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ABSTRACT

AUDIO CLASSIFICATION WITH FEW-SHOT LEARNING

Enes Furkan ÇİĞDEM

Master of Science, Computer Engineering
Supervisor: Assoc. Prof. Dr. Hacer YALIM KELEŞ

August 2024, 67 pages

This thesis does a full experimental study of the few-shot classification problem in the

audio domain to compare how well episodic and non-episodic training methods work. Three

different optimization algorithms are trained with the non-episodic method, and the effect

of the training techniques on the classification performance is investigated. In making these

comparisons, simple feature transformations have been employed to improve performance,

and their effect on performance has been analyzed.

The few-shot audio classification task has been conducted in scenarios with limited data.

This study uses two distinct data sets: Environmental Sound Classification - 50 and Google

Speech Commands. ESC-50 includes environmental non-speech noises. GSC encompasses

basic spoken orders. Three distinct scenarios are constructed in which the amount of training

data is constrained for each data set by selecting 5, 10, and 15 samples per class. A

series of comprehensive experiments have been conducted with these different training

sets using three different optimization models in non-episodic experiments: single-stage

hybrid loss optimization (SSHLO), single-stage loss optimization (SSLO), and two-stage

loss optimization (TSLO). The results of these experiments are then compared between the

three optimizations and episodic training.
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The findings of our research point out that the non-episodic training approach is more

effective than the episodic training approach in the audio domain when used with a

pre-trained model. In terms of optimizations, the results demonstrate that single-stage hybrid

loss optimization (SSHLO) is the most superior optimization on the two data sets.

Keywords: Audio Processing, Audio classification, Episodic Training, Non-episodic

Training, Few-shot Learning, Few-shot Classification, Contrastive Learning, Simple Feature

Transformations, Neural Speech Embedding Model
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ÖZET

BİRKAÇ ÖRNEKLİ ÖĞRENME İLE SES SINIFLANDIRMA

Enes Furkan ÇİĞDEM

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Assoc. Prof. Dr. Hacer YALIM KELEŞ

Ağustos 2024, 67 sayfa

Bu tez, epizodik ve epizodik olmayan eğitim yöntemlerinin ne kadar iyi çalıştığını

karşılaştırmak için ses alanındaki birkaç vuruşlu sınıflandırma probleminin tam bir deneysel

çalışmasını yapmaktadır. Üç farklı optimizasyon algoritması epizodik olmayan yöntemle

eğitilmiş ve eğitim tekniklerinin sınıflandırma performansı üzerindeki etkisi araştırılmıştır.

Bu karşılaştırmalar yapılırken, performansı artırmak için basit özellik dönüşümleri

kullanılmış ve bunların performans üzerindeki etkisi analiz edilmiştir.

Az sayıda ses sınıflandırma görevi, sınırlı veriye sahip senaryolarda gerçekleştirilmiştir.

Bu çalışmada iki farklı veri seti kullanılmıştır: Çevresel Ses Sınıflandırması - 50 ve

Google Konuşma Komutları. ESC-50 çevresel konuşma dışı sesleri içerir. GSC temel sözlü

emirleri kapsar. Eğitim verisi miktarının her veri seti için sınıf başına 5, 10 ve 15 örnek

seçilerek kısıtlandığı üç farklı senaryo oluşturulmuştur. Epizodik olmayan deneylerde üç

farklı optimizasyon modeli kullanılarak bu farklı eğitim setleriyle bir dizi kapsamlı deney

gerçekleştirilmiştir: tek aşamalı hibrit kayıp optimizasyonu (SSHLO), tek aşamalı kayıp

optimizasyonu (SSLO) ve iki aşamalı kayıp optimizasyonu (TSLO). Bu deneylerin sonuçları

daha sonra üç optimizasyon ile epizodik eğitim arasında karşılaştırılmıştır.
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Araştırmamızın bulguları, önceden eğitilmiş bir modelle birlikte kullanıldığında ses

alanında epizodik olmayan eğitim yaklaşımının epizodik eğitim yaklaşımından daha etkili

olduğuna işaret etmektedir. Optimizasyonlar açısından, sonuçlar tek aşamalı hibrit

kayıp optimizasyonunun (SSHLO) iki veri seti üzerinde en üstün optimizasyon olduğunu

göstermektedir.

Keywords: Ses İşleme, Ses sınıflandırma, Bölümsel eğitim, Bölümsel olmayan eğitim,

Epizodik eğitim, Epizodik olmayan eğitim, Birkaç örnekli öğrenme, Birkaç örnekli

sınıflandırma, Karşılaştırmalı öğrenme, Basit özellik dönüşümleri, Sinirsel ses gömüleme

modeli
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1. INTRODUCTION

In the rapidly evolving field of machine learning, conventional and fully supervised learning

methodologies have demonstrated efficacy in a range of domains. However, these approaches

typically necessitate the availability of extensive labeled data sets. It is not always feasible to

obtain a sufficiently large data set to address real-world problems using fully supervised

learning methods. In many cases, data is scarce, which presents a significant challenge.

For example, it could be challenging to collect data for a local language adaptation used

for spoken language understanding tasks in a call center. Similarly, the use of user-defined

custom keywords for keyword spotting may raise privacy concerns. Therefore, dealing with

limited data is important in the auditory domain.

1.1. Overview

A few-shot classification aims to adopt a few samples for each class in a data set. Audio

classification with few-shot learning is considered a subtask for few-shot classification

working on auditory events.

This thesis investigates several aspects of few-shot audio classification. In particular, it

utilizes the Environmental Sound Classification ESC-50 and Google Speech Commands

(GSC) data sets. In addition, it compares various training approaches to determine the

optimal approach for limited training data. Furthermore, this comparison, contrasts different

loss optimization types across different data scarcity levels.

1.2. Motivation

Few-shot learning aims to adapt new tasks to previous experiences as humans do. Many

problems have successfully employed few-shot learning. On the other hand, traditional fully

supervised approaches need large labeled datasets to produce preferable results. In most

real-life situations, a large data set is not available. Additionally, the real-life data sets may
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be so limited that only a few examples of classes are available in the data set, which has a

restricted number of samples in the training stage.

In the audio domain, it may not always be possible or logical to have large amounts of labeled

data. Many reasons lead to data scarcity problems, such as privacy concerns or labeling costs.

At this moment, with limited data, it is crucial to determine how the model should be trained

by including two different types of losses. The first objective of this thesis is to compare

different loss optimization procedures to be able to settle optimal loss functions to be used

during training to obtain a successful model.

1.3. Contributions

• A novel study has been conducted to compare different optimization approaches

utilizing non-episodic training via comprehensive experiments in the audio domain.

This study focused on both speech and non-speech environmental sound data sets and

aimed to modify a pre-trained model using a very large data set. Furthermore, the

impact of basic feature modifications on classification accuracy has been examined.

• It has been proposed that the concurrent application of unsupervised contrastive loss

and supervised loss optimization improves few-shot classification on both speech

and non-speech datasets. This approach can be employed in both non-episodic [3]

and episodic training frameworks. Furthermore, comparisons have been conducted

with alternative forms of loss enhancement. Additionally, the impact of simple

transformations to features on the classification performance is examined.

• This thesis presents important observations between optimizations using non-episodic

training and ProtoNets using episodic training. The findings demonstrate that, in the

presence of a large-scale pre-trained model, non-episodic training yields more effective

results, even though it employs a less complex structure.
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1.4. Organization

The organization of the thesis is as follows:

• Chapter 1 states the motivation, contributions, and the scope of the thesis.

• Chapter 2 provides background information about methodologies utilized for audio

classification with few-shot learning framework in this thesis.

• Chapter 3 describes the related works in the literature.

• Chapter 4 introduces methodology.

• Chapter 5 presents experimental findings and discussion.

• Chapter 6 provides a concise overview of the thesis.
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2. BACKGROUND OVERVIEW

2.1. Classification

Classification is one of the fundamental methodologies in the machine learning field. This

task involves categorizing data samples into predefined classes according to the extracted

attributes of the samples. As a supervised machine learning methodology, it has been

employed in various applications such as image recognition [4] and audio classification [5].

2.2. Audio Classification

Audio modality encompasses all forms of sound data, including speech and environmental

sounds perceived by humans or electronic devices. Audio classification is a subtask of the

classification task family that involves mapping audio signals into predefined categories.

Through the process of audio signal categorization, it becomes feasible to gain a deeper

comprehension of the fundamental signal, its organization, and its substance, thereby

facilitating a wide range of practical uses with many applications on various problems

such as environmental sound classification [6], spoken intent classification [7], and speaker

recognition [8].

2.3. Sound Representations

An audio signal is a type of signal that carries information within the frequency range of

20 Hz to 20 kHz and is perceptible to the human ear. The process of audio representation

entails the extraction of attributes or features from an audio source to accurately represent its

composition.
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2.3.1. Raw Waveform

A waveform represents the variation in amplitude of a signal over time. When an audio signal

is recorded, it must be transformed from a sound wave into an electrical signal. The voltage

of this electrical signal fluctuates. These differences are directly related to the fluctuations in

air pressure caused by the initial sound wave.

An analog-to-digital converter (ADC) performs periodic sampling on the electrical signal.

It records individual points that indicate the intensity of the signal at particular instances

in time. The given samples are graphed, with the horizontal axis representing time and the

vertical axis representing amplitude.

2.3.2. Mel Filterbanks

A spectrogram is a fundamental audio representation that depicts frequency changes over

time by applying a short-time discrete Fourier transform (STDFT) to an audio utterance.

The Mel spectrogram is a common type of spectrogram that is scaled by the Mel scale.

Mel scaling is proposed to scale audio signal frequency to make frequency changes more

perceivable by converting frequency into units which mean equidistant units in frequency

are equidistant in tone for humans.

Mel-filterbanks are generated using a predefined number of filter bands. These bands are

very useful for retrieving perceptually meaningful splits in audio. Since its success in getting

meaningful splits and being closely aligned with the human auditory system, it is frequently

used in audio and speech tasks.

When it comes to transformations, although audio modality is similar to image modality,

image transformations like cropping and rotation do not work for audio. Thus, audio

representations need to be transformed by specific transformations like pitch shifting or time

shifting.
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Figure 2.1 Images show the representation of a train class sample from ESC-50. (a) and (b) images
present raw waveform and mel-spectrogram, respectively.

2.4. Few-Shot Learning

Few-shot learning is an evolving framework that aims to train successful AI models dealing

with a limited number of samples. In machine learning, few-shot learning plays a crucial role

in coping with insufficient data for training.

2.4.1. Episodic Training

Conventionally, many few-shot learning approaches [9–11] utilize episodic training regime.

In this training regime, training data is organized into episodes that replicate few-shot

scenarios, allowing the model to learn effectively from limited examples and generalize to

novel classes. In a typical few-shot classification task, episodes are constructed by randomly

sampling a small number of classes and examples to form support sets and query sets. In the

support set, there are a limited number of examples for the chosen classes. These samples

are utilized to train models to learn the characteristics of classes. The query set also includes

a limited number of examples from the same classes in the support set that are employed to

measure and enhance model fit.
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This type of training is structured into a series of episodes that are designed to mimic test

conditions. Each episode includes two different sets: the support set and the query set.

The support set is a small set that is used for model adaptation. Typically, it consists of K

samples for N classes in an N-way K-shot setting. For instance, 5 samples exist for 5 classes

in a 5-way 5-shot setting. The query set is a separate set that consists of Q samples for the

same N classes in the support set. The model first learns from the support set. Subsequently,

the query set is used to evaluate the model performance.

More formally, each episode is constructed as follows:

S = {(x1
1, y

1
1), (x

2
1, y

2
1), . . . , (x

K
N , y

K
N )}

Q = {(x1
1, y

1
1), (x

2
1, y

2
1), . . . , (x

q
N , y

q
N)}

Episodes = {(S1, Q1), . . . , (SE, QE)}

where N and K are the number of classes in support and the number of samples per class in

the support set. The number of samples in the query set is represented as q.

2.4.1.1. Prototypical Networks

Prototypical Networks (ProtoNets) [9] are a well-known few-shot learning approach that is

designed to cope with classifying unseen categories with limited labeled examples. The core

idea of ProtoNets is learning a metric space where the distance between points from the same

class is minimized, and the distance between points from different classes is maximized.

ProtoNets uses an embedding network to capture important features from the input data

samples. A prototype is simply a mean of representation vectors calculated from support set

samples using the embedding function. Once feature embeddings are extracted for samples

for each class in the support set. The mean representation vector is obtained as given in (Eqn.

1) where g denotes the embedding network, Sc denotes the support set, and Pc denotes the

prototype vector.

Pc =
1

|Sc|
∑

(xk,yk)∈Sc

g(xk) (1)
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Subsequently, the distances between query set samples and class prototypes are calculated

using typically squared Euclidean distance. The closest prototype class is assigned as a

predicted class for a query sample as given in Eqn. (2).

P (y = c|x̂) = softmax
(
−d

(
g(x̂),Pc

))
=

e−d(g(x̂),Pc)∑
ĉ∈C e

−d(g(x̂),Pĉ)
(2)

ProtoNets utilize a negative log-likelihood loss function to optimize embedding network. The

aim is to minimize the probability of incorrectly classifying a query instance. By minimizing

this loss, the model learns an embedding space where query points are close to the prototypes

of their correct class and far from those of incorrect classes.

LProtoNet = − logP (y = c | x̂) (3)

2.4.2. Non-episodic Training

Non-episodic training for few-shot classification involves training methods that differ from

the common traditional episodic training approach used in the few-shot learning area. In

this study, the training schema utilized by Wang et al. [12] is employed for all non-episodic

experiment settings. This training regime employs a pre-trained deep network on base classes

to obtain feature embeddings. It then applies centering and L2 normalization to the resulting

features of novel classes for evaluation with the nearest neighbor classifier with Euclidean

distance. This straightforward method has demonstrated significant enhancements when

compared to meta-learning alternatives in the image domain.

Non-episodic training involves methods that do not utilize support and query sets, unlike

conventional episodic training. The model learns from a continuous stream of data batches,

like in conventional supervised learning, and it does not utilize episodic sampling. A data

batch consists of input and output pairs.

D = {(x0, y0), (x1, y1), . . . , (xN , yN)}
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D denotes the dataset consisting of N training examples, where xi represents the feature

vector of the i-th sample, and yi is the corresponding label.

2.5. Contrastive Learning

Contrastive learning is a technique used in self-supervised machine learning, especially in

unsupervised environments where labeled data is scarce. A core idea of this approach is

teaching a model to discriminate between similar and dissimilar data points. It uses the

method of creating groups of data that can be either similar or dissimilar. For instance,

considering audio classification, an audio utterance could be augmented in several ways,

such as time shifting or noise addition, while a completely different audio utterance would

be the dissimilar pair. It learns from relative differences and similarities between data

rather than relying solely on explicit labels. This helps the models develop a more nuanced

understanding of the data.

2.5.1. SimCLR: Simple Framework for Contrastive Learning of Visual

Representations

SimCLR [2] is a self-supervised learning framework that simplifies contrastive learning.

The framework comprises four principal components. Firstly, data augmentation is utilized

to generate two correlated views of the same image through the application of random

transformations. Secondly, a base encoder is employed as a fundamental component that

is expected to learn the representation of the system. Originally, ResNet50 [4] was employed

for the extraction of representation vectors. Then, a projection head that is an MLP is

utilized to map the high-dimensional representation vectors from the base encoder to a

lower-dimensional space to apply contrastive loss. The contrastive loss function (NT-XENT)

plays a crucial role in maximizing the agreement between similar pairs of images (positive

pairs) and separating them from other images in the batch (negative pairs).
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Figure 2.2 SimCLR standard pipeline. Image source:[2]

2.6. Neural Embedding Models

Neural embedding models are powerful techniques to conduct the transformation

of high-dimensional data, such as textual or audio, into their representations in

a lower-dimensional space [13–16]. They capture semantic relationships in the

high-dimensional data and represent them in a compact vector form to be able to perform

various downstream tasks such as classification, clustering, and retrieval. Regarding

its applications in the field of audio, neural speech embeddings have significantly

impacted speaker verification [17], speaker diarization [18], text-to-speech [19] and speech

classification [20–22] tasks.
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3. RELATED WORK

3.1. Self-supervised Learning

There are many studies [23, 24] on this subject that aim to learn from the data itself by

using unlabeled data, which is especially valuable in cases of data scarcity. SimSiam [25]

introduces a significant study on the capabilities of Siamese networks in unsupervised visual

representation learning positive pairs without the necessity for negative sample pairs, large

batches, or momentum encoders. It presents a simple approach to Siamese networks to

learn directly to maximize the similarity between two augmentations of a single image.

SimCLR [2] by Chen et al. eliminates the need for specialized architectures or memory

banks. It achieves high performance by employing a simple methodology utilizing two main

components: a series of data augmentations to generate variations of the same image and a

contrastive loss function to maximize agreement between these variations. The Barlow Twins

[26] study aims to ensure independence between the features by maximizing the diagonal of

the correlation matrix.

The Audio Barlow Twins [27] is a self-supervised audio representation learning method that

proposes an adaptation of the Barlow Twins to the audio domain. This novel method aims to

overcome the limitations of current self-supervised learning techniques that require negative

samples or asymmetric learning updates. By utilizing a cross-correlation matrix to force

the embeddings of augmented views of audio data towards the identity matrix, this method

ensures that similar instances are embedded near each other while minimizing redundancy

in the embedding components. The method is pre-trained on the large-scale AudioSet

data set and evaluated on many downstream tasks, such as speech and environmental

sound classification. It provides 78.6% accuracy on the ESC-50 data set. COLA [28] is

a self-supervised, contrastive learning-based framework by Saeed et al. for developing

general-purpose audio representations. COLA exploits similarities between audio segments

from the same recording and differences with segments from other recordings. COLA utilizes

pre-training on a large-scale data set and uses learned representations for diverse audio
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classification tasks such as speech, music, and animal sounds, providing high-accuracy

results.

Haider Al-Tahan et al. [29] investigate that the utilization of contrastive learning to auditory

data can enhance auditory representations. They combine supervised and contrastive learning

to improve efficiency and speed of training and achieve better performance with less number

of labeled data compared to conventional supervised methods. SoundCLR [30] have achieved

important results using the SimCLR structure. In this study, the authors applied hybrid

supervised and comparative loss training using the ESC-50 data set. It is aimed at learning

effective representations only from environmental sound data without resorting to few-shot

methods.

3.2. Few-Shot Classification

Few-shot learning is another important topic, like self-supervised learning when labeled

data is limited. In particular, non-parametric metric-based methods using episodic learning

are approaches worth mentioning. Jake Snell et al. [9] introduce prototypical networks, a

simple strategy to tackle few-shot image classification learning in a metric space where the

classification is carried out using the nearest centroid classifier mechanism. Oriol Vinyals et

al. [10] address the challenge of one-shot learning in few-shot learning, where a model learns

one sample per class. Furthermore, they investigate one-shot learning for language modeling.

Lim et al. [31] approaches to few-shot image classification incorporating contrastive learning.

The authors propose a method that addresses the challenge of generalizing from a limited

amount of samples by enriching model representations with multiple self-supervision

objective functions. They compare and discuss the effects of cross-entropy loss and

contrastive loss combinations. They demonstrate significant results on benchmark data sets

in the image domain. They highlight the effectiveness of combining multiple self-supervision

losses and complex augmentations to strengthen the generalization capabilities of few-shot

learning models by considering the accuracy values obtained. [32] proposes an approach

integrating self-supervised learning, prototypical networks, and knowledge distillation
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to enhance few-shot classification success on benchmark image classification data sets,

including miniImageNet, tieredImageNet, and CIFAR-FS. There are three stages applied in

this method: pre-training, fine-tuning, and self-distillation. The pre-training phase employs

self-supervised learning to enhance sample discrimination. This initial training targets the

model’s generalized weights. The fine-tuning stage integrates both self-supervised and

few-shot losses, and it tries to prevent over-fitting and maintain embedding diversity. During

this fine-tuning phase, the model minimizes the distance between support and query samples

and adapts to few-shot tasks. Finally, a teacher-student architecture is employed in the

self-distillation stage. The model, trained in the fine-tuning stage, is utilized as a teacher

model to enable student model performance improvement by reducing overfitting.

Wang et al. [12] explore the accuracy of nearest-neighbor baselines utilizing non-episodic

training without meta-learning. Moreover, they demonstrate that simple feature

transformations can achieve competitive few-shot learning accuracy using a pre-trained

deep network, outperforming prior results in specific settings in the image domain. Tian

et al. [33] challenge the prevailing emphasis on complex meta-learning algorithms for

few-shot classification in the image domain. The authors show that learning a supervised or

self-supervised representation on the meta-training set and then training a linear classifier

with the learned representations by the few-shot method outperforms leading methods

for few-shot classification. Their method involves combining all meta-training data into

a single task to train a neural network model and using the neural network model as

a fixed feature extractor during meta-testing. The findings emphasize the potential of

well-learned embeddings to achieve superior few-shot classification performance across

multiple benchmarks.

Laenen et al. [34] investigate the utility and efficiency of episodic training in the image

domain. They question the necessity of this approach when non-parametric, metric-based

methods such as episodic training prototype networks are used and do not adapt during the

testing phase. They show that selecting non-episodic approaches over episodic training can

lead to improved performance on several few-shot classification benchmarks. They argue
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that episodic training can be an inefficient form of data use. They suggest that simpler,

non-episodic methods can often be more effective.

3.2.1. Few-Shot Audio Classification

MetaAudio [1] is the first benchmark for few-shot audio classification. Authors investigate

several popular approaches for few-shot learning, including MAML and Meta-Curvature

[35] which are gradient-based meta-learning methods or metric-based approaches like

prototypical networks, by assessing them on seven audio data sets covering sound event to

audio. Overall, their experiments suggest that the gradient-based meta-learners can enhance

their query performance and are more suitable than prior works (with other methods) in

cases with much larger class-wise variance. They also discover a joint training mechanism

across several data sets that aid better generalization to environmental sounds, as well as

demystifying the challenges of domain adaptation between each data set.

Choue et al. [36] present an attentional similarity module to address the few-shot sound

recognition problem. The proposed module can be used with metric-based learning methods

for few-shot learning, as it enhances the ability of the model to match associated

short-sound events. The authors extensively evaluate the ESC-50 and noise ESC-50 data

sets and demonstrate consistent performance enhancements across five different metric-based

methods.

Moummad et al. [37] contribute to the small data problem in bio-acoustic sound event

detection, a domain of high importance for studying animal behavior and biodiversity.

The authors, however, interestingly leverage techniques from information theory within

supervised contrastive learning to effectively transfer non-redundant and diverse features

across few-shot learning tasks. This consists of first pre-training a feature extractor using this

regularized contrastive learning approach, and then fine-tuning it in an on-task manner with

prototypical loss supervision using the nearest prototype classifier. The system is evaluated

on the few-shot bio-acoustic data sets of the DCASE community, and it has achieved up

to 68.19% F1-score. Kao et al. [38] combine self-supervised learning and meta-learning to
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address the challenge of few-shot keyword spotting when only a few samples are available

to adapt in user-defined scenarios. They use lots of models, including CPC [39], TERA

[40], Wav2Vec [41], HuBERT [42], and WavLM [43] in several meta-learning algorithms

such as MAML[44], Prototypical Networks, and Matching Networks. They highlight that

metric-based methods such as matching networks generally outperform optimization-based

methods like MAML. Additionally, they show that the encoder with fixed weights often helps

get better performance, according to experiments conducted on GSC and Common Voice

data sets. Heggan et al. [45] address the challenge of learning multiple inductive biases within

a single model. This combines contrastive and predictive adapters with multi-task learning

to train a model from scratch. The method employs an augmentation pipeline to generate

correlated views of input samples to be fed to a base network equipped with lightweight

neural adapters. The adapters permit task-specific parameters to be updated through either

contrastive or predictive gradient updates, thereby enabling the model to store augmentation

invariance and variance information. The model was evaluated on a series of few-shot audio

classification tasks across 10 data sets, which encompassed both speech and non-speech

data. Employing SimCLR and SimSiam as contrastive algorithms demonstrated superior

performance compared to the baseline and simple multi-task approaches, giving 69% 5-way

1-shot accuracy for the ESC-50 data set.

HalluAudio [46] is a novel method for few-shot audio classification by leveraging the

unique structure of audio spectrograms. The proposed method utilizes high-frequency and

low-frequency parts of the spectrogram as organized concepts to enhance classification

performance. It constructs high-frequency and low-frequency prototypes. It then combines

them with the original spectrogram prototypes for classification. Several tests are conducted

on the ESC-50 data set and a curated Kaggle18 data set. It performs better than baseline

methods, giving 71.88% and 59.35% classification accuracy in a 5-way 1-shot setting on

the ESC-50 and Kaggle 18, respectively. The study also compares the performance of

hallucinating time-domain concepts to frequency-domain concepts. The results prove that

the frequency-domain concept is superior. The results indicate that the proposed method

offers an effective solution for few-shot audio classification.
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Guzhov et al. establish a tri-modal CLIP [47] extension with the capacity to process text,

images, and audio simultaneously. This extension draws upon the AudioSet data set for

training and utilizes a range of data augmentation techniques to enhance the audio data.

The training process comprises two stages: first, the audio encoder model is pre-trained

on the AudioSet data set independently; second, it is jointly trained with CLIP’s text and

image heads. The proposed method obtains a zero-shot accuracy of 69.40% on the ESC-50

data set via an audio-only model. Elizalde et al. [48] present the CLAP model. They

try to establish a connection between natural language and audio through a multi-modal

space using contrastive learning. It utilizes two different pre-trained encoders for audio and

text inputs. It jointly learns the similarity of these audio-text pairs without the need for

labeled training data. It achieves high zero-shot performances in various data sets, such

as the ESC-50, giving 82.6% accuracy. Lin et al. [49] explore the concept of leveraging

multi-modal information to enhance few-shot learning for uni-modal tasks. They provide an

audio-visual benchmark that shows the performance improvements for both audio and image

classification, showing cross-modal training impacts positively.
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4. METHODOLOGY

This section introduces the model used, the types of optimization employed, and

the training schemes utilized by these optimization types. Three distinct optimizations

are employed: Single-Stage Hybrid Loss Optimization (SSHLO), Single Stage Loss

Optimization (SSLO), and Two Stage Loss Optimization (TSLO), via a non-parametric

classifier, namely the nearest centroid classifier. SSLO is the simplest optimization that

involves optimization without simCLR architecture and contrastive loss. TSLO optimization

includes a simCLR-like architecture with contrastive and supervised losses in two stages. The

utilized model is optimized contrastive loss and supervised loss for the first and second stages

of training, respectively. SSHLO optimization modifies the SimCLR architecture and makes

use of supervised loss and contrastive loss in a hybrid manner. Furthermore, the utilization of

these optimizations with episodic and non-episodic training regimes is detailed. Moreover,

it explains the simple feature transformations that are employed in the training and testing

phases.

4.1. Audio Preprocessing

4.1.1. Mean and Variance Normalization

Mean and variance normalization is a pre-processing technique employed to scale each

data point feature. To conduct this process, the mean of each feature is subtracted from

the data sample. Subsequently, the result is divided by the standard deviation. This method

enables enhanced performance and convergence of numerous machine learning algorithms

by normalizing the data to a common scale.

4.1.2. Feature Extraction

The Mel filter bank converts audio signals into a set of perceptually relevant features. Using

the Mel scale, which aligns with human pitch perception, a series of triangular filters is

17



applied to the power spectrum of the audio. This process extracts coefficients representing

the energy in each filter.

In feature extraction for this study, the SpeechBrain [50] toolkit and its default values for the

parameters [51] are used. However, some parameters are utilized differently in our study. The

number of Mel-filters is 60. The left and right frames are set at 0. Moreover, sliding window

length and hop length parameters are used at 25 ms and 10 ms, respectively.

4.2. Encoder

The Emphasised Channel Attention, Propagation, and Aggregation in Time Delay Neural

Network (ECAPA-TDNN) model [16] has been employed as the base encoder for all

methods in this thesis. The ECAPA-TDNN model is an improved X-vector architecture

version that builds upon the traditional TDNN by integrating advanced techniques that

significantly enhance retrieving meaningful embeddings. The SE-Res2Block is at the core

of the ECAPA-TDNN. It involves the Squeeze-and-Excitation Networks (SE-Net) [52] and

Res2Net [53] architectures. These play a role in recalibrating channel-wise feature maps

and capturing information across a spectrum of receptive fields and scales. This allows the

model to prioritize the processing of critical features over less important ones. The Attentive

Statistics Pooling (ASP) layer tries to refine the representation of features, and to do that, it

applies attention weights to time frames and channels. This is useful to emphasize the most

informative aspects of the audio signal. Furthermore, the model aggregates features from

multiple layers to benefit both shallow and deep information and make embedding more

qualified.

In the proposed encoder model, there is also an MLP layer. This MLP layer comprises of

two fully connected layers each containing 256 and 512 neurons with ReLU activations. It is

used to enhance the encoding capability of the encoder model, as depicted in Fig. 4.1.
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Figure 4.1 Encoder model

4.3. Data Augmentations

The data augmentation methods applied within the scope of the study are detailed in 4.1

with the parameters used and the applied values as utilized in [29]. The optimization of

TSLO and SSHLO, which use simCLR and contrastive in their pipelines, leverages these

augmentations.

Augmentation Parameter Value

White Noise
Min / Max SNR in dB 3 / 30

Min Max f-Decay

3/30

-1/0

Mixed Noise
Min / Max SNR in dB

Min Max f-Decay

3/30

-2/2

Pitch Shift Min / Max Transpose Semitones -15 / 15

Time Shift Min / Max Shift Ratio -0.5 / 0.5

Table 4.1 Data Augmentations

Noise Additions are frequency-based transformations. It simply means injecting random,

white, or mixed-noise signals into the original samples. This transformation may assist

the model in becoming more resilient against environmental noise or potential variations

in recording conditions. In this study, white noise and mixed noise variations have been

employed.

Pitch Shifting is a type of frequency transformation process that involves the random

addition or removal of audio signals. According to the findings presented in the [29] findings,
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Figure 4.2 The images of representations for the Backward class from GSC data set. (a) and (b)
represent the original and augmented raw waveforms, respectively. (c) and (d) represent
represent original and augmented Mel-spectrograms, respectively

an allowable pitch shift range of +/- 15 pitch shifts is enough to maintain the cohesion of the

input audio. This technique can simulate variations of the voice or musical notes.

Time Shifting process involves a temporal process of shifting audio signals. It is carried out

by randomly rolling audio forward and backward in the time domain.
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Fig. 4.2 illustrates the combined impact of all data augmentations detailed in Section 4.3.

on the audio samples on the raw waveform and its Mel-spectrograms. Subfigures (a) and

(c) show audio representations before applying and subfigures (b) and (d) show audio

representations after applying augmentations.

4.4. Loss Functions

In this study, two different loss types are utilized: contrastive loss, and supervised loss.

4.4.1. Contrastive Loss

Normalized Temperature-scaled Cross-Entropy (NT-Xent) loss is a frequently utilized

contrastive loss function in self-supervised learning tasks.

In training the SimCLR model, the data is used in pairs. These data pairs and the output of the

projection layer in the simCLR model are used as representation vectors. Loss calculation is

performed through the representation vectors obtained. While reducing the distance between

the representation vectors of data points from the same class, it is also useful to increase the

distance between the representation vectors of samples belonging to different classes.

Lcont = − log
exp(sim(zi, zj)/τ)∑2N

k=1 1[k ̸=i] exp(sim(zi, zk)/τ)
(4)

In Eqn. (4), Lcont is the contrastive loss function for the positive sample pair (zi, zj). The

numerator is the equivalent of the similarity calculated as in the Eqn. (5) between the

positive pair, scaled by the temperature parameter τ . The denominator is the sum of the

conjugates of the similarities of all other 2N samples in the aggregate data except zi and

itself, and this sum is also scaled by τ .

sim(u,v) =
u · v
∥u∥∥v∥

(5)
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4.4.2. Supervised Loss

Cross-entropy loss has been employed, which is a commonly used loss function in machine

learning when working with labeled data. It is a standard choice in multi-class classification

models. This loss function quantifies the degree of model fit to the actual label.

The more accurate the model’s prediction, the lower the loss. In Eqn. (6), yc is the binary

value for class c of real labels. ŷc represents the probability predicted by the model for class

c. In this equation, C represents the total number of classes.

Lce = −
C∑
c=1

yc log(ŷc) (6)

4.5. Nearest Centroid Classifier

The nearest centroid classifier is a simple and effective classification technique. It has been

utilized by both episodic [9] and non-episodic [12] methods. It involves calculating the

centroids of data classes and then allocating new data points to the class with the closest

centroid, as given in (Eqn. 7).

y(x̂) = arg min
c∈{1,...,C}

d(x̂, x̂c) (7)

In the context of this study, The nearest centroid classifier has been employed in both the

validation and testing phases. However, it has not been utilized during the training phase.

It has been utilized in two manners for experimental purposes. In the 5-shot scenario, the

centroid vector is obtained by calculating the average of the feature vectors extracted by the

trained encoder of the data points in the support set. while, in the 1-shot scenario, the feature

vector of the instance in the support set is directly used as the centroid representation vector.
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4.6. Simple Feature Transformations

In this study, feature transformations have been utilized, as in [12]. Wang et al.’s study

employs two forms of basic feature transformations: L2 normalization (L2N) and centered

L2 normalization (CL2N). L2N normalizes the length of each feature vector to unit length.

x̂← x̂

∥x̂∥2
(8)

x̄ =
1

|Dtrain|
∑

x∈Dtrain

x (9)

In the CL2N algorithm, the first step involves calculating average of the training set from all

the features as shown in the Eqn. (9). Secondly, averaged features are subtracted from test

features as given in the (Eqn. 10).

x̂← x̂− x̄. (10)

Following this, the L2 normalization is applied to the obtained features.

4.7. Optimizations

This thesis examines and contrasts three distinct optimization strategies, each of which

employs the same encoder as detailed in Section 4.2. In addition, the study considers

both episodic and non-episodic training methodologies in the context of each optimization

strategy.

4.7.1. Single Stage Loss Optimization (SSLO)

This type of optimization is a fundamentally straightforward method. During the training

phase, it only uses a supervised loss function. It is trained without the incorporation of a

contrastive loss or a simCLR-like structure. During training, there is a simple single-layer

linear classifier containing 512 neurons. This layer aids in the calculation of supervised loss

values. The pipeline of this optimization is depicted in Fig. 4.3.

23



In the validation and testing phases, episodic testing is applied using the nearest centroid

classifier to evaluate the obtained model. Simple feature transformations are applied to the

representation vectors obtained for the test samples before feeding the classifier for both

validation and testing stages.

Figure 4.3 The figure depicts the pipeline for the SSLO method.

4.7.1.1. Training Procedure

There is no support set or query set in non-episodic training; conventional supervised training

is conducted using a single supervised cross-entropy loss function given in (Eqn. 6) applied

to all instances within a given data stream batch.
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4.7.2. Two-Stage Loss Optimization (TSLO)

In TSLO optimization, there are two stages in model training. In the first stage, it uses an

unsupervised contrastive loss mechanism in a simCLR-like architecture. This architecture

contains a projection head module. The projection head is an MLP layer that consists of two

fully connected layers, each containing 512 and 128 neurons with ReLU activations. This

projection optimizes the features for contrastive losses during training. The entire encoder

model (Section 4.2.) is trained using unsupervised contrastive loss, as shown in Fig. 4.4.

Figure 4.4 First phase of the 2-stage loss optimization

In contrast to the first phase, supervised cross entropy loss is utilized and the components

used with contrastive loss are not used in the second stage. There is a single-layer linear

classifier similar to that used in SSLO optimization used for supervised cross-entropy loss

calculation as shown in Fig. 4.5. The ECAPA-TDNN model within the encoder model is used

as a frozen entity, with its trainable parameters are closed for training. Hence, the learned

parameters in the first stage are fixed and the model is used as a pre-trained model in this

stage.
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Figure 4.5 Second phase of the 2-stage model optimization

4.7.2.1. Training Procedure

In the first phase of the non-episodic training of two-stage loss optimization, audio samples

are utilized without labels using only the unsupervised contrastive loss given in Section

(4.4.1.). As for the second training phase, the MLP part of the encoder model is optimized

using the supervised cross-entropy loss given in Eqn. (6).

4.7.3. Single Stage Hybrid Loss Optimization (SSHLO)

As opted before, the encoder model is used as detailed in Section 4.2. A projection head

is present as in frameworks like SimCLR. Hence, a projection head module that is the same

architecture used in TSLO optimization is appended base encoder model to transform learned

representations into a space and apply contrastive learning.

An MLP layer comprises two fully connected layers, each containing 512 and 128 neurons

with ReLU activations. During training, this projection head optimizes the feature space for

contrastive tasks. However, it is removed during evaluation time and not used for testing

purposes.
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In order to benefit from supervised loss (Eqn. 6) along with contrastive loss (Eqn. 4), a

single-layer linear classifier, which is also used in other optimizations, is appended after the

encoder part as a branch, as can be seen in Fig. 4.6.

Figure 4.6 Single Stage Hybrid Model Optimization

4.7.3.1. Training Procedure

In the context of single-stage hybrid loss optimization non-episodic training, the training

process does not utilize a support set or a query set as seen in episodic training. Consequently,

all audio samples within a batch are duplicated, with one copy representing the original

sample and the other representing the augmented version. The unsupervised contrastive loss

(Eqn. 4) is calculated between these two sample sets without using their labels. Furthermore,

the single-layer linear classifier enables the calculation of supervised cross-entropy losses

(Eqn. 6) using the original and augmented samples in the batch. Ultimately, the losses

obtained are combined as given in (Eqn. 12), and the model training is conducted in a hybrid

manner.

Lcontrastive = Lcont(Zoriginal, Zaugmented) (11)

LSSHLO = Lcontrastive + LCEoriginal + LCEaugmented (12)
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5. EXPERIMENTAL RESULTS

5.1. Experimental Setup

5.1.1. Data Sets

In the thesis, two different and widely recognized sets of data are used, and general features

are given in Table 5.1.

Data set Name Type Number of All Classes Sample Length

GSCv2 (Google Speech Commands) Spoken Command 35 1 sec

ESC-50 (Environmental Sound Classification) Environmental 50 5 sec

Table 5.1 Data sets

5.1.1.1. Environmental Sound Classification

The ESC-50 (Environmental Sound Classification) data set [54] is a well-known data set

for audio classification tasks. It originally consisted of 2000 environmental audio clips. The

audio samples are separated into 40 samples per class. They were originally 44.1 kHz and

down-sampled to 16 kHz for experiments.

ESC-50 is a commonly used data set for conducting benchmark audio classification studies.

It includes environmental sound classes such as animal noises, natural soundscapes, human

sounds, and machinery noises.

5.1.1.2. Google Speech Commands

The Google Speech Commands [55] data set is a widely used data set in audio pattern

recognition tasks. It comprises two versions, the second involving 35 spoken word classes,

used for experiments in this study. It provides a standardized set of 1-second-long audio

utterances for training, validation, and testing.

28



5.1.1.3. Training Data Variations

Tables 5.2 and 5.3 illustrate the class splits that have been employed in episodic training for

the ESC-50 and GSC datasets, respectively. The ESC-50 class division has been conducted

according to [1]. Pre-defined 35, 5, and 10 classes out of 50 are allocated for train, validation,

and test sets, respectively.

ESC-50 Class Splits

Train Validation Test

35 class 5 class 10 class

clock tick, wind, pouring water, pig, fireworks

can opening, hand saw, toilet flush, train

sea waves, clapping, frog

washing machine, crying baby, chainsaw

siren, cat, sheep

door wood knock

car horn

drinking sipping, helicopter, brushing teeth

water drops, insects, snoring

crickets, keyboard typing, rain

door wood creaks, mouse click

chirping birds, footsteps, rooster, laughing

clock alarm

coughing

hen

crackling fire

breathing

airplane

engine

sneezing

thunderstorm

glass breaking

cow

crow

church bells

vacuum cleaner

dog

Table 5.2 ESC-50 class splits [1]

As for the GSC data set, random selection allocates approximately 70 percent of the GSC

classes for the train set. This implies that we use 24 out of 35 classes for training without

any overlap. The remaining classes are randomly split, and the test set involves seven distinct

classes.

To reflect the real-world data scarcity problem in the experiments and to assess the efficacy

of the training methodologies across different data sets, three distinct training set variants

were formed for both the ESC-50 and GSC data sets, designated as SPC-5, SPC-10, and
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GSCv2 Class Splits

Train Validation Test

24 class 4 class 7 class

learn, up, bird

nine, yes, cat

off, wow, four, follow

sheila, three, go

eight, marvin, two, visual

left, one, backward, house

zero, bed, happy

five, tree

no, on

down, right, forward

stop, dog, six, seven

Table 5.3 GSC Class Splits

SPC-15, respectively. During the creation of these data sets, the number of samples per class

in the train set was selected to be 5, 10, and 15, respectively.

Data Set SPC-5 SPC-10 SPC-15 Validation Test

ESC-50 175 350 525 50 150

GSCv2 120 240 360 1295 2198

Table 5.4 The sample counts for each variation in the data sets that have been applied class splitting.

In all experiments, the same data splits are employed. Table 5.4 shows the number of data

samples used in the train stages in experiments for each data set.

5.1.2. Encoder Model Variations

The encoder model is composed of two principal components (Fig. 4.1): the ECAPA-TDNN

backbone layer and the MLP layer. There are two different ways to use these layers in

experiments. The first one is the fixed ECAPA. The ECAPA-TDNN is used as a pre-trained

model, and its weights are not changed in the training stage. Only the MLP layer is trained.

The second one is referred to as the adapted ECAPA. This type of usage involves training

both encoder model components.
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5.2. Implementation Details

To train models, the Pytorch framework [56] is employed. Implementation of the

ECAPA-TDNN backbone model that is used in the encoder is obtained from HuggingFace

[57]. This version is pre-trained on a large language identification data set [58] to benefit

prior knowledge.

All of the trainings are conducted over 20 epochs, and the Adam optimizer [59] is used

with a learning rate of 3e-4. L2 regularization weight is utilized as 1e-4. The unsupervised

contrastive loss temperature value is experimentally set at 0.75.

5.3. Evaluation Process

To measure and compare our methods, N-way K-shot episodic testing is conducted. For these

tests, 5-way 1-shot and 5-way 5-shot setups are prepared. A testing episode example has been

shown in Fig. 5.1. Mean accuracy is measured by selecting 10,000 N-way K-shot episodes

from the test set as depicted in the Alg. 7.

Algorithm 1 N-Way K-Shot Classification Evaluation

Require: Dnovel = {(x̃j, ỹj); x̃j ∈ Xnovel, ỹj ∈ Ynovel, j = 1, . . . , Nnovel}

Require: Number of episodes E

1: for e = 1,. . . ,E do

2: Select randomly N classes from Ynovel.

3: Select randomly K samples from each class as the support set D(e)
S .

4: Select randomly Q sample from the remaining samples of N classes as the query set

{(x̃(e), ỹ(e))}.

5: Obtain prediction labels ỹ(e) = fθ(e)(Dtrain, D
(e)
S ).

6: Calculate accuracy

7: end for

Compute Avg Acc
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Figure 5.1 Example 5-way 1-shot test episode

5.4. Experimental Results and Discussion

Batch size values are set at 10 and 30 for 5-way 1-shot and 5-way 5-shot schemes, for

non-episodic experiments, respectively. All evaluations are conducted episodically, using

the 5-way 1-shot scheme.

The lack of a sufficient data sample to form an episode prevented the 5-way 5-shot training

from using the SPC-5 variations. A 5-way, 5-shot episode requires the inclusion of 25

samples in the support set and 5 samples in the query set. However, the application of

a random sampling operation to a data set comprising 5 samples per class results in the

elimination of all samples in a class.

Table 5.5, Table 5.6, and Table 5.7 present the experimental results for SPC-5, SPC-10,

and SPC-15 train data set variations for both ESC-50 and GSCv2 data sets, respectively. It

can be observed that there is a tendency for the accuracy rate to increase as the number of
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Data Set ESC50 GSC

Encoder Fixed ECAPA Adapted ECAPA Fixed ECAPA Adapted ECAPA

Non-Episodic Trainings

TSLO 0.544± 0.046 0.546± 0.049 0.343± 0.044 0.374± 0.046

TSLO+L2N 0.541± 0.047 0.556± 0.047 0.353± 0.046 0.399± 0.045

TSLO+CL2N 0.575± 0.043 0.595± 0.046 0.359± 0.050 0.396± 0.046

SSLO 0.572± 0.046 0.565± 0.045 0.422± 0.046 0.481± 0.048

SSLO+L2N 0.597± 0.045 0.606± 0.047 0.458± 0.048 0.524± 0.050

SSLO+CL2N 0.596± 0.046 0.551± 0.048 0.456± 0.049 0.530± 0.046

SSHLO 0.579± 0.043 0.585± 0.045 0.425± 0.046 0.564± 0.048

SSHLO+L2N 0.602± 0.047 0.622± 0.045 0.441± 0.050 0.595± 0.049

SSHLO+CL2N 0.594± 0.046 0.613± 0.046 0.442± 0.048 0.614± 0.047

Table 5.5 Average accuracy scores on SPC-5 data set. Non-episodic trainings are conducted using a
batch size of 10.

Data Set ESC50 GSC

Encoder Fixed ECAPA Adapted ECAPA Fixed ECAPA Adapted ECAPA

Non-Episodic Trainings

TSLO 0.556± 0.046 0.539± 0.046 0.334± 0.044 0.400± 0.047

TSLO+L2N 0.567± 0.045 0.555± 0.047 0.333± 0.043 0.407± 0.046

TSLO+CL2N 0.575± 0.046 0.614± 0.045 0.354± 0.046 0.423± 0.049

SSLO 0.578± 0.046 0.615± 0.046 0.414± 0.047 0.528± 0.047

SSLO+L2N 0.604± 0.044 0.633± 0.047 0.452± 0.049 0.575± 0.048

SSLO+CL2N 0.612± 0.046 0.617± 0.046 0.447± 0.047 0.510± 0.048

SSHLO 0.589± 0.045 0.590± 0.044 0.430± 0.046 0.610± 0.048

SSHLO+L2N 0.611± 0.047 0.644± 0.045 0.445± 0.049 0.632± 0.047

SSHLO+CL2N 0.611± 0.046 0.634± 0.043 0.445± 0.050 0.645± 0.048

Table 5.6 Average accuracy scores on SPC-10 data set. Non-episodic trainings are conducted using a
batch size of 10.
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Data Set ESC50 GSC

Encoder Fixed ECAPA Adapted ECAPA Fixed ECAPA Adapted ECAPA

Non-Episodic Trainings

TSLO 0.559± 0.049 0.541± 0.048 0.312± 0.043 0.421± 0.047

TSLO+L2N 0.566± 0.045 0.538± 0.046 0.321± 0.044 0.423± 0.048

TSLO+CL2N 0.585± 0.045 0.550± 0.047 0.333± 0.048 0.418± 0.048

SSLO 0.582± 0.045 0.622± 0.050 0.418± 0.045 0.539± 0.047

SSLO+L2N 0.598± 0.045 0.640± 0.047 0.463± 0.049 0.595± 0.047

SSLO+CL2N 0.600± 0.048 0.615± 0.041 0.455± 0.049 0.525± 0.048

SSHLO 0.591± 0.048 0.597± 0.049 0.427± 0.048 0.598± 0.046

SSHLO+L2N 0.616± 0.047 0.645± 0.044 0.445± 0.051 0.622± 0.048

SSHLO+CL2N 0.613± 0.042 0.648± 0.050 0.455± 0.046 0.632± 0.047

Table 5.7 Average accuracy scores on SPC15 data set. Non-episodic trainings are conducted using a
batch size of 10.

instances contained in the classes in the training set increases. However, this increase is not

proportional to the increase in the amount of data. In some cases, even slight decreases in the

accuracy rate were observed.

In light of the findings presented in Table 5.6, the SSHLO with CL2N model outperforms the

other optimizations on the GSC data set. Concerning Table 5.7, the highest level of accuracy

is achieved by the SSHLO method with L2N transformation, giving 61.6% accuracy for

fixed ECAPA. The SSHLO applying the CL2N transformation achieves even better results

and gets 64.8% accuracy for not-fixed ECAPA usage on the ESC-50 SPC-15 data set. As

for the GSC data set, the SSHLO with CL2N model performs the best, obtaining 63.2%

accuracy and showing significant improvement when the encoder is fine-tuned compared to

the fixed version. The SSHLO optimization with CL2N provides the best accuracy for the

fixed ECAPA.
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Data Set ESC50 GSC

Encoder Fixed ECAPA Adapted ECAPA Fixed ECAPA Adapted ECAPA

Non-Episodic Trainings

TSLO 0.553± 0.046 0.558± 0.046 0.344± 0.045 0.393± 0.043

TSLO+L2N 0.569± 0.044 0.559± 0.045 0.360± 0.045 0.398± 0.045

TSLO+CL2N 0.599± 0.046 0.589± 0.043 0.375± 0.048 0.406± 0.049

SSLO 0.582± 0.045 0.591± 0.046 0.418± 0.046 0.506± 0.047

SSLO+L2N 0.608± 0.045 0.632± 0.046 0.450± 0.047 0.588± 0.048

SSLO+CL2N 0.604± 0.047 0.627± 0.046 0.452± 0.051 0.556± 0.048

SSHLO 0.584± 0.044 0.630± 0.045 0.440± 0.046 0.609± 0.047

SSHLO+L2N 0.605± 0.047 0.658± 0.046 0.455± 0.051 0.634± 0.048

SSHLO+CL2N 0.606± 0.046 0.639± 0.045 0.455± 0.049 0.633± 0.048

Table 5.8 Average accuracy scores on SPC-10 data set variations. Non-episodic trainings are
conducted using a batch size of 30.

Data Set ESC50 GSC

Encoder Fixed ECAPA Adapted ECAPA Fixed ECAPA Adapted ECAPA

Non-Episodic Trainings

TSLO 0.573± 0.044 0.557± 0.048 0.342± 0.041 0.409± 0.044

TSLO+L2N 0.584± 0.046 0.554± 0.046 0.351± 0.048 0.396± 0.048

TSLO+CL2N 0.600± 0.042 0.587± 0.043 0.372± 0.048 0.418± 0.048

SSLO 0.587± 0.048 0.612± 0.046 0.398± 0.047 0.513± 0.048

SSLO+L2N 0.604± 0.047 0.626± 0.045 0.444± 0.048 0.586± 0.048

SSLO+CL2N 0.595± 0.046 0.636± 0.045 0.459± 0.046 0.559± 0.047

SSHLO 0.592± 0.045 0.614± 0.045 0.435± 0.048 0.623± 0.047

SSHLO+L2N 0.614± 0.046 0.646± 0.044 0.450± 0.050 0.644± 0.045

SSHLO+CL2N 0.616± 0.045 0.655± 0.047 0.457± 0.047 0.651± 0.049

Table 5.9 Average accuracy scores on SPC-15 data set. Non-episodic trainings are conducted using a
batch size of 30.
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Table 5.8 and Table 5.9 present the experimental results for the SPC-10 and SPC-15 train

data set variations of the ESC-50 and GSCv2 data sets, respectively. In these experiments,

episodic training is conducted with a 5-way 5-shot scheme, while non-episodic training is

applied via a batch size of 30.

When Table 5.8 and Table 5.9 are considered together, it can be seen that non-episodic

training benefits from the increase in batch size. The SSHLO optimization has demonstrated

efficacy when compared to other optimizations. In the majority of instances, it yields the

most favorable outcomes in Table 5.8 and Table 5.9. In a single instance, the results achieved

by SSLO optimization were superior, with a margin of 0.2%.

Data Set ESC-50 (SPC-5) GSC (SPC-5) ESC-50 (SPC-10) GSC (SPC-10) ESC-50 (SPC-15) GSC (SPC-15)

Non-Episodic Trainings

TSLO 0.546 0.374 0.539 0.400 0.541 0.421

TSLO+L2N 0.556 0.399 0.555 0.407 0.538 0.423

TSLO+CL2N 0.595 0.396 0.614 0.423 0.550 0.419

SSLO 0.565 0.481 0.615 0.528 0.622 0.539

SSLO+L2N 0.606 0.524 0.633 0.575 0.640 0.595

SSLO+CL2N 0.551 0.530 0.617 0.510 0.615 0.525

SSHLO 0.585 0.564 0.590 0.610 0.597 0.598

SSHLO+L2N 0.622 0.595 0.644 0.632 0.645 0.622

SSHLO+CL2N 0.613 0.614 0.634 0.644 0.648 0.632

Episodic Trainings

ProtoNets 0.618 0.471 0.615 0.462 0.626 0.479

Table 5.10 Average accuracy scores obtained with adapted ECAPA. The episodic trainings are
conducted via a 5-way 1-shot scheme. Non-episodic trainings are conducted using a
batch size of 10.

Tables 5.10 and 5.11 present average accuracy scores obtained using the adapted ECAPA

model for all training data variations on both the ESC-50 and GSC data sets. The accuracy

results are added and obtained using the Prototypical Networks model (Section 2.4.1.1.) for

the episodic training. To make a fair comparison, episodic training is applied with the same

encoder architecture on the same data splits. Furthermore, the number of epochs is used as

equal to 20 used in non-episodic trainings. Episode count in one epoch is adjusted with the

corresponding batch size in non-episodic training.
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Data Set ESC-50 (SPC-10) GSC (SPC-10) ESC-50 (SPC-15) GSC (SPC-15)

Non-Episodic Trainings

TSLO 0.558 0.393 0.557 0.409

TSLO+L2N 0.559 0.398 0.554 0.396

TSLO+CL2N 0.589 0.406 0.587 0.418

SSLO 0.591 0.506 0.612 0.513

SSLO+L2N 0.632 0.588 0.626 0.586

SSLO+CL2N 0.627 0.556 0.636 0.559

SSHLO 0.630 0.609 0.614 0.623

SSHLO+L2N 0.658 0.634 0.646 0.644

SSHLO+CL2N 0.639 0.633 0.655 0.651

Episodic Trainings

ProtoNets 0.590 0.478 0.546 0.507

Table 5.11 Average accuracy scores obtained with adapted ECAPA. The episodic trainings are
conducted via a 5-way 5-shot scheme. Non-episodic trainings are conducted using a
batch size of 30.

Considering the results of Table 5.10 and Table 5.11 we can summarize our observations as

follows:

• Optimization Techniques

The proposed SSHLO method consistently demonstrates the highest accuracy scores.

Only a few cases exhibiting narrow margins of superiority are surpassed by it.

Therefore, it can be concluded that hybrid optimization of losses represents the

optimum optimization strategy across the entire data set variations on the ESC-50 and

GSC data sets when applying the non-episodic training approach.

The SSLO method can learn task-specific representations with its simplicity and

surpass the TSLO method. The SSHLO method utilizes both types of losses in a more

intricate manner than the SSLO optimization, and it appears to learn more robust and

generalizable representations, outperforming the SSLO method in most cases.
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Observations show that the TSLO method generally yields poorer results than other

methods. There may be several reasons for this poor performance. When training with

the comparative loss function, the data augmentation methods applied to the audio

samples may have been insufficient. Since the first stage of the TSLO training is done

without using the supervised loss function, the importance of the data augmentation

methods is greater than that of the SSHLO optimization. Furthermore, in the secondary

training phase, the ECAPA-TDNN model is closed for adaptation following the initial

unsupervised training stage. Consequently, the model may be unable to adapt to the

representations acquired during the first unsupervised training phase, which may not

be optimally suited to a given classification task.

• Comparison to ProtoNets

The SSHLO and the SSLO optimizations method provide superior results compared to

ProtoNets results. As stated before, ProtoNets utilize an episodic training approach

whereas other optimization methods use non-episodic training. Given that a

pre-trained model is used for class-balanced data sets, it can be said that non-episodic

training is a better option than episodic training despite its complexity. ProtoNets

outperforms the TSLO method. Regarding these results, it has been proven that the

TSLO optimization approach is the worst approach when the amount of training data

is low, as it is used in this study.

• Impact of ECAPA Model Adaptation

The adapted utilization of the ECAPA model, part of the encoder model, has been

demonstrated to yield positive effects on optimizations for all data set variations on

both the ESC-50 and GSCv2 data sets. In comparison to a fixed approach, the results

indicate that this method produces significant performance gains in almost every

experiment.

In the fixed-weight model, the encoder is pre-trained, and its parameters remain

unchanged during training. This approach is intended to reduce computation and avoid
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overfitting. However, this approach became problematic due to the variations in the

data sets we used. The scarcity of samples makes the learning process difficult. As for

the adapted use of the ECAPA-TDNN model, it allows representation learning that is

more generalizable and stable than the fixed approach.

• Effect of Simple Feature Transformations

Analysis of the results revealed that applying transformations consistently led to the

highest scores. This serves as compelling evidence that simple feature transformations

enhance performance. Observations show that the CL2N transformation exhibits

greater efficacy than the L2N transformation, but the observed difference is

often minimal, and subtle distinctions often determine the superior transformation.

Centering process in CL2N transformation makes normalization more effective for

classification tasks.

5.4.1. Ablation Study

The SSHLO optimization method has been demonstrated to be effective for a limited number

of audio classifications, as outlined in Section 5.4.. As previously stated in Section 4.7.3., two

distinct training methodologies are employed, each with a different loss function utilization.

This thesis evaluates the impact of these hybrid approaches on the SPC-15 training dataset

variation for both datasets.

As Table 5.12 indicates, CE and CL represent the total loss components employed in SSHLO

episodic training. These are calculated using supervised cross-entropy and unsupervised

contrastive losses, respectively. (Section 4.7.3.1.)

5.4.1.1. Loss Effects in Non-Episodic Training

Table 5.12 indicates that cross-entropy loss is more effective than contrastive loss for both

data sets. Indeed, an examination of the results obtained from the GSC dataset reveals that the
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ESC-SPC15 GSC-SPC15

SSHLO 0.596± 0.045 0.603± 0.047

w/o CE 0.531± 0.048 0.535± 0.049

w/o CL 0.575± 0.046 0.600± 0.046

Table 5.12 Average accuracy scores on SPC-15 data set. Non-episodic trains are conducted using a
batch size of 10.

contrastive loss contribution is relatively insignificant. However, the application of combined

losses yields the highest accuracy values.
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6. CONCLUSION

In this thesis, an audio classification has been applied using few-shot learning for cases

with a limited amount of data. Extensive experiments have been carried out with three

different types of optimization models. In these experiments, two different data sets have

been utilized, which are ESC-50, which contains environmental non-speech sounds, and

GSC, which includes simple spoken commands. Three data set variations—5, 10, and 15

samples per class have been created for each data set. The optimization methodologies are

evaluated by the 5-way 1-shot few-shot classification scheme. The effects of simple feature

transformations have been observed during the evaluations.

When the collected findings are examined, it can be seen that the proposed single-stage

hybrid loss optimization (SSHLO) method performs better than other optimization methods

in terms of classification accuracy. The SSHLO method yielded the most optimal results

among all the models employed for all variations of both datasets. On the SPC-5 training set

variation, it achieves 62.2% with L2 normalization for the ESC-50 dataset and 61.4% with

CL2N transformation for the GSC dataset. With the SPC-10 training data set variation, the

SSHLO method achieves 65.8% with L2N transformation on the ESC-50 data set and 64.4%

with CL2N transformation on the GSC data set. The SSHLO with CL2N transformation

yields the best scores for the SPC-15 training dataset, with the SSHLO model giving scores

of 65.5% and 65.1%, respectively.

The episodic training approach stands out as an important place in the few-shot learning area.

For this reason, comparisons have been conducted with Prototypical Networks which is a

well-known few-shot learning model utilizing the episodic training scheme. Upon analyzing

the utilized data sets and the obtained outcomes from the experimental setups, the SSHLO

optimization model gives higher accuracy scores than Prototypical Networks when they are

utilized with the same large-scale pre-trained encoder model.
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6.1. Future Works

This thesis presents the results obtained by using a single backbone model. The

ECAPA-TDNN model has been selected as the encoder model backbone due to

considerations regarding training and inference time, as well as the model’s success.

Furthermore, the comparison between episodic and non-episodic training approaches is

limited.

To enhance the quality of the study’s findings and facilitate the development of other potential

lines of research, the following future studies can be conducted:

• It is possible to observe changes in the experimental classification performance of

optimizations using various backbone models. To illustrate, the X-vector [15] and

CNN14 [60] models may be good candidates considered more lightweight than the

model used in this thesis. In cases where the hardware is sufficient, backbone models

such as Whisper [61], Hubert [42], Wav2vec [41], and AST [62], which are pre-trained

with very large data sets, can be employed.

• A more comprehensive analysis of the differences between episodic and non-episodic

training approaches is required. A comparison with known methods such as

MatchingNet [10] methods utilizing episodic training, might facilitate a more accurate

evaluation of the results. Furthermore, the implementation of episodic training

schemes in the optimization models employed in this thesis could facilitate the

generation of more reliable results in comparing episodic and non-episodic training

experiments. Due to time constraints, we did not explore these models in this study.
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