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ABSTRACT

PREDICTING DISEASE-GENE ASSOCIATIONS VIA MACHINE
LEARNING

Osman Onur KUZUCU

Master of Science, Computer Engineering
Supervisor: Prof. Dr. Tunca DOĞAN

June 2024, 132 pages

In the quest to elucidate disease etiology and develop advanced diagnostic and treatment

tools, knowing disease-gene relationships is of great importance. Traditional approaches

based on manual curation fall short due to limited scalability and precision. On the other

hand, graph neural networks (GNN) enable the analysis of complex relational data within

biological networks. Although the GNN-based methods developed to date have produced

positive results in predicting unknown biological relationships, there is a current need to

develop new models with high prediction performance and generalisation capabilities for

usability in biology and medicine. In this thesis study, we propose GLADIGATOR (Graph

Learning bAsed DIsease Gene AssociaTiOn pRediction), a deep learning model designed

with the encoder-decoder architecture to predict disease-gene associations. GLADIGATOR

creates a heterogeneous graph that primarily integrates two types of biological components,

genes and diseases, and the connections between them. The model was trained using

gene-gene, disease-disease and gene-disease relationships existing in source biological

databases, as well as protein sequence representations generated by the Prot-T5[1] protein

language model and disease representations generated by the BioBert[2] language model,

as node feature vectors. As the outcome of the analyses conducted, it was observed that
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GLADIGATOR had superior prediction accuracy. Additionally, the model was positioned

as the highest performer among 14 different disease-gene association prediction methods.

Literature-driven studies on selected predictions have confirmed the biological relevance of

predicted novel associations and highlighted the effectiveness of the GNN-based approach

in identifying potential candidate genes for specific diseases. These results may provide

valuable information for discovering new drugs as a result of future experimental validation

analyses. GLADIGATOR has not only enriched computational approaches developed

for disease-gene association prediction but also emphasised the transformative abilities of

GNNs in biomedical research by potentially accelerating the discovery of new biological

relationships.

Keywords: disease gene association prediction, biological graph, machine learning, graph

neural networks
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ÖZET

MAKİNE ÖĞRENMESİ İLE GEN-HASTALIK İLİŞKİSİ TAHMİNİ

Osman Onur KUZUCU

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Tunca DOĞAN

Haziran 2024, 132 sayfa

Hastalık etiyolojisini aydınlatma ve ileri tanı ve tedavi araçları geliştirme arayışında,

hastalık-gen ilişkilerinin bilinmesi büyük önem taşımaktadır. Manuel kürasyona dayalı

geleneksel yaklaşımlar, sınırlı ölçeklenebilirlik ve hassasiyet nedeniyle yetersiz kalmaktadır.

Öte yandan, çizge sinir ağları (ÇSA), biyolojik ağlar içindeki karmaşık ilişkisel verinin

analizini mümkün kılmaktadır. Bugüne kadar geliştirilmiş olan ÇSA tabanlı yöntemler

bilinmeyen biyolojik ilişkilerin tahmini konusunda olumlu sonuçlar üretmiş olsa da, biyoloji

ve tıp alanlarında kullanılabilirlik için tahmin performansı genelleme yetenekleri yüksek

seviyede olan yeni modellerin geliştirilmesine ihtiyaç duyulmaktadır. Bu çalışmada,

hastalık-gen ilişkilerini tahmin etmek için kodlayıcı-kod çözücü mimarisi ile tasarlanmış

bir derin öğrenme modeli olan GLADIGATOR’u (Çizge Öğrenme Tabanlı Hastalık Gen

İlişkilendirmesi) öneriyoruz. GLADIGATOR, öncelikle genler ve hastalıklar olarak iki

biyolojik bileşen tipini ve aralarındaki bağlantıları entegre eden heterojen bir çizge

oluşturur. Model, kaynak biyolojik veri tabanlarında mevcut gen-gen, hastalık-hastalık

ve hastalık-gen ilişkilerinin yanı sıra Prot-T5[1] protein dil modeli tarafından oluşturulan

protein dizi temsillerini ve BioBert[2] dil modeli tarafından oluşturulan hastalık

temsillerini düğüm özellik vektörleri olarak kullanılarak eğitilmiştir. Yapılan analizlerde,

GLADIGATOR’un üstün tahmin doğruluğuna sahip olduğu gözlenmiştir. Ayrıca, model,
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14 farklı hastalık-gen ilişki tahmini yöntemiyle karşılaştırıldığında en yüksek performansı

sergileyen model olarak konumlanmıştır. Seçili gen-hastalık tahmin örnekleri üzerinde

yapılan literatür odaklı çalışmalar, tahmin edilen yeni ilişkilerinin biyolojik uygunluğunu

doğrulamıştır ve belirli hastalıklar için potansiyel aday genlerin belirlenmesinde ÇSA

temelli yaklaşımın etkinliğinin altını çizmiştir. Bu sonuçlar, ileride gerçekleştirilecek

deneysel doğrulama analizleri sonucunda, yeni ilaçların keşfedilmesi için değerli bilgiler

sağlayabilir. GLADIGATOR yalnızca hastalık-gen ilişkisi tahmini için geliştirilen

hesaplamalı yaklaşımları zenginleştirmekle kalmamış, aynı zamanda da yeni biyolojik

ilişkilerinin ortaya çıkarılmasını potansiyel olarak hızlandırarak biyomedikal araştırmalarda

ÇSA’nın dönüştürücü yeteneğini vurgulamıştır.

Anahtar Kelimeler: hastalık gen ilişki tahmini, biolojik çizgeler, makine öğrenmesi, çizge

sinir ağları
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1. INTRODUCTION

The modern healthcare industry is witnessing a paradigm shift, driven by the synergy of

science and technology. This shift is evident in the evolution of healthcare practices, marked

by the introduction of innovative devices and treatment methods [16]. As a result, continuous

innovation in the healthcare industry becomes a crucial factor for sustaining life [16].

A disease is defined as a condition that interferes with the body’s normal physiological

functions [17]. Diseases can be of various types and are often the result of multiple factors.

Infections, genetic predisposition, environmental factors, dietary habits, lifestyle factors, and

immune system issues can contribute to disease development [17]. The treatment methods,

such as medication, surgery, physical therapy, dietary and lifestyle changes, depend on the

type, severity, and cause of the disease [18]. Strategies like vaccination, healthy diet, regular

exercise, hygiene practices, and avoiding risky behaviors are employed to prevent disease

development or minimize risk factors [18].

Diseases caused by one or more mutations in an individual’s genetic material are referred

to as diseases of genetic origin [19]. These diseases are often linked to genetic traits that

are inherited from parents to children [19]. Genetic diseases can present in various ways,

and their symptoms, severity, and progression can differ significantly from one disease to

another [20]. These mutations can impact or alter the production of proteins that affect the

body’s normal function. For example, in cystic fibrosis, mutations in the CFTR gene disrupt

the body’s normal mucus production and can cause serious problems in the respiratory and

digestive systems [21]. Genetic testing plays a crucial role in identifying individuals who

are susceptible to certain genetic diseases and can also aid in diagnosing, treating, and

preventing diseases [22]. Research is ongoing to better understand genetic diseases and

develop treatments [23].

An understanding of the genetic mechanisms of this disease provides valuable insights into

the pathophysiology of this disease. This allows for the development of potential treatment

strategies and improvement of existing treatments [23]. For example, targeted treatments can
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be developed based on a specific genetic mutation, or the diseased gene can be repaired or

replaced using gene editing techniques [23].

Identifying the genetic causes of genetically based diseases also plays an important role

in determining family disease risk and personalizing health management strategies for the

individual [22]. This helps patients and their families understand their risks and protect their

health by taking preventative measures if necessary [22].

Understanding the underlying genetic causes of diseases of genetic origin contributes to

scientific research and medical knowledge [23]. This sets the direction for future research

and treatment developments, guiding efforts to prevent and treat future diseases. Therefore,

identifying the causes of genetic diseases is an important step to improve the quality of life

of patients and improve public health [23].

Machine learning, a part of artificial intelligence, enables computers to learn from data. It

employs algorithms to find and forecast patterns from a large amount of data [24]. These

algorithms learn by studying features and relationships in a dataset and try to predict future

data or make decisions based on the information gained from these studies [24]. This

sub-field of the artificial intelligence is applied in classification, regression, clustering,

dimensionality reduction, bounded space, and many other areas [24]. For instance, a

classification problem seeks to assign a data sample to a specific class, while a regression

problem seeks to predict a continuous output based on the data. Clustering seeks to separate

data points into groups based on similarities [24].

Machine learning models are applied in a variety of areas, such as healthcare, finance,

automotive, retail, security, and more [24]. For instance, the algorithms are successfully

used in disease diagnosis and treatment, stock price prediction, autopilot systems for car

drivers, customer segmentation, and personal assistants etc. [24].

In the realm of data science and artificial intelligence, algorithms are undergoing rapid

evolution [24]. These evolving algorithms are constantly improved and optimized to solve

more complex problems and make more accurate predictions. As a result, this area is having
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a huge impact on many aspects of modern technology and is expected to become even more

popular in the future [24].

In the realm of healthcare, researchers are developing models to predict disease-gene

associations and enhance disease diagnosis. Leveraging large datasets, this field excels

at uncovering patterns and relationships, making it a potent tool for disease prediction.

[24]. Learning models can gather information from various data sources to predict diseases.

Various sources, such as databases, patient records, test results, imaging scans, and genetic

data, can be used to train these models and improve their accuracy. Analyzing this data can

identify specific symptoms or disease risk factors, which may be essential for early diagnosis

and treatment.

Prediction of disease-gene association is important for drug design, penalization healthcare

etc. This healthcare transformation can improve the quality of life of patients and increase

the efficiency of the healthcare system by providing new opportunities for better disease

management and healthcare [25].

1.1. Scope Of The Thesis

This thesis delves into the utilization of graph convolutional networks (GCNs) for predicting

disease-gene associations. The research encompasses several key areas:

The initial phase of the research involves Data Collection and Preprocessing. Heterogeneous

biological data, encompassing gene sequences, disease phenotypes, and established

disease-gene associations, were gathered from public repositories and databases that

everybody can access. It is aimed for researchers to conduct research on these datasets and

easily compare the methodologies they have developed. Data preprocessing techniques are

employed to maintain data quality and uniformity.

The subsequent phase of the research is centered on the Graph Construction. The amassed

biological data were utilized to create a heterogeneous graph representation. Graph

data structures were intended to be used in this research because they contain relational
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information. In this graph, nodes symbolize genes and diseases, while edges represent the

relationships between them. Various graph construction strategies to encapsulate different

types of biological interactions and associations were explored in this research.

The core objective of this thesis is Model Development. The aim is to design and implement

a novel GCN-based framework for predicting disease-gene links. The model’s architecture

incorporates an encoder-decoder structure, facilitating the extraction of informative latent

representations from the heterogeneous biological graph data. The research will pay special

attention to optimizing the model parameters and selecting suitable hyperparameters to boost

predictive performance.

The next phase is Evaluation and Validation. The performance of the proposed GCN models

were thoroughly evaluated using standard metrics for binary classification tasks, such as the

area under the receiver operating characteristic curve (AUC-ROC) and precision-recall curve

analysis. Furthermore, the biological relevance of the predicted disease-gene associations

will be validated through a literature review and comparison with existing biomedical

knowledge.

The thesis also includes Case Studies and Applications, demonstrating the practical utility

of the proposed GCN models in predicting novel disease-gene associations. The aim of this

part, the identified candidate genes were analyzed to shed light on their potential roles in

disease pathogenesis and therapeutic targeting.

Finally, the thesis concludes with a discussion on Future Directions and Implications. This

discussion highlights potential future research directions and implications arising from the

proposed GCN-based approach. Areas for further investigation include the exploration of

advanced graph neural network architectures, integration of multi-omics data modalities, and

extension to other biomedical applications such as drug repurposing and precision medicine.

The discussion underscores the implications of the research findings for advancing our

understanding of disease biology and accelerating translational research efforts.
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In summary, this thesis seeks to further the development of computational methods

for predicting disease-gene associations and to offer valuable insights into the intricate

relationship between genes and diseases in the context of precision medicine and biomedical

research.

2. CONTRIBUTIONS

This thesis introduces several advancements in the field of disease-gene association

prediction using machine learning. The first advancement is the introduction of a Feature

Selection. This innovative approach is created to select relevant features from genomic data,

enhancing the accuracy of disease-gene association prediction models.

The second contribution of this thesis is the exploration of Deep Learning Architectures

and their Encode-Decode Operations for disease-gene association prediction. It delves

into the application of various deep learning architectures, including graph neural networks

(GNNs) and graph convolutional networks (GCNs), to genomic data. These architectures

are renowned for their ability to capture complex patterns and are used to extract significant

insights from gene expression data, thereby enhancing the predictive performance of the

models.

The third contribution of this thesis is the Refinement of Evaluation Metrics. AUC-ROC and

Pr-Auc values constitute the performance parameters in relationship prediction models. In

this study, popular evaluation measurements such as accuracy and F1 score were used. These

measurements have been carefully adapted to the context of disease-gene prediction. These

adapted metrics provide a more nuanced assessment of model performance specific to this

domain.

The fourth contribution of this thesis is the Application to Real-World Data. The proposed

approach is applied to the dataset. The predicted results of the relationships in this data set

and in the section reserved for testing are compared with the real results. Comparison results

highlight the effectiveness of the method in identifying potential disease-gene associations.
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In conclusion, this thesis enhances the understanding of disease-gene associations and

provides practical insights for researchers and clinicians in the field of personalized medicine.

2.1. Thesis Structure

This thesis is structured as follows:

• Chapter 1 elucidates the motivation, contributions, and the scope of the thesis.

• Chapter 2 offers an overview of the fundamental concepts related to genes, diseases,

and machine learning.

• Chapter 3 presents a review of the existing literature on disease-gene association

prediction.

• Chapter 4 details the methodologies employed in this research.

• Chapter 5 showcases the results derived from this research.

• Chapter 6 provides a discussion on the outcomes of the proposed methods.

• Chapter 7 concludes the thesis and suggests potential avenues for future research.
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3. BACKGROUND OVERVIEW

3.1. Data

3.1.1. Genes

Genes, often the carriers of an organism’s hereditary traits, are molecular entities [26].

In organisms, genetic information is stored in chromosomes. DNAs are found in these

chromosomes. Genes are embedded in DNA molecules. They regulate numerous biological

processes throughout the life of the organism. Figure 3.1 summarizes the flow of genetic

information from chromosomes to genes.[27].

Figure 3.1 Chromosome to Gene Sequence[4]

The primary functions of genes encompass:

- Coding for protein synthesis within the cells of the body. This involves the conveyance

of genetic information from DNA to RNA, known as transcription, and subsequently from

RNA to protein, referred to as translation [26].
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- Regulating the activity of other genes within the body, thereby controlling specific cellular

processes and overseeing crucial functions such as development, growth, and the organism’s

response to environmental conditions [27].

- Determining the inherited traits of the organism. The parents’ genetic material defines the

child’s genotype and phenotype and is transmitted to the next generation [26].

- Contributing to genetic diversity and evolutionary changes among species. Processes like

mutation, genetic recombination, and natural selection result in alterations in the gene pool,

leading to species evolution over time [27].

The structure and function of genes are central to genetic research, and genetics has

significant applications in various fields, including medicine, agriculture, environment, and

biotechnology.

A genetic sequence is a particular order of nucleotides present in an organism’s DNA or

occasionally RNA. DNA is composed of four distinct nucleotides: adenine (A), thymine

(T), guanine (G), and cytosine (C), as shown in Figure 3.2. In RNA, uracil (U) replaces

thymine [28].

Each gene, a DNA sequence, encodes a specific characteristic or function of an organism.

Genetic sequences hold genetic data that significantly influence an organism’s growth,

development, and functionality [28].

Genetic sequences are pivotal in genetic research and molecular biology. They aid in

identifying particular genes, analyzing gene expression, diagnosing genetic diseases, and

determining species relationships. Technological advancements have made gene sequencing

techniques faster and more sensitive, enabling a more thorough and detailed examination of

gene sequences. This progress has broadened the scope of genetic sequencing applications

in numerous fields, including medicine, agriculture, environment, and biotechnology [29].

The association between genes and proteins is a fundamental concept in molecular biology.

It refers to the process by which genetic information is used to produce proteins in an
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Figure 3.2 DNA Sequencing Sample [5]

organism’s cells. Genes, which are specific segments of DNA, carry the instructions for

the cellular functions of an organism. Proteins, on the other hand, are responsible for the

structure of the body and act as catalysts for various biochemical reactions [30].

The process by which genes contribute to protein synthesis is known as the central dogma

of molecular biology. This process involves three main steps. In the first step, the DNA

sequence of a gene is transcribed into an RNA molecule, known as messenger RNA (mRNA),

by an enzyme called RNA polymerase.

In the second step, the transcribed mRNA molecule undergoes further modifications to

become a mature mRNA molecule. This involves processes such as the splicing of the start

and stop sequences of the mRNA (kappa) and the removal of non-coding sequences known

as introns (splicing).

In the final step, the mature mRNA molecule interacts with cellular structures known as

ribosomes. The ribosomes recognize specific sequences, known as codons, in the mRNA
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molecule. These codons dictate the exact sequence of amino acids that the ribosome

synthesizes. During this process, the amino acids are linked together to form polypeptide

chains, which eventually fold into functional proteins. This process is illustrated in Figure

3.3.

Figure 3.3 Protein Synthesis Mechanism [6]

Through this process, the genetic information encoded in DNA is translated into proteins via

mRNA. These proteins can serve various roles in the body, from providing structural support

to acting as catalysts for biochemical reactions. The association between genes and proteins

is a key mechanism that determines the biological functions and phenotypes of organisms

[31].

3.1.2. Diseases

Disease is a term that encompasses a variety of conditions that interfere with the normal

functioning of the body. The causes, types, and contributing factors of diseases are diverse

and numerous [17].
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The origins of disease are multifaceted, encompassing genetic factors, various types of

infections (such as bacterial, viral, fungal, or parasitic), environmental influences (like

contaminated air, water, or food), lifestyle choices (including diet, smoking, alcohol

consumption, and level of physical activity), hormonal imbalances, and issues with the

immune system [32]. An example of a disease-causing bacteria, specifically the one

responsible for tuberculosis, is depicted in Figure 3.4.

Figure 3.4 Microscopic View of Tuberculosis Bacteria [7]

The Figure 3.4 shows a microscopic view of tuberculosis bacteria. These bacteria are

rod-shaped and are the cause of the disease tuberculosis. The “2 µm” scale indicates the

size of the bacteria, which is typical for this type of microorganism.

Diseases can be categorized in a multitude of ways. Some examples include infectious

diseases like influenza and tuberculosis, genetic diseases such as cystic fibrosis and

thalassemia, cancer, metabolic diseases like diabetes, neurological diseases including

Alzheimer’s and Parkinson’s, cardiovascular diseases, and mental health disorders like

depression and anxiety [33] [34] [35].

The symptoms exhibited by a disease are largely dependent on the specific type and severity

of the disease. These may range from pain, fever, and cough, to nausea, vomiting, diarrhea,

headache, fatigue, shortness of breath, muscle weakness, memory loss, rashes, and itching.

The treatment approach for a disease is determined by its type, severity, and cause. This could

involve medications, surgery, physical therapy, changes in diet and lifestyle, psychotherapy,

radiation therapy, or chemotherapy [36].
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Many diseases can be prevented, or at least their risk factors can be mitigated, through various

prevention strategies. These include vaccination, regular exercise, maintaining a healthy diet,

practicing good hygiene, regular health check-ups, and avoiding risky behaviors [37].

The management and treatment of diseases are typically overseen by a healthcare

professional and are tailored to the individual patient’s condition and needs [38].

3.1.3. Disease-Gene Relation

Genes are known to significantly influence the onset of numerous diseases. Studies in human

genetics have shed light on the role of genes in the etiology, symptomatology, and treatment

of diseases [39].

Certain diseases are directly linked to genetic factors and can be inherited from parents to

offspring due to specific alterations in an individual’s genetic composition. Examples of such

genetic diseases include cystic fibrosis, thalassemia, and Huntington’s disease [40, 41]. A

map of diseases on different human chromosomes is depicted in Figure 3.5. In addition, A

single sample disease is given for each chromosome in Figure 3.5.

The susceptibility to certain diseases is associated with an individual’s genetic predisposition.

This implies that specific gene variants or combinations thereof can elevate the risk of

disease. For instance, complex diseases like certain cancers or heart diseases may involve

the interplay of multiple genes [42].

Genetic factors can also affect an individual’s response to medications. The field of

pharmacogenetics investigates the impact of specific drugs on their efficacy and safety based

on an individual’s genetic traits. This knowledge can aid in personalizing medication dosages

and minimizing side effects [43].

Genetic testing serves as a tool for identifying genetic diseases or predispositions. These

tests can be utilized to evaluate disease risk, facilitate early diagnosis, and guide treatment

strategies [44]. Gene therapy, a promising approach in the treatment of genetic diseases,
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Figure 3.5 A Sample Hereditary Disease on Each Human Chromosomes [8]

seeks to address genetic disorders by substituting or repairing defective genes [45]. Given

these considerations, it is evident that genetic information significantly influences our

understanding, diagnosis, and treatment of diseases [46].

A deeper comprehension of the genetic underpinnings of diseases paves the way for the

development of personalized medical approaches and enhances the effectiveness of disease

management.

3.1.4. Disease-Gene Association Prediction

Predicting disease-gene associations is a critical endeavor in bioinformatics and

computational biology. It involves the identification of potential genetic factors that may

contribute to the susceptibility or resistance of individuals to certain diseases. The goal is

13



to enhance our understanding of the genetic underpinnings of diseases and to facilitate the

development of personalized medicine approaches.

Mathematically, the problem can be formulated as follows. Let G be the set of genes and D

be the set of diseases. We are interested in finding a function f : G ⇥D ! R that predicts

the strength of association between a gene g 2 G and a disease d 2 D. The function f is

typically learned from a dataset of known disease-gene associations using machine learning

techniques.

The prediction function f can take various forms, depending on the approach used.

For instance, in a probabilistic framework, f might represent the probability that gene

g is associated with disease d, which can be expressed as P (g is associated with d).

Alternatively, in a regression framework, f could represent a continuous score reflecting

the strength of the association.

To build the prediction model, various types of data can be utilized, including genetic

sequence data, disease description, disease name and known disease-gene associations

from biomedical literature. The integration of such heterogeneous data sources is often

achieved through the construction of a disease-gene network, where nodes represent genes

and diseases, and edges represent known associations.

The performance of the prediction model is evaluated using metrics such as accuracy,

precision, recall, and the area under the receiver operating characteristic curve (AUC-ROC).

These metrics help in assessing the model’s ability to correctly predict associations and in

comparing different predictive models.

3.1.5. Graph & Graph Theory

A graph is a mathematical term that refers to a structural arrangement of different

connections or relationships, and it is also a data structure. A graph comprises points or

objects, which are referred to as “nodes”, and “edges” or connections that link these nodes

[47]. An example of a graph is depicted in Figure 3.6.
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Figure 3.6 Undirected Graph Sample [9]

Graph contains two main components that are nodes and edges. The basic units of a graph

is node. Nodes can represent anything, and they are typically labeled with some kind of

identifier. Edges are connections between nodes. Edges can be directed or undirected, and

they can be weighted or unweighted. Nodes and edges are shown in detail in Figure 3.6.

Graphs can be represented in a variety of ways and have numerous applications. They are

used in the analysis of social networks, communication networks, road networks, computer

networks, gene editing, and database structures [48].

The fundamental properties of a graph include nodes and edges. Nodes are the basic points or

objects of the graph. They can represent users on a social network or cities on a road network.

Edges, on the other hand, are the connections that link nodes together. They represent

associations or interactions between nodes. For instance, edges can represent friendship

links in a social network or paths in a road network.

A graph can either be directed or undirected. This depends on whether the edges follow

a certain direction from one node to another. In a directed graph, edges have a direction

from one point to another. However, in an undirected graph, this direction does not exist.

Some types of graphs can indicate the strength or importance of connections by assigning

”weights” or values to edges. For example, the length of trips in a road network or the

strength of friendship ties in a social network can be expressed as weights.
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Graph theory, a branch of mathematics, is utilized to model and analyze objects and their

relationships in a mathematical manner. It concentrates on structures that are formed by

points, referred to as nodes or vertices, and lines that connect these points, known as edges

[47].

Graph theory finds its applications in a multitude of fields. One such field is network analysis,

where it is used in social networks, communication networks, computer networks, and

transmission networks. In this context, nodes typically symbolize entities such as individuals

or computers, while edges symbolize the relationships or connections between these entities.

Another significant application of graph theory is in the realm of algorithms and

optimization. It forms the foundation of numerous algorithms and aids in solving many

problems such as the shortest path problem, flow network problem, and nearest neighbor

search problem.

Graph theory also forms the basis of many data structures. For instance, trees, which

are a special type of structure in graph theory, are commonly used in computer science.

Furthermore, graph theory can be employed to solve sorting problems. Various techniques

based on graph theory are used in sorting algorithms and sorting problems.

Graph theory is a crucial tool in many different application areas and provides the capability

to model and solve many complex problems [48]. Hence, it finds its applications in various

fields such as computer science, engineering, social sciences, business, and others.

3.2. Machine Learning

Machine learning (ML), a subset of artificial intelligence, is concerned with the creation and

study of statistical algorithms that can learn from data and generalize to unseen data, thereby

performing tasks without explicit instructions. Machine learning is an extension of artificial

intelligence. In recent times, generative artificial neural networks have surpassed many

previous methods in terms of performance. Machine learning models encompass various

learning approaches such as supervised learning, unsupervised learning, and reinforcement
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learning. These approaches differ from each other based on the feedback mechanism in the

training process [49].

3.2.1. Neural Networks & Machine Learning

The structure of machine learning models is not fixed and depends on the algorithm

employed. However, a general outline of the structure of a standard supervised learning

model, which is one of the most prevalent categories of machine learning models, is as

follows:

The model’s input data is taken from the Input Layer. In this layer, each feature or input

variable in the dataset is associated with a node. For instance, in images, each node can

represent one pixel; in the case of text data, each node can represent a word or a character.

The Hidden Layers, situated between the input and output layers, are responsible for

identifying relationships and patterns in the data. Deep learning models, having multiple

hidden layers, can learn extremely intricate patterns.

The Output Layer generates the model’s predictions or outputs using the patterns it

identifies in the input data. The structure of the output layer is determined by the type

of problem being solved. For instance, in binary classification tasks, a single node may

reflect the probability of falling into a single class, whereas in multi-class classification tasks,

multiple nodes may reflect the probability of falling into each class.

Each node applies an activation function to the weighted sum of its inputs in the hidden layers

and sometimes in the output layer. The model gains nonlinearity from activation functions,

enabling it to capture complex patterns. Tanh, sigmoid and ReLU are examples of common

activation functions [50].

Sigmoid activation function solves vanishing gradient problem for shallow networks.

Primarily usage of the sigmoid activation funcion is in output layers for binary classification

problems. Sigmoid activation function’s output range between 0 to 1. Sigmoid activation
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calculation formula is mentioned in Equation 1. Sigmoid activation function plotting is

mentioned in Figure 3.7.

�(z) =
1

1 + e�z
(1)

Figure 3.7 Sigmoid Plot [10]

Tanh activation function is similar to sigmoid but with zero-centered output. Tanh activation

function often preferred over sigmoid in hidden layers due to zero-centered output. Also,

can be used in output layers for certain regression or binary classification problems. Tanh

activation function output range is between -1 to 1. Tanh activation calculation formula is

mentioned in Equation 2. Tanh activation function plotting is mentioned in Figure 3.8.

tanh(x) =
ex � e�x

ex + e�x
=

1� e�2x

1 + e�2x
(2)

Relu activation function is simple and computationally efficient. Relu activation function is

popular activation function for hidden layers in deep neural networks due to efficiency and

avoiding vanishing gradients. ReLu activation calculation formula is mentioned in Equation

3. ReLu activation function plotting is mentioned in Figure 3.9.

Relu(z) = max(0, z) (3)
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Figure 3.8 Tanh Plot [10]

Figure 3.9 ReLu Plot [10]

The learning parameters of the model, Biases and Weights, are discovered during training.

Biases allow the model to account for biases or shifts in the data, while weights indicate

the strength of connections between nodes in neighboring layers. The model adjusts these

parameters during training to reduce the discrepancy between targets and its predictions [49].

The Loss Function calculates how well the model’s predictions align with the actual

target values. Minimizing this loss function is the training target for the model. For

regression tasks, the mean square error is a common loss function; for classification tasks,

the cross-entropy loss is used.
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The Optimization Algorithm is used to update the weights and biases of the model

during training to minimize the loss function. Commonly used optimization methods

include gradient descent and its variations, including Adam, AdamW, RAdam, NAdam, and

stochastic gradient descent (SGD).

Optimization algorithms play a crucial role in the realms of deep learning and machine

learning [51]. A brief overview of these algorithms is as follows:

Stochastic Gradient Descent (SGD) is a fundamental optimization algorithm used during

model training. It calculates the gradient (or gradient approximation) for each training

example and takes a step against the gradient. This updates the parameters of the model

towards the minimized loss function. However, direct SGD may encounter problems such as

fluctuation and slow progress in the training process [51].

Adaptive Moment Estimation (Adam) is an enhanced version of SGD, known for its speed

and efficiency. Adam, an optimization algorithm, keeps track of the first moment (mean) and

second moment (standard deviation) of the gradient. These moments enable the steps to be

adapted by following the behavior of the gradients at previous times [51].

AdamW is an advanced version of the Adam optimization algorithm that adds a

regularization term by multiplying the weights. This can assist in updating weights more

consistently and training a model that is more resistant to overfitting [51].

Rectified Adam (RAdam) is another modification of the Adam optimization algorithm.

RAdam uses a type of adaptive multiplication regularization to smooth out gradients at the

start of training. This can lead to a more balanced step at the start of training and faster

convergence [51].

Nesterov-accelerated Adaptive Moment Estimation (NAdam) is a combined version of

Nesterov Momentum and the Adam algorithm. Nesterov Momentum allows direction of

momentum using the estimated position of the gradient at a future time step. NAdam aims

to achieve faster and more stable convergence by combining these features with the Adam

algorithm [51].
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These optimization algorithms are extensively used in the training and optimization of deep

learning models. Each algorithm has its strengths and weaknesses, and the selection of the

one that provides the best performance for a specific problem or dataset is often determined

through trial and error.

Regularization Techniques such as L1 and L2 regularization, dropout, and batch

normalization are frequently used to prevent overfitting, which occurs when the model learns

to memorize training data rather than generalizing to unknown data.

The structure of a machine learning model can vary significantly depending on variables

such as the type of data used, the difficulty of the task, and the specific algorithm used. An

example of the machine learning model structure is mentioned in Figure 3.10.

Figure 3.10 Sample Neural Network Architecture[11]

3.2.2. Convolutional Neural Networks

Convolutional Neural Networks, commonly known as CNNs, are a class of deep neural

networks highly effective for processing data that has a grid-like topology, such as images.
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Their architecture is inspired by the organization of the animal visual cortex and is designed

to automatically and adaptively learn spatial hierarchies of features from visual data.[52]

Convolutional neural network structure sample is mentioned in Figure 3.11.

Figure 3.11 Sample Convolutional Neural Network Architecture [12]

At the heart of a CNN is the convolutional layer, where multiple filters are applied to the

input to create feature maps. These filters are capable of detecting edges, colors, textures,

and other features. The convolutional operation captures the local dependencies within the

input, and through the depth of the network, more complex patterns are recognized [53].

Following the convolutional layers, activation functions like ReLU introduce non-linearities,

enabling the network to learn complex patterns. Pooling layers are then used to reduce the

dimensionality of the feature maps, which decreases the computational load and improves

the network’s robustness to variations in the input [53].

The high-level features extracted by the convolutional and pooling layers are then flattened

and fed into fully connected layers, which act as a classifier. The output layer typically uses

a softmax function to provide a probability distribution over the target classes [54].

CNNs learn through a process called backpropagation. During training, the network makes

predictions, compares them to the actual labels, calculates the error, and adjusts the weights

of the filters to minimize this error. This process is repeated over many iterations, allowing

the network to improve its predictions [54].

The strength of CNNs lies in their ability to learn features directly from the data without the

need for manual feature extraction, making them particularly suited for image recognition
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tasks. They have been successfully applied to various applications, including image

and video recognition, image classification, medical image analysis, and many others,

revolutionizing the field of computer vision.

3.2.3. Graph Convolutional Network Structure

The Graph Convolutional Network (GCN) is a type of neural network designed to work

directly with graph-structured data. Graphs are digital structures consisting of nodes

(representing elements) and edges (representing connections or relationships between

elements). GCNs have recently gained popularity due to their applicability in various

tasks, including graph-related tasks such as node classification, link prediction, and graph

classification [55].

In a GCN, data is represented as a graph, typically an adjacency matrix (A) and a node feature

matrix (X). The adjacency matrix (A) represents the relationships between the nodes in the

graph, where each element (Aij) indicates whether there is a relationship between node (i)

and node (j). The node feature matrix (X) contains important information about each node in

the graph, where each row of (X) represents the feature vector of a node [56].

GCNs use convolutional layers to aggregate information from neighboring nodes in the

graph. These convolutional operations are designed to process the graph-structured data. In

each layer, the features of each node are updated by aggregating features from neighboring

nodes. This aggregation process is typically done using a weighted sum or a similar

operation. During the training phase, the weights used for aggregation are learned.

Following the aggregation step, an activation function such as ReLU can be used to introduce

nonlinearity into the model. Like Convolutional Neural Networks (CNNs), GCNs can also

include pooling layers to subsample the graph. Pooling operations are performed to reduce

the dimensionality of the graph while preserving important information. Common pooling

strategies include max pooling and average pooling.
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The final layer of the GCN produces the predictions or outputs of the model. Depending on

the task, this layer may involve node classification, link prediction, or graph classification.

GCNs are trained using labeled data like other neural networks. The model learns how to

make predictions by minimizing a loss function, such as cross-entropy loss for classification

tasks. Standard training involves backpropagation and gradient descent, where gradients for

model parameters are computed (including weights and biases) and used to iteratively update

the parameters.

An example of the graph convolutional network is mentioned in Figure 3.12. GCNs have

demonstrated promising results in various applications, including social network analysis,

recommendation systems, biological network analysis, and knowledge graph reasoning.

Their ability to work directly on graph-structured data makes them suitable for tasks where

relationships between elements play a crucial role [57].

Figure 3.12 Sample Graph Convolutional Network Architecture [13]

3.3. Performance Parameters

This section provides an overview of the performance metrics used to evaluate machine

learning models. These metrics are computed using four fundamental elements: True

Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN).
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Accuracy Score

The Accuracy Score is a measure that quantifies the overall correctness of the model’s

predictions. It is computed as the ratio of correct predictions (both positive and negative)

to the total number of predictions. The formula for this calculation is depicted in Equation 4.

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

Precision Score

The Precision Score is a measure that quantifies the correctness of the model’s positive

predictions. It is computed as the ratio of true positive predictions to the total number of

positive predictions (both true and false). The formula for this calculation is depicted in

Equation 5.

Precision =
TP

TP + FP
(5)

Recall Score

The Recall Score, also known as sensitivity, is a measure that quantifies the model’s ability to

correctly identify positive instances. The formula for this calculation is depicted in Equation

6.

Recall =
TP

TP + FN
(6)

F1 Score

The F1 Score is a measure that balances the precision and recall of the model. It is

particularly useful when the data has imbalanced classes. The formula for this calculation is

depicted in Equation 7.

F1 =
2 ⇤ Precision ⇤Recall

Precision+Recall
=

2 ⇤ TP
2 ⇤ TP + FP + FN

(7)
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Specificity

The Specificity Score, also known as the true negative rate, is a measure that quantifies the

model’s ability to correctly identify negative instances. The formula for this calculation is

depicted in Equation 8.

Specificity =
TN

FP + TN
(8)

ROC-AUC

The ROC-AUC Score is a comprehensive performance metric for classification models.

It represents the probability that the model ranks a random positive instance higher than

a random negative instance. It is computed as the area under the Receiver Operating

Characteristic (ROC) curve, which plots the true positive rate against the false positive rate.

The formulas for calculating the true positive rate is mentioned in Equation 9. False positive

rate calculation formula is mentioned in Equation 10. Examples of the ROC curve and the

area under the curve, are shown in Figure 3.13 [14].

TPR =
TP

TP + FN
(9)

FPR =
FP

FP + TN
(10)
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Figure 3.13 Example ROC Curve[14]

PR-AUC

The PR-AUC Score is another comprehensive performance metric for classification models.

It represents the area under the Precision-Recall curve, which is particularly useful when

dealing with imbalanced datasets. An example of a PR-AUC curve is shown in Figure 3.14

[15].
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Figure 3.14 Example PR-AUC Curve [15]

MRR Score

The MRR Score, or Mean Reciprocal Rank, is a statistical measure used in information

retrieval that quantifies the ability of a model to rank relevant items highly. It is calculated

using the predicted output array of a machine learning model, where the position of the actual

value in the array plays a key role. The formula for this calculation is depicted in Equation

11 [58].

MRR =
1

|Q|

|Q|X

i=1

1

ranki
(11)
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4. RELATED WORK

4.1. Graph Interactions

This section discusses various methods used to predict associations between two nodes.

These methods primarily leverage the interaction of graphs to predict interactions within

the graph.

One such method is proposed by Huang et al. [59]. They introduce a graph neural

network that predicts molecular interactions by combining both direct similarity and

skipped similarity interactions. This approach has proven useful over the past decade in

various interacting networks, particularly in biological networks where similarity between

non-interacting nodes is often significant. The proposed network, known as SkipGNN,

receives messages from direct and two-hop neighbors of the interacting network and

transforms them to obtain useful information for prediction. To incorporate hop similarity,

a hop graph is created which is a modified version of the original network. An iterative

aggregation scheme is developed to optimize the GNN using both the jump graph and the

seed graph.

Block schema of SkipGNN [59], starts by constructing a skip graph from the input graph

using an adjacency matrix and a specific equation. Initial node embeddings are determined

using side information or generated using node2vec, and these embeddings are propagated

along the edges of the graph. Through an iterative fusion process involving multiple

layers and weight matrices, powerful embeddings are produced. These embeddings are

then used in a decoder module that calculates the probability of interaction between nodes.

The architecture aims to incorporate additional structural information to improve prediction

accuracy for interactions within a graph.

SkipGNN [59] has been tested on four interactive networks, namely protein-protein graph,

disease-gene graph, drug-target graph, and drug-drug graph. The results show that SkipGNN
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performs well, learning meaningful embeddings and demonstrating superior performance on

noisy and incomplete networks.

SkipGNN [59] was tested on drug-target interaction graph, drug-drug interaction

graph, protein-protein interaction graph and disease-gene interaction graph. In

drug-target interaction graph, SkipGNN [59] performance result are 0.928(PR-AUC) and

0.922(ROC-AUC). In drug-drug interaction graph, SkipGNN [59] performance result are

0.866(PR-AUC) and 0.886(ROC-AUC). In protein-protein interaction graph, SkipGNN [59]

performance result are 0.921(PR-AUC) and 0.917(ROC-AUC). In disease-gene interaction

graph, SkipGNN [59] performance result are 0.915(PR-AUC) and 0.912(ROC-AUC).

Another research, HOGCN [60], focuses on gathering feature representations from neighbors

at different distances and learning their linear mixture to obtain informative representations

of biomedical entities. The higher power indicates a higher-order neighborhood for the

training process. HOGCN performs accurate predictions on interaction networks, such

as protein-protein, drug-drug, drug-target, and disease-gene networks. It proves effective

on noisy and sparse networks by considering characteristic manifestations of neighbors

at different distances. Additionally, the new interaction predictions are validated by

literature-based case studies.

The HOGCN [60] block schmea begins with a graph of nodes connected by edges, which

undergoes the Higher Order Graph Convolution (HOGC) process. This step enhances the

graph’s structure, making certain features more prominent. The processed graph is then

subjected to bilinear operations, followed by linear transformations, resulting in the final

output that likely represents the probability of interaction between nodes, denoted as “pij”.

This methodology is part of the broader field of machine learning, where such networks are

used to analyze and predict complex relationships within data.

HOGCN[60] was tested on drug-target interaction graph, drug-drug interaction

graph, protein-protein interaction graph and disease-gene interaction graph. In

drug-target interaction graph, HOGCN[60] performance result are 0.937(PR-AUC) and

0.934(ROC-AUC). In drug-drug interaction graph, HOGCN[60] performance result are
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0.897(PR-AUC) and 0.911(ROC-AUC). In protein-protein interaction graph, HOGCN[60]

performance result are 0.93(PR-AUC) and 0.922(ROC-AUC). In disease-gene interaction

graph, HOGCN[60] performance result are 0.941(PR-AUC) and 0.936(ROC-AUC).

In the work of Zenheng et al. [61], the Residual Message Graph Association Network

(ResMGCN) is introduced as a method for the swift and precise prediction of biomedical

interactions. ResMGCN distinguishes itself by aggregating lower-order information with

higher-order information from the subsequent round to guide the node update and obtain

a more meaningful node representation. It is capable of recognizing and retaining various

messages from the previous layer and higher-order information in the current layer, using

lower memory and time overhead to obtain the information representations of biomedical

entities.

ResMGCN [61] was tested on drug-target interaction graph, drug-drug interaction

graph, protein-protein interaction graph and disease-gene interaction graph. In

drug-target interaction graph, ResMGCN[61] performance result are 0.918(PR-AUC)

and 0.901(ROC-AUC). In drug-drug interaction graph, ResMGCN[61] performance

result are 0.931(PR-AUC) and 0.936(ROC-AUC). In protein-protein interaction graph,

ResMGCN [61] performance result are 0.91(PR-AUC) and 0.894(ROC-AUC). In

disease-gene interaction graph, ResMGCN [61] performance result are 0.935(PR-AUC) and

0.925(ROC-AUC).

Kipf et al. [62] present(GCN) a scalable approach for semi-supervised learning on

graph-structured data. This approach is based on an efficient variant of convolutional neural

networks that operate directly on graphs. The model can scale linearly with the number of

edges of the graph and learns hidden layer representations that encode both the local graph

structure and node characteristics.

GCN was tested on drug-target interaction graph, drug-drug interaction graph,

protein-protein interaction graph and disease-gene interaction graph. In drug-target

interaction graph, GCN performance result are 0.904(PR-AUC) and 0.899(ROC-AUC)

[59]. In drug-drug interaction graph, GCN performance result are 0.856(PR-AUC) and
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0.877(ROC-AUC) [59]. In protein-protein interaction graph, GCN performance result

are 0.909(PR-AUC) and 0.907(ROC-AUC) [59]. In disease-gene interaction graph, GCN

performance result are 0.909(PR-AUC) and 0.906(ROC-AUC) [59].

In another work, Kipf et al [63] introduce the Variational Graph Autoencoder (VGAE),

a framework for unsupervised learning on graph-structured data based on the Variational

Autoencoder (VAE). The VGAE model is capable of learning explainable latent

representations for undirected graphs and achieves competitive results in the task of link

prediction in citation networks.

VGAE[63] was tested on drug-target interaction graph, drug-drug interaction graph,

protein-protein interaction graph and disease-gene interaction graph. In drug-target

interaction graph, VGAE performance result are 0.853(PR-AUC) and 0.8(ROC-AUC)

[59]. In drug-drug interaction graph, VGAE performance result are 0.844(PR-AUC) and

0.878(ROC-AUC) [59]. In protein-protein interaction graph, VGAE performance result

are 0.875(PR-AUC) and 0.844(ROC-AUC) [59]. In disease-gene interaction graph, VGAE

performance result are 0.902(PR-AUC) and 0.873(ROC-AUC) [59].

Xu et al. [64] presents(GIN) a theoretical framework to analyze the expressive ability of

Graph Neural Networks (GNNs) to capture different graph structures. The proposed method,

developed based on a simple architecture, is perhaps the most expressive among the GNN

classes and is as powerful as the Weisfeiler-Lehman graph isomorphism test.

GIN[64] was tested on drug-target interaction graph, drug-drug interaction graph,

protein-protein interaction graph and disease-gene interaction graph. In drug-target

interaction graph, GIN performance result are 0.853(PR-AUC) and 0.8(ROC-AUC) [59].

In drug-drug interaction graph, GIN [64] performance result are 0.844(PR-AUC) and

0.878(ROC-AUC).[59] In protein-protein interaction graph, GIN performance result are

0.875(PR-AUC) and 0.844(ROC-AUC) [59]. In disease-gene interaction graph, GIN

performance result are 0.902(PR-AUC) and 0.873(ROC-AUC) [59].
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Xu et al. [65] analyzes some important characteristics of recent deep learning methods for

learning graph representations(JK-NET). These methods follow a neighborhood aggregation

procedure and the proposed algorithm overcomes other methods. An architecture, known

as the knowledge network, is explored to adapt to the properties and tasks of the local

neighborhood.

JK-NET[65] was tested on drug-target interaction graph, drug-drug interaction graph,

protein-protein interaction graph and disease-gene interaction graph. In drug-target

interaction graph, JK-NET performance result are 0.921(PR-AUC) and 0.907(ROC-AUC)

[59]. In drug-drug interaction graph, JK-NET performance result are 0.870(PR-AUC) and

0.885(ROC-AUC) [59]. In protein-protein interaction graph, JK-NET performance result

are 0.912(PR-AUC) and 0.901(ROC-AUC) [59]. In disease-gene interaction graph, JK-NET

performance result are 0.891(PR-AUC) and 0.898(ROC-AUC) [59].

Abu-El-Haija et al. [66], it is demonstrated that existing popular semi-supervised learning

methods with GNN and GCN cannot learn a general class of mixed neighborhood relations.

A new model is proposed to handle this weakness. This model uses mixing the feature

representations of the neighbors repeatedly, approached at different distances.

The MixHop [66] block schema compares two methods of feature propagation in graph

convolution networks. The traditional method aggregates features only from immediate

neighbors, while the MixHop model allows for the aggregation of features from neighbors at

multiple distances. This enables the central node, highlighted in red, to learn a combination

of features from various layers of neighbors, enhancing the model’s ability to capture and

utilize a richer set of information for analysis or prediction tasks in network analysis and

machine learning. The MixHop approach represents a significant advancement in the field,

offering a more nuanced and comprehensive way to understand and leverage the complex

relationships within data.

MixHop[66] was tested on drug-target interaction graph, drug-drug interaction graph,

protein-protein interaction graph and disease-gene interaction graph. In drug-target

interaction graph, MixHop performance result are 0.921(PR-AUC) and 0.92(ROC-AUC)
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[59]. In drug-drug interaction graph, MixHop performance result are 0.861(PR-AUC) and

0.879(ROC-AUC) [59]. In protein-protein interaction graph, MixHop performance result

are 0.909(PR-AUC) and 0.913(ROC-AUC) [59]. In disease-gene interaction graph, MixHop

performance result are 0.912(PR-AUC) and 0.916(ROC-AUC) [59].

4.2. Network Similarity

This section discusses research that utilizes the neighbors of nodes to predict interactions

within the graph.

In the work of Kovács et al. [67], the L3 heuristic is introduced. Recent developments

have shown that the common neighbor hypothesis is not effective for most protein pairs in

Protein-Protein Interaction (PPI) prediction. The L3 heuristic proposes to consider nodes

that are similar to a node’s neighbors, quantified with A3, where A represents the adjacency

matrix. This suggests that higher-order neighbors play a significant role in predicting

interactions.

The neighbor algorithm of the L3, a length-3 path is a sequence of three interactions that

link two proteins indirectly. For example, if protein D is connected to protein Y through a

series of three other proteins, this constitutes one length-3 path. The algorithm calculates the

connection probability by considering all such length-3 paths between the protein pair.

L3[67] was tested on drug-target interaction graph, drug-drug interaction graph,

protein-protein interaction graph and disease-gene interaction graph. In drug-target

interaction graph, L3 performance result are 0.891(PR-AUC) and 0.793(ROC-AUC)

[59]. In drug-drug interaction graph, L3 performance result are 0.86(PR-AUC) and

0.869(ROC-AUC) [59]. In protein-protein interaction graph, L3 performance result

are 0.899(PR-AUC) and 0.861(ROC-AUC) [59]. In disease-gene interaction graph, L3

performance result are 0.899(PR-AUC) and 0.832(ROC-AUC) [59].
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Tang et al. [68] propose a framework that initially extracts social aspects based on network

structure to accurately capture crucial interaction patterns between agents. Subsequently, a

discriminative classifier is learned to select the relevant societal aspects.

4.3. Network Embedding

This section discusses the utilization of graph node embeddings to predict interactions within

the graph.

Perozzi et al. [69] introduced a novel approach for learning latent representations of vertices

in networks, thereby encoding social relationships into a vector space suitable for statistical

models. DeepWalk, by leveraging truncated random walks, extends the concepts of language

modeling and unsupervised feature learning to graphs. It provides perspectives on multi-label

network classification tasks for various social networks and other types of networks.

Deepwalk[69] was tested on drug-target interaction graph, drug-drug interaction graph,

protein-protein interaction graph and disease-gene interaction graph. In drug-target

interaction graph, Deepwalk performance result are 0.753(PR-AUC) and 0.735(ROC-AUC)

[59]. In drug-drug interaction graph, Deepwalk performance result are 0.698(PR-AUC)

and 0.712(ROC-AUC) [59]. In protein-protein interaction graph, Deepwalk performance

result are 0.715(PR-AUC) and 0.706(ROC-AUC) [59]. In disease-gene interaction graph,

Deepwalk performance result are 0.827(PR-AUC) and 0.832(ROC-AUC) [59].

Grover et al. [70] proposed node2vec, an algorithmic framework for learning continuous

feature representations for nodes in a network. Node2vec discovers a mapping of nodes to

a low-dimensional feature space that optimizes the preservation of network neighborhoods.

The flexibility in defining a node’s network neighborhood and the design of a biased random

walk process allows for effective exploration of different neighborhoods. This algorithm

generalizes previous work based on rigid notions of network neighborhoods, arguing that

flexibility in neighborhood discovery is crucial for richer performance learning.
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Node2vec[70] was tested on drug-target interaction graph, drug-drug interaction graph,

protein-protein interaction graph and disease-gene interaction graph. In drug-target

interaction graph, Node2vec performance result are 0.771(PR-AUC) and 0.72(ROC-AUC)

[59]. In drug-drug interaction graph, Node2vec performance result are 0.801(PR-AUC)

and 0.809(ROC-AUC) [59]. In protein-protein interaction graph, Node2vec performance

result are 0.773(PR-AUC) and 0.766(ROC-AUC) [59]. In disease-gene interaction graph,

Node2vec performance result are 0.828(PR-AUC) and 0.834(ROC-AUC) [59].

Riberio et al. [71] presented struc2vec, a flexible framework for learning latent

representations for node structure recognition. Struc2vec measures the similarity of nodes at

different scales and constructs a multi-layer graph to encode structural similarities and create

structural context for nodes.

Struc2vec[71] was tested on drug-target interaction graph, drug-drug interaction graph,

protein-protein interaction graph and disease-gene interaction graph. In drug-target

interaction graph, Struc2vec performance result are 0.677(PR-AUC) and 0.656(ROC-AUC)

[59]. In drug-drug interaction graph, Struc2vec performance result are 0.643(PR-AUC)

and 0.654(ROC-AUC) [59]. In protein-protein interaction graph, Struc2vec performance

result are 0.875(PR-AUC) and 0.868(ROC-AUC) [59]. In disease-gene interaction graph,

Struc2vec performance result are 0.91(PR-AUC) and 0.909(ROC-AUC) [59].
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5. METHODS

GLADIGATOR (Graph Learning-bAsed DIsease Gene AssociaTiOn pRediction) is a

novel computational framework designed to enhance the prediction of disease-gene

associations. Leveraging the power of graph learning, GLADIGATOR aims to uncover the

complex relationships between genes and diseases. The method integrates heterogeneous

biological data sources into a unified graph structure, where nodes represent genes and

diseases, and edges signify known associations. By applying advanced graph learning

algorithms, GLADIGATOR can learn the intricate patterns within the graph, enabling it

to predict potential disease-gene associations. This approach not only facilitates a deeper

understanding of genetic influences on diseases but also aids in the identification of new

therapeutic targets, thereby accelerating the pace of medical research and drug development.

5.1. Data

The data is procured from DisGeNET (version 7.0). The database encompasses 369,554

variant-disease associations (VDAs), associating 194,515 variants with 14,155 diseases,

features, and phenotypes. Additionally, it includes 1,134,942 gene disease associations

(GDAs), linking 21,671 genes to 30,170 diseases, disorders, traits, and clinical or abnormal

human phenotypes [3].

5.1.1. Dataset Attributes

The DisGeNET database amalgamates human gene-disease associations (GDAs) and

variant-disease associations (VDAs) data from a multitude of sources, including Mendelian,

complex, and environmental disorders. The integration is facilitated by the DisGeNET

association type ontology and gene and disease vocabulary mapping. In this section provides

a detailed explanation of the attributes of genes, diseases, gene-disease associations, and

disease-disease associations.
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5.1.1.1. Gene

The DisGeNet database contains the following attributes for genes [3]:

• Gene Symbol: The gene symbol is obtained from NCBI.

• Gene Name: The gene name is also sourced from NCBI.

• UniProtID: The UniProt database, a comprehensive resource for protein sequence

and functional data, assigns unique identifiers to individual protein sequences called

UniProtIDs. It is used to make sure that every protein sequence is unique and able

to be cited in scientific publications and research. It is a component of the UniProt

Knowledgebase (UniProtKB).[72]

• Disease Specificity Index (DSI): This parameter is used to determine whether a gene

is associated with a specific disease or a group of diseases. The formula for calculating

the DSI is shown in Equation 12. In this formula, Nd represents the number of diseases

associated with the gene, and NT is the total number of diseases in DisGeNet.

DSI =
log2(

Nd
Nt
)

log2(
1
Nt
)

(12)

• Disease Pleiotropy Index (DPI): This parameter is used to understand whether a

gene is associated with one or more MeSH disease classes. The DPI score can help

researchers easily understand this. The DPI calculation formula is shown in Equation

13. In this formula, Ndc represents the number of disease classes associated with the

gene, and NTC is the total number of disease classes in DisGeNet.

DPI = (
Ndc

NTC
) ⇤ 100 (13)

• PLI: The PLI (pLI score) is used to indicate the likelihood that the gene is intolerant

to loss-of-function mutations.
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5.1.1.2. Disease

The DisGeNet database provides the following attributes for diseases [3]:

• Disease Name: The name of the disease is sourced from UMLS.

• Disease Semantic Type: The semantic type of the disease is obtained from UMLS

semantic types.

• Disease Class: This refers to the MeSH class of the disease.

• Disease Type: This refers to the types of diseases as classified by DisGeNet.

5.1.1.3. Gene-Disease Association

The sources of gene disease association are divided into four categories:

• Curated Data : The Curated Data is constructed based on several databases such

as ClinGen, CTD, CGI, Orphanet, Genomics England PanelApp, PsyGeNET, and

UniProt [72–76].

• Animal Models Data : The Animal Models Data is built on GDAs from RGD, MGD,

and CTD databases [74, 77, 78].

• Inferred Data : The Inferred Data is constructed based on HPO, Clinvar, GWAS

Catalog, and GWAS DB [79–82].

• Literature Data : The Literature Data is built on LHGDN and BeFree [83–86].

The sources of GDA associations are illustrated in Table 5.1. The protein class distributions

associated with genes in the database are presented in Figure 5.1. The sources of GDAs

in the database are depicted in Figure 5.2, where the Venn diagram explains the overlap
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between the sources.

Source Genes Diseases Assocs Evidence

CGI 315 200 1557 1557

CLINGEN 634 447 1260 7858

GENOMICS ENGLAND 3967 6046 11215 18542

CTD human 8247 8246 67471 84380

ORPHANET 3356 3266 6398 8322

PYSGENET 1393 105 3290 6728

UNIPROT 3894 3935 5728 17564

CURATED 9703 11181 84038 137822

HPO 4281 7591 164198 164198

CLINVAR 4467 9247 26002 85646

GWASDB 4862 450 11172 14663

GWASCAT 10403 948 40443 56795

INFERRED 13258 14843 233738 313885

CTD mouse 70 292 475 518

CTD rat 21 29 48 48

MGD 1776 2085 4598 8569

RGD 2143 1168 11667 13062

ANIMAL MODELS 3334 3171 16660 22171

LHGDN 5935 1793 31427 52794

BEFREE 18839 17993 846474 2700332

LITERATURE 18898 18171 858354 2738700

ALL 21671 30170 1134942 3178358

Table 5.1 DisGeNet GDA Associations Sources Statistics [3]
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Figure 5.1 Protein Class Distribution [3]

Figure 5.2 GDAs’ Sources Venn Schema [3]

All disease-gene associations in the database have a score parameter that indicates the

reliability of the association. The formula for calculating the gene-disease association score

is shown in Equation 14.
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S = C +M + I + L (14)

The score calculation formula (Equation 14) consists of four main parameters: C, M, I, and

L. The explanations and formulas for these parameters are as follows [3]:

• C: This parameter represents a formula that uses the number of sources containing

this gene disease association. The sources include CGI, CLINGEN, GENOMICS

ENGLAND, CTD, PSYGENET, ORPHANET, and UNIPROT [72–76, 81]. The

formula is shown in Equation 15 [3].

C =

8
>>>>>>>>><

>>>>>>>>>:

0.6 ifNsourcesi > 2

0.5 ifNsourcesi = 2

0.3 ifNsourcesi = 1

0 otherwise

(15)

• M: This parameter represents a formula that uses the number of sources containing

this gene disease association. The sources include RGD, MGD, and CTD [74, 77, 78].

The formula is shown in Equation 16 [3].

M =

8
>><

>>:

0.2 ifNsourcesj > 0

0.0 otherwise
(16)

• I: This parameter represents a formula that uses the number of sources containing

this gene disease association. The sources include HPO, CLINVAR, GWASCAT, and

GWASDB [79–82]. The formula is shown in Equation 17 [3].

I =

8
>><

>>:

0.1 ifNsourcesk > 0

0.0 otherwise
(17)
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• L: This parameter represents a formula that uses the number of publications containing

this gene disease association. The sources include LHGDN and BEFREE [83–86]. The

formula is shown in Equation 18 [3].

L =

8
>><

>>:

0.1 ifNpubs > 9

Npubs ⇤ 0.01 Npubs <= 9
(18)

The GDA score calculation formula is a composite formula that includes other formulas. In

DisGeNet, GDA scores are clustered. This statistic is shown in Figure 5.3.

Figure 5.3 Number of GDA Sources Distrubution[3]

The DisGeNet database provides the following attributes for disease-gene associations [3]:

• DisGeNet Score: This is the score assigned to the disease-gene association.

• Association Type: This refers to the type of disease-gene association.
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• Evidence Level: The evidence level, created by ClinGen[73], measures the extent of

evidence supporting a disease-gene association.

• Evidence Index: This parameter is a measure of reliability. The calculation formula

for the evidence index is shown in Equation 19. In this formula, Npubspositive

represents the number of publications that contain this disease-gene association in

BeFree[85],[86] or PsyGeNET[76], and Npubstotal is the total number of publications

in BeFree[85],[86] or PsyGeNET[76].

EI =
Npubspositive

Npubstotal

(19)

• First Publish Year: This is the year when the first publication was published.

• Last Publish Year: This is the year when the last publication was published.

• Publication ID: This is the ID of the publication from PubMed.

• Source: This is the source where the association was reported.

5.1.1.4. Disease-Disease Association

The DisGeNet database provides the following attributes for disease-disease associations [3]:

• Jaccard Index: This parameter measures the similarity between diseases based on

their related genes. The calculation formula for the Jaccard index is shown in Equation

20. In this formula, G1 represents the number of genes related to disease D1, and G2

represents the number of genes related to disease D2 [3].

JaccardG =
G1 \G2

G1 [G2
(20)

• p-value: This is the p-value of the association.
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5.2. Features

5.2.1. Gene/Protein Features

This section elaborates on gene features. Each gene is associated with a specific protein, and

hence, the attributes of these proteins can be utilized. Therefore, protein features can be used.

Embeddings are generated from features, offer computational tools that allow computers to

easily understand.

Protein embeddings are generated from the structural and functional properties of a protein,

often based solely on its sequence. Despite the high computational cost of generating these

embeddings, they can be utilized in various tasks such as sequence classification, sequence

grouping, and sequence similarity search once calculated.

Machine learning models are used to generate vectors that computers can easily understand.

Prot-T5[1] is a popular example of these methods. UniprotKB has generated protein

embedding with Prot-T5[1] for every protein and published the data. These methods can

use protein sequence and other features. Prot-T5[1] method uses protein sequence feature.

The output vector size of Prot-T5[1] is (1*1024).

Prot-T5[1] is part of the ProtTrans project and represents a significant advancement in the

field of bioinformatics, specifically in the understanding of protein sequences. It is a protein

language model that has been trained on a vast dataset containing billions of amino acids.

This training allows Prot-T5 to predict various aspects of protein function and structure with

high accuracy.

The model itself is built upon the T5 architecture[1], which stands for Text-to-Text Transfer

Transformer. This architecture includes both an encoder and a decoder, making it highly

effective for tasks that involve translating one sequence into another. In the context of

proteins, this means interpreting the sequences of amino acids—the building blocks of

proteins—and translating them into a form that can be used to predict their properties and

functions.
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The steps for selecting gene/protein features are outlined below. The entire process is

summarized in Figure 5.4

• Gene Feature Selection :

Protein sequences have been chosen as gene features. Given that each protein sequence

is unique to its related genes, it serves as a distinguishing feature.

• Gene Feature Generator Methods :

Protein sequences have been chosen as gene features. Among the various

approaches, machine learning-based methods are the most popular. Hence, a machine

learning-based method has been selected for this project. The Prot-T5[1] method,

which is quite popular, is used in this project. The output size of this method is

(1*1024).

5.2.2. Disease Features

This section explains disease features. The focus of this project is on diseases that are related

to genes. Disease embeddings are genrated from disease fetures, provide computational

tools that allow computers to easily understand (in vector representation) the structural

and functional properties of a disease. Diseases do not have specific features like protein

sequence. Instead, they have features such as disease type, disease class, disease name,

disease description, etc. The operation of generating disease embedding can be built on NLP

methods.

NLP methods are generic methods that can be used in this context. Examples of NLP

methods include Tf-Idf, IDF, tokenization, word embeddings, etc. These methods should

utilize features such as disease name, disease description, etc., which are text-based features.

Therefore, disease name and disease description can be used to generate disease embeddings

[87].

Machine learning models are used to generate vectors that computers can easily understand.

BioBert[2] is a popular example of these methods. BioBert[2] is a pre-trained machine
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learning model that generates vectors whose input is biological context. BioBert[2] can be

used with disease name and disease description. BioBert[2], a pre-trained machine learning

model, generates (1*768) sized vectors.

Disease class and disease type are among the features of diseases. These features are useful.

However, these features are not disease-specific features. Therefore, these features are useful

for assisting the model with other features.

The selection of disease features is a crucial step in the process. The entire process is depicted

in Figure 5.4

• Disease Feature Selection :

The features chosen for diseases are the disease name and description. Each disease

has a unique name and description, making them ideal discriminative features. In this

project, a combination of the disease name and description is used.

• Refinement :

The disease name and description are chosen as inputs for the vector generator

algorithms. These features need to be refined, which includes steps like removing

English stop words and punctuations.

• Disease Feature Generator Methods :

The disease definition, a text-based information, is chosen as a disease feature.

Machine learning based methods are popular approaches for this purpose. In this

project, the BioBert[2] method, a widely used method, is employed. The output size

of this method is (1*768).

5.2.3. Aggregation

Protein sequences are used for genes, while the disease name and description are used for

diseases. The vector sizes for genes and diseases are (1*1024) and (1*768) respectively.

Given the difference in vector sizes, adjustments need to be made. The main reason is that

47



the gene embedding and disease embedding are generated different vector spaces. The steps

for this solution are outlined below, and the entire aggregation process is summarized in

Figure 5.4

• Gene Vector Customization :

To standardize the vector size, zeros are added to the end of the vector. Specifically,

768 zeros are appended to the generated vector to achieve a vector size of (1*1792).

• Disease Vector :

To standardize the vector size, zeros are added to the beginning of the vector.

Specifically, 1024 zeros are prepended to the generated vector to achieve a vector size

of (1*1792).

5.3. Graph Preparation for the Model

5.3.1. Nodes

Nodes are the basic units of various data structures, including linked lists and tree data

structures. They hold data and have the ability to link to other nodes. Pointers are often

used to establish connections between nodes.

Information about genes and diseases is stored in nodes. Each node has three parameters: x,

id, and gene symbol. These parameters are explained below.

• x :

This parameter stores the embeddings of proteins or diseases. The size of the

embedding is (1*1792).

• id :

This parameter stores the id information of the protein or disease.
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Figure 5.4 Graph Construction Scenario

• gene symbol :

This parameter stores the gene symbol information of the nodes. If the node contains
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gene information, the gene symbol parameter is not null. However, if the node

contains disease information, the gene symbol parameter is null.

5.3.2. Edges

An edge, also known as a link, is a connection established by one node (or vertex) to another

node (or vertex). The edges of a node can be positioned to point in various directions.

Edges are created between two nodes. Each node is assigned to a gene or disease. Therefore,

each edge has an edge nodes attributes parameter. This parameter is explained below.

• edge nodes attributes :

This parameter is stored in every edge. It contains information about the start and stop

nodes of the edge. This information is built based on id identifiers.

5.3.3. Graph Construction

5.3.3.1. GDA Score Based Main Graph Creation

The algorithm for building a GDA score based main graph is mentioned below. This graph

uses data gathered from the DisGeNet database API[3]. All these steps are depicted in Figure

5.4

• Data from DisGeNet API :

Information about genes, diseases, disease-gene associations, and disease-disease

associations is retrieved from the DisGeNet API.

• Data from BioGrid :

Information about gene-gene associations in Homo sapiens (humans) is gathered from

BioGrid[88].
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• Clustering Edges :

The main edges are the disease-gene associations. The gene disease association score

(DisGeNet Score) is a boundary condition used to cluster edges. For instance, if

the gene disease association score is greater than or equal to 0.5, all gene disease

associations with a score greater than or equal to 0.5 are clustered.

• Adding Nodes to the Graph :

After the disease-gene associations are clustered, the main work area is constructed.

Genes and diseases are gathered from the clustered disease-gene associations to add

nodes to the graph. Each node represents a single gene or disease.

• Adding Edges to the Graph :

After adding nodes, the steps for adding edges are mentioned below.

– Disease-Gene Edges : Disease-gene edges are added based on the clustered

disease-gene edges.

– Disease-Disease Edges : Disease-disease edges are added based on the data

gathered from the DisGeNet API[3].

– Gene-Gene Edges : Gene-gene edges are added based on the data gathered from

BioGrid[88].

5.3.3.2. Graph Construction for Comparison with SkipGNN

SkipGNN, a method for predicting molecular interactions, has been tested on drug-target

interactions, drug-drug interactions, protein-protein interactions, and disease-gene

interactions. In this project, we plan to make predictions on disease-gene associations. The

methodologies of SkipGNN[59] and this research are comparable, necessitating the creation

of a new graph-building algorithm.

The algorithm for building this graph is described below. The graph uses data gathered

from the DisGeNet curated dataset[3]. All these steps are same in Figure 5.4, but the main
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difference is the source of the disease-gene association. Graph construction for comparison

with SkipGNN’s source is DisGeNet curated dataset.

• Data from DisGeNet Curated Dataset :

The DisGeNet curated dataset provides disease-gene association data. This dataset is

obtained from the SkipGNN research GitHub repository.

• Data from BioGrid :

Information about gene-gene associations in Homo sapiens (humans) is gathered from

BioGrid[88].

• Adding Nodes to the Graph :

After the disease-gene associations are clustered, the main work area is constructed.

Genes and diseases are gathered from the clustered disease-gene associations to add

nodes to the graph. Each node represents a single gene or disease.

• Adding Edges to the Graph :

After adding nodes, the steps for adding edges are mentioned below.

– Disease-Gene Edges : Disease-gene edges are added based on the curated

dataset.

– Disease-Disease Edges : Disease-disease edges are added based on the data

gathered from the DisGeNet API[3].

– Gene-Gene Edges : Gene-gene edges are added based on the data gathered from

BioGrid[88].

5.3.3.3. Graph Construction using OGB

The Open Graph Benchmark (OGB)[89] is a comprehensive database encompassing various

datasets. The ogbl-biokg dataset within OGB, which includes associations between

biological components, is utilized to construct an association prediction machine learning
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model. This dataset comprises disease-protein associations, drug-drug associations, and

drug-protein associations. For the purpose of this research, protein-disease associations are

isolated to construct a new graph, aiming to enhance the performance of the machine learning

model.

The algorithm for constructing this graph is described below. The graph utilizes data gathered

from the ogbl-biokg dataset(OGB). All these steps are same in Figure 5.4, but the main

difference is the source of the disease-gene association. Graph Construction using OGB’s

source is ogbl-biokg dataset from OGB[89].

• Data from ogbl-biokg(OGB) :

disease-gene associations are obtained from the ogbl-biokg dataset. This dataset is

referenced in this link.

• Data from BioGrid :

Information about gene-gene associations in Homo sapiens (humans) is gathered from

BioGrid[88].

• Adding Nodes to the Graph :

After the disease-gene associations are clustered, the main workspace is constructed.

Genes and diseases are extracted from the clustered disease-gene associations to add

nodes to the graph. Each node represents a single gene or disease.

• Adding Edges to the Graph :

After adding nodes, the steps for adding edges are as follows:

– Disease-Gene Edges : Disease-gene edges are added based on the ogbl-biokg

dataset.

– Disease-Disease Edges : Disease-disease edges are added based on the data

gathered from the DisGeNet API[3].

– Gene-Gene Edges : Gene-gene edges are added based on the data gathered from

BioGrid[88].
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5.3.4. Graph Transformation

The construction of the graph is executed using the NetworkX framework[90]. The structure

of this graph is not compatible with machine learning models. Therefore, the graph is

transformed into a PyTorch Geometric[91] graph, which is more suitable for machine

learning models.

The dataset is transformed into a format that is more amenable to machine learning. The

dataset stores the following parameters:

• x : A 2-dimensional data structure. The first dimension is the node index present in the

graph. The second dimension is the embedding vector of the nodes.

• edge index : A two-dimensional data structure that stores the identifiers of the starting

and ending nodes of edges. The first dimension corresponds to the start node’s

identifier, while the second dimension contains the identifiers of the stop nodes.

• id : A 1-dimensional data structure that stores the id of the nodes.

• gene symbol : A 1-dimensional data structure that stores the gene symbol of the node.

If the node is a disease, the gene symbol variable is null.

• edge node attributes : A 1-dimensional data structure that stores the start node id

and stop node id. This variable is a text-based variable that concatenates 2 ids with a

comma.

5.4. Constructed Graphs

5.4.1. Graph Identifiers

The constructed custom graphs need to be explicated. The explanations include source data,

gene-disease score, etc. These details are provided in Table 5.2. Other tables do not contain
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the name of the graph or any related information except for the id variable. The id variables

are replicated from Table 5.2 to other tables and references.

The first four graphs (Graphs 1-4) are constructed using data from the DisGeNet API, with

each graph differentiated by the GDA score used. TThese graphs are contructed to analyze

the impact of varying GDA scores on the model performance. Graph 5 is based on DisGeNet

curated data, while Graph 6 utilizes data from ogbl-biokg (OGB). Different data sources are

employed to construct these graphs, allowing for an assessment of the significance of each

data source in the comparison. The last two graphs are designed to compare the performance

of GLADIGATOR with other methods.

Graph ID Graph Name Source Data Gene-Disease Score Protein Embedding Disease Embedding

1 Graph Own 0.9 DisGeNet API 0.9  Prot-T5 BioBert

2 Graph Own 0.5 DisGeNet API 0.5  Prot-T5 BioBert

3 Graph Own 0.1 DisGeNet API 0.1  Prot-T5 BioBert

4 Graph Own 0.05 DisGeNet API 0.05  Prot-T5 BioBert

5 Graph Comparison SkipGNN DisGeNet curated NA Prot-T5 BioBert

6 Graph Comparison OGB
Open Graph Benchmark

(only protein-disease part)
NA Prot-T5 BioBert

Table 5.2 Constructed Graph Information

5.4.2. Graph Detailed Informatics

The customized graph’s gene count, disease count, edge count, and other details are specified

in Table 5.3. The identifiers for the graph are derived from Table 5.2. The smallest graph data

is Graph 1, the biggest graph data is Graph 4. In first 5 graph, gene-gene association number

is more than disease-disease association. However, disease-disease association number is

more than gene-gene association number in Graph 6. Also, disease-disease association

number is higher than disease-gene association number in only Graph 2.
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Graph ID
Gene/Protein

Number
Disease Number

Gene-Gene

Association Number

Disease-Disease

Association Number

Disease-Gene

Association Number

1 741 836 3274 462 899

2 4188 5989 74180 11114 10152

3 13881 20481 494378 120409 335260

4 14185 21220 513255 127112 375609

5 8770 10231 269384 30063 78097

6 8581 9683 9058 27782 71064

Table 5.3 Detailed Information of Constructed Graph

5.5. Graph Partitioning

Partitioning the graph is a crucial step in the process. Machine learning models require

different datasets for the training process. The partitioning operation aims to separate the

data into different parts to train the machine learning model.

The data is categorized into three parts. One part is the training set, which is used to train

machine learning models. Another part is the validation data, which is used to fine-tune the

machine learning model. The last part of the data is the test data, which is used to evaluate

the performance of the machine learning model.

The partitioning operation is a critical part of the machine learning model training process.

Therefore, the steps of the partitioning operation are planned carefully. These partitioning

operation steps are mentioned below.

5.5.1. Edge Types

The transformed graph contains edges. These edges are of the type gene-gene,

disease-disease, and disease-gene. The main goal of this project is to predict disease-gene

associations. Therefore, the primary edge type is disease-gene.
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In this project, the machine learning model is trained to predict disease-gene associations.

Gene-gene associations and disease-disease associations are auxiliary edges that assist in

the training process of the machine learning model. Therefore, gene-gene associations and

disease-disease associations are separated from disease-gene associations. This process is

depicted in Figure 5.5.

Figure 5.5 Main Algorithm of GLADIGATOR

5.5.2. Node Similarities

Proteins often exhibit similarities with other proteins. Likewise, diseases can exhibit

similarities with other diseases. The partitioning process takes these similarities into account.

In our project, partitioning operations are built on protein similarities.

The dataset partitioning operation is based on Uniref50[92]. Uniref50[92] clusters proteins

based on protein sequences. There are also other clustered protein groups like Uniref100[92]

and Uniref90[92]. These clusters differ from each other. The main difference is the

percentage of sequence similarity. Uniref50[92] is built on 50% sequence similarity.

In the transformed graph, proteins and diseases are represented as nodes. Inside the nodes,

ids, gene symbol, and embeddings are stored. The graph is partitioned based on Uniref50

using the nodes’ id and nodes’ gene symbol attributes.
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5.5.3. Adding Negative Edges

In the link prediction model, both positive edges and negative edges are required to perform

well. The original dataset contains positive edges, which means there is an edge between the

start and stop nodes. The label of this edge is 1. In negative edges, there is no edge between

the start and stop nodes. This edge’s label is 0. Before the machine learning model training

starts, adding negative edges to the original graph is a crucial step. This process is depicted

in Figure 5.5.
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5.5.4. Partition Ratio

The original graph is modified. Negative edges are constructed in the same number as

positive edges. Negative edges are added to the original graph. After all steps are completed,

the ratio of the parts is assigned. The training set contains edges that are 80% of the graph’s

edges. The validation set contains edges that are 10% of the graph’s edges. The test set

contains edges that are 10% of the graph’s edges.

5.5.5. Dataset Split Operation

The operation of splitting the dataset is crucial for the performance of the machine learning

model. There are various approaches to this operation. Generally, research separates the

train, validation, and test sets, while others only separate the train and test sets.

In this research, the process of splitting into train, validation, and test sets is employed. The

ratio of train, validation, and test split plays a key role in the performance of the machine

learning model. A (8:1:1) ratio is used in this research. Detailed information is provided in

Table 5.4.

Another significant factor in the performance of the machine learning model used to predict

associations is the addition of negative edges to the graph. In this research, negative edges are

constructed and added to the graph. The ratio for generating negative edges is (1:1), meaning

the number of negative edges generated is equal to the number of edges in the graph. All

positive and negative edges are between genes/proteins and diseases. Detailed information

is provided in Table 5.4.

59



Graph ID
Train Positive

Edge Number

Train Negative

Edge Number

Validation Positive

Edge Number

Validation Negative

Edge Number

Test Positive

Edge Number

Test Negative

Edge Number

1 716 716 92 92 91 91

2 8108 8108 1024 1024 1020 1020

3 267858 267856 33841 33841 33561 33561

4 300190 300190 37872 37872 37636 37636

5 62130 62131 8096 8096 7872 7872

6 56754 56754 7170 7170 7140 7140

Table 5.4 Splitted Graph Detailed Information

5.6. Machine Learning Model

In this section, GLADIGATOR’s machine learning model is explained detailly. There are

two main subsection that are Model Architecture and Model Hyperparameters Tuning.

5.6.1. Model Architecture

Machine learning architecture refers to the structure and organization of components

and processes. It encompasses how data is processed, how models are trained and

evaluated, and how predictions are generated. One common type of model architecture

is the encoder-decoder structure. In encoder-decoder structure, there are an encoder

processes input data and extracts relevant features, while a decoder generates output

based on those features. This architecture is often used in tasks like natural language

processing, image generation, and sequence-to-sequence tasks. Specifically, proposed

method GLADIGATOR’s architecture incorporates this encoder-decoder structure, which

allows it to handle complex tasks by transforming input data into a meaningful representation

and then generating relevant output.

5.6.1.1. Encoder
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The encoder part of the model utilizes a 2-layer Graph Convolutional Network (GCN) to

transform the input node features into a latent representation.

First, we have the Input Layer denoted by H
(0). The input to the encoder is a feature matrix

X 2 RN⇥F , where N represents the number of nodes in the graph, and F represents the

number of features for each node. Formally, we initialize the hidden representation as:

H
(0) = X

Next, the First GCN Layer processes these input features. This layer aggregates information

from each node’s neighbors to update the node representations. This is achieved using

the adjacency matrix A 2 RN⇥N , which encodes the graph structure. The transformation

applied in this layer can be expressed as:

H
(1) = �

⇣
AH

(0)
W

(0)
⌘

where W(0) is the weight matrix for the first GCN layer, and � is an activation function such

as ReLU. This operation effectively mixes the features of neighboring nodes, allowing each

node to gather information from its immediate neighborhood.

The Second GCN Layer further refines these node representations by repeating a similar

process. It takes the output from the first GCN layer and again aggregates information based

on the graph structure:

H
(2) = AH

(1)
W

(1)

where W
(1) is the weight matrix for the second GCN layer. The output of this layer, H(2),

provides a more abstract representation of the nodes, capturing higher-order neighborhood

information.

5.6.1.2. Decoder
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The decoder part of the model is responsible for generating predictions about the

relationships between pairs of nodes based on their latent representations from the encoder.

First, we perform Element-wise Multiplication. Let hi and hj be the node representations

for nodes i and j from the encoder output H(2). The element-wise multiplication of these

two vectors is computed as:

e = hi � hj

where � denotes the element-wise multiplication. This operation produces a new vector e

that combines the features of the two nodes in a pairwise manner, highlighting interactions

between corresponding features of the nodes.

Next, we perform Summation of the resulting vector. The elements of e are summed to

produce a single scalar value s:

s =
dX

k=1

ek

where ek is the k-th element of e and d is the dimensionality of H(2). This summation step

reduces the vector to a scalar, aggregating the pairwise interactions into a single measure.

Finally, we apply a Sigmoid Activation function to this scalar value to obtain the final output

z:

z = �(s) =
1

1 + exp(�s)

The sigmoid function squashes the scalar s into a value between 0 and 1, which can be

interpreted as a probability. This final output z represents the model’s prediction about the

relationship between nodes i and j (e.g., the likelihood of an edge existing between them).

5.6.2. Model Hyperparameters Tuning

The structure of the machine learning model is depicted in Figure 5.5. Apart from the

structure, there are other crucial components of the machine learning model, which are

discussed below.
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Optimizer

The optimizer used in this project is the AdamW optimizer, with a learning rate of 0.001.

A comparative analysis was conducted with other optimizers to determine the most effective

one. The optimizer that yielded the best performance was AdamW. Other optimizers such as

Adadelta, Adagrad, Adam [93], Adamax, ASGD [94], NAdam, RAdam, RMSprop, Rprop,

and SGD [95] were evaluated [51]. These optimizers were tested with different learning

rates: 0.1, 0.01, and 0.001. The results of this comparison are presented in Section 6.

AdamW

AdamW is an optimization algorithm that modifies the standard Adam algorithm by

decoupling the weight decay from the gradient update. The standard Adam optimizer can

be written as:

Parameter Update Rule:

✓t = ✓t�1 � ⌘ · m̂tp
v̂t + ✏

where:

• ⌘ is the learning rate,

• m̂t and v̂t are bias-corrected first and second moment estimates:

m̂t =
mt

1� �t
1

and v̂t =
vt

1� �t
2

• mt and vt are the first and second moment estimates:

mt = �1 ·mt�1 + (1� �1) · gt

vt = �2 · vt�1 + (1� �2) · g2t

• gt is the gradient at time step t,
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• �1 and �2 are the exponential decay rates for the moment estimates,

• ✏ is a small constant for numerical stability.

In AdamW, weight decay is applied directly to the weights before the update:

Modified Parameter Update Rule with Weight Decay:

✓t = ✓t�1 � ⌘ ·
✓

m̂tp
v̂t + ✏

+ � · ✓t�1

◆

where � is the weight decay coefficient.

Loss Function

The loss function used in this project is BCEWithLogitsLoss[96]. Other loss functions were

also evaluated to determine which one performs best. The loss function that yielded the

best performance was BCEWithLogitsLoss. Loss functions such as L1Loss, MSELoss,

PoissonNLLLoss, BCEWithLogitsLoss, HingeEmbeddingLoss, HuberLoss, SmoothL1Loss,

and SoftMarginLoss were compared [97]. The results of this comparison are presented in

Section 6.

BCEWithLogitsLoss

The BCEWithLogitsLoss combines a Sigmoid layer and the Binary Cross-Entropy (BCE)

loss in a single class. This is numerically more stable than using a plain Sigmoid followed

by a BCE loss. The loss function can be expressed as:

Binary Cross-Entropy Loss:

BCE(p, y) = �
�
y · log(p) + (1� y) · log(1� p)

�

where:
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• y is the ground truth label,

• p is the predicted probability.

With Logits: Instead of using the predicted probability p, BCEWithLogitsLoss takes the

logits z (raw scores outputted by the model) and applies the Sigmoid function to them:

p = �(z) =
1

1 + e�z

The combined loss function then becomes:

BCEWithLogitsLoss(z, y) = �
�
y · log(�(z)) + (1� y) · log(1� �(z))

�

which simplifies to:

BCEWithLogitsLoss(z, y) = max(z, 0)� z · y + log
⇣
1 + e�|z|

⌘

By combining the Sigmoid activation and BCE loss in one step, BCEWithLogitsLoss

improves numerical stability and reduces the risk of overflow or underflow during

computation.
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6. EXPERIMENTAL RESULTS

This section elucidates the outcomes of the research. It encompasses information about the

graph, the outcome of the machine learning model, and the performance evaluation.

6.1. Hyperparameter Optimization

Details about the customized graphs have been previously discussed. The structure of the

machine learning model plays a crucial role in this research. This section elaborates on the

machine learning model hyperparameters and configurations employed.

6.1.1. Hyperparamenters & Configuration

The hyperparameters significantly influences the research’s performance. Various

hyperparameters have been utilized in this research, as outlined in Table 6.1. All the networks

listed in Table 6.1 employ a graph convolution network.

Network ID Layer Number Input Dense Hidden Denses Output Dense

1 2 1792 112 28

2 2 1792 224 14

3 3 1792 224-112 28

4 3 1792 224-56 8

5 4 1792 224-112-56 14

6 4 1792 224-112-28 8

7 5 1792 448-224-112-56 14

8 5 1792 448-224-56-14 8

Table 6.1 Network Structures for Hyperparameters Tuning

The network configuration plays a pivotal role in the performance of this research. It

includes parameters such as optimizers and loss functions. This research utilizes several

network optimizers. The network optimization is based on a comparison of optimizers and
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loss functions. The compared optimizers are Adadelta, Adagrad, Adam, AdamW, Adamax,

ASGD, NAdam, RAdam, RMSprop, Rprop, SGD.

Conversely, the loss function is a critical parameter for network performance. Several

loss functions have been compared. Compared loss functions are L1Loss, MSELoss,

PoissonNLLLoss, BCEWithLogitsLoss, HingeEmbeddingLoss, HuberLoss, SmoothL1Loss,

SoftMarginLoss.

6.1.2. Network Configuration Comparison

All network configurations have been tested. The decisive performance metrics are the best

accuracy and the best F1 score. These scores are obtained from the test data results. The

comparison results are presented in Table 6.2. The default loss function is used. The network

id parameter is referenced from Table 6.1.
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Optimizer ID Graph ID Network ID Optimizer Learning Rate Loss Function Accuracy F1 Score

1 1 1 Adadelta 0.001 BCEWithLogitsLoss 0.538 0.670

2 1 1 Adagrad 0.001 BCEWithLogitsLoss 0.700 0.740

3 1 1 Adam 0.001 BCEWithLogitsLoss 0.716 0.754

4 1 1 AdamW 0.001 BCEWithLogitsLoss 0.761 0.786

5 1 1 Adamax 0.001 BCEWithLogitsLoss 0.722 0.745

6 1 1 ASGD 0.001 BCEWithLogitsLoss 0.672 0.746

7 1 1 NAdam 0.001 BCEWithLogitsLoss 0.722 0.742

8 1 1 RAdam 0.001 BCEWithLogitsLoss 0.683 0.720

9 1 1 RMSprop 0.001 BCEWithLogitsLoss 0.722 0.757

10 1 1 Rprop 0.001 BCEWithLogitsLoss 0.655 0.683

11 1 1 SGD 0.001 BCEWithLogitsLoss 0.560 0.670

12 1 1 Adadelta 0.01 BCEWithLogitsLoss 0.611 0.678

13 1 1 Adagrad 0.01 BCEWithLogitsLoss 0.672 0.720

14 1 1 Adam 0.01 BCEWithLogitsLoss 0.500 0.660

15 1 1 AdamW 0.01 BCEWithLogitsLoss 0.590 0.633

16 1 1 Adamax 0.01 BCEWithLogitsLoss 0.500 0.66

17 1 1 ASGD 0.01 BCEWithLogitsLoss 0.640 0.700

18 1 1 NAdam 0.01 BCEWithLogitsLoss 0.672 0.725

19 1 1 RAdam 0.01 BCEWithLogitsLoss 0.683 0.716

20 1 1 RMSprop 0.01 BCEWithLogitsLoss 0.600 0.065

21 1 1 Rprop 0.01 BCEWithLogitsLoss 0.711 0.717

22 1 1 SGD 0.01 BCEWithLogitsLoss 0.622 0.682

23 1 1 Adadelta 0.1 BCEWithLogitsLoss 0.640 0.690

24 1 1 Adagrad 0.1 BCEWithLogitsLoss 0.683 0.719

25 1 1 Adam 0.1 BCEWithLogitsLoss 0.500 0.666

26 1 1 AdamW 0.1 BCEWithLogitsLoss 0.460 0.600

27 1 1 Adamax 0.1 BCEWithLogitsLoss 0.600 0.650

28 1 1 ASGD 0.1 BCEWithLogitsLoss 0.622 0.688

29 1 1 NAdam 0.1 BCEWithLogitsLoss 0.677 0.707

30 1 1 RAdam 0.1 BCEWithLogitsLoss 0.616 0.672

31 1 1 RMSprop 0.1 BCEWithLogitsLoss 0.722 0.757

32 1 1 Rprop 0.1 BCEWithLogitsLoss 0.664 0.726

33 1 1 SGD 0.1 BCEWithLogitsLoss 0.650 0.715

Table 6.2 Comparison of the Optimizers
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6.1.3. Loss Function Comparison

All loss functions have been tested. The decisive performance metrics are accuracy and

F1 score. These scores are obtained from the test data results. The comparison results are

presented in Table 6.3.

Loss Function ID Graph ID Network ID Optimizer Loss Function Accuracy F1-Score

1 1 1
AdamW

(lr:0.001)
L1Loss 0.600 0.707

2 1 1
AdamW

(lr:0.001)
MSELoss 0.550 0.670

3 1 1
AdamW

(lr:0.001)
PoissonNLLLoss 0.600 0.485

4 1 1
AdamW

(lr:0.001)
BCEWithLogitsLoss 0.750 0.788

5 1 1
AdamW

(lr:0.001)
HingeEmbeddingLoss 0.550 0.441

6 1 1
AdamW

(lr:0.001)
HuberLoss 0.566 0.690

7 1 1
AdamW

(lr:0.001)
SmoothL1Loss 0.572 0.695

8 1 1
AdamW

(lr:0.001)
SoftMarginLoss 0.500 0.660

Table 6.3 Comparison of the Loss Function

6.1.4. Hyperparameters Comparison

All hyperparameters have been tested. The decisive performance metrics are accuracy and

F1 score. These scores are obtained from the test data results. The comparison results are

presented in Table 6.4.
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Network ID Graph ID Optimizer Loss Function Accuracy F1-Score

1 1
AdamW

(lr:0.001)
BCEWithLogitsLoss 0.75 0.781

2 1
AdamW

(lr:0.001)
BCEWithLogitsLoss 0.727 0.758

3 1
AdamW

(lr:0.001)
BCEWithLogitsLoss 0.722 0.747

4 1
AdamW

(lr:0.001)
BCEWithLogitsLoss 0.710 0.752

5 1
AdamW

(lr:0.001)
BCEWithLogitsLoss 0.70 0.740

6 1
AdamW

(lr:0.001)
BCEWithLogitsLoss 0.711 0.761

7 1
AdamW

(lr:0.001)
BCEWithLogitsLoss 0.688 0.743

8 1
AdamW

(lr:0.001)
BCEWithLogitsLoss 0.722 0.764

Table 6.4 Comparison of the Network Arhitecture

6.2. Performance Evaluation of the Finalized Model

Within this subsection, the finalized model is subjected to a thorough performance

evaluation. A series of established metrics and benchmarks are utilized to meticulously

analyze the model’s efficacy and precision. The evaluation is conducted in a manner that

ensures a comprehensive understanding of the model’s capabilities in simulating real-world

scenarios.

6.2.1. Model Performance on Constructed Graphs

In this section, the performance of the machine learning model on GDA score based

constructed graphs is elaborated. Prior to the explanation, the selected machine learning
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model’s hyperparameters used to illustrate the performance of the machine learning model

are mentioned below.

• Machine Learning Model Architecture : 2 layer graph convolutional

network(1792:112 ; 112:28) is used by encoder-decoder.

• Optimizer : AdamW (learning rate: 0.001)

• Loss Function : BCEWithLogitsLoss

The performance of the machine learning model on GDA score based constructed graphs is

evaluated. The validation results of the machine learning model are presented in Table 6.5.

The test results of the machine learning model are presented in Table 6.6.

Graph ID Accuracy F1 Score Precision Recall ROC-AUC PR-AUC Specificity

1 0.719 0.741 0.688 0.800 0.735 0.688 0.637

2 0.830 0.836 0.805 0.871 0.896 0.893 0.789

3 0.890 0.893 0.875 0.911 0.953 0.957 0.869

4 0.891 0.895 0.867 0.955 0.955 0.960 0.858

Table 6.5 Model Validation Performance Results on Graph 1-4

The performance of the machine learning model on various datasets is evaluated. The test

results of the machine learning model are presented in Table 6.6.

Graph ID Accuracy F1 Score Precision Recall ROC-AUC PR-AUC Specificity

1 0.761 0.786 0.711 0.877 0.807 0.746 0.644

2 0.827 0.840 0.784 0.900 0.900 0.900 0.750

3 0.890 0.892 0.874 0.911 0.953 0.957 0.869

4 0.888 0.892 0.867 0.918 0.954 0.959 0.860

Table 6.6 Model Independent Test Performance Results on Graph 1-4
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6.2.2. Performance Comparison with the State-of-the-art

6.2.2.1. SkipGNN Comparison

It is essential to contrast this model with other research, particularly the SkipGNN:

Predicting Molecular Interactions with Skip-Graph Networks[59] study.

In the SkipGNN study[59], the researchers developed a machine learning model to

forecast drug-target interactions, drug-drug interactions, protein-protein interactions, and

disease-gene interactions. Although various datasets are employed in this study, the

disease-gene associations dataset is utilized for testing all the methods mentioned in 6.9.

In GLADIGATOR, the DisGeNet curated dataset[98] is used to evaluate the model’s

performance. In DisGeNet curated dataset, there are 19,783 nodes and 81,746 edges.

Constructed graph contains 19,001 nodes and 78,097 edges. 3,649 associations are not

formed in the customized dataset due to the inability to collect number of 782 disease and

gene information from the proposed sources. Consequently, 3,649 associations could not

be established in the customized dataset. These missing associations are decomposed into

train, validation and test parts with the same splitting ratio (8:1:1).

The validation performance result is presented in Table 6.7, and the test performance result

is in Table 6.8.

Graph ID Accuracy F1 Score Precision Recall ROC-AUC PR-AUC Specificity

5 0.899 0.902 0.869 0.938 0.960 0.966 0.859

Table 6.7 Model Validation Performance Results on Graph 5

The machine learning model in this study is trained with same dataset with used in

SkipGNN[59], which includes disease-gene associations information. Therefore, these two
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Graph ID Accuracy F1 Score Precision Recall ROC-AUC PR-AUC Specificity

5 0.889 0.893 0.859 0.930 0.955 0.960 0.848

Table 6.8 Model Independent Test Performance Results on Graph 5

studies are comparable based on disease-gene association prediction. The comparison results

of the disease-gene association prediction methods are presented in Table 6.9.

Method Name ROC-AUC PR-AUC References

GLADIGATOR 0.950 0.956 -

HOGCN 0.936 0.941 [60]

ResMGCN 0.925 0.935 [61]

MixHop 0.916 0.912 [66]

SkipGNN 0.912 0.915 [59]

struc2vec 0.909 0.910 [71]

GCN 0.906 0.909 [62]

SC 0.863 0.905 [68]

GIN 0.900 0.916 [64]

JK-Net 0.898 0.891 [65]

VGAE 0.873 0.902 [63]

node2vec 0.834 0.828 [70]

DeepWalk 0.832 0.827 [69]

L3 0.832 0.899 [67]

Table 6.9 Comparing Methods: Insights from the DisGeNet Curated Dataset
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There are discrepancies between the performance results in Table 6.9 and Table 6.8 due to

the different splitting ratios. In Table 6.9, the splitting ratio is (7:1:2), whereas in Table 6.8,

the splitting ratio is (8:1:1).

6.2.2.2. Comparison on OGB

Protein-disease associations are collected from ogbl-biokg(OGB). The aim is to construct a

new graph to execute the machine learning model on ogbl-biokg. The performance results

of the machine learning model are presented with graph id 6 in Table 6.10 and Table 6.11.

Proposed method can be compared with other methods. However, other methods represent

only MRR score. In our model, an encode-decode process is employed based on a two-layer

graph convolutional network. Therefore, the machine learning model used in this study

cannot reliably produce an MRR result. For each prediction, the output of decoder is one

binary (0/1) value. Because of that, MRR calculation is not reliable for GLAGIGATOR.

Graph ID Accuracy F1 Score Precision Recall ROC-AUC PR-AUC Specificity

6 0.859 0.867 0.819 0.920 0.941 0.945 0.797

Table 6.10 Model Validation Performance Results on Graph 6

Graph ID Accuracy F1 Score Precision Recall ROC-AUC PR-AUC Specificity

6 0.874 0.883 0.822 0.955 0.963 0.966 0.793

Table 6.11 Model Independent Test Performance Results on Graph 6

GLADIGATOR was tested only on the protein-disease part of the ogbl-biokg(OGB) dataset.

Other methods were tested covering the entire ogbl-biokg(OGB) dataset. The results are

mentioned in Table 6.12.
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Method MRR Score References

RelEns 0.9618 [99]

GLADIGATOR 0.859 -

ComplEx2̂ 0.8583 [100]

UniBi 0.8550 [101]

AutoBLM-KGBench 0.8536 [102]

ComplEx-RP 0.8492 [103]

TripleRE 0.8348 [104]

AutoSF 0.8309 [105]

PairRE 0.8164 [106]

ComplEx 0.8095 [107]

DistMult 0.8043 [108]

RotatE 0.7989 [109]

TransE 0.7452 [110]

Table 6.12 Comparing Methods: Insights from the OGB Datasets

6.3. Ablation Study

Ablation study is a terminology prevalent in fields like science and engineering, particularly

in areas such as artificial intelligence and machine learning. Essentially, it is an

analysis method involving various components, losses, or substitutions to discern a pattern.

Adjustments and removals in the machine are carried out to identify the significant parts

or components of the model. For instance, in a deep learning model, imputation might

be conducted to supply specific layers or feature extractors. This technique is crucial

for determining which quantities or components of the model have increased or expanded

relative to what was anticipated. An ablation study serves as a vital instrument for identifying

which features or parts should be concentrated on to enhance the overall performance or
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efficiency of the model. Detailed information about the ablation study is provided in Table

6.13.

Ablation Study Name Description

Embedding Aggregation
Applying zero padding to different parts for gene/protein embeddings and disease embeddings

Gene/Protein embeddings and disease embeddings are created from different universal sets.

Negative Edge Generation
Negative only disease-gene associations are generated.

In the absence of these, negative edges are created between gene-gene, disease-disease and disease-gene nodes.

Table 6.13 Explanation of Ablation Study

6.3.1. Embedding Aggregation

In the scope of this thesis, Prot-T5[1] serves as the source for gene/protein embeddings,

which are characterized by a dimensionality of (1 * 1024). In parallel, disease embeddings

are derived from Biobert[2], exhibiting dimensions of (1 * 768). Standardization of these

embeddings for machine learning utilization typically involves zero-padding, which, in this

context, equates to appending 256 zeros to the terminus of the disease embeddings.

To facilitate the machine learning model’s comprehension, a scaling operation is applied

across all embeddings. This operation, while beneficial for model processing, may render

the distinction between gene/protein and disease embeddings less discernible. Addressing

this, the methodology introduced herein applies a differential zero-padding strategy to each

embedding type. For gene/protein embeddings, zero-padding entails the addition of 768

zeros at the embedding’s end. Conversely, for disease embeddings, zero-padding involves

the prefixing of 1024 zeros. This approach ensures a uniform embedding size of (1 *

1792), thereby maintaining the network’s structural integrity and enabling a more nuanced

comparison of the zero-padding algorithm’s efficacy.

The outcome of removing the embedding aggregation is documented in Table 6.14 and in

Table 6.15. A performance comparison can be drawn by examining the second and third

rows in Table 6.14 and in Table 6.15.
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6.3.2. Negative Edge Generation

In the first implemented dataset, negative edges were created randomly and among all node

types by PyTorch-Geometric[91]. Only the edges produced between the gene and the

disease affected performance as a new feature. The generation of negative edges between

only genes and diseases plays a significant role in the performance of the disease-gene

association prediction. Creating negative disease-gene associations boosts the performance

of the disease-gene association prediction model. A performance comparison can be made

by looking at the first and second rows in Table 6.14 and Table 6.15.

Embedding Aggregation
Generating Negative

Disease-Gene Edges
Graph ID Accuracy F1 Score Precision Recall ROC-AUC

X 7 2 0.739 0.782 0.671 0.938 0.87

7 X 2 0.823 0.826 0.810 0.843 0.895

X X 2 0.830 0.836 0.805 0.871 0.896

Table 6.14 Comparing Validation Performance in Ablation Studies

Embedding Aggregation
Generating Negative

Disease-Gene Edges
Graph ID Accuracy F1 Score Precision Recall ROC-AUC

X 7 2 0.75 0.8 0.675 0.974 0.925

7 X 2 0.823 0.835 0.783 0.893 0.916

X X 2 0.828 0.84 0.784 0.904 0.904

Table 6.15 Comparing Test Performance in Ablation Studies

The results present the outcomes of the ablation studies, highlighting their significance for the

methodology and their impact on model performance. The introduction of the Embedding

Aggregation feature has simplified the differentiation of gene/protein embeddings from those

of diseases, leading to enhanced method efficacy.

Furthermore, the exclusive creation of edges between genes and diseases has contributed

to a boost in method performance. Upon examining the results, it becomes evident that
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the selective edge generation between genes and diseases contributes more significantly to

performance enhancement than the embedding aggregation feature.

6.4. Use Case Study

In this section, we selected several positive and negative disease-gene pair predictions of

GLADOGATOR and tried to verify them via literature validation, to assess the biological

relevance of the proposed method. The model under consideration has been developed using

Graph 1. A portion of the outcomes derived from this model is documented in Table 6.16.

These associations’ gene disease association score are equal or higher than 0.9 .

In Table 6.16, the initial six use cases were derived from the GLADIGATOR test outcomes,

as depicted in Graph 1. These six instances were chosen at random from a total of 179

relationships. In addition, the final three use case details were sourced from existing

literature. However, it is important to note that these three use cases are absent from the

DisGeNet database. Consequently, GLADIGATOR underwent testing with data that is not

included in the DisGeNet database.

It presents the data on the associations between specific genes and diseases in Table 6.16,

together with the predictions produced by the GLADIATOR method and the validations from

DisGeNet. Here’s a detailed explanation of each column:

• Gene Symbol: The standard abbreviation for the gene in question.

• Uniprot ID: The unique identifier for the protein associated with the gene in the

UniProt database.

• Disease Name: The name of the disease associated with the gene.

• Disease CUI: The Concept Unique Identifier (CUI) for the disease in the Unified

Medical Language System (UMLS).

• True Association Information: Indicates whether there is verified information about

the disease-gene association.
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• GLADIGATOR Prediction: Indicates whether GLADIGATOR predicted an

association between the gene and the disease.

• DisGeNet Confirmation: Indicates whether DisGeNet confirmed the association

between the gene and the disease.

Gene Symbol Uniprot ID Disease Name Disease CUI
True Association

Information

GLADIGATOR

Prediction

DisGeNet

Confirmation

ABCA1 O95477 Tangier Disease C0039292 X X X
ABCA4 P78363 Stargardt’s disease C0271093 X X X

ACADM P11310
Medium-chain acyl-coenzyme

A dehydrogenase deficiency
C0220710 X X X

FANCA O15360 Polycystic Kidney Disease I C3149841 7 7 7

PINK1 Q9BXM7 Herlitz Disease C0079683 7 7 7

NPR2 P20594
Polyneuropathy, Hearing Loss, Ataxia,

Retinitis Pigmentosa, And Cataract
C2675204 7 7 7

PADI4 Q9UM07 Rheumatoid Arthritis Disease C0003873 X X 7

GATA2 P23769 Emberger Syndrome Disease C1868560 X X 7

SETBP1 Q9Y6X0 Schinzel-Giedion Syndrome Disease C3554436 X X 7

Table 6.16 Predictions from the Proposed Method Using Graph 1
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6.4.1. ABCA1 Gene and Tangier Disease Association

The association between ABCA1 Gene and Tangier Disease was correctly predicted by

GLADIGATOR. Tangier disease (TD) is a rare autosomal recessive disorder associated

with genetic mutations in the ABCA1 gene [111]. This gene encodes a cell plasma

membrane cholesterol transporter. Individuals with TD exhibit significantly reduced

levels of plasma high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-1

(ApoA-I)[112]. Consequently, they face a moderately increased risk of cardiovascular

disease due to their low HDL levels. Tangier disease (TD) typically leads to cholesterol

accumulation in peripheral tissues and early coronary disease, although its clinical expression

varies widely [113]. Scientific evidence for the association explained above are given below.

- Mutations in ABCA1 cause Tangier disease characterized by defective cholesterol

homeostasis and high density lipoprotein (HDL) deficiency [114].

- ATP-binding cassette transporter A1 (ABCA1) gene mutations in a patient with Tangier

disease, who presented an uncommon clinical history, and in his family were found and

characterized [115].

- Homozygous variations in ATP-binding cassette transporter A1 typically cause Tangier

disease, a rare autosomal recessive condition linked with several other abnormalities (eg,

enlarged discolored tonsils) [116].

6.4.2. ABCA4 Gene and Stargardt’s Disease Association

The association between ABCA4 Gene and Stargardt’s Disease was correctly predicted by

GLADIGATOR. Stargardt’s disease (STGD) is an autosomal recessive retinopathy primarily

caused by genetic mutations in the ABCA4 gene located on chromosome 1 (OMIM 601691).

The ABCA4 gene encodes a retina-specific ATP-binding cassette transporter, which plays a

crucial role in the processing of vitamin A and the maintenance of photoreceptor cells in the

retina. Mutations in ABCA4 result in impaired transport of vitamin A derivatives, leading to
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the accumulation of toxic lipofuscin in the retinal pigment epithelium (RPE) and subsequent

photoreceptor degeneration [117]. Clinically, STGD is characterized by progressive central

vision loss, macular atrophy, and the presence of yellowish flecks in the fundus. Notably, the

mutation spectrum of ABCA4 is diverse, with numerous missense, splicing, frameshift, and

nonsense variants identified [118]. Recent studies, including comprehensive next-generation

sequencing analyses, have revealed novel variants in the ABCA4 gene, further expanding our

understanding of the genetic basis of Stargardt’s disease [119]. Scientific evidence for the

association explained above are given below.

- Stargardt disease (STGD1, OMIM 248200) is a common hereditary juvenile or early adult

onset macular degeneration [120].

- Mutations in the gene encoding ABCA4 are responsible for Stargardt disease (STGD1), an

autosomal recessive retinal degenerative disease that causes severe vision loss [121].

- Null missense ABCR (ABCA4) mutations in a family with stargardt disease and retinitis

pigmentosa [122].

6.4.3. ACADM Gene and Medium-chain Acyl-Coenzyme A Dehydrogenase

Deficiency Disease Association

The association between ACADM Gene and Medium-chain Acyl-Coenzyme A

Dehydrogenase Deficiency Disease was correctly predicted by GLADIGATOR.

Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCADD) is an autosomal

recessive disorder caused by mutations in the ACADM gene. This gene encodes the

medium-chain acyl-CoA dehydrogenase enzyme, which plays a crucial role in fatty acid

metabolism. Individuals with MCADD have impaired ability to break down medium-chain

fatty acids, leading to a buildup of toxic metabolites[123]. Clinically, MCADD presents

with symptoms such as hypoglycemia, lethargy, vomiting, and seizures, often triggered

by fasting or illness [124]. Newborn screening programs have been instrumental in early

detection of MCADD, allowing for timely intervention through dietary modifications and
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avoiding fasting periods. Understanding the genetic basis of MCADD through the study

of ACADM gene variants is essential for improving diagnosis, management, and genetic

counseling for affected individuals [125]. Scientific evidence for the association explained

above are given below.

- Medium-chain acyl-CoA dehydrogenase deficiency: Two novel ACADM mutations

identified in a retrospective screening [126].

- Significance of ACADM mutations identified through newborn screening of MCAD

deficiency in Japan [127].

- About 60% of MCADD patients are homozygous for the c.985A¿G (p.Lys329Glu)

mutation in the ACADM gene (G985 allele) [128].

6.4.4. FANCA Gene and Polycystic Kidney Disease I Disease Association

GLADIGATOR correctly predicted that there is no association between the FANCA Gene

and Polycystic Kidney Disease I Disease. The FANCA gene is known for its role in the

Fanconi anemia (FA) pathway, which is crucial for DNA repair. Mutations in the FANCA

gene can lead to Fanconi anemia, a condition characterized by bone marrow failure and

increased risk of cancer [129, 130]. While the FANCA gene is not directly associated with

Polycystic Kidney Disease I (PKD1), it’s important to note that PKD1 is caused by mutations

in the PKD1 gene, which encodes for polycystin-1, a protein involved in cell signaling and

structure within the kidneys [131].

However, both conditions involve genetic mutations that affect cellular processes. In the case

of PKD1, mutations lead to the formation of cysts in the kidneys, while in Fanconi anemia,

mutations impair DNA repair mechanisms. It’s also worth mentioning that individuals with

Fanconi anemia may have a higher risk of developing various types of cancers, including

those affecting the kidneys [129].
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6.4.5. PINK1 Gene and Herlitz Disease Association

GLADIGATOR correctly predicted that there is no association between the PINK1 Gene

and Herlitz Disease. The PINK1 gene is primarily associated with Parkinson’s disease,

particularly the early-onset form of the disorder which typically begins before age 50 [132].

Mutations in the PINK1 gene can alter or eliminate the kinase domain, leading to a loss

of protein function, and at least one mutation affects the mitochondrial-targeting motif,

potentially disrupting the delivery of the protein to mitochondria[132, 133].

Herlitz Disease, also known as Epidermolysis Bullosa Acquisita (EBA), is a rare chronic

autoimmune blistering disease that affects the skin and mucous membranes. It is not directly

associated with the PINK1 gene. Instead, Herlitz Disease is characterized by autoantibodies

against type VII collagen, which is a component of anchoring fibrils that attach the epidermis

to the dermis[134].

While both conditions involve genetic mutations and cellular dysfunction, they affect

different systems and are not linked by the PINK1 gene.

6.4.6. NPR2 Gene and Polyneuropathy, Hearing Loss, Ataxia, Retinitis Pigmentosa,

and Cataract Disease Association

GLADIGATOR correctly predicted that there is no association between the NPR2 Gene

and Polyneuropathy, Hearing Loss, Ataxia, Retinitis Pigmentosa, and Cataract Disease.

The NPR2 gene is not directly associated with the condition known as Polyneuropathy,

Hearing Loss, Ataxia, Retinitis Pigmentosa, and Cataract (PHARC). PHARC is caused

by homozygous or compound heterozygous mutations in the ABHD12 gene located on

chromosome 20p11.21 [135]. This condition is a slowly progressive neurologic disorder

that resembles Refsum disease and is characterized by a combination of symptoms including

peripheral neuropathy, hearing loss, cataracts, and retinitis pigmentosa [135].
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The NPR2 gene is involved in the regulation of iron metabolism and has been implicated

in conditions related to iron overload, such as hemochromatosis [136]. It does not have a

known association with the symptoms described in PHARC syndrome[137].

6.4.7. PADI4 Gene and Rheumatoid Arthritis Disease Association

GLADIGATOR correctly predicted that there is an association between the PADI4 Gene

and Rheumatoid Arthritis Disease. The PADI4 gene is implicated in the development

of Rheumatoid Arthritis (RA), a chronic autoimmune disease characterized by joint

inflammation and destruction. PADI4 encodes an enzyme that modifies proteins by

converting arginine residues into citrulline, a process known as citrullination [138]. This

modification can lead to the production of neo-antigens that are targeted by the immune

system in RA patients.

Research has identified specific polymorphisms and haplotypes within the PADI4 gene that

are associated with an increased risk of RA. These genetic variations may influence the

enzyme’s activity, leading to higher levels of citrullinated proteins and, consequently, a

more aggressive immune response [139]. The presence of anti-cyclic citrullinated peptide

(anti-CCP) antibodies, which are linked to PADI4 activity, is a significant marker for RA and

can be detected early in the disease’s progression. Understanding the role of PADI4 in RA

pathogenesis is crucial for developing targeted treatments and improving patient outcomes.

6.4.8. GATA2 Gene and Emberger Syndrome Disease Association

GLADIGATOR correctly predicted that there is an association between the GATA2 Gene

and Emberger Syndrome Disease. The GATA2 gene is associated with Emberger Syndrome,

a rare genetic disorder characterized by primary lymphedema and myelodysplastic

syndromes/acute myeloid leukemia (MDS/AML). Emberger Syndrome is caused by

inactivating mutations in one of the two parental GATA2 genes, leading to a reduction

in the levels of the GATA2 transcription factor [140]. This haploinsufficiency results in
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a variety of clinical manifestations, including immunodeficiency, pulmonary disease, and

vascular/lymphatic dysfunction [141].

Patients with Emberger Syndrome may present with severe viral infections, disseminated

mycobacterial infections, and pulmonary alveolar proteinosis due to the deficiency of

monocytes and other immune cells2. The syndrome also includes features such as

lymphedema, which is a hallmark of the condition, and can progress to MDS/AML. Early

genetic diagnosis is crucial for managing the disease and providing appropriate clinical care

[142].

6.4.9. SETBP1 Gene and Schinzel-Giedion Syndrome Disease Association

GLADIGATOR correctly predicted that there is an association between the SETBP1

Gene and Schinzel-Giedion Syndrome Disease. The SETBP1 gene is associated

with Schinzel-Giedion Syndrome (SGS), a rare genetic disorder characterized by

profound neurodevelopmental delays, distinctive facial features, and multiple congenital

malformations [143]. Mutations in the SETBP1 gene, particularly de novo mutations, lead

to a loss-of-function of the gene, resulting in insufficient production of the SETBP1 protein.

This protein plays a crucial role in brain development and function, and its deficiency is

linked to the symptoms observed in SGS [144].

Individuals with SGS may exhibit a range of symptoms including absent speech, expressive

language delays, intellectual disability, autistic traits or autism, developmental delays,

ADHD, low muscle tone, seizures or EEG abnormalities, and various learning disabilities

[145]. The condition is also associated with an increased risk of cancer [146]. Research into

SETBP1 haploinsufficiency disorder continues to uncover more about the gene’s function

and the mechanisms behind the disorder’s manifestation [144].
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7. OPEN SOURCE MODEL

The method proposed is available in https://github.com/hubiodatalab/GLADIGATOR. This

repository houses all the source codes. It contains three primary project folders:

Main-Project, Comparison-SkipGNN, and Comparison-Open-Graph-Dataset. Detailed

information is provided below, and all scripts are documented in markdown files.

7.1. Main-Project

Associations between genes and diseases, as well as associations between diseases, are

obtained from DisGeNet. Information about gene-gene interactions is sourced from

BioGrid. Detailed disease information is collected from UMLS, and gene embeddings are

obtained from Prot-T5 from Uniprot. This project has three main folders: Gathering-Data,

Build-Graph, and Run-Model.

- Gathering-Data: This folder houses the code for collecting dataset information from the

internet. This part can be run with the call scripts that are mentioned below.

python3 gather_gene_disease_information.py

python3 gather_disease_data_from_umls.py

- Build-Graph: This folder contains the code used to construct the custom graph for the

model training phase. This part can be run with the call scripts that are mentioned below.

python3 build_graph.py 0.5

- Run-Model: This folder contains the code used to train proposed model to predict

gene-disease associations. This part can be run with the call scripts that are mentioned below.

python3 run_model.py "../../graph-files/Graph_Own_0.5.pt"
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7.2. Comparison-SkipGNN

Gene-disease associations are obtained from a curated dataset from DisGeNet.

Disease-disease associations are sourced from DisGeNet. Gene-gene information is

collected from BioGrid, and detailed disease information is gathered from UMLS. Gene

embeddings are obtained from Prot-T5 from Uniprot. This project has two main folders:

Build-Graph and Run-Model.

- Build-Graph: This folder contains the code used to construct the custom graph for the

model training phase. The source information is obtained from the SkipGNN repository.

The curated dataset from DisGeNet is downloaded from the SkipGNN repository. This part

can be run with the call scripts that are mentioned below.

python3 build_graph_skipgnn_comparison.py

- Run-Model: This folder contains the code used to train proposed model to predict

gene-disease associations. This part can be run with the call scripts that are mentioned below.

python3 run_model_skipgnn_comparison.py

"../../graph-files/Graph_Comparison_SkipGNN.pt"

7.3. Comparison-Open-Graph-Dataset

Gene-disease associations are obtained from the ”ogbl-biokg” dataset from OGB.

Disease-disease associations are sourced from DisGeNet. Gene-gene information is

collected from BioGrid, and detailed disease information is gathered from UMLS. Gene

embeddings are obtained from Prot-T5 from Uniprot. This project has two main folders:

Build-Graph and Run-Model.

- Build-Graph: This folder contains the code used to construct the custom graph for the model
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training phase. The source information is obtained from the ”ogbl-biokg” dataset from OGB.

Only the protein-disease part of this dataset is used. This part can be run with the call scripts

that are mentioned below.

python3 build_graph_ogb_comparison.py

- Run-Model: This folder contains the code used to train proposed model to predict

gene-disease associations. This part can be run with the call scripts that are mentioned below.

python3 run_model_ogb_comparison.py

"../../graph-files/Graph_Comparison_OGB.pt"

7.4. Output Format

Validation and test results are given as output in cvs format. Validation results are created

with a name where the expressions ”val results”, ”name of the graph used” are added one

after the other. Test results are created with a name such as ”test results”, ”name of the graph

used” added one after the other.

End of the output that is in .csv format, contains 2 part. First part has 4 columns about

prediction. First column contains first node id information. Second column contains

second node id information. Third column contains real information about associations.

Fourth column contains prediction information abput associations. The first part is place in

beginning of the output.

The second part contains performance scores that are accuracy, f1-score, precision, recall,

roc-auc, pr-auc and specifity. Also, second part contains that which epochs results are

displayed. The second part is placed end of the first part. The validation results output

format and the test results output format are used same format that is explained this section.

Sample structure of the output format is mentioned in Figure 7.1.
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Figure 7.1 Sample Output Format

7.5. Generate Predictions

The GLADIGATOR models are stored in the Trained-Models directory. A script is available

to facilitate predictions between genes and diseases. An example of how to use this script for

predicting the relationship between a gene and a disease is provided. Executing the specified

command will prompt the Graph Own 0.9 model, a pre-trained GLADIGATOR model, to

predict the association between the SETBP1 gene and the C3554436 disease.

python3 MakePrediction.py Graph_Own_0.9_model.pth

SETBP1 C3554436
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8. DISCUSSION & CONCLUSION

This research is focused on creating a machine-learning model to predict the links between

diseases and genes. In today’s world, the widespread analysis of genetic data and health

outcomes is crucial in advancing medical diagnosis and treatment. However, sustaining these

advancements conventionally is often insufficient.

Machine learning holds substantial potential in this domain due to its capability to analyze

vast volumes of data and discern intricate relationships. The significance of the model

presented in this thesis lies in its ability to make more precise and sensitive predictions of

potential associations.

GLADIGATOR extracts features from genetic datasets using pre-trained machine learning

models. By utilizing embedding, graphs are constructed. Moreover, descriptions of diseases

are instrumental in generating embedding to train the machine learning model with ease.

The foundational data underpinning these relationships, inclusive of disease-disease and

disease-gene associations, were meticulously sourced from the DisGeNet database[98].

Concurrently, the gene-gene associations, with a focus on homo-sapiens, were curated from

BioGrid [88].

The graph thus constructed was subsequently converted into a format amenable to machine

learning models. This data served as the bedrock for training a model that boasts an encoder

based on a 2-layer graph convolutional network, complemented by a decoder dedicated

to training with labeled data. The validation and testing procedures mirrored the training

regimen, ensuring consistency and reliability.

Various types of machine learning model structures were examined. The machine learning

model has customized parameters that include the number of dense and encoder-decoder

structures. Different types of optimizers and loss functions were tested. The best

performance result was obtained from the 1st network id in Table 6.4. These performance

tests were conducted using the Graph 1.
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In addition, optimizers and loss functions were tested to select the best optimizer for the

proposed methods. The AdamW optimizer performed best compared to other optimizers, as

mentioned in Table 6.2. The BCEWithLogitsLoss loss function performed best compared

to other loss functions, as mentioned in Table 6.3. These performance tests were conducted

using the Graph 1.

The operation of splitting the graph dataset plays a key role in performance. The (8:1:1)

ratio is a common split ratio. Therefore, the (8:1:1) ratio is applied for the proposed method.

Moreover, adding negative edges to the input graph is a crucial factor in the performance of

the model. Graph 1 is a smallest dataset. Graph 2, Graph 5, and Graph 6 are normal-sized

graphs. Graph 3 and Graph 4 are large datasets.

To enhance the performance of machine learning models, it is imperative to utilize extensive

datasets for training. This assertion is substantiated by the data presented in Tables 6.5 and

Table 6.6. A comparative analysis of the model’s performance reveals a suboptimal outcome

when trained with Graph 1. In contrast, a notable improvement is observed when the model

is trained with Graph 2. However, the model achieves its peak performance when the training

involves Graph 3 and Graph 4. Both the validation and test results corroborate the superior

performance of the GLADIGATOR when a substantial graph dataset is employed.

The GLADIGATOR model performance shows remarkable efficiency in Graph 1. However,

when evaluating its performance on other graphs, it shows suboptimal results. This

discrepancy can be attributed to two factors. First, the smaller size of Graph 1 may affect the

generalization ability of the algorithm. Second, the presence of similar disease information

in Graph 1 may hinder its performance during testing, especially when different diseases are

encountered in the test data.

The Graph 1 has the lowest specificity at 0.644, indicating a relatively poor performance

in correctly identifying negative cases. This could suggest issues such as data imbalance,

improper feature selection, or model overfitting/underfitting. The Specificity improves

progressively in the subsequent models, with Graph ID 3 achieving the highest Specificity

at 0.869, closely followed by Graph ID 4 at 0.860. These higher values suggest that the
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latter models are significantly better at correctly classifying negative instances, likely due

to better model tuning, feature selection, or handling of class imbalance. The improvement

in specificity, alongside other metrics like ROC-AUC and PR-AUC, indicates a more robust

and reliable model performance.

The GLADIGATOR’s performance was evaluated on various datasets. The results indicate

that the model’s performance improved consistently across different graphs, with the highest

accuracy, F1 score, precision, recall, ROC-AUC, PR-AUC, and specificity achieved on Graph

3 in both validation and test datasets.

The results garnered from the GLADIGATOR were exceptional. The GLADIGATOR has

performed exceedingly well, leading to the following insights drawn from the constructed

graph:

• The quantity of edges is a determinant of paramount importance in the performance of

a machine learning model. The model’s efficacy is seen to fluctuate with the number of

edges. This observation emerged from a comparative analysis of gene disease scores

at thresholds of 0.1 and 0.9, with the model comprising a higher edge count surpassing

its counterpart with fewer edges.

• The quantity of edges is a pivotal factor in the dynamics of machine learning models.

The model’s performance showcased consistency irrespective of the edge count. This

finding was deduced by juxtaposing gene disease scores at thresholds of 0.1 and 0.05.

The GLADIGATOR performs well with Graph 5, which is built on the curated dataset of

DisGeNet. Validation results are mentioned in Table 6.7. Test results are mentioned in Table

6.8. In addition to this part, the split ratio of Graph 5 is (8:1:1). The original SkipGNN

[59], split ratio is (7:1:2). Also, the performance of the machine learning model based on the

(7:1:2) split ratio is mentioned in Table 6.9. The performance of the machine learning model

with the (7:1:2) split ratio perform well, but the performance is lower than the (8:1:1) ratio

of the machine learning model.
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The GLADIGATOR perform best according to Table 6.9. Without HOGCN [60] and

ResMGCN [61], other methods’ performance results are gathered from SkipGNN [59].

Also, HOGCN [60] and ResMGCN [61], with the addition of a new approach to this area,

perform better than SkipGNN [59]. The model’s efficacy was appraised utilizing two metrics:

Roc-AUC and Pr-AUC. Among the 14 disparate machine learning models that prognosticate

disease-gene associations, the model delineated in this study emerged as the preeminent

contender.

All methods are mentioned Table 6.9, use neighbourhood relationships. Also, the

GLADIGATOR method uses neighbourhood relationships. But the main difference of the

GLADIGATOR is that use node embedings to predict link between nodes. In the other

side, SkipGNN[59] use neighbourhood relationships, calculate skip similarity to generate

skip graph to train model. Skip similarity is a metric calculated on 2-degree neighborhood

relationships [59]. Also, HOGCN[60], use metric like skip similarity metric that is

k-degree neighborhood relationships. In addition, MixHop[66] can also use neighborhood

relationships differently.

According to the test results in Table 6.12, GLADIGATOR achieved a good result. The other

performance metrics are high, as mentioned in Table 6.10 and Table 6.11. GLADIGATOR

is second best method based on MRR score that is mentioned in Table 6.12. Other methods

are mentioned in Table 6.12, use all part of the ogbl-biokg dataset. The GLADIGATOR is

used only protein-disase association part. Better results could be obtained if GLADIGATOR

cover the entire dataset was performed.

The ablation study, as detailed in Table 6.13, provides a comprehensive understanding of the

significant components of the model. Two key components were examined: the embedding

aggregation and generating negative disease-gene associations.

The incorporation of embedding aggregation is pivotal to the methodology proposed. An

empirical evaluation revealed a decline in performance metrics upon the exclusion of this

feature. The impact of omitting embedding aggregation is systematically recorded in Tables
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6.14 and 6.15. A comparative analysis of performance can be discerned by scrutinizing the

second and third rows of these tables.

Furthermore, embedding aggregation plays a vital role in magnifying the distinction between

gene and disease nodes. This is attributed to the fact that gene embeddings and disease

embeddings are derived from disparate spaces. An augmentation in the disparity between

gene and disease embeddings correlates with an enhancement in the performance of

GLADIGATOR.

The generation of negative edges between only genes and diseases plays a significant role in

the performance of the disease-gene association prediction. Creating negative only between

gene and disease nodes boosts the performance of the disease-gene association prediction

model. A performance comparison can be made by looking at the first and third rows in

Table 6.14 and in Table 6.15.

The model under consideration was developed using Graph 1, as detailed in Table 5.2. A

portion of the outcomes derived from this model are documented in Table 6.16. Explanations

for actual cases were provided in this section. These instances are referenced in Table 6.16.

The table provided includes disease-gene associations sourced from two different

methodologies: predictions gathered from GLADIGATOR and results from a trained

model. The first three rows list associations predicted by GLADIGATOR, a tool used

for predicting disease-gene associations. These predictions include associations between

the genes ABCA1, ABCA4, and ACADM with Tangier Disease, Stargardt’s disease, and

Medium-chain acyl-coenzyme A dehydrogenase deficiency, respectively. These associations

are marked with a check (X) indicating an established link. The subsequent six rows

present associations determined by a trained model, which include genes such as FANCA,

PINK1, NPR2, PADI4, GATA2, and SETBP1 with various diseases like Polycystic Kidney

Disease I, Herlitz Disease, Polyneuropathy, Hearing Loss, Ataxia, Retinitis Pigmentosa,

Cataract, Rheumatoid Arthritis Disease, Emberger Syndrome Disease, and Schinzel-Giedion

Syndrome Disease. This portion of the table also distinguishes between established

associations (X) and those without a confirmed link (7). This comprehensive table serves
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multiple use cases, including enhancing the accuracy of genetic research, aiding clinical

diagnosis, supporting drug development, and integrating data for bioinformatics applications.

The inclusion of UniProt IDs and Disease CUIs adds an extra layer of specificity, facilitating

the use of these associations in various biomedical research and healthcare applications.

A detailed discussion of the system’s limitations is provided in the subsequent section.

The limitations of GLADIGATOR are multifaceted. The efficacy of reliable predictions

hinges on the quality and comprehensiveness of the utilized dataset. In scenarios where

the dataset is incomplete or biased, the likelihood of inaccurate predictions escalates.

Furthermore, the intricate nature of biological systems, coupled with the complexity of

disease-gene associations, presents a formidable challenge that GLADIGATOR may not

fully encapsulate. The process of feature selection is pivotal; however, incorrect choices

in this regard can precipitate overfitting, characterized by the model’s commendable

performance on training data but subpar results on unseen data. Another concern is the

generalizability of predictions. When GLADIGATOR is trained on specific datasets, its

applicability may not extend well to other datasets or populations. Additionally, the risk

of selection bias looms if the dataset does not adequately represent the broader population

or if disease status is misclassified. Lastly, the requirement for significant computational

resources by advanced machine learning models may not be within reach for all researchers,

potentially curtailing the reproducibility and scalability of research. Addressing these

challenges is imperative to bolster the reliability and utility of machine learning-based

predictions in the realm of biomedical research.

To enhance the system’s performance in future research, several improvements could be

considered:

Refinement of the embedding generator algorithms is essential for more precise

and representative feature extraction, potentially involving advanced machine learning

techniques or optimization of existing methods. Improving the encoder and decoder

processes by re-evaluating and possibly overhauling the current mechanisms could lead to

increased precision and efficiency, possibly through the use of more sophisticated neural
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network models or hyperparameter tuning. Investigating alternative network architectures

may reveal more effective data processing and learning methods, such as experimenting

with different neural network types like convolutional or recurrent architectures. Graph

construction modifications, including reassessment and potential redesign of the source data

for the graph, could result in a more robust and contextually relevant graph. Updating data

sources by adopting the latest versions of databases like DisGeNet and BioGrid ensures

access to the most up-to-date and comprehensive data, with regular updates providing new

insights and strengthening the system’s knowledge base. The system’s adaptability and

relevance are further enhanced by the flexibility to change data sources. Lastly, expanding

data source coverage to include genetic information from other species would widen the

system’s applicability, allowing for comparative studies and a deeper understanding of

genetic patterns across various organisms. These enhancements collectively aim to bolster

the system’s analytical capabilities and overall performance.
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