamaç diplerindeki yamaç molozu birimi ile yer yer yanal geçişler gösterir.

2.3.6. Yamaç Molozu (Qym)

Yamaç molozu, vadi üst kotlarında bulunan anakayanın fiziksel ve kimyasal ayrışması sonucu oluşan blok, çakıl, kum, silt ve kil gibi malzemelerin eğim boyunca yamaç aşağı hareket etmesiyle oluşur ve eteklerde birikir. Bu birim gevşek ve çimentosuzdur ve anakayayı kaplar. Yamaç molozu birimi, türediği birim ve çökelim uzaklığına bağlı olarak farklı kalınlıklarda görülür. Evciler Tüneli giriş ve çıkış portal kesimlerinde, volkanik malzemenin ayrışmasıyla oluşan yamaç molozu birimi bulunmaktadır. Portal kesimlerinde, yaklaşık 50 cm'lik bitki örtüsü altında 1,5-2 metrelik yamaç molozu görülür. Çıkış portal kesimi ile tünel orta kesimi arasında yer alan toprak yolda, altere olmuş anakayanın üst kesimleri üzerinde yamaç molozu ve üzerinde bitkisel toprak zonu gözlenir. Tünel üst kotlarında, topoğrafya dikleşir ve yüzey suyunun durumuna ve bölgenin iklimine bağlı olarak, anakayada ayrışma ve yamaç molozu oluşumu devam eder. Proje alanında ve çevresindeki formasyonların taban-tavan ilişkileri, stratigrafik kolon kesitte gösterilmiştir.

2.4. Yapısal Jeoloji

Balıkesir İvrindi İlçesi'ni kapsayan 1:100.000 ölçekli MTA Jeoloji Haritaları, Balıkesir İli-İ18 paftası içinde bulunmaktadır. Bu haritalar, Biga Yarımadası'nı oluşturan zonlardan biri olan Ezine Zonu içindeki "Karakaya Kompleksi'ni" değerlendirmektedir. Biga Yarımadası'nda oluşan horst graben yapılarına dayanan tektonik faaliyetler hala devam ettiğinden, grabenlerdeki ovalık alanlarda çökme devam etmekte ve büyük depremler sonrası düşey atımlar görülebilmektedir. Bu nedenle, inceleme alanı ve yakın çevresi tektonik hareketler açısından yoğun bir bölgedir ve jeolojik birimler içinde kırıklı yapılar sıkça bulunmaktadır. Düz alanlarda egemen olan jeolojik birim alüvyondur. Hafif engebeli alanlarda ise karasal volkanizma kökenli andezit lavları, andezit blok ve çakıllı aglomeralar ve tüfler

gözlemlenmektedir. Bölgede görülen ve üzerinde tarım yapılan bu birimlerin mostralarında eklem ve tabaka yapılarının varlığı gözlenmiştir.

Bölgesel tektonizma açısından çalışma alanının değerlendirilmesi için, 2012'de yayınlanan MTA 1/2500000 Ölçekli Diri Fay Haritaları Balıkesir Paftası (NJ 35-3) ve MTA Yer Bilimleri Harita Görüntüleyicisi ve Çizim Editörü Türkiye Diri Fayları verilerinden yararlanılmıştır. Evciler Tüneli'nin bulunduğu bölgede, tünel giriş portalının yaklaşık 1 km güney doğusunda, KD-GB uzanımlı ve yaklaşık 28 km uzunluğunda doğrultu atımlı Holosen Fayı'nın (Havran-Balya Fay Zonu) varlığı belirlenmiştir.

Şekil 2.3. Çalışmaya konu alanın ve yakın çevresinin MTA 1/2500000 ölçekli Balıkesir (NJ 35-3) paftası diri fay haritasındaki konumu [12].

2.5. Depremsellik

1 Ocak 2019 tarihinde yürürlüğe giren yenilenmiş deprem haritasına göre proje alanı yer ivmesi 0,3-0,5g arasında olabilecek bir bölgede yer almaktadır.

Şekil 2.4. Çalışma alanının Türkiye deprem tehlikesi haritasındaki konumu [13].

Şekil 2.5. Çalışmaya konu alanın Türkiye deprem haritasındaki konumu ve yer ivmesi değeri [13].

Çalışma alanı ve yaklaşık 100 km yarıçapındaki son senelerdeki depremler, Ek'te listelenmiş ve uydu görüntüsü üzerinde gösterilmiştir (Şekil 2.6). 1900-2021 yılları arasında, büyüklüğü M≥4 olan 121 deprem kaydedilmiştir (EK-1).

Şekil 2.6. İnceleme alanında yakın tarihte meydana gelen depremlerin gösterimi [14].

2.6. Hidrojeoloji

Tünel tasarımında dikkat edilmesi gereken huşuların başında projenin yapılacağı alanın hidrojeolojik özellikleri gelmektedir. Çalışma alanında yapılan çalışmalarda tünel giriş ve çıkış kesimlerinde herhangi bir su çıkışına rastlanmamıştır. Yapılan jeoteknik amaçlı sondajlarda da yeraltı suyu ile karşılaşılmamıştır.

No	Sondaj No	Yer	Derinlik	Yass
1	SK-5	Portal	38.00	Kuru
2	SK-6	Portal	37.50	Kuru
3	SK-7	Eksen	68.00	Kuru
4	SK-8	Portal	36.00	Kuru
5	SK-9	Portal	36.00	Kuru

Çizelge 2.1. Sondajlarda karşılaşılan yeraltısuyu seviyeleri.

Olası su varlığı durumunda Şapçı Volkaniti'nin dayanımını ciddi bir şekilde yitirmesi beklenirken Yürekli Dasiti'ne ait dasitlerde ciddi bir dayanım kaybı olmayacaktır. Yürekli Dasiti ileri derecede eklemli yapısıyla oldukça geçirgen bir özellikte iken Şapçı Volkanitleri az geçirimli niteliktedir.
3. MATERYAL VE YÖNTEM

İlgili sahada arazi incelemeleri, jeoteknik sondajlar ve arazide deneyler gerçekleştirilmiştir. Bu tezde değerlendirmeye alınan veriler Karayolları Genel Müdürlüğü'nden temin edildiği için arazi çalışmaları ve kuyu sondajları üzerinde doğrudan inceleme yapılamamıştır. Evciler Varyantı Tüneli'nin giriş, eksen ve çıkış bölgelerindeki duraysızlık ve stabilite sorunlarını çözmek ve jeoteknik modelleme yapmak için bu çalışmalardan vasıtasıyla edinilen bilgiler ve sondaj örneklerinde yapılan jeomekanik laboratuvar deneylerinden alınan bilgiler kullanılmıştır. Çalışmada, Karayolları Genel Müdürlüğü projesi dahilinde yapılan sondaj çalışmaları ile arazide ve laboratuvardan alınan veriler bir arada değerlendirilmiştir. Arazi ve laboratuvar çalışmalarından alınan bilgiler, tünel giriş kesimi bölgelerinin sayısal analizler ile yapılacak modellemesi için jeoteknik parametreler oluşturmak amacıyla kullanılmıştır. Laboratuvar deneyleri ISRM (1981) [15] standartlarına göre yapılmıştır.

DENEYLER					
	Birim Hacim Ağırlığı Deneyi				
Laboratuvar Deneyleri	Tek Eksenli Basınç Dayanımı Deneyi				
	Nokta Yükü Dayanıklılık İndeksi Testi				

Çizelge 3.1. Çalışmaya konu alanda gerçekleştirilen arazi ve laboratuvar deneyleri.

Evciler Varyantı Tüneli, giriş, eksen ve çıkış olmak üzere üç kesime ayrılarak bu kesimler ayrı ayrı incelenmiştir. Her kesim için yapılan çalışmalar değerlendirilerek RMR, GSI ve Q sistemlerine göre sınıflandırılmıştır. Bu sınıflandırmalar temel alınarak, destek sistemleri ve tünel içinde beklenen deformasyonların FLAC 3D programı ile sayısal analizi gerçekleştirilmiştir. Analizlerde, Hoek-Brown yenilme kriteri gibi görgül yaklaşımlar kullanılmıştır. Elastisite Modülü (Ei) ve Deformasyon Modülü [16] Roclab 1.0 [17] yazılımı ile belirlenmiştir. Elde edilen parametreler ve kaya kütlesinin sınıfı dikkate alınarak, NATM prensiplerine uygun destek sistemleri ve kazı yöntemleri öngörülmüştür. Analizler için kaya kütlesinin Birim Hacim Ağırlığı, Poisson Oranı, elastisite modülü, deformasyon modülü, mb, s ve a gibi girdiler programa tanımlanmıştır. Her bir kaya sınıfı için uygun destek sistemleri, inşaat sırasına göre adım adım eklenerek modelleme yapılmıştır. Destek sınıflarının

tanımlanmasından sonra gerçekleştirilen analiz ile olası deformasyonlar ve gerilim dağılımları üç boyutlu olarak ortaya konmuştur.

3.1. Arazi Çalışmaları

Evciler Varyantı Tüneli'nin giriş, çıkış ve eksen bölgelerinde arazi çalışmaları yapılmıştır. Bu çalışmalar kapsamında, jeolojik ve jeoteknik özellikleri belirlemek, analizler için gerekli parametreleri elde etmek ve laboratuvar testleri için gereken numuneleri toplamak için 5 farklı lokasyonda sondaj çalışması gerçekleştirilmiştir.

3.1.1. Jeoteknik Amaçlı Sondaj Çalışmaları

Tünel güzergahı boyunca gerçekleştirilen sondajlara ait özet bilgiler aşağıdaki tabloda sunulmuştur. Evciler Tüneli'nde, 4 adet portal bölgesinde ve 1 adet tünel gövdesinde olmak üzere toplamda 215,5 metre uzunluğunda 5 sondaj yapılmıştır. Bu sondaj çalışmalarına ilişkin kot, koordinat ve derinlik bilgileri Çizelge 3.2'de gösterilmektedir.

No	Sondaj Adı	Yer	Derinlik	Kot	Koordinatlar		
					Ν	Ε	
1	SK-5	Portal	38.00	273	538 224	4 389 130	
2	SK-6	Portal	37.50	273	538 202	4 389 108	
3	SK-7	Eksen	68.00	300	538 158	4 389 145	
4	SK-8	Portal	36.00	280	538 110	4 389 194	
5	SK-9	Portal	36.00	280	538 083	4 389 170	

Çizelge 3.2. Açılan sondaj kuyuları özet tablosu.

Sondajlar Temmuz-Ekim 2018 zaman diliminde rotary sondaj yöntemi ve donanımı kullanılarak hidrolik tip sondaj makinası ile Denizler Proje ve Danışmanlık Şirketi tarafından yapılmıştır. Karayolları Genel Müdürlüğü'nden gerekli izinler alınarak hazırlanan bu tez kapsamında ilgili çalışmalardan önemli ölçüde yararlanılmıştır [1].

3.2. Laboratuvar Araştırmaları

Laboratuvar çalışmaları için, 5 sondajdan alınan numuneler, derinliklerine göre karot sandıklarına dizilmiştir. (Şekil 3.1) (EK-3). Bu karot sandıkları temel alınarak 5 sondaj kuyusu için sondaj logları oluşturulmuştur (EK-2). Genel olarak, sondaj kuyularında yüzeyden itibaren anakaya gözlemlenmiştir. Bu nedenle, elde edilen numuneler üzerinde karot numunelere yönelik deneyler yapılmıştır.

Şekil 3.1. Sondajlardan elde edilen numunelerin karot sandığına dizilmiş görüntüsü [1].

Birim özelliklerinin ve bu özelliklere bağlı olarak kaya kütlesi dayanım parametrelerinin belirlenmesi amacıyla nadir ve zorlukla elde edilen numuneler üzerinde çeşitli deneyler yapılmıştır. Bu deneyler arasında "Birim Hacim Ağırlığı Testi (γ), Nokta Yükü Dayanıklılık İndeksi Testi (Is) ve Tek Eksenli Basınç Dayanımı Testi" bulunmaktadır. Yapılan bu deneylerin sonuçları, tasarım için gerekli parametrelerin belirlenmesinde doğrudan kullanılmıştır.

Sondaj Adı	Derinlik (m)	Birim Hacim Ağırlık γ, (kN/m3)	Tek Eksenli Sıkışma Dayanımı σc, [18]	Nokta Yükü Dayanım İndeksi (Is50)	Jeolojik Birim
SK-5	2,80-3,00	19,72	4,80		Andezitik tüf
SK-5	4,50-4,90	19,36	4,60		Andezitik tüf
SK-5	7,50-7,80	18,34	3,90		Andezitik tüf
SK-5	9,00-9,20	20,25	5,40		Andezitik tüf
SK-5	10,50-10,65	19,96		0,10	Andezitik tüf
SK-5	12,80-13,00	20,00	5,10		Andezitik tüf
SK-5	14,60-14,80	20,44	5,70		Andezitik tüf
SK-5	16,70-16,85	20,15	5,00		Andezitik tüf
SK-5	18,00-18,25	19,75	4,60		Andezitik tüf
SK-5	19,65-19,80	20,71	5,10		Andezitik tüf
SK-5	21,10-21,25	20,53	4,30		Andezitik tüf
SK-5	22,50-24,00	21,93	5,50		Andezitik tüf
SK-5	24,00-25,00	20,05		0,12	Andezitik tüf
SK-5	26,00-26,30	20,44	5,10		Andezitik tüf
SK-5	26,80-27,00	22,49	7,40		Andezitik tüf
SK-5	30,00-31,50	21,66	4,70		Andezitik tüf
SK-5	32,00-32,50	21,86	4,80		Andezitik tüf
SK-5	33,00-34,50	23,94	5,30		Andezitik tüf
SK-5	36,00-37,50	22,32	5,30		Andezitik tüf
SK-6	3,00-3,00	18,97		0,10	Andezitik tüf
SK-6	5,50-5,50	18,40		0,11	Andezitik tüf
SK-6	8,70-9,00	18,45		0,10	Andezitik tüf
SK-6	9,00-9,20	23,01		0,10	Andezitik tüf
SK-6	11,80-12,00	18,36		0,10	Andezitik tüf
SK-6	12,20-12,35	23,49		0,12	Andezitik tüf
SK-6	12,50-12,70	18,27		0,10	Andezitik tüf
SK-6	15,00-15,10	18,05		0,10	Andezitik tüf
SK-6	15,15-15,30	20,96		0,10	Andezitik tüf
SK-6	19,60-19,75	22,98		0,10	Andezitik tüf
SK-6	21,15-21,30	19,95		0,11	Andezitik tüf
SK-6	21,90-22,30	19,99	6,30		Andezitik tüf
SK-6	24,30-24,70	19,61	4,80		Andezitik tüf
SK-6	30,50-30,90	19,92	5,40		Andezitik tüf
SK-6	33,50-33,90	19,71	5,00		Andezitik tüf
SK-7	37,50-40,00	18,70		0,10	Andezitik tüf
SK-7	40,60-42,00	18,00	3,40		Andezitik tüf
SK-7	42,00-43,00	18,00	4,00		Andezitik tüf
SK-7	43,30-43,50	19,80	4,90		Andezitik tüf
SK-7	44,00-44,40	20,20	6,30		Andezitik tüf

Çizelge 3.3. Sondaj kuyularından elde edilen deney sonuçları.

SK-9	13,80-14,00	22,30	3,12	Dasit
SK-9	16,30-16,50	24,00	2,71	Dasit
SK-9	27,90-28,00	22,60	0,64	Dasit
SK-9	29,40-29,50	22,00	2,86	Dasit
SK-9	33,80-34,00	22,10	2,34	Dasit

İnceleme bölgesi ve yakın çevresinde, jeolojik birimleri temsil eden kesimlerde yapılan araştırma sondajları "Bölüm 3.3. Kaya Kütlelerinin Jeolojik-Jeoteknik Parametrelerini Belirlenmesi" kısmında ayrıntılı olarak ele alınmış ve değerlendirilmiştir.

3.3. Kaya Kütlelerinin Jeolojik-Jeoteknik Özelliklerinin Tanımlanması

Kaya kütlelerinin parametrelerinin belirlenmesi, tünel açımında destek sisteminin seçilmesinde önemli bir rol oynamaktadır. Tünelin açılacağı jeolojik birimin parametreleri, sondaj kuyuları, arazi gözlemleri ile arazi ve laboratuvar deneyleri kullanılarak belirlenmeye çalışılmaktadır. Bu süreçte, tünel tasarımı için RMR, GSI ve Q sınıflama sistemleri kullanılacaktır.

3.3.1. Kaya Kütlesi Sınıflama Sistemi - (RMR)

Kaya Kütlesi Sınıflandırma Sistemi (RMR), ilk olarak Bieniawski [19-21] tarafından tanıtılmıştır. Bu sistem, ilk olarak sedimanter kaya kütlelerindeki tünellerde gerçekleştirilen gözlemler ve bu gözlemler sonucunda elde edilen verilere dayanarak şekillendirilmiştir. İlk kaya kütle sınıflaması yapılırken şu parametreler kullanılmıştır:

- Kaya malzemesinin tek eksenli basınç dayanıklılığı
- Kaya kalitesi değeri (RQD)
- Ayrışma derecesi
- Süreksizliklerin mesafesi
- Süreksizlik genişliği
- Süreksizlik sürekliliği
- Yeraltı suyu akımı
- Süreksizliklerin doğrultusu

1974 yılında, RMR sisteminde ilk önemli değişiklikler yapılmıştır. 1973 versiyonundaki süreksizlik genişliği, süreksizlik sürekliliği ve ayrışma derecesi gibi parametreler "süreksizlik

durumu" başlığında birleştirilmiştir. Buna ek olarak, tünel açımı için önemli bir parametre olan süreksizlik yönelimlerinin etkisini tanımlamak amacıyla sisteme yeni ölçütler eklenmiştir.

1976'da sisteme alternatif bir parametre olarak nokta yükü dayanım indeksi eklenmiş ve RQD ile dayanım puanlaması süreçlerinde değişiklikler yapılmıştır. Ayrıca, süreksizlik aralığı, süreksizlik koşulu ve yeraltı suyu koşulu gibi faktörlerde de ayarlamalar gerçekleştirilmiştir. 1979'daki güncellemede, su miktarının ölçülmesinin mümkün olmadığı durumlar için "tamamen kuru", "nemli" gibi tanımlamalar eklenmiştir. RMR sistemi, zamanla yapılan yeni gözlemler ve elde edilen verilerle 1989'a kadar birkaç kez daha güncellenmiştir.

1989 yılına kadar gelişimini sürdüren ve günümüzde de hala kullanılan RMR sistemi, temel olarak 5 ana parametreden oluşmaktadır. Tablodaki bu 5 ana parametrenin puanlaması ile hesaplanan RMR değeri, "Temel RMR" değeri olarak bilinmektedir. RMR Kaya Kütle Sınıflama Sistemi'ne ait kullanılan tablolar Ek'te verilmektedir (EK-1).

RMR kaya kütlesi sınıflama sistemi, tüneller, galeriler ve madencilik gibi yeraltı kazılarında yaygın olarak kullanılmaktadır. Bu sistem, kazı yöntemine göre uygun destek sisteminin seçilmesini sağlar (EK-1). Benzer özelliklere sahip her kaya grubunda, kaya yükü, desteksiz durabilme süresi ve desteksiz genişlik büyüklüğü benzeri parametreler belirlenir.

3.3.2. Jeolojik Dayanım İndeksi (GSI)

Kayaç kütlesinin özelliklerini belirlemede çeşitli yöntemler mevcut olup, özellikle sık eklemli ve zayıf kaya kütleleri için bazı sınırlamalar söz konusudur. Kaya kütlesini oluşturan kaya malzemesi, süreksizlikler ve bunlar arasındaki ilişkiler, kaya kütlesinin doğru bir şekilde anlaşılmasını sağlar. Bu doğru anlayışı elde etmek için kaya kütlesinin jeoteknik parametrelerinin belirlenmesi ve uygun boyuttaki numunelerin alınması önemlidir. Ancak, laboratuvar koşullarında geniş numuneler elde etmek her zaman mümkün olmayabilir. Bu yüzden mühendislik özelliklerini belirlemek için ampirik yöntemler geliştirilmiştir. Bunlardan birisi de Hoek-Brown [22] yenilme ölçütüdür. Bu ölçüt, kaya kütlelerinin özelliklerini tanımlamak için görgül ilişkiler ve tablolar sunar. Bu yaklaşımda, kaya kütlelerine etki eden azami ve asgari asal gerilmeler (σ 1 ve σ 3), başka deyişle normal gerilme (σ) ile makaslama gerilmesi (τ) arasındaki ilintinin eğrisel bir bağlantı olduğunu geliştirmişlerdir. Ayrıca, eklemli kaya kütleleri için kaya sabitlerinin (m, s, a) belirlenmesi için çeşitli formüller oluşturulmuştur. Söz konusu eşitlikler, doğrudan deney ve modelleme kısıtlamaları ile RMR kaya sınıflamasının yetersiz kaldığı durumlar göz önünde bulundurularak oluşturulmuştur. Jeolojik Dayanım İndeksi (GSI) bu bağlamda geliştirilmiş olup, eklemli ve çeşitli dayanıklılık karakterlerine sahip kayaç kütlelerinin dayanım katsayılarını tablolar ile ampirik ilişkiler vasıtasıyla ortaya koymaktadır (Çizelge 3.4).

Çizelge 3.4. GSI Sınıflama Sistemi Diyagramı [23].

3.3.3. Q Sınıflama Sistemi

Q sınıflama sistemi, Barton [24-26] tarafından 1974 yılında yaklaşık 200 tünel ve yeraltı açıklığında elde edilen deneyimlere dayanarak geliştirilmiştir. Araştırmacı, yıllar içinde sisteme çeşitli yenilikler eklemiş olup, sistemin kullanımı aşağıda açıklanmıştır.

Barton Kaya Kütle Kalitesi sınıflamasına göre Q değeri şu şekilde tanımlanmıştır:

Q = [RQD/Jn][Jr/Ja][Jw/SRF] Eşitlik 3.1

Bu eşitlikte;

RQD: Kaya kalite göstergesi

Jn: Eklem seti sayısı

Jr: Eklem pürüzlülük derecesi

Ja: Eklem alterasyon derecesi

Jw: Eklem su indirgeme faktörü

SRF: Gerilim düşürme faktörü olup, tanımlanan kriterler Ek'teki tablodan seçilebilir (EK-1).

Q değerine göre tünelde uygulanması önerilen destekleme sistemlerini belirlemek için Grimstad ve Barton, 1993 yılında bir tablo önermiştir. Bu tablonun kullanımında, Eşdeğer boyut (De) hesaplanması gerekmektedir. De değeri, kazı eni, çapı veya yüksekliğinin kazı destek oranına bölünmesiyle elde edilir. Kazı destek oranı, farklı yapılar için değişiklik göstermekle birlikte, tüneller için 1 önerildiğinden bu çalışma kapsamında tüm hesaplamalarda bu değer 1 olarak alınmıştır.

Eşdeğer Boyut (De)= $\frac{Kazı eni, çapı veya yüksekliği (m)}{Kazı Destek Orani (ESR)}$ Eşitlik 3.2

Bulunan Eşdeğer Boyut (De), ve hesaplana Q değeri aşağıda verilen grafikte yerine konularak destek sistemi belirlenir.

Şekil 3.2. Q Sistemi için revizyona uğramış tünel desteği sistemi diyagramı [26].

3.3.4. Kaya Kütlesi İçin Deformasyon Modülü ve Sabitlerin Tespit Edilmesi

Kayaç kütlelerinde tasarlanacak mühendislik yapılarında temel öneme sahip parametrelerden biri Deformasyon Modülüdür (Em). Bu değeri elde etmek çeşitli zorluklar taşır, çünkü kaya kütlesi, kaya malzemesi ve süreksizliklerden oluşur ve büyük ölçekli numunelerin alınması mümkün değildir. Arazide bu değerin sağlıklı şekilde elde edilmesi zor olduğundan, bir takım ampirik yaklaşımlar geliştirilmiştir. Bu çalışmada, tek eksenli basınç dayanıklılığı testleri sonucunda bulunan elastisite modülü değerleri girdi parametresi olarak kullanılarak Roclab 1.0 [17] programıyla hesaplanan deformasyon modülü değeri üzerinden bir değerlendirme yapılmıştır.

Kaya kütlesine ait 's' ve 'a' parametrelerinin belirlenmesi için öncelikle GSI değerinin hesaplanması gerekmektedir. GSI değeri kullanılarak çeşitli eşitlikler yardımıyla 's' ve 'a' sabitleri elde edilebilmektedir:

'a' sabiti için;

GSI≥30 ise a=0.5 ve GSI≤30 ise a=0.65-(GSI/200) Eşitlik 3.3

Olarak belirlenebilmektedir.

's' sabiti için ise,

$$S = \exp(\frac{(GSI - 100)}{(9 - 3D)})$$

Eşitlik 3.4

Formülü kullanılmaktadır. 'mb' kaya kütle sabiti ise;

Mb=mi exp
$$\left(\frac{(GSI-1)}{(28-14)}\right)$$
 eşitlilk 3.5

Bu eşitliklerdeki mi kaya sabiti, Hoek vd. (2002) [27] katkılarıyla oluşturulan bir tablo vasıtasıyla belirlenir (EK-1). Eşitliklerdeki 'D' değeri ise örselenme faktörünü ifade eder ve kaya kütlesine etki eden dış etkenlere bağlı olarak 0 ile 1 arasında değişir. Örselenmemiş kaya kütlesi için 'D' değeri 0 iken, örselenmiş kaya kütlesi için 1'dir. Bu değer, Hoek vd. (2002) [27] katkılarıyla geliştirilen bir tablo vasıtasıyla tespit edilebilmektedir (EK-1).

3.3.5. NATM (New Austrian Tunnelling Method) Sınıflama Sistemi

Yeni Avusturya Tünel Açma Yöntemi, kısaca "NATM" olarak bilinen sistem, 1964 yılında Rabcewicz ve ekibi tarafından geliştirilmiştir [28]. Avusturya'nın standartlarından biri olan ÖNORM B2203 (1994), bu yöntemi uygulamak için çeşitli kaya sınıflarını tanımlamıştır; bunlar arasında sağlam kayadan, şişen ve kabaran kayaya kadar geniş bir aralık bulunmaktadır. Bu sınıflandırmada, "A1" kodu sağlam kaya için, "C5" kodu ise şişen, kabaran ve çok zayıf kaya için kullanılmaktadır. Ayrıca, bu kaya türlerinin davranışları ve gerekli destekleme stratejileri detaylandırılmıştır. İlgili tablonun detayları Ek bölümünde sunulmuştur (EK-1).

Tünel güzergahındaki saha ve sondaj çalışmalarından elde edilen bilgiler doğrultusunda, "RMR" ve "Q" kaya kütle sınıflama değerleri hesaplanmıştır. Bu değerler, doğal tünel açma yöntemine uygun olarak abaklar üzerinde karşılaştırılarak uygun NATM kaya kütle sınıfı belirlenmiştir. Tasarım aşamasında tespit edilen NATM kazı destek sınıfı, İzle (Ölç), Tasarla ve İlerle gibi temel prensiplere dayalı olarak uygulanmakta olup, kazı koşulları ve kazı sürecinde edinilen yeni bilgiler ışığında gerektiğinde değiştirilebilir.

4. BULGULAR VE TARTIŞMALAR

Bu bölüm, arazide gerçekleştirilen sondajlardan, arazi deneylerinden ve laboratuvar deneylerinden elde edilen verilerin değerlendirilmesini kapsamaktadır. Çalışma alanının jeoteknik koşullarını belirlemek amacıyla sondajlardan elde edilen veriler ve laboratuvar deney sonuçları titizlikle incelenmiş ve değerlendirilmiştir. Ayrıca, jeoteknik parametrelerin değerlendirilmesinde Kaya Kütle Derecelendirme (RMR), Jeolojik Dayanım İndeksi (GSI) ve Q Sınıflama Sistemi gibi Kaya Kütle Sınıflandırma Sistemleri kullanılmıştır.

4.1. Arazi ve Laboratuvar Deneyleri

Bu başlık altında çalışma alanında araştırma amacıyla yapılan arazi deneyleri ve bunlardan elde edilen numunelere yapılan laboratuvar deneylerine ait bilgiler verilecektir.

4.1.1. Sondaj Çalışmalarından Elde Edilen Veriler

Evciler Varyantı tünelinin giriş, çıkış portal bölgeleri ve eksen bölgesinde yapılan 5 adet sondajda yüzeyden itibaren anakayaya inilmiş ve ilerlenmiştir. SK-5, SK-6 ve SK-7 sondajlarında Şapçı Volkaniti'ne ait andezitik tüfler, SK-8 ve SK-9 sondajlarında ise Yürekli Dasiti'ne ait dasit birimi geçilmiştir. Bu sondaj çalışmalarında ilerleme adımlarına göre kaya kütlesinin toplam karot verimi (TKV) ve kaya kalite göstergesi (RQD) değerleri aşağıdaki tabloda örneklendirilmiştir (Çizgelge 4.1.).

Sondaj Adı	Ortalama TKV (%)	Ortalama RQD (%)
SK-5	68	56
SK-6	62	53
SK-7	38	19
SK-8	17	0
SK-9	39	1

Çizelge 4.1. Açılan sondajlara ait Ortalama TKV ve Ortalama RQD değerlerinin gösterir özet tablo.

4.1.2. Laboratuvar Deneylerinden Elde Edilen Değerler

4.1.2.1. Birim Hacim Ağırlık Deneyi

Kayaçların jeomekanik özelliklerini tespit etmek için giriş, çıkış ve eksen bölgelerinde gerçekleştirilen SK-5, SK-6, SK-7, SK-8 ve SK-9 sondajlarından güçlükle elde edilen numunelere birim hacim ağırlık deneyleri uygulanmıştır. Giriş bölgesinde yapılan deneylerin ortalama sonucu 20,41 kN/m³, çıkış bölgesinde ise 20,77 kN/m³ olarak belirlenmiştir. Eksen bölgesindeki sondajdan deneye uygun yeterli örnek sağlanamadığı için birim hacim ağırlık deneyi gerçekleştirilememiştir. Yoğunluk ve birim hacim ağırlık testi sonuçları EK-4'te yer almaktadır.

4.1.2.2. Nokta Yükü İndeksi (Is50)

Tünel giriş ve çıkış kesimlerinde gerçekleştirilen sondaj çalışmalarında, tek eksenli sıkışma deneyi için yeterli numune alınamayan derinliklerde bu deney yapılamamıştır. Bunun yerine, bu kesimlerden alınan numunelere nokta yükleme deneyi uygulanmıştır. Kayacın dayanımını belirlemek amacıyla, ISRM standartlarına göre gerçekleştirilen nokta yükleme deney sonuçları, giriş portal bölgesi için ortalama nokta yük indeks değeri (Is) 0,10 MPa ve çıkış portal bölgesi için ortalama nokta yük indeks değeri 1,96 MPa olarak belirlenmiştir. Giriş portal bölgesine ait özet sonuçlar Çizelge 4.2'de sunulmaktadır.

	Nokta yükü dayanım testi sonuçları
	0,10
	0,11
	0,10
	0,10
Tünal Ciris Dantal Dölgasi	0,10
i unei Giriș Portai Doigesi	0,12
	0,10
	0,10
	0,10
	0,10
	0,11

Çizelge 4.2. Nokta Yükü Dayanımı Testi Sonuçları

4.1.2.3. Tek Eksenli Basınç Dayanımı

Tünel eksen kesiminde yapılan sondajlarda, tek eksenli sıkışma deneyi için yeterli numune alınamadığı için bu test gerçekleştirilememiştir. Ancak, tünel giriş ve çıkış kesimlerinde tek eksenli sıkışma dayanımı deneyleri uygun numuneler üzerinde ISRM standartlarına uygun olarak yapılmış ve veriler elde edilmiştir. Kaya malzemelerinin tek eksenli sıkışma dayanımı kullanılarak sınıflandırılmasına ait tablo Ek'te verilmiştir (EK-1). Elde edilen verilere göre değerlendirme yapılmış ve bu değerlendirme sonucunda tünel giriş ve çıkış kesimindeki kaya birimleri 'Çok Düşük Dirençli' olarak sınıflandırılmıştır. Tek eksenli sıkışma dayanımı testlerinin sonuçları ve bu sonuçların analizleri "parametre seçimi" bölümünde ele alınmış olup, deney verilerinin tamamı EK-4'te verilmiştir.

4.2. Tünel Giriş Portal Bölgesi Parametrelerinin Seçimi

Tez çalışması sahasında, tünel girişi portal alanında yapılan sondaj çalışmaları ve arazi gözlemleri değerlendirildiğinde, yüzeyde ve sondajlarda gözlenen volkanik kaya kütlesi, zayıf kaya özellikleri göstermekte ve çok sık aralıklı süreksizliklerle bölünmüş, ayrıca oldukça ayrışmış ve bozunmuş durumdadır. Bu nedenle, Hoek-Brown yenilme kriteri [22] öneme alınarak yapılmış analizlerden temin edilen parametreler, şev stabilitesi analizlerinde girdi parametresi olarak değerlendirilmiştir.

Giriş portal kesiminde yapılan arazi gözlemleri ve sondajlar (SK-5 ve SK-6) sonucunda, Evciler Tüneli kesiminde gözlenen Şapçı Volkaniti, genel olarak açık-koyu gri renkli andezitik lavlar, andezit kökenli pembe-kırmızı piroklastlar, bej renkli tüf, ignimbirit ve yer yer gri renkli andezit karışımlarından oluşmaktadır. Andezitler sert ve yer yer çok sert nitelikte olup, dayanımlı ve orta derecede ayrışmıştır. Buna karşılık, tüf, ignimbirit ve andezitik lav seviyeleri zayıf dayanımlı ve orta-çok ayrışmış olarak tanımlanmıştır.

Şekil 4.1. Evciler Tüneli giriş kesimi uzaktan görünümü.

Bu kesim için parametre üretiminde arazide gerçekleştirilen SK-5 ve SK-6 sondajlarından yararlanılmıştır.

4.3. Kaya Kütle Sınıflama Sistemi (RMR)

Tünel girişi bölgesinde gerçekleştirilen SK-5 ve SK-6 sondajlarında, Şapçı Volkaniti'ne ait andezitik tüf birimi gözlemlenmiştir. Bu birimin RMR değeri, Ek'te (EK-1) verilen tablolar vasıtasıyla hesaplanmıştır. Değerlendirmelerde, sağlam kayaların tek eksenli basınç dayanımı, RQD, süreksizliklerin açıklığı, pürüzlülüğü, dolgu durumu ve aralığı gibi faktörler ile eklem yüzeylerinin ve kayacın bozunma seviyeleri karot analizleri ile tespit edilmiştir. Ayrıca, bozunma ve süreksizliklerin sürekliliği (uzunluğu) yüzeye çıkan aynı formasyona ait birimlerden tahmin edilmeye çalışılmıştır.

Hesaplamalar sonucunda, 5 ana parametrenin toplamı olan "Temel RMR değeri" 36 olarak bulunmuştur (Çizelge 4.3.). Tünelin kazı koşullarında belirgin bir süreksizlik yönelimi gözlemlenmediği için, süreksizlik yönelim düzeltme puanı olarak orta seçenek değerlendirilmiş ve 5 puanlık bir düzeltme uygulanarak "Düzeltilmiş RMR değeri" 31 olarak hesaplanmıştır.

Şekil 4.2. SK-5 ve SK-6 için kaya malzemesi dayanım puanları

Şekil 4.3. SK-5 ve SK-6 için RQD (%)puanı.

Şekil 4.4. SK-5 ve SK-6 için süreksizlik aralığı (mm) puanları.

Çizelge 4.3. Giriş Portal Bölgesi için RMR Kaya Kütle Sınıflandırma Sistemi [29].

	24								2
	Kaya	Nokta Yükleme Dayanımı (Mpa)	>10	4-10	2-4	1-2	Daha dii TEB de	şük değe ğeri terc	rleriçin ihedilir
1	Dayammı, (Mpa)	Tek Eksenli Basınç Dayanımı (Moa)	>250	100-250	50-100	25-50	5-25	1-5	1
	Puan		15	12	7	4	1,5	1	0
2	Kayaç Kali (%)	ite Göstergesi, RQD	90-100	75-90	50-75	25-50		<25	
	Puan	-	20	17	13	8		6,5	
	Süreksizlik aralığı		>2 m	0.6-2 m	200-600 mm	60-200 mm		<60 mm	Q
3	Puan		20	15	10	6		5	
F	Süreksizlik	derin uzuri uğu	<1m	1-3m	3-10 m	10-20 m	> 20m		
	Puan		6	4	2	1	0		
	Süreksizliklerin açıklığı		Yok	< 0.1 mm	0,1-1 mm	1-5 mm	> 5 mm		
	Puan		6	5	4	1	0		
	Pürüzlülük		Çok pürüzlü	Pürüzlü	Az pürüzlü	Düz	Kaygan		
4	Puan		6	5	3	1	0		
		22	W 4	Sert Dolgu		8	Yu	nuşak D	olgu
	Dolgu		Yok	< 5 mm		>5 mm	< 5	mm	>5 mm
		Puan	6		4	2	1	2	0
	Bozurma		Bozunmamış	Az bozunmuş	Orta derecede bozunmuş	Bozummuş	Ço	k bozum	muş
		Puan	6	5	3	1		0	
	Yeraltisum	10 m tünel uz. gelen su 1/m	Yok	< 101t/đk	10-25 lt/dk	25-125 1t/dk	>	1251t/d	k
5		Genel su durumu	Tamamen kuru	Nemli	Islak	Damlama		Suakaşı	a
		Puan	15	10	7	4		0	
	TEMEL RMR		36						

Kaya kütlesi parametreleri belirlenirken temel RMR değeri dikkate alınacaktır, ancak kaya sınıfı değerlendirmesinde final RMR değeri kullanılacaktır. Bu doğrultuda, giriş portal kesimindeki kaya 'Zayıf Kaya' olarak sınıflandırılmıştır (Çizelge 4.4.).

Çizelge 4.4. RMR Puan durumuna göre kaya kütlesi sınıfları.

Puan	100-81	80-61	60-41	40-21	<20
Sınıf	Ι	II	III	IV	V
Tanımlama	Çok İyi	İyi	Orta	Zayıf	Çok Zayıf

Sınıf No	Ι	II	III	IV	V
Ortalama Desteksiz Kalma Süresi	15 m açıklık için 20 yıl	10 m açıklık için 1 yıl	5 m açıklık için 1 hafta	<u>1.5</u> m açıklık için 10 saat	1 m açıklık için 30 dakika
Kaya Kütlesinin Kohezyonu (kPa)	>400	300-400	200-300	100-200	<100
Kaya Kütlesinin İçsel Sürtünme Açısı (º)	>45	35-45	25-35	15-25	<15

Çizelge 4.5. RMR Puan durumuna göre tahmini kaya kütlesi parametreleri.

4.3.1. Jeolojik Dayanım İndeksi (GSI)

Çalışmaya konu alandaki tünel giriş portalında gerçekleştirilen jeoteknik sondajlar, kaya kütlelerinin nitelikleri ve arazide yapılan gözlemler dikkate alınarak, GSI (Jeolojik Dayanım İndeksi) kriterleri hususunda değerlendirmeler yapılmıştır (Çizelge 4.6.).

Arazi gözlemlerinde karşılaşılan kaya; oldukça bloklu, ele alındığında dahi parçalanabilen ve bozunmuş bir yapıdadır. İlgili abakta sahadaki birimin özelliklerine uygun özellikler kesiştirildiğinde GSI değeri 34 olarak hesaplanmıştır.

Çizelge 4.6. Jeolojik Dayanım İndeksi (GSI) diyagramı vasıtasıyla parametrelerin belirlenmesi

[22].

Sayısal analizlerde, kaya ortamındaki kırılma sonrası plastik davranışın dikkate alınması ve gerilme analizlerinde kaya dayanım parametrelerinin yenilme sonrası öngörülmesi gerekmektedir. Kazı sonrası elastoplastik davranışı tanımlamak amacıyla gereken artık dayanım parametrelerini belirlemek için, Cai ve arkadaşlarının (2007) [30] önerdiği ilişkiler kullanılmıştır. Bu çerçevede, andezitik tüf birimi için sayısal analiz modelinde Jeolojik Dayanım İndeksi (GSI) rezidüel değeri aşağıdaki formülle hesaplanmıştır:

 $GSIr = GSI e^{(-0.0134GSI)} = 34 e^{(-0.0134 \times 34)}$

GSIr = 22 olarak bulunmuştur.

4.3.2. Q Sınıflama Sistemi

Tünel giriş portal bölgesinde karşılaşılacak andezitik tüf birimine ait Q kaya sınıfı puanı, aşağıdaki parametreler kullanılarak ve Ek'teki Çizelge'ye göre hesaplanmıştır:

RQD Değeri:

Giriş portal bölgesindeki SK-5 ve SK-6 no'lu sondajlardan elde edilen RQD değerlerinin ortalaması 30 olarak bulunmuştur. Bu değere karşılık, kaya kalite göstergesi olarak "Zayıf" olarak tanımlanmıştır.

Süreksizlik Set Sayısı:

Giriş bölgesinde yapılan arazi gözlemleri ve sondajlara göre dört veya daha fazla eklem seti ve bol miktarda, küp şeker benzeri eklemler gözlemlendiği için, Jn değeri 15 olarak seçilmiştir. Portal bölgesi olması nedeniyle, Jn x 2 değeri dikkate alınarak Jn:30 olarak belirlenmiştir.

Süreksizlik Pürüzlülüğü:

Giriş bölgesindeki pürüzlü veya düzensiz, dalgalı yüzeyler için Jr:1.5 değeri uygun görülmüştür.

Süreksizlik Ayrışması:

Giriş bölgesinde, siltli veya kumlu-kil sıvamalar ve küçük kil fraksiyonları için Ja:3.0 değeri atanmıştır.

Eklem Su Azaltma Faktörü:

"Orta derecedeki su gelişleri veya basınç sebebiyle yer yer süreksizliklerdeki dolguların yıkanması" durumlarına bağlı olarak Jw:0.66 değeri atanmıştır.

Stres İndirgeme Faktörü (SRF):

Kaya kütle karakteristikleri ve gömülme derinliği değerlendirildiğinde, tünel girişinde kazı derinliğinin 50 metreden düşük olması durumu göz önüne alınarak SRF:5 olarak atanmıştır. Bu parametrelerle birlikte Q değeri şu şekilde hesaplanmıştır:

Q=(RQD/Jn)/(Jr/Ja)*(Jw/SRF) eşitliğinden

Q=0,066 olarak bulunmuştur.

4.3.3. Tasarıma Esas Parametreler

Tünel giriş kesimi için arazi ve laboratuvar testlerinden elde edilen verilerden yararlanarak, tasarım sürecinde kullanılacak parametrelerin seçimi yapılacaktır.

4.3.4. Kaya Malzeme Katsayısı (mi)

Kaya malzeme sabiti olarak tanımlanan mi değeri, kaya kütlesindeki blokların kenetlenme ve dayanım seviyelerini gösteren bir parametredir. Bu çalışma kapsamında, mi değeri Hoek ve arkadaşlarının (2007) sunduğu tablo ve Roclab 1.0 [17] programının önerdiği değerler göz önünde bulundurularak belirlenmiştir. Andezitik tüf için bu değer mi=19 olarak saptanmıştır.

4.3.4.1. Tek Eksenli Sıkışma Dayanımı (σc)

Tünel girişi bölümünde bulunan andezitik tüf biriminden alınan örnekler üzerinde yapılan deneylerin sonucunda, ortalama tek eksenli sıkışma dayanımı değeri 5 MPa olarak ölçülmüştür.

4.3.4.2. Birim Hacim Ağırlık (γ)

Laboratuvar deneyleri sonucunda andezitik tüf birimi için birim hacim ağırlık değeri 20,41 kN/m³ olarak hesaplanmıştır.

4.3.4.3. Deformasyon Modülü (Em)

Kaya kütleleri üzerinde inşa edilen mühendislik yapılarının tasarımında en kritik faktörlerden biri Deformasyon Modülü'dür. Deformasyon Modülü (Em) elde edilirken çeşitli zorluklarla karşılaşılmaktadır. Kaya kütlesi, hem kaya malzemesini hem de süreksizlikleri barındırdığı için çok büyük boyutlarda örnekler alınması mümkün değildir. Ayrıca, arazide deney yapmanın zorluğu sebebiyle, bu değerin belirlenmesinde ampirik yöntemler geliştirilmiştir. Hoek-Brown yenilme ölçütü [27] kapsamında parametreler Roclab v1.0 [17] programı kullanılarak belirlenmiştir. Sondajlardan elde edilen numunelere ilgili deneyler yapılamadığından laboratuvar verilerinden Elastisite modülü (Ei) elde edilememiştir. Bu nedenle programda girdi olarak MR değeri üzerinden hesaplamalar yapılmıştır. Aynı şekilde mi değeri de, Roclab v1.0 [17] programında önerilen değerlerden seçilmiştir. Buna göre Deformasyon Modülü aşağıdaki eşitlikten hesaplanarak 185.48 MPa bulunmuştur.

$$Em = Ei \times \left(0,02 + \frac{1 - D/2}{1 + e^{(60 + 15D - GSI)/11}}\right)$$
[31]

Şekil 4.5. Abaktan elde edilen GSI değeri D=0 örselenme faktörüne göre elde edilen parametreler.

Şekil 4.6. Rezidüel GSI değeri ve D=0 örselenme faktörüne göre elde edilen parametreler.

4.4. Tünel Eksen Parametrelerinin Seçimi

Tünel eksen kesiminde yapılan gözlemler ve sondaj (SK-7) verileri bu kesimdeki hakim birimin Şapçı Volkanitleri olduğunu göstermiştir. Birim genel olarak acık-koyu gri renkli andezitik lav, andezit kökenli pembe-kırmızı renkli piroklastlar, bej renkli tüf, ignimbrit ve yer yer gri renkli andezit karışımlarından oluşmaktadır. Andezitler sert-yer yer çok sert nitelikli, dayanımlı ve orta derecede ayrışmıştır. Tüf, ignimbrit ve andezitik lav seviyeleri ise zayıf dayanımlı, orta-çok ayrışmıştır.

Şekil 4.7. SK-7 sondajı 30.00-45.00 m arası karot sandığı görünümü [1].

4.4.1. Kaya Kütle Sınıflama Sistemi (RMR)

Tünel eksen bölümünde gerçekleştirilen SK-7 jeoteknik sondajında andezitik tüf birimi tespit edilmiştir. Bu birime ait RMR değeri, Bölüm 4'te sunulan güncellenmiş tablonun kullanımıyla hesaplanmıştır. Bu birimin RMR değeri, Ek'te (EK-1) verilen tablolar vasıtasıyla hesaplanmıştır. Değerlendirmelerde, sağlam kayaların tek eksenli basınç dayanımı, RQD, süreksizliklerin açıklığı, pürüzlülüğü, dolgu durumu ve aralığı gibi faktörler ile eklem yüzeylerinin ve kayacın bozunma seviyeleri karot analizleri ile tespit edilmiştir. Ayrıca, bozunma ve süreksizliklerin sürekliliği (uzunluğu) yüzeye çıkan aynı formasyona ait birimlerden tahmin edilmeye çalışılmıştır.

Beş ana parametrenin toplamı sonucunda 'Temel RMR değeri' 37 olarak belirlenmiştir (Çizelge 4.7). Tünel kazısı esnasında düzenli bir süreksizlik yönelimi gözlemlenmediği için süreksizlik yönelimi düzeltme puanı 'orta' olarak değerlendirilmiş ve 5 puanlık bir düzeltme uygulanmıştır. Böylece, 'Düzeltilmiş RMR değeri' 32 olarak hesaplanmıştır.

Şekil 4.9. SK-7 için RQD (%) puanı.

Şekil 4.10. SK-7 için süreksizlik aralığı (mm) puanları.

	Nokta Yükleme Kaya Dayanımı (Mpa)		>10	4-10	2-4	1-2	Daha dü TEB de	şük değe ğeri terci	rler için ihedilir
1	Dayanımı, (Mpa)	Tek Eksenli Basınç Dayanımı (Mıba)	>250	100-250	50-100	25-50	5-25	1-5	1
	Puan		15	12	7	4	1,5	1	0
2	Kayaç Kali (%)	ite Göstergesi, RQD	90-100	75-90	50-75	25-50	<25		
	Puan		20	17	13	8		5	
	Süreksizlik	caralığı	>2 m	0.6-2 m	200-600 mm	60-200 mm		<60 mm	
3	Puan		20	15	10	8		5,5	
	Süreksizliklerin uzunluğu		<1m	1-3m	3-10 m	10-20 m		>20m	
	Puan		6	4	2	1		0	
	Süreksizliklerin açıklığı		Yok	< 0.1 mm	0,1-1 mm	1-5 mm	> 5 mm		8
	Puan		б	5	4	1	0		
	Pürüzl ül ük		Çok pürüzlü	Pürüzlü	Az pürüzlü	Düz	Kaygan		
4	Puan		6	5	3	1	0		
	Delas		V-1-	Sert Dolgu		Dolgu		nuşak Do	olgu
	Dolgu		IOK	< 5 mm		>5 mm	< 5	mm	>5 mm
		Puan	6	4	4	2	2	2	0
	Bozunma		Bozummarnış	Az bozunmuş	Orta derecede bozunnuş	Bozunmuş	Ço	k bozum	nuş
		Puan	6	5	3	1		0	
	Yeraltisuyi	10 m tünel uz. gelen su 1/m	Yok	< 101t/dk	10-25 lt/dk	25-1251t/dk	>	• 125 1t/d	k
5		Genel su durumu	Tamamen kuru	Nemli	Islak	Dami ama		Suakışı	8
		Puan	15	10	7	4		0	
TEMEL RMR		37							

Çizelge 4.7. Eksen Bölgesi için RMR Kaya Kütle Sınıflandırma Sistemi [32].

Kaya kütlesi parametrelerinin belirlenmesi aşamasında temel RMR değeri dikkate alınacaktır, ancak kaya sınıfının değerlendirilmesinde nihai RMR değeri kullanılacaktır. Bu doğrultuda, giriş portal kesimindeki kaya "Zayıf Kaya" olarak sınıflandırılmaktadır (Çizelge 4.8).

Puan	100-81	80-61	60-41	40-21	<20
Sınıf	Ι	II	III	IV	V
Tanımlama	Çok İyi	İyi	Orta	Zayıf	Çok Zayıf

Çizelge 4.8. RMR Puan durumuna göre kaya kütlesi klasları.

Çizelge 4.9. RMR Puan durumuna göre tahmini kaya kütlesi parametreleri.

Sınıf No	Ι	II	III	IV	V
Ortalama Desteksiz Kalma Süresi	15 m açıklık için 20 yıl	10 m açıklık için 1 yıl	5 m açıklık için 1 hafta	<u>1.5</u> m açıklık için 10 saat	1 m açıklık için 30 dakika
Kaya Kütlesinin Kohezyonu (kPa)	>400	300-400	200-300	100-200	<100
Kaya Kütlesinin İçsel Sürtünme Açısı (º)	>45	35-45	25-35	15-25	<15

4.4.2. Jeolojik Dayanım İndeksi (GSI)

Çalışmaya konu alandaki tünel giriş portalında gerçekleştirilen jeoteknik sondajlar, kaya kütlelerinin nitelikleri ve arazide yapılan gözlemler dikkate alınarak, GSI (Jeolojik Dayanım İndeksi) kriterleri hususunda değerlendirmeler yapılmıştır (Çizelge 4.10.).

Arazi gözlemlerinde karşılaşılan kaya; oldukça bloklu, ele alındığında dahi parçalanabilen ve bozunmuş bir yapıdadır. İlgili abakta sahadaki birimin özelliklerine uygun özellikler kesiştirildiğinde GSI değeri 37 olarak hesaplanmıştır.

Çizelge 4.10. Jeolojik Dayanım İndeksi (GSI) diyagramı ile parametrelerin atanması [22].

Sayısal analizlerde, kaya ortamındaki kırılma sonrası plastik davranışın dikkate alınması ve gerilme analizlerinde kaya dayanım parametrelerinin yenilme sonrası öngörülmesi gerekmektedir. Kazı sonrası elastoplastik davranışı tanımlamak amacıyla gereken artık dayanım parametrelerini belirlemek için, Cai ve arkadaşlarının (2007) [30] önerdiği ilişkiler kullanılmıştır. Bu çerçevede, andezitik tüf birimi sayısal analiz modelinde Jeolojik Dayanım İndeksi (GSI) rezidüel değeri aşağıdaki formül kullanılarak hesaplanmıştır.

GSIr = GSI e $(-0.0134GSI) = 37 e^{(-0.0134 \times 37)}$

GSIr = **30** olarak bulunmuştur.

4.4.3. Q Sınıflama Sistemi

Tünel eksen bölgesinde karşılaşılacak andezitik tüf birimine ait Q kaya sınıfı puanı, aşağıdaki parametreler kullanılarak ve Ek'teki (EK-1) tabloya göre hesaplanmıştır:

RQD Değeri:

Eksen bölgesindeki SK-7 no'lu sondajdan elde edilen RQD değerlerinin ortalaması 18 olarak bulunmuştur. Bu değere karşılık, kaya kalite göstergesi olarak "Çok Zayıf Kaya" olarak tanımlanmıştır.

Süreksizlik Set Sayısı:

Eksen bölgesinde yapılan arazi gözlemleri ve sondajlara göre dört veya daha fazla eklem seti ve bol miktarda, küp şeker benzeri eklemler gözlemlendiği için, Jn değeri 15 olarak seçilmiştir.

Süreksizlik Pürüzlülüğü:

Eksen bölgesindeki kaygan/düzlemsel pürüzlü tanımı için Jr:1.5 değeri uygun görülmüştür.

Süreksizlik Ayrışması:

Eksen kesiminde, siltli veya kumlu-kil sıvamaları ve küçük kil fraksiyonları için Ja:3.0 değeri seçilmiştir.

Eklem Su İndirgeme Faktörü:

"Orta dereceli su gelimi veya basınç, yer yer süreksizliklerdeki dolguların yıkanması" durumuna uygun olarak Jw:0.66 değeri kullanılmıştır.

Stres Azaltma Faktörü (SRF):

Kaya kütlesi karakteristikleri ve gömülme derinliği değerlendirildiğinde, tünel eksen kesiminde kazı derinliğinin 50 metreden düşük olması durumu göz önüne alınarak SRF:5 olarak atanmıştır.

Bu parametrelerle birlikte Q değeri şu şekilde hesaplanmıştır:

Q=(RQD/Jn)/(Jr/Ja)*(Jw/SRF) eşitliğinden

Q=0,025 olarak bulunmuştur.

4.4.4. Tasarıma Esas Parametreler

Tünel giriş kesimi için arazi ve laboratuvar testlerinden elde edilen veriler doğrultusunda, tasarım aşamasında kullanılacak parametreler belirlenecektir.

4.4.4.1. Kaya Malzeme Sabiti (mi)

Kaya malzeme sabiti olarak adlandırılan mi değeri, kaya kütlesindeki blokların kenetlenme ve dayanım seviyelerini ifade eden bir kaya katsayısıdır. Çalışmanın odaklandığı alandaki kayaç birimleri için mi değeri, Hoek ve arkadaşlarının (2007) sunduğu tablo ve Roclab 1.0[17] azılımının önerdiği değerler göz önüne alınarak, andezitik tüf için mi=19 olarak atanmıştır.

4.4.4.2. Tek Eksenli Sıkışma Dayanımı (σc)

Tünel eksen kesimindeki andezitik tüf biriminden alınan numunelere uygulanan deneylerden bulunan ortalama tek eksenli sıkışma dayanımı değeri 5 MPa şeklinde bulunmuştur.

4.4.4.3. Birim Hacim Ağırlık (γ)

Laboratuvar deneyleri sonucunda andezitik tüf birimi için birim hacim ağırlık değeri 19,00 kN/m³ olarak hesaplanmıştır.

4.4.4. Elastisite Modülü (Em)

Kaya kütleleri üzerinde inşa edilen mühendislik yapılarının tasarımında en kritik faktörlerden biri Deformasyon Modülü'dür. Deformasyon Modülü (Em) elde edilirken çeşitli zorluklarla karşılaşılmaktadır. Kaya kütlesi, hem kaya malzemesini hem de süreksizlikleri barındırdığı için çok büyük boyutlarda örnekler alınması mümkün değildir. Ayrıca, arazide deney yapmanın zorluğu sebebiyle, bu değerin belirlenmesinde ampirik yöntemler geliştirilmiştir. Hoek-Brown yenilme ölçütü [29] kapsamında parametreler Roclab v1.0 [20] programı kullanılarak belirlenmiştir. Sondajlardan elde edilen numunelere ilgili deneyler yapılamadığından laboratuvar verilerinden Elastisite Modülü (Ei) elde edilememiştir. Bu nedenle programda girdi olarak MR değeri üzerinden hesaplamalar yapılmıştır. Program çıktılarında, doruk dayanım parametreleri ve artık dayanım parametreleri örselenmiş ve örselenmemiş olarak hesaplanmıştır. Aynı şekilde mi değeri de Roclab v1.0 [20] programında önerilen değerlerden seçilmiştir. Buna göre Deformasyon Modülü aşağıdaki eşitlikten hesaplanarak 227.47 MPa bulunmuştur.

$$Em = Ei \times \left(0,02 + \frac{1 - D/2}{1 + e^{(60 + 15D - GS)/11}}\right)$$
[31]

Şekil 4.11. Abaktan elde edilen GSI değeri ve D=0 örselenme faktörüne göre elde edilen parametreler.

Şekil 4.12. Rezidüel GSI değeri ve D=0 örselenme faktörüne göre elde edilen parametreler.

Şekil 4.13. Abaktan elde edilen GSI değeri ve D=0.6 örselenme faktörüne göre elde edilen parametreler.

Şekil 4.14. Rezidüel GSI değeri ve D=0.6 örselenme faktörüne göre elde edilen parametreler.

4.5. Tünel Çıkış Portal Bölgesi Parametrelerinin Seçimi

Çıkış kesiminde yapılan arazi gözlemleri ve sondajlar (SK-8 / SK-9) Evciler Tüneli'nin bu kesimde Yürekli Dasiti'nden oluşmuş olduğunu göstermiştir. Birim genel olarak acık-koyu gri renkli, hipokristalin porfirik dokulu, iri plajioklas ve kuvars kristalli, biyotit ve feldispat minerallerince zengin dasit ve riyodasitten oluşuktur. Taze mostraları sert, dayanımlı ve belirgin eklem sistemlidir. Altere kesimleri ise kahverengi, killi kum karşımı niteliğindedir. Yapılan sondajlarda birimin ileri derecede eklemli olduğu RQD değerlerinin 0 olduğu anlaşılmıştır.

Şekil 4.15. SK-9 Sondajı 12.00-26.00m arası

Şekil 4.16. Çıkış kesiminde gözlemlenen Yürekli Dasiti'ne ait mostralar.

4.5.1. Kaya Kütle Sınıflama Sistemi (RMR)

Tünel çıkışı bölgesinde yapılan jeoteknik sondaj çalışmaları esnasında, SK-8 ve SK-9 numune noktalarında andezitik tüf birimine rastlanmıştır. Bu birime ilişkin RMR değeri, Bölüm 4'te yer alan ve güncellenmiş çizelgeye dayanarak hesaplanmıştır. Bu birimin RMR değeri, Ek'te (EK-1) verilen tablolar vasıtasıyla hesaplanmıştır. Değerlendirmelerde, sağlam kayaların tek eksenli basınç dayanımı, RQD, süreksizliklerin açıklığı, pürüzlülüğü, dolgu durumu ve aralığı gibi faktörler ile eklem yüzeylerinin ve kayacın bozunma seviyeleri karot analizleri ile tespit edilmiştir. Ayrıca, bozunma ve süreksizliklerin sürekliliği (uzunluğu) yüzeye çıkan aynı formasyona ait birimlerden tahmin edilmeye çalışılmıştır.

Hesaplamalar sırasında dikkate alınan beş ana parametrenin toplamı ile 'Temel RMR değeri' 32 olarak belirlenmiştir (Çizelge 4.11). Tünel kazısı sırasında sistematik bir süreksizlik yönelimi gözlemlenmediğinden, süreksizlik yönelimi düzeltme puanı 'orta' olarak değerlendirilmiş ve 5 puanlık bir düzeltme yapılmıştır. Bu nedenle, 'Düzeltilmiş RMR değeri' 27 olarak belirlenmiştir."

Şekil 4.17. SK-8 ve SK-9 için kaya malzemesi dayanım puanları.

Şekil 4.18. SK-8 ve SK-9 için RQD (%) puanı.

Şekil 4.19. SK-8 ve SK-9 için süreksizlik aralığı (mm) puanları.

	T									
	Kaya Dayammı, (Mpa)	Nokta Yükleme Dayanımı (Mpa)	>10	4-10	2-4	1-2	Daha düşük değerler için TEB değeri tercih edilir			
1		Tek Eksenli Basınç Dayanımı (Mpa)	>250	100-250	50-100	25-50	5-25	1-5	1	
	Puan		15	12	7	4	2	1	0	
2	Kayaç Kalite Göstergesi, RQD (%)		90-100	75-90	50-75	25-50	<25			
	Puan		20	17	13	8	0			
	Süreksizlik aralığı		>2 m	0.6-2 m	200-600 mm	60-200 mm	<60 mm			
3	Puan		20	15	10	8	3			
	Süreksizliklerin uzunluğu		<1m	1-3m	3-10 m	10-20 m	> 20m			
	Puan		6	4	2	1	0			
	Süreksizliklerin açıklığı		Yok	< 0.1 mm	0,1-1 mm	1-5 mm	> 5 mm			
	Puan		6	5	4	1	0			
	Pürüzl ül ük		Çok pürüzlü	Pürüzlü	Az pürüzlü	Düz	Kaygan			
4	Puan		6	5	5 3 1			0		
					Yumuşak Dolgu					
	Dolgu		YOK	< 5 mm		>5 mm	< 5	mm	>5 mm	
	Puan		6	4		2	1	2	0	
	Bozunma		Bozunmamış	Az bozunmuş Orta derecede bozunmuş		Bozunmuş	Çok bozunmuş			
	Puan		6	5	3	1	0			
	Yeraltisuyı	10 m tünel uz. gelen su 1/m	Yok	< 101t/dk	10-25 lt/dk	25-1251t/dk	> 125 1t/đk		ik	
5		Genel su durumu	Tamamen kuru	Nemli	Islak	Dami ama		Suakışı		
	Puan		15	10	7	4	0		6.	
TEMEL RMR			32							

	7.1 1.11	\mathbf{O} 1	D"1 '	• •		17	TZ	C C 1	a. ' . '	[1
Q	\Box 1Zelge 4.11.	CIKIS	S Bolgesi	ıcın	KMK	Kava	Kutle	Siniflandirma	Sistemi	132	I.
	, O	5 3				2				L- 1	

Kaya kütlesi parametrelerinin belirlenmesi aşamasında temel RMR değeri dikkate alınacaktır, ancak kaya sınıfının değerlendirilmesinde nihai RMR değeri kullanılacaktır. Bu doğrultuda, giriş portal kesimindeki kaya "Zayıf Kaya" olarak sınıflandırılmaktadır (Çizelge 4.12.).
Puan	100-81	80-61	60-41	40-21	<20
Sınıf	Ι	II	III	IV	V
Tanımlama	Çok İyi	İyi	Orta	Zayıf	Çok Zayıf

Çizelge 4.12. RMR Puan durumuna göre kaya kütlesi sınıfları.

Çizelge 4.13. RMR Puan durumuna göre tahmini kaya kütlesi parametreleri.

Sınıf No	Ι	II	III	IV	V
Ortalama Desteksiz Kalabilme Süresi	15 m açıklık için 20 yıl	10 m açıklık için 1 yıl	5 m açıklık için 1 hafta	<u>1.5</u> m açıklık için 10 saat	1 m açıklık için 30 dakika
Kaya Kütlesinin Kohezyonu (kPa)	>400	300-400	200-300	100-200	<100
Kaya Kütlesinin İçsel Sürtünme Açısı (°)	>45	35-45	25-35	15-25	<15

4.5.2. Jeolojik Dayanım İndeksi (GSI)

Çalışmaya konu alandaki tünel giriş portalında gerçekleştirilen jeoteknik sondajlar, kaya kütlelerinin nitelikleri ve arazide yapılan gözlemler dikkate alınarak, GSI (Jeolojik Dayanım İndeksi) kriterleri hususunda değerlendirmeler yapılmıştır (Çizelge 4.14).

Arazi gözlemlerinde karşılaşılan kaya; oldukça bloklu, ele alındığında dahi parçalanabilen ve bozunmuş bir yapıdadır. İlgili abakta sahadaki birimin özelliklerine uygun özellikler kesiştirildiğinde GSI değeri 32 olarak hesaplanmıştır. Çizelge 4.14. Jeolojik Dayanım İndeksi (GSI) diyagramı ile parametrelerin belirlenmesi.

Sayısal analizlerde, kaya ortamındaki kırılma sonrası plastik davranışın dikkate alınması ve gerilme analizlerinde kaya dayanım parametrelerinin yenilme sonrası öngörülmesi gerekmektedir. Kazı sonrası elastoplastik davranışı tanımlamak amacıyla gereken artık

dayanım parametrelerini belirlemek için, Cai ve arkadaşlarının (2007) [30] önerdiği ilişkiler kullanılmıştır. Bu çerçevede, andezitik tüf birimi için sayısal analiz modelinde Jeolojik Dayanım İndeksi (GSI) rezidüel değeri aşağıdaki formülle hesaplanmıştır:

GSIr = GSI e $(-0.0134GSI) = 32 e^{(-0.0134 \times 32)}$

GSIr = 21 olarak bulunmuştur.

4.5.3. Q Sınıflama Sistemi

Tünel çıkış bölgesinde karşılaşılacak andezitik tüf birimine ait Q kaya sınıfı puanı, aşağıdaki parametreler kullanılarak ve Ek'teki Tablo'ya göre hesaplanmıştır:

RQD Değeri:

Çıkış bölgesindeki SK-8 ve SK-9 no'lu sondajlardan elde edilen RQD değerlerinin ortalaması 0 olarak bulunmuştur. Bu değere karşılık, kaya kalite göstergesi olarak "Çok Zayıf Kaya" olarak tanımlanmıştır.

Süreksizlik Set Sayısı:

Çıkış bölgesinde yapılan arazi gözlemleri ve sondajlara göre dört veya daha fazla eklem seti ve çok sayıda küp şeker benzeri eklemler görüldüğünden, Jn değeri 15 olarak seçilmiştir. Portal bölgesi olduğundan, Jn değeri Jnx2 olarak 30'a çıkarılmıştır.

Süreksizlik Pürüzlülüğü:

Çıkış bölgesinde düz ve düzlemsel yüzeylerin tanımlanması yapılabileceğinden, Jr değerinin 1,0 olarak seçilmesi uygun bulunmuştur."

Süreksizlik Ayrışması:

Çıkış kesiminde, siltli veya kumlu-kil kaplamaları ve ince kil parçaları için Ja değeri 3.0 olarak seçilmiştir.

Eklem Su İndirgeme Faktörü:

"Orta derecede su gelişi veya basınç, yer yer süreksizliklerdeki dolguların yıkanması" durumuna uygun olarak Jw:0.66 değeri belirlenmiştir.

Stres İndirgeme Faktörü (SRF):

Kaya kütle nitelikleri ve gömülme derinliği göz önüne alındığında, tünel çıkış kesiminde kazı derinliğinin 50 metreden düşük olması durumu dikkate alınarak SRF değeri 2,5 olarak seçilmiştir.

Bu parametrelerle birlikte Q değeri şu şekilde hesaplanmıştır:

Q=(RQD/Jn)/(Jr/Ja)*(Jw/SRF) eşitliğinden

Q=0,029 olarak bulunmuştur.

4.6. Tasarıma Esas Parametreler

Tünel çıkış kesimi için, arazi ve laboratuvar deneylerinden elde edilen verilere dayanarak tasarım aşamasında kullanılacak parametreler belirlenecektir."

4.6.1. Kaya Malzeme Sabiti (mi)

Mi değeri, kaya malzeme sabiti olarak, kaya kütlesindeki blokların kenetlenme ve dayanım özelliklerini temsil eder. Çalışma bölgesindeki kayaç birimleri için mi değeri, Hoek ve arkadaşlarının (2007) tablosuna ve Roclab 1.0 [17] programının tavsiyelerine dayanarak, andezitik tüf için mi=15 olarak belirlenmiştir.

4.6.2. Tek Eksenli Sıkışma Dayanımı (σc)

Tünel çıkış kesiminde andezitik tüf biriminden alınan örneklere yapılan deneyler sonucunda ortalama tek eksenli sıkışma dayanımı değeri 10 MPa olarak belirlenmiştir.

4.6.3. Birim Hacim Ağırlık (γ)

Laboratuvar deneyleri sonucunda andezitik tüf birimi için birim hacim ağırlık değeri 22,60 kN/m³ olarak hesaplanmıştır.

4.6.4. Elastisite Modülü (Em)

Kaya kütleleri üzerinde inşa edilen mühendislik yapılarının tasarımında en kritik faktörlerden biri Deformasyon Modülü'dür. Deformasyon Modülü (Em) elde edilirken çeşitli zorluklarla karşılaşılmaktadır. Kaya kütlesi, hem kaya malzemesini hem de süreksizlikleri barındırdığı için çok büyük boyutlarda örnekler alınması mümkün değildir. Ayrıca, arazide deney yapmanın zorluğu sebebiyle, bu değerin belirlenmesinde ampirik yöntemler geliştirilmiştir. Hoek-Brown yenilme ölçütü [29] kapsamında parametreler Roclab v1.0 [20] programı kullanılarak belirlenmiştir. Sondajlardan elde edilen numunelere ilgili deneyler yapılamadığından laboratuvar verilerinden Elastisite Modülü (Ei) elde edilememiştir. Bu nedenle programda girdi olarak MR değeri üzerinden hesaplamalar yapılmıştır. Aynı şekilde mi değeri de Roclab v1.0 [20] programında önerilen değerlerden seçilmiştir. Buna göre Deformasyon Modülü aşağıdaki eşitlikten hesaplanarak 324.56 MPa bulunmuştur.

$$Em = Ei \times \left(0,02 + \frac{1 - D/2}{1 + e^{(60 + 15D - GS)/11}}\right) [31]$$

Şekil 4.20. Abaktan seçilen GSI değeri ve D=0 örselenme faktörüne göre elde edilen parametreler.

Şekil 4.21. Rezidüel GSI değeri ve D=0 örselenme faktörüne göre elde edilen parametreler

Tünel; Giriş Portal kesimi, Eksen kesimi ve Çıkış Portal kesimi olmak üzere 3 kesimde incelenerek bu 3 kesim için tasarıma esas parametreler elde edilmiştir. Elde edilen bu parametreler (Çizelge 4.15.) nümerik analizin yapılacağı Flac 3d programında girdi olarak kullanılacaklardır.

Kesit	Tünel Giriş Portal Kesimi	Tünel Eksen Kesimi	Tünel Çıkış Portal Kesimi	
Km Aralığı	Km: 38+627.18- 38+680 (Sol Tüp) Km: 38+633.17- 38+680 (Sağ Tüp)	Km: 38+680-38+785 (Sol Tüp) Km: 38+680-38+780 (Sağ Tüp)	Km: 38+785- 38+38+835 (Sol Tüp) Km: 38+780-38+820 (Sağ Tüp)	
Q Değeri	0,066	0,025	0,029	
GSI Değeri	34	37	32	
RMR Değeri	31	32	27	
NATM Sınıfı	C2	B3	C2	
Kaya Birim Hacim Ağırlığı, γ (kN/m ³)	20,41	19	22,6	
Tek Eksenli Basınç Dayanımı, σ _{ci}	5	5	10	
m _i Değeri	19	19	25	
Örselenme Faktörü, D	0	0,6	0	

Çizelge 4.15. Tünel giriş, eksen ve çıkış kesimleri tasarıma esas özet parametreler.

Çizelge 4.16. Tünel kesimlerine ait elde edilen parametreler.

Kesit		Tünel Giriş Portal Kesimi	Tünel Eksen Kesimi	Tünel Çıkış Portal Kesimi
Örtü Kalır	ılığı (m)	10	40	0-15
NATM Kazı ve Destek Sınıfı		C2	В3	C2
Hoek-Brown ölçütü	mb	1,799	2,003	2,204
Dayanım parametreleri	S	0,0007	0,0009	0,0005
	а	0,517	0,514	0,520
Deformasyon M	Iodülü (GPa)	0,185	0,98	0,324

4.7. Yeni Avusturya Tünel Açma Yöntemi ve Destek Sistemi (NATM)

Tünel açma sürecinde zemin deformasyonları ve gerilme değişiklikleri, uygulanan kazı yöntemine bağlı olarak farklılık gösterir. 'Yeni Avusturya Tünel Açma Yöntemi,' tünel kazı ve destek tasarımında çeşitli avantajlar sunar. Bu avantajlar şunlardır:

- Kaya kütlesinin doğal dayanımını en üst düzeyde kullanarak ve destek sistemlerini zamanında uygulayarak kazı sürecini optimize etmek,
- Rijit destek sistemleri yerine, kaya deformasyonlarına ve kemerleşmeye uyum sağlayan esnek destek sistemleri kullanarak, destek sistemi ile kazı yüzeyi arasında tam uyum sağlamak,
- Püskürtme beton, hasır çelik, kaya bulonu ve/veya hafif çelik iksa gibi malzemelerle aşırı gevşeme ve deformasyonları hızlı bir şekilde önlemek,
- Sürekli deformasyon ölçümleri yaparak kazı ve destek sistemlerini izlemek ve gerekirse kademeli kazı veya farklı destek sınıflarına geçiş sağlamak,
- Zayıf zemin veya kayaçlarda, taşıyıcı halkayı zamanında kapatarak destek sisteminin etkinliğini artırmak,
- Kazı sırasında yapılan gözlem ve ölçümlere dayanarak kaya sınıfı ve destek sistemlerinin ödeme esaslarını belirlemede esneklik sağlamak.

Yeni Avusturya Yöntemi'nin ana prensibi, kaya kütlesinin kendi ağırlığını mümkün olduğunca taşımaya devam etmesine izin vermektir. Kazı sırasında belirli bir seviyede deformasyona izin verilerek, destek sisteminin üzerindeki yükler önemli ölçüde azaltılabilir. Kontrol altında serbest bırakılan kaya kütlesi, kemerleşme etkisi ile yükü yanlara aktarır ve çevresinde bir taşıma halkası oluşturarak maksimum taşıma kapasitesini kullanır. Tünel aynasında üç boyutlu olan kemerleşme, tünelden uzaklaştıkça iki boyutlu bir yapıya dönüşür.

Destek sistemleri, tünel üzerindeki örtü yükünü taşımak yerine, kazı çevresindeki taşıyıcı halkayı koruyarak plastik deformasyonları kontrol eder ve kayanın aşırı gevşemesini engeller. Bu nedenle, destek sisteminin kaya deformasyonlarına uyum sağlayacak şekilde esnek olması, yöntemin en önemli gereksinimlerinden biridir. Kaya kütlesi kendi ağırlığını taşıyamayacak kadar zayıfsa, kullanılan destek sistemi, kaya taşıma kapasitesine ulaştıktan sonra ek iç basıncı sağlayarak dengeyi sağlar.

4.7.1. Birincil Destekleme Sistemi

NATM'ın ana prensibi, tünel kesitini çevreleyen kaya kütlesinin yük taşıyan bir yapı elemanı olarak işlev görmesini sağlamaktır. Bu yöntem, ilk destek sisteminin uygulanmasından önce ve sonra sınırlı bir deformasyona izin verilmesini öngörür. NATM'ın en kritik özelliği, desteğin doğru zamanda sağlanmasıdır. Eğer destek sistemi deformasyona hiç izin verilmeden uygulanırsa, bu durum destek sisteminin aşırı yüklenmesine ve ekonomik verimliliğin düşmesine yol açar. Diğer yandan, aşırı deformasyonlar ve zemin bozulmaları ortaya çıkabilir.

Bu yöntemde, ilk aşamada (birincil) destek elemanları inşa edildikten sonra, zemin deformasyonları ve hareketlerinin durması beklenir. Ardından, ikincil destekleme sistemi inşa edilir. Bu yaklaşım, destek sistemlerinin etkinliğini ve ekonomik verimliliğini artırmayı hedefler.

4.7.2. Birincil Destekleme Sisteminde Kullanılan Elemanlar

Tünel destekleme sistemi genellikle iki ana bileşenden oluşur: birincil destekleme ve ikincil destekleme sistemleri. Birincil destekleme elemanları, mevcut kaya sınıfı ve jeolojik koşullara bağlı olarak çeşitli sistemlerden ve bunların kombinasyonlarından seçilir. Bu sistemler, tünel açma sürecinde karşılaşılan koşullara göre özelleştirilir ve uygulanır.

4.7.2.1. Püskürtme Betonu

Püskürtme beton, çevre kayanın gevşemesini engelleyen önemli bir taşıyıcı elemandır. Destekleme elemanları arasında en yüksek destek basıncını sağlayan püskürtme betonudur.

4.7.2.2. Çelik Hasır

Beton tabakaları arasında, püskürtme beton kaplamanın yapısal ve statik bütünlüğünü sağlamak için çelik hasır kullanılacaktır. Çelik hasır, püskürtme beton ile kaya arasındaki bağın güçlendirilmesine, betonun sertleşme süresince stabilitesinin korunmasına, kayma mukavemetinin artırılmasına ve istenmeyen çatlakların önlenmesine yardımcı olur.

4.7.2.3. Çelik İksa

Çelik iksa, taze püskürtme betonun yük taşımaya başlamadan önce anında destek sağlar ve betonun mukavemet kazanmasının ardından çelik hasırla birlikte güçlendirici bir donatı oluşturur. Ayrıca, bu sistem, işçiler için ek bir psikolojik güvenlik unsuru sunar.

4.7.2.4. Süren Boruları veya Demir Çubukları

Ön kazıklı desteklemenin amacı, tünel aynası çevresinde şemsiyelenme vasıtasıyla destek sağlamaktır. Tünellerin tavanının tamamen ayrışmış kaya kütlesi içerisinde yer alması nedeniyle, sürenlerin önemi büyüktür.

4.7.2.5. Kaya Bulonları

Kaya bulonları, standart destekleme sisteminin bir parçası olarak düzenli bir şekilde kullanılır. Bu bulonlar, kayma mukavemetini artırarak kaya kütlesinin dayanımını ve kalitesini yükseltir, tünel içerisindeki deformasyonları azaltır ve kaya dökülmelerini engeller. Kaya bulonlarının uzunlukları, tünel çevresinde oluşan plastik bölgenin yaklaşık 2 metre ötesine uzanacak şekilde belirlenmelidir.

4.7.3. İkincil Destekleme Sistemi

Tünel destekleme sistemleri genellikle birincil destekleme prensiplerine dayanarak tasarlanır; ancak, çeşitli nedenlerle ikincil destekleme sistemlerine de ihtiyaç duyulmaktadır:

- **Stabilite:** Püskürtme beton zamanla mukavemetini yitirebilir ve zeminlerin sıkışması veya uzun vadeli deformasyonlar ek yükler yaratabilir.
- Su Geçirimsizliği: Su sızıntılarını engellemek amacıyla ek önlemler gerekebilir.
- İşletme Ekonomisi: Sürtünme azalması, araç ve havalandırma sistemlerinin verimliliğini artırabilir.
- Görünüm: Tünelin estetik ve bakım gereksinimlerini karşılamak için.

4.8. Tünel Kazısının Sayısal Modellemesi

4.8.1. Tasarım Yöntemi ve Esasları

Yer altı yapılarında, değişik derinliklerde ve çeşitli davranışlar sergileyen jeolojik birimlerin bulunması, homojen olmayan üç boyutlu bir anizotropik gerilme ortamı oluşturur ve bu durum, tünel modelleme tasarımında birçok belirsizliği getirir. Tünel kazı yapılması sırasında ortaya çıkabilecek ikincil gerilmelerin dağılımını gerçek duruma yakın şekilde modellemek, sağlıklı bir tünel tasarımı yapılabilmesi için gereklidir. Ancak, gerçeğe uygun bir model oluştururken bazı varsayımların yapılması zorunludur. Farklı jeoteknik birimlerin jeoteknik ve jeomekanik parametreleri dikkate alınarak, kazı çevresindeki deformasyonlar ve uygun destek sistemleri sonlu elemanlar yöntemi ile iki boyutlu varsayımlar kullanılarak modellenebilir.

Yer altı yapılarının tasarımı sırasında, yol güzergahı ve çevresindeki tüm formasyonlar, eklem takımları, fay hatları, kayaçların yönelimi ve eğimleri, zemin veya kayaçların parametrelerinin dağılımı, yer altı suyu seviyeleri gibi birçok faktörün durumu, konumu ve sayısal değerleri hakkında kapsamlı bilgi toplamak amacıyla jeoteknik etütler, saha ve laboratuvar çalışmaları yapılır. Ancak, kazı yöntemi ve destekleme önlemleri hakkında kesin kararlar yalnızca tünel kazısı sırasında sahada elde edilen verilerle verilebilir [33].

Tünel kazısını desteklemek için gerekli tasarım, çevredeki gerilmelerin üç boyutlu (x, y ve z) yeniden dağılımını ve kayaçların zamanla zayıflamasını dikkate alan dört boyutlu bir problem olarak ele alınmalıdır. Bu karmaşık tasarım süreci, mevcut deneyimler ve bilimsel-teknolojik gelişmelere dayalı olarak çeşitli yöntemlerle uygulanır. Bu çalışmada, analizler genellikle "Genelleştirilmiş Hoek-Brown" kriterine (Hoek, Carranza-Torres & Corkum, 2002) dayalı elastoplastik malzeme modeli kullanılarak gerçekleştirilmiştir[34].

4.8.2. Tünel Destek Sistemlerinin Analitik Çözümler ve Nümerik Analizler İle Belirlenmesi

Tünel destek sistemlerinin belirlenmesi için zemin-destek reaksiyon eğrilerinin belirlenmesi gerekmektedir. Bu amaçla Hoek ve Brown (1980) ile Hoek (2012) çalışmalarında sunulan eşitlikler kullanılmıştır (Çizelge 4.17.).

Çizelge 4.17. Kapalı sistem eşitlikleri (Hoek ve Brown 1980; Hoek, 2012)

	Eşitlik
g _{cu} (1)	$\sigma_{cm=1-sin\phi'}$
<u>k (</u> 2)	$k = \frac{1 + \sin \emptyset'}{1 - \sin \emptyset'}$
p _G .(3)	
	$\underline{P_{cr}}=(2P_0-\underline{\alpha_{cm}})/(1+k)$
<u>uis</u> (4)	$\underline{u}_{ip}=r_0(1+\nu)(p_0-p_i)/E_m$
<u>tp_(</u> p _i =0) (5) rp	$= ro[(\frac{2(p0(k-1) + \sigma cm)}{(1+k)((k-1)pi + \sigma cm)}]^{-\frac{1}{k-1}}$
$uip = \left(\frac{ro(1+i)}{Em}\right)$	$\left(\frac{\partial}{\partial p}\right) \left[2(1-\vartheta)(p0-pcr)\left(\frac{rp}{r0}\right)^2 - (1-2\vartheta)(p0-pi)\right]$
$\varepsilon(7)$ $\varepsilon\% = \left(\frac{1}{2}\right)$	$\frac{ui}{r_0} x 100 = [0.2 - 0.25 \left(\frac{pi}{p0}\right) \left(\frac{\sigma cm}{p0}\right)^{2.4 \left(\frac{pi}{p0}\right) - 2})$
$\mathbf{p}(\mathbf{p}_i)$ (8) $\left(\frac{rp}{r0}\right)$	$\Big) = (1.25 - 0.625 \left(\frac{pi}{p0}\right) \left(\frac{\sigma cm}{p0}\right)^{\left(\frac{pi}{p0}\right) - 0.57})$
🚓 = Plastik zon yarıçapı	$\sigma'_1 =$ yenilme anındaki efektif eksenel
u = Yerdeğiştirme	genime
رو= Tünel yarıçapı	σ∃= Elektii ianai geriime
<u>pi</u> = Tahkimat basıncı	$\underline{c} = \text{kohezyon}$
<u>p₀</u> = arazi gerilmesi	ø' = içsel sürtünme açısı
σ _{cm} = Kaya kütle <u>dayanmı</u>	v = <u>Poisson</u> orani
Em = Deformasyon modülü	

Ayrıca destek sistemlerinin tahkimat basınçlarını belirlenmesi amacıyla Hoek ve Brown (1980) ile Brady ve Brown (1985) çalışmalarında sunulan eşitlikler dikkate alınmıştır (Çizelge 4.18.).

Denklem		
$p_{ssmaks} = (A_s \sigma_{ys})/(s_l r_0^2)$ (9)		
$K_{ss} = (E_s A_s) / (s_t r_o^2) \qquad (10)$		
$P_{sbmaks} = (T_{bf})/(s_1s_c)$ (11) $K_{sb} = (E_s \pi d_b^2)/(4s_1s_c)$ (12)		
$P_{scmikas} = (\sigma_{cc}/2)(1 - (r_0 - t_c)/r_0^2) (13)$ $K_{sc} = (E_c(r_0^2 - (r_0 - t_c)^2)/(2(1 - \upsilon^2)/(r_0 t_c)r_0^2) (14)$		

Çizelge 4.18. Tahkimat kapasite formülleri (Hoek ve Brown 1980; Brady ve Brown, 1985)

Buna ek olarak, tünelde boyuna deformasyon eğrilerinin de belirlenmesi önem kazanmaktadır. Belirlenen her bir kaya sınıfı içinde tünel ayna deformasyon eğrisi ile Vlachopolos ve Diederichs (2009) eşitlikleri çizdirilmiştir (Eşitlik 4.1.).

$$u_{0}^{*} = \frac{u_{0}}{u_{max}} = \frac{1}{3}e^{-0.15R^{*}}$$

$$u^{*} = \frac{u}{u_{max}} = u_{0}^{*}e^{X^{*}} \text{ for } X^{*} \le 0 \text{ (kaya kütlesinde)}$$

$$u^{*} = 1 - (1 - u_{0}^{*})e^{-\frac{3X^{*}}{2R^{*}}} \text{ for } X^{*} \ge 0 \text{ (tünelde)}$$

$$R^{*} = R_{p}/R_{T}$$

Km:38+627.18 ile km:37+670 arasının değerlendirilmesi

Tünel giriş portal ile km:68+627 arasında geçilen kesimler için destek sistemi detayları Çizelge 4.19'da verilmektedir. Çizelge 4.19'da C4 sınıfında kullanılan destek sistemlerine ait tahkimat basınçları verilmiştir. Ayrıca yapılan hesaplamalar ile tünelde meydana gelen deformasyonlar, plastik zon, ayna deformasyonu ve kritik basınç ise Çizelge 4.20'de sunulmuştur. Bu kesimde örtü yüksekliği ortalama 15 m'dir. Bu kesimde arazi gerilmesi Po=0.020x15=0,3 MPa olarak hesaplanmış olup, kaya kütle dayanımı 0,1 MPa ve σ_{cm}/P_0 oranı ise 0,33 olarak elde edilmiştir. Tünelin bu bölümünde kritik tünel basıncı Pcr, 0,10 MPa olarak hesaplanmıştır. Ayrıca, tünel iç yüzeyinde ölçülen yer değiştirme miktarı 1,8 cm olarak belirlenmiştir (Şekil 4.22). Desteksiz durumda plastik zon yarıçapı ise 10,29 m ye kadar çıkmaktadır (Şekil 4.23). Ayrıca tünelde desteksiz durumdaki deformasyonlar incelendiğinde tünel aynasında 1,8 cm iken, tünel aynasının 1 m gerisinde bu değer 2,4 cm kadar çıkarken, tünel kazı aynasının 1 m önünde ise 1,5 cm elde edilmiştir. Tünel deformasyonları tünel aynasının 20 m gerisinde sabitlenmeden devam edeceği görülmektedir. Bu durum tünel ayna ve tavan stabilitesinin çok kritik olduğunu göstermektedir. Zemin-destek reaksiyon eğrilerinin çizdirildiği durumda ise, oluşan deformasyonların çok hızlı gelişeceği düşünülerek tünelde deformasyonlara izin verilmeden desteklerin verlestirilmesi gerekmektedir. Aksi durumda, tünelde bir gevseme zonu veya rahatlamaya sebebiyet verildiğinde, zemin reaksiyon eğrisi çok hızlı gelişeceğinden tünelde göçüklere sebebiyet verilecektir. Bu nedenle zemin-destek reaksiyon eğrisinde destekler yerleştirildiği durumda tünelde oluşacak deformasyonlar (uiv) 1 cm olarak alınmıştır. Bu deformasyonların sınırlanması için de tünel ayna ve tavan stabilitesinin sağlanarak destekler yerleşene kadar deformasyonlar sınırlandırılmıştır.

Destek Sınıfı	Püskürtme Beton (C25/30)		Çelik İk	Çelik İksa (IPN 200)		n (Ø28 mm)
	t (m)	0.30	s (m)	1.0	s (m)	1.00x1.00
	Е	26700	H (m)	0.20	L (m)	6.00
	ν	0.2	A (m ²)	0.00334	D (mm)	32
C^{2}	f _{ck}	25	I (m ⁴)	21.4e-006	Е	2.00E+05
C2	f _{ctk}	2.5	Ε	2.00E+05	σ_t	0.225
	γ (MN/m ³)	0.024	ν	0.15	σ _{tres}	0.0225
			f _{yd} (MPa	365	Tür	IBO
			σ_{tk}	420	Tip	Fully Bonded

Çizelge 4.19. C2 sınıfı destek sistemi detayları.

Çizelge 4.20. Destek Sistemi Basınçları

	pscmax	Ksc (MPa/m)	uicmax (m)
Shotcrete (ds=30 cm)	1.13	227	0.090
Steel rib (I 200)	0.187	16.36	0.096
Rock bolts	0.28	27.47	0.0951

Çizelge 4.21. Analitik çözüm sonuçları.

	σ_{cm}	\mathbf{P}_0	$\sigma_{cm}\!/P_0$	$r_{p}\left(m ight)$	$u_{i}\left(m ight)$	$u_{if}(m)$	\mathbf{P}_{cr}
C2 kaya sınıfı	0.16	0.3	0.13	13.65	0.07	0.18	0.11

Şekil 4.22. Tünel boyuna deformasyon eğrisi-C2 sınıfı (Giriş kesimi)

Plastik zon yarıçapı

Zemin karakteristik eğrisi

Şekil 4.23. Zemin karakteristik eğrisi ve plastik zon yarıçapı

Şekil 4.24. Zemin-destek reaksiyon eğrileri.

Km:38+770 ile çıkış potral kesiminin değerlendirilmesi

Km:38+770 ile çıkış portal kesimi için destek sistemi detayları Çizelge 4.22'de verilmektedir. Çizelge 4.23'te C4 sınıfında kullanılan destek sistemlerine ait tahkimat basınçları verilmiştir. Ayrıca yapılan hesaplamalar ile tünelde meydana gelen deformasyonlar, plastik zon, ayna deformasyonu ve kritik basınç ise Çizelge 4.45'te sunulmuştur. Bu kesimde örtü yükseliği ortalama 15 m'dir. Bu kesimde arazi gerilmesi Po=0.0225x15=0,33 MPa olarak hesaplanmış olup, kaya kütle dayanımı 0,1 MPa ve σ_{cm}/P_0 oranı ise 0,29 olarak elde edilmiştir. Bu tünel bölgesinde kritik tünel basıncı Pcr 0,10 MPa olarak ölçülmüş olup, tünel aynasında gözlenen yer değiştirme ise 1 cm olarak bulunmuştur (Şekil 4.25). Desteksiz durumda plastik zon yarıçapı ise 9 m ye kadar çıkmaktadır (Şekil 4.26). Ayrıca tünelde desteksiz durumdaki deformasyonlar incelendiğinde tünel aynasında 1,4 cm iken, tünel aynasının 1 m gerisinde bu değer 1,8 cm kadar çıkarken, tünel kazı aynasının 1 m önünde ise 1,2 cm elde edilmiştir. Tünel deformasyonları tünel aynasının 20 m gerisinde sabitlenmeden devam edeceği görülmektedir. Bu durum tünel ayna ve tavan stabilitesinin çok kritik olduğunu göstermektedir. Zemin-destek reaksiyon eğrilerinin çizdirildiği durumda ise, oluşan deformasyonların çok hızlı gelişeceği deformasyonlara izin verilmeden düşünülerek tünelde desteklerin yerleştirilmesi gerekmektedir. Aksi durumda, tünelde bir gevşeme zonu veya rahatlamaya sebebiyet verildiğinde, zemin reaksiyon eğrisi çok hızlı gelişeceğinden tünelde göçüklere sebebiyet verilecektir. Bu nedenle zemin-destek reaksiyon eğrisinde destekler yerleştirildiği durumda tünelde oluşacak deformasyonlar (uiy) 1 cm olarak alınmıştır.

Destek Sınıfı	Püskürtme Beton		h Püskürtme Beton Çelik İksa		ik İksa	Bulon	
	t (m)	0.25	s (m)	1.0	s (m)	1.0x1.0	
	Е	26700	H (m)	0.2	L (m)	6.00	
	ν	0.2	A (m ²)	0.00334	D (mm)	28	
C	σ	25	I (m ⁴)	21.4E-6	Е	2.00E+05	
C2	σt	2.5	E	2.0E+6	Ft	0.225	
	γ (MN/m ³)	0.024	ν	0.2	Ftres	0.0225	
			σc	365	Tür	IBO	
			σt	420	Tip	Fully Bonded	

Çizelge 4.22. C2 sınıfı destek sistemi detayları

Çizelge 4.23. Destek sistemi basınçları

	<i>p</i> _{scmax}	K_{sc} (MPa/m)	$u_{icmax}(m)$
Shotcrete (ds=25 cm)	0.943	188	0.015
Steel rib (I 200)	0.187	16.36	0.021
Rock bolts	0.28	27.47	0.0201

Çizelge 4.24. Analitik çözüm sonuçları.

	σ_{cm}	P ₀	$\sigma_{cm}\!/P_0$	$r_{p}\left(m ight)$	$u_{i}\left(m ight)$	$u_{if}(m)$	P _{cr}
C2 kaya sınıfı	0.24	0.33	0.118	11.92	0.054	0.014	0.11

Şekil 4.25. Tünel boyuna deformasyon eğrisi-C2 sınıfı (Giriş kesimi).

Plastik zon yarıçapı Zemin karakteristik eğrisi

Şekil 4.26. Zemin karakteristik eğrisi ve plastik zon yarıçapı.

Şekil 4.27. Zemin-destek reaksiyon eğrileri.

4.9. Sonlu Elemanlar Yöntemi ve FLAC Yazılımı

Sayısal analizler için FLAC3D programı kullanılmıştır. Flac3D, sonlu farklar yöntemini temel alan bir sayısal analiz yazılımıdır. (Itasca, 2002) [35] ve üç boyutlu olarak zemin, kayaç ve diğer yapı elemanlarını modelleme kapasitesine sahiptir. Tünel analizlerinde, yapısal elemanlar modele entegre edilebilir ve kazı işlemleri üst yarı, alt yarı ve invert olarak modellenebilir. Ayrıca, destek elemanları da modele dahil edilebilir.

Statik analizler için FLAC3D programı kullanılarak tünel kazı ve destek sistemleri modellenmiştir. Bu modeller, tünelde meydana gelen deformasyonlar ve yer değiştirmeleri incelemek amacıyla değerlendirilmiştir. Statik analizlerde elde edilen sonuçlar, kazı ve destek sistemlerinin etkinliğini ve doğruluğunu değerlendirmek açısından büyük önem taşımaktadır, çünkü modeller, gerçek kazı ve destek sistemleriyle örtüşmektedir.

Statik analizlerin doğruluğunu değerlendirmek için, tünel kazı ve destek sistemlerinin etkileri detaylı olarak incelenmiştir. Bu süreçte, normal arazi koşullarını yansıtan modeller oluşturulmuştur. Modelin başlangıç noktaları sıfır olarak belirlenmiş ve kazı işlemleri Y ekseni boyunca başlatılmıştır.

Modelleme sırasında, yerçekimi etkilerini simüle etmek amacıyla başlangıç gerilmeleri uygulanmıştır. Modelde, invert kısmı x, y ve z yönlerinde sabitlenmiş; sol ve sağ yüzeyler x yönünde, ön ve arka yüzeyler ise y yönünde sabitlenmiş, tavan kısmı ise serbest bırakılmıştır (Şekil 4.20). Sınır koşullarının açıklık etkileşimini önlemek için modelin derinliği, tünel çapının 13 m olduğu dikkate alınarak, tünelin yüksekliği veya genişliğinin en az 4 ila 5 katı kadar, yani 100 m olarak belirlenmiştir. Bu düzenlemeyle, modeldeki sınır koşulları uygun bir şekilde konumlandırılmıştır.

Analizlerde ilk olarak, tünel aynasında süren ve bulon bulunmayan durum için yer değiştirmeler incelenmiştir. Püskürtme beton, modele kabuk (shell) elemanı olarak entegre edilmiştir, iç kaplama betonu ise bölüm (zone) olarak tanımlanmıştır. Tünel aynasında uygulanan zemin çivileri bulon (cable bolt) olarak modele eklenmiştir. Püskürtme beton ve iç kaplama betonunun parametreleri Çizelge 4.25 ve Çizelge 4.26'da verilmiştir. Üç boyutlu analizlerde kullanılacak modelin ayrıntıları Şekil 4.28 ve Şekil 4.29'de gösterilmiştir.

Ei (GPa)	Poisson Oranı(v)	Birim Hacim Ağırlık (kg/m³)		
25	0,25	2500		

Çizelge 4.26. İç kaplama betonunda kullanılan parametreler.

Ei (GPa)	Poisson Oranı(v)	Birim Hacim Ağırlık (kg/m³)
30	0,25	2500

Sürenler ise modele kazık elemanı (pile element) olarak girilmiştir. Burada umbrellaların Flac3D içerisinde pile element olarak tanımlanmasının uygun olduğunu belirtmişlerdir. Çizelge 4.27'de umbrellalarda kullanılan parametreler verilmektedir.

Çizelge 4.27. Süren parametreleri

Süren Çapı (m) Poisson Oranı (v)		E (GPa)	
0,114	0,3	200	

Tünelde kaya bulonları için tünel çevresindeki zemin parametrelerinin artırılması ile modele tanımlanmıştır. Bunun için bulonların ve zeminin enjeksiyon yapıldıktan sonraki zemin parametreleri hesaplanmıştır.

Bu yaklaşımda tünel çevresindeki zemin ve kaya bulonları tek bir birim olarak temsil edilmektedir. Bir anlamda tünel çevresindeki zeminin iyileştirildiği kabulü ile yeni zemin parametreleri hesaplanmaktadır (Çizelge 4.28).

Üç boyutlu analizlerde, tünel modellemesi üst yarı, alt yarı ve invert olarak üç farklı bölgeye ayrılmıştır. Modelleme sırasında, üst yarının ilerleme uzunluğu 1,0 m, alt yarınınki 2,0 m, invert kesiminin ise 4,0 m olarak belirlenmiştir. Yönelimler Y ekseninde 100 m, X ekseninde 70 m ve Z ekseninde -70 m olarak modellenmiştir. Model, 0,0,0 noktasına göre simetrik kabul edilmiştir. Y ekseninde 0 ve 100 noktasında, Z ekseninde -70 noktasında, X ekseninde ise 0 ve 70 noktasında sabitlemeler yapılmıştır. Modelde Mohr-Coulomb yenilme kriteri uygulanmıştır.

Üst yarıda tünel kazısına 60. metreden itibaren başlanmıştır. İlk olarak, üst yarıda 60 m'ye kadar kazı yapılmış, alt yarıda ise 40 m'ye kadar boşaltma gerçekleştirilmiştir. Destekleme yapılarak bu kesim modele dahil edilmiştir ve tünelin ilk 24 m'lik kısmında iç kaplama yapıldığı varsayılmıştır. Böylece, üst yarı, alt yarı, invert ve iç kaplama betonu için gerekli mesafe sağlanmıştır.

Devamında, üst yarıda 1 m'lik kademeler halinde kazı yapılmış; üst yarıda toplamda 8 m, alt yarıda 8 m ve invert bölümünde de 8 m kazı tamamlanmıştır. Bu süreçte, 9 m uzunluğunda 4,0 cm kalınlığında bir umbrella uygulanmış, ayna stabilitesi için 9 m uzunluğunda ayna zemin çivisi ve 30 cm kalınlığında püskürtme beton kullanılmıştır. Uygulanan umbrella ve zemin çivileri Şekil 4.30'de gösterilmiştir.

Hacimsel Modül (K):

$$K = \frac{E}{3(1-2\nu)}$$
Kesme Modülü (G):

$$G = \frac{E}{2(1+\nu)}$$

			1
Cizeloe 4 28 Zemin	narametreleri	$\sigma_{1r_{1s}}$	kesimi
çızdıge 1.20. Zemin	parametreien	Siriş	Resinn

E (Deformasyon modülü, MPa)	E (Deformasyon modülü, MPa) Poisson Oranı (υ)		G (Kesme Modülü,MPa)	
120	0,3	100	46	

α 1 1 1 α 7 ·	, 1 ·	1	1
$\int \frac{1}{2} $	noromotrolori	C1 Z1C	Z001m1
CIZCIPC + Z7		UINIS	NCSIIII
3		3 3	

E (Deformasyon	E (Deformasyon		G (Kesme	
modülü, MPa)	modülü, MPa) Poisson Oranı (υ)		Modülü,MPa)	
150	0,3	125	57	

Şekil 4.28. FLAC 3D ile oluşturulmuş olan nümerik analiz modeli

Şekil 4.29. Üst yarı, alt yarı ve invert kazı kademeleri

Şekil 4.30. Destek sistemi elemanları

Tünel giriş kesimine ait nümerik analiz sonuçları aşağıdaki şekillerde verilmektedir.

Şekil 4.31. Düşey deformasyon

Şekil 4.32. Boyuna deformasyon

Şekil 4.33. Yatay yer değiştirme.

Tünel çıkış portal kesimi için yapılan analizler aşağıdaki Şekillerde verilmiştir.

Şekil 4.34. Düşey yer değiştirme.

Şekil 4.35. Boyuna yer değiştirme

Şekil 4.36. Yatay yer değiştirme

4.10. Analizlerin Değerlendirilmesi

Tünel giriş kesimi için yapılan analiz sonuçlarına göre tünelde düşey yönde (Z) maksimum 8,3 cm deformasyon meydana gelirken, Y yönünde yani tünel aynasında 7,6 mm, ve yatay yönde (X) yönünde ise maksimum 6,7 cm deformayon meydana gelmektedir.

Tünel çıkış kesimi için yapılan analiz sonuçlarında ise, tünelde düşey yönde (Z) maksimum 6,06 cm deformasyon meydana gelirken, Y yönünde yani tünel aynasında 5,1 m, ve yatay yönde (X) yönünde ise maksimum 5,0 cm deformasyon meydana gelmektedir.

Görüleceği gibi, belirlenen destek sistemleri ile tünelde stabilite sağlanmaktadır. Ayrıca tünel kazı kademelerinin yani üst yarı, alt yarı ve invert şeklinde ardışık olarak kazının yapılması da stabilite açısından önemlidir. Buna ek olarak tünel aynasında çakılan fiber ayna bulonları ile tünel tavanına çakılan sürenlerin stabilite üzerinde olumlu bir etki yaptığı da görülmektedir.

5. SONUÇ VE ÖNERİLER

Yapılan çalışma kapsamında sığ tünellerde tünel destek sistemleri incelenmiştir. Bu çalışma kapsamında

- a) Sığ tünellerde tünel ayna ve tavan stabilitesinin son derece önemli olduğu ortaya konmuştur.
- b) Tünel ayna ve tavan stabilitesi için ayna bulonlarının ve tavan için sürenlerin gerekli olduğu görülmüştür.
- c) Bu tür sığ tünellerde kesinlikle tünelde ciddi bir deformasyona izin verilmeden destek sistemlerinin tamamlanması gerekmektedir. Aksi takdirde tünelde yaşanacak büyük deformasyonların yüzeye yansıması kaçınılmazdır. Bu durumda tünelde daha ciddi deformasyonların ve göçüklerinde yaşanması mümkündür.
- d) Tünel destek sistemleri belirlenirken genelde ekonomik olması açısından bir miktar deformasyona müsaade edilmesi ve sonrasında azalan basınca göre daha ekonomik ve esnek bir tahkimat önerilir. Ancak zayıf zeminlerde açılan sığ tünellerde bu durumda duraylı bir tünelin açılması mümkün gözükmemektedir. Zira deformasyona müsaade etmek her zaman istenilen sonuçları vermeyecek, kayanın kendi yükünü taşıması diğer bir ifade ile kemerleşmenin oluşması mümkün olmayıp ve tünelde bir göçüğe neden olabilecektir. Bu tür zeminlerde deformasyonları minimum düzeyde tutarak desteklerin hemen yapılması gerekmektedir. Ayrıca ringin daha açık bir ifade ile üst yarı, alt yarı ve invert kazılarının arada mesafe bırakılmadan hemen tamamlanması son derece önemlidir.
- e) Üç boyutlu analizlerde tüm tahkimat elemanlarının açık biçimde tariflenmesi ve analizlerin bu şekilde gerçekleştirilmesi daha ekonomik tünel tasarımlarının yapılması mümkün olabilecektir.
- f) Bu çalışmadan elde edilen sonuçların daha fazla vaka çalışmaları ile denenmesi ve sonuçlarının karşılaştırılması, gelecekte daha da fazla ihtiyaç duyulacak yeraltı yapılarının ekonomik biçimde imal edilmesine imkan sağlayacaktır.

KAYNAKLAR

- 1. Karayolları Genel Müdürlüğü Balıkesir-Edremit Devlet Yolu Evciler Varyantı Tüneli Etüt ve Proje Hizmet Alım İşi Proje Raporları, Ağustos 2019.
- 2. 10.04.2024]; Bursa Bölge Haritası]. Available from: https://www.kgm.gov.tr/Sayfalar/KGM/SiteTr/Bolgeler/14Bolge/Harita.aspx.
- 3. [cited 07.07.2024 07.07.2024]; Available from: <u>https://earth.google.com/web/</u>.
- <u>https://balikesir.meb.gov.tr/www/arazi-</u> yapisi/icerik/6#:~:text=Bal%C4%B1kesir%C2%B4de%20Marmara%2C%20Akdeniz ,mer%C2%B4a%20ve%20%C3%A7ay%C4%B1rl%C4%B1kt%C4%B1r. 11.04.2024].
- 5. 11.03.2024]; Available from: <u>https://mgm.gov.tr/veridegerlendirme/il-ve-ilceler-istatistik.aspx?k=A&m=BALIKESIR</u>.
- Google Earth. [cited 07.07.2024 07.07.2024]; Available from: <u>https://earth.google.com/web/@0,-</u> <u>5.52602839,0a,22251752.77375655d,35y,0h,0t,0r/data=OgMKATA</u>.
- 7. LuoBu Y. Vd., Longitudinal deformation profile of a tunnel in weak rock mass by using the back analysis method. Tunnelling and Underground Space Technology 2018,71,478-493.
- Aygar, E.B. and C. Gokceoglu, Analytical solutions and 3D numerical analyses of a shallow tunnel excavated in weak ground: a case from Turkey. International Journal of Geo-Engineering, 2021. 12: p. 9.
- 9. Aygar, E.B. and C. Gokceoglu, Analytical solutions and 3D numerical analyses of a shallow tunnel excavated in weak ground: a case from Turkey. International Journal of Geo-Engineering, 2021. 12: p. 9.
- 10. Akgün, H., Koçkar, M.K., Methodology for tunnel and portal support design in mixed limestone, schist and phyllite conditions: a case study in Turkey. International Journal of Rock Mechanics and Minning Sciences 2003, 40, 173-196.
- Xing Yan vd., Effect of rock mass and discontinuity mechanical properties and delayed rock supporting on tunnel stability in an underground mine. Engineering Geology 2018, 238, 62-75.
- 12. <u>https://www.mta.gov.tr/v3.0/sayfalar/hizmetler/doc/diri_fay_haritalari/balikesir.pdf</u>. 18.05.2024].

- 13. *Türkiye Deprem Tehlike Haritaları İnteraktif Web Uygulaması*. 11.04.2024]; Available from: https://tdth.afad.gov.tr/TDTH/main.xhtml.
- Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Bölgesel Deprem- Tsunami İzleme ve Değerlendirme Merkezi. 11.04.2024]; Available from: <u>http://udim.koeri.boun.edu.tr/zeqmap/hgmmap.asp</u>.
- 15. ISRM, Rock Characterization, Testing and Monitoring (Editor: E.T. Brown, ISRM Suggested Metotds): Pergamon Press, Oxford, England, 1981, 211 p.
- Sosa, G., et al., *Abdominal compartment syndrome*. Disease-a-Month, 2019. 65(1): p. 5-19.
- 17. Rocscience, Roclab v1.0 Rock Mass Strength Analysis Using the Generalized Hoek-Brown Failure Criterion, Rocscience Inc., Toronto, Ontario, Canada, 2002.
- Rubenstein, J.H., et al., AGA Clinical Practice Guideline on Endoscopic Eradication Therapy of Barrett's Esophagus and Related Neoplasia. Gastroenterology, 2024. 166(6): p. 1020-1055.
- 19. Z.T. Bieniawski, "Engineering classification of jointed rock masses," Trans S. Afr. Inst. Civ. Engrs 15, 335-344. 1973.
- 20. Z.T. Bieniawski, "Rock mass classification in rock engineering," In Exploration for rock engineering, proc. of the symp., (ed. Z.T. Bieniawski) 1, 97-106. Cape Town: Balkema. 1976.
- 21. Z.T. Bieniawski, Engineering rock mass classifications. New York: Wiley. 1989.
- 22. Hoek.E, Marinos P. Benissi M. Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens schist formation. Bulletin of Engineering Geology and the Environment 1998:57(2):151-60.
- 23. Hoek E., Marinos P., Marinos V., Geological Strength Index (GSI). A Characterization Tool For Assessing Engineering Properties for Rock Masses. Published İn: Underground Works 97 Under Special Conditions, Eds. Romana, Perucho & Olalla, Lisbon: Taylor And Francis, 2007, 13-21.
- N. R. Barton, F. Løset, R. Lien, J. Lunde, "Application of the Q-system in design decisions," In Subsurface space, (ed. M. Bergman) 2, 553-561. New York: Pergamon.1981.
- N.Barton, "Application of Q-system and index tests to estimate shear strength and deformability of rock masses," In Workshop on Norwegian Method of Tunnelling (pp. 66–84). New Delhi, India, 1993.

- 26. Barton, N. ve Grimstad, E., The Q-System Following Twenty Years of Application in NTM Support Sellection, Felsbau, 1994, 428-436.
- Hoek, E., Carranza-Torres, C. T., Corkum, B., Hoek Brown Failure Criterion-2002 Edition, 5. Kuzey Amerika Kaya Mekaniği Sempozyumu, Toronto, Canada, 2002, 1, pp. 267-273.
- 28. J. Rabcewicz, L., "The New Austrian Tunneling Method", Water Power, 1964, 453-457.
- 29. Ulusay, R.; Sönmez, H., Kaya Kütlelerinin Mühendislik Özellikleri, TMMOB Jeoloji Mühendisleri Odası Yayınları, Ankara, 2007, 60, (2), p 99.
- 30. Cai M, Kaiser PK, Tasaka Y, Minamic M., Determination of residual strength parameters of jointed rock masses using the GSI system. Int J Rock Mech Min Sci 2007, 44:247–65.
- Hoek, E. and M.S. Diederichs, *Empirical estimation of rock mass modulus*. International Journal of Rock Mechanics and Mining Sciences, 2006. 43(2): p. 203-215.
- 32. Ulusay, R.; Sönmez, H., Kaya Kütlelerinin Mühendislik Özellikleri, TMMOB Jeoloji Mühendisleri Odası Yayınları, Ankara, 2007, 60, (2), p 99.
- 33. Goricki, A., Schubert, W., Riedmueller, G., "New Developments for the Design and Construction of Tunnels in Complex Rock Masses", Paper 3A 01 – Sinorock Symposium, International Journal of Rock Mechanics and Mining Sciences, Volume 4, No.3, CD-ROM, 2004 Elsevier Ltd.
- 34. Hoek, E., Carranza-Torres, C. ve Corkum, B., 2002. Hoek-Brown Failure Criterion 2002 Edition, Proceedings of the NARMS-TAC, Mining Innovation and TechnologyToronto, Canada, 2002, 267-273.
- 35. Itasca Consulting Group, Inc. (2002) FLAC3D Fast Lagrangian Analysis of Continua in Three-Dimensions, Ver. 2.1. Minneapolis: Itasca.
- Devesa, S.S., W.J. Blot, and J.F. Fraumeni, Jr., *Changing patterns in the incidence of esophageal and gastric carcinoma in the United States*. Cancer, 1998. 83(10): p. 2049-53.

EKLER

EK-1. Tablolar

I. Temel RMR Sınıflama Parametreleri ve Puanlama								
Kaya Davanımı	Nokta Yükleme Dayanımı	>10	4-10	2-4	1-2	Dah değe TEl terc	na düşi erler iç B değe ih edil	ük çin eri lir
Dufumm,	Tek Eksenli Basınç Dayanımı	>250	100-250	50-100	25-50	5-25	1-5	1
	Puan	15	12	7	4	2	1	0
Kayaç Kalite ((%)	Göstergesi, RQD	90-100	75-90	50-75	25-50	<25		
	Puan	20	17	13	8		3	
Süreksizlik ara	ılığı	>2 m	0.6-2 m	200-600 mm	60-200 mm	<(50 mm	1
	Puan	20	15	10	8		5	
Süreksizliklerin durumu		Çok kaba yüzeyler Sürekli değil Ayrılma yok. Sert eklem yüzeyleri.	Az kaba yüzeyler Ayrılma<1 mm Sert eklem yüzeyleri	Az kaba yüzeyler Ayrılma <1 mm Yumuşak eklem yüzeyleri	Sürtünme izli yüzeyler veya fay dolgusu <5 mm veya 1-5 mm açık eklemler, sürekli eklemler	Yumuşak fay dolgusu >5 mm kalınlıkta veya açık eklemler >5 mm devamlı süreksizlikler		fay eya iler amlı iler
	Puan	30	25	20	10	0		
Yeraltısuyu	Tünelin 10 m'lik kısmından gelen su	Yok	< 10	10-25	25-125	>	> 125	
	Genel su durumu	Tamamen kuru	Nemli	Islak	Damlama	Su akışı		
	Puan	15	10	7	4		0	
					•			
TEM	IEL RMR							
II. Süreksizlik	x Yonelimine Gore I	Duzeltme				II:	Thereau	
Sureksizliki	erin Dogrultu ve Eğimi	Çok Olumlu	Uygun	Orta	Uygun Değil	HIÇ]	: Uygu Değil	in
	Tüneller	0	-2	-5	-10		-12	
Puan	Temeller	0	-2	-7	-15		-25	
	Şevler	0	-5	-25	-50		-60	
III. Düzeltilm	iş RMR Değeri							
]	RMR	RMR						

Kaya Türü	Sınıf	Grup	İri	Orta	İnce	Çok ince
	Klastik		Konglomera (22)	Kumtaşı (19)	Silttaşı (9)	Kiltaşı (4)
				Grova	ık	
DIMANTER	an A	Organik		Tebeşir Taşı (18) Kömür (18)		
SE	Klast Olmar	Karbonatlı	Breş (20)	Sparitik Kireçtaşı (10)	Mikritik Kireçtaşı (8)	
		Kimyasal		Jips (16)	Anhidrit (13)	
METAMORFİK	Foliasyonsuz		Mermer (9)	Hornfels (19)	Kuvarsit (24)	
	Düşük Foliasyonlu		Migmatit (30)	Amfibolit (31)	Milonit (6)	
	Foliasyonlu*		Gnays (33)	Şist (10)	Fillit (10)	Sleyt (9)
	Açık Koyu		Granit (33)		Riyolit (16)	Obsidyen (19)
MAGMATİK			Granodiyorit (30)		Dasit (17)	
			Diyorit (28)		Andezit (19)	
			Gabro (27)	Dolerit (19)	Bazalt (17)	
			Norit (22)			
	Püskürük püroklastik		Aglomera (20)	Breş (18)	Tüf (15)	
Parantez icin	Parantez icindeki değerler tahminidir.					

* Bu değerler, foliasyona dik yönde deneye tabi tutulmuş kaya malzemeleri için olup, yenilmenin foliasyon düzlemi boyunca gerçekleşmesi halinde mi önemli ölçüde farklı olacaktır.
| Varia Saraf | V | | Destek Tipi | |
|---------------------------------------|--|--|--|--|
| Kaya Sinifi | Kazi Hipi | Kaya Bulonu | Püskürtme Beton | Çelik İksa |
| I-Çok iyi
kaya,
RMR: 81-
100 | Tam kesit, 3 metre
ilerleme | Genellikle kaya bulo | onu haricinde destek g | erekmez. |
| II-İyi kaya,
RMR: 61-
80 | Tam kesit, 1.0-1.5
metre
ilerleme.
Aynaya 20
metre kala tam
destek. | Kemerin her 2-3
metresinde 2-2.5
metre
mesafeli kaya
saplamaları, yer
yer çelik hasır. | Gerektiğinde
tavan kemerinde
50 mm. | - |
| III-Orta
kaya,
RMR: 41-
60 | Üstyarı altyarı
ilerleme. Üstyarıda
1.5-3.0 m ilerleme.
Her patlatmadan
sonra ön
destekleme.
Aynaya 10 m
mesafeye kadar
tam
destek. | Tavan kemerinde
ve
duvarlarda 3-4
metre
uzunlukta 1.5-2
metre
aralıklı sistematik
kaya saplaması ve
tavanda | Tavan kemerinde
50-100 mm, yan
duvarlarda 30
mm. | - |
| IV-Zayıf
kaya,
RMR:21-
40 | Altyarı üstyarı
şeklinde ilerleme.
Üstyarıda 1.0-1.5
m
ilerleme, kazıya
uygun şekilde
aynaya
10 m mesafeye
kadar
gerekli destek. | 4-5 m
uzunluğunda, 1-
1.5 m aralıklı
sistematik kaya
saplaması, tavan
ve duvarlarda
çelik hasır. | Tavan kemerinde
100-150 mm ve
yan duvarlarda
100 mm | Gereken
yerde 1.5 m
aralıklı yer
yer hafif
profiller |
| V-Çok
zayıf kaya,
RMR: <20 | Üstyarıda 0.5-1.5
m
çoklu delgi
ilerleme.
Kazıyla birlikte
destek
yerleştirilmeli.
Patlatmadan hemen
sonra püskürtme
beton uygulanmalı. | 5-6 m
uzunluğunda, 1-
1.5 m aralıklı
sistematik kaya
saplaması, tavan
ve duvarlarda
çelik hasır ile
birlikte. Taban
kemerinde ise kaya
saplaması. | Tavan kemerinde
150-200 mm, yan
duvarlarda 150
mm, aynada 50
mm. | Gerektiğinde,
0.75 m
aralıklı
profiller, çelik
iksa ve
sürenlerle
beraber. Tam
halka taban
kemeri. |

	KOŞUL	F	RQD
Α	Çok Zayıf	()-25
В	Zayıf	2	5-50
С	Orta	5	0-75
D	İyi	7	5-90
E	Çok İyi	90	0-100
	EKLEM TAKIMI SAYISI (Jn)		
<u> </u>	KOŞUL		Jn
A	Masıf veya bırkaç eklem	0,	5-1,0
В	Tek eklem seti		2
C	Tek eklem seti ve düzensiz eklemler		3
D	Iki eklem seti		4
E	lki eklem seti ve düzensiz eklemler		6
F	Uç eklem seti		9
G	Uç eklem seti ve düzensiz eklemler		12
Н	Dört veya daha fazla set, düzensiz, ileri derecede eklemli, küp		15
	şeker görünümlü		• •
J	Parçalanmış kaya, zemin benzeri		20
	Not: Kesişen Tünellerde (3xJn), Tünel girişlerinde (2xJn)	kullanılır.	
	EKLEM PUKUZLULUK SAYISI[30]		T.
(a) Si	NUŞUL iraksizlik kava dakanağı ve (b) 10 em'lik hir mekeslemeden ö	ncoki siiro	JI beizlik kava
(a) 5	dokanağı	iiceki sui e	кылык-кауа
Α	Süreksiz eklemler		4
B	Pürüzlü veva düzensiz dalgalı		3
C	Düz dalgalı		2
D	Kavoan daloali		15
F	Pürüzlü veva düzensiz düzlemsel		1,5
F	Düz düzlemsel		1
G	Kavgan düzlemsel		0.5
U	(c) Makaslanmış keşimde şürekşizlik-kaya dokana	ğı vok	0,0
	Süreksizlik vüzevlerinin biririne temasını önlevecek veterli	5 Jon	
Н	kalınlıkta kil minerali iceren zon		1.0
_	Süreksizlik vüzevlerinin biririne temasını önlevecek veterli		-,-
J	kalınlıkta kumlu, cakıllı va da parcalanmış zon		1.0
Not: İ	lgili eklem takımının ortalama aralığı 3m'den büyük ise. Jr'ye 1.0	eklenebilir.	-,•
Not: C	Lizgiselliklerin en düsük davanımı verecek sekilde vönlenmesi kos	uluvla cize	isellik iceren
düzler	nsel ve kavgan süreksizlik vüzevleri icin Jr=0.5 alınabilir.	J 3 C	3
	EKLEM ALTERASYON SAYISI (Ja)		
_	KOSIII	Ia	Φ
	KÖŞÜL	JA	(yaklaşık)
	(a) Kaya-süreksizlik dokanağı (mineral dolgusu yok, sadece y	üzey kapla	aması)
А	Yüzeyler sıkı, sert, yumuşamayan geçirimsiz dolgu (örneğin	0.75	-
 D	kuvars veya epidot)	1	250 200
В	Eklem yüzeyinde değişim yok, sadece yüzey sıvaması var	1	25°-30°
C	Çok az degişime (bozunmaya) ugramiş sureksizlik yüzeyleri.	2	200 250
C	r umuşamayan mineral kaplamaları, kum taneleri, kil	Z	20°-25°
	içermeyen bozunmamış kaya vb.		

KAYA KALİTE GÖSTERGESİ (RQD)

Siltki veya kumlu kil kaplamaları, çok az ve yumuşamayan
kil içeriği320°-25°Yumuşamayan veya düşük sürtünmeye sahip kil kaplama
(örneğin kaolinit veya mika). Ayrıca klorit, talk, jips, grafit48°-16°vd. ile az miktarda şişen killer48°-16°

D

Е

(b)	10 cm'den küçük makaslama zonunda süreksizlik teması (in	ce mineral d	olgusu)
F	Kumlu parçalar, kil içermeyen ayrışmış kaya	25-30	4
G	Güçlü bir şekilde aşırı konsaolide olmuş, yumuşamayan kil mineralli dolgular (devamlı, <5mm)	16-24	6
Н	Orta ve düşük derecede aşırı konsolidasyona maruz kalmış, yumuşayan kil minerali dolguları (sürekli, ancak kalınlığı	12-16	8
J	Şişen kil mineralleri-örneğin montmorillonit (sürekli <5mm) Ja, sayısı şişen kil tane büyüklüğüne ve su içeriğine bağlıdır.	6-12	8-12
(c) Ma	kaslama durumunda süreksizlik yüzeylerinin teması yok (ka	alın mineral	dolguları)
K,L,M	Bozunmuş veya parçalanmış kaya ve kil bantları ya da zonları (kil koşulunun tanımı için G,H ve J'ye bakınız)	6,8 veya 8-12	6°-24°
Ν	Siltli veya kumlu kil bantları veya zonları, çok az kil (yumuşamayan)	5	-
O,P,R	Kalın ve sürekli kil bantları veya zonları (kil koşulunun tanımlanması için G,H ve J'ye bakınız)	10, 13 veya 13-20	6°-24°
	EKLEM SU AZALTMA FAKTÖRÜ (Jw)		
	KOŞUL	Yaklaşık su basıncı (kgf/cm ²)	Jw
А	Kısmi kazı veya düşük su geliri (örneğin genel olarak <5 lt dk.)	1	1
В	Orta derecede su geliri veya basıncı, yer yer eklem dolgularının yıkanması	1-2,5	0,66
С	Dolgusuz eklemler içeren sağlam kayada aşırı su geliri veya yüksek basınç	2,5-10	0,5
D	Aşırı su geliri veya yüksek basınç, eklem dolgularının ileri derecede yıkanması	2,5-10	0,33
Е	Çok ileri derecede su geliri veya patlama sırasında zamanla azalan yüksek su basıncı	10	0,2-0,05
F	Zamanla azalmaksızın devam eden son derece fazla su geliri veya su basıncı	>10	0,1-0,05
	GERİLİME AZALTMA FAKTÖRÜ (SRF)		
	KOŞUL	SF	kF
(a) Tün	el açılırken kaya kütlesinin gevşemesine neden olabilecek ka	ızıyı kesen za	yıf zonlar:
А	Kil veya kimyasal olarak ayrışmış kaya içeren zayıflık zonları, çok gevşek çevre kayası (herhangi bir derinlikte)	10	,0
В	Kil veya kimyasal olarak ayrışmış kaya içeren tek bir zayıf zon (kazı derinliği <=50 m)	5,	0
С	Kil veya kimyasal olarak ayrışmış kaya içeren tek bir zayıf zon (kazı derinliği >50 m)	2,	5
D	Kil içermeyen dayanımlı kayada birden fazla makaslama zonu, gevsek cevre kayacı (herhangi bir derinlikte)	7.	5
Е	Kil içermeyen dayanımlı kayada tek bir makaslama zonu (kazı derinliği <=50 m)	5	0
F	Kil içermeyen dayanımlı kayada tek bir makaslama zonu (kazı derinliği >50 m)	2,	5
G	Gevşek ve açık eklemler, ileri derecede eklemli "küp şeker" görünümlü (herhangi bir derinlikte)	5,	0
	(b) Dayanımlı kaya, kaya gerilmesi sorunları:	σc/σt σt/σ1	SRF
τī		>200	25
п	Düşük gerilme, yüzeye yakın, açık eklemler	<0,01	2,3

;		200-10	1
J	Orta derecede gerilme, uygun gerilme koşulları	0,01-0,3	1
V	Yüksek gerilme, çok sıkı yapı, genellikle duraylı, yan	10-5	0520
K	duvarlar açısından uygun olmayabilir.	0,3-0,4	0,5-2,0
т	Masif kayada 1 saatlik bir süre sonrasında orta derecede	5-3	5 50
L	dilimlenme	0,5-0,65	5-50
м	Masif kayada birkaç dakika sonra dilimlenme ve kaya	3-2	50 200
M	patlaması	0,65-1,0	50-200
NT	Masif kayada aşırı kaya patlaması ve ani dinamil	3-2	50 200
IN	deformasyon	0,65-1,0	50-200
[1] Sıkı	ışan kaya: Yüksek kaya basıncının etkisiyle düşük dayanım	lı kayada plas	stik akma:
		σΦ/σci	SRF
Ο	Az sıkıştıran kaya basıncı	1-5	5-10
Р	Aşırı sıkıştırıcı kaya basıncı	>5	10-20
(c)	Şişen kaya: Suyun varlığına bağlı olarak kimyasal şişme et	kinliği:	SRF
R	Düşük şişme basıncı	-	5-10
S	Çok yüksek şişme basıncı		10-15

Q	Grup	Sınıflama
0,001-0,01	3	Son derece zayıf
0,01-0,1		Aşırı zayıf
0,1-1		Çok zayıf
1-4	2	Zayıf
4-10		Orta
10-40		İyi
40-100	1	Çok iyi
100-400		Aşırı iyi
400-100		Son derece iyi

Kaya Kütlesinin Görünümü	Kaya Kütlesinin Tanımı	Önerilen "D" Değeri
	Yüksek kaliteli denetimli patlatma veyatünel açma makinesiyle yapılan kazı, tünelin çevresindeki kaya kütlesinde en düşük derece örselenmeye yol açar.	D=0
	Düşük kaliteli kaya kütlelerinde (patlatma yapılmamış) mekanik olarak veya elle yapılan kazı, tüneli çevreleyen kaya kütlesinde en düşük derecede örselenmeye neden olur. Sıkışan zemin sorunu önemli derecede taban kabarmasına yol açar ve soldaki fotoğraftaki gibi geçici bir taban betonu dökülmediği takdirde önemli miktarda örselenme olur.	D=0 D=0.5 Taban Betonu Yok
	Çok kötü kaliteli patlatma sert kaya tünellerde çevre kayasının 2-3 m içine nüfuz edecek şekilde şiddetli yerel hasara neden olur.	D=0.8
	Mühendislik şevlerinde küçük ölçekli patlatmalar, orta derece kaya kütlesi hasarına neden olur özellikle kontrollü patlatma yapılırsa kaya kütlesinin görünümü soldkai fotoğraftaki gibidir. Ancak, stres rahatlaması bazı bozulmalara yol açar.	D= 0.7 İyi patlatma D=1.0 Kötü patlatma
	Çok büyük açık ocak işletme şevlerinde, üretim amaçlı aşırı patlatmadan ve örtü kazısı nedeniyle oluşan gerilmenin azalmasından dolayı önemli düzeyde örselenmeye maruz kalırlar. Daha yumuşak bazı kayalarda kazı işlemi riperleme ve dozer ile yapılabilir ve bu durumda şevin maruz kalacağı örselenmenin derecesi daha düşük olur.	D= 1.0 Üretim patlatması D=1.0 Mekanik kazı

	ÖNORM B 2203 (Ekim 1994 sonrası)
A1	Sağlam
A2	Sonradan az sökülen
B1	Gevrek
B2	Çok gevrek
B3	Taneli
C1	Dağ atma
C2	Baskılı
C3	Çok baskılı
C4	Akıcı
C5	Şişen

EK-2. Sondaj Logları

		IM	ÇM	IÚHEN AHIŞM	DÍSLÍI	(
								Evciler Tüneli			SONE Boreh SAYF	DAJ Iole A	No		SK-	5	
BPO I		Project	Namo				veilo	Tüpoli	PAS PIT TAP / Start Einish Data		Page		NO		1/5		
SOND		l / Bori	na Loc	ation		: 0	biris F	ortalı	MUH, BOR, DER, / Casing Depth		· - : Yok						
KILON	ETRE	Chain	age			: 3	8+65	5	YASS ve ÖLÇÜM TARİHİ / GWL &	& Date :	: Su Yo	ok					
SOND	AJ DEF	RINLIĞİ	/ Borin	ng Dep	oth	: 3	8.00r	n	KOOR. SİSTEMİ / Coor. System	:	: ITRF	96	30°				
DELİK	ÇAPI /	Hole D	iamete	r		: 8	9mm		KOORDİNAT / Coordinate (N-S) X	: :	: 538 2	225					
SOND	AJ MAK	K. & YÖ	NT. / E	Rig a	& Met	. :C	-500	Rotary	KOORDİNAT / Coordinate (W-E) Y	(:	: 4 389	129)				
SOND	ÖR / Dr	iller				:-			SONDAJ KOTU / Elevation (m)	:	: 273						
RinLiĞi (m)	NSI	7			STAN	IDAR Star	T PEI	NETRASYON DENEYI Penetration Test				/ Strenght	athering	Disc.	/ T.CoreR		
DE	Cil ype	Boy	μ	Nu	mb. (Of Blo	si ws	GRAFIK Graph	Geotechnical Description			ILIK	Wei	Lik /	[CR]		
0 DAJ		evra	DEh	cu) cm	2 cm				1		NIML	MA	KSIZ	T%(
Sorin	4UM Samp	Aane Run	AB.	-15	5-3(0-4	N	10 20 30 40 50				AYAI	YRIS	ÜREI	ARO		OD%
000	20	ZŒ		0	-	(C)	-					á	X	N N	¥		<u>د</u>
-									0.00-36.00m, ŞAPÇI VOLKAN		ji Ii ji						0
-1	к	150							Çok zayıf - zayıf dayanımlı, be	ej - 📊					53		0
-									kızılımsı kahverengi, orta		11 II						
-2								·····	TÜF: ver ver andezit ara seviv	n ii	11 II						
-	к	150							TOT, yet yet andezit ara seviy		dV V				80		0
2									Süreksilikler genel olarak orta	1	н _и						
-3									aralıkta, düzlemsel - az pürüzl	lü, on	d V v						
-	к	150							orta cok avrismis niteliktedir.	1	и 0. и				53		0
-4									,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ii an	u V b						
-										11	1					V., .	_
-5										11	1 /						
_	к	150						······		11	v V bi	52	0	5	67		0
6										1	n p p	Ľ.	3	4-			
-0										an	d V v						
-	к	150								1	и 11 и				67		0
-7								·····		an	u d V v						
-										11	jî Li jî					-	
-8										11	11 1						
-	к	150								- an					77		70
_a										11	11 JI						
										(on	d V V						
- 	к	150								1	н ₁ с				47		40
-10								·····		an	d V V						
-										11	ji Ij						
-11	к	150								11	u d V v				23		17
-										11	11 11						
-12										11	11 11						
				<u> </u>		L				an	d V V			L			
R	DAYAN	SAĜI A	/ Streng	ght Ext S	trone	+	1 1	REKSILIK ARALIGI / Spacing ASIRI KAPALI	AYRIŞMA / Weathering <2cm W1 TAZE Er	resh		%0-	KAY# 25	A KAL	OK ZAVI	NIME/	KQD V. Poor
R5	ÇŐK	SAGLAN	Л	Very S	strong		2	ÇOK KAPALI	2-6cm W2 AZ AYRIŞMIŞ SI	lightly W.		%25	-50	Ž	AYIF		Poor
R4 R3	ORTA	AM SAĞLA	AM	Strong Mod. \$	Strong		3	ORTA 20	-20cm W3 ORTAD.AYR. M -60cm W4 ÇOKAYR. Hi	iod. Wea lighly W.	m.	%50 %75	-90	in in	Yİ		Good
R2 R1	ZAYIF Çok	ZAYIF		Weak Very V	Veak		5 6	GENIŞ 60- ÇOK GENİŞ 200-	200cm W5 TÜMÜYLE AYR. Co 500cm W6 ARTIK ZEMİN So	omp. We oil	eat.	%90	-100	Ç	OK IYİ		Excellent
R0	AŞIR	ZAYIF		Ext. W	eak		7	AŞIRI GENİŞ >	500cm								
NL O	INCE T	ANELI /	Fine Gr	ained	.4	-	1	RI TANELI / Coarse Grained	INCE TANELI / Fine Gra	Slight		0/ *	İR	ΙΤΑΝ	IELI / Coa	arse G	Slight
N: 3	-2 ÇC	MUŞAK	UŞAK (v. Soft	л		N: 5-1	0 GEVŞEK Soft	%5-15 AZ	Little		%5	5-20		AZ		Little
N: 5 N: 9	-8 OF -15 KA	RTA KAT TI		M. S Stiff	tiff	1	N: 11- N: 31-	-30 ORTA SIKI M. Stif -50 SIKI Stiff	%15-35 ÇOK %35 VE	Very And		%2	20-50		ÇOK		Very
N: 1	6-30 ÇC	K KATI		V. St	iff	I	N: >5) ÇOK SIKI V. Stiff									
IN. 2		DT TT		mard				DOT MUMPICO	Law Your U		rol (0)	a-1	d P		0		nanco d Di
SPT	STANDA Standart	RT PEN Penetra	NETRAS	sYON ' st	IESTİ	K	K/ Co	ARUT NUMUNESI pre Sample	Logu Yapan / Logged By	Kont	rol / Ch	lam	d By		Ona Inima I	y / Ap	proved By
BST	BASINC	LI SU TE	ESTI			Р	PF	RESSIYOMETRE DENEYI	isim-imza / ivame-Sign	isim-li	mza / N	natri 6	-əigr		isim-	mza /	ivanie-Sign
	Water Pr	essure	Test				Pr	essuremeter Test									
UD	ÖRSELE Undistur	NMEMİ bed San	Ş NUMI ıp l e	JNE		k	PE Pe	RMEABILITE DENEYI rmeability Test									

	(+	IM	Ç	IÛHEN AHIŞP	DÌSLÌ	ĸ																
	Evciler Tüneli SONDAJ Borehole SAVFA Page No : SK-5 30 STANDART PENETRASYON DENEYI 2/3 2/3																					
:70					STAN	JDAR	T PE		RAS	YON	DEN	IEYİ			Page	ght	No	:	eR	2/3		
ERINLIÖ n (m)	insi	уп	-		Darbe	Star	ndart si	Pene T	etratio	on Te	est AFİK		_	JEOTEKNİK TANIMLAMA		< / Stren	eathering	/ Disc.	() / T.Col			
DAJ DE	UNE C	wra Bo	DENE	Nu B	ED	Of Blo	ows	\vdash		Gra	aph		_	Geotechnical Description		NIMULT	MA / We	<sizl ik<="" td=""><td>T%(TCF</td><td></td><td></td><td></td></sizl>	T%(TCF			
SON	NUM Samp	Mane Run	LAB. Lab.	0-15	15-3(30-45	N	1	0 2	20 3	SC 4	0 5	50		PROF Profile	DAYAI	AYRIS	SÜREI	KARO		ROD%	A
-13	к	150												Çok zayıf - zayıf dayanımlı, bej - kızılımsı kahverengi, orta	in in in in the second				100		67	$ \land $
-14			1											TÜF; yer yer andezit ara seviyeli	н р 11 р 11 р	-					40	
-	к	150												Süreksilikler genel olarak orta aralıkta, düzlemsel - az pürüzlü,					53		43	
-15		150	1											dolgusuz - yüzeysel sıvamalı, orta çok ayrışmış niteliktedir.	and $\sqrt{\sqrt{11}}$				07		67	
-16	ĸ	150													and $\sqrt{\sqrt{1}}$				97		07	
-17	K	150]												II II II II				67		63	\setminus
-		150													h p h p				07		00	$\langle \rangle$
-	к	150													and V V				53		50	
-19															11 11 and $\sqrt{\sqrt{11}}$	/		ļ ,				
-20	к	150													11 p 11 p and $\sqrt{-1}$				100		93	
-21			-												ц ц ц ц ц ц	1-R2	W3	4-5				
-	к	150													0nd √ ∖				47		23	
-22			-												and $\sqrt{\sqrt{11}}$							
-23	к	150													and $\sqrt{\sqrt{2}}$				60	\backslash	53	\mathbf{X}
-24			-												h p h p							
-	к	150													h p h p				53		10	
-25															and $\sqrt{\sqrt{1}}$							
-26	к	150													11 11 and $\sqrt{\sqrt{11}}$				100		87	$\langle \rangle$
-27			-												II II II II and V						_	\setminus
	к	150													h p h p				33		0	
-																					_	
-29 -	к	150													and $\sqrt{\sqrt{1}}$				67	\backslash	67	\mathbf{X}
-30			-												II II and $\sqrt{\sqrt{1}}$						_	
-31	к	150																	80	$\langle \rangle$	47	\mathbf{A}
- 20	ĸ	150														-			100	$\overline{}$	100	$\langle \rangle$
SPT	STAND		NETRAS	SYON	TEST		ĸ		NUA		Si			Logu Yapan / Logged By	Kontrol / C	hecke	d Bv		100	Onav / An	prove	d Bv
BST	Standart	Penetra	ation Tes	st	. 201	P	C	ore Sa	ample jYOM	IETR	EDF	NEY	i	Isim-Imza / Name-Sign Is	sim-lmza / I	Name	e-Sign		ls	sim-Imza /	Name	e-Sign
UD	Water Pr ÖRSELE	essure NMEM	Test İŞ NUMI	UNE		r k	Pr	essur	emet	er Te	st	Yİ										
	Undistur	bed Sar	nple				P	ermea	bility	Test												

	(+	IM	Ç	ÜHEN ANIŞM	DİSLİI Anlı	K.											
								Evcilor Tüpoli		SONI Boret		No:			SK-5		
175					STAN	IDAR'	T PF			Page	Ę	No :		eR	3/3		
RinLig (m)	NSI	n/)arhe	Stan	idart	Penetration Test	JEOTEKNİK TANIMLAMA		(/ Stren	athering	/ Disc.) / T.Cor			
DAJ DE	UNE CI	vra Bo	DENEY	Nu E	E	Of Blo 문	ws	Graph	Geotechnical Description		AIMULTI	MA / We	KSIZLİK	r%(TCR			
SONE	NUMI Samp	Mane Run	LAB. Lab. 7	0-15 0	15-30	30-45	N	10 20 30 40 50		PROF Profile	DAYAN	AYRIŞI	SÜREM	KAROI		ROD%	
-33								Çe kı	ok zayıf - zayıf dayanımlı, bej zılımsı kahverengi, orta	j - 11 11 11 11							
-34	к	150						de TU	erecede ayrışmış ANDEZİTİK ÜF; yer yer andezit ara seviye	eli in p ond v				67		53	
- -35	ĸ	150						Si ar	üreksilikler genel olarak orta alıkta, düzlemsel - az pürüzlü	ü, <u>n</u>	-R2	V3	-5	67		60	
- -36		150						or	ta çok ayrışmış niteliktedir.		Ř	>	ব				
-37	к	150												67		67	
- 20	к	50						KI	JYU SONU;38.00m	100 V V				100		100	
- 30																	
-39																	
-40																	
-41																	
-42																	
-																	
-43																	
-44																	
-45																	
-46																	
-47																	
-																	
- 40																	
-49																	
-50																	
-51																	
-																	
SPT	STAND	RT PE		YON	TEST	ĸ	k.		Logu Yapan / Logged By	Kontrol / Ch	lecke	d Bv			Onav / Ar	prove	d By
BST	Standart	Penetra LI SU TI	ation Tes	at	. 2011	P	Co	re Sample	Isim-Imza / Name-Sign	lsim-lmza / N	Vame	-Sign		İs	sim-Imza /	Name	e-Sign
	Water Pr ÖRSELE	essure NMEM	Test İŞ NUML	JNE		k	Pr	essuremeter Test ERMEABİLİTE DENEYİ									
	Undistur	bed Sar	nple				Pe	ermeability Test									

	(+	IM	Ç	ÜHEN ANIŞM	DÍSLÍN (Anlik														
								Evoilor Tünoli				SON Borel		No		SK-6			
												Page		No	:	1/3			
PROJ	E ADI /	Project	Name	ation		: E	vcile	Tüneli	BAŞ.BIT.T	AR. / Start Finish Date	e th	:- • Yok							
KILON	IETRE	/ Chain	age	ation		: 3	8+65	8	YASS ve C	ÖLÇÜM TARİHİ / GWL	L & Dat	e : Su Y	ok						
SOND	AJ DEF	RİNLİĞ	i / Borin	ng Dep	oth	: 3	7.50r	n	KOOR. SI	STEMİ / Coor. System	1	: ITRF	96	30					
DELİK	ÇAPI /	Hole D	lamete	r		: 8	9mm		KOORDIN	AT / Coordinate (N-S)) X	: 538 :	207						
SOND		K. & YC	DNT. / D	.Rig &	& Met.	: D	-500	Rotary	KOORDIN	AT / Coordinate (W-E	E) Y	: 4 389	9 104	4					
				:	STAN	DAR Stan	T PEI	NETRASYON DENEYİ Penetration Test					renght	ring	ن	CoreR			
DERIN pth (m	CINSI /pe	Boyu	ΕYİ	E Nu	Darbe Imb. C	Sayı: Of Blo	si ws	GRAFIK Graph	JEO	TEKNİK TANIMLAMA	A.		LIK / St	Weathe	ik / Dis	CR) / T.			
DNDAJ bring De		anevra E In	d. DEN b. Test	15 cm	-30 cm	-45 cm	N					OFIL	YANIMLI	RISMA /	REKSIZL	ROT%(T		%0	
B S	N S	Я Я	La	6	15	30		10 20 30 40 50	0.00.07		ANITI	A P P	DA	AYI	SÜ	KAI	+	2	
-	к	150							0.00-37.	50m; ŞAPÇI VOLK	ANITI	и р и р				53		0	
-1									Çok zay	if - zayıf dayanımlı,	bej -	and V V							
-									dereced	e ayrışmış ANDEZİ	тік	ն ը ն ը						-	
-2	к	150							TÜF; ye	r yer andezit ara se	viyeli	and $$				100		0	
-									Süreksil	ikler genel olarak or	rta	н _и					\mathbf{X}		
-3			1						aralıkta,	düzlemsel - az pürü	üzlü,	and V V							
1	к	150							orta çok	ayrışmış niteliktedir	111, r.	и _и - и _и				73		0	
-4												and V V							
F			1									и _и - и _и							
-5	к	150										and V V	2			70		0	
t.												n n h n	8-P	W3	4-5				
-6			1									and V V					• F		
Ì	к	150										1 p				50		47	
-7												and V v						$ \rangle$	
Í.			1									н _р н р							
-8	к	150										and V V				80		73	
Í.												h p							
-9			1									and V V							
10	к	150										1 p 1 p				80		30	
-10												and V							
11]									н _р							
	K	150										and V V				50		0	
-12												n n n						_	
12												and V v							
R	DAYAN AŞIR	IMLILIK I SAĞLA	. / Streng M	ght Ext. St	trona	-	1	REKSİLİK ARALIĞI / Spacing AŞIRI KAPALI	<2cm W1	AYRIŞMA / Weatherin 1 TAZE	ng Fresh		%0-	KAY# 25	A KAL	DOK ZAYIF	IML / F	RQD (. Poor	
R5 R4	ÇOK SAĞL	SAĞLAI	M	Very S Strong	Strong		23	ÇÖK KAPALI KAPALI 6	2-6cm W2 5-20cm W3	2 AZ AYRIŞMIŞ 3 ORTA D. AYR.	Slightly Mod. V	W. Veath.	%25 %50	5-50	ź	AYIF	F	oor	
R3 R2	ORT/	∖ SAĞL/	٩M	Mod. S Weak	Strong		4 5	ORTA 20 GENIS 60-	0-60cm W4 200cm W5	4 ÇOK AYR. 5 TÜMÜYLE AYR.	Highly Comp.	W. Weat.	%75 %90	5-90 0-100	i' Ç	Y İ COK İYİ	G	Good Excellent	
R1 R0	ÇOK AŞIR	ZAYIF I ZAYIF		Very V Ext. W	Veak /eak		6 7	ÇOK ĞENİŞ 200- AŞIRI GENİŞ >	600cm W6	6 ARTIK ZEM İ N	Soil								
	INCE T	ANELÍ /	Fine Gr	ained		+	1	RI TANELI / Coarse Grainec		INCE TANELI / Fine 0	Grained			İR	İ TAN	NELI / Coar	se Gra	ainec	
N: 0 N: 3	-2 ÇC -4 YL	DK YUM JMUŞAR	iuşak K	V. So Soft	oft	1	N: 0-4 N: 5-1	0 GEVŞEK V. Soft	t %	5 PEK AZ 5-15 AZ	Sligh Little	ntly	%	5 5-20		PEK AZ AZ		Slightly Little	
N: 5 N: 9	-8 OF	RTA KA'	U.	M. St	tiff	1	N: 11- N: 31-	-30 ORTA SIKI M. Stif -50 SIKI Stiff	n %	15-35 ÇOK 35 VE	Very And		%2	20-50		ÇOK		Very	
N: 1 N: >	N: 16-30 ÇOK KATI V. Stiff N: >50 ÇOK SIKI V. Stiff N: >30 SERT Hard																		
SPT	STAND/	RT PE	NETRAS	BYON "	TESTİ	К	KA	AROT NUMUNESI	Lo	gu Yapan / Logged By	К	ontrol / Cl	necke	ed By		Onay	/ App	roved By	
BST	BASINC	LI SU TI	ESTÍ	~		Р	PF	RESSIYOMETRE DENEYI	Is	im-imza / Name-Sign	Isi	m-Imza / I	vame	e-Sigr		Isim-In	.za / N	iame-Sig	n
	Water Pi	ressure	Test	IN T		,	Pr	essuremeter Test											
	URSELE Undistur	bed San	ış NUML nple	JNE		k	PE	rmeability Test											

	(+	IM	Ç	ŮHEN AHIŞM	DÍSLÍ	ĸ																			
										TO	13							SON	DAJ	No:		ŝ	SK-6		
	1							EVCI	ler	lui	neli							Page	A	No:	_		2/3		
kinLiĞi (m)	Si	_			STAN	IDAR Star	T PE ndart	NETR Penet	ASY	'ON n Te	DEN est	1EYİ							/ Strenght	thering	Disc.	/ T.CoreR			
J DEF	E CIN	Boyt	NEYİ t	Nu	Darbe Imb. (Of Blo	sı pws T			GR/ Gra	AFIK aph			-	Geotechnical De	NIMLAMA			LILIK	/ Wea	ZLIK /	TCR)			
ONDA.	UMUN	anevra	AB. DE ab. Tes	15 cm	5-30 cn)-45 cn	N											ROFIL ofile	YANIM	RISMA	REKS	ROT%		%D0	
ο Δ	ZŰ	Σœ	<u> </u>	0	15	30		10	3 20	3	04	-0 E	>0	Çol	k zayıf - zayıf da	iyanımlı, b	ej -		DA	AY	ŝü	A A	Λ	22	A
-13	ĸ	150												kızı der	lımsı kahvereng ecede ayrışmış .	i, orta ANDEZİT	ik [and \sqrt{v}				90	\square	00	
-14		450												ΤÜI	F; yer yer andez	it ara sevi	iyeli	11 11 and $\sqrt{-1}$				100		87	
-	ĸ	150												Sür ara	eksilikler genel (likta, düzlemsel	olarak orta - az pürüz	a - zlü, -	н _и н _и				100		07	
-15		450	1											dol	gusuz - yüzeyse a cok avrısmıs ni	l sıvamalı iteliktedir.	, 7	and $\sqrt{\sqrt{1}}$				22		17	
-16	к	150													. yon ajnyinyin		7					23		17	
-																		100 V V							
-17	к	150															7	and $\sqrt{\sqrt{1}}$				40		40	
-18			-														7	ц ц ц ц							
-	к	150																				27		0	
-19																	7	and $\sqrt{\sqrt{1}}$							
-20]														7	и и и и				40		40	
-	К	150																and V V				40		40	
-21																	7	and $\sqrt{\sqrt{1}}$							
-22	к	150															-	н _и н _и	52-	V3	5-1	80		67	$\left \right\rangle$
			-														Í	and $\sqrt{\sqrt{11}}$	à	>	4				
-23	к	150															7	and $\sqrt{\sqrt{2}}$				100		100	
																	ŀ	н _и н _и							
-24	K	150	1]			7	and V V				03	$\langle \rangle$	67	
-25	n l	150															7	" "				55		07	
-																		μ _μ μ _μ							
-26	к	150															7	and $\sqrt{\sqrt{1}}$				67		60	$\left \right\rangle$
-27			-														7	и и и и							
-	к	150																				80	\sim	73	\mathbf{X}
-28																	7	and $\sqrt{\sqrt{2}}$							
-29			1														-	n n h n h n						60	
-	к	150																and V V 11 11 11 11				67		60	
-30																	7	and $\sqrt{\sqrt{10}}$							
-	к	150															-	и и и и и и				67		53	\mathbf{A}
			-															and $\sqrt{\sqrt{11}}$							
-32	к	150															7	11 11 and $\sqrt{-1}$				53	\mathbf{V}	47	\bigvee
SPT	STANDA		NETRAS	BYON	TESTI	K	K/	AROT	NUM	UNE	Sİ	11111		1	Logu Yapan / Lo	gged By	Ko	ontrol / Cł	necke	d By			Onay / Ap	prove	d By
BST	Standart BASINÇ	Penetra	adon Tés ESTÍ	51		Ρ	PF	ле Sa RESSÌ	YOM	ETRI	E DE	NEY	I		lsim-lmza / Nan	ne-Sign	İsin	n-Imza / 1	Vame	-Sigr		İs	im-lmza /	Name	e-Sign
UD	Water Pr ÖRSELE	ressure ENMEM	Test İŞ NUML	JNE		k	Pr	essure ERME	emete ABİLİ	er Tes TE D	st DENE	Yİ													
	Undistur	bed Sar	nple				Pe	ermeat	oility 1	Fest															

	(H	IM	Ç	ÜHEN ANIŞM	DÍSLÍI	K.																		
								-		T 2							SONI Boret	DAJ	No:	:		SK-6		
								EVCI	ler	Tu	nei			1			Page	-	No :	-	~	3/3		
inLiĞi m)	Si				STAN	IDAR Stan	T PEI dart	NETR Penet	tatio	YON on Te	I DEN est	NEAI						Strengh	thering	Disc.	T.Corel			
J DER Depth (E CIN Type	a Boyu	eNEYİ st	Nu	Darbe imb. (Sayıs Of Blo	si ws			GR/ Gr	AFİK aph]	JEOTEKNİK TANIMLAM	A 1		ILILIK /	/ Weat	ZLİK / E	(TCR)/			
Soring E	JUMUN	lanevra Run	AB. DE ab. Tes	-15 cm	5-30 cr	0-45 cr	N			0 0	0.0	10 6	-0				ROFİL rofile	AYANIM	KRIŞMA	JREKSİ	AROT%		0D%	
-33	20	212		0	-	en la constante da					30 4			Çok	zayıf - zayıf dayanımlı,	, bej -		â	A	SI	X		æ	A
-	к	150												dere	lımsı kahverengi, orta ecede ayrışmış ANDEZ	İΤİK	¹ and √ √				77		47	\wedge
-34		100												TÜF	; yer yer andezit ara se	eviyeli	11 11 and $\sqrt{\sqrt{11}}$							
-35	ĸ	150												aral	eksilikler genel olarak o ıkta, düzlemsel - az pür	rta rüzlü,		R1-R2	W3	4-5	100		87	
-		150												orta	jusuz - yuzeysel sıvama çok ayrışmış niteliktedi	all, ir.							Ŭ,	
-36	K	150															and V v				100		100	
-37		100												KUI	/U SONU;37.50m		and V v						100	
-38																								
-																								
-39																								
-40																								
-																								
-																								
-42																								
-43																								
-																								
-44																								
-45																								
_16																								
-																								
-47																								
-48																								
-																								
-49																								
-50																								
-51																								
-																								
-52																								
SPT	STANDA Standart	RT PEN Penetra	NETRAS	YON	TESTI	К	K/ Co	AROT ore Sa	NUN	AUNE 9	SI				Logu Yapan / Logged By İsim-İmza / Name-Sign	K İsi	ontrol / Cł m-İmza / 1	necke Name	d By		ls	Onay / Ap sim-İmza /	prove Nam	ed By e-Sign
BST	BASINÇ Water Pr	LI SU TI essure	ESTİ Test			Ρ	PF Pr	RESSI essure	YON	IETR er Te	RE DE	NEY	i											
UD	ÖRSELE Undistur	NMEM	İŞ NUML nple	JNE		k	PE Pe	ERME/	ABİL Dility	ITE [Test	DENE	Yİ												

	(+	IM	Ç	ÚHEN ANIŞM	DÌSLÌN	(
								Evoilor Tünəli				SONE Boreh	DAJ	No		SI	<-7		
												Page	^	No	:	1	/4		
PROJ	E ADI /	Project	Name	ation		: E	vcile	r Tüneli	BAŞ.E	BOR DER / Casing Depth		:-							
KILON	IETRE	Chain	age	auon		: 3	8+72	0	YASS	ve ÖLÇÜM TARİHİ / GWL 8	& Date	: Su Y	ok						
SOND	AJ DEF	RİNLİĞ	i / Borin	ng Dep	oth	: 6	6.50r	n	KOOF	R. SİSTEMİ / Coor. System		: ITRF	96	30					
DELİK	ÇAPI /	Hole D	iamete	r Dia 1	0.84.4	:8	9mm	Datas	KOOF	RDÍNAT / Coordinate (N-S) X	X	: 538 1	164						
SOND	ÖR / Di	iller	NT.7L	.Rig a	s Met.	. : : : -	-500	Rotary	SONE	ADINAT / Coordinate (W-E)	Ŷ	: 4 385	9 148	5					
()				:	STAN	IDAR Star	T PEI Idart	NETRASYON DENEYİ Penetration Test					trenght	ering	sc.	.CoreR			
DERIN epth (m	CINSI CINSI	Boyu	lΕΥİ	E Nu)arbe imb. (Sayı: Of Blo	si ws	GRAFİK Graph		JEOTEKNİK TANIMLAMA Geotechnical Description			ILIK / S	Weathe	LİK / Dis	rcr)/T			
SONDAJ Soring De	UMUNE ample T	Aanevra Run	AB. DEN ab. Test	1-15 cm	5-30 cm	:0-45 cm	И	10 20 30 40 50				ROFİL rofile	AYANIML	YRISMA /	JREKSIZ	AROT%(1		%D0%	
-	20	2 11		0	-	en la la la la la la la la la la la la la		10 20 30 40 30	0.00)-66.50m; ŞAPÇI VOLKAI		and V v	â	Ă	S	X		œ	
-1	к	150							Çok kızıl	zayıf - zayıf dayanımlı, b ımsı kahverengi, orta	bej -	and V V				21			
-2	к	150							dere TÜF Süre	ecede ayrışmış ANDEZİTİ ; yer yer andezit ara sevi eksilikler genel olarak orta	iyeli	and $\sqrt{\frac{1}{1}}$				23		0	
-4	к	150							dolg orta	ikta, düzlemsel - az puruz jusuz - yüzeysel sıvamalı, çok ayrışmış niteliktedir.	ziu, r	and V V 1 11 11 1 11 11 and V V 1 11				17		0	
-5	к	150										1 μ and √ γ 1 μ 1 μ 1 μ	R1-R2	W3	4-5	13		0	
-7	к	150										and V V 1 11 11 1 11 11 and V V 1 11				30		0	
-8	к	150									1) 7 1)	11 p 1 p 1 p 1 p 1 p 1 p 1 p 1 p				20		0	
-10	к	150										and V V 1 11 11 1 11 11 and V V				23		0	
-11 - -12	к	150										n p and √ v n p n p n p n p n p				70		20	
<u> </u>	DAYAN	IMLILIK	/ Strend	jht		L	SÜ	REKSİLİK ARALIĞI / Spacing	<u>H</u>	AYRIŞMA / Weathering	,	v		KAY#		İTESİ		/ RQD	
R6 R5 R4 R3 R2 R1 R0	AŞIR ÇOK SAĞL SAĞL SAĞL ZAYI ÇOK QOK QOK	I SAĜLA SAĜLAI AM SAĜL/ ZAYIF I ZAYIF	M M AM	Ext. SI Very S Strong Mod. \$ Weak Very V Ext. W ained	Irong Jtrong Strong Veak /eak		1 2 3 4 5 6 7	AŞIRI KAPALI COK KAPALI KAPALI (ORTA 22 GENİŞ 60- ÇOK GENİŞ 200- AŞIRI GENİŞ > Rİ TANELİ / Coarse Grainer	<2cm 2-6cm 6-20cm 0-60cm -200cm >600cm	W1 TAZE F W2 AZ AYRIŞMIŞ F W3 ORTA D. AYR. M W4 ÇOK AYR. M W5 TÜMÜYLE AYR. C W6 ARTIK ZEMİN S	Fresh Slightly \ Mod. We Highly W Comp. V Soil	N. eath. /. Veat.	%0- %25 %50 %75 %90	25 5-50 5-90 5-90	Ç Z C İ [\] Ç	OK ZA AYIF ORTA YI OK IYI	YIF	V. Poo Poor Fair Good Excelle	or ent
N: 0 N: 3 N: 5 N: 9 N: 1 N: >	-2 ÇC -4 YU -8 OF -15 KA 6-30 ÇC 30 SE	DK YUM IMUŞAH RTA KAT ITI DK KATI	UŞAK (TI	V. So Soft M. St Stiff V. St Hard	oft tiff iff	1 1 1 1	N: 0-4 N: 5-1 N: 11 N: 31 N: 35	COK GEVŞEK V. Sof 0 GEVŞEK Soft -30 ORTA SIKI M. Stii 50 SIKI Stiff 0 ÇOK SIKI V. Stiff	ft iff ff	%5 PEK AZ %5-15 AZ %15-35 COK %35 VE	Slightl Little Very And	ly .	%5 %5 %2	5 5-20 20-50		PEK A AZ ÇOK	Z	Sligh Little Very	tly
SPT	STANDA Standart	RT PEI	NETRAS	SYON " st	FESTİ	К	K/ Co	AROT NUMUNESİ ore Sample	ł	Logu Yapan / Logged By	Ko	ntrol / Ch	necke	ed By		0 Ieir	nay / Ap	proved	By
BST	BASINÇ	LI SU TI	ESTİ			Ρ	PF	RESSIYOMETRE DENEYI	ŀ	iom-iniza / Name-oign	151/1	-1112871	-ante	,-oiyr		151	ariniza /	-veitte-	Jigi
UD	Water Pi ÖRSELE Undistur	essure NMEM bed Sar	Test İŞ NUML nple	JNE		k	Pr PE Pe	essuremeter Test ERMEABİLİTE DENEYİ ermeability Test											

	(+	IM	Ç	ÚHEN ANIŞM	DİSLİI IANLII	K K											
								Eveller Töreli		SON	DAJ	No:		ŝ	5K-7		
										Page	-A	No:	-	~	2/4		
inLiĞi m)	Si			-	STAN	IDAR [®] Stan	T PE Idart	NETRASYON DENEYI Penetration Test			Strengh	thering	Disc.	T.Corel			
J DER Depth (IE CIN Type	a Boyu	eNEYI st	E Nu)arbe Imb. (Sayıs Of Blo	sı ws	GRAFIK Graph	JEOTEKNİK TANIMLAMA Geotechnical Description		/ ILLIK /	v / Weal	ZLİK / I	(TCR)/			
SONDA Soring [NUMUN Sample	Manevra Run	AB. DE ab. Te)-15 cm	15-30 cr	30-45 cr	N	10 20 30 40 50		ROFIL	AYANIN	YRISMA	ÜREKSİ	AROT%		OD%	
-13	к	150				62		C 20 00 40 00 C	Cok zayıf - zayıf dayanımlı, be ızılımsı kahverengi, orta	ej - <u>n</u>		A	S	53	Λ	17	
-								d	lerecede ayrışmış ANDEZİTİ ÜE: ver ver andezit ara seviy	K ^{In µ} µ					$\langle \rangle$	_	
-14	к	150						s	Süreksilikler genel olarak orta	and $\sqrt{\sqrt{1-\frac{1}{$				87	\mathbf{A}	53	\mathbf{N}
-15								a	ıralıkta, düzlemsel - az pürüzl lolgusuz - yüzeysel sıvamalı,	lü, <u>""</u>						_	
-16	к	150						•	rta çok ayrışmış niteliktedir.	li p li p				70		50	\mathbf{X}
- 10										and V V							
-17	к	150								and $\sqrt{\sqrt{n}}$				13		0	
-18			-														
-	к	150												13		0	
-19			-							and $$							
-20	к	150								II II and V				30		0	
-21										II pl II pl							
-	к	150								ond √ ∖				30		0	
-22										and $\sqrt{1}$	-42	V3	-çı				
-23		450								II II	à	>	4	20			
-	ĸ	150								11 р 11 р 11 р				20			
-24	V	160]							and V V				27		0	
-25		150								and $\sqrt{\sqrt{2}}$				21			
-26	ĸ	150	1											23		0	
-		100												20			
-27										and $\sqrt{\sqrt{1}}$							
-28	к	150								11 p 11 p and $\sqrt{-1}$				27		0	
-29										ի դե դ հե դ							
- 20	к	150								11 11 11				27		×	
-30										II #					2		
-31	к	150												13		0	
-		450												10		7	
-32	CTAND:	150			LEOT.				Logu Yapan / Logard Du	and V	- hone	P		13	0024 / 8-		d Re
SPI DOT	Standart	Penetra	ation Tes	st	ESII	ĸ	K/ Co		İsim-İmza / Name-Sign	lsim-lmza / I	Name	-Sign		İs	im-İmza /	Name	-Sign
BST	Water Pr	essure	ESTI Test	INF		P	PF	essuremeter Test									
	Undistur	bed San	iş NUML nple	JNE		к	PE	ermeability Test									

	(H	IM	Ç	ÜHEN ANIŞM	DÍSLÍI IANLII	K											
										SON	DAJ	No:			SK-7		
								zvciler Tuneli		Page	-A	No :		~	3/4		
inLiĞi m)	Si				STAN	IDAR Star	T PEI ndart	NETRASYON DENEYI Penetration Test			Strengh	thering	Disc.	T.Coref			
J DER Depth (IE CIN Type	a Boyu	eNEYİ st	Nu)arbe imb. (Sayı: Of Blo	sı pwş	GRAFIK Graph	JEOTEKNİK TANIMLAMA Geotechnical Description		ILILIK /	v / Weal	ZLİK / D	(TCR)/			
SONDA Boring [NUMUN Sample	Manevra Run	LAB. DE Lab. Te:	0-15 cm	15-30 cr	30-45 cr	N	10 20 30 40 50		PROFIL	AYANIN	AYRISMA	süreksi	KAROT%		30D%	
-33									Çok zayıf - zayıf dayanımlı, bej	- 11 p			07		1		
- -34	к	150							derecede ayrışmış ANDEZİTİK FÜF; yer yer andezit ara seviye					23		23	
- -35 -	к	150							Süreksilikler genel olarak orta aralıkta, düzlemsel - az pürüzlü lolgusuz - yüzeysel sıvamalı, orta çok ayrışmış niteliktedir.	$\int_{\frac{\eta}{\eta}}^{\frac{\eta}{\eta}} \frac{\frac{\eta}{\eta}}{\frac{\eta}{\eta}}$				27		20	
-36 - -37	к	150								11μ and $\sqrt{\sqrt{1}}$ 11μ 11μ 11μ				27		7	
- 38	к	150								11 µ 11 µ 11 µ 11 µ 11 µ 11 µ				0		0	
-39										IL IL IL						_	
- -40	к	150								$\frac{1}{1}$ $\frac{1}{\mu}$ $\frac{1}{\mu}$ $\frac{1}{\mu}$ and $\sqrt{-\chi}$				23		20	
-41 -	к	150												87		70	
-42	к	150								11 µ and $\sqrt{-1}$ 11 µ 11 µ	R1-R2	W3	4-5	100		87	$\overline{}$
-43	K	150								and V V				03		67	
- -45	к 	150								II 11 11 11 11 11 11 11 11 11 11 11 11 1				55			
-46	к	150												47		33	
-47 -	к	150								11 μ 11 μ and $\sqrt{-\sqrt{-1}}$ 11 μ 11 μ				43		27	
-48 - -49	к	150												40		13	
50										0 nd V V							
-51	К	150												30		20	
- 52	к	150												37		0	
SPT	STAND# Standart	RT PEN Penetra	NETRAS	YON T	TESTÌ	К	K/ Co	AROT NUMUNESİ ore Sample	Logu Yapan / Logged By İsim-İmza / Name-Sign	Kontrol / Cl İsim-İmza / I	necke Name	d By s-Sign		ls	Onay / Ap sim-İmza /	prove Name	ed By e-Sign
BST UD	BASINÇ Water Pi ÖRSELE	LI SU TE ressure NMEMÌ	ESTİ Test İŞ NUML	JNE		P k	PF Pr PE	RESSIYOMETRE DENEYI essuremeter Test RMEABİLİTE DENEYİ									
	Undistur	bed San	nple				Pe	rmeability Test									

	(+	IM	Ç	ÜHEN ANIŞM	DÍSLÍI IANL(I	K											
										SON Bore	DAJ hole	No	:		SK-7		
	1							Evciler Tüneli		Page	-A	No	:		4/4		
kinLiĞi (m)	ISI	_		:	STAN	IDAR Stan	T PEI Idart	NETRASYON DENEYİ Penetration Test			Strenght	thering	Disc.	/ T.CoreR			
J DEF	E CIN Type	a Boyu	ine vi	Nu)arbe imb. (I⊆⊆	Sayıs Of Blo	si ws	GRAFIK Graph	JEOTEKNIK TANIMLAMA Geotechnical Description		LILIK .	/ Wea	ZLİK /	(TCR)			
SONDA Soring [JUMUN	lanevra Run	AB. DE ab. Tes	-15 cm	5-30 cr	0-45 cr	N	10 20 20 40 50		ROFiL rofile	AYANIN	KRIŞMA	JREKSI	AROT%		OD%	
52	20	2 11		0	-	e		10 20 30 40 30	Cok zavıf - zavıf davanımlı, bei	- " "	â	¥	.S	X		æ	
55	к	150						k c	uzılımsı kahverengi, orta lerecede ayrışmış ANDEZİTİK					30		0	
-54	ĸ	150							Süreksilikler genel olarak orta					37		20	
-55		100							aralıkta, düzlemsel - az pürüzlü dolgusuz - yüzeysel sıvamalı,	j_{i} , $\frac{1}{\alpha nd} \sqrt{\frac{1}{\gamma}}$				57		20	
-56	к	150						c	orta çok ayrışmış niteliktedir.					53		17	
-										10 00 V							
-57										and /							
-58	к	150								li µ and √	\$2			17		13	
-59	к	150								II II	R-F	C/M	4-6	50		17	
-60																	
-	к	150								11 µ 11 µ	1			37		17	
-61										and V							
-62	ĸ	150								11 11 11 11 and \checkmark				60		47	
-63		100												Ľ			
-	ĸ	150												68	\backslash	47	
-64										and $\sqrt{\frac{11}{11}}$							
-65	ĸ	150								11 11 11 11 and $\sqrt{-1}$				80	\backslash	60	
-66										4 4 6 11 4 11 11							
-	К	50						ч 	KUYU SONU;66.50m	and V	-			60		60	
-67																	
-68																	
-																	
-69																	
-70																	
-71																	
-																	
-72																	10
SPT	STANDA	RT PEI Penetra	NETRAS	t t	IESTI	К	K/ Co	aku i NUMUNESI pre Sample	logu Yapan / Logged By	Kontrol / C İsim-İmza /	necke Name	ed By e-Sign	1	ls	onay / Ap sim-İmza /	Name	a By e-Sign
BST	BASINÇ Water Pr	LI SU TI essure	ESTI Test			Ρ	PF	RESSIYOMETRE DENEYI									
UD	ORSELE Undistur	NMEM	ış NUML nple	JNE		k	PE Pe	ERMEABILITE DENEYI ermeability Test									

	(+	IM	Ç	IÜHEN Anışm	DİSLİK IANLIX	l c												
	-										SC	ONDA	J N	<u>.</u>		SK-8		
							[Evciler Tünel i			Bo SA	YFA	le '' N	o :		1/3		
PROJ	E ADI /	Project	Name			: E	vciler	Tüneli	BAŞ.E	BİT.TAR. / Start Finish Date	Fa	ige						
SOND	AJ YEF	RÍ / Bori	ing Loc	ation		: Ç	ikiş F	Portalı (Sağ Tüp)	MUH.	BOR. DER. / Casing Depth	:Yo	ok						
KILON		Chain	age L/ Borir	na Der	oth	: 3	8+79 6.00n	5	YASS	5 ve OLÇUM TARIHI / GWL & R SİSTEMİ / Coor System	Date :Su	J YOK	3 30	0			-	-
DELİK	ÇAPI /	Hole D	iamete	r	101	: 8	9mm		KOOF	RDİNAT / Coordinate (N-S) X	: 53	8 10	8				-	
SOND	AJ MAK	K. & YÖ	NT. / E).Rig 8	& Met	: D	-500	Rotary	KOOF	RDİNAT / Coordinate (W-E) Y	:4	389 1	92					
SOND	ÖR / Dr	iller				: -			SONE	DAJ KOTU / Elevation (m)	:27	7						
nLiĞi n)	21				3TAN	DAR1 Stan	F PEN dart F	VETRASYON DENEYI Penetration Test					Strenght	lien	T.CoreR			
I DER	E CINS	Boyu	t NEYİ	E Nu)arbe imb. (Sayıs Of <u>Blo</u>	si ws	GRAFIK Graph		JEOTEKNİK TANIMLAMA Geotechnical Description				i ik / L	TCR)/			
ONDAJ oring D	UMUNE ample 1	lanevra un	AB. DEI ab. Test	-15 cm	5-30 cm	0-45 cm	N	10 00 00 10 50			ROFIL	one	ININI		ROT%		%D%	
ωœ	ZŰ	ΣĽ	۳	ò	1	30		10 20 30 40 50	0.00		E C			ā	S A		м М	
-	к	150							0.00	J-36.00m; YUREKLI DASH		V .			13		0	
-1									- Sağ	lam dayanımlı, siyah - koy	v det v							
-			-						avri	smis DASIT: ileri derecede		at \ /						
-2	к	150							ekle	emli, tamamen parçalanmış	teb 8	\checkmark			10		0	
F									Süre	eksilikler genel olarak cok	d.	st \						
-3									kapa	alı - kapalı, düzlemsel - az	V .	\checkmark						
-	к	150							pürü nite	üzlü, dolgusuz, orta ayrışm liktedir.	IIŞ del	+			13		0	
-4		100									V dt	31 Y						
-			-						F		teb	~ `			_			
-5	к	150									d	at v			20		0	
-									F		V .			N	2			
-6												+	1 VI	~				
-	к	150							F		\checkmark				27		0	
-7		100							Ē		1 ^{teb}							
+			-						F		0	at v						
-8		450							Ē		det /	\checkmark			10			
-	n	150							-		d.	t v						
-9			-						Ē		\checkmark	✓.			-			
-		150									, teb				10			
-10	n	150							Ē		d	at 1			10		l V I	
-			-								, teb	\checkmark						
-11	K	150							Ē		d.	at v			22			
-		150									V .	\checkmark			55		ĭ	
-12			-						Ê		V leb	+ .						
	DAYAN	IMLILIK	/ Strend	aht		Ļ	SÜ	REKSİLİK ARALIĞI / Spacing	H	AYRISMA / Weathering	/	31	KA	YA K	ALITES	I TANIMI	/ RQD	
R	AŞIRI	SAĞLA	M	Ext. St	rong		1	AŞIRI KAPALI	<2cm	W1 TAZE Fr	resh	%	0-25)	ÇOK Z	AYIF	V. Poo	or
R4	SAĞL	AM		Strong	Strong		3	KAPALI 6	5-20cm	W3 ORTA D. AYR. Ma	od. Weath	%	50-7	5	ORTA		Fair	
R	ZAYIE		1111	Weak	Voak		5	GENİŞ 60-	-200cm	W5 TÜMÜYLE AYR. Co	omp. Weat.	%	90-1	00	ÇOK İ	Yİ	Excell	ent
R	AŞIRI	ZAYIF		Ext. W	eak		7	AŞIRI GENİŞ >	·600cm	WO ARTIKZEMIN SC	51							
N· O	INCE T	ANELÍ /	Fine Gr	v S	oft	Þ	i 1: 0-4	RI TANELI / Coarse Grained COK GEVSEK V Sof	ft	INCE TANELI / Fine Grai	ined Slightly		%5	Rİ TA	NELÍ /	Coarse (AZ	irained	ntlv
N: 3	-4 YU		ζ ΓΙ	Soft M S	tiff	N	N: 5-1	0 GEVŞEK Soft 30 ORTA SIKI M Stil	iff	%5-15 AZ %15-35 COK	Little		%5-2 %20-	0 50	AZ		Little	
N: 9	-15 KA	TI		Stiff	iff	1	1: 31-	50 SIKI Stiff	ff	%35 VE	And				çon		tory	
N: >	30 SE	RT		Hard					-									
SPT	STANDA			SYON	TESTİ	к	KA	ROT NUMUNESI		Logu Yapan / Logged By	Kontrol	Chec	cked E	By		Onay / A	pprovec	l By
BST	Standart BASINC	Henetra	auon Te ESTİ	51		Р	PR	ESSIYOMETRE DENEYI	ŀ	Isim-Imza / Name-Sign	lsim-İmza	a / Nai	me-S	gn	İs	sim-Imza	Name	-Sign
_0.	Water Pi	ressure	Test			·	Pre	essuremeter Test										
UD	ÖRSELE Undistur	NMEM bed Sar	İŞ NUMI nple	UNE		k	PE Pe	RMEABİLİTE DENEYİ rmeability Test										

	(+	IM	Ç	ÜHEN Anışm	DİSLİI Anlı	(
											SON	DAJ	No :		:	SK-8		
								Evciler Luneli			Page	A	No :			2/3		
nLiĞİ				:	STAN	IDAR Stan	T PE	NETRASYON DENEYİ Penetration Test				Strenght	nering	isc.	T.CoreR			
DERI pth (r	CINS	Boyu	IEΥİ	Nu)arbe imb. (Sayıs Of Blo	si ws	GRAFIK Graph	JEOTEKNIK TANIMLAMA Geotechnical Description			ILIK /	Weath	.ik / D	CR)/			
UDA.J	AUNE ple T	levra	. DEN	cm	30 cm	15 cm				Ţ	le L	MIML	ŞMA /	EKSİZI	T%(T		%	
SON Bori	NUN Sar	Mar Run	LAB Lab.	0-15	15-3	30-4		10 20 30 40 50			Profi	DAYI	AYRI	SÜRE	KAR(RQD	
-13	к	150						gr	i renkli, az - orta derecede	yu di	t``				33	Δ	0	
F								ay ek	rışmış DASIT; ileri dereced Iemli, tamamen parçalanm	de ⊪ş √	, teb							
-14	к	150						si	üreksilikler genel olarak çok	¢ dei	[†] / ₁₊				40		0	
-15			-					ka	ipalı - kapalı, düzlemsel - a irüzlü, dolgusuz, orta ayrışr	z miş 🗸								
F	к	150						nit	teliktedir.	éb					30		0	
-16										\checkmark	, V							
-17	к	150								.09	V dat .				20		0	
-										\checkmark	, √,							
-18											dat .						_	
-19	к	150								V eb	t , .				13		0	
-											, th							
-20	к	150								√ V	t,/``				10		0	
-											teb							
-21										da.	t_^``	R4	2-W3	2-3	7		_	
-22	ĸ	150									dat		N		'		0	
-										de	t``							
-23	к	150								\checkmark	, Teb				10		0	
-24			-							dei	†	1						
-	к	150								\checkmark					13		0	
-25										de								
-26	ĸ	150	1							\checkmark	, V,				10		0	
-		150								de	'√ 				10		Ŭ	
-27										V	, √,							
-28	к	150									, tet				12		0	
-			-							√ √	t , , ,							
-29	к	150									, teb				13		0	
1										de	t_/``							
-30			1								, the							
-31	к	150								da.	t_^``				15		0	
F											teb							
-32	к	150								de	t`				17		0	
SPT	STANDA Standart	Penetra	NETRAS	SYON T	TEST	к	K/ Co	AROT NUMUNESI ore Sample	Logu Yapan / Logged By	Kont	rol / Ch	hecke	d By		le	Onay / Ap	prove	d By
BST	BASINÇ	LI SU TI	ESTİ			Р	PF	RESSIYOMETRE DENEYI	iam-inza / Name-oigh	ishirel		-carrie	Julyin		13		. torre	Jign
UD	ÖRSELE	ENMEM	İŞ NUMI	JNE		k	PE	ERMEABILITE DENEYI										
	Undistur	bed Sar	nple				P€	ermeability Test										

	(+	IM	Ç	ÜHEN ANIŞM	DÍSLÍI (ANLI	ĸ												
								En el en Eñere la			SONE	DAJ	No:		;	SK-8		
								Evciler Tuneli			Page	A	No :			3/3		
RinLiGi	ISI	_			STAN	IDAR Stan	T PE	NETRASYON DENEY				/ Strenght	athering	Disc.	/ T.CoreR			
J DEF	IE CIN	а Воу	eneyi st	Nu	Darbe Imb. (E	Sayıs Of Blo	sı ws	GRAFIK Graph	Geotechnical Description			ILILIK	V / Wes	ZLİK /	(TCR)			
SONDA Boring [NUMUN	Manevra Run	LAB. DE Lab. Te:	0-15 cm	15-30 cr	30-45 cr	И	10 20 30 40 50			Profile	AYANIN	YRISMA	üREKSİ	AROT%		SOD%	
_33									Sağlam dayanımlı, siyah - ko	iyu 🔍	100		4	- 02	Ť	/		
-									ayrışmış DASİT; ileri derecede	le d	lat							
-34	ĸ	150							eklemli, tamamen parçalanmı Süreksilikler genel olarak çok	iş (teb /	R4	2-W3	2-3	12		0	
-									kapalı - kapalı, düzlemsel - az pürüzlü, dolgusuz, orta avrısr	z J	lat		N					
-35	к	150							niteliktedir.	,	teb /				15		0	
-36									KUYU SONU; 36.00m	9	let / `							
-																		
-37																		
-																		
-38																		
-39																		
-																		
-40																		
ŀ																		
-41																		
-42																		
-																		
-43																		
ŀ																		
-44																		
-45																		
-																		
-46																		
-																		
-47																		
-48																		
-																		
-49																		
-																		
-50																		
-51																		
-																		
-52																		
SPT	STANDA	ART PE	NETRAS	SYON	I TESTİ	K	K/	AROT NUMUNESI	Logu Yapan / Logged By	Kor	ntrol / Ch	iecke	d By			Onay / Ap	prove	ed By
BST	Standart BASINC	Penetra	ation Tes ESTI	st		P	CO	ore Sample RESSIYOMETRE DENEYI	İsim-İmza / Name-Sign	lsim	-İmza / N	lame	-Sigr		İs	sim-İmza /	Nam	e-Sign
	Water P	ressure	Test	1.15		r	Pr	ressuremeter Test										
UD	Undistur	bed San	nple	JNE		k	PE Pe	ERMEABILITE DENEYI ermeability Test										

	(+	IM	Ç	ÜHENI ANIŞM	DİSLİH	C C												
								Eveller Töreli			SON Bore	DAJ hole	No	:	s	K-9		
								Evciler I unell			Page	-	No	:	1	his		
PROJ	E ADI /	Project	Name			: E	vcile	r Tüneli	BAŞ.E	BIT.TAR. / Start Finish Date	:							
SOND	AJYEN	(Chain	ing Loca	ation		: 9	8+80	ortali (Sol Tup)	MUH.	BOR, DER, / Casing Depth	: Yok	ok						
SOND	AJ DEF	RINLIG	l / Borin	g Dep	th	: 3	6.00	'n	KOOF	R. SISTEMI / Coor. System	:ITRF	96	30°					
DELİK	ÇAPI /	Hole D	iamete	r		: 8	9mm		KOOF	RDINAT / Coordinate (N-S) X	: 538	083						
SOND	AJ MAR	(. & YČ	NT. / D	.Rig 8	& Met	. :D	-500	Rotary	KOOF	RDINAT / Coordinate (W-E) Y	:4 38	9 17()					
SOND	ÖR / D	iller				:-			SOND	DAJ KOTU / Elevation (m)	: 280							
(m)	S			1	STAN	IDAR Stan	T PE	NETRASYON DENEYI Penetration Test				Strenght	hering	J.	T,CoreR			
DER pth (be CIN	Soyu	ΕĂ	D Nu)arbe imb. (Says Of Blo	SI WS	GRAFIK Graph		JEOTEKNIK TANIMLAMA Geotechnical Description		LIK/	Neat	-	CR)/			
De De	UNE (E T)	vra 8	DEN	Ę	Ę	g			1	ococcanical occompton		IMUL	141	A ROLL	7%(T)			
ONC	IUMI	lane un	ab. J	15 0	2-30	0-45	N	10 00 00 10 50			30F ofile	NAN	RISI	2020	I R01		1	
- -	zø	Σœ	22	0	11	ĕ		10 20 30 40 50	0.00	-36.00m; YÜREKLİ DASİT	<u>i</u>	Ň	4	2	5		W	
-1	к	150							Sağl gri r	lam dayanımlı, siyah - koyu enkli, az - orta derecede	dat v				23		0	
-2	к	150							ayrış ekle	şmış DASİT; ileri derecede mli, tamamen parçalanmış	det _				43		0	
-3									Süre kapa	eksilikler genel olarak çok alı - kapalı, düzlemsel - az	v v				\vdash		Н	
-4	к	150							nitel	iktedir.					40		0	
-5	к	150									teb teb		N3		47		0	
-6											det j	R4	W2-V	2:	\vdash	\setminus	Н	
-7	к	150									st st				53	\backslash	0	
-8	к	150									det v				50		0	
-9									1		VV						Ш	
-10	к	150									det v				47		0	
-11	к	150									v ↓				40		0	
-12											dat V				\vdash	$\overline{\mathbf{V}}$	Н	
	DAYAN	IMLILIK	/ Streng	ht.		+	SÛ	REKSILIK ARALIĞI / Spacing	-0	AYRIŞMA / Weathering	ch	P.C.	KAYA	KAL	LITESI	TANIMI	/ RQD	~
R	COK	SAGLA	M	Very S	strong		2	ÇOK KAPALI	<2cm 2-6cm	W1 TAZE Fre W2 AZ AYRIŞMIŞ Slig	ish phtly W.	%25	-50	z	AYIF	9, Y IP	Poor	or
R	ORT/	AMA SAGL	АМ	Mod. \$	Strong		4	ORTA 20	-20cm	W4 COK AYR. Hig	d, weath. hly W,	%50	-75	ř	YI	4	Good	J
R	ZAYI ÇOK	e Zayif		Weak Very V	Veak		5 6	GENIŞ 60- ÇOK GENİŞ 200-	200cm 600cm	W5 TUMUYLE AYR. Cor W6 ARTIK ZEMIN Soi	mp. Weat. I	%90	-100	ς	OK IY	1	Excel	lert
R	INCE T	ANELL/	Fine Gr	Ext. W ained	eak	+	7	AŞIRI GENIŞ >(RÎ TANELÎ / Coarse Grained	500cm	INCE TANEL! / Fine Grain	bed		R	TAN	NELI/	Coarse (Srained	
N N N N N N N N N N N N N N N N N N N	-2 CC -4 YL -8 OF -15 KA 6-30 CC 30 SE	OK YUM IMUŞAP RTA KA TI OK KATI IRT	IUŞAK Ç	V. Soft M. S Stiff V. St Hard	nt tif tif		N: 0- N: 5- N: 11 N: 31 N: >5	COK GEVŞEK V. Sot GEVŞEK Soft 30 ORTA SIKI M. Stiff 50 SIKI Stiff 0 ÇOK SIKI V. Stiff		%5 PEKAZ S %5-15 AZ L %15-35 ÇOK V %35 VE A	Slightly .ittle /ery And	%3 %3	5 5-20 20-50		PEK AZ ÇOK	z	Slig Little Very	htly e y
SPT	STAND/	RT PE	NETRAS	YON	TEST	к	ĸ	AROT NUMUNES	-+	Logu Yapan / Logged By	Kontrol / Cl	hecke	d By		0	Dnay / A	pprover	d By
	Standart	Penetra	ation Tes	at .			C	ore Sample	ĺ	İsim-İmza / Name-Sign	lsim-lmza / 1	Name	-Sign		lsi	m-Imza	Name	-Sign
BST	BASINÇ Water Pr ÖRSELF	LI SU TI essure NMEM	ESTÎ Test ÎŞ NUMI	JNE		P k	PI Pr Pi	RESSIYOMETRE DENEYI essuremeter Test ERMEABILITE DENEYI										
	Undistur	bed Sar	nple				P	ermeability Test										

	(+	IM	Ç₿	ÜHEN ANIŞH	DİSLİI	(K											
								Eveiler Tüpeli		SC Bo	NDAJ	No	:		SK-9		
_					CTAR	IDAD	T DE			Pa	ge z	No	: T	¥	2/3		
RiNLIG (m)	4SI	_			31/4	Star	ndart	Penetration Test	IFOTEVALLY TANKE ANA		/ Streng	thering	li	/ T,Con			
AJ DEI Depth	NE Cli e Type	ra Boy	DENEY	Nu	imb. (Of Bk	si xws	Graph	Geotechnical Description		MLILIK	A / Wei	-million	%(TCR)			
SOND Boring	NUMU Sampl	Manev Run	LAB. C Lab. T	0-15 ct	15-30	30-45	м	10 20 30 40 50		PROFIL	DAYANI	AYRIŞM	Pullound and	KAROT		RQD%	
-13	к	150							Sağlam dayanımlı, siyah - koy gri renkli, az - orta derecede	/u v				60	Λ	0	
L ₁₄									ayrışmış DASİT; ileri dereced eklemli, tamamen parçalanmı	e da ş √	/					Н	
- 14	к	150							Süreksilikler genel olarak çok kanalı - kanalı, düzlemsel - az	, dit ,				33		0	
-15			1						pürüzlü, dolgusuz, orta ayrışır niteliktedir.	nış 🗸	1						
-16	к	150								V di	/			33		10	
-17			1							det V							
-	ĸ	150								V ,	4			41		Ů	
-18			1							, di					Г		
-19	ĸ	150								det V				20		Ů	
-20	к	150	1							V ht	/			20		0	
-										di							
-21	ĸ	150]							det ,	12	/2-W3	2-3	67		0	
-22		100								V		2					
-23		150								dal v				53			
-24	<u> </u>	100								dat)						Ŭ	
-	к	150								V de	/			67	\backslash	0	
-25										dat v							
-26	к	150								det)	1			33		0	
-27										V d	/					Ц	
-	к	150								wt^				20		0	
-28			-							July 1	4					Ц	
-29	к	150								1	/			27		0	
-30										dot v						Ц	
-	к	150								V v	/			23		0	
-			{							da				-		\square	
-32	к	150								dit)				32	V	0	
SPT	STAND/ Standart	Penetra	NETRAS ation Tes	SYON .	TEST	к	K/ C	AROT NUMUNESI ore Sample	Logu Yapan / Logged By İsim-İmza / Name-Sign	Kontrol / İsim-İmza	/ Nam	ed By e-Sig	n -	ŀ	Onay / Ap sim-Imza /	Nam	d By t-Sign
BST	BASINÇ Water Pr	LI SU TI ressure	EST I Test			Ρ	PF Pr	RESSIYOMETRE DENEYI ressuremeter Test									
UD	ÖRSELE Undistur	ENMEM bed Sar	İŞ NUM nple	UNE		k	PE Pe	ERMEABİLİTE DENEYİ ermeəbility Test									

	(+	IM	Ç	ÜHEN ANIŞM	DİSLİI Anlı	ĸ																		
																	SON Borel	DAJ	No			SK-9		
								Evc	iler	Τü	nel	i					Page	=A	No	:		3/3		
kinLiGi (m)	ISI	_			STAN	IDAR Stan	T PEI	NETF	RAS trati	YON on Te	DEN	NEY	I					/ Strenght	thering	Disc.	/ T.CoreR			
J DEF	E CIN Type	Boyu	st st	Nu	Darbe Imb. (Of Blo	sı ws	-		GR Gr	AFIK aph				Geotechnical Descript	IMA ion		LILIK	/ Wea	ZLİK /	(TCR)			
SONDA Boring [NUMUN Sample	Manevra Run	LAB. DE Lab. Te:	0-15 cm	15-30 cr	30-45 cr	И	1	0 2	20 3	30 4	10 1	50				Profile	MINAYAO	AYRISMA	SÜREKSİ	AROT%		ROD%	
-33														Sag	jlam dayanımlı, siyah	- koyu	100	-				\triangle		
-	к	150												ayr	ışmış DASİT; ileri dere	ecede	dat v		_		30		10	
-34		100												ekle Sür	emli, tamamen parçalı reksilikler genel olarak	anmış ¢çok	det /	R4	12-W3	2-3				
-														kap pür	alı - kapalı, düzlemse üzlü, dolgusuz, orta a	el - az vrismis	det ,		5					
-35	к	150												nite	liktedir.	,,	dat i				33		0	
-36														κυ	YU SONU; 36.00m		dat							
-																								
-37														1										
-																								
-38																								
-39																								
-																								
-40																								
-																								
-41																								
-42																								
-43														-										
ł																								
-44																								
45																								
43														}										
-46																								
-]										
-47																								
10																								
-48																								
-49																								
-																								
-50																								
-																								
-51																								
-52																								
02																-				L,				10
SPT	STANDA Standart	Penetra	NETRAS ation Tes	syon '	TESTI	K	K/ Co	AROT ore Sa	mple	MUNE 9	SI				Logu Yapan / Logged B İsim-İmza / Name-Sign	n İs	im-Imza / I	necke Name	-Sign		ls	im-lmza /	Name	e-Sign
BST	BASINÇ Water Pi	LI SU TI essure	ESTI Test			Ρ	PF Pr	RESS	IYON eme	METR	RE DE	NEY	1						-					
UD	ÖRSELE Undistur	NMEM bed San	İŞ NUMU nple	JNE		k	PE	ERME	ABİL	ITE I Test	DENE	Yİ												

EK-3. Karot Sandık Fotoğrafları

SK-5 Sondaj

SK-6 Sondajı

SK-7 Sondajı

5 x 10 . 10 r n

SK-8 Sondajı

SK-9 Sondajı

Mathematical matrixed mat	Mathematical matrixement Mathema									CVO	NULAND	100101	VHOLE N	ESULIS	(KOCK)		10	A LA CARA							
			irma Adi ompany Neme						BC	NIZLER PR	JOJE					ć.	Sai Nu	mune Gells Tar nple Armal Detu or Tarihi	Z		27.05	3.2018		AB-06	158-T
			roje Adi reject Name				w	3ALIKESÍR-I	EDREMIT Y	OLU EVCIL	ER VARYA	NTI PROJES	10				Min Bal	Lanisk Rapor No istry Reg. No	1					64	88
Image: problem Image:			intem					T		F			-	-			(100	Registration No	ON C		64	83		÷	
I I	Image: 1 Image: 1	1 1	ethod		TS 8515	ISRM	ISRM	ISRM	ISRM	SRM R	1926 1926	ISRM TS 2	030 TS 20	030	TS 699	TS 699	TS AST	1097-2 M C 131	AS	ITM C 88	TS EN 933- 9	TS 69.		TS 699	TS 25
Image: 1 1		1 1		Production						цбрел	, mineyed	ussuens			isəl dçanız		Parçalanm (Los Ange	a Direnci Tayini les Yöntemi) *	Sağlaml	3k Deneyleri *		נוסג אוומו פרוומו	iq		uiuteo;
m m	Image: intermed and the state intermed and th		or QA / uyuX oli 17.1 / sionancii oli 19.1 / sionancii oli siamô oli siamo?	Depth	' Instruction of the Context	, λυίατος Υσασίακ	' Xuru Yoğunluk Dıy Donziy	ໍ ສຳໃຫ້ອີ່A ມີອີຊັບ ຊຳເຫລີ ອາໂລອຈຸລິ	 Insid Viela Void Rato 	οπητά να εφαιρικά του για του Elastisite Mod010	Incito nossio	01933 1-200-4	o Example Basing Di avissing Compressive :	 iside Yük İndeksi iside Yük İndek 	We Cook	000 Devis	nssori oprant Cenerr opran solles la Con	bosb plauag runnafag o ag piggs um/gauga	iyonə Deiveli nəlilə İzəT eul Benəlçiyi	yeû prise8 unos no dîportîs evîssangin	lool."b/(b-") ions suint Kay	iyened smirjed sb Ites Durability Test	ivitikes? sgorpA liss iniveT elloY isseyn		
Net Net <td>Image <th< td=""><td>Model Second<</td><td></td><td>ε</td><td>We</td><td>n,</td><td>P,</td><td>G,</td><td>0</td><td>1</td><td></td><td>0</td><td>2</td><td>v</td><td>0</td><td>1⁸⁽⁵⁰⁾</td><td></td><td>NI IS</td><td>NP 10 18</td><td>N) 90 14</td><td>n</td><td>20 0</td><td>0)]</td><td>ns</td><td>A A R</td></th<></td>	Image Image <th< td=""><td>Model Second<</td><td></td><td>ε</td><td>We</td><td>n,</td><td>P,</td><td>G,</td><td>0</td><td>1</td><td></td><td>0</td><td>2</td><td>v</td><td>0</td><td>1⁸⁽⁵⁰⁾</td><td></td><td>NI IS</td><td>NP 10 18</td><td>N) 90 14</td><td>n</td><td>20 0</td><td>0)]</td><td>ns</td><td>A A R</td></th<>	Model Second<		ε	We	n,	P,	G,	0	1		0	2	v	0	1 ⁸⁽⁵⁰⁾		NI IS	NP 10 18	N) 90 14	n	20 0	0)]	ns	A A R
Not 2000 102 102 000 102 000 010 <td>Not Discription Distreadinterminant Discription</td> <td>Not 10-3 <th1< td=""><td></td><td></td><td>8</td><td>g/cm³</td><td>g/cm³</td><td></td><td>•</td><td>*</td><td>W 9</td><td>Pa Gp</td><td>0</td><td>MPa</td><td>•</td><td>MPa</td><td>*</td><td>*</td><td>%</td><td>*</td><td>MB</td><td>MPa</td><td>3</td><td>8</td><td></td></th1<></td>	Not Discription Distreadinterminant Discription	Not 10-3 <th1< td=""><td></td><td></td><td>8</td><td>g/cm³</td><td>g/cm³</td><td></td><td>•</td><td>*</td><td>W 9</td><td>Pa Gp</td><td>0</td><td>MPa</td><td>•</td><td>MPa</td><td>*</td><td>*</td><td>%</td><td>*</td><td>MB</td><td>MPa</td><td>3</td><td>8</td><td></td></th1<>			8	g/cm ³	g/cm ³		•	*	W 9	Pa Gp	0	MPa	•	MPa	*	*	%	*	MB	MPa	3	8	
• 4,304,00 1010	··· ··· <td>1 4,504,00 1306 <t< td=""><td>SK-5 KAROT</td><td>2,80-3,00</td><td></td><td>1.972</td><td></td><td></td><td></td><td></td><td>4</td><td>80</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<></td>	1 4,504,00 1306 <t< td=""><td>SK-5 KAROT</td><td>2,80-3,00</td><td></td><td>1.972</td><td></td><td></td><td></td><td></td><td>4</td><td>80</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	SK-5 KAROT	2,80-3,00		1.972					4	80													
• 7.3.1/0.0 1.84 0 3.9 3.9 1	··· ··· <td>··· ···· ······ ······ ······ ······ ······· ······· ········· ········ ·········· ············ ····································</td> <td>:</td> <td>4,50-4,90</td> <td></td> <td>1.936</td> <td></td> <td></td> <td></td> <td>-</td> <td>4</td> <td>9</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>	··· ···· ······ ······ ······ ······ ······· ······· ········· ········ ·········· ············ ····································	:	4,50-4,90		1.936				-	4	9						-						1	
• 9.00-300 2005 <t< td=""><td>• 0.00400 0.004 0.00 <!--</td--><td>• 9.00.400 2.005</td><td></td><td>7,50-7,80</td><td></td><td>1,834</td><td></td><td></td><td></td><td></td><td>0</td><td>6</td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>T</td><td>t</td><td></td></td></t<>	• 0.00400 0.004 0.00 </td <td>• 9.00.400 2.005</td> <td></td> <td>7,50-7,80</td> <td></td> <td>1,834</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>6</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>T</td> <td>t</td> <td></td>	• 9.00.400 2.005		7,50-7,80		1,834					0	6	-	-									T	t	
• 1050105 196 1 0	• 100:0106 1966 1 1 1 00:01 0 1 0	• 10.60-10.65 1386		9,00-9,20		2,025			-		2	4		-			-	+						T	
• 12.80-13.00 2.000 2.000 2.000 2.000 2.001 <	• 120-1300 2000 100 51	- 12.061300 2000 5.1 5.	:	10,50-10,65		1,996				-	-	-	-	_		0,10		-	_			1		T	
··· (4.80-14.80) 2.044 0 5	• 1	• 14,00-14,50 2,04 0 5,7 0		12,80-13,00		2,000				-	S	-	-					-							
- 16, 70-16, 66 2015 - 9, 0 9, 0 0 <td>** 18,70-16.85 2013 ··· 10,70-16.85 2013 ··· 40 70 <th< td=""><td>····································</td><td>•</td><td>14,60-14,80</td><td></td><td>2,044</td><td></td><td></td><td></td><td>-</td><td>5</td><td>7</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>t</td><td>T</td><td>1</td></th<></td>	** 18,70-16.85 2013 ··· 10,70-16.85 2013 ··· 40 70 <th< td=""><td>····································</td><td>•</td><td>14,60-14,80</td><td></td><td>2,044</td><td></td><td></td><td></td><td>-</td><td>5</td><td>7</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>t</td><td>T</td><td>1</td></th<>	····································	•	14,60-14,80		2,044				-	5	7	-					-					t	T	1
image 1800-18.25 1.575 1.575 4.6 4.7	•• 18.00-18.26 1.978 ·· 1.978 1.978 1.978 1.978<	··· 18,00-18,25 1,978 ··· 4,6 4,6 4,6 4,6 1 1 0 1 1 0 1 <th1< <="" td=""><td></td><td>16,70-16,85</td><td></td><td>2.015</td><td></td><td></td><td></td><td></td><td>6</td><td>0</td><td>-</td><td></td><td></td><td></td><td>1</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th1<>		16,70-16,85		2.015					6	0	-				1	-							
···· 18.65-19.60 2071 (··· 18651836 2071 2071 2071 2071 1 <td>···· 1865-13,00 2,011 0 5,1 0</td> <td></td> <td>18,00-18.25</td> <td></td> <td>1.975</td> <td></td> <td></td> <td></td> <td>H</td> <td>4</td> <td>æ</td> <td>-</td> <td></td> <td></td> <td></td> <td>T</td> <td>+</td> <td></td> <td></td> <td></td> <td>t</td> <td>t</td> <td>T</td> <td></td>	···· 1865-13,00 2,011 0 5,1 0		18,00-18.25		1.975				H	4	æ	-				T	+				t	t	T	
" 21.10.21.35 2.053.00 2.053 (13) (13) (13) (13) (13) (13) (14)	" "	··· ··· <td></td> <td>19,65-19,80</td> <td></td> <td>2,071</td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>1</td> <td>-</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td>		19,65-19,80		2,071					5	-	-				1	-				1			
" 22,50-24,00 2193 [55 [57 [1 [1 <th1< th=""> <th1< th=""> 1</th1<></th1<>	•• 1 22.50-24.00 2.193 1 5 5 1 <th1< th=""> <th1< th=""> <th1< th=""> <</th1<></th1<></th1<>	* 22,502,400 2193 5 5,5 7 9		21,10-21,25		2,053				-	4	0	-	-			-	+	-			+	T	1	
" 24.00-25.00 2005	•• • 24.00-25.00 2.005 2.000-35.00	* 24.00-35,00 2.005 <		22,50-24,00		2,193			-	-	5.	5						-	_				T		
" 26.00-36.30 2.044 5 5 5 7	" " 26.00-36.30 2.04.4 1 5,1 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	····································		24.00-25,00		2.005							-			0.12	-	-							
" 26.80-27.00 2.243 7.4	" 26.60-27.00 2.243 7.4 <th< td=""><td>····································</td><td></td><td>26,00-26,30</td><td></td><td>2.044</td><td></td><td></td><td>-</td><td></td><td>5.</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td>t</td><td>T</td><td>T</td><td></td></th<>	····································		26,00-26,30		2.044			-		5.						-	-				t	T	T	
" " 30,00-31.50 2.166 4.7 4.7 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	" " 30.00-31.50 [2.166] [3.17] [4.7] <t< td=""><td>" " 30.00-31.50 2.166 4.7 4.7 " " 30.00-31.50 2.166 4.7 1</td><td></td><td>26,80-27,00</td><td></td><td>2,249</td><td></td><td></td><td></td><td>-</td><td>7.</td><td>4</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></t<>	" " 30.00-31.50 2.166 4.7 4.7 " " 30.00-31.50 2.166 4.7 1		26,80-27,00		2,249				-	7.	4						-					1		
" 32.00-32.50 2.166 (1) (4) (4) (1)	" 32.00-33.50 2.168 1 4.8 4.8 1	" 32,00-37.50 2,166 4,8 4,6 1 <th1< th=""> <th1< th=""> 1</th1<></th1<>		30,00-31,50		2.166				-	4	2							-					T	
" " " " " " " " " " " " " " " " " " "	" " 33.00-34.50 2.394 [5.3] [5.3] [5.3] [7.4] [" 33,00-34,50 2,394 5.3 5.1 " 36,00-37,50 2,322 5,5 1	•	32,00-32.50		2,186				-	4	80					-	-					T	1	
" " 36,00-37,50 2,232 5.5 5.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	" " 36.00-37,50 2.232 [5.5] IM JANUAR / REMARKS. Statemarks. IN avoid diricy for the first minimum sector with mean according dry TURKAK.	" 36,00-37,50 2,232 5,5 5,5 5,5 5,5 5,5 5,5 5,5 5,5 5,5 5,		33,00-34,50		2,394				-	ů.	0	-				-	-					t	T	T
	IXIAMALAR / REMARKS;) Is moved densigning transladed a breads and refer a munited with (7) are secretated by TURKAK. Side a formula densigning transladed a breads a breads a density of the pacter and a secretated by TURKAK. Side stransladed a breads a bread a bread a bread a density of the pacter and a secretated by TURKAK.		:	36,00-37,50		2,232					5.	10					-					T			
HILLMALAR REPARKS.	IKLAMALAR / REMARKS. 1 be represented in an ender of the media manual wing if year eccreding by TURKaK. 2 be represented densigning that and on the media manual of the media manual wing if year eccreding by TURKaK. 3 be represented and young the media manual of the media manual of the media manual wing the production of the media manual of												-											T	
	Jue represented encrypter 1 OverAcute Institution in broadcale in the stat municipation of y 1U/R/Latic. 10.06 Participation of the state municipation of the statem	CHLIMMALAR REFARMENCS.	IKLAMALAR / REMARKS:																						

EK-4. Laboratuvar Deney Sonuçları

	A8-0858-T	6489	11-18	TS 699 TS 2517	ujuisoj	iyene Damlığa Dabuğ Teet Vitidaru U visio Vitidaru U visio Vitidaru Visio IniyaT alloY lasaymi	ASR	ĸ																						
TC. Incluse concuto				TS 659	Erd of Frost Åi	Conpressive Strength Don Somu Basing Kay [(0,-d)], [00]	a _r	iPa %				_					_						_	-	-	-				
CEVRE VE BU	27.09.201		6489	S EN 933-	. !	iyonad leivuM nalijaM SoT oul8 onsiytsaM Ved ames8 uno2 nod	-	MB											-				-	1	T	t				
				TM C 88	k Deneyleri *	(FOS ^S R) Ivened unter and Magnetyten Sältet M	3	ĸ																						
			\$	SV.	Sağlamlı	Dayaime Sether its Don Sodyum Sether its Don	3	¢.									_		_						+	_	_			
	ne Geliş Tarihi e Arrival Date Tarihi	Date Lo Dece No.	y Rog No atuvar Kayti N	e giviration No. 97-2 C 131	irenci Tayini Yöntemi) *	1600 Denir	3	2		_		-	_				_		-				_	-	+	+	+			
	Numu Samp	Report	Minist Labor	TS 10 TS 10 ASTM	Parçalanma D (Los Angelei	100 001	3	*																+	+	+	+			
om.tr				TS 659		Pokta Yük Indeks •	1 ₈₍₅₀₎	MPa	0,10	0.11	0.10	0,10	0,10	0,12	0,10	0,10	0,10	0,10	0,11						T					
2 kayazemin.co 1 (KAYA) ROCK)				S 699	y.Dencyi Izel (foreti	Uę Eksengroci lassing Da S evissengroci lassini S	÷	•																						
-posta: inlo@ DNUÇLAR ESULTS (I				1 1		OLEN LOSSIN	0	MPa			_											_	_	_	+	-	-			
TOPLU SI			SI	2030 TS 2		Polason Orani	9	pa				-				-	-		-	-	-	-		+	+	+	+			
Aks: 0 312 4 R DENEY			ANTI PROJE	S EN TS	usuas	 Oritation Compressive Oritation Compressive Oritation Moduli 	8	APa G			-						-			6,3	4,8	5.4	5,0	-	+	+	+		81	
475 55 18 1 RATUVAI 10RATOR	ROJE		ILER VARY.	ISRM 192	1.000	. etizora fueseqqi Appearant Paravit		%					-												+	1	1		o the laborato	I little Branning
efon: 0 312 LABO LAB	ENIZLER P		YOLU EVC	ISRM	145;0)	 emm3 u2 squitugA N yá notidnosáA tetsW 	ľ	8																	T				Nes brought f	
0			R-EDREMIT	ISRM		• ликто Иофеов Void Redo	θ	•																					AK. timental samp r-voled and re	mauding
			BALIKES	ISRM		 kihiğA lügzÖ	G,	·																					ted by TURK / to the exper-	
				ISRM		ΟΥ Deosity Κυια Yoğunluk *	Ye	s g/cm ³	2	0	2	-	9	0	2	10	10	80	5	0	-	5	-	_	+	+	_		(*) are accred its befong only the test result	
				15 ISRM		улица силород	J.	g/cm	1,89	1,84	1,84	2,30	1,83	2.34	1.82	1,80	2,09	2.29	1,99.	1,99.	1,96	1,99.	1,97	_	-	-	-		The test result	
				TS 851		, iservatin us	w,	%									_						_	-	+	-	-		r. / The texts : letine aittir, / 1 'amaz ve cod	
					Destin11k Use0th		E		3,00	5,50	8.70-9.00	9,00-9,20	11,80-12,00	12,20-12,35	12,50-12,70	15.00-15,10	15, 15-15, 30	19,60-19,75	21.15-21,30	21,90-22,30	24,30-24,70	30,50-30,90	33,50-33,90						i akredite ofmuşlardır. dilen deney numunel dan kismen kopyalar	· · · · · · · · · · · · · · · · · · ·
NIN I						oN XentÖ OV 9lqma2			KAROT				:		,				,		r							MARKS:	r TURKAK tarafındar muçları sadece test a ratuvarımız izni olma	
WIN	a Adi pany Namo	numu fund	e Adi hot Name	ER		oli ÇA i urçuX Oli 19.1 i oldanoB			SK-6		:		:	:		:				r								KLAMALAR / RE) ile işaretli deneyle. 52 konusu deney so eney sonuçları faco	
March Contract </th <th>KAYA - ZE</th> <th>NiM</th> <th></th> <th></th> <th></th> <th></th> <th>-</th> <th>Y</th> <th>K sjamkent M on: 0 3124 LABOF LABOF</th> <th>YYA ZEMIN ah. 3149.So 75 58 18 Fa (ATUVAR)RATORY</th> <th>MÜHENDIS Aak No:19 (Aks: 0 312 4 DENEY 1 TESTS V</th> <th>SLIK ve TIC Zayyolu Çar 75 58 14 e TOPLU Si</th> <th>ARET LTD. hkaya 06810 -posta: info ONUGLAR ESULTS</th> <th>. ŞTİ. 0 Ankara-Tü 0@kayazemi 0@kayazemi 1@CK)</th> <th>rkiye n.com.tr)</th> <th></th> <th></th> <th></th> <th></th> <th>CENTR</th> <th></th> <th>Hặg</th> <th>(f)</th> <th>OZO</th> <th></th>	KAYA - ZE	NiM					-	Y	K sjamkent M on: 0 3124 LABOF LABOF	YYA ZEMIN ah. 3149.So 75 58 18 Fa (ATUVAR)RATORY	MÜHENDIS Aak No:19 (Aks: 0 312 4 DENEY 1 TESTS V	SLIK ve TIC Zayyolu Çar 75 58 14 e TOPLU Si	ARET LTD. hkaya 06810 -posta: info ONUGLAR ESULTS	. ŞTİ. 0 Ankara-Tü 0@kayazemi 0@kayazemi 1@CK)	rkiye n.com.tr)					CENTR		Hặg	(f)	OZO						
--	--	--------------------------------------	--	---------------------------	----------------------------------	-------------------------------	--	---	---	---	---	--	---	--	---	----------------------	--	------------------	---	---------------------------------------	--	-----------------------------------	---	--	---					
	Firma Adi Conpany Name							DE	NİZLER PR	DJE						ar 0) [0:	lumune Geliş T angde Arrival D apor Tarihl	irihi da	$\left \right $	27	7.09.2018		AB-	0858-T						
	Proje Adr Project Name						BALIKESIR-	EDREMIT Y	OLU EVCIL	ER VARYAI	NTI PROJES						report Date akantık Rapor Smistry Reg. No	9	+					\$489						
	Yöntem						-									1	aboratuvar Ka ab. Registration	tt No No.			6489			1-18						
	Method			TS 8615	ISRM	ISRM	ISRM	ISRM IS	SRM IS	RM 19264	EN TS 20	030 TS 20	30	TS 699	TS 699	~ ~	S 1097-2 STM C 131		ASTM C 83	TS EN 90	33- T	8 699	TS 699	TS 2517	-					
			Derintlik						цбјем	, numeyed	სენსიკვ ი			kanadiya teaT itipnati		Parçalan (Los Ang	ma Direnci Tay jeles Yõntem)	ni Sağl	mlik Deneyleri		פוטק סן צימפן שעושו	Iq		niniesi	T					
Image: mark and the second of the s	oN 2A1 vyuX oN 19.1 V alodenoB	oM AomÖ oM elqme2	Cepth	* Indexed and the Content	Vessey Vessey	ON Deusity Kuru Koğuntuk •	 MituğA lügsÖ Yinsiö olionq2 	 Imit O kulęo B Ode R bioly Ode R bioly Ode R bioly 	Vahor Absorbton by 9000000000000000000000000000000000000	fek Eksenii Basing Vison? Provid	Midatal Compressive	subcon gruci Insto nessio	0584 10000	ອາເອະສຸດີ ເປັດອະນຸລີ ອີ ອາເອະລຸດປະດາດ ເອົາອາເອັ	• isslebel köt stilo xebri bool trio	NABC 00	1/10 [0/1	not of bills myb	j favag numering o al strang marked al strang	idikene Biua Test Mykene Biua Test	yeQ quiceB uno2 n YeQ quiceB uno2 n	(001°,µp/,µp-, nno2 n no2 n	iyeneg smirjed så fra Doğrima Deneyi foot	hvitAseA sgergA lis iniysT slloY leseyn						
1 1			ε	Wn	j/n	Yd	G,	e	-	ď		2	U	e	1. (50)		05	05	•0 •N	974 989	00 0	o0	#IS ms	MA 4	-					
with with <th< td=""><td></td><td></td><td></td><td>%</td><td>g/cm³</td><td>g/cm³</td><td></td><td></td><td>*</td><td>MP</td><td>a Gp</td><td>9</td><td>MPa</td><td>•</td><td>MPa</td><td>S²</td><td>*</td><td>3</td><td>8</td><td>MB</td><td>MPa</td><td>*</td><td>3</td><td></td><td>-</td></th<>				%	g/cm ³	g/cm ³			*	MP	a Gp	9	MPa	•	MPa	S ²	*	3	8	MB	MPa	*	3		-					
0 0.00-000 1.001 0.00 1.001 0.00 0.001 0.	SK-7 K	AROT	37,50-40,00		1,869			-	-						0,10		-	-	-						-					
• 0 0.00000 1.000	t		40,60-42,00		1,801			-	-	3,	4						F	-	-						-					
• 0.30400 109 109 109 109 109 109 100 <th< td=""><td></td><td></td><td>42,00-43,00</td><td></td><td>1,806</td><td></td><td>-</td><td></td><td></td><td>4.0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>+</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td>-</td></th<>			42,00-43,00		1,806		-			4.0	0						-	+	-						-					
• (400400 203 0.03	£		43,30-43,50		1,979					4.5		-						-	-	-										
	:		44,00-44,40		2.023					6,3		-					t	+		1										
Image: Sector									-	-	-	-	-			T		+	+	+										
Image: Sector							T	-	-	-	-	+				T	1	+	-											
Image: Sector							T	+	-	-	+	-					+	+	+	_										
Image: Sector						T	-		-	-	+	+	+	1		1	t	+	_											
Image: Sector							t	t	┝	+	+	+	-				+	+	+											
1. If a final dimensional statements of the statement of the							T	t	+	+	+	-	+				+	+	-											
Image: Second second							1	t	+	+	+	-	-			T	t	+	+											
Image: Second state in the second s							1	t	+	-	+	-	-			T	t	-	+	_					_					
Image: Second second											-	-	_			T	+	+	+											
Click AMALAIX FREMARKS: Click State and and with T/ and according the production of the prod								-	-	-	-					t	+	-	1											
Citized AmALAR FREMARKS. Citized and may international and market of the second state and and market of the second state and and and second and and and and and and and and and a											-	-	-			t	+	+							_					
CICK AMAL NF REMARKS. CICK AMAL NF REMARKS. CICK AMAL NF REMARKS. CICK AMAL NF REMARKS. C1: % spatial density in TIRKOK traitment of the secondited by TURKAK. CICK and the secondited by TURKAK. C1: % spatial density in TIRKOK traitment of the secondited by TURKAK. CICK and the secondited by TURKAK. C1: % spatial density in TIRKOK traitment of the secondited by TURKAK. CICK and the secondited by TURKAK. C1: % spatial density in the secondited by TURKAK. CICK and the secondited by TURKAK. C1: % spatial density in the secondited by TURKAK. CICK and the secondited by TURKAK. C1: % spatial density in the secondited by TURKAK. CICK and the secondited by TURKAK. C1: % spatial density in the secondited by TURKAK. CICK and the seconditied by TURKAK. C1: % spatial density in the secondited by TURKAK. CICK and the seconditied by TURKAK. C1: % spatial density in the seconditied by TURKAK. CICK and the seconditied by TURKAK. C1: % spatial density in the seconditied by TURKAK. CICK and the seconditied by TURKAK. C1: % spatial density in the seconditied by TURKAK. CICK and the seconditied by TURKAK. C1: % spatial density in the seconditied by TURKAK. CICK and the seconditied by TURKAK. C1: % spatial density in the seconditied by TURKAK. CICK and the seconditied by TURKAK. C1																T	+	-							_					
CICK AMALAR FREMARKS. CICK AMALAR FREMARKS. CICK AMALAR FREMARKS. Constraint of an operation of the constraint of																	-	-												
CIRK AMALAR / REMARKS. 1. If the sparted demongram to Median demonstration of the finance model of TURRAK. 5. Solutional server your classes test a classification of the second lange by TURRAK. 5. Solutional server your classes test a classification of the second lange by TURRAK. 5. Solutional server your classes test a classification of the second lange by TURRAK. 5. Solutional server your classes test and many municipation of the second lange by TURRAK. 5. Solutional server your classes test and many municipation of the second lange by the second lange and many municipation of the second lange by the second lange by TURRAK. 1. Abordinational at 310 B synth Manue, the Carrent Manual of the Manual of the manual value of the Abording of the Lange and Manual of the second lange and the second lange and the second lange and the second lange and the second lange and the second lange on the Lange of the distribution of the second lange and lange and lange and lange and lange and lange and lange and lange and lange and lange and lange and lan		1					1	+	+	_	_	4																		
(*) for ignetil demojer TURKOK fragitionan abriefer ehruptisch. The fasts manaer with (*) an accredited by TURKAK. 6. eta remote server server server server server and an environment and environment and environment and environment and environment and	ACIKLAMALAR / REMARKS						1		-	_	_	_	_				-	_												
- Bot Xnotical ideation states that is a proving that a set is related and provide a set of each and and provide a set of each and	. (*) ifo işaretli denoylar TURKA	UK tarafından ak	rredite olmuştardır. I The	fests marked	with (") are	accredited b	Y TURKAK.																							
Laborationmer 4706 saysh kantun gereey T.C. Geven ve Schreckik Baanshigh Yapi kjeri Genet Macdangu kantundan waran an ununununun waran kan kan kantun kantan kantun gereey T.C. Geven ve Schreckik Baanshigh Yapi kjeri Genetaucion pata oli Mansum in accordance untu her kan 4708. Duri koondeey has serven number 37 dated 24042000, provided by 7n6 Genetaucion pata oli Mansum in accordance with the Law 4708.	. Soz konusu deney sonuçları s. Deney sonuçları laboratuvarım	sadece test odil niz izni olmadar	en deney numunelerine a 1 kismen kopyalanamaz	ve coĝafulam	it results boli az. I The tes	ong only to th	to experiment	lal samples b d and reprod	rought to the	laboratory.																				
the second and the se	Laboratuvarimuz 4708 sayılı k.	canun geregi T.C	C. Gevre ve Şehircilk Bak	anlığı Yapı İş	lori Genel M	odorloğu tar.	afindan verile	n 28.08.2002	tarih ve 37 N	permission. o'lu laboratur	var izin bolges	une sahiptir.																		
	ner cardennerg crass pretrier snore	ool ar delan ca	NUNZOUZ, provided by In	e General Dir	rectorate of	Construction	jobs of/Anist	y of Einviron	sent and Urb	anism in oco	ordance with I	the Law 470	8																	