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ECG signals have an important place in detecting arrhythmias. Arrhythmias are irregular 

heartbeats. One of the most popular studies in this field is the classification of arrhythmias 

with artificial neural networks. In the thesis study, a classification study of arrhythmias 

was carried out with artificial neural networks using ECG lead signals. In this way, it can 

be determined directly whether there is an arrhythmia or not as soon as an ECG recording 

is taken.  

The dataset used in the study was obtained by combining the ECG recordings in the PTB-

XL and Chapman datasets. The types and numbers of arrhythmias in each data set vary. 

When working on a single data set, trained models will be successful in classifying certain 

arrhythmias. However, it will fail to classify arrhythmias that are not included in the 

dataset. To avoid this problem, instead of working on a single data set, two different data 

sets were combined and a common data set was studied. Thus, models with general 

success in classifying arrhythmias were obtained. 

More than one arrhythmia can be found in an ECG recording. Since an ECG recording 

may contain more than one arrhythmia, a threshold value approach was used to classify 

multi-label ECG recordings. Thus, the trained models were able to detect multiple 

arrhythmias in ECG recordings. 

An ECG recording may contain no arrhythmias. The 'no arrhythmia' class has been 

defined to classify ECG recordings that do not contain any arrhythmia. Defining the 'no 

arrhythmia' class is a new approach. By defining the 'no arrhythmia' class, it can be 



 

 

 

ii 

determined whether the ECG recordings contain any arrhythmia. In ECG recordings 

containing arrhythmia, more than one arrhythmia can be detected with the threshold value 

approach. 

We trained SE-ResNet34 and FCN artificial neural networks to classify arrhythmias 

detected through ECG recordings. The Squeeze and Excitation (SE) layer enable the 

network to perform dynamic channel-wise feature recalibration. One-dimensional 

convolutional network was used for feature extraction from 12-lead ECG recordings in 

the dataset. The convolutional network used is 34-layer ResNet. 

By using the weight function, less weight was given to arrhythmias that occurred more 

frequently in the data set, and more weight was given to arrhythmias that occurred less 

frequently. The weight function is given as a parameter while training the model. The 

studies were conducted for 5, 10, and 15 classes of arrhythmia entities. Training the model 

on 5 arrhythmias takes less time than on 10 and 15 arrhythmias, since it contains fewer 

neurons in terms of running time. 

Changing the threshold value greatly affects the success of the model. While many 

arrhythmia classes occur at low threshold values, only a single arrhythmia class occurs at 

high threshold values. The reason for this is that if no arrhythmia exceeds the threshold 

value, the arrhythmia with the highest prediction score is considered as the output of the 

model. 

In the FCN model, when working with 5, 10 or 15 arrhythmias, the best results were 

always obtained when the threshold value was 55%. In the ResNet model, the best results 

were obtained at 35% threshold values when working with 5 arrhythmias, and at 10% 

threshold values when working with 10 and 15 arrhythmias. 

In the thesis study, it was seen that the FCN model was more successful in detecting 

arrhythmias than the ResNet model. 

In the models created, arrhythmias can be detected with success rates ranging from 60 

percent to 90 percent. The current study may help cardiologists make a diagnosis by 

preventing misinterpretation of ECG signals. 

 

 

Keywords: Electrocardiogram (ECG), Classification, Deep Learning, Arrhythmia. 
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EKG sinyalleri aritmilerin tespitinde önemli bir yere sahiptir. Aritmiler düzensiz kalp 

atışlarıdır. Bu alanda yapılan en popüler çalışmalardan biri de aritmilerin yapay sinir 

ağları ile sınıflandırılmasıdır. Tez çalışmasında EKG sinyalleri kullanılarak yapay sinir 

ağları ile aritmilerin sınıflandırılma çalışması yapılmıştır. Bu sayede EKG kaydı alınır 

alınmaz aritmi olup olmadığı doğrudan tespit edilebilmektedir. 

Çalışmada kullanılan veri kümesi, PTB-XL ve Chapman veri kümelerindeki EKG 

kayıtlarının birleştirilmesiyle elde edilmiştir. Her veri kümesindeki aritmilerin türleri ve 

sayıları farklılık gösterir. Tek bir veri kümesi üzerinde çalışırken, eğitilmiş modeller 

belirli aritmileri sınıflandırmada başarılı olabilmektedir. Ancak veri kümesinde yer 

almayan aritmileri sınıflandırmada başarısız olabilmektedir. Bu sorunu önlemek için tek 

bir veri kümesi üzerinde çalışmak yerine iki farklı veri kümesi birleştirilerek ortak bir 

veri kümesi üzerinde çalışıldı. Böylece aritmilerin sınıflandırılmasında genel başarıya 

sahip modeller elde edilmiştir. 

Bir EKG kaydında birden fazla aritmi bulunabilir. Bir EKG kaydı birden fazla aritmi 

içerebileceğinden, çok etiketli EKG kayıtlarının sınıflandırılmasında eşik değer yaklaşımı 

kullanılmıştır. Böylece eğitilen modeller, EKG kayıtlarında yer alan çoklu aritmileri 

tespit edebilmektedir. 
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Bir EKG kaydında herhangi bir aritmi bulunmayadabilir. 'Aritmi yok' sınıfı, herhangi bir 

aritmi içermeyen EKG kayıtlarını sınıflandırmak için tanımlanmıştır. 'Aritmi yok' 

sınıfının tanımlanması yeni bir yaklaşımdır. 'Aritmi yok' sınıfı tanımlanarak EKG 

kayıtlarının herhangi bir aritmi içerip içermediği belirlenebilir. Aritmi içeren EKG 

kayıtlarında eşik değer yaklaşımıyla birden fazla aritmi tespit edilebilmektedir. 

EKG kayıtlarından tespit edilen aritmileri sınıflandırmak için SE-ResNet34 ve FCN 

yapay sinir ağları eğitildi. Sıkıştırma ve Uyarma (SE) katmanı, ağın dinamik kanal 

bazında özellik yeniden kalibrasyonu gerçekleştirmesini sağlar. Veri setindeki 12 

derivasyonlu EKG kayıtlarından özellik çıkarımı için tek boyutlu evrişimsel ağ kullanıldı. 

Kullanılan evrişimli ağ 34 katmanlı ResNet'tir. 

Ağırlık fonksiyonu kullanılarak veri setinde daha sık meydana gelen aritmilere daha az, 

daha az sıklıkta meydana gelen aritmilere ise daha fazla ağırlık verilmiştir. Model 

eğitilirken ağırlık fonksiyonu parametre olarak verilmektedir. Çalışmalar 5, 10 ve 15. 

sınıf aritmi varlıkları için yürütüldü. Modeli 5 aritmi üzerinde eğitmek, çalışma süresi 

bakımından daha az nöron içerdiğinden, 10 ve 15 aritmiye göre daha az zaman 

almaktadır. 

Eşik değerinin değiştirilmesi modelin başarısını büyük ölçüde etkilemektedir. Düşük eşik 

değerlerinde birçok aritmi sınıflandırılırken, yüksek eşik değerlerinde yalnızca tek bir 

aritmi sınıflandırılmaktadır. Bunun nedeni eşik değerini aşan herhangi bir aritmi 

olmaması durumunda tahmin puanı en yüksek olan aritminin modelin çıktısı olarak 

dikkate alınmasıdır. 

FCN modelinde 5, 10 veya 15 aritmi ile çalışırken en iyi sonuçlar her zaman eşik değeri 

%55 olduğunda elde edilmiştir. ResNet modelinde en iyi sonuçlar 5 aritmi ile çalışırken 

%35 eşik değerlerinde, 10 ve 15 aritmi ile çalışırken ise %10 eşik değerlerinde elde 

edilmiştir. 

Tez çalışmasında FCN modelinin aritmileri tespit etmede ResNet modeline göre daha 

başarılı olduğu görülmüştür. 

Oluşturulan modellerde yüzde 60 ile yüzde 90 arasında değişen başarı oranlarıyla 

aritmiler tespit edilebilmektedir. Bu çalışma, EKG sinyallerinin yanlış yorumlanmasını 

önleyerek kardiyologların tanı koymasına yardımcı olabilir.  

 

Anahtar Kelimeler: Elektrokardiyogram (EKG), Sınıflandırma, Derin Öğrenme, Aritmi. 
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1. INTRODUCTION 

Electrocardiogram (ECG or EKG) is a recording of the heart’s electrical activity through 

repeated cardiac cycles. Thanks to electrodes placed on the body, the electrical activity 

of the heart is measured in a timeline. These electrodes placed on the body detect small 

electrical changes that occur in the heart muscle during each cardiac cycle.  

ECG signals consist of 12 lead signals. Ten different electrodes are placed on the patient’s 

legs and chest to record the patient’s ECG. In this process, the electrical activity of the 

heart is recorded from 12 different angles. Recordings are usually 10 seconds long. Each 

of the 12 different recorded angles represents a separate lead signal. With this method, 

the electrical activity of the heart is recorded in each cardiac cycle [1]. 

Arrhythmias are irregular heartbeats. Arrhythmias indicate a problem with the heart’s 

rhythm or speed. The heart may beat too fast, too slowly, or in an irregular rhythm. 

Of course, it is very normal for the heart to beat too fast or too slow during times of rest 

or physical activity. However, irregular rhythm disorders in the heart indicate 

arrhythmias. 

Arrhythmias can be detected and treated. Arrhythmias, if left untreated, can damage the 

brain and other organs, especially the heart. This may result in stroke, cardiac arrest or 

heart failure [2]. The main way to detect arrhythmias is ECG recordings. The movements 

of the heart can be monitored and recorded with ECG recordings. The ECG recording 

showing the heart rhythm of a patient with arrhythmia will be different from the ECG 

recording of a patient with a healthy heart. Thus, arrhythmias can be detected by 

cardiologists. However, the fact that there are many arrhythmias and some arrhythmias 

are seen in fewer patients than others makes it difficult to detect arrhythmias. 

12-lead ECG signals play a critical role in detecting arrhythmias and heart-related 

disorders. Early detection and classification of arrhythmias is very important for 

successful treatment. 

While some arrhythmias are common, some arrhythmias are rare. For example, "sinus 

bradycardia" appears common, while "left ventricular hyperthrophy" appears rare. This 

makes it difficult to classify arrhythmias.  

Arrhythmias can be classified with artificial neural networks. Before the development of 

artificial neural networks, there were arrhythmia classification studies using machine 

learning methods [51]. Machine learning methods such as SVN and genetic algorithm 

were used in this regard. In addition to these studies, noise reduction studies were also 
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carried out in ECG recordings to make it easier for cardiologists to classify arrhythmias 

[52]. 

There are more than 100 types of arrhythmias. If no artificial intelligence application is 

used, it is entirely up to the cardiologist to detect arrhythmia from ECG records. Here, an 

unintentional incorrect classification may occur or an existing arrhythmia may be 

overlooked. To avoid this problem, artificial neural networks are trained with ECG 

signals. 

Since there are different types and numbers of arrhythmias in each data set, a common 

data set was obtained by combining two different data sets. Thus, instead of designing a 

model that is successful in classifying specific arrhythmias, a model that is successful in 

classifying arrhythmias in general has been designed.  

ECG recordings may contain more than one arrhythmia. However, no arrhythmia may be 

involved. The 'no arrhythmia' class was defined to classify ECG recordings that do not 

contain any arrhythmia. 'No arrhythmia' is a new approach. A threshold value approach 

was used to classify ECG recordings containing multiple arrhythmias. Arrhythmias 

exceeding the threshold value are the outputs of the model. 

FCN and ResNet models were used as models. In general, the FCN model was more 

successful than the ResNet model in all conditions. Multi-label training - single-label 

output, multi-label training - multi-label output approaches have been studied. 

Accordingly, a success rate of 80% to 90% was achieved in the multi-label training single-

label output approach. This approach is extremely successful if the ECG recording 

contains a single arrhythmia. However, if there is more than one arrhythmia in the ECG 

recording, this method can detect only one of them. At this stage, the multi-label training 

- multi-label output approach is used. In this method, when trying to detect all arrhythmias 

in the ECG recording, the success rate drops to the range of 48%-65%. 

This thesis aims to classify arrhythmias with artificial neural networks and thus help 

cardiologists. Thanks to the thesis study, possible arrhythmia types can be reported as 

soon as an ECG recording is taken. This can be extremely helpful in arrhythmia 

classification work, which is entirely the job of cardiologists.
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2. BACKGROUND OVERVIEW 

In this section, ECG signals, arrhythmias, SNOMED-CT, artificial neural networks, feed 

forward neural network, convolutional neural network (CNN), residual network (ResNet) 

and fully connected network (FCN) are explained in detail. 

2.1. ECG Signals 

An example of 12-lead ECG signal can be seen in Figure 2.1. When Figure 2.1 is divided 

in half, it can be seen that there are 6 different derivation signals (I, II, III, aVR, aVL, 

aVF) on the left side and 6 different derivation signals (v1, v2, v3, v4, v5, v6) on the right 

side. 

 

 

Figure 2.1 Sample ECG Recording 

 

The representation in Figure 2.1 is a standard representation. ECG recordings can be 

viewed this way in many places. The ECG recording shown is a 10-second recording. 

Each rise, fall and sudden jump in the ECG recording has a meaning. These meanings 

can be seen in Figure 2.2 when the ECG recording is examined more closely. 
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Figure 2.2 Parts of ECG [3] 

 

As stated in Figure 2.3, 10 electrodes must be placed on the patient’s body in order to 

record a 12-lead ECG. The locations of these electrodes and the lead signals they 

represent can be seen in Figure 2.3. 

 

Figure 2.3 Distribution of Electrodes in The Body [4] 
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2.2. Arrhythmias 

Arrhythmias, as explained in Section 1, are disorders that indicate a problem in the rhythm 

of the heart. Arrhythmias can be detected with ECG devices that examine the functioning 

of the heart over time [5].  

Arrhythmias may be noticed by patients with various symptoms before being detected by 

ECG signals. Arrhythmias have similar symptoms. Popular arrhythmias seen in 

arrhythmia disorders can be listed as follows [6]: 

• Chest Pain 

• Difficulty when exercising, getting tired easily 

• Continuously feeling of low energy 

• Heart palpitations, feeling that the heart is beating too fast or too slow 

• Shortness of breath 

• Instant sweating without any reason such as exercise 

Although most arrhythmias are harmless, some can have a profound impact on life. For 

example, ventricular fibrillation or ventricular tachycardia can cause fainting and sudden 

death. 

The normal heart rhythm for adults is between 60 and 100 beats per minute. Normal heart 

rhythm in professional athletes may be below 60. 

Generally, arrhythmias are divided into 5 main categories. This distinction is determined 

by the heart rate and where in the heart there is discomfort. Arrhythmia groups can be 

summarized as follows [7]: 

1. Tachycardia: It is a fast heart rhythm. Causes the heart to beat more than 100 beats 

per minute. 

2. Bradycardia: It is a slow heart rhythm. Causes the heart to beat less than 60 beats 

per minute. 

3. Premature Heartbeat: It is an occasional extra heartbeat. It is usually harmless and 

does not cause symptoms. However, premature heartbeat can be dangerous if the 

patient already has heart disease. 

4. Supraventricular Arrhythmias: These are tachycardias. It occurs in special tissue 

that transmits electrical signals from the atria to the ventricles. 

5. Ventricular Arrhythmias: These are tachycardias that start in the lower chambers 

of the heart. They can be life-threatening 
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Atrial Fibrillation (AF) is the most common irregular heart rhythm that causes the atria 

to contract abnormally [8]. The most important and feared side effect is that it paves the 

way for clots to form in the heart, and these clots break off and travel to different parts of 

the body (especially the brain) and cause serious problems. Figure 2.4 shows a 12-lead 

ECG recording of atrial fibrillation arrhythmia as an example. 

 

 

Figure 2.4 Example of 12-lead ECG Recording of Atrial Fibrillation Arrhythmia [9] 

 

The most popular method for detecting arrhythmias is ECG devices. However, ECG 

devices are not the only method. Arrhythmias can be detected with different devices and 

methods. Methods used to detect arrhythmias other than ECG signals can be summarized 

as follows [10]: 

• Chest X-ray: This method takes pictures of the heart using radiation. In this way, 

it can be seen whether there is an enlargement of the heart. 

• Coronary Angiogram: X-rays are used to view blood flow in the heart arteries. 

• Echocardiogram (echo): Using sound waves, images are taken from various parts 

of the chest and a detailed picture of the heart is created. 

2.3. SNOMED-CT 

SNOMED-CT is an international terminology used in the healthcare industry [11]. Each 

arrhythmia has a SNOMED CT code. Examples of arrhythmia types, their abbreviations 

and SNOMED-CT codes can be seen in Table 2.1. 
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Table 2.1 SNOMED-CT Codes of Some Arrhythmias 

Dx Abbreviation SNOMED-CT Code 

1st degree av block IAVB 270492004 

Atrial fibrillation AF 164889003 

Atrial flutter AFL 164890007 

Bradycardia Brady 426627000 

 

2.4. Artificial Neural Networks 

Artificial neural networks are similar to biological neural networks in their working 

method. Just like biological neural networks, neurons in artificial neural networks are 

connected to each other and data is transferred between neurons in this connection [12]. 

Artificial neural networks always have an input layer and an output layer. The layer in 

between is called the hidden layer. The Hidden Layer does not have to be present in 

artificial neural networks. However, it can also be found in multiple layers. 

 

 

Figure 2.5 Sample Architecture of Artificial Neural Network 

 

There are many different types of neural networks. ResNet and FCN models were used 

in the thesis study. These definitions are explained because the basis of the ResNet model 

is Convolutional Layer, and the basis of FCN model is feedforward neural networks. 
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2.5 Feedforward Neural Network 

Feedforward networks are one of the simplest networks among artificial neural networks 

[13]. In this network model, data travels only forward from each layer to the next layer. 

No input is given to the previous layer in any way. There is no cycle in this model. Feed-

forward artificial neural networks were the first artificial neural networks invented [14]. 

 

The operation of feed-forward artificial neural networks is extremely simple. It consists 

of only two stages. Feedforward phase and backpropagation phase. 

 

• Feedforward Phase: In this phase, data propagates forward in the input layer. The 

weighted sum of the inputs is calculated and passed through an activation 

function. This process is done in each hidden layer. This process continues until 

it reaches the output layer. A prediction is made when the data reaches the output 

layer from the input layer. 

• Backpropagation Phase: Error is calculated when the prediction process is 

performed. For this, the difference between the predicted result and the expected 

result is calculated. The weights in the networks are adjusted to reduce the error 

from the output layer to the input layer. 

 

The feed-forward artificial neural network structure can be seen in Figure 2.6. Since it is 

a feed-forward network structure, arrow symbols always move forward. 
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Figure 2.6 The Structure of Feed Forward Neural Network [15] 

 

2.6. Convolutional Neural Network (CNN) 

Convolutional neural networks are generally used in image classification and object 

identification studies. 

There are 3 main layers in convolutional neural networks [16]: 

• Convolutional Layer 

• Pooling Layer 

• Fully Connected Layer 

Convolutional layer is the first layer of CNN networks. After the convolutional layer, a 

convolutional layer may come again or the pooling layer comes [17]. The fully connected 

layer is the last layer of CNN networks. With each additional layer, the complexity of the 

network increases.  

The CNN network structure can be seen in Figure 2.7. 
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Figure 2.7 CNN Architecture 

2.6.1. Convolutional Layer 

The convolutional layer forms the basis of CNN networks and most of the calculations 

are done in this layer [18]. It takes very few parameters. These are input data, filter and 

feature map. By adding additional convolutional layers, the complexity of the model can 

be increased, allowing the model to learn smaller parts [19]. 

The convolution layer can be one-dimensional, two-dimensional or three-dimensional 

(1D, 2D or 3D). The only difference between these convolution layers is the shape of the 

input space. The shape of the convolution layer is determined according to the subject to 

be studied. For example, a one-dimensional convolution layer can be used in a study on 

audio files, a two-dimensional convolution layer can be used in a study on images, and a 

three-dimensional convolution layer can be used in a study on video. 

In the thesis study, ResNet model was used and one-dimensional convolution layer was 

preferred as the convolution layer. This is due to the fact that ECG signals contain one-

dimensional numerical data depending on time. 

2.6.2 Pooling Layer 

Dimension reduction is achieved with pooling layers. Similar to the convolutional layer, 

the entire input is scanned with the filter. However, there is no weight in the pooling layer. 

Instead, the output array is obtained using an aggregate function. There are two main 

types of pooling [20]: 

• Max Pooling: The largest data in the input data to which the filter is applied is 

produced as output. The max pooling method is used more frequently than the 

average pooling method. 
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• Average Pooling: The average of the input data to which the filter is applied is 

produced as output. 

2.7. Residual Network (ResNet) 

A deep learning network with more than 100 layers can theoretically be designed. 

However, it is difficult to train. Here, ResNet allows very deep networks to be trained 

efficiently. When there are too many layers, data is lost in the following layers due to 

gradient descent, which gradually slows down. This situation is also called the Vanishing 

Gradient problem. ResNet uses shortcuts to solve this problem [21]. Jumping from one 

layer to another is achieved with a shortcut. ResNet architecture can be seen in Figure 

2.8. 

 

Figure 2.8 Residual Network 

 

ResNet34, ResNet50 and ResNet101 are popular ResNet models used [22]. The numbers 

at the end of the model name indicate how many layers there are in that model. With the 

ResNet architecture, deep neural networks containing many layers can be trained without 

increasing the training error rate [23]. The symbol X in Figure 2.8 represents the output 

value from the neuron in the previous layer. 

2.8. Fully Connected Network (FCN) 

Neural networks consisting of multiple fully connected layers are called deep neural 

networks [24]. Fully Connected Deep Network consists of fully connected layers. Here, 

there is a relationship between any neuron in a layer and all the neurons in the previous 

layer. The fully connected layer can be seen in Figure 2.9. 
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Figure 2.9 A fully connected layer in a deep network [25] 

 

The fully connected network obtained by using fully connected layers can be seen in 

Figure 2.10. 

 

Figure 2.10 A multilayer deep fully connected network [25] 

 

2.9. Output Layer Activation Function 

The last layer of artificial neural networks includes the activation function. The choice of 

activation function directly affects model success [26]. How to choose the activation 

function in the output layer depends on the category of the study. Sigmoid and softmax 

functions are frequently used in classification studies [27]. If a regression study is to be 

performed, the linear activation function is used [28]. Because values are unbounded. 
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Since the classification study was carried out in the thesis study, sigmoid and softmax 

activation functions were used. 

Sigmoid and softmax functions used in classification studies can be seen in Figure 2.11 

and Figure 2.12. 

 

 

Figure 2.11 Sigmoid Function 

 

Figure 2.12 Softmax Function 

 

The linear activation function used in regression studies can be seen in Figure 2.13. 
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Figure 2.13 Linear Function 

 

2.10. Confusion Matrix 

Confusion matrix is a table used to evaluate the success of the model on the data set. 

Many inferences can be made about the success of the model just by looking at the 

confusion matrix. Which classes the model is successful in classifying and which classes 

it is unsuccessful in classifying can be determined from the confusion matrix table. 

For example, when 5 different arrhythmias are studied, the confusion matrix can be seen 

in Table 2.2. 

 

Table 2.2 Example Of 5 Arryhthmia Confusion Matrix 

  Predicted Label 

Tr
ue

 L
ab

el
 

  MI TAb LAD SB SNR 
MI 34 11 20 10 3 
TAb 5 68 12 4 2 
LAD 12 24 70 18 11 
SB 7 17 3 60 12 
SNR 11 3 15 20 55 

 

Actual classes are on the left side of Table 2.2, and estimated classes are on the top side. 

Accordingly, 34 ECG records containing the MI class were classified as MI. 11 ECG 

records containing the MI class were classified as TAb. The ratio of the sum of the 

numbers on the diagonal to the entire table gives the success rate. 



 

 
 15 

What has been explained so far is the standard confusion matrix frequently used in 

machine learning methods. If a data has more than one type at the same time, then the 

standard confusion matrix cannot be used. For example, if an ECG recording has both 

LAD and MI arrhythmia types, then the standard confusion matrix is not used. Because 

it is correct to classify that ECG recording as either MI or LAD. 

This situation creates a multiclass confusion matrix. If the data in the dataset can have 

more than one type at the same time, multiclass confusion matrix is used. Multiclass 

confusion matrix is a type-based standard confusion matrix. 

For example, in the study of classifying 5 different arrhythmia types, 5 different confusion 

matrices are defined because each ECG record may contain more than one arrhythmia 

type. In each confusion matrix, it is observed whether the arrhythmia class to which it 

belongs is classified correctly. 

As an example, in Table 2.3, the confusion matrix of a species in a multi-label 

environment can be seen. 

Table 2.3 Confusion Matrix of MI Arrhythmia Type in Multi-Label Environment 

  Predicted Label 

Tr
ue

 L
ab

el
 

  NOT_MI MI 

NOT_MI 50 6 

MI 5 70 
 

As can be seen from Table 2.3, in a multi-label environment, the confusion matrix for 

each class is calculated in 2x2 size. Thus, it can be seen from the confusion matrix table 

whether the class is classified correctly or not.  

In the thesis study, multi-label confusion matrix was used to evaluate model performance 

in multi-label training, multi-label output studies, since ECG recordings may contain 

more than one type of arrhythmia. 
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3. RELATED WORK 

Classifying and detecting arrhythmias with artificial neural networks can help doctors 

interpret ECG recordings. Over the past 10 years, many traditional machine learning 

techniques have been used to interpret ECG recordings containing 12 lead signals and 

diagnose heart diseases [29, 30]. However, since artificial neural networks can achieve a 

higher success rate than traditional machine learning techniques, studies on this subject 

have increased in the literature in the last five years. The majority of studies have potential 

for more accurate classification of arrhythmias [31, 32]. It is appropriate to use deep 

neural networks consisting of multiple processing layers to interpret ECG signals [33]. 

Because each layer can learn more abstract and higher-level representations of the input 

data. It is seen that LSTM and CNN network structures are frequently used in arrhythmia 

classification studies. As a result of this situation, ECG signals can be interpreted with 

deep neural networks. For this reason, there are studies in the literature to integrate the 

features of domain knowledge into artificial neural networks to achieve a higher success 

rate [34, 35]. 

It seems that artificial neural networks were not widely used in arrhythmia classification 

studies before 2015. It is seen that SVM, KNN and genetic algorithm are used in 

classification studies [51, 53]. However, different approaches have been applied to detect 

arrhythmias. In 1991, noise reduction studies were carried out by applying an adaptive 

filter to ECG signals [52]. This method has been especially applied to detect certain 

arrhythmias. As of 2015, studies on arrhythmia detection of artificial neural networks 

have increased. In an article published in 2022, it is seen that arrhythmia classification 

studies were carried out with data obtained from IoT devices [54]. 

The lack of sufficient ECG recording data and the fact that the arrhythmias in these ECG 

recordings are not well classified make it difficult to develop automatic interpretation 

algorithms for 12-lead ECGs [36]. Most previous studies in the literature have studied 

specific arrhythmias on a limited number of patients in relatively homogeneous data sets. 

These models perform well on the training dataset but not on the external testing set [37, 

40]. In order to avoid this problem, the dataset created by combining two different 

datasets, PTB-XL [38] and Chapman [39] datasets, was studied. For comparison, this 

study aims to classify arrhythmias through ECG recordings containing 12 lead signals by 

training both SE-ResNet34 and FCN deep neural networks. 
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There are a lot of articles in the literature about arrhythmia classification in machine 

learning. Some of the studies on arrhythmia classification according to chronological 

order can be seen in Table 3.1. 

 

Table 3.1 Articles in the Literature About Arrhythmia Classification 

Year Article Title Method Summary 

1991 Applications of 

adaptive filtering to 

ECG analysis: noise 

cancellation and 

arrhythmia detection 

[52] 

Adaptive 

Filtering 

The adaptive filter minimizes the 

mean-squared error for ECG 

signals. It was used to detect 

arrhythmias such as AF and PVC. 

2009 ECG Arrhythmia 

Classification with 

Support Vector 

Machines and Genetic 

Algorithm [51] 

Support Vector 

Machines, 

Genetic 

Algorithm 

Four types of arrhythmias were 

distinguished with 93% accuracy. 

2018 Cardiac arrhythmia 

classification by 

multi-layer perceptron 

and convolution 

neural networks [42] 

Multi-Layer 

Perceptron, 

Convolutional 

Neural 

Networks 

As a result of the study, a success 

rate of 88.67% was achieved with 

multilayer Percetron and 83.5% 

with convolutional neural 

networks. 

2019 Automatic Cardiac 

Arrhythmia 

Classification Using 

Combination of Deep 

Residual Network and 

Bidirectional LSTM 

[41] 

Deep Residual 

Network, 

Bidirectional 

LSTM 

Recordings have variable lengths 

from 6 to 60 seconds. As a result 

of the study, an F1 score value of 

80.6% was obtained. 

2019 Cardiologist level 

arrhythmia detection 

and classification in 

ambulatory 

Deep Neural 

Networks 

(DNN) 

The F1 score value obtained as a 

result of the study is 0.8337, and 

this value is higher than the 
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electrocardiograms 

using a deep neural 

network [43] 

average cardiologist score of 

0.780. 

2019 ECG Arrhythmia 

Classification Using 

STFT-Based 

Spectrogram and 

Convolutional Neural 

Network [44] 

CNN-1D, CNN-

2D, Fourier 

Transformation 

5 different arrhythmia categories 

were studied. A success rate of 

90.93% was achieved. 

2022 Deep Learning 

Models for 

Arrhythmia Detection 

in IoT Healthcare 

Applications [54] 

CNN, 

ConvLSTM 

It has achieved success rates 

ranging from 91% to 97%. 

 

In addition to those mentioned in Table 3.1, there are many studies in the literature on 

arrhythmia classification studies. In studies before the last 5 years, it is seen that machine 

learning techniques are used more widely instead of artificial neural networks. Since the 

success rate of artificial neural networks can be higher, the use of artificial neural 

networks in arrhythmia classification studies has increased [45]. 

The current thesis study has differences from the studies in the literature. The most 

important of these is the definition of the 'no arrhythmia' class to classify ECG recordings 

that do not contain any arrhythmia. If the 'no arrhythmia' class was not defined, then ECG 

records containing no arrhythmia could be classified using the threshold value method. 

However, how to determine the threshold value is an important issue here. There are 

studies using the threshold approach to classify multi-label arrhythmias and ECG 

recordings that do not contain any arrhythmia [47]. However, it is not stated here how the 

threshold value is determined. 

Studies in the literature show success rates of up to 90%. However, these success rates 

are generally the success rates of a single data set. A study in the literature achieved a 

success rate of 68% in the training set and 31% in the foreign data set [37]. To avoid these 

problems, two separate data sets were combined to obtain a single data set, and all results 

were obtained from the combined data set. In arrhythmia classification studies based on 

ECG records, combining different data sets to obtain a single data set and obtaining the 
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results from the combined data set is an important issue that distinguishes the thesis study 

from other studies. 
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4. UTILIZED DATASETS & EVALUATION METRICS 

This section describes the characteristics of the studied datasets and evaluation metrics. 

4.1 Datasets 

In this section, the studied datasets are explained in detail. To classify arrhythmia through 

ECG signals, two different data sets were combined to obtain a single data set. The reason 

for doing this is to prevent the trained model from focusing on a single data set. In the 

literature, there are arrhythmia classification studies that provide a 68% success rate on 

the test dataset when the dataset is divided into training and test, while a 31% success rate 

is achieved when a foreign dataset is given as the test set [37]. 

A more balanced data set was obtained by combining two different data sets. Because 

while some arrhythmias in the PTB-XL dataset are much more common than in the 

Chapman dataset, some arrhythmias in the Chapman dataset are also more common in 

the PTB-XL dataset. 

4.1.1 PTB-XL Dataset [38] 

It is a popular dataset used in arrhythmia classification studies. There are 21837 ECG 

records taken from 18885 patients in the 7-year period between 1989 and 1996. All ECG 

recordings are 10-second recordings. There are 500 samples for each second. Since all 

recordings are 10 seconds long, each recording contains 5000 samples in total. Each ECG 

recording contains the entire 12-lead signal. ECG records also include patients' age and 

gender information. 
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Figure 4.1 Gender Distribution on the PTB-XL Dataset 

 

 

Figure 4.2 Age Distribution on the PTB-XL Dataset 

 

Table 4.1 The 10 Most Popular Arrhythmias in the PTB-XL Dataset 

Index  Arrhythmia Name  Abbreviation  Arrhythmia Count 

1  Sinus Rhythm SNR 18092 

2  Myocardial Infarction MI 5261 

3  Left Axis Deviation LAD 5146 

4  Abnormal QRS abQRS 3389 

5  Left Ventricular Hypertrophy LVH 2359 

6  T Wave Abnormal TAb 2345 

7  Myocardial Ischemia MIs 2175 

8  Left Anterior Fascicular Block LAnFB 1626 

9  Atrial Fibrillation AF 1514 

10  Ventricular Ectopics VEB 1154 
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4.1.2 Chapman Dataset [39] 

ECG recordings served by Shaoxing Human Hospital, Chapman University in China. 

There are 11047 ECG records. It has the same format features as the PTB-XL dataset. 

Each ECG recording is 10 seconds long. Each recording contains 500 samples of data per 

second, so there are 5000 samples in ECG records. Each ECG recording contains 12 lead 

signals. Each ECG record includes patients' age and gender information. 

 

 

Figure 4.3 Gender Distribution on the Chapman Dataset 

 

 

Figure 4.4 Age Distribution on the Chapman Dataset 
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Table 4.2 The 10 Most Popular Arrhythmias in the Chapman Dataset 

Index  Arrhythmia Name  Abbreviation  Arrhythmia Count 

1  Sinus Bradycardia SB 3889  

2  T Wave Abnormal TAb  1876  

3  Sinus rhythm SNR  1826 

4  Atrial Fibrillation AF  1780  

5  Sinus Tachycardia STach  1568  

6  Left Ventricular High Voltage LVHV  1295 

7  Nonspecific St T Abnormality NSSTTA  1158  

8  Supraventricular Tachycardia SVT  1587  

9  Right Bundle Branch Block RBBB  454 

10  Atrial Flutter AFL  445 

 

4.1.3 Overall Dataset 

Both PTB-XL and Chapman datasets were combined to obtain a single dataset. All of the 

studies were done on this combined data set. There are a total of 32084 ECG records in 

the dataset.  

Figure 4.5 shows that out of a total of 32084 ECG records, 17112 are male and 14972 are 

female. Men are 14.29% more than women.  

 

 

Figure 4.5 Gender Distribution on the Overall Dataset 

 

The age distribution of 32084 ECG records starts from 2 to 95. The majority are between 

the ages of 61 and 70. The ECG records in this section correspond to 24.21% of the 

dataset. The age distribution of the patients in the 32084 ECG recordings can be seen in 

Figure 4.6. 
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Figure 4.6 Age Distribution on the Overall Dataset 

 

The distribution of arrhythmias in the PTB-XL and Chapman datasets separately and the 

distribution of arrhythmias when these datasets are combined can be seen in Table 4.3. 

Table 4.3 is sorted by the occurrence of arrhythmias in the combined data set. 

 

Table 4.3 The 10 Most Popular Arrhythmias in the Overall Dataset 

Index  Dx  Abbreviation  PTB-XL  Chapman  Total  

1  Sinus rhythm  SNR  18092  1826  19918  

2  Left Axis Deviation  LAD  5146  382  5528  

3  Myocardial Infarction  MI  5261  40  5301  

4  Sinus Bradycardia  SB  637  3889  4526  

5  T Wave Abnormal  Tab  2345  1876  4221  

6  Abnormal QRs  abQRS  3389  0  3389  

7  Atrial Fibrillation  AF  1514  1780  3294  

8  Sinus Tachycardia  STach  826  1568  2394  

9  Left Ventricular 

Hypertrophy  

LVH  2359  15  2374  

10  Myocardial Ischemia  MIs  2175  0  2175  

 

 

It can be seen in Table 4.3 that the frequency of occurrence of "Sinus rhythm" in the PTB-

XL dataset is almost 10 times that of Chapman. However, the incidence of "Sinus 

bradycardia" in the Chapman dataset is more than 6 times higher than PTB-XL. As can 

be seen, if the study was carried out on only a single data set, there would be a majority 

for certain types of arrhythmia. Since two different data sets were studied, the distribution 

of arrhythmias became more balanced. 
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4.2. Evaluation Metrics 

Various evaluation criteria are used to measure the success of the studies carried out in 

this thesis. These are F1 score, recall, accuracy and precision. These metrics can be seen 

in Eq. (1), (2), (3) and (4). 

 

                                             𝐹1𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                                      (1) 

 

                                                          𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                          (2) 

 

                                                       𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝐹 + 𝐹𝑃
                                                        (3) 

 

                                           𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                                            (4) 

 

These evaluation criteria are popular evaluation criteria used in the literature [46]. 

However, different metrics were also used to calculate the success rates of the created 

models in the test dataset. 
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5. PROPOSED METHOD 

In the studies, classification studies were carried out on the 5, 10 and 15 most popular 

arrhythmias in the data set. In addition to these arrhythmias, the ’no arrhythmia’ class has 

also been defined. If an ECG recording contains no arrhythmia then the ’no arrhythmia’ 

class is set to 1 in one-hot-encoding. Thanks to this approach, there is no ECG record 

with all lines 0 in one-hot-encoding. From our studies, we achieved a higher success rate 

as a result of considering the ’no arrhythmia’ class as an arrhythmia class. It is very 

difficult to evaluate ECG recordings that do not contain any arrhythmia unless the ’no 

arrhythmia’ class is defined. If the ’no arrhythmia’ class was not defined, the threshold 

value could be used to classify ECG recordings that did not contain any arrhythmia. There 

are studies on this subject in the literature [47]. However, how to determine the threshold 

value is an important issue here. In this sense, it is a new approach to categorize the 

situation in which the ECG recording does not contain any arrhythmia as the ’no 

arrhythmia’ class. 

Many different models were trained to make comparisons. These trained models can be 

categorized as follows: 

• Multi-label training, single-label output, no threshold method 

• Multi-label training, multi-label output, threshold method available 

In the studies, first the number of arrhythmias to be studied is determined. After 

determining the number and types of arrhythmias to be studied, a one-hot-encoding 

sequence of each ECG record in the dataset is obtained. The approach to obtaining a one 

hot encoding sequence is as follows: if an ECG record contains an arrhythmia but it is not 

one of the arrhythmias studied, its counterpart in one-hot-encoding is that all columns are 

zero. For example, an ECG record may contain 3 different arrhythmias, but if none of 

them is the arrhythmia to be studied, then the equivalent of one hot encoding of this ECG 

record is that all columns are zero. In this case, that ECG recording is evaluated as ’no 

arrhythmia’ because it does not contain any of the arrhythmias we want to study. What 

this approach gives us is that no ECG records are deleted from the dataset. If we deleted 

the ECG records containing the arrhythmias we wanted to study from the data set, then 

we would be working with much fewer ECG records. Thanks to this approach, when 

working with 5, 10 and 15 arrhythmias, the number of ECG records in the data set is 

constant and equal to 32084. Of course, the number of ‘no arrhythmia’ when working 

with 5 arrhythmias is much higher than the number of ‘no arrhythmia’ when working 



 

 
 27 

with 15 arrhythmias. When working with 5 arrhythmias, there are 4559 number of ‘no 

arrhythmia’ classes in the data set, when working with 10 arrhythmias, there are 1452 

number of ‘no arrhythmia’ classes in the data set, and when working with 15 arrhythmias, 

there are 1230 number of ‘no arrhythmia’ classes. 

In the multi-label training and single-label output approach, the probability values of 

arrhythmias are examined. The arrhythmia class with the highest prediction score is the 

output of the model. If the arrhythmia class found as a result of the model is mentioned 

in the ECG record, the prediction process is considered successful, if not, the prediction 

process is considered unsuccessful. For example, an ECG recording with arrhythmia 

types A and B is considered successful whether the model produces arrhythmia A or 

arrhythmia B as output. This approach is quite optimistic; however, ECG recording can 

be evaluated with very high success rates. This approach is quite good if the ECG 

recording contains no or a single arrhythmia. However, if an ECG recording contains 

more than one arrhythmia, only a single one can be detected. 

When we look at the studies on ECG recordings, there are not many studies on multi-

label training and multi-label output [48]. The most important issue here is how the model 

will produce multi-label output. It is seen that the threshold method is used in articles 

published on this subject [47]. However, this article does not explain how the threshold 

value is determined. 

The multi-label training multi-label output approach is actually an advanced version of 

the multi-label training single-label output approach. Here the model can produce 

multiple outputs. To produce multiple arrhythmia results, the predictive values of all 

arrhythmias are checked one by one. If the predicted value of any arrhythmia is higher 

than the threshold value, then that arrhythmia becomes the output of the model. If there 

is no arrhythmia exceeding the threshold value, then the arrhythmia with the highest 

probability value is considered as the output of the model. Many studies have been 

conducted to determine the ideal threshold value. In the Experimental Results section, the 

success of models with different threshold values will be explained comparatively. In the 

FCN model, the ideal threshold value for all scenarios is fixed and this value is 0.55. In 

the ResNet model, there are differences in the ideal threshold value. The ideal threshold 

value is 0.35 when working with 5 arrhythmias, and 0.10 when working with 10 and 15 

arrhythmias. The approach here is that each arrhythmia has a fixed threshold value and 

when that threshold value is exceeded, the relevant arrhythmia is the output of the model. 
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In addition to the fixed threshold approach, threshold values can be determined separately 

for each arrhythmia. For this, the outputs produced by the model on the validation set and 

the arrhythmias in the validation set are examined. In the ECG records where each 

arrhythmia is active in the validation set, it is checked what predictive values the model 

produces for that arrhythmia. A threshold value is determined based on these values. In 

this approach, a higher success rate can be achieved than the fixed threshold value 

method, since the threshold value is calculated separately for each type of arrhythmia. 

However, the approach to determining threshold values should be done separately for 

each model. Because when working with 5 arrhythmias, the ideal threshold value for 

sinus arrhythmia is 0.45, while when working with 10 arrhythmias, the ideal threshold 

value for sinus arrhythmia may be 0.50. Therefore, although this approach may yield 

higher success rates, it is not generalizable. 

K-Fold Cross Validation method was used in each model study and the k value was taken 

as 10. When training the model, only the first fold was used for training purposes. In 

addition to this, shuffle method was used to obtain balanced dataset.  

We implemented all the models with Spyder 3.5 and trained them on machines with AMD 

Radeon Graphics 512 MB. A learning rate of 0.001 was used. The adaptive momentum 

estimation (Adam) optimizer was used to optimize the network parameters. 

5.1. ResNet Model 

A 34-layer Residual Network model was designed to classify arrhythmias through ECG 

recordings. 17 sequential skip connections are available to increase the success of the 

one-dimensional CNN (1D Conv) network [49]. Transactions made in each block repeat 

each other. As can be seen from Figure 5.1, the module includes a Batch normalization 

layer, one-dimensional convolutional layer, ReLU activation layer and SE layer. 

In convolutional neural networks, the convolution layer is the basic learning component 

of convolutional neural networks. Here is a 7x1 filter with learnable weights. When 

important features are detected, the filter is activated by adjusting the weights. By 

providing labeled data, the model can learn important features for different classes of 

arrhythmias. 
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Figure 5.1 The Overall Structure of Residual Network Model 

 

Because each learned filter worked with a local receptive field, each unit of the 

transformation output could not benefit from contextual information outside this field. It 

is aimed to solve the problem of exploiting channel dependencies with the SE layer 

(Squeeze and Excitation block) [50]. 

First, we compressed global spatial information into a channel descriptor using global 

average pooling. In formulaic terms, minimizing 𝒰 along the H × W spatial dimensions 

produced a 𝑧 ∈ ℝ𝑐 statistic; where the c-th element of z is calculated as follows: 

                                         𝑧𝑐 = 𝐹𝑠𝑞(𝑢𝑐) =
1

𝐻 × 𝑊
∑ ∑ 𝑢𝑐(𝑖, 𝑗)

𝑤

𝑗=1

𝐻

𝑖=1

                                          (1) 

 

Here 𝒰 = [u1, u2,..., u3] was the output of previous layer, 𝒰 ∈ ℝH×W×C. The transformation 

output 𝒰 could be interpreted as a collection of the local descriptors, which were 

expressive for the whole signal. 

Secondly, to make use of the information aggregated in the squeeze operation and fully 

capture channel-wise dependencies, a simple gating mechanism with a sigmoid function 

was used. The Eq. (2) was used to learn the non-mutually exclusive relationship of this 

simple transition mechanism: 

                                     𝑠 = 𝐹𝑒𝑥(𝑧, 𝑊) =  𝜎(𝑔(𝑧, 𝑊)) =  𝜎(𝑊2𝛿(𝑊1𝑧))                            (2) 
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Where δ refers to the ReLU function, W1 ∈ ℝ
C

r
×𝐶

and W2 ∈ ℝ
C

r
×𝐶

, r = 16. To reduce the 

complexity that may occur in the model and improve generalization, a simple gate 

mechanism was parameterized by creating a bottleneck with two fully connected layers. 

To perform this process, the dimension reduction layer was used with r reduction ratio 

and W1 parameter. ReLU activation function and dimensionality increase layer were used 

with W2 parameter. The final output of the block was obtained by rescaling the 

transformation output 𝒰 with the activation function: 

                                                             �̃�𝑐 = 𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐, 𝑠𝑐) = 𝑠𝑐 · 𝑢𝑐                                                        (3) 

Where �̃� = [�̃�1, �̃�2, … , �̃�3]  and 𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐, 𝑠𝑐)  refers to channel-wise multiplication 

between the feature map 𝑢𝑐 ∈  ℝ𝐻×𝑊and the scalar 𝑠𝑐. 

Following this, a fully connected layer was used to transform the features to a [Number 

Of Studied Arrhythmia × 1] vector of numerical values, which corresponded to the 

outputs for each class. The sigmoid function was used to display these values as 

probabilities and produce results between 0 and 1. The network structure takes 10-second 

ECG recordings as input and produces a prediction for each arrhythmia. The closer to 

zero the value obtained from the sigmoid function as a result of the prediction made in 

the ECG recording, the less likely it is that the relevant arrhythmia will be found in the 

ECG recording. Similarly, the closer to one the output of the sigmoid function is, the more 

likely it is that the relevant arrhythmia will be present in the ECG recording. 

5.2. FCN Model 

The developed Fully Convolutional Network structure is quite simple compared to 

ResNet. Again, since the total number of samples of each ECG record is 5000 and there 

are a total of 12 lead signals, an input of size (5000, 12) is taken. A 3-layer Conv 1D 

network structure is used in the hidden layer. The activation function in each of these 

layers is ReLU. There are as many neurons as the number of arrhythmias studied in the 

output layer and the activation function is sigmoid. The FCN model structure can be seen 

in Figure 5.2. 
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Figure 5.2 The Overall Structure of Fully Convolutional Network 

 

5.3. Weight Function 

Some types of arrhythmia may be more common than other types of arrhythmia in the 

dataset. This may prevent the model from focusing on more common arrhythmias in the 

data set and thus successfully detecting less common arrhythmia types. To avoid this 

problem, a weight function was designed to be used in model training. Thus, less weight 

was given to the more common arrhythmia types in the data set, and higher weight was 

given to the less common ones. The relevant equation can be seen in the following: 

                                                   𝑤𝑒𝑖𝑔ℎ𝑡[𝑖] = √
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸𝐶𝐺

4 ∗ 𝑏𝑖𝑛𝑐𝑜𝑢𝑛𝑡(𝑦_𝑎𝑟𝑟[𝑖])
                             (4) 

Number Of ECG refers to the total number of ECG recordings in the dataset. bincount is 

a function here. Counts the number of times the relevant arrhythmia appears and does not 

appear in the data set. y_arr refers to the column of the arrhythmia in one-hot-encoding. 

Square rooting was used for smoothing. Thanks to this function, less weight is given to 

common arrhythmia types in the data set, while more weight is given to less common 

arrhythmia types. 

A good weight function can increase model success. In addition, it is very important to 

use the weight function in arrhythmia classification studies. Because while some 

arrhythmias are quite common in the data set, some arrhythmias are very rare. This makes 

it difficult to classify the small number of arrhythmias in the data set. To prevent this, the 

weight function should be used. 
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6. EXPERIMENTAL RESULTS 

6.1 Multi Label Training – Single Label Output 

The success and other features of the ResNet & FCN models in the data set consisting of 

ECG recordings in the multi-label training single-label output approach are shown in 

Table 6.1. 

 

Table 6.1 Multi Label Training-Single Label Output ResNet, FCN Model Results 

Model Type ResNet FCN ResNet FCN ResNet FCN 

Number of Arrhythmias 

Studied 
5 5 10 10 15 15 

No Arrhythmia Class is 

Available 
Yes Yes Yes Yes Yes Yes 

Total Number of Classes 

Studied 
6 6 11 11 16 16 

Number of ECG 

Recordings Containing No 

Arrhythmia 

4559 4559 1452 1452 1230 1230 

Number of ECG 

Recordings Containing 1 

Arrhythmia 

17872 17872 16789 16789 14868 14868 

Number of ECG 

Recordings Containing 2 

Arrhythmia 

7383 7383 7931 7931 7972 7972 

Number of ECG 

Recordings Containing 3 

Arrhythmia 

2224 2224 3677 3677 4349 4349 

Number of ECG 

Recordings Containing 4 

Arrhythmia 

46 46 1812 1812 2374 2374 

Number of ECG 

Recordings Containing 5 

Arrhythmia 

0 0 348 348 1012 1012 

Number of ECG 

Recordings Containing 6 

Arrhythmia 

0 0 75 75 226 226 
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Number of ECG 

Recordings Containing 7 

Arrhythmia 

0 0 0 0 50 50 

Number of ECG 

Recordings Containing 8 

Arrhythmia 

0 0 0 0 3 3 

Number of Total ECG 32084 32084 32084 32084 32084 32084 

Total Number of Unique 

Combinations 
27 27 238 238 813 813 

Accuracy Score 0,837 0,878 0,804 0,899 0,835 0,90 

 

As can be seen in Table 6.1, the unique combination numbers of arrhythmias in the dataset 

are also shown in each model run. It appears that as the number of arrhythmias studied 

increases, the number of unique combinations also increases. When training the data set, 

care should be taken to treat ECG recordings that do not contain any arrhythmia as 

containing the 'no arrhythmia' class. For example, if 5 different arrhythmias are studied, 

there should be 6 cells in the output layer. Because if the 'no arrhythmia' class is included, 

there are 6 different classes. An ECG recording may contain any or none of 5 different 

arrhythmias. This allows us to classify ECG recordings that do not contain any 

arrhythmia. 

As can be noticed in Table 6.1, the number of ECG recordings studied is always constant. 

In Table 6.1, it is important to pay attention the number of ECG recordings that do not 

contain any arrhythmia. As the number of arrhythmias studied increases, the number of 

ECG recordings containing no arrhythmia decreases. The reason for this is that when 

working with 5 arrhythmias, the types of arrhythmias in the ECG records in the data set 

may not be one of these 5 arrhythmias. ECG records that do not contain any of these 5 

arrhythmias are also considered as ’no arrhythmia’. When working with 15 arrhythmias, 

many ECG records in the data set are covered. Because it covers many ECG records from 

the 15 most popular arrhythmia datasets. Since there are a small amount of ECG records 

not covered, the number of ‘no arrhythmia’ ECG records when working with 15 

arrhythmias is less than the number of ‘no arrhythmia’ ECG records when working with 

5 arrhythmias. 

The same studies done for ResNet in Table 6.1 were also done for the Fully Connected 

Layer network structure. While the results of ResNet and FCN are obtained, the only 
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difference is the network structures. No change in the weight function or pre-processing 

operation was made. 

As can be seen from the comparison of Table 6.1, the success of the FCN model is greater 

than the ResNet model when all other conditions remain the same. 

6.2 Multi Label Training – Multi Label Output 

Multi-label training multi-label output approach is an improved version of multi-label 

training single-label output. The difference here is that the arrhythmia with the highest 

predictive value is not considered as the output of the model. Each arrhythmia is 

compared individually with the determined threshold value. All arrhythmias exceeding 

the threshold value are the output of the model. If any arrhythmia does not exceed the 

threshold value, then the arrhythmia with the highest probability value becomes the 

output of the model. 

The success rates obtained when 0.40, 0.45, 0.50, 0.55, 0.60 and 0.65 are given as 

threshold values for FCN model, respectively, can be seen in Table 6.2. 

 

Table 6.2 Threshold Value Effect When Working With 5, 10, 15 Arrhythmias in the FCN 

Model 

Number of Arrhythmias 

Studied 

No Arrhythmia 

Class is Available 

Total Number of 

Classes Studied 
Threshold 

Accuracy 

Score 

5 Yes 6 0,40 0,626 

5 Yes 6 0,45 0,639 

5 Yes 6 0,50 0,650 

5 Yes 6 0,55 0,660 

5 Yes 6 0,60 0,658 

5 Yes 6 0,65 0,653 

10 Yes 11 0,40 0,540 

10 Yes 11 0,45 0,552 

10 Yes 11 0,50 0,552 

10 Yes 11 0,55 0,553 

10 Yes 11 0,60 0,550 

10 Yes 11 0,65 0,541 

15 Yes 16 0,40 0,492 

15 Yes 16 0,45 0,502 

15 Yes 16 0,50 0,506 

15 Yes 16 0,55 0,507 

15 Yes 16 0,60 0,501 
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15 Yes 16 0,65 0,490 

 

The only difference in obtaining Table 6.2 is the threshold values. Other than that, the 

models are exactly the same. Generally, the highest success rate was achieved at a 

threshold value of 0.55 in all cases. In line with the results obtained from the table here, 

it can be stated that the ideal threshold value is 0.55 for the FCN model. When Table 6.2 

is examined, it is seen that success rates decrease as we move away from the ideal 

threshold value, and success rates increase as we approach the ideal threshold value. 

When the threshold value is selected as 0.55, the multi-label training multi-label output 

results of the FCN model on 5, 10 and 15 arrhythmias can be seen in the Figures and 

Tables below. 

In multi-label training, multi-label output study, the standard confusion matrix cannot be 

used because there may be more than one arrhythmia in an ECG recording. As explained 

Section 2.10, the confusion matrix is calculated separately for each class. 

 

Table 6.3 FCN Model, Classification Report, 5 Arrhythmia, Threshold=0,55 

 precision recall f1-score support 

MI 0,775 0,623 0,691 531 

TAb 0,556 0,306 0,394 422 

LAD 0,740 0,593 0,659 553 

SB 0,902 0,914 0,908 452 

SNR 0,931 0,954 0,943 1992 

NO_ARR 0,724 0,759 0,741 456 

 

 

Figure 6.1 Confusion Matrix, FCN Model, 5 Arrhythmia, Arrhythmia Type: MI, TAb 

Threshold=0,55 
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Figure 6.2 Confusion Matrix, FCN Model, 5 Arrhythmia, Arrhythmia Type: LAD, SB 

Threshold=0,55 

 

 

Figure 6.3 Confusion Matrix, FCN Model, 5 Arrhythmia, Arrhythmia Type: SNR, NO_ARR 

Threshold=0,55 

 

Table 6.4 FCN Model, Classification Report, 10 Arrhythmia, Threshold=0,55 

 precision recall f1-score support 

MIs 0,715 0,544 0,618 217 

MI 0,770 0,513 0,616 528 

LVH 0,727 0,400 0,516 240 

AF 0,858 0,864 0,861 323 

TAb 0,620 0,232 0,337 423 

abQRS 0,796 0,319 0,455 342 

LAD 0,734 0,473 0,575 548 

SB 0,906 0,850 0,877 454 

SNR 0,925 0,936 0,930 1995 
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STach 0,824 0,855 0,839 235 

NO_ARR 0,742 0,655 0,696 145 

 

 

 

Figure 6.4 Confusion Matrix, FCN Model, 10 Arrhythmia, Arrhythmia Type: MIs, MI 

Threshold=0,55 

 

 

Figure 6.5 Confusion Matrix, FCN Model, 10 Arrhythmia, Arrhythmia Type: LVH, AF 

Threshold=0,55 
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Figure 6.6 Confusion Matrix, FCN Model, 10 Arrhythmia, Arrhythmia Type: TAb, abQRS 

Threshold=0,55 

 

 

Figure 6.7 Confusion Matrix, FCN Model, 10 Arrhythmia, Arrhythmia Type: LAD, SB 

Threshold=0,55 

 

 

Figure 6.8 Confusion Matrix, FCN Model, 10 Arrhythmia, Arrhythmia Type: SNR, STach 

Threshold=0,55 
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Figure 6.9 Confusion Matrix, FCN Model, 10 Arrhythmia, Arrhythmia Type: NO_ARR, 

Threshold=0,55 

 

Table 6.5 FCN Model, Classification Report, 15 Arrhythmia, Threshold=0,55 

 precision recall f1-score support 

MIs 0,766 0,566 0,651 226 

MI 0,815 0,542 0,651 528 

LVH 0,711 0,432 0,537 250 

VEB 0,571 0,209 0,306 115 

AF 0,872 0,891 0,881 329 

TAb 0,600 0,253 0,356 415 

abQRS 0,711 0,373 0,489 343 

LAD 0,721 0,576 0,640 549 

SB 0,892 0,904 0,898 448 

SNR 0,937 0,928 0,932 1991 

STach 0,832 0,843 0,837 235 

NSSTTA 0,630 0,192 0,294 151 

STD 0,250 0,023 0,042 132 

LAnFB 0,757 0,561 0,644 155 

LVHV 0,638 0,285 0,394 130 

NO_ARR 0,684 0,650 0,667 123 
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Figure 6.10 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: MIs, MI 

Threshold=0,55 

 

 

Figure 6.11 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: LVH, VEB 

Threshold=0,55 

 

 

Figure 6.12 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: AF, Tab 

Threshold=0,55 
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Figure 6.13 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: abQRS, LAD 

Threshold=0,55 

 

 

Figure 6.14 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: SB, SNR 

Threshold=0,55 

 

 

Figure 6.15 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: STach, NSSTA 

Threshold=0,55 
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Figure 6.16 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: STD, LanFB 

Threshold=0,55 

 

 

Figure 6.17 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: LVHV, 

NO_ARR Threshold=0,55 

 

The same multi-label training and multi-label output studies conducted for FCN were also 

performed for ResNet. The success rates obtained when 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 

0.35 and 0.40 are given as threshold values for ResNet model, respectively, can be seen 

in Table 6.6. 

 

Table 6.6 Threshold Value Effect When Working With 5, 10, 15 Arrhythmias in the ResNet 

Model 

Number of Arrhythmias 

Studied 

No Arrhythmia 

Class is Available 

Total Number of 

Classes Studied 
Threshold 

Accuracy 

Score 

5 Yes 6 0,05 0,583 

5 Yes 6 0,10 0,608 

5 Yes 6 0,15 0,614 

5 Yes 6 0,20 0,615 

5 Yes 6 0,25 0,615 

5 Yes 6 0,30 0,615 
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5 Yes 6 0,35 0,618 

5 Yes 6 0,40 0,617 

10 Yes 11 0,05 0,533 

10 Yes 11 0,10 0,545 

10 Yes 11 0,15 0,541 

10 Yes 11 0,20 0,539 

10 Yes 11 0,25 0,536 

10 Yes 11 0,30 0,531 

10 Yes 11 0,35 0,528 

10 Yes 11 0,40 0,527 

15 Yes 16 0,05 0,48 

15 Yes 16 0,10 0,482 

15 Yes 16 0,15 0,479 

15 Yes 16 0,20 0,473 

15 Yes 16 0,25 0,471 

15 Yes 16 0,30 0,468 

15 Yes 16 0,35 0,465 

15 Yes 16 0,40 0,461 

 

In Table 6.6, the highest threshold value is shown as 0,40. Because, there was no change 

in the success rate at threshold values from 0,40 to 0,95.   

The reason why the success rate does not change between the threshold values of 0,40 

and 0,95 is due to the sharpness of the model prediction scores. As a result of the model, 

the prediction score of an arrhythmia belonging to an ECG record may be 0,95. The 

prediction score of other arrhythmias may vary between 0,01 – 0,05. In this case, no 

change in success rates can be seen when the threshold value changes between 0,40 and 

0,95. 

There is another reason why success rates change despite the increase in the threshold 

value. The prediction scores produced by the ResNet model for ECG recordings are not 

always sharp. Sometimes the prediction scores of arrhythmias from an ECG recording do 

not exceed 0,40. In this case, when the threshold value is between 0,40 – 0,95, no 

arrhythmia can exceed the threshold value. When any arrhythmia does not exceed the 

threshold value, the arrhythmia with the highest predictive value becomes the output of 

the model. Thus, whether the threshold value is 0,40 or 0,95, the same result is produced 

and the success rate does not change.  
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The only difference in obtaining Table 6.6 is the threshold values. Other than that, the 

models are exactly the same.  

While working on 10 and 15 arrhythmias with the ResNet model, the highest success rate 

was obtained when the threshold value was 0,10. The highest success rate when working 

with 5 arrhythmias was achieved when the threshold value was 0,35. These threshold 

values were used in the classification report and confusion matrix studies of the ResNet 

model. Multi-label training multi-label output results of the ResNet model on 5, 10 and 

15 arrhythmias can be seen in the Figures and Tables below. 

 

Table 6.7 ResNet Model, Classification Report, 5 Arrhythmia, Threshold=0,35 

 precision recall f1-score support 

MI 0,844 0,448 0,588 531 

TAb 0,600 0,235 0,337 422 

LAD 0,836 0,241 0,374 553 

SB 0,972 0,907 0,938 452 

SNR 0,951 0,891 0,920 1992 

NO_ARR 0,762 0,816 0,788 456 

 

 

Figure 6.18 Confusion Matrix, ResNet Model, 5 Arrhythmia, Arrhythmia Type: MI, TAb 

Threshold=0,35 
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Figure 6.19 Confusion Matrix, ResNet Model, 5 Arrhythmia, Arrhythmia Type: LAD, SB 

Threshold=0,35 

 

 

Figure 6.20 Confusion Matrix, ResNet Model, 5 Arrhythmia, Arrhythmia Type: SNR, 

NO_ARR Threshold=0,35 

 

Table 6.8 ResNet Model, Classification Report, 10 Arrhythmia, Threshold=0,10 

 precision recall f1-score support 

MIs 0,734 0,585 0,651 217 

MI 0,833 0,500 0,625 528 

LVH 0,746 0,417 0,535 240 

AF 0,802 0,941 0,866 323 

TAb 0,527 0,277 0,363 423 

abQRS 0,800 0,058 0,109 342 

LAD 0,705 0,396 0,507 548 

SB 0,900 0,927 0,913 454 

SNR 0,936 0,938 0,937 1995 

STach 0,865 0,928 0,895 235 

NO_ARR 0,642 0,779 0,704 145 
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Figure 6.21 Confusion Matrix, ResNet Model, 10 Arrhythmia, Arrhythmia Type: MIs, MI 

Threshold=0,10 

 

 

Figure 6.22 Confusion Matrix, ResNet Model, 10 Arrhythmia, Arrhythmia Type: LVH, AF 

Threshold=0,10 

 

 

Figure 6.23 Confusion Matrix, ResNet Model, 10 Arrhythmia, Arrhythmia Type: TAb, abQRS 

Threshold=0,10 
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Figure 6.24 Confusion Matrix, ResNet Model, 10 Arrhythmia, Arrhythmia Type: LAD, SB 

Threshold=0,10 

 

 

Figure 6.25 Confusion Matrix, ResNet Model, 10 Arrhythmia, Arrhythmia Type: SNR, STach 

Threshold=0,10 

 

 

Figure 6.26 Confusion Matrix, ResNet Model, 10 Arrhythmia, Arrhythmia Type: NO_ARR, 

Threshold=0,10 
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Table 6.9 ResNet Model, Classification Report, 15 Arrhythmia, Threshold=0,10 

 precision recall f1-score support 

MIs 0,778 0,527 0,628 226 

MI 0,808 0,479 0,602 528 

LVH 0,793 0,384 0,518 250 

VEB 0,584 0,391 0,469 115 

AF 0,796 0,924 0,855 329 

TAb 0,561 0,231 0,328 415 

abQRS 0,759 0,120 0,207 343 

LAD 0,754 0,373 0,499 549 

SB 0,909 0,935 0,922 448 

SNR 0,939 0,927 0,933 1991 

STach 0,893 0,889 0,891 235 

NSSTTA 0,483 0,192 0,275 151 

STD 0,526 0,076 0,132 132 

LAnFB 0,800 0,232 0,360 155 

LVHV 0,615 0,246 0,352 130 

NO_ARR 0,630 0,789 0,700 123 

 

 

Figure 6.27 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: MIs, MI 

Threshold=0,10 
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Figure 6.28 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: LVH, VEB 

Threshold=0,10 

 

 

Figure 6.29 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: AF, Tab 

Threshold=0,10 

 

 

Figure 6.30 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: abQRS, LAD 

Threshold=0,10 
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Figure 6.31 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: SB, SNR 

Threshold=0,10 

 

 

Figure 6.32 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: STach, 

NSSTTA Threshold=0,10 

 

 

Figure 6.33 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: STD, LanFB 

Threshold=0,10 
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Figure 6.34 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: LVHV, 

NO_ARR Threshold=0,10 

 

6.3 Weight Function 

The weight function is of great importance in achieving these success rates of the models. 

For comparison purposes, experiments were made with different weight functions in 

multi label training and single label output. In the studies so far, the weight function 

specified in Section 5.3, Eq. (4) was used. For testing purposes, the weight function in 

this section Eq. 1 was used and the results in Table 6.6 were obtained. 

 

                                          𝑤𝑒𝑖𝑔ℎ𝑡[𝑖] =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑂𝑓 𝐸𝐶𝐺

2 ∗ 𝑏𝑖𝑛𝑐𝑜𝑢𝑛(𝑦_𝑎𝑟𝑟[𝑖])
                                            (1) 

 

When looking at the relationship between weight functions, there is a square root 

operation in the weight function used so far (Section 5.3, Eq. (4)). Having a square root 

operation enables smoother data to be obtained. Multiplication by 4 is seen as a constant 

in the denominator. However, looking at Section 6.3 Eq. (1), there is no square root 

operation. There is 2 in the denominator, not 4. For this reason, this weight function is 

expected to produce sharper values. 

In Table 6.1, the study results can be seen when the FCN model is trained with the weight 

function in Section 5.3, Eq. (4). If the same network is trained according to the weight 

function in Section 6.3, Eq. (1) rather than the function in Section 5.3, Eq. (4), the results 

in Table 6.6 are obtained. The success rates of two different weight functions can be seen 

in Table 6.6. 
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Table 6.10 The Effect of Two Different Weight Functions on FCN Model Success 

Weight Function 

No Square 

Root 

Weight 

Function 

Square 

Root 

Weight 

Function 

No 

Square 

Root 

Weight 

Function 

Square 

Root 

Weight 

Function 

No Square 

Root 

Weight 

Function 

Square 

Root 

Weight 

Function 

Number of Arrhythmias 

Studied 
5 5 10 10 15 15 

No Arrhythmia Class is 

Available 
Yes Yes Yes Yes Yes Yes 

Total Number of 

Classes Studied 
6 6 11 11 16 16 

Number of ECG 

Recordings Containing 

No Arrhythmia 

4559 4559 1452 1452 1230 1230 

Number of ECG 

Recordings Containing 

1 Arrhythmia 

17872 17872 16789 16789 14868 14868 

Number of ECG 

Recordings Containing 

2 Arrhythmia 

7383 7383 7931 7931 7972 7972 

Number of ECG 

Recordings Containing 

3 Arrhythmia 

2224 2224 3677 3677 4349 4349 

Number of ECG 

Recordings Containing 

4 Arrhythmia 

46 46 1812 1812 2374 2374 

Number of ECG 

Recordings Containing 

5 Arrhythmia 

0 0 348 348 1012 1012 

Number of ECG 

Recordings Containing 

6 Arrhythmia 

0 0 75 75 226 226 

Number of ECG 

Recordings Containing 

7 Arrhythmia 

0 0 0 0 50 50 

Number of ECG 

Recordings Containing 

8 Arrhythmia 

0 0 0 0 3 3 
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Number of Total ECG 32084 32084 32084 32084 32084 32084 

Total Number of 

Unique Combinations 
27 27 238 238 813 813 

Accuracy Score 0,864 0,878 0,888 0,899 0,89 0,90 

 

The only difference between the models in Table 6.8 is the weight functions. The data 

sets studied, arrhythmia numbers and everything are exactly the same. The weight 

function in Section 5.3, Eq. (4) achieved higher success in all comparisons than the one 

in Section 6.3, Eq. (1). The main reason for this is the square root operation in Section 

5.3, Eq. (4). If an arrhythmia occurs frequently in the data set, it is given less weight, 

whereas if it occurs less often, it is given more weight. What is important here is the 

coefficient to be applied. With the square root expression, giving too high a weight is 

prevented, the value is softened, and it is increased at very low weights. Because when 

the square root operation is applied to numbers between 0-1, the number grows. 

When the studies carried out in the thesis study are compared with the studies in the 

literature, the thesis study stands out with some differences. The 'no arrhythmia' class has 

been defined to classify ECG recordings that do not contain any arrhythmia. This 

approach is completely new in the literature. There are studies in the literature where the 

threshold value method is used to classify ECG recordings that do not contain any 

arrhythmia [47]. Accordingly, if any arrhythmia in an ECG record does not exceed the 

threshold value, then the relevant ECG record is evaluated as 'no arrhythmia'. However, 

it is not explained here how the threshold value is determined. In the thesis study, a 

success rate of 80% to 90% was achieved with the single-label output approach. This is a 

very high success rate compared to other studies in the literature. However, if there is 

more than one arrhythmia in an ECG recording, only one of them can be detected. In this 

case, the multi-label output approach should be used. In this approach, since it tries to 

detect all arrhythmias in the ECG recording, the success rate decreases to 48%-62%. It is 

seen that studies in the literature work on fixed data sets. As a result of this situation, the 

models produced may be successful in detecting arrhythmias in the studied data set, but 

may fail to detect arrhythmias in another data set. In the literature, there is a study in 

which a success rate of 68% was achieved on the trained dataset, while a success rate of 

31% was achieved on the foreign dataset [37].  



 

 
 54 

7. CONCLUSION 

We performed an arrhythmia classification study on 5, 10, 15 arrhythmias on 32084 ECG 

records. To prevent the trained models from producing results by relying on a single data 

set, two different data sets were combined to create a single data set. The results obtained 

in the studies were taken from the combined data set. 

Both FCN and ResNet models were trained and the model successes were shown 

comparatively. In cases where model successes are shown, the only difference is the 

network structure, all other conditions are kept the same. In general, the FCN model 

showed higher success than the ResNet model. 

The effect of using different weight functions on model success has been shown. When 

two different weight functions are compared, it is seen that the weight function containing 

square roots (Section 5.3, Eq. (4)) achieves higher success due to its smoothing feature. 

The 'no arrhythmia' class has been defined in order to classify ECG recordings that do not 

contain any arrhythmia. The 'no arrhythmia' class was included in all classification 

studies. Thanks to this approach, the models can also classify ECG recordings that do not 

contain any arrhythmia as successful. Defining the 'no arrhythmia' class is a new 

approach. Defining the 'no arrhythmia' class is an important issue that distinguishes the 

thesis study from other studies in the literature. 

Models were trained separately with both multi-label training, single-label output and 

multi-label training, multi-label output approach. While success rates between 80% and 

90% were achieved in the multi-label training and single-label output approach, success 

rates of 46-62% were achieved in the multi-label training and multi-label output 

approach. Threshold approach was used to produce multi-label output. While all other 

conditions are the same, the effect of changing only the threshold value on the model 

success is shown comparatively. In the FCN model, the ideal threshold value for all 

scenarios is fixed and this value is 0.55. In the ResNet model, there are differences in the 

ideal threshold value. The ideal threshold value is 0.35 when working with 5 arrhythmias, 

and 0.10 when working with 10 and 15 arrhythmias. 

There are arrhythmia classification studies in the literature with higher success rates than 

the current thesis study. However, these success rates were generally obtained on a single 

data set. There is a study in which the success rate decreased from 68% to 31% when the 

same study was conducted on a different data set [37]. The results obtained in the thesis 

study, unlike the results in the literature, were obtained by combining two different data 
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sets. This approach is an important issue that distinguishes the thesis study from the 

studies in the literature. 

There are more than 100 types of arrhythmias. While some of these are quite common, 

some are quite rare. Highly trained personnel are needed to examine the ECG recordings 

and make the correct diagnosis of arrhythmia. This study may facilitate cardiologists in 

classifying arrhythmias. 
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