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ABSTRACT

RIDE COMFORT EFFECTS OF INERTER IMPLEMENTATION AT
HEAVY VEHICLE SUSPENSION SEAT

Buğra Aydın

Master of Science , Mechanical Engineering
Supervisor: Asst. Prof. Dr. Emir KUTLUAY

April 2024, 201 pages

The benefits of the relative new passive vibration isolation device, known as an Inerter or

J-Damper, have been examined in terms of ride comfort for heavy commercial vehicle seat

and cabin suspensions. The investigations were conducted using the equations of motion

for a 5-axle tractor-trailer combination with 14 degrees of freedom associated with such

a vehicle. Inerter devices were applied in various combinations in the cabin and seat

suspensions, and each combination was realized by adding increasing inertance to spring and

damper pairs corresponding to different natural frequencies and damping ratios. Weighted

RMS acceleration values and RMS displacements were calculated in the frequency domain

for each parameter set, and the changes obtained with increasing inertance were illustrated

graphically.

Weighted RMS accelerations were calculated using methods defined by the ISO-2631:1997

standard. Road surface irregularities were defined according to the ISO-8608:2016 standard.

The results indicated that within the selected range, an increase in inertance led to a decrease

in weighted accelerations and displacements. This suggests that the implementation of

i



inerter devices in the seat and cabin suspensions of heavy commercial vehicles can improve

ride comfort.

Keywords: inerter, inerter based seat suspension, heavy vehicle inerter seat and cab

suspension, ride comfort, ride comfort with inerter
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ÖZET

AĞIR TİCARİ ARAÇ SÜSPANSİYONLU KOLTUĞUNDA İNERTER
UYGULAMASI VE KONFORA OLAN ETKİLERİ

Buğra Aydın

Yüksek Lisans, Makine Mühendisliği
Danışman: Asst. Prof. Dr. Emir KUTLUAY

Nisan 2024, 201 sayfa

Inerter olarak adlandıralan ve J-Damper olarak da bilinen göreceli yeni pasif titreşim izole

edici cihazın ağır ticari araç koltuk ve kabin süspansiyonunda getirdiği faydalar sürüş

konforu bakımından incelenmiştir. İncelemeler, 5 akslı çekici-dorse kombinasyonu ile bu

tipte bir araca ait 14 hareket sebestliğine sahip hareket denklemleri ile yapılmıştır. İnerter

cihazları, kabinde ve koltukta farklı kombinasyonlarda uygulanmış ve her kombinasyon,

farklı doğal freakanslara ve sönüm oranlarına denk gelen yay-amotisör çiftlerine, 0’dan

başlayıp artan inertans eklenerek gerçekleştirilmiştir. Her bir parametre seti için ağırlıklı

etkin ivme değeri ve etkin deplasman, frekans bölgesinde hesaplanmış ve inertans artışı ile

birlikte elde edilen değişimler grafikler ile gösterilmiştir.

Ağırlıklı etkin ivmeler, ISO-2631:1997 standardının belirlerdiği metotlar ile hesaplanmıştır.

Yol yüzey düzgünsüzlükleri ise ISO-8608:2016 standardına göre oluşturulmuştur.

Sonuçlar, seçilmiş olan aralıkta, inertans artışı ile birlikte etkin ağırlıklı ivmelerde ve aynı

zamanda etkin deplasmanlarda düşüş oluştuğunu, yani inerter cihazlarının ağır ticari araç

koltuk süspansiyonunda ve kabin süspansiyonunda uygulanması halinde sürüş konforunun

iyileşeceğini göstermiştir.
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1. INTRODUCTION

Heavy vehicles play a significant role in today’s transportation system. They are relied upon

for tasks ranging from delivering individual purchases to transporting parts that keep factories

running. Consequently, road transportation is expected to operate continuously. To achieve

this, manpower is as crucial as the drivers themselves. Ride discomfort negatively affects

drivers’ fatigue levels and needs to be minimized.

Ride comfort can generally be evaluated in three parts: noise, vibration, and harshness.

These measures are essentially subjective and can vary from individual to individual. This

thesis focuses on vibrations caused by road irregularities. While ride comfort is a subjective

measure, there are widely accepted objective measures that enable its evaluation using

standardized methods. The ISO-2631 standard defines limits for vibrations related to health,

comfort, and motion sickness. For comfort evaluation, there are also defined limits assessing

human reactions to vibratory environments, ranging from extremely uncomfortable to not

uncomfortable. [1]

Heavy vehicles differ from passenger vehicle counterparts in several aspects due to their

primary purpose: carrying heavier and bulkier goods. This difference results in larger and

higher designs with suspensions that must perform well under varying loading conditions,

from an empty vehicle to a fully laden one. This variability significantly limits axle

suspension designs. One solution to this challenge is air bellow suspensions. Such systems

can maintain the natural frequency of the design relatively constant and perform well under

any loading condition, enhancing both comfort and road holding capabilities. The use of such

systems has now been extended to cab and seat suspensions, thereby greatly improving ride

comfort. [2] demonstrates that there are instances where drivers are exposed to vibrations

that fall within the health caution zone according to the definitions of ISO-2631.

However, ride comfort can be further enhanced to reduce fatigue levels, which not only

improves driver efficiency but also meets the high demand for better ride quality from

drivers. This thesis investigates the effects of a relatively new vibration control element,
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the inerter, when implemented in heavy vehicles. An inerter, also known as a j-damper,

is a two-terminal device that produces force based on the acceleration difference across its

terminals. Essentially, it resists changes in acceleration at its terminals, a property known as

inertance, measured in kilograms. [3]

1.1. Scope Of The Thesis

This thesis primarily focuses on the ride comfort benefits of inerters in Cab Over Engine

(COE) type Tractor-Semitrailers. Various factors influence the comfort of such vehicles,

including loading conditions, type of semi-trailer, axle suspension type, cab suspension type

and its location, seat suspension, engine-gearbox bushings, frame compliance, and lastly, the

driver’s physical characteristics. Within the scope of this thesis, all specifications pertain

to a single fully laden case. A mathematical model of such a vehicle is developed, and

the vibration isolation performance is evaluated using this model. Inerters are positioned at

both the cab and seat suspensions. Road irregularities are defined in accordance with the

ISO-8608 standard.

1.2. Contributions

In this thesis, the vibration isolation performance benefits of parallel inerters are investigated

using a 14-degree-of-freedom (DOF) model of a heavy vehicle ride comfort. Changes

in weighted RMS accelerations and suspension deflections are plotted across a range of

natural frequencies and damping ratios to generalize the results. This approach enables the

prediction of the benefits of inerters when integrated into suspensions within these ranges.

• Parallel inerter applied to heavy vehicle seat fore-aft isolator and the changes in the

isolation performance is shown

• Parallel inerter applied to heavy vehicle seat vertical suspension and the changes in the

isolation performance is shown
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• Parallel inerter applied to heavy vehicle cab suspension and the changes in the isolation

performance is shown

1.3. Organization

The organization of the thesis is as follows:

• Chapter 1 presents our motivation, contributions, and the scope of the thesis.

• Chapter 2 provides a literature review of related works in the field.

• Chapter 3 introduces the mathematical approaches.

• Chapter 4 demonstrates the results and findings from the simulations.

• Chapter 5 summarizes the results obtained throughout the thesis.

2. LITERATURE REVIEW

2.1. Ride Comfort Studies of Heavy Vehicles

The primary methodology for studying ride comfort is presented by Wong [4], as illustrated

in Figure 2.1. This approach typically involves three main components: a model for road

irregularities, a model for vehicle vibrations, and a procedure for vibration evaluation. Jiang’s

literature survey on ride comfort indicates that many authors follow this general approach,

with variations in the methods used to describe road profiles, the fidelity of the vehicle model,

and the methods used for vibration evaluation [5].

Figure 2.1 A general ride comfort study method [4]
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Road profiles are typically described using their respective fitted Power Spectral Density

(PSD) functions. Kropac [6] provides examples of one, two, and three-band road PSD

descriptions, as shown in Figure 2.2. This thesis adopts the ISO-8608:2016 standard for

road PSD descriptions.

Figure 2.2 PSD approximation lines with one, two, and three wavelength bands [6]

The mathematical description of the vehicle plays a crucial role in obtaining the necessary

vibrations. Some key properties of the models include:

• Number of DOF: 6-21

• Number of axles: 2-5

• Cab mountings: stiff or suspended

• Inclusion of seat-human model: exists or lumped into cab mass

• Engine and gearbox mountings: stiff or suspended

• Flexibility of chassis frames accounted for: rigid, modal superposition, or finite

element model

• 5th wheel coupling model for tractor-semitrailers: rigid coupling or spring

simplification

4



While more complex models generally provide a better description of vibrations, they

also require more parameters to be estimated and demand more computational power.

Simplifications should be made carefully. For modeling decisions, studies like Trangsrud’s

[7] can be referenced. For instance, Figure 2.3 demonstrates how the engine DOF affects the

vibration PSD at the driver’s seat in both vertical and longitudinal directions.

Figure 2.3 Engine DOF effects on seat vibration PSD [7]

Perseguim et al. utilized a multibody model incorporating FEM in their work [8]. Figure

2.4 displays the first torsion mode of the frame obtained through testing, occurring at 7.7 Hz

with a 0.302 damping ratio. Figure 2.5 presents the time domain displacement and its FFT

obtained through simulation, revealing three main modes causing the most discomfort in the

fore-aft direction, one occurring at a very low frequency.
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Figure 2.4 Frame first torsion mode [8]

Figure 2.5 Driver’s neck fore-aft displacement and FFT [8]

In conclusion, a ride comfort study necessitates a description of the road elevation profile, an

appropriate vehicle model, and a procedure for vibration evaluation.
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2.2. ISO 2631

ISO-2631 is widely accepted and used for ride comfort studies. Proposed methods often

involve different positions, with seated individuals being common for ride studies since

drivers typically sit while driving. The main principle involves measuring the vibrations

transmitted to humans at the seat pan. These vibrations are processed in the respective

principal axes. Figure 2.6 shows the axes considered for the sitting human body on the

seat pan. On this figure the axes for the feet contact point also drawn. In general, for comfort

evaluation of whole body vibration obtained at the seat pan for the given axes and the overall

vibration magnitude calculated from individual component and then compared to given

indication values. While obtaining individual vibration magnitudes at the axes, frequency

based filtering is applied to emphasize the vibrations in the more irritating frequency range.

Frequency weightings for the x and z axes provided by ISO-2631:1997 standard is given in

Figure 2.7. These weightings suggest that the 4-10 Hz range is more important for vertical

vibrations, while the 0.5-2 Hz range is more irritating in the fore-aft directional vibrations to

the human body. This is seen by the frequency bands where the weightings are greater than

the rest of the plot.

Figure 2.6 Basicentric axes of the human body for seated position [1]
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Figure 2.7 ISO2631:1997 Frequency-dependent weightings for x and z principle axes.

2.3. ISO 8608

Road irregularities are typically the primary source of vibrations used in ride comfort studies,

making a concrete definition essential. Among various definitions, ISO’s definition for

road irregularity in the 8608 standard is widely accepted and utilized by many researchers.

ISO-8608:2016 categorizes roads into eight classes, from A (best) to H (worst). For each

class, upper and lower limits for degree of roughness are defined, and mean values for each

road class are provided for simulation studies. These roughness degrees are used to calculate

the Power Spectral Density (PSD) using the formula below. The ISO PSD graphs can be

seen in the figure ??

Gd(n) = Gd(n0)
(

n

n0

)−w

(1)

where n is the spatial frequency in cycles/meter, n0 is the reference spatial frequency (0.1

cycles/meter), and w is the exponent for the fitted PSD. ISO8608:2016 suggests a frequency

range between 0.01 and 10 for spatial frequency content. Care should be taken when using
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frequencies outside this range, as the magnitudes can become very high for lower frequencies

and very low for higher frequencies [9].

For simulations or calculations, a definition in the time domain is often required. This can be

achieved by converting the spatial frequency into frequency in the time domain (Hz) based on

velocity. While the road’s irregularity remains constant regardless of the vehicle’s velocity,

the excitation frequency for the vehicle changes in the time domain with the vehicle’s speed.

The necessary conversion can be performed using Equation 2. An example conversion is

shown in Figure 2.8 [10].
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Figure 2.8 PSD definition in Hz for road class A at different velocities

Gd(f) = Gd(n0)f−w

V
(2)

where, f = n ∗ V f is frequency in Hertz V is velocity in meters/second.

9



Figure 2.9 ISO-8608:2016 PSD description of road classifications

2.4. Inerter

An inerter is a device with two terminals that produces force in response to the

acceleration differences between its terminals, resisting changes in velocity. It is used in

high-performance applications as a complementary passive vibration control element. Figure

2.10 shows a schematic of a ball screw-type inerter. In such a mechanism, rotational inertia

is converted to linear inertia, or inertance, measured in kg units.
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Figure 2.10 Ball screw-type inerter schematic [11]

The force produced by such an inerter can be calculated using Equations 3 and 4.

F1 = b(ẍ2 − ẍ1) − m1ẍ1 (3)

F2 = b(ẍ2 − ẍ1) + m2ẍ2 (4)

where, b = (2πγ/ρ)2m

b is the inertance value, γ is the radius of gyration of the flywheel, ρ is the pitch of the screw,

m is the mass of the flywheel, m2 is the mass of the threaded rod, and m1 is the total mass of

the rest of the device, including the nut, bearings, housing, and flywheel. When m2 < m1,

Equations 3 and 4 can be simplified to an ideal inerter equation, as shown in Equation 5 [11].

F1 = F2 = b(ẍ2 − ẍ1) (5)

An example realization of a ball screw inerter is depicted in Figure 2.11 and the 2 terminals,

case and the screw is visible.
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Figure 2.11 Realization of ball screw-type inerter [11]

Inerters can be incorporated into suspensions in various configurations. Smith provides eight

different suspension layouts in his work [3], six of which include an inerter, as shown in

Figure 2.12. Layouts S3 and S4 are known as parallel and series configurations, respectively.

Figure 2.12 Suspension layouts provided by Smith [3]
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From these layouts, S4 which is also known as the serial inerter is physically not practical

as the positions of the damper and inerter is not controlled. This is because there is no force

acting between terminals of the damper and inerter when they are deflected from the original

positions and hence they could be anywhere between the connected elements. To overcome

this issue, layouts S5 to S8 contain springs to centre the damper and inerter and these springs

are called centring springs. Layouts S5 and S6 are the variation of the same configuration

with the same spring and different spring stiffness for centring springs. And so the layouts

S7 and S8. The main difference between the layouts S5-6 and S7-8 is the inclusion of the

serial connected springs.

The transmissibility of a single DOF vibration system with and without a parallel inerter is

presented in Figure 2.13, from a study by Kuhnert et al. [12]. This graph indicates an earlier

occurrence of the natural frequency, followed by an anti-resonant frequency, both of which

are advantageous for vibration isolation performance. However, the isolation performance

deteriorates after the anti-resonant frequency, as the transmissibility does not decay and

instead becomes flat. Despite this behavior, an inerter can be beneficial for the ride comfort

of road vehicles because, in general, the vibration amplitude of road profiles decreases with

increasing frequencies, and lower frequencies are more important for ride comfort studies.
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Figure 2.13 Transmissibility of suspension systems with and without parallel inerter [3]

In their work, Kuhnert et. al. shows that with a parallel inerter, the decay on the

transmissibility is lost. This phenomena can be revealed by examining the transfer function

of this 1-DOF system. They have used the model given in the figure 2.14 for the parallel

inerter.

Figure 2.14 1-DOF inerter based isolator model exmined by Kuhnert et. al. [12]

The mass m is supported through a spring k, a damper c and an inerter b. The system excited

by the input x0 and the position of the mass is x. The equation of motion for this 1-DOF

isolation system can be written as given in the equation 6.

m ẍ = −b (ẍ − ẍ0) − c (ẋ − ẋ0) − k (x − x0) (6)
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They write the transmissibility function of this 1-DOF system with non-dimensional terms

by defining, Ω = ω/ωn , ωn =
√

k/m, ζ = c/(2
√

mk) and µ = b/m where wn is undamped

natural frequency, ζ is the damping ratio and µ is the ratio of inertance value to the mass.

With these non-dimensional parameters, they provide the transmissibility function as given

in equation 8 by assuming a harmonic excitation of the form x0 = X0e
jwt, hence harmonic

response of the form x = Xejwt. Then they use the impedance of each component to

construct the transmissibility function with non-dimensional terms as;

Q = X

X0
= ZI

Zm + ZI

(7)

where,

ZI = Zk + Zc + Zb is the total impedance of the system,

Zk = k
jw

is the impedance of the spring,

Zc = c impedance of the damper,

Zb = jwb is the impedance of the inerter and

Zm = jwm is the impedance of the mass.

The resulting non-dimensional transmissibility function is provided in their work is given in

equation 8.

Q = 1 − µΩ2 + j2ζΩ
1 − (1 + µ)Ω2 + j2ζΩ (8)

In figure 2.13, the loss of decay is apparent when an inerter is added to the system. For this

graph the damping ratio, ζ , is set to 0.001 and inertance to mass ratio, µ, is set to 0 and 0.5 in

the equation 8 for the systems without with inerter respectively. By inspection, it is seen that

when no inerter exists, i.e. µ = 0, then the numerator of the transmissibility function given by

8 becomes first order, and when inerter added, numerator becomes 2nd order which reveals
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that the inerter adds a zero to system. This causes change in the inclination of the numerator

term from 20dB/decade for non-inerter to 40dB/decade for the inerter based isolator system

after the corner frequency of the numerator terms.

To show this phenomena, the plots given in the figure 2.13 is recreated in which the

magnitude terms are drawn separately by the mean of numerator and denominator terms

together with their summation which is the magnitude of response of the complete system.

The damping ratio and the inertance ratio are kept the same as in their work.

For the conventional system with no inerter, the graph is given in figure 2.15. On this plot,

the denominator and numerator terms are plotted with blue dashed line and red dashed line

respectively. The corner frequency of the numerator term is 500 i.e. 500 times of the natural

frequency. To make it visible graph is plotted up to Ω = 104. Lower limit kept as the original

value, Ω = 0.1. The magnitude of the numerator term stays close to zero up to corner

frequency. Hence, the total response magnitude of the system is dictated by the numerator

term up to 500 time of the natural frequency. After this corner frequency, numerator term has

an inclination of 20 dB/decade. This affects the total response and the seperation between

total response (black solid line) and the denominator term (blue dashed line) becomes visible

and the decay becomes -20 dB/decade from -40 dB/decade. So the decay is preserved with

different declination before and after the numerator terms corner frequency.
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Figure 2.15 Bode magnitude plot construction for conventional isolation system. red dashed line is
numerator term, blue dashed line is denominator term and black solid line is the total
response of the system.

The same graph is also constructed for the inerter based isolation system and given in the

figure 2.16. In this case µ is set to 0.5 which meas that the inerter has the inertance value of

half of the mass. The numerator term in equation 8 becomes 2nd order and its magnitude is

plotted with red dashed line. As seen, 2nd order numerator causes an anti-resonant and after

then it has inclination of 40dB/decade. Denominator term has a -40dB/decade declination

after its corner frequency. Hence, total response becomes flat after corner frequency of the

numerator term. Plotting limits are kept the same for convenient.
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Figure 2.16 Bode magnitude plot construction for parallel inerter based isolation system. Red
dashed line is numerator term, blue dashed line is denominator term and black solid
line is the total response of the system.

Even though the decay is lost with inerter, parallel inerter based isolation system can

provide benefits by the mean of ride comfort when the frequency dependent ISO-2631:1997

weightings given in the figure 2.7 considered. Weightings suggest that the important

frequency bands are narrow and futhermore, after the important bands weightings has steep

declination. This might indicate that the occurrence of loss of decay when an inerter added in

parallel configuration might not affect the overall ride comfort if the anti-resonant frequency

can be kept in the important band of the ISO weightings. Moreover, considering the road

profile PSD functions provided by the ISO-8608:2016 standard given in the figure 3.2 it is

seen that the signal magnitudes becomes very small with increasing frequency. This also

suggests that the loss of decay occurring with the parallel inerter might be insignificant when

the ride comfort is evaluated with the road irregularity excitation.
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Inerters are relatively new devices, and the literature is limited in studies investigating their

benefits when utilized in heavy vehicle seat suspension. Ning et al. [13] conducted a

study on a variable inertance device applied to heavy vehicle seat suspension. Their work

demonstrates the positive effects of an inerter on vibrations transmitted to the driver through

both simulations and experimental methods. Figure 2.17 illustrates how the variable inerter

is achieved using a controllable damper in their work. The equivalent inertance value can be

controlled by setting the damper to its lowest possible value, which is nearly 0 Ns/m, and to

its maximum possible value, which is infinite i.e., the damper is locked. Thus, the inertance

value can be varied between b1 and b1 + b2. With this configuration, the variable device’s

inertance value depends on the input frequency, as given by Equation 9.

beqv = b1 + b2c
2

c2 + b2w2 (9)

where w is frequency.

Figure 2.17 Constant and variable inerter devices proposed by Ning et. al. [13]

Equation 9 is used to calculate the equivalent inertance values yielding depend on both

damper value and frequency. And in the figure 2.18, the change in the inertance value with

increasing frequency is provided by Ning. et. al. for different set values of damper. This

graph shows that the variable inertance device has a decreasing inertance with increasing

frequency. And, it is also observable that with higher damper values, the equivalent inertance

value decreases slower than the smaller damper counterpart.
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Figure 2.18 Frequency dependent equivalent inertance for different dampers [13]

The developed device was implemented as a vibration isolation element in a seat suspension

system, which is a 1 DOF system where the input is base excitation. Experimental results

were obtained for conventional suspension and inerter-based suspensions with different

configurations. When no current is applied, the Variable Inertance Device exhibits low

inertance, and when 1 ampere is applied, the inertance is high. There is also a controlled

form that aims to leverage both high and low inertance to achieve optimal performance. The

transmissibility results are shown in Figure 2.19.
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Figure 2.19 Transmissibility for different inertance values [13]

The transmissibility plot in this figure indicates that the Variable Inertance Device with

high inertance offers better isolation performance at lower frequencies than conventional

suspension, but its performance deteriorates after about 4 Hz. The low inertance Variable

Inertance Device shows worse isolation performance than the high inertance counterpart

up to almost 4 Hz however the deterioration is not high as high inertance considering the

provided plot. The applied control law, as previously mentioned, leverages both behaviors

by adjusting the applied current appropriately. Therefore, this controlled Variable Inertance

Device exhibits the best isolation performance within the specified frequency range. It has

the behaviour of high inertance device up to about 4 Hz and after then it has the behaviour

of the low inertance device.

Ning et. al. conduct also a random excitation experiment and provide the comfort indicators

as RMS, FW-RMS(Frequency Weighted-RMS) and VDV, fouth power vibration dose value.

VDV is a measure which is more sensitive to the acceleration peaks and uses 4th power of

the time history signal instead of 2nd, hence the peaks are more pronounced. The formula

for VDV is defined in equation 10 [1].
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V DV =


∫ T

0

[
aw(t)

]4
dt


1
4

(10)

Table 2.1 Performance comparison of the Variable Inertance Devices to passive system for random
excitattion input. Regenerated from [13]

Conventional

passive

VA

0 A 1 A Controlled Reduction

RMS (m/s2) 1.044 0.895 0.653 0.654 37.3%

FW-RMS (m/s2) 0.779 0.535 0.448 0.439 43.6%

VDV (m/s1.75) 2.445 1.474 1.230 1.177 51.8%

In table 2.1 it is seen that the Variable Inertance Device provides better vibration isolation

than the conventional counterpart. The differences vary depend on the configuration of the

device. The RMS results shows that the high inertance device (1 A) has slightly lower

acceleration than the controlled form. For other results, controlled form has the least values.

However, High inertance device has also very close values to controlled form. FW-RMS

(Frequency Weighted-RMS) results represent the overall comfort assessment value according

to ISO-2631 and it is seen that conventional passive isolation system falls into the "fairly

uncomfortable" reaction category while isolation systems incorporating variable inertance

device fall all into "a little uncomfortable" category.

These results are important as it shows that despite the deteoirated isolation performance for

higher frequencies, an inerter based isolation system can perform overall better. However,

it should be mentioned that the devices proposed and experimented by Ning. et. al. has

variable inertance. This does not only mean that the inertance value can be controlled but the

device also has a changing inertance with the varying frequency as shown previously in the

figure 2.18.

22



Another aspect is the direction of the vibrations. Heavy vehicles, as mentioned before, has

bulkier and taller bodies than most of the other road vehicles especially than the passenger

vehicles and fore-aft motions becomes greater. Sweatman and McFarlane have shown with

their report that the seat fore-aft vibration is important as much as the vertical vibrations.

Among many other measurements, they have measured the seat pan vibrations on different

fully laden semi-trucks. Experiments conducted on different pathways in Australia and

the measurement are frequency weighted [14] and depicted in figures 2.20 and 2.21. The

frequency based RMS values are calculated based on Australian standard which is based

on ISO-2631:1985. So, each center frequency of one third octave band has its own RMS

value and calculated for vertical and longitudinal directions separately. Figures are given

for 8 different vehicles and it is obvious that each vehicle has its own characteristics by the

mean of acceleration amplitude and frequency distribution. In general, vertical vibrations

seem to be greater in the 2-4 Hz band. Sweatman and McFarlane emphasize the fore-aft seat

pad vibrations occurring in 10-15 Hz band. When BM3 and BM1 are not concerned, high

magnitudes also exist in the 2-4 HZ band. However, in the longitudinal direction there is

no band where the magnitude considerable higher than the rest of the graph as in the graph

provided for the vertical direction. With the exception of BM3, which has lower vibrations

in both directions, longitudinal vibrations seem to be effective from 1 Hz up to 20 Hz band

with major deviations in the frequency distributions from one vehicle to another. Another,

interesting behaviour occurs with the vehicle F4. This vehicle seems to have greater fore-aft

vibrations throughout the entire given frequency range.
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Figure 2.20 Seatpad vertical accelerations by vehicles from the report by Sweatman and McFarlane
[14]

Figure 2.21 Seatpad fore-aft accelerations by vehicles from the report by Sweatman and McFarlane
[14]
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Literature review shows the necessity of further minimization of vibrations transmitted to

the human body in both vertical and longitudinal directions and the benefits of inerters

on isolation performance. Inerters are relatively new devices and attracts attention [12].

Through the literature review, no publications investigating the isolation performance of

passive inerters on seat or cab suspensions of vehicles could be reached. Moreover, in

general, fore-aft isolators of heavy vehicle are generally omitted in the literature. The lack

of research with these considerations is aimed to be answered with this thesis.

3. PROPOSED METHOD

The general method proposed by Wong [4], illustrated in Figure 2.1, will primarily serve as

the framework for this study. This method comprises three stages. To align with the thesis’s

objectives, an additional step has been introduced to demonstrate the benefits of an inerter

across various suspension configurations and settings. As a result, the proposed method

encompasses four steps, which will be elaborated upon in the subsequent sections.

Calculations will be conducted in the frequency domain rather than the time domain, as

this approach offers simplicity and facilitates quicker, more accurate results. A limitation

of this method is that the vibration results are confined to RMS values. This limitation

becomes particularly significant when nonlinear models are employed, where higher

vibration levels can be accurately represented, and the running RMS method, as described by

ISO-2631:1997, can be applied. To determine the necessity of this approach, one must first

ascertain the crest factor, which is the ratio of the peak vibration value to the RMS value of

the same vibration data. It is recommended that when the crest factor exceeds 9, the running

RMS method should be reported alongside the basic RMS method, as detailed in the relevant

section. Despite these considerations, the basic RMS method remains the primary evaluation

method, and the frequency domain calculation is widely adopted by many researchers [15],

[16], [17], [18].
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3.1. Road Irregularity Description

To characterize road imperfections and their impact on vehicle vibrations, power spectral

density (PSD) analysis is commonly employed. PSD offers insights into the frequency

content and amplitude of road surface roughness, essentially decomposing the road profile

into different frequency components and their respective amplitudes. This information

is vital for designing suspension systems that effectively dampen vibrations, ensuring a

comfortable ride for passengers.

The ISO 8608 standard is frequently utilized to standardize the reporting and obtain a PSD

description of road irregularities. This standard offers guidelines for characterizing road

surface irregularities using parameters such as road roughness index, roughness wavelength,

and amplitude. These parameters can also be employed to synthesize a road profile for

time-domain simulation studies. To achieve this, a series of sine waves within the required

frequency range can be generated, with amplitudes following the fitted PSD provided by

ISO-8608. By introducing random phase angles to each wave and summing them, a random

road profile can be synthesized [19]. Figure 3.1 depicts an example of such a synthesized

road profile based on the mean values of ISO-8608:2016 Class A road, while Figure 3.2

presents its PSD estimation alongside the target PSD.
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Figure 3.1 Example road profile synthesized according to ISO8608:2016 Class A road mean values

Figure 3.2 Target PSD (dashed line) and PSD of the synthesized road profile in Figure 3.1

In this thesis, however, the analysis will primarily be conducted in the frequency domain,

utilizing the ISO-8608:2016 fitted PSD definition provided in Equation 1, and employing

Equation 2 for frequency unit conversion when necessary.
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3.2. Vehicle Model

In this section, the vehicle model is presented. A 2-axle tractor and 3-axle semi-trailer

constitute a commonly used type of heavy vehicle in Europe, as depicted in Figure 3.3.

Thus, the model comprises a total of 5 axles. A survey [5] indicates that pitch plane half-car

models are frequently used due to their ability to incorporate vertical, pitch, and fore-aft

motions. Consequently, a pitch plane half-car model is also employed and adapted for this

thesis.

Figure 3.3 2-axle tractor and 3-axle semi-trailer [20]

Evers [20] utilized a complex 44-DOF 2-axle tractor and 3-axle semi-trailer model in

his research on active cabin suspension systems for his PhD thesis. While this model

incorporates frame torsional compliance, air drag force, and cab air suspension control law,

it is too complex to gain insights into the effects of individual components. However, he also

provides and utilizes reduced-order versions of this model, including a 9-DOF pitch plane

half-car model. In this reduced-order model, the force interaction between the tractor and

semi-trailer is simplified by an anonymous force.

In this thesis, the model depicted in Figure 3.4 is employed and it is mainly adapted from

Evers’ study by reducing the 44 DOF model into pitch plane. Seat and human models are

added as described in the following sections. This model consists of 5 axles, a tractor chassis,

cab, seat-human, and a semi-trailer. The tractor and semi-trailer are connected via a revolute

joint. The cab is connected to the chassis through three suspensions: front fore-aft, front

vertical, and rear vertical suspensions, resulting in a 3-DOF cab (bounce, fore-aft, and pitch).

The seat-human combination is modeled as a single point mass connected to the cab via two
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suspensions: seat vertical and seat fore-aft. It rotates in unison with the cab and possesses 2

degrees of freedom. The tractor chassis offers bounce, fore-aft, and pitch motion freedoms.

The trailer has only 1 DOF, which is pitch freedom, and can only rotate about the 5th wheel

coupling, modeled as a rigid revolute joint.

Figure 3.4 14-DOF tractor and semi-trailer model used in this thesis

3.2.1. Seat-Human Model

In the literature, it is observed that seat suspension is often disregarded, and cab accelerations

are considered for comfort assessments. While this approach may provide an estimation,

ISO-2631 [1] stipulates that measurements should be taken at the vibration-transmitting

interface, suggested as the seat pan. To address this measurement requirement, a simulation

model should separate the human body and seat. However, this complicates the model

significantly. In this thesis, the seat and human masses are combined into a single mass,

which is then connected to the cab through seat suspensions. This approach combines two

models from studies by Stein et al. [21] and Rakheja et al. [22].
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3.2.2. Seat Fore-Aft Suspension

Stein et al. investigated the fore-aft vibration isolation performance of a heavy vehicle

seat fore-aft suspension. They utilized a simplified single-DOF model for modeling, and

measurements taken from a tractor and semi-trailer combination were used to validate the

model. Their model is depicted in Figure 3.5. For this thesis, the model without end stops

is employed to maintain linearity. Parameters for two different seats were estimated—one

with high friction and the other with a very low friction coefficient. The seat with the lower

friction coefficient was adapted, and the friction force was neglected.

Figure 3.5 Single-DOF seat fore-aft suspension model, without end stops (a) and with end stops (b)
[21]

3.2.3. Seat Vertical Suspension

Rakheja et al. investigated the vibration isolation performances of three different seats with

vertical suspensions [22]. They utilized a 2-DOF model, as shown in Figure 3.6.
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Figure 3.6 2-DOF seat suspension model [22]

As mentioned in Chapter 3.2.1., in this thesis, the seat and human mass are lumped together.

To utilize the model provided by Rakheja et al., the seat cushion is simplified to be rigid,

essentially merging the seat and human mass. Furthermore, frictional forces, end stops, and

damper non-linearity are neglected, and the suspension parameters are linearized. Parameters

pertaining to Seat-B in [22] are adapted.

3.2.4. System Parameters

Model parameters are mainly taken from the PhD thesis of Evers [20]. This research provides

several models from which a 44 DOF model is the main model and others are reduced order

forms. Provided models are validated with extensive field tests. The model used in this

is a combination of 3 different submodels; tractor-semitrailer, seat vertical suspension, seat

fore-aft model. Their origins and adaptation methods are described in previous sections. The

resulting parameters and descriptions are given in the tables 3.1, 3.2 and 3.3.
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Table 3.1 Mass property parameters for the model

Symbol Value Unit Description

ms 105.4 kg Seat and human mass

mc 650 kg Cab mass

mtr 2144 kg Tractor chassis mass

mst 15170 kg Semi-trailer chassis mass

m1 350 kg Tractor front axle mass

m2 620 kg Tractor rear axle mass

m3 450 kg Semi-trailer front axle mass

m4 450 kg Semi-trailer middle axle mas

m5 450 kg Semi-trailer rear axle mass

Ic 550 kgm2 Cab inertia

Itr 23295 kgm2 Tractor chassis inertia

Ist 100000 kgm2 Semi-trailer chassis inertia
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Table 3.2 Suspension property parameters for the model

Symbol Value Unit Description

ksx 8510 N/m Seat fore-aft suspension stiffness

ksz 7961.6 N/m Seat vertical suspension stiffness

kcfx 6000000 N/m Cab front suspension fore-aft bushing stiffness

kcfz 20000 N/m Cab front suspension vertical suspension stiffness

kcrz 20000 N/m Cab rear suspension vertical suspension stiffness

ktrf 300000 N/m Tractor front axle suspension stiffness

ktrr 600000 N/m Tractor rear axle suspension stiffness

kst1 400000 N/m Semi-trailer front axle suspension stiffness

kst2 400000 N/m Semi-trailer middle axle suspension stiffness

kst3 400000 N/m Semi-trailer rear axle suspension stiffness

k1 1200000 N/m Tractor front tyre stiffness

k2 2200000 N/m Tractor rear tyre stiffness

k3 1200000 N/m Semi-trailer front tyre stiffness

k4 1200000 N/m Semi-trailer middle tyre stiffness

k5 1200000 N/m Semi-trailer rear tyre stiffness

csx 606 Ns/m Seat fore-aft suspension damper

csz 788 Ns/m Seat vertical suspension damper

ccfx 25000 Ns/m Cab front suspension fore-aft bushing damper

ccfz 7400 Ns/m Cab front suspension vertical suspension damper

ccrz 5900 Ns/m Cab rear suspension vertical suspension damper

ctrf 11000 Ns/m Tractor front axle suspension damper

ctrr 22000 Ns/m Tractor rear axle suspension damper

cst1 10000 Ns/m Semi-trailer front axle suspension damper

cst2 10000 Ns/m Semi-trailer middle axle suspension damper

cst3 10000 Ns/m Semi-trailer rear axle suspension damper

bsx 0-30 kg Seat fore-aft suspension inertance

bsz 0-30 kg Seat vertical suspension inertance

bcfx 0-300 kg Cab front suspension fore-aft inertance

bcfz 0-300 kg Cab front suspension vertical inertance

bcrz 0-300 kg Cab rear suspension vertical inertance
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Table 3.3 Geometry property parameters for the model

Symbol Value Unit Description

lcf 0.94 m Distance from Cab CoG to front suspension mount

hcf -0.97 m Height from cab CoG to front suspension mount

lcr -1.14 m Distance from Cab CoG to rear suspension mount

lcs 0.23 m Distance from Cab CoG to Seat CoG

hcs -0.65 m Height from Cab CoG to Seat CoG

ltrfa 1.03 m Distance from tractor CoG to front axle suspension

ltrra -2.77 m Distance from tractor CoG to rear axle suspension

ltrfc 2.57 m Distance from tractor CoG to front cab suspension

ltrrc 0.49 m Distance from tractor CoG to rear cab suspension mount

ltr5 -1.82 m Distance from tractor CoG to 5th wheel coupling

htr5 0.25 m Height from tractor CoG to 5th wheel coupling

l5st -5.61 m Distance from 5th wheel coupling to trailer CoG

h5st 0.5 m Height from 5th wheel coupling to trailer CoG

lst1 -6.31 m Distance from 5th wheel coupling to trailer 1st axle

lst2 -7.62 m Distance from 5th wheel coupling to trailer 2nd axle

lst3 -8.93 m Distance from 5th wheel coupling to trailer 3rd

3.2.5. Equations of Motion of the Model

Equations of motion is the set of differential equations which describes a systems response.

It can be obtained by newtonian apprroach. This method is easy until the number of DOF, or

number of bodies under interaction is low but it gets rapidly tangled with increasing number

of equations and prone to mistakes.

Lagrangian method on the other hand is an energy based method which is more suitable with

high number of DOF systems. Equation 11 is the general form including energy dissipation.
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d

dt

(
δT

δq̇r

)
− δT

δqr

+ δR

δq̇r

+ δV

δqr

= Fr, r = 1, 2, 3, ...n (11)

where,

T is the kinetic energy,

V is the potential energy,

R is the dissipation function of the system,

Fr is the force applied to the system.

In the model described in section 3.2., there is no external forces acting on the system, rather,

there are kinematic inputs which are the road irregularities. Hence, Fr is 0 for all equations.

To apply Lagrangian given in the equation 11, the generalized coordinates are considered as

in the figure 3.4 and descriptions are given in the table 3.4.
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Table 3.4 Generalized coordinates and descriptions

Generalized coordinate Description

xs x position of seat-human

zs z position of seat-human

xc z position of cab

zc x position of cab

θc pitch position of cab

xtr x position of tractor chassis

ztr z position of tractor chassis

θtr pitch position of tractor chassis

θst pitch position of trailer chassis

z1 tractor front axle (axle 1)

z2 tractor rear axle (axle )

z3 trailer front axle (axle 3)

z4 trailer middle axle (axle 4)

z5 trailer rear axle (axle 5)

The kinetic energy functions of the system can be written as in the equations from 12 to 19.

Tseat−human = ms ẋ2
s

2 + ms ż2
s

2 (12)

Tseatinerter =
bsx

(
ẋc − ẋs + hcs θ̇c

)2

2 +
bsz

(
żs − żc + lcs θ̇c

)2

2 (13)

Tcab = Ic θ̇2
c

2 + mc ẋ2
c

2 + mc ż2
c

2 (14)
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Tcabinerter =
bcfx

(
ẋc − ẋtr + hcf θ̇c

)2

2 +
bcfz

(
żc − żtr − lcf θ̇c + ltrfc θ̇tr

)2

2

+
bcrz

(
żc − żtr − lcr θ̇c + ltrrc θ̇tr

)2

2

(15)

Ttractor = Itr θ̇2
tr

2 + mtr ẋ2
tr

2 + mtr ż2
tr

2
(16)

Tsemi−trailer =
mst

(
ẋtr + h5st θ̇st + htr5 θ̇tr

)2

2 + Ist θ̇2
st

2

+
mst

(
l5st θ̇st − żtr + ltr5 θ̇tr

)2

2

(17)

Taxles = m1 ż2
1

2 + m2 ż2
2

2 + m3 ż2
3

2 + m4 ż2
4

2 + m5 ż2
5

2
(18)

Ttotal = Tseat−human + Tseatinerter + Tcab + Tcabinerter + Ttractor + Tsemi−trailer + Taxles

(19)

The potential energy functions of the system can be written as in the equations from 20 to

25.

Vseat−springs = ksx (xc − xs + hcs θc)2

2 + ksz (zs − zc + lcs θc)2

2
(20)
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Vcab−springs = kcfx (xc − xtr + hcf θc)2

2 + kcfz (zc − ztr − lcf θc + ltrfc θtr)2

2

+kcrz (zc − ztr − lcr θc + ltrrc θtr)2

2

(21)

Vtractor−springs = ktrf (z1 − ztr + ltrfa θtr)2

2 + ktrr (z2 − ztr + ltrra θtr)2

2
(22)

Vtrailer−springs = kst1 (z3 − ztr + lst1 θst + ltr5 θtr)2

2

+kst2 (z4 − ztr + lst2 θst + ltr5 θtr)2

2 + kst3 (z5 − ztr + lst3 θst + ltr5 θtr)2

2

(23)

Vtyres = k1 (u1 − z1)2

2 + k2 (u2 − z2)2

2 + k3 (u3 − z3)2

2 + k4 (u4 − z4)2

2 + k5 (u5 − z5)2

2
(24)

Vtotal = Vseat−prings + Vcab−springs + Vtractor−springs + Vtrailer−springs + Vtyres (25)

And the dissipation functions are given from equation 26 to equation 30.

Rseat−dampers =
csx

(
ẋc − ẋs + hcs θ̇c

)2

2 +
csz

(
żs − żc + lcs θ̇c

)2

2
(26)
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Rcab−dampers =
ccfx

(
ẋc − ẋtr + hcf θ̇c

)2

2 +
ccfz

(
żc − żtr − lcf θ̇c + ltrfc θ̇tr

)2

2

+
ccrz

(
żc − żtr − lcr θ̇c + ltrrc θ̇tr

)2

2

(27)

Rtractor−dampers =
ctrf

(
ż1 − żtr + ltrfa θ̇tr

)2

2 +
ctrr

(
ż2 − żtr + ltrra θ̇tr

)2

2
(28)

Rtrailer−dampers =
cst1

(
ż3 − żtr + lst1 θ̇st + ltr5 θ̇tr

)2

2 +
cst2

(
ż4 − żtr + lst2 θ̇st + ltr5 θ̇tr

)2

2

+
cst3

(
ż5 − żtr + lst3 θ̇st + ltr5 θ̇tr

)2

2
(29)

Rtotal = Rseat−dampers + Rcab−dampers + Rtractor−dampers + Rtrailer−dampers (30)

These energy functions are inserted into the Lagrangian formulation to obtain the equations

of motion of the vehicle model. For this the generalized coordinates, q, is constructed by

following the table 3.4 and given in the equation 31.

q′ =
(

xs zs xc zc θc xtr ztr θtr θst z1 z2 z3 z4 z5

)
(31)

The resulting equations of motion is given in the equations 32 - 45.
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ẍs (bsx + ms) =

bsx ẍc + csx ẋc − csx ẋs + ksx xc − ksx xs + bsx hcs θ̈c + csx hcs θ̇c + hcs ksx θc

(32)

z̈s (bsz + ms) =

bsz z̈c + csz żc − csz żs + ksz zc − ksz zs − bsz lcs θ̈c − csz lcs θ̇c − ksz lcs θc

(33)

ẍc (bcfx + bsx + mc) = bcfx ẍtr + bsx ẍs − ccfx ẋc + ccfx ẋtr − csx ẋc+

csx ẋs − kcfx xc − ksx xc + kcfx xtr + ksx xs − bcfx hcf θ̈c − bsx hcs θ̈c−

ccfx hcf θ̇c − csx hcs θ̇c − hcf kcfx θc − hcs ksx θc

(34)

z̈c (bcfz + bcrz + bsz + mc) = bcfz z̈tr + bcrz z̈tr + bsz z̈s − ccfz żc−

ccrz żc + ccfz żtr + ccrz żtr − csz żc+

csz żs − kcfz zc − kcrz zc − ksz zc + kcfz ztr + kcrz ztr + ksz zs+

bcfz lcf θ̈c + bcrz lcr θ̈c + bsz lcs θ̈c − bcfz ltrfc θ̈tr − bcrz ltrrc θ̈tr+

ccfz lcf θ̇c + ccrz lcr θ̇c + csz lcs θ̇c − ccfz ltrfc θ̇tr−

ccrz ltrrc θ̇tr + kcfz lcf θc + kcrz lcr θc + ksz lcs θc − kcfz ltrfc θtr − kcrz ltrrc θtr

(35)
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θ̈c

(
bcfx hcf

2 + bsx hcs
2 + bcfz lcf

2 + bcrz lcr
2 + bsz lcs

2 + Ic

)
= bcfx hcf ẍtr−

ccrz lcr
2 θ̇c − csz lcs

2 θ̇c − hcf
2 kcfx θc − hcs

2 ksx θc − kcfz lcf
2 θc − kcrz lcr

2 θc−

ksz lcs
2 θc − bcfx hcf ẍc − ccfz lcf

2 θ̇c − bsx hcs ẍc + bsx hcs ẍs − ccfx hcf ẋc+

ccfx hcf ẋtr − csx hcs ẋc + csx hcs ẋs + bcfz lcf z̈c + bcrz lcr z̈c − bcfz lcf z̈tr−

bcrz lcr z̈tr + bsz lcs z̈c − bsz lcs z̈s + ccfz lcf żc + ccrz lcr żc − ccfz lcf żtr−

ccrz lcr żtr + csz lcs żc − csz lcs żs − hcf kcfx xc − hcs ksx xc + hcf kcfx xtr+

hcs ksx xs + kcfz lcf zc + kcrz lcr zc + ksz lcs zc − kcfz lcf ztr − kcrz lcr ztr−

ksz lcs zs − ccfx hcf
2 θ̇c − csx hcs

2 θ̇c + bcfz lcf ltrfc θ̈tr + bcrz lcr ltrrc θ̈tr+

ccfz lcf ltrfc θ̇tr + ccrz lcr ltrrc θ̇tr + kcfz lcf ltrfc θtr + kcrz lcr ltrrc θtr

(36)

ẍtr (bcfx + mst + mtr) = bcfx ẍc + ccfx ẋc − ccfx ẋtr + kcfx xc−

kcfx xtr + bcfx hcf θ̈c + ccfx hcf θ̇c + hcf kcfx θc − h5st mst θ̈st − htr5 mst θ̈tr

(37)

z̈tr (bcfz + bcrz + mst + mtr) = bcfz z̈c + bcrz z̈c + ccfz żc + ccrz żc − ccfz żtr−

ccrz żtr + cst1 ż3 + cst2 ż4 + cst3 ż5 − cst1 żtr − cst2 żtr − cst3 żtr + ctrf ż1+

ctrr ż2 − ctrf żtr − ctrr żtr + kst1 z3 + kst2 z4 + kst3 z5 + ktrf z1 + ktrr z2+

kcfz zc + kcrz zc − kcfz ztr − kcrz ztr − kst1 ztr − kst2 ztr − kst3 ztr − ktrf ztr − ktrr ztr−

bcfz lcf θ̈c − bcrz lcr θ̈c + bcfz ltrfc θ̈tr + bcrz ltrrc θ̈tr − ccfz lcf θ̇c − ccrz lcr θ̇c+

ccfz ltrfc θ̇tr + ccrz ltrrc θ̇tr + cst1 lst1 θ̇st + cst2 lst2 θ̇st + cst3 lst3 θ̇st+

cst1 ltr5 θ̇tr + cst2 ltr5 θ̇tr + cst3 ltr5 θ̇tr + ctrf ltrfa θ̇tr + ctrr ltrra θ̇tr−

kcfz lcf θc − kcrz lcr θc + kcfz ltrfc θtr+

kcrz ltrrc θtr + kst1 lst1 θst + kst2 lst2 θst + kst3 lst3 θst + kst1 ltr5 θtr+

kst2 ltr5 θtr + kst3 ltr5 θtr + ktrf ltrfa θtr + ktrr ltrra θtr + l5st mst θ̈st + ltr5 mst θ̈tr

(38)
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θ̈tr
(
mst htr5

2 + mst ltr5
2 + bcfz ltrfc

2 + bcrz ltrrc
2 + Itr

)
= bcfz ltrfc z̈tr − ccrz ltrrc

2 θ̇tr−

cst1 ltr5
2 θ̇tr − cst2 ltr5

2 θ̇tr − cst3 ltr5
2 θ̇tr − ctrf ltrfa

2 θ̇tr − ctrr ltrra
2 θ̇tr−

kcfz ltrfc
2 θtr − kcrz ltrrc

2 θtr − kst1 ltr5
2 θtr − kst2 ltr5

2 θtr − kst3 ltr5
2 θtr−

ktrf ltrfa
2 θtr − ktrr ltrra

2 θtr − bcfz ltrfc z̈c − bcrz ltrrc z̈c − ccfz ltrfc
2 θ̇tr+

bcrz ltrrc z̈tr − ccfz ltrfc żc − ccrz ltrrc żc + ccfz ltrfc żtr + ccrz ltrrc żtr − cst1 ltr5 ż3−

cst2 ltr5 ż4 − cst3 ltr5 ż5 + cst1 ltr5 żtr + cst2 ltr5 żtr + cst3 ltr5 żtr − ctrf ltrfa ż1−

ctrr ltrra ż2 + ctrf ltrfa żtr + ctrr ltrra żtr − htr5 mst ẍtr − kst1 ltr5 z3−

kst2 ltr5 z4 − kst3 ltr5 z5 − ktrf ltrfa z1 − ktrr ltrra z2 − kcfz ltrfc zc−

kcrz ltrrc zc + kcfz ltrfc ztr + kcrz ltrrc ztr + kst1 ltr5 ztr + kst2 ltr5 ztr+

kst3 ltr5 ztr + ktrf ltrfa ztr + ktrr ltrra ztr + ltr5 mst z̈tr + bcfz lcf ltrfc θ̈c+

bcrz lcr ltrrc θ̈c + ccfz lcf ltrfc θ̇c + ccrz lcr ltrrc θ̇c − cst1 lst1 ltr5 θ̇st − cst2 lst2 ltr5 θ̇st−

cst3 lst3 ltr5 θ̇st − h5st htr5 mst θ̈st + kcfz lcf ltrfc θc + kcrz lcr ltrrc θc − kst1 lst1 ltr5 θst−

kst2 lst2 ltr5 θst − kst3 lst3 ltr5 θst − l5st ltr5 mst θ̈st

(39)

θ̈st
(
mst h5st

2 + mst l5st
2 + Ist

)
= cst1 lst1 żtr − cst2 lst2

2 θ̇st − cst3 lst3
2 θ̇st−

kst1 lst1
2 θst − kst2 lst2

2 θst − kst3 lst3
2 θst − cst1 lst1 ż3 − cst2 lst2 ż4−

cst3 lst3 ż5 − cst1 lst1
2 θ̇st + cst2 lst2 żtr + cst3 lst3 żtr − h5st mst ẍtr−

kst1 lst1 z3 − kst2 lst2 z4 − kst3 lst3 z5 + kst1 lst1 ztr + kst2 lst2 ztr + kst3 lst3 ztr+

l5st mst z̈tr − cst1 lst1 ltr5 θ̇tr − cst2 lst2 ltr5 θ̇tr − cst3 lst3 ltr5 θ̇tr − h5st htr5 mst θ̈tr−

kst1 lst1 ltr5 θtr − kst2 lst2 ltr5 θtr − kst3 lst3 ltr5 θtr − l5st ltr5 mst θ̈tr

(40)

m1 z̈1 = ctrf żtr − ctrf ż1 + k1 u1 − k1 z1 − ktrf z1+

ktrf ztr − ctrf ltrfa θ̇tr − ktrf ltrfa θtr

(41)
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m2 z̈2 = ctrr żtr − ctrr ż2 + k2 u2 − k2 z2 − ktrr z2+

ktrr ztr − ctrr ltrra θ̇tr − ktrr ltrra θtr

(42)

m3 z̈3 = cst1 żtr − cst1 ż3 + k3 u3 − k3 z3−

kst1 z3 + kst1 ztr − cst1 lst1 θ̇st − cst1 ltr5 θ̇tr − kst1 lst1 θst − kst1 ltr5 θtr

(43)

m4 z̈4 = cst2 żtr − cst2 ż4 + k4 u4 − k4 z4−

kst2 z4 + kst2 ztr − cst2 lst2 θ̇st − cst2 ltr5 θ̇tr − kst2 lst2 θst − kst2 ltr5 θtr

(44)

m5 z̈5 = cst3 żtr − cst3 ż5 + k5 u5 − k5 z5−

kst3 z5 + kst3 ztr − cst3 lst3 θ̇st − cst3 ltr5 θ̇tr − kst3 lst3 θst − kst3 ltr5 θtr

(45)

These equations of motion can be converted into matrix form given in the equation 46.

Mq̈ + Cq̇ + Kq = Kfu (46)

where M is the mass matrix, C is damping matrix, K is stiffness matrix, Kf is the forcing

stiffness matrix and u is the kinematic input given as u = ( u1 u2 u3 u4 u5 ), u1−5 are

the road inputs to the tyres as shown in model figure 3.4.

Mass matrix obtained as,

M =
(

M1 M2 M3 M4

)
(47)
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where submatrices are;

M1 =



bsx + ms 0 −bsx 0

0 bsz + ms 0 −bsz

−bsx 0 bcfx + bsx + mc 0

0 −bsz 0 bcfz + bcrz + bsz + mc

−bsx hcs bsz lcs bcfx hcf + bsx hcs −bcfz lcf − bcrz lcr − bsz lcs

0 0 −bcfx 0

0 0 0 −bcfz − bcrz

0 0 0 bcfz ltrfc + bcrz ltrrc

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0



M2 =



−bsx hcs 0

bsz lcs 0

bcfx hcf + bsx hcs −bcfx

−bcfz lcf − bcrz lcr − bsz lcs 0

bcfx hcf
2 + bsx hcs

2 + bcfz lcf
2 + bcrz lcr

2 + bsz lcs
2 + Ic −bcfx hcf

−bcfx hcf bcfx + mst + mtr

bcfz lcf + bcrz lcr 0

−bcfz lcf ltrfc − bcrz lcr ltrrc htr5 mst

0 h5st mst

0 0

0 0

0 0

0 0

0 0


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M3 =



0 0

0 0

0 0

−bcfz − bcrz bcfz ltrfc + bcrz ltrrc

bcfz lcf + bcrz lcr −bcfz lcf ltrfc − bcrz lcr ltrrc

0 htr5 mst

bcfz + bcrz + mst + mtr −bcfz ltrfc − bcrz ltrrc − ltr5 mst

−bcfz ltrfc − bcrz ltrrc − ltr5 mst mst htr5
2 + mst ltr5

2 + bcfz ltrfc
2 + bcrz ltrrc

2 + Itr

−l5st mst h5st htr5 mst + l5st ltr5 mst

0 0

0 0

0 0

0 0

0 0



M4 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

h5st mst 0 0 0 0 0

−l5st mst 0 0 0 0 0

h5st htr5 mst + l5st ltr5 mst 0 0 0 0 0

mst h5st
2 + mst l5st

2 + Ist 0 0 0 0 0

0 m1 0 0 0 0

0 0 m2 0 0 0

0 0 0 m3 0 0

0 0 0 0 m4 0

0 0 0 0 0 m5


The damping matrix is given below,
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C =
(

C1 C2 C3 C4 C5

)
(48)

where submatrices C1, C2, C3, C4, C5 are,

C1 =



csx 0 −csx 0

0 csz 0 −csz

−csx 0 ccfx + csx 0

0 −csz 0 ccfz + ccrz + csz

−csx hcs csz lcs ccfx hcf + csx hcs −ccfz lcf − ccrz lcr − csz lcs

0 0 −ccfx 0

0 0 0 −ccfz − ccrz

0 0 0 ccfz ltrfc + ccrz ltrrc

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


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C2 =



−csx hcs 0

csz lcs 0

ccfx hcf + csx hcs −ccfx

−ccfz lcf − ccrz lcr − csz lcs 0

ccfx hcf
2 + csx hcs

2 + ccfz lcf
2 + ccrz lcr

2 + csz lcs
2 −ccfx hcf

−ccfx hcf ccfx

ccfz lcf + ccrz lcr 0

−ccfz lcf ltrfc − ccrz lcr ltrrc 0

0 0

0 0

0 0

0 0

0 0

0 0



C3 =



0

0

0

−ccfz − ccrz

ccfz lcf + ccrz lcr

0

ccfz + ccrz + cst1 + cst2 + cst3 + ctrf + ctrr

−ccfz ltrfc − ccrz ltrrc − cst1 ltr5 − cst2 ltr5 − cst3 ltr5 − ctrf ltrfa − ctrr ltrra

−cst1 lst1 − cst2 lst2 − cst3 lst3

−ctrf

−ctrr

−cst1

−cst2

−cst3


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C4 =



0

0

0

ccfz ltrfc + ccrz ltrrc

−ccfz lcf ltrfc − ccrz lcr ltrrc

0

−ccfz ltrfc − ccrz ltrrc − cst1 ltr5 − cst2 ltr5 − cst3 ltr5 − ctrf ltrfa − ctrr ltrra

ccfz ltrfc
2 + ccrz ltrrc

2 + cst1 ltr5
2 + cst2 ltr5

2 + cst3 ltr5
2 + ctrf ltrfa

2 + ctrr ltrra
2

cst1 lst1 ltr5 + cst2 lst2 ltr5 + cst3 lst3 ltr5

ctrf ltrfa

ctrr ltrra

cst1 ltr5

cst2 ltr5

cst3 ltr5



C5 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

−cst1 lst1 − cst2 lst2 − cst3 lst3 −ctrf −ctrr −cst1 −cst2 −cst3

cst1 lst1 ltr5 + cst2 lst2 ltr5 + cst3 lst3 ltr5 ctrf ltrfa ctrr ltrra cst1 ltr5 cst2 ltr5 cst3 ltr5

cst1 lst1
2 + cst2 lst2

2 + cst3 lst3
2 0 0 cst1 lst1 cst2 lst2 cst3 lst3

0 ctrf 0 0 0 0

0 0 ctrr 0 0 0

cst1 lst1 0 0 cst1 0 0

cst2 lst2 0 0 0 cst2 0

cst3 lst3 0 0 0 0 cst3


The stiffness matrix K can be obtained as,
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K =
(

K1 K2 K3 K4 K5 K6

)
(49)

K1 =



ksx 0 −ksx 0

0 ksz 0 −ksz

−ksx 0 kcfx + ksx 0

0 −ksz 0 kcfz + kcrz + ksz

−hcs ksx ksz lcs hcf kcfx + hcs ksx −kcfz lcf − kcrz lcr − ksz lcs

0 0 −kcfx 0

0 0 0 −kcfz − kcrz

0 0 0 kcfz ltrfc + kcrz ltrrc

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


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K2 =



−hcs ksx 0

ksz lcs 0

hcf kcfx + hcs ksx −kcfx

−kcfz lcf − kcrz lcr − ksz lcs 0

kcfx hcf
2 + ksx hcs

2 + kcfz lcf
2 + kcrz lcr

2 + ksz lcs
2 −hcf kcfx

−hcf kcfx kcfx

kcfz lcf + kcrz lcr 0

−kcfz lcf ltrfc − kcrz lcr ltrrc 0

0 0

0 0

0 0

0 0

0 0

0 0



K3 =



0

0

0

−kcfz − kcrz

kcfz lcf + kcrz lcr

0

kcfz + kcrz + kst1 + kst2 + kst3 + ktrf + ktrr

−kcfz ltrfc − kcrz ltrrc − kst1 ltr5 − kst2 ltr5 − kst3 ltr5 − ktrf ltrfa − ktrr ltrra

−kst1 lst1 − kst2 lst2 − kst3 lst3

−ktrf

−ktrr

−kst1

−kst2

−kst3


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K4 =



0

0

0

kcfz ltrfc + kcrz ltrrc

−kcfz lcf ltrfc − kcrz lcr ltrrc

0

−kcfz ltrfc − kcrz ltrrc − kst1 ltr5 − kst2 ltr5 − kst3 ltr5 − ktrf ltrfa − ktrr ltrra

kcfz ltrfc
2 + kcrz ltrrc

2 + kst1 ltr5
2 + kst2 ltr5

2 + kst3 ltr5
2 + ktrf ltrfa

2 + ktrr ltrra
2

kst1 lst1 ltr5 + kst2 lst2 ltr5 + kst3 lst3 ltr5

ktrf ltrfa

ktrr ltrra

kst1 ltr5

kst2 ltr5

kst3 ltr5



K5 =



0 0

0 0

0 0

0 0

0 0

0 0

−kst1 lst1 − kst2 lst2 − kst3 lst3 −ktrf

kst1 lst1 ltr5 + kst2 lst2 ltr5 + kst3 lst3 ltr5 ktrf ltrfa

kst1 lst1
2 + kst2 lst2

2 + kst3 lst3
2 0

0 k1 + ktrf

0 0

kst1 lst1 0

kst2 lst2 0

kst3 lst3 0


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K6 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−ktrr −kst1 −kst2 −kst3

ktrr ltrra kst1 ltr5 kst2 ltr5 kst3 ltr5

0 kst1 lst1 kst2 lst2 kst3 lst3

0 0 0 0

k2 + ktrr 0 0 0

0 k3 + kst1 0 0

0 0 k4 + kst2 0

0 0 0 k5 + kst3


And the forcing stiffness matrix Kf is obtained as,

Kf =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

−k1 0 0 0 0

0 −k2 0 0 0

0 0 −k3 0 0

0 0 0 −k4 0

0 0 0 0 −k5


52



The transfer functions of the system can be obtained in various ways. In this thesis,

a state-space representation of the system is obtained. Then the necessary transfer

functions obtained using Matlab’s "ss2tf" command. This procedure provided followed

for its convenient during the calculations which are done in the Matlab environment.

Having a state-space representation enabled easier system verification in Simulink-Simscape

simulation software.

The general form of the state-space representation is given in the equations 50 and 51.

ẋ = Ax + Bz (50)

y = Cx + Dz (51)

where:

x : state vector

y : output vector

z : input vector

A : state matrix

B : input-to-state matrix

C : state-to-output matrix

D : feed-through matrix
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The matrix form of the equations of motion was given in the equation 46 can be used to

construct the state-space matrices A and B using the relationship given in the equation 52.

ẋ =

 0 I

− K
M

− C
M

 x +

 0

−Kf

M

 z (52)

Then, A and B matrices becomes,

A =

 0 I

− K
M

− C
M



B =

 0

−Kf

M


C can be constructed so that equation 51 yields to to the desired outputs and it is given below,

C =

 C1 C2

C3 C4

 (53)

where,

C1 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 −1 0 −hcs 0 0 0

0 1 0 −1 lcs 0 0 0

0 0 0 1 0 0 −1 −lcr − ltrrc

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


and C2 and C3 are 20 by 20 zero matrices and C4 is a 20 by 20 identity matrix. With

this definition of C, the outputs of the state-space representation becomes the state variables
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Table 3.5 Description of the first 5 state-space model output

Output Number Description

1 Seat fore-aft position

2 Seat vertical position

3 Seat suspension fore-aft deflection

4 Seat suspension vertical deflection

5 Cab CoG-Chassis distance

theirselves except for the 3rd, 4th and 5th outputs and their descriptions are given in the table

3.5.

Feed-through matrix D is simply zero as there is no direct transition between input and

output.

State variables are chosen based on the generalized vectors with which the equations of

motion obtained and given as,

x =

 q

q̇

 (54)

and the input vector is given below.

z = u (55)

To calculate the A and B the inverse of M is required. With the model utilized in this thesis,

M is a 14 by 14 matrix and it is not viable to calculate the parametric version. So, rather
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numerical version is provided below which is calculated with the numerical values of the

model parameters given in the section 3.2.4..

M−1 =
(

Minv1 Minv2

)
(56)

When all the inertances are set to zero, the submatices found as,

Minv1 =



0.00949 0 0 0 0 0 0

0 0.00949 0 0 0 0 0

0 0 0.00154 0 0 0 0

0 0 0 0.00154 0 0 0

0 0 0 0 0.00182 0 0

0 0 0 0 0 6.0e-5 1.95e-5

0 0 0 0 0 1.95e-5 2.46e-4

0 0 0 0 0 −6.08e-6 −3.65e-5

0 0 0 0 0 −2.01e-6 −2.64e-5

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


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Minv2 =



0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

−6.08e-6 −2.01e-6 0 0 0 0 0

−3.65e-5 −2.64e-5 0 0 0 0 0

3.67e-5 −4.46e-6 0 0 0 0 0

−4.46e-6 6.81e-6 0 0 0 0 0

0 0 0.00286 0 0 0 0

0 0 0 0.00161 0 0 0

0 0 0 0 0.00222 0 0

0 0 0 0 0 0.00222 0

0 0 0 0 0 0 0.00222


and when all inertances set to 10 kg the submatrices found as,

Minv1 =



0.00868 1.85e-6 1.27e-4 −8.91e-9 −9.28e-5 1.37e-7 5.88e-8

1.85e-6 0.00868 −7.94e-7 1.28e-4 −3.4e-5 9.47e-8 7.75e-7

1.27e-4 −7.94e-7 0.0015 1.69e-8 3.99e-5 8.7e-7 2.75e-7

−8.91e-9 1.28e-4 1.69e-8 0.00147 1.84e-7 8.41e-7 8.8e-6

−9.28e-5 −3.4e-5 3.99e-5 1.84e-7 0.00171 −1.09e-6 −6.2e-7

1.37e-7 9.47e-8 8.7e-7 8.41e-7 −1.09e-6 5.99e-5 1.94e-5

5.88e-8 7.75e-7 2.75e-7 8.8e-6 −6.2e-7 1.94e-5 2.44e-4

−6.92e-8 −2.57e-7 −6.35e-8 −2.7e-6 1.13e-6 −6.02e-6 −3.6e-5

8.28e-9 −4.54e-8 −3.45e-8 −5.7e-7 −2.0e-7 −1.99e-6 −2.62e-5

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


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Minv2 =



−6.92e-8 8.28e-9 0 0 0 0 0

−2.57e-7 −4.54e-8 0 0 0 0 0

−6.35e-8 −3.45e-8 0 0 0 0 0

−2.7e-6 −5.7e-7 0 0 0 0 0

1.13e-6 −2.0e-7 0 0 0 0 0

−6.02e-6 −1.99e-6 0 0 0 0 0

−3.6e-5 −2.62e-5 0 0 0 0 0

3.65e-5 −4.49e-6 0 0 0 0 0

−4.49e-6 6.8e-6 0 0 0 0 0

0 0 0.00286 0 0 0 0

0 0 0 0.00161 0 0 0

0 0 0 0 0.00222 0 0

0 0 0 0 0 0.00222 0

0 0 0 0 0 0 0.00222


A state-space representation can be converted to transfer function. This transformation

realized with Matlab by using "ss2tf" command. As the vehicle model features 5 axles

excited by the same road profile but with time delays based on both velocity and longitudinal

distances between them, the resulting transfer functions are related by a transport delay. This

is achieved using Equation 57.

H(s) = e−τ1H1(s) + e−τ2H2(s) + e−τ3H3(s) + e−τ4H4(s) + e−τ5H5(s) (57)

where:

H(s) : resulting transfer function

H1,5 : transfer functions of the same output for the first to last inputs

τ1,5 : time delays for the inputs

Time delays are calculated using Equation 58.
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τn = ln
V

(58)

where:

ln : distance from the first input in meters (e.g., distances of axles from tractor front axle)

n : axle index from 1 to 5

V : vehicle velocity in meters/second

Note that τ1 is zero, as it corresponds to the first axle.

3.2.6. Model Verification

Obtained system model verified against a non-linear Simscape multi-body model. The exact

same system was built using mass, rigid transformation and different joints. For comparison,

the state-space model is also included within the Simscape model and the supplied with the

same inputs. Both models uses the parameters presented in the section 3.2.4. with 30 kg

inertances at the seat suspensions and 300 kg of inertances at the cab suspensions execpt the

cab front longitudinal direction. Then, the equivalent signals for the outputs defined in the

table 3.5 are obtained and compared. Complete Simscape model provided in the appendix.

As the excitation, a random, hundred meter long, ISO-8608:2016 A class road profile

generated using the method described in the section 3.1.. Road profile is given to each tyres

by introducing shifts in order to satisfy that each tyre receives the same inputs with a time

delay. Time delays are calculated using the equation 58 and velocity is chosen as 60 km/h.

In figure 3.7 only the tractor front tyre and trailer rear tyre inputs are shown for clarity. The

shifts in the inputs are visible. It should be noted that due to the wheelbase, some portions of

the road do not excite all the tyres. Tractor first axle, for example, is not excited by the first

12,21 meters of the road and the last 12,21 meters of the road do not excite the trailer rear

tyre.
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Figure 3.7 Inputs for tractor front tyre and trailer rear axle

The outputs obtained by both Simscape and state-space models are presented in figures 3.8

- 3.12. It is seen that the results for the vertical direction are more well-matched than the

longitudinal results. This is because the longitudinal motions occur due to pitching motions

and during the linearization, longitudinal motions are more affected. However, it is also

seen that the general behaviour of the state-space results in figures 3.8 and 3.10 are similar

and assumed to be acceptable. Vertical motion results, on the other hand, are seen to be

well-matching. Cab deflection results presented in 3.12 has the best match with non-linear

Simscape solution compared to others.
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Figure 3.8 Seat longitudinal displacements obtained by state-space and simscape models
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Figure 3.9 Seat vertical displacements obtained by state-space and simscape models
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Figure 3.10 Seat fore-aft suspension deflections obtained by state-space and simscape models
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Figure 3.11 Seat vertical suspension deflections obtained by state-space and simscape models
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Figure 3.12 Cab deflections obtained by state-space and simscape models

3.3. Frequency Domain Calculations

As discussed in Section 2.2., the ISO-2631 standard uses RMS vibrations for assessing ride

comfort. One method involves running time-domain simulations to obtain vibration data in

the time domain, from which the RMS vibration can be easily calculated using Equation 59.

aw =
∑

i

(Wiai)2

 1
2

(59)

where:

aw : frequency-weighted acceleration

Wi : weighting factor for the ith one-third octave band defined by ISO-2631

ai : RMS acceleration for the ith one-third octave band

However, performing time-domain simulations involves several steps:

• Synthesize a road profile

63



• Calculate initial conditions for the model based on the random road profile

• Run the simulation and collect results in the time domain

• Apply frequency weightings

• Calculate RMS values

This process is complex, susceptible to numerical difficulties, computationally expensive,

and may be avoided by employing frequency domain calculations when RMS values suffice.

Time-domain results become necessary when crest factor is significant or when the input

PSD function is unknown.

The area under the PSD curve yields to the RMS value. Given the acceleration PSD, the

RMS acceleration value can be determined using the relationship provided by Equation 60.

Sr(f) = H2(f)S(f) (60)

where:

Sr(f) : PSD function of the response

H(f) : frequency response function of the system

S(f) : PSD function of the excitation input

The RMS value of the response can be obtained by taking the square root of the integral of

the response, as given by Equation 61 [4], [10].

arms =
√∫ f2

f1
Sr(f)df (61)

where:

arms : RMS response (e.g., RMS acceleration)
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The input excitation PSD function, replaced in Equation 60, is defined in Equation 1.

ISO-2631 mandates frequency-weighted accelerations. To this end, it defines filter transfer

functions with parameters provided in Table 3.6.

Table 3.6 Transfer function parameters for ISO-2631 principle axes frequency weighting [1]

Weighting

Band-limiting Acceleration-velocity transition

(a-v transition)

Upward step

f1

Hz

f2

Hz

f3

Hz

f4

Hz

Q4 f5

Hz

Q5 f6

Hz

Q6

Wk 0,4 100 12,5 12,5 0,63 2,37 0,91 3,35 0,91

Wd 0,4 100 2,0 2,0 0,63 ∞ - ∞ -

Wf 0,08 0,63 ∞ 0,25 0,86 0,0625 0,80 0,1 0,80

The resulting weighting curves are presented in the figure 2.7. These weightings can

be incorporated into Equation 60 as shown in equations 62 and 63 for the vertical and

longitudinal axes, respectively.

Sr(f) = W 2
k H2(f)S(f) (62)

Sr(f) = W 2
d H2(f)S(f) (63)

Inserting Equations 62 and 63 into Equation 61 yields the weighted RMS responses of a

system. The output is determined by the system transfer function definition. If acceleration

is defined in the transfer function, the result is acceleration; if deflection is defined, then it is

deflection.
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3.4. Performance Investigation

The study investigates the impact of an inerter on vibration isolation performance at

two key locations in a tractor-semitrailer combination: the cab suspension and seat

suspension. Initially, inerters are utilized at the cab’s vertical suspension using three distinct

configurations: inerter placement at the cab front suspension, rear suspension, and both front

and rear suspensions. To accommodate various design considerations, the spring and damper

values of the cab suspension are varied for natural frequencies of 0.8, 1.4, and 1.6 Hz, and

damping ratios of 0.2, 0.4, and 0.8. These parameter selections are based on the study by

ElMadany [17]. Inertance values are increased from 0 kg to 300 kg for each combination of

natural frequency and damping ratio pairs. The vehicle constant velocity is 90 km/h, while

the seat suspension parameters remain unchanged as specified in Table 3.2. The fundamental

properties of the cab suspension cases are summarized in Table 3.7.

Table 3.7 Fundamental properties of investigated cases for cab suspension

Case

Number

Velocity

[km/h]

Cab Undamped

Natural Frequency

[Hz]

Cab

Damping

Ratio

Cab

Front

Inerter

[kg]

Cab

Rear

Inerter

[kg]

Seat

Suspension

1 90 0.8 , 1.2 , 1.6 0.2 , 0.4 , 0.8 0 - 300 0 base values

2 90 0.8 , 1.2 , 1.6 0.2 , 0.4 , 0.8 0 0 - 300 base values

3 90 0.8 , 1.2 , 1.6 0.2 , 0.4 , 0.8 0 - 300 0 - 300 base values

Undamped natural frequency and damping ratio are calculated using the following equations

64 and 65.

wn = 1
2π

√
kcfz + kcrz

mc

(64)
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ζ = ccfz + ccrz

2
√

(kcfz + kcrz)mc

(65)

where:

wn : undamped natural frequency

ζ : damping ratio

At each case, the weighted RMS seat acceleration and RMS cab deflection for each natural

frequency-damping ratio pair are calculated using the methods described in Section 3.3..

These results are then plotted on an RMS deflection versus weighted RMS acceleration

graph. Each pair starts from a point and moves with increasing inertance, allowing for the

visualization of inerter effects on a single plot for multiple natural frequencies and damping

ratios.

In Figure 3.13, the results for each natural frequency-damping ratio pair with inertance values

of 0 kg are presented. Subsequently, inertance values are increased up to 300 kg with steps

of 20 kg. As the inertance values increase, the corresponding RMS results are depicted with

red lines, as shown in Figure 3.14.
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Figure 3.13 Supplementary Graph Illustrating Plotting Methodology
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Figure 3.14 Supplementary Graph Illustrating Plotting Methodology

At the termination points of the red lines, the inertance values reach their maximum value for

the respective case. This is visually demonstrated in Figure 3.15 for the maximum inertance
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value of 300 kg.
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Figure 3.15 Supplementary Graph Illustrating Plotting Methodology

The results are displayed in a format where the constant natural frequency and damping

ratios are connected at the 0 inertance points with dashed lines. The corresponding values

are printed next to them, as depicted in Figure 3.16.

69



2 3 4 5 6 7 8
RMS	Cab	Deflection	[mm]

0.05

0.1

0.15

0.2

0.25

0.3

W
ei
gh

te
d	
R
M
S	
C
om

bi
ne

d	
Se

at
	A
cc
el
er
at
io
n	
[m

/s
2 ]

!n =0.8

!n =1.2

!n =1.6

1 =0.2
1 =0.4

1 =0.8

Figure 3.16 Supplementary Graph Illustrating Plotting Methodology

For each case, the best performing suspension is determined by introducing non-dimensional

parameters J1 and J2. Both are obtained by applying normalization as defined in equations

66 and 67. For a well performing suspension, both parameters are expected to be as small as

possible.

J1 = a2
v

a2
v0

(66)

J2 = ∆2
c

∆2
c0

(67)
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where:

J1 : non-dimensional comfort parameter

J2 : non-dimensional suspension deflection parameter

av : weighted combined seat acceleration

av0 : reference value of weighted combined seat acceleration

∆c : cab deflection measured between cab center of gravity and its vertical projection onto tractor chassis

∆c0 : reference deflection

Reference values are obtained for the original model parameters which are given in the table

3.2. The best-performing suspension is selected based on the minimum J , as defined in

equation 68, which ideally approaches zero.

J =
√

J2
1 + J2

2 (68)

A similar methodology is applied to seat suspensions. The same suspension parameters,

in terms of spring, damper, and inerter, are assumed for fore-aft and vertical directions.

Natural frequencies are set to 1.2, 1.4, and 1.6 Hz, while damping ratios are set to 0.2,

0.3, and 0.4. Values are chosen based on the studies [13], [22] and [21]. Inerters are set

between 0 and 30 kg, taking into account available space in the seat assembly. Velocity

is again 90 km/h and with these properties, seat suspension is investigated with a single

case. Seat suspension performance is evaluated based on weighted RMS accelerations and

RMS deflections. Unlike the cab suspensions, as seat suspensions operate directly in the

principal axes of the seat, cross-axial forces can be disregarded [21], and only principal

axis accelerations and deflections (e.g., fore-aft acceleration and deflection for fore-aft

suspension, and vertical acceleration and deflection for vertical suspension) are considered.

Performance metrics are again normalized by their respective initial performances, obtained

with initial spring and damper values and no inerter.
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4. RESULTS

The calculation methods described in Section 3. are implemented through a series of

MATLAB programs, with time-domain simulations realized using Simulink modules. All

codes and models are provided in the appendix.

The presented results include Power Spectral Density (PSD) graphs, illustrating the

frequencies at which the inerter effectively modifies the suspension’s isolation behavior.

According to the ISO2631-1997 standard, the 0.5 - 80 Hz band is crucial for ride comfort

studies. Consequently, acceleration PSD graphs are confined within this range, with RMS

values derived by integration over this frequency band. In contrast, suspension deflections

are calculated and plotted across the entire excitation band. ISO8608:2016 recommends

a spatial frequency band of 0.01 - 10 cycles/meter for representing road profiles. This

corresponds to another frequency band, calculated by multiplying the band limits with the

velocity. For a velocity of 90 km/h, this results in 0.25 - 250 Hz, thus deflection PSD graphs

are delineated within this frequency band. The results for each case are presented in their

respective sections.

Time history plots from the Simulink model are provided to compare and observe changes in

the frequency domain. While time domain and PSD results represent the same system, their

methods of acquisition render them incomparable in terms of back calculability. PSD plots

are derived from analytical functions, whereas the Simulink model is based on a synthesized

road profile.

Additionally, RMS values are tabulated for each wn − ζ pair, both with and without inerters,

for convenience.

4.1. Case 1: Inerter at front cab suspension, velocity is 90 km/h

The weighted RMS acceleration and RMS cab deflection results are illustrated in Figure

4.1. In general, it is observed that inerter has a positive effect on isolation performance.
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For the lowest undamped natural frequency and damping pair, a significant decrease in

RMS deflection is noticeable together with a high reduction in weighted combined RMS

acceleration. Following the constant frequency path to the left side from 0.2 damping to

0.8 damping, the impact diminishes. Conversely, for values corresponding to the highest

frequency-damping pair, while the weighted combined RMS acceleration decreases by 8%,

deflection values remain relatively unchanged with only 1% change.

The results regarding to each pairs with 0 kg of inertance, e.g. no inerter, and with 300 kg of

inertance are presented in the table 4.1. The relative changes are also calculated and listed in

this table. Overall, it can be inferred that the impact of an inerter, when applied at the front

cab suspension, is most pronounced with lower damping ratios.
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Figure 4.1 Illustration of RMS value changes with increasing inertance for all wn − ζ pairs in Case 1
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Table 4.1 Summarized RMS results for case-1.

wn ζ

Seat Weighted RMS Acceleration [m/s2]
Cab RMS deflection [mm]

fore-aft vertical combined

b=0 b=300 relative

change

b=0 b=300 relative

change

b=0 b=300 change b=0 b=300 relative

change

0.8 0.2 0.0403 0.031 -23% 0.1198 0.0745 -38% 0.1264 0.0807 -36% 7.4591 5.8704 -21%

0.8 0.4 0.0403 0.0379 -6% 0.1279 0.0981 -23% 0.1341 0.1052 -22% 5.6031 4.6928 -16%

0.8 0.8 0.0426 0.0462 8% 0.1537 0.1359 -12% 0.1595 0.1436 -10% 3.8243 3.4013 -11%

1.2 0.2 0.0418 0.0658 57% 0.2261 0.134 -41% 0.2299 0.1493 -35% 6.331 5.5084 -13%

1.2 0.4 0.0432 0.0596 38% 0.1992 0.1467 -26% 0.2038 0.1584 -22% 4.5408 4.1117 -9%

1.2 0.8 0.0447 0.0551 23% 0.1955 0.1717 -12% 0.2006 0.1804 -10% 2.9158 2.7519 -6%

1.6 0.2 0.0624 0.1118 79% 0.2887 0.2148 -26% 0.2954 0.2422 -18% 4.6577 4.6601 0%

1.6 0.4 0.0508 0.0787 55% 0.2451 0.1984 -19% 0.2503 0.2135 -15% 3.423 3.378 -1%

1.6 0.8 0.0457 0.0578 26% 0.2223 0.2008 -10% 0.2269 0.2089 -8% 2.2347 2.2191 -1%

The non-dimensional parameter results are illustrated in figure 4.2. The more pronounced

effect with lower damping ratio is very clear. However, due to high deflections, low damping

ratio pairs perform considerable worse than the higher damping ratio counterparts. The best

performing pair is pointed with a blue dashed line respecting to 1.6 Hz undamped natural

frequency and 0.8 damping ration with 300 kg inertance.
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Figure 4.2 Illustration of non-dimensional parameter changes with increasing inertance for all wn−ζ
pairs in Case 1.

The analytically obtained seat wieghted fore-aft PSD functions are plotted for the highest and

lowest frequency-damping pairs in Figure 4.3. As discussed in Section 2.4., it is expected

that the isolation performance worsens with the inerter for higher frequencies. This trend is

clearly visible after approximately 10 Hz.

The responses around 1.5 Hz are predominant for each pair. In this region, it is observed that

the inerter causes a greater response with the high frequency-damping pair, indicating the

deterioration also seen in the table 4.1 as 26% increase in acceleration. An improvement is

noticeable for the low frequency-damping pair, black solid and dashed lines on the figures.

Additionally, numerous anti-resonances are present, which are caused by the wheelbase

filtering effect [23]
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Figure 4.3 Seat fore-aft weighted acceleration PSD plots for the highest and lowest wn − ζ pairs,
comparing inerter and non-inerter versions, Case 1.

Figures 4.4 and 4.5 depict the seat fore-aft weighted acceleration response in the time

domain. These graphs are obtained through time-domain simulations in a Simulink model.

In Figure 4.4, the improvement for the low frequency-damping pair is observable. The peaks

are seen to be smaller with the inerter than without. Furthermore, the response is significantly

dominated by frequencies around 1.5 Hz.

Conversely, in Figure 4.5, the deterioration in the acceleration isolation is evident. The

response is greater with the inerter, indicating degraded performance.
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Figure 4.4 Seat fore-aft weighted acceleration plot for the lowest wn−ζ pair with and without inerter
from Simulink time domain simulation, case-1.
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Figure 4.5 Seat fore-aft weighted acceleration plot for the highest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-1.
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The analytically obtained PSD functions of the seat vertical weighted acceleration are

depicted in Figure 4.7. Decreased accelerations with inerter around 1 Hz are evident, while

the degraded performance after approximately 2 Hz is also apparent. It should be noted that

the magnitudes during the degraded performance are much lower than the range where the

acceleration magnitude is suppressed with the inerter.
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Figure 4.6 Seat vertical weighted acceleration PSD plots for the highest and lowest wn − ζ pairs,
comparing inerter and non-inerter versions, Case 1.

The time domain simulation results for seat vertical weighted acceleration are plotted in

Figures 4.8 and 4.9.

In the first plot (Figure 4.8), the lower peaks with the inerter-based suspension are evident.

However, as expected, higher frequency content is more pronounced with the inerter.

In the second figure (Figure 4.9), a slight decrease in the peaks is observed, and the higher

frequency content is not as obvious. This is because, as shown in Figure 4.7, even though the

isolation performance is degraded, the magnitudes are very low.
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Figure 4.7 Seat vertical weighted acceleration plot for the lowest wn−ζ pair with and without inerter
from Simulink time domain simulation, case-1.
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Figure 4.8 Seat fore-aft weighted acceleration plot for the highest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-1.
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The PSD plot for cab deflection is depicted in Figure 4.9, which is derived from its analytical

definition.

For the high frequency-damping pair, the differences in magnitude are minimal up to 2 Hz.

Afterward, there is a slight lower magnitude with the inerter, resulting in almost no effect

on the RMS deflection, as seen in Figure 4.1. This is because the magnitudes are very low

in the range where the magnitude is lower, and the contribution to the integral is minimal,

considering the plots are in log scale.

On the other hand, the decrease for the low frequency-damping pair is more pronounced at

lower frequencies where the magnitudes are higher, and its effect is therefore much greater,

as can again be seen in Figure 4.1.
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Figure 4.9 Cab deflection PSD plots for the highest and lowest wn − ζ pairs, comparing inerter and
non-inerter versions, Case 1.

Lastly, the time domain simulation results are presented in Figures 4.10 and 4.11. Both

graphs reveal that the response in time is predominantly influenced by the low frequencies

up to 1.5 Hz. Smaller magnitude higher frequency content is also noticeable for the high

natural frequency-damping ratio pair.

80



0 2 4 6 8 10
time	[s]

-20

-10

0

10

20

de
fle
ct
io
n	
[m
m
]

!n = 0:8, 1 = 0:2, b = 0

!n = 0:8, 1 = 0:2, b = 300

4 4.5 5 5.5 6
time	[s]

-10

-5

0

5

10

15

de
fle
ct
io
n	
[m
m
]

Zoomed-In	Area
!n = 0:8, 1 = 0:2, b = 0

!n = 0:8, 1 = 0:2, b = 300

Figure 4.10 Cab deflection plot for the lowest wn − ζ pair with and without inerter from Simulink
time domain simulation, case-1.
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Figure 4.11 Cab deflection plot for the highest wn − ζ pair with and without inerter from Simulink
time domain simulation, case-1.
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4.2. Case 2: Inerter at rear cab suspension, velocity is 90 km/h

The findings for Case 2 exhibit a similar trend to those observed in Case 1. The weighted

RMS acceleration and RMS cab deflection results are depicted in Figure 4.12. Generally,

it is noted that inertance has a positive effect on isolation performance. For the lowest

undamped natural frequency and damping pair, a significant decrease in RMS deflection

is evident, accompanied by a considerable reduction in weighted RMS acceleration by 15%

and 11% respectively. Following the constant frequency path to the left side, again, the

impact diminishes. Conversely, for values corresponding to the highest frequency-damping

pair, while the weighted combined RMS acceleration decreases by 5%, the RMS deflection

value remains relatively unchanged, with only a 1% reduction.

The results pertaining to each pair with 0 kg of inertance (i.e., no inerter) and with 300 kg

of inertance are presented in Table 4.2. The relative changes are also calculated and listed in

this table.

Overall, it can be inferred that the impact of an inerter, when applied at the rear cab

suspension, is most pronounced with lower damping ratios, as in the case of Case 1.
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Figure 4.12 Illustration of RMS value changes with increasing inertance for all wn − ζ pairs in Case
2.

Table 4.2 Summarized RMS results for case-2.

wn ζ

Seat Weighted RMS Acceleration [m/s2]
Cab RMS deflection [mm]

fore-aft vertical combined

b=0 b=300 relative

change

b=0 b=300 relative

change

b=0 b=300 change b=0 b=300 relative

change

0.8 0.2 0.0403 0.0794 97% 0.1198 0.08 -33% 0.1264 0.1127 -11% 7.4591 6.3592 -15%

0.8 0.4 0.0403 0.0666 65% 0.1279 0.1022 -20% 0.1341 0.122 -9% 5.6031 4.9052 -12%

0.8 0.8 0.0426 0.0514 21% 0.1537 0.1396 -9% 0.1595 0.1488 -7% 3.8243 3.4988 -9%

1.2 0.2 0.0418 0.074 77% 0.2261 0.1726 -24% 0.2299 0.1878 -18% 6.331 5.8139 -8%

1.2 0.4 0.0432 0.0535 24% 0.1992 0.1679 -16% 0.2038 0.1762 -14% 4.5408 4.2455 -7%

1.2 0.8 0.0447 0.0403 -10% 0.1955 0.1819 -7% 0.2006 0.1863 -7% 2.9158 2.7989 -4%

1.6 0.2 0.0624 0.0494 -21% 0.2887 0.257 -11% 0.2954 0.2617 -11% 4.6577 4.6609 0%

1.6 0.4 0.0508 0.0339 -33% 0.2451 0.2243 -8% 0.2503 0.2268 -9% 3.423 3.3988 -1%

1.6 0.8 0.0457 0.0346 -24% 0.2223 0.2125 -4% 0.2269 0.2152 -5% 2.2347 2.2196 -1%

The non-dimensional parameter results are depicted in Figure 4.13, echoing the observations

made in Case 1. The more pronounced changes with softer suspensions is evident. However,
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similar to Case 1, due to high deflections, softer suspensions perform considerably worse

than those with higher damping ratios. The best-performing pair, as indicated by the

blue dashed line which is the closest point to 0, corresponds to a 1.6 Hz undamped

natural frequency and 0.8 damping ratio with a 300 kg inertance. In comparison to the

best-performing suspension from Case 1, the suspension with an inerter at the rear cab

performs slightly worse, with both providing a 1% reduction in deflection and respectively

8% and 5% reduction in the weighted combined RMS seat acceleration.
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Figure 4.13 Illustration of non-dimensional parameter changes with increasing inertance for all wn −
ζ pairs in Case 2.

The analytically obtained PSD functions are plotted for the highest and lowest

frequency-damping pairs in Figure 4.14. Degraded performance at higher frequencies

becomes obvious after roughly 5 Hz for both pairs and the responses around 1.5 Hz are

predominant in magnitude. In this region, it is observed that the inerter based suspension

has a much higher response for the low natural frequency-damping pair, indicating the

performance degradation listed in 4.2 as %97 increase in weigted fore-aft RMS seat

acceleration. The improvement is noticeable for the high natural frequency-damping pair

around 1.5-2.5 Hz band, where the red dashed line is stays below the red solid line. As the
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figure in log scale and the RMS values is the related to the square root of the area under the

curve, larger amplitudes on the plot have much more impact on the area than the smaller

values. The reduction in weighted RMS acceleration is listed as %24 in table 4.2.
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Figure 4.14 Seat fore-aft weighted acceleration PSD plots for the highest and lowest wn − ζ pairs,
comparing inerter and non-inerter versions, Case 2.

Figures 4.15 and 4.16 depict the seat fore-aft weighted acceleration response in the time

domain. These graphs are obtained through time-domain simulations in a Simulink model.

In Figure 4.15, the deteoriated performance of the low frequency-damping pair is observable.

The peaks are seen to be larger with the inerter than without. Furthermore, the response is

significantly dominated by frequencies around 1.5 Hz which is also the predominant frequeny

in the PSD plot.

Conversely, in Figure 4.16, the improvement in the acceleration isolation with inerter is

evident. The response becomes much smaller with the inerter at the cab rear suspension

for the high natural frequency-damping ratio pair, which reflects the reduction in the PSD

plot very well.
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Figure 4.15 Seat fore-aft weighted acceleration plot for the lowest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-2.
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Figure 4.16 Seat fore-aft weighted acceleration plot for the highest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-2..
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The analytically obtained PSD functions for the seat vertical weighted acceleration are

plotted in Figure 4.17. Suspension with low natural frequency-damping ratio has much lower

acceleration values in 0.6 - 2 Hz band and the detoireted performance is evident after about 3

Hz. In total, from table 4.2, it is seen that the RMS acceleration reduces by %33 for this pair.

For the high wn, ζ pair, inerter provides only a small reduction is 1-7 Hz band and after then

isolation deteriorates. However, as the magnitudes are much higher in this band, its impact

on the area is also larger and hence, in total %4 percent reduction is seen.
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Figure 4.17 Seat vertical weighted acceleration PSD plots for the highest and lowest wn − ζ pairs,
comparing inerter and non-inerter versions, Case 2.

Time domain simulation results for the weighted vertical seat acceleration responses are

given in figures 4.18 and 4.19. In the first figure the reduction in the acceleration peaks with

inerter is evident together with the degraded performance at the higher frequencies are still

pronounced. In the second plot, there is only a slight reduction is seen as expected and both

inerter and non-inerter suspensions has almost the same responses in time.
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Figure 4.18 Seat vertical weighted acceleration plot for the lowest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-2.
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Figure 4.19 Seat vertical weighted acceleration plot for the highset wn − ζ pair with and without
inerter from Simulink time domain simulation, case-2.

88



The PSD of the cab deflection is plotted in figure 4.20 from its analytical definition. %15

reduction for the in the deflection for the low frequency-damping pair seen to be provided

by the reduction in response after 0.7 Hz. For the high damping and natural frequency pair

it was listed only %1 reduction in the deflection and it also seen in the second figure that the

deflection responses are almost identical and in RMS value does not change very much.
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Figure 4.20 Cab deflection PSD plots for the highest and lowest wn − ζ pairs, comparing inerter and
non-inerter versions, Case 2.

Time domain simulation results for the cab deflection depicted in figures 4.21 and 4.22

also reflect the findings from the PSD plots. Deflections found to be much smaller in

magnitude with inerter for the low natural frequency-damping ratio pair which reflects the

%15 reduction in the RMS value. Very close response is observable for the high damping

pair and this explains the only %1 change in the RMS value.
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Figure 4.21 Cab deflection plot for the lowest wn − ζ pair with and without inerter from Simulink
time domain simulation, case-2.
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Figure 4.22 Cab deflection plot for the highset wn − ζ pair with and without inerter from Simulink
time domain simulation, case-2.

90



4.3. Case 3: Inerter at front and rear cab suspension, velocity is 90

km/h

In case-3, both front and rear suspensions of the cab has an inerter. The RMS results

presented in figure 4.23 and the similar pattern is observed as previous cases but with larger

effects. This is evident of longer paths of each pairs and cause by the doubled inertance value

because both front and rear suspensions have inerters which essentially doubles the total

inertance of the cab suspension system. This increase also reveals the limits of reductions in

acceleration RMS for all pairs with wn = 0.8, which is evident from the minimas after which

the acceleration RMS values are increasing.

The RMS results together with their relative changes are tabulated in table 4.3. Wieghted

fore-aft RMS acceleration is increased for all suspension pairs with 0.8 and 1.2 Hz except

the pair with wn = 1.2, ζ = 0.8 which reduces the fore-aft RMS by %1. The vertical and

combined weighted RMS values are decreased for all pairs and the deflection RMS values

are decreased for all pairs with 0.8 and 1.2 Hz natural frequency. Slight increases in the cab

deflection are noted for the pairs with 1.6 Hz of natural frequency.
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Figure 4.23 Illustration of RMS value changes with increasing inertance for all wn − ζ pairs in Case
3.

Table 4.3 Summarized RMS results for case-3

wn ζ

Seat Weighted RMS Acceleration [m/s2]
Cab RMS deflection [mm]

fore-aft vertical combined

b=0 b=300 relative

change

b=0 b=300 relative

change

b=0 b=300 change b=0 b=300 relative

change

0.8 0.2 0.0403 0.0479 19% 0.1198 0.1059 -12% 0.1264 0.1162 -8% 7.4591 5.2137 -30%

0.8 0.4 0.0403 0.0465 15% 0.1279 0.1131 -12% 0.1341 0.1223 -9% 5.6031 4.1039 -27%

0.8 0.8 0.0426 0.0449 5% 0.1537 0.135 -12% 0.1595 0.1423 -11% 3.8243 3.0993 -19%

1.2 0.2 0.0418 0.047 12% 0.2261 0.1109 -51% 0.2299 0.1205 -48% 6.331 5.1624 -18%

1.2 0.4 0.0432 0.0452 5% 0.1992 0.1267 -36% 0.2038 0.1345 -34% 4.5408 3.9117 -14%

1.2 0.8 0.0447 0.0442 -1% 0.1955 0.1598 -18% 0.2006 0.1658 -17% 2.9158 2.6901 -8%

1.6 0.2 0.0624 0.0461 -26% 0.2887 0.1713 -41% 0.2954 0.1774 -40% 4.6577 4.8747 5%

1.6 0.4 0.0508 0.0448 -12% 0.2451 0.1727 -30% 0.2503 0.1784 -29% 3.423 3.5298 3%

1.6 0.8 0.0457 0.0442 -3% 0.2223 0.19 -15% 0.2269 0.1951 -14% 2.2347 2.2663 1%

The changes in the non-dimensional parameters are depicted in the figure 4.24. Similar to

the previous cases, while softer suspensions having lower J1, due to the high deflections J2
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becomes larger and the best performing suspension is the hardest pair with 1.6 Hz natural

frequency and 0.8 damping ratio. This pairs J value is indicated with a blue dashed line

which is the shortest distance from 0.
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Figure 4.24 Illustration of non-dimensional parameter changes with increasing inertance for all wn −
ζ pairs in Case 3.

The PSD function of the weighted RMS fore-aft seat acceleration is plotted in the figure 4.25

from which the degraded performances of both pairs after around 10 Hz is evident. %19

increase in the RMS fore-aft acceleration with low damping pair is seen to be because of the

higher acceleration magnitudes around 1.5 Hz. The high damping pair seen to be very close

to each other with and without inerter and also only %3 reduction is obtained. This reduction

is seen to be provided by the lower responses with inerter about 2-6 Hz band.
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Figure 4.25 Seat fore-aft weighted acceleration PSD plots for the highest and lowest wn − ζ pairs,
comparing inerter and non-inerter versions, Case 3.

The predominant 1.5 Hz fore-aft acceleration responses are also to be seen in the figures 4.26

and 4.27 which both present the time domain simulation results for both lowest and highest

wn − ζ pairs, respectively. The increased acceleration is clear on the first plot which reflects

the %19 increase in the RMS value and second graph shows that inerter based suspension

has slightly lower amplitudes.
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Figure 4.26 Seat fore-aft weighted acceleration plot for the lowest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-3.
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Figure 4.27 Seat fore-aft weighted acceleration plot for the highest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-3.
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Analytically obtained PSD functions of the weighted vertical seat acceleration is plotted

in the figure 4.28 for the highest and lowest wn − ζ pairs. Degradation in the isolation

performance of the lowest wn − ζ pair is clearly observable after about 1.5 Hz which is also

the predominant for both pairs. %12 reduction in RMS acceleration of the lowest wn − ζ

pair seen to be caused by the lower amplitudes obtained up to 1.5 Hz, as the magnitudes are

much higher at this band, impact on the RMS value is much greater.

High wn − ζ pair seen to be having lower magnitudes with inerter from 0.9 Hz up to around

5 Hz which can be related to the listed %15 reduction in the RMS acceleration.
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Figure 4.28 Seat vertical weighted acceleration PSD plots for the highest and lowest wn − ζ pairs,
comparing inerter and non-inerter versions, Case 3.

In PSD plots it was seen that the acceleration responses of both pairs has greater magnitudes

at high frequencies. This also be seen in figures 4.29 and 4.30 which present the acceleration

responses in time domain obtained through time domain simulations conducted in Simulink

model. In both figures, higher frequency contents are pronounced for inerter based

suspensions and for the low wn − ζ pair with no inerter only lower frequency content is

pronounced. The reductions in the RMS values however, are not very clear on time domain

plots.
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Figure 4.29 Seat vertical weighted acceleration plot for the lowest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-3.
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Figure 4.30 Seat vertical weighted acceleration plot for the highest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-3.
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The lower magnitudes after 0.6 Hz for the lowest wn − ζ pair with an inerter, compared to its

non-inerter response in the PSD graph given in figure 4.31, clearly explain the 30% reduction

in the cab deflection listed in Table 4.3, despite the higher magnitudes seen below 0.6 Hz.

High wn − ζ pair seen to be not influenced by the inerter. Up to 1 Hz, a slight increase in

the deflection magnitude is seen and after 2 Hz, the response with inerter becomes smaller

in magnitude. However, as the RMS value is related to the area under the PSD curve, and

because the graphs are in logarithmic scale, the impact of the high magnitudes on the given

plot has much greater then the lower values which ultimately yields to only %1 increase in

the RMS value.
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Figure 4.31 Cab deflection PSD plots for the highest and lowest wn − ζ pairs, comparing inerter and
non-inerter versions, Case 3.

The time domain simulations result are presented in the figures 4.32 and 4.33 which are

obtained from Simulink model. Inerter based low wn − ζ pair has significantly lower

deflection values compared to its non-inerter counterpart and the response is predominated

by lower frequency content as expected when the PSD results are considered. High wn − ζ

pair has very similar deflection values with shift which also evident in the PSD plot by
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both inerter and non-inerter counterparts having very close magnitudes in the predominant

frequency range.
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Figure 4.32 Cab deflection plot for the lowest wn − ζ pair with and without inerter from Simulink
time domain simulation, case-3.
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Figure 4.33 Cab deflection plot for the highest wn − ζ pair with and without inerter from Simulink
time domain simulation, case-3.
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4.4. Case 4: Seat suspensions with inerters velocity is 90 km/h

Figure 4.34 presents the RMS fore-aft deflection versus weighted fore-aft RMS acceleration

results for each pair and where they are moving with increasing inerter up to 30 kg. All

pairs are seen to be moving in decreasing directions as the inertance increasing with larger

changes, again as in the cases1 to case3, with softer suspension by the mean of natural

frequency and damping ratio.

Figure 4.35 presents the RMS results in the vertical direction for each pair and the changes

with increasing inerter up to 30 kg. Unlike the fore-aft direction, all pairs are seen to

be moving more vertically which indicates a lower reduction in the deflection than the

acceleration.

Table 4.4 summarizes the RMS results for each pairs in the both directions and for when

inertances is 0 and its maximum value of 30 kg. The large reductions in acceleration

values yields to %23-48 relative change in the fore-aft direction and between %15-30 in the

vertical direction. When combined acceleration considered, up to %30 reduction possible

with 1.2 Hz undamped natural frequency and 0.2 damping ratio. The changes in the RMS

deflection values are higher in the fore-aft aft direction and all pairs have reduced values in

this direction.
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Figure 4.34 Illustration of RMS value changes with increasing seat fore-aft suspension inertance for
all wn − ζ pairs in Case 4.
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Figure 4.35 Illustration of RMS value changes with increasing seat vertical suspension inertance for
all wn − ζ pairs in Case 4.
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Table 4.4 Summarized RMS values for case-4.

wn ζ

Seat Weighted RMS Acceleration [m/s2] Seat Suspension Deflection [mm]

fore-aft vertical combined fore-aft vertical

b=0 b=30 relative

change

b=0 b=30 relative

change

b=0 b=30 change b=0 b=30 relative

change

b=0 b=30 relative

change

1.2 0.2 0.0338 0.0176 -48% 0.2102 0.1477 -30% 0.2129 0.1487 -30% 0.6387 0.4746 -26% 8.2937 7.6464 -8%

1.2 0.3 0.0303 0.0183 -40% 0.1805 0.134 -26% 0.1831 0.1353 -26% 0.5122 0.407 -21% 6.4425 6.0245 -6%

1.2 0.4 0.0287 0.0194 -32% 0.1658 0.13 -22% 0.1683 0.1315 -22% 0.4261 0.3556 -17% 5.2657 4.9829 -5%

1.4 0.2 0.0462 0.0269 -42% 0.2398 0.1808 -25% 0.2442 0.1828 -25% 0.69 0.5409 -22% 7.3511 7.144 -3%

1.4 0.3 0.0383 0.025 -35% 0.203 0.1593 -22% 0.2066 0.1612 -22% 0.5201 0.4361 -16% 5.7022 5.5638 -2%

1.4 0.4 0.0343 0.0247 -28% 0.1834 0.1501 -18% 0.1866 0.1522 -18% 0.4161 0.3649 -12% 4.6526 4.5614 -2%

1.6 0.2 0.0569 0.0374 -34% 0.2617 0.206 -21% 0.2679 0.2093 -22% 0.6898 0.5871 -15% 6.4032 6.4031 0%

1.6 0.3 0.0448 0.0322 -28% 0.2189 0.1796 -18% 0.2234 0.1825 -18% 0.499 0.4484 -10% 4.959 4.994 1%

1.6 0.4 0.0386 0.0299 -23% 0.1959 0.1666 -15% 0.1996 0.1693 -15% 0.3903 0.362 -7% 4.0567 4.0917 1%

Normalized non-dimensional parameters J1 and J2 are presented in the figures 4.36 and

4.37. Higher damping ratio pairs perform better in both directions at each natural frequency

which is evident from that each constant frequency path are getting closer to 0 with increasing

damping ratio (from right to left). The best performing isolator in the fore aft direction has

1.2 Hz natural frequency and 0.4 damping ratio and 1.6 Hz natural frequency 0.4 damping

ratio pair performs the best in the vertical seat suspension.

102



0 0.5 1 1.5 2
J2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

J1

Figure 4.36 Illustration of non-dimensional parameters changes with increasing seat fore-aft
suspension inertance for all wn − ζ pairs in Case 4.
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Figure 4.37 Illustration of non-dimensional parameters changes with increasing seat vertical
suspension inertance for all wn − ζ pairs in Case 4.
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PSD of fore-aft weighted seat acceleration from its analytical definition plotted in figure

4.38. As expected and as in the previous cases, the deteriorated isolation performances with

inerters at higher frequencies are evident after about 3.5 Hz for the 1.1 Hz pair and after about

5Hz for the pair with 1.4 Hz pair. There are great suppressions around the peak responses

which explains the resultant RMS reduction listed in the table 4.4 with %48 and %28 for

plotted pairs.
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Figure 4.38 Seat fore-aft weighted acceleration PSD plots for the highest and lowest wn − ζ pairs,
comparing inerter and non-inerter versions, Case 4.

Time domain simulation results for fore-aft direction are presented in 4.39 and 4.40 in which

the lower magnitudes with inerters seen. The predominated frequencies seen in the PSD

plot observable on the time-domain plots and also due to the higher magnitude responses

at higher frequencies with inerters, higher frequency content is also observable on the time

history plots with b = 30, which is obtained seperately from Simulink simulation.
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Figure 4.39 Seat fore-aft weighted acceleration plot for the lowest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-4.
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Figure 4.40 Seat fore-aft weighted acceleration plot for the highest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-4.
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The PSD for the vertical weighted seat acceleration is plotted from its analytical definition

is plotted in the figure 4.41. Performance degradation is visible at higher frequencies and

the suppression in the magnitude around natural frequencies are evident which relates to the

reduction in the RMS values of %30 and %15 for the plotted pairs.
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Figure 4.41 Seat vertical weighted acceleration PSD plots for the highest and lowest wn − ζ pairs,
comparing inerter and non-inerter versions, Case 4.

Time domain simulation results also reflect the reduced responses around the natural

frequencies together with the increased increased responses at higher frequencies. In both

plots, higher frequency content is more pronounced as depicted in the figures 4.42 and 4.43.
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Figure 4.42 Seat vertical weighted acceleration plot for the lowest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-4.
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Figure 4.43 Seat vertical weighted acceleration plot for the highest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-4.
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In the PSD plots for the seat fore-aft deflection, it is observed that the pair with wn =

1.1, ζ = 0.2 more suppressed magnitude around the natural frequency and this reflects the

listed change of %26 reduction in the RMS value in the table 4.4. The other plotted pair seen

to be less changing in the magnitude with inerter and this explains the tabulated change of

%7 reduction. For both pairs, there is slightly less deflection at the high frequencies.
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Figure 4.44 Seat fore-aft suspension deflection PSD plots for the highest and lowest wn − ζ pairs,
comparing inerter and non-inerter versions, Case 4.

Seat fore-aft deflection time history plots are given from the Simulink simulations in below

figures 4.45 and 4.46. The reduced magnitude around the natural frequency is clearly

represented in the firs plot with lower deflection values. İt is also similar for the second

figure but the suppressed amplitudes are less pronounced.
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Figure 4.45 Seat suspension fore-aft deflection plot for the lowest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-4.
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Figure 4.46 Seat suspension fore-aft deflection plot for the highest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-4.
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Seat vertical deflection PSD plot depicted in the figure 4.47 in which the magnitudes of the

pair with wn = 1.1 Hz has reduction starting at around 1.1 Hz and before the magnitudes

seen to be greater which indicates deteriorated performance before the natural frequency.

The same trend is also evident for the 1.4 Hz pair with degraded performance until 1.4 Hz

and reduction in the deflection after that point. The changes in magnitudes seen to be more

for the wn = 1.1Hz pair than the other one and this is reflected in the table with the changes

in the RMS values of %8 reduction for the 1.1 Hz pair and %1 increase for the 1.4 Hz pair.
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Figure 4.47 Seat vertical suspension deflection PSD plots for the highest and lowest wn − ζ pairs,
comparing inerter and non-inerter versions, Case 4.

Time domain simulation results are shown in the figures 4.48 and 4.49 both reflecting the

findings in the PSD plots. In the first figure, it iseen that the deflection values are generally

smaller and the predominant frequency is slightly lower with inerter and in the second figure

it is seen that the differences between inerter and non-inerter suspension has closer response

in time.
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Figure 4.48 Seat suspension vertical deflection plot for the lowest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-4.
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Figure 4.49 Seat suspension vertical deflection plot for the highest wn − ζ pair with and without
inerter from Simulink time domain simulation, case-4.
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5. Conclusion

The ride comfort performance benefit of inerters is investigated for both the cab suspension

and seat suspension of a tractor semi-trailer. Since today’s vehicle seats typically feature two

independent suspensions for vertical and fore-aft directions, an inerter is modeled for each

direction. The effects of inerters are then studied across a range of inertance values within

a set of natural frequencies and damping ratios of the cab and seat suspensions, in order to

broaden the validity of the analysis carried out.

Despite that parallel inerter based suspensions degrade in performance at higher frequencies,

the findings indicate that inerters can improve ride comfort when implemented in both the

tractor semi-trailer cab and seat suspensions, by decreasing the weighted RMS acceleration

values together with RMS suspension deflection which is a crucial factor when designing and

assessing suspensions. It is seen that, the most of the contribution into the RMS acceleration

content brought by the frequencies near the natural frequencies. There are 2 important

factors; the PSD definition of road profile and the acceleration weighting definitions.

The excitation magnitude becomes rapidly very small as the frequency increasing. This

provide very low excitation amplitudes at the frequencies where the inerter based suspension

performance degrades. Furthermore, frequency-dependent acceleration weightings are also

becaomes very small at the frequencies where the suspension performance is deteoriated by

with inerter. Conversely, both excitation and frequency weighting are found to be much

higher at the frequencies where the inerter based suspension have superior performance

resulting in, overall better isolation

The different investigation cases showed for the cab suspension the the best performance

is achieved with inerters at both the front and rear. It is noted that the fore-aft comfort is

affected by the inerter location. While, vertical comfort is always enhanced, fore-aft comfort

is negtively affected for some wn − ζ pairs when no seat inerter is implemented. However,

investigation case-4 shows great improvement in the fore-aft direction with seat inerters.
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The seat suspension benefits most from the inclusion of inerters. Comfort improvements

of up to 48% are observed in the fore-aft direction, accompanied by a 26% reduction

in RMS deflection. In the vertical direction, improvements of up to 30% in weighted

RMS acceleration and a 8% reduction in RMS deflection are achievable. The extent to

which inerters enhance vibration isolation at the seat suspension depends on the initial

configuration, with softer suspensions tending to benefit the most from inerters.
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APPENDIX

APPENDIX 1 - Matlab Function for cab inerter studies

cabfunc.m function expects the numeric substitution values x for symbolic state-space

matrix A in the order which can be obtained by symvar command, symbolic state-space

matrices A, B, C, D, numeric wheelbase distance array wl, numeric velocity variable V,

symbolic ISO-2631 filter transfer functions Wd, Wk and symbolic road profile PSD function

Gf.

It returns, seat weighted RMS fore-aft acceleration wrmsax_s, seat weighted RMS fore-aft

and vertical accelerations wrmsaz_s, seat weighted combined acceleration wrmsac_s,

RMS cab deflection rmsdz_c, seat weighted fore-aft, acceleration, vertical acceleration

and cab deflection PSD functions S_wx_s, S_wz_s and S_dz_c, respectively.

function [wrmsax_s, wrmsaz_s, wrmsac_s,...

rmsdz_c, S_wx_s, S_wz_s, S_dz_c, H] =...

cab_func(x,A,B,C,D,wl,V,Wd,Wk,Gf)

syms s f

symvars = symvar(A);

Ad = double(subs(A,symvars,x));

% obtain time delay transfer function

H = sym(zeros(size(A,1),1));

for i=1:size(B,2) % obtain transfer function

% from every input to every output

[b(:,:,i) , a(:,:,i)] = ss2tf(Ad,B,C,D,i);

for j=1:2 % get seat position pos. response

% to road and bind transfer functions each

% input by adding time delay

H(j,1) = H(j,1) + exp(-wl(i)/V*s) * ...
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poly2sym(b(j,:,i),s) / poly2sym(a(:,:,i),s);

end

for j=5:5 % get cab susp. deflection response to

% road and bind transfer functions each input by

% adding time delay

H(j,1) = H(j,1) + exp(-wl(i)/V*s) *...

poly2sym(b(j,:,i),s) / poly2sym(a(:,:,i),s);

end

end

%FRF FUNCTIONS

% seat weighted acceleration FRF

H_wx_s(f) = vpa(abs(subs(s^2*H(1)*Wd,s,1i*2*pi*f))); % seat

% weighted longitudinal acceleration FRF magnitude

H_wz_s(f) = vpa(abs(subs(s^2*H(2)*Wk,s,1i*2*pi*f))); % seat

% weighted vertical acceleration FRF magnitude

% cab CoG-chassis vertical distance FRF

H_dz_c(f) = vpa(abs(subs(H(5),s,1i*2*pi*f))); % cab front

% suspension vert. deflection FRF magnitude

% PSD RESPONSES

% seat weighted acceleration PSD function

S_wx_s(f) = H_wx_s(f)^2 * Gf(f); % seat weighted

% longitudinal acceleration PSD response function

S_wz_s(f) = H_wz_s(f)^2 * Gf(f); % seat weighted

% vertical acceleration PSD response function

% cab CoG-chassis distance PSD function

S_dz_c(f) = H_dz_c(f)^2 * Gf(f); % cab CoG-chassis

% vertical distance PSD function

% RMS VALUES

% seat weighted rms accelerations

119



wrmsax_s = sqrt(double(vpaintegral(S_wx_s(f),...

[0.5 80]))); % seat weighted longitudal rms acceleration

wrmsaz_s = sqrt(double(vpaintegral(S_wz_s(f),...

[0.5 80]))); % seat weighted vertical rms acceleration

wrmsac_s = sqrt(wrmsax_s^2 + wrmsaz_s^2); % seat weighted

% combined rms acceleration

% cab CoG-chassis vertical distance rms deflections

rmsdz_c = sqrt(double(vpaintegral(S_dz_c(f),...

[0.01*V 10*V]))); % cab CoG-chassis vertical

% distance rms deflection

end

It returns, seat weighted RMS fore-aft acceleration wrmsax_s, seat weighted RMS fore-aft

and vertical accelerations wrmsaz_s, seat weighted combined acceleration wrmsac_s,

RMS seat fore-aft suspension deflection rmsdx_s, seat RMS vertical suspension deflection

wrmsdz_s and the PSD function outputs S_wx_s, S_wz_s, S_dx_s, S_dz_s are

for seat weighted fore-aft acceleraion, seat weighted vertical acceleration, seat fore-aft

suspension deflection and seat vertical acceleration deflection, respectively.

function [wrmsax_s, wrmsaz_s, wrmsac_s, rmsdx_s,...

rmsdz_s, S_wx_s, S_wz_s, S_dx_s, S_dz_s] =...

seat_func(x,A,B,C,D,wl,V,Wd,Wk,Gf)

syms s f

symvars = symvar(A);

Ad = double(subs(A,symvars,x));

% obtain time delay transfer function

H = sym(zeros(size(A,1),1));

for i=1:size(B,2) % obtain transfer function

% from every input to every output

[b(:,:,i) , a(:,:,i)] = ss2tf(Ad,B,C,D,i);
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for j=1:2 % get seat position pos. response

% to road and bind transfer functions each

% input by adding time delay

H(j,1) = H(j,1) + exp(-wl(i)/V*s) *...

poly2sym(b(j,:,i),s) / poly2sym(a(:,:,i),s);

end

for j=3:4 % get cab susp. deflection response

% to road and bind transfer functions each input

% by adding time delay

H(j,1) = H(j,1) + exp(-wl(i)/V*s) *...

poly2sym(b(j,:,i),s) / poly2sym(a(:,:,i),s);

end

end

% FRF FUNCTIONS

% seat suspension deflection FRF

H_dx_s(f) = vpa(abs(subs(H(3),s,1i*2*pi*f))); % seat

% suspension long. deflection FRF magnitude

H_dz_s(f) = vpa(abs(subs(H(4),s,1i*2*pi*f))); % seat

% suspension vert. deflection FRF magnitude

% seat weighted acceleration FRF

H_wx_s(f) = vpa(abs(subs(s^2*H(1)*Wd,s,1i*2*pi*f))); % seat

% weighted longitudinal acceleration FRF magnitude

H_wz_s(f) = vpa(abs(subs(s^2*H(2)*Wk,s,1i*2*pi*f))); % seat

% weighted vertical acceleration FRF magnitude

% PSD RESPONSES

% seat suspension deflection PSD function

S_dx_s(f) = H_dx_s(f)^2 * Gf(f); % cab front suspension

% vert. deflection response PSD to road input

S_dz_s(f) = H_dz_s(f)^2 * Gf(f); % cab rear suspension
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% vert. deflection response PSD to road input

% seat weighted acceleration PSD function

S_wx_s(f) = H_wx_s(f)^2 * Gf(f);

S_wz_s(f) = H_wz_s(f)^2 * Gf(f);

% RMS VALUES

% cab suspension rms deflections

rmsdx_s = sqrt(double(vpaintegral(S_dx_s(f),...

[0.01*V 10*V],'RelTol', 1e-9,...

'AbsTol', 1e-12))); % cab front suspension

% vertical rms deflection

rmsdz_s = sqrt(double(vpaintegral(S_dz_s(f),...

[0.01*V 10*V],'RelTol', 1e-9,...

'AbsTol', 1e-12))); % cab rear suspension

% vertical rms deflection

% seat weighted rms accelerations

wrmsax_s = sqrt(double(vpaintegral(S_wx_s(f),...

[0.5 80]))); % seat weighted longitudal rms acceleration

wrmsaz_s = sqrt(double(vpaintegral(S_wz_s(f),...

[0.5 80]))); % seat weighted vertical rms acceleration

wrmsac_s = sqrt(wrmsax_s^2 + wrmsaz_s^2);

end

APPENDIX 2 - Main Matlab Code

main.m calculates equations of motion and state-space matrices for the system model and

must be executed prior to the case study codes.

clc, clear

sympref('AbbreviateOutput', false);
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% generalized coordinates in world frame

syms x_s(t) z_s(t) % seat

syms x_c(t) z_c(t) theta_c(t) % cab

syms x_tr(t) z_tr(t) theta_tr(t) % tractor chassis

syms theta_st(t) % trailer

syms z_1(t) z_2(t) % tractor axles

syms z_3(t) z_4(t) z_5(t) % trailer axles

syms u_1(t) u_2(t) u_3(t) u_4(t) u_5(t) % road inputs

% generalized coordinates x:

x = [x_s;z_s;x_c;z_c;theta_c;x_tr;...

z_tr;theta_tr;theta_st;z_1;z_2;z_3;z_4;z_5];

x = x(t);

x_dot = diff(x);

x_ddot = diff(x_dot);

% generalized inputs q:

q = [u_1;u_2;u_3;u_4;u_5];

q = q(t);

% mass, inertia, stiffness, damping,

% inertance parameter variables

syms m_s m_c m_tr m_st m_1 m_2 m_3 m_4 m_5

syms I_c I_tr I_st

syms k_sx k_sz k_cfx k_cfz k_crz k_trf k_trr k_st1 k_st2

syms k_st3 k_1 k_2 k_3 k_4 k_5

syms c_sx c_sz c_cfx c_cfz c_crz c_trf c_trr

syms c_st1 c_st2 c_st3

syms b_sx b_sz % parallel seat inertances

syms b_cfx b_cfz b_crz % cab parallel inertance

syms l_cf % Distance from Cab CoG to front

% suspension mount 940mm
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syms h_cf % Height from cab CoG to front

% suspension mount -970mm

syms l_cr % Distance from Cab CoG to rear

% suspension mount -1140mm

syms h_cr % Heigt from cab CoG to rear

% suspension mount -970mm

syms l_cs % Distance from Cab CoG to Seat CoG 230mm

syms h_cs % Height from Cab CoG to Seat CoG -245mm

syms l_trfa % Distance from tractor CoG to front axle

% suspension 1460mm+430mm

syms l_trra % Distance from tractor CoG to rear axle

% suspension -2340mm-430mm

syms l_trfc % Distance from tractor CoG to front cab

% suspension mount 2570mm

syms l_trrc % Distance from tractor CoG to rear cab

% suspension mount 490mm

syms l_tr5 % Distance from tractor CoG to 5th wheel

% coupling -1820mm

syms h_tr5 % Height from tractor CoG to 5th wheel

% coupling 250mm

syms l_5st % Distance from 5th wheel coupling to

% trailer CoG -5610mm

syms h_5st % Height from 5th wheel coupling to

% trailer CoG 100mm

syms l_st1 % Distance from 5th wheel coupling to

% trailer 1st axle -6310mm

syms l_st2 % Distance from 5th wheel coupling to

% trailer 2nd axle -7620mm

syms l_st3 % Distance from 5th wheel coupling to
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% trialer 3rd axle -8930mm

% Energy functions

% KINETIC ENERGIES

% Seat mass

KE_s = 1/2*m_s*diff(x_s)^2 +...

1/2*m_s*diff(z_s)^2;

% Seat Parallel Inerters

KE_ip = 1/2*b_sx*diff(x_s - (x_c + theta_c*h_cs))^2 + ...

1/2*b_sz*diff(z_s - (z_c - theta_c*l_cs))^2;

% Cab mass

KE_c = 1/2*m_c*diff(x_c)^2 +...

1/2*m_c*diff(z_c)^2 +...

1/2*I_c*diff(theta_c)^2;

% Cab parallel Inerters

KE_ic = 1/2*b_cfx*diff((x_c + theta_c*h_cf)...

- (x_tr))^2 + 1/2*b_cfz*diff((z_c - theta_c*l_cf)...

- (z_tr - theta_tr*l_trfc))^2 + 1/2*b_crz*...

diff((z_c - theta_c*l_cr) - (z_tr - theta_tr*l_trrc))^2;

% Tractor mass

KE_tr = 1/2*m_tr*diff(x_tr)^2 +...

1/2*m_tr*diff(z_tr)^2 +...

1/2*I_tr*diff(theta_tr)^2;

% Trailer mass

KE_st = 1/2*m_st*...

diff(x_tr+theta_tr*h_tr5+theta_st*h_5st)^2+1/2*m_st*...

diff(z_tr-theta_tr*l_tr5-theta_st*l_5st)^2+...

1/2*I_st*diff(theta_st)^2;

% Axles mass

KE_axles = 1/2*m_1*diff(z_1)^2 +...
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1/2*m_2*diff(z_2)^2 +...

1/2*m_3*diff(z_3)^2 +...

1/2*m_4*diff(z_4)^2 +...

1/2*m_5*diff(z_5)^2;

%TOTAL KINETIC ENERGY

KE = KE_s + KE_ip + KE_c + KE_ic + KE_tr + KE_st + KE_axles;

% POTENTIAL ENERGIES

% Seat Springs

PE_s = 1/2*k_sx*(x_s - (x_c + theta_c*h_cs))^2 + ...

1/2*k_sz*(z_s - (z_c - theta_c*l_cs))^2;

% Cab springs

PE_c = 1/2*k_cfx*((x_c+theta_c*h_cf)-(x_tr))^2+...

1/2*k_cfz*((z_c-theta_c*l_cf)-...

(z_tr-theta_tr*l_trfc))^2 + ...

1/2*k_crz*((z_c-theta_c*l_cr)-...

(z_tr-theta_tr*l_trrc))^2;

% Tractor springs

PE_tr = 1/2*k_trf*((z_tr-theta_tr*l_trfa)-(z_1))^2+...

1/2*k_trr*((z_tr-theta_tr*l_trra)-(z_2))^2;

% Semi-Trailer springs

PE_st = 1/2*k_st1*...

(z_tr-theta_tr*l_tr5-theta_st*l_st1-z_3)^2+1/2*...

k_st2*(z_tr-theta_tr*l_tr5-theta_st*l_st2-z_4)^2+...

1/2*k_st3*(z_tr-theta_tr*l_tr5-theta_st*l_st3-z_5)^2;

% Tyre springs

PE_tyres = 1/2*k_1*(z_1-u_1)^2 + ...

1/2*k_2*(z_2-u_2)^2 + ...

1/2*k_3*(z_3-u_3)^2 + ...

1/2*k_4*(z_4-u_4)^2 + ...

126



1/2*k_5*(z_5-u_5)^2;

% TOTAL POTENTIAL ENERGY

PE = PE_s + PE_c + PE_tr + PE_st + PE_tyres;

% DISSIPATIVE ENERGIES

% Seat dampers

DE_s = 1/2*c_sx*diff(x_s-(x_c+theta_c*h_cs))^2 + ...

1/2*c_sz*diff(z_s-(z_c-theta_c*l_cs))^2;

% Cab dampers

DE_c = 1/2*c_cfx*diff((x_c+theta_c*h_cf)-(x_tr))^2+...

1/2*c_cfz*diff((z_c-theta_c*l_cf)...

-(z_tr - theta_tr*l_trfc))^2+...

1/2*c_crz*diff((z_c-theta_c*l_cr)-...

(z_tr - theta_tr*l_trrc))^2;

% Tractor dampers

DE_tr = 1/2*c_trf*diff((z_tr-theta_tr*l_trfa)-(z_1))^2+...

1/2*c_trr*diff((z_tr-theta_tr*l_trra)-(z_2))^2;

% Semi-Trailer dampers

DE_st = 1/2*c_st1*...

diff(z_tr-theta_tr*l_tr5-theta_st*l_st1-z_3)^2+...

1/2*c_st2*...

diff(z_tr-theta_tr*l_tr5-theta_st*l_st2-z_4)^2+...

1/2*c_st3*...

diff(z_tr-theta_tr*l_tr5-theta_st*l_st3-z_5)^2;

% TOTAL DISSIPATIVE ENERGY

DE = DE_s + DE_c + DE_tr + DE_st;

L = KE - PE;

% derive equations of motion

eqms = sym(zeros(size(x)));

for i=1:height(x)
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eqms(i,1) = diff(diff(L,diff(x(i),t)),t)...

-diff(L,x(i))+diff(DE,diff(x(i),t))==0;

end

% MASS,STIFFNESS,DAMPING MATRICES

for i=1:height(eqms)

for j=1:height(x_ddot)

MM(i,j) = diff(lhs(eqms(i)),x_ddot(j));

end

end

% STIFFNESS MATRIX

for i=1:height(eqms)

for j=1:height(x)

KK(i,j) = diff(lhs(eqms(i)),x(j));

end

end

% DAMPING MATRIX

for i=1:height(eqms)

for j=1:height(x_dot)

CC(i,j) = diff(lhs(eqms(i)),x_dot(j));

end

end

% INPUT

for i=1:height(eqms)

for j=1:height(q)

U(i,j) = diff(lhs(eqms(i)),q(j));

end

end

%Parameters

m_s = 105.4; % fore-aft model heavy subject reduced
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% model mass inc. seat&human [kg]

m_c = 1300/2; % PARAMETERS: 9DOF pitch heave model,

% half of the cab mass [kg]

I_c = 1100/2; % half of the cab pitch inertia [kgm^2]

m_tr = 2503/2+1785/2; % half of tractor chassis and

% engine mass [kg]

I_tr = 46590/2; % TRANSGRUD: half of the tractor chassis

% and engine inertia [kgm^2]

m_st = 15170; % PARAMETERS: half of the trailer

% mass inc load [kg]

I_st = 200000/2; % Generic laden trailer inertia [kgm^2]

m_1 = 700/2; % PARAMETERS: half of front axle mass [kg]

m_2 = 1240/2; % half of tractor rear axle mass [kg]

m_3 = 450; % Generic half of trailer axle mass [kg]

m_4 = 450; % half of trailer axle mass [kg]

m_5 = 450; % half of trailer axle mass [kg]

k_sx0 = 8510; % FORE-AFT: low friction model seat

% fore-aft stiffness [N/m]

k_sz0 = 7961.6; % RAKHEJA PART-1: Seat B seat vert.

% stiffness [N/m] (for 105.4)

k_cfx = 6000000; % PARAMETERS: cab front long.

% spring stiff [N/m]

k_cfz0 = 20000; % cab front vert. spring stiff. [N/m]

k_crz0 = 20000; % cab rear vert. spring stiff [N/m]

k_trf = 300000; % tractor front susp. stiff. [N/m]

k_trr = 300000; % tractor rear susp. stiff. [N/m]

k_st1 = 400000; % trailer suspension stiff. [N/m]

k_st2 = 400000; % trailer suspension stiff. [N/m]

k_st3 = 400000; % trailer suspension stiff. [N/m]
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k_1 = 1200000; % tractor front tyre stiff. [N/m]

k_2 = 2200000; % tractor rear tyre

% stiff. 4 TYRE PER AXLE!! [N/m]

k_3 = 1200000; % trailer tyre stiff [N/m]

% (trangsrud+parameters)

k_4 = 1200000; % trailer tyre stiff [N/m]

k_5 = 1200000; % trailer tyre stiff [N/m]

c_sx0 = 606; % FORE-AFT low friction: seat

% long. damping [Ns/m]

c_sz0 = 788; % RAKHEJA SEAT B: calculated

% for damped nat. freq. 1.25 Hz. [Ns/m]

c_cfx = 25000; % PARAMETERS: cab front

% susp. long. damping [Ns/m]

c_cfz0 = 7400; % cab front susp. vert. damping [Ns/m]

c_crz0 = 5900; % cab rear susp. vert. damping [Ns/m]

c_trf = 11000; % tractor front axle susp. damping [Ns/m]

c_trr = 22000; % tractor rear axle susp. damping [Ns/m]

c_st1 = 10000; % trailer axle susp. damping [Ns/m]

c_st2 = 10000; % trailer axle susp. damping [Ns/m]

c_st3 = 10000; % trailer axle susp. damping [Ns/m]

l_cf = 0.94;

h_cf = -0.97;

l_cr = -1.14;

l_cs = 0.23;

h_cs = -0.65;

l_trfa = 1.46-0.43;

l_trra = -2.34-0.43;

l_trfc = 2.57;

l_trrc = 0.49;
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l_tr5 = -1.82;

h_tr5 = 0.25;

l_5st = -5.61;

h_5st = 0.5;

l_st1 = -6.31;

l_st2 = -7.62;

l_st3 = -8.93;

symeqms = eqms;

eqms = subs(eqms);

MM = subs(MM);

KK = subs(KK);

CC = subs(CC);

Minv = MM^-1;

eqms2 = x_ddot == -Minv*KK*x - Minv*CC*x_dot - Minv*U*q;

% STATE SPACE

xss = [x ; x_dot];

xss_dot = diff(xss);

Ass = [zeros(14,14) , eye(14,14) ; -Minv*KK , -Minv*CC];

Bss = [zeros(14,5) ; -Minv*U];

Css = eye(height(xss));

Css(1,1) = 1; % seat longitudinal position

Css(2,2) = 1; % seat vertical position

Css(3,1:5) = [1 0 -1 0 -h_cs]; % seat suspension

% long. deflection

Css(4,1:5) = [0 1 0 -1 l_cs]; % seat suspension

% vert. deflection

Css(5,1:8) = [0 0 0 1 0 0 -1 l_trrc-l_cr]; % cab

% CoG-Chassis distance

Dss = zeros(size(Bss));
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wl = [0 ; 3.8 ; 9.59 ; 10.9 ; 12.21]; % axle

% distances from first axle [m]

% ROAD PSD FUNCTION

syms n f V

Gd0 = 16*10^-6; % road degree of roughness mean value

% for road class A ISO8608:2016

w = 2; % fit exponent defined by ISO8608:2016

n0 = 0.1; % degree of roughness reference

% spatial frequency [cycles/m]

G(n) = vpa(Gd0*(n/n0)^-w);

fplot(G,[0.004 10])

set(gca,'Xscale','log','Yscale','log')

grid on

xlabel('Spatial Frequency [cycle/m]')

ylabel('Displacement PSD [m^3]')

title('Displacement PSD Graph for ISO8608 Class:A')

xlim([0.004 10])

ylim([10^-8 1])

% Road PSD definition in frequency

Gf(f) = subs(G/V,n,f/V); % PSD definition

% in time frequency dependent on V [Hz]

Vels = [90/3.6 ; 70/3.6 ; 50/3.6];

for j=1:length(Vels)

S_temp = subs(Gf,V,Vels(j));

fplot(S_temp,[0.01 10]*Vels(j),'LineWidth',2)

hold on

end

set(gca , 'Xscale', 'log', 'Yscale', 'log')

% xlim([0.1 100])
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% ylim([1e-9 1e-3])

grid on

xlabel('Frequency [Hz]')

ylabel(sprintf("Displacement PSD [m^2/Hz]"))

title('PSD Graphs for different velocities')

legend('V = 90 km/h','V = 70 km/h','V = 50 km/h')

hold off

% ISO FILTERS

[Wd, Wk] = ISO_filter;

syms s f

tempfunWd(f) = 20*log10(abs(subs(Wd,s,2i*pi*f)));

tempfunWk(f) = 20*log10(abs(subs(Wk,s,2i*pi*f)));

% Calculate Third Octave Bands

% (base 10) in Matlab // wikipedia

fcentre = 10.^(0.1.*[-18:26]);

semilogx(fcentre(9:end),tempfunWk(fcentre(9:end)))

hold on

semilogx(fcentre(9:end),tempfunWd(fcentre(9:end)))

xlim([fcentre(1) fcentre(end)])

ylim([-90 10])

xticks(fcentre(1:3:end))

xline(fcentre)

yline(-90:10:10)

title(['ISO2631:1997 Frequency...' ...

' Weighting Curves for Principal Weightings'])

xlabel('Frequency [Hz]')

ylabel('Frequency weightings [dB]')

legend('W_k','W_d')

ax = gca;
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ax.XAxis.TickLabelFormat = '%.2f';

hold off

APPENDIX 3 - Matlab Code for Case-1

This code runs the calculations for the case-1 and plots the results. The simulink model must

be constructed and placed within the same directory with this code.

To obtain code for case-2 and case-3, below changes should be made, in their respective

places in the code for case-1.

Necessary chages for case-2;

caseindex =2;

resultname='case2';

b_cabf_v(i,j,k)=0;

b_cabr_v(i,j,k)=b_c(k);

A1 = subs(A1,symvars(2),0);

A1 = subs(A1,symvars(3),b_c(1));

A2 = subs(A2,symvars(2),0;

A2 = subs(A2,symvars(3),b_c(end));

A3 = subs(A1,symvars(2),0;

A3 = subs(A1,symvars(3),b_c(1));

A4 = subs(A2,symvars(2),0;

A4 = subs(A2,symvars(3),b_c(end));

Necessary chages for case-3;

caseindex =3;

resultname='case3';

b_cabf_v(i,j,k)=b_c(k);

b_cabr_v(i,j,k)=b_c(k);
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A1 = subs(A1,symvars(2),b_c(1));

A1 = subs(A1,symvars(3),b_c(1));

A2 = subs(A2,symvars(2),b_c(end));

A2 = subs(A2,symvars(3),b_c(end));

A3 = subs(A1,symvars(2),b_c(1));

A3 = subs(A1,symvars(3),b_c(1));

A4 = subs(A2,symvars(2),b_c(end));

A4 = subs(A2,symvars(3),b_c(end));

caseindex = 1;

resultname = 'case1';

Vels = 90/3.6; % vehicle velocity

w_n_c = [0.8 1.2 1.6]; % cab vertical natural

% frequency range

zeta_c = [0.2 0.4 0.8]; % cab damping ratio range

b_c = 0:20:300; % cab vertical inerters range

Atemp = subs(Ass); % substitute fix parameters

Bd = double(subs(Bss));

Cd = double(Css);

Dd = double(Dss);

% construct spring, damper and inerter

% values for simulation separately in

% order to be able to use parfor

k_cabf_v = zeros(length(w_n_c),length(zeta_c),length(b_c));

k_cabr_v = zeros(length(w_n_c),length(zeta_c),length(b_c));

c_cabf_v = zeros(length(w_n_c),length(zeta_c),length(b_c));

c_cabr_v = zeros(length(w_n_c),length(zeta_c),length(b_c));

b_cabf_v = zeros(length(w_n_c),length(zeta_c),length(b_c));

b_cabr_v = zeros(length(w_n_c),length(zeta_c),length(b_c));

135



for i = 1:length(w_n_c)

for j = 1:length(zeta_c)

parfor k = 1:length(b_c)

% calculate cab spring for the

% current natural frequency

k_cabf_v(i,j,k) = double(solve(1/2/pi*...

sqrt((k_cfz+k_cfz)/m_c)==w_n_c(i)));

k_cabr_v(i,j,k) = k_cabf_v(i,j,k);

% calculate cab damper for the

% current damping ratio

c_cabf_v(i,j,k)=double(solve((c_cfz+c_cfz)/...

(2*sqrt((k_cabf_v(i,j,k)+...

k_cabr_v(i,j,k))*m_c))...

==zeta_c(j)));

c_cabr_v(i,j,k)=c_cabf_v(i,j,k);

% inerter values

b_cabf_v(i,j,k)=b_c(k);

b_cabr_v(i,j,k)=0;

end

end

end

% simulate base model

[wrmsax_s0, wrmsaz_s0, wrmsac_s0, rmsdz_c0,...

S_wx_s0, S_wz_s0, S_dz_c0] =...

cab_func([0 0 0 0 0 c_cfz0 c_crz0 c_sx0 c_sz0 k_cfz0...

k_crz0 k_sx0 k_sz0],Atemp,Bd,Cd,Dd,wl,Vels,Wd,Wk,...

subs(Gf,V,Vels));

% Call simulation function to get

% results and store in the struct
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for i=1:length(w_n_c) % loop for cab

% vertical natural frequency

for j=1:length(zeta_c) % loop for

% cab vertical damping

parfor k=1:length(b_c) % loop for

% cab vertical inerter

[wrmsax_s(i,j,k), wrmsaz_s(i,j,k),...

wrmsac_s(i,j,k), rmsdz_c(i,j,k),...

S_wx_s(i,j,k), S_wz_s(i,j,k),...

S_dz_c(i,j,k)] =...

cab_func([0 b_cabf_v(i,j,k)...

b_cabr_v(i,j,k) 0 0 c_cabf_v(i,j,k)...

c_cabr_v(i,j,k) c_sx0 c_sz0...

k_cabf_v(i,j,k) k_cabr_v(i,j,k)...

k_sx0 k_sz0],Atemp,Bd,Cd,Dd,wl,Vels,...

Wd,Wk,subs(Gf,V,Vels));

end

end

end

% store results in struct variable

result = struct('V', {}, 'w_n_c', {}, 'zeta_c', {},...

'b_c', {}, 'k_cabf_v', {}, 'k_cabr_v', {},...

'c_cabf_v', {}, 'c_cabr_v', {}, 'b_cabf_v', {},...

'b_cabr_v',{},'wrmsax_s', {} , 'wrmsaz_s', {} ,...

'wrmsac_s', {} , 'rmsdz_c', {} , 'J1', {} , 'J2',...

{} , 'J', {}, 'S_wx_s', {}, 'S_wz_s', {}, 'S_dz_c', {});

for i = 1:length(w_n_c)

for j = 1:length(zeta_c)

for k = 1:length(b_c)
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index = (i - 1) * length(zeta_c) *...

length(b_c) + (j - 1) * length(b_c) + k;

result(index).V = Vels;

result(index).w_n_c = w_n_c(i);

result(index).zeta_c = zeta_c(j);

result(index).b_c = b_c(k);

result(index).k_cabf_v = k_cabf_v(i,j,k);

result(index).k_cabr_v = k_cabr_v(i,j,k);

result(index).c_cabf_v = c_cabf_v(i,j,k);

result(index).c_cabr_v = c_cabr_v(i,j,k);

result(index).b_cabf_v = b_cabf_v(i,j,k);

result(index).b_cabr_v = b_cabr_v(i,j,k);

result(index).wrmsax_s = wrmsax_s(i,j,k);

result(index).wrmsaz_s = wrmsaz_s(i,j,k);

result(index).wrmsac_s = wrmsac_s(i,j,k);

result(index).rmsdz_c = rmsdz_c(i,j,k);

result(index).J1 = wrmsac_s(i,j,k)/wrmsac_s0;

result(index).J2 = (rmsdz_c(i,j,k))/(rmsdz_c0);

result(index).J = sqrt((result(index).J1^2) +...

(result(index).J2^2));

result(index).S_wx_s = S_wx_s(i,j,k);

result(index).S_wz_s = S_wz_s(i,j,k);

result(index).S_dz_c = S_dz_c(i,j,k);

end

end

end

% hold results in another struct

results.(resultname) = result;

figure
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for i = 1:length(w_n_c)

for j = 1:length(zeta_c)

indeces = find(and([results.(resultname).w_n_c]==...

w_n_c(i),and([results.(resultname).zeta_c]==...

zeta_c(j),[results.(resultname).b_c]==0)));

scatter([results.(resultname)(indeces).rmsdz_c]*...

1000,...

[results.(resultname)(indeces).wrmsac_s],...

'k', 'filled')

text([results.(resultname)(indeces).rmsdz_c]*...

1000+0.1,...

[results.(resultname)(indeces).wrmsac_s],...

['$\omega_n=$', sprintf('%s\n' ,...

num2str(w_n_c(i))),'$\zeta=$',sprintf('%s\n',...

num2str(zeta_c(j))),'$b=0$'],...

'HorizontalAlignment', 'left',...

'VerticalAlignment', 'middle',...

'Interpreter', 'latex');

hold on

end

end

grid on

xlabel('RMS Cab Deflection [mm]')

ylabel('Weighted RMS Combined Seat Acceleration [m/s^2]')

hold off

figure

for i = 1:length(w_n_c)

for j = 1:length(zeta_c)

indeces = find(and([results.(resultname).w_n_c]==...
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w_n_c(i),and([results.(resultname).zeta_c]==...

zeta_c(j),[results.(resultname).b_c] == 0)));

scatter( [results.(resultname)(indeces).rmsdz_c]*...

1000,...

[results.(resultname)(indeces).wrmsac_s],...

'k', 'filled')

text([results.(resultname)(indeces).rmsdz_c]*...

1000+0.1,...

[results.(resultname)(indeces).wrmsac_s],...

['$\omega_n=$', sprintf('%s\n',...

num2str(w_n_c(i))),'$\zeta=$',sprintf('%s\n',...

num2str(zeta_c(j))),'$b=0$' ],...

'HorizontalAlignment', 'left',...

'VerticalAlignment', 'middle',...

'Interpreter', 'latex');

hold on

indeces = find(and([results.(resultname).w_n_c]==...

w_n_c(i),...

[results.(resultname).zeta_c]==zeta_c(j)));

plot([results.(resultname)(indeces).rmsdz_c]*...

1000,...

[results.(resultname)(indeces).wrmsac_s],...

'r','LineWidth',2)

end

end

grid on

xlabel('RMS Cab Deflection [mm]')

ylabel('Weighted RMS Combined Seat Acceleration [m/s^2]')

hold off
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figure

for i = 1:length(w_n_c)

for j = 1:length(zeta_c)

indeces = find(and([results.(resultname).w_n_c]==...

w_n_c(i),[results.(resultname).zeta_c]==...

zeta_c(j)));

plot([results.(resultname)(indeces).rmsdz_c]*...

1000,...

[results.(resultname)(indeces).wrmsac_s],...

'r','LineWidth',2)

hold on

indeces = find(and([results.(resultname).w_n_c]==...

w_n_c(i),and([results.(resultname).zeta_c]==...

zeta_c(j),[results.(resultname).b_c]==...

b_c(end))));

scatter([results.(resultname)(indeces).rmsdz_c]*...

1000,...

[results.(resultname)(indeces).wrmsac_s],...

'k', 'filled')

text([results.(resultname)(indeces).rmsdz_c]*...

1000+0.1 ,...

[results.(resultname)(indeces).wrmsac_s],...

['$\omega_n=$',sprintf('%s\n',...

num2str(w_n_c(i))),'$\zeta=$',sprintf('%s\n',...

num2str(zeta_c(j))),'$b=$',...

sprintf('%s',num2str(b_c(end)))],...

'HorizontalAlignment', 'left',...

'VerticalAlignment', 'middle',...
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'Interpreter', 'latex');

end

end

grid on

xlabel('RMS Cab Deflection [mm]')

ylabel('Weighted RMS Combined Seat Acceleration [m/s^2]')

hold off

figure

for i = 1:length(w_n_c)

indeces = find(and([results.(resultname).w_n_c]==...

w_n_c(i),[results.(resultname).b_c] == 0) );

plot([results.(resultname)(indeces).rmsdz_c]*1000,...

[results.(resultname)(indeces).wrmsac_s],'--k')

text([results.(resultname)(indeces(1)).rmsdz_c]*...

1000+0.1,...

[results.(resultname)(indeces(1)).wrmsac_s],...

['$\omega_n=$',sprintf('%s',num2str(w_n_c(i)))],...

'HorizontalAlignment', 'left',...

'VerticalAlignment','middle','Interpreter','latex');

hold on

end

for i = 1:length(zeta_c)

indeces = find(and([results.(resultname).zeta_c]==...

zeta_c(i) , [results.(resultname).b_c] == 0) );

plot([results.(resultname)(indeces).rmsdz_c]*1000,...

[results.(resultname)(indeces).wrmsac_s],'--k')

text([results.(resultname)(indeces(1)).rmsdz_c]*...

1000+0.1,...

[results.(resultname)(indeces(1)).wrmsac_s],...
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['$\zeta=$', sprintf('%s' , num2str(zeta_c(i)))],...

'HorizontalAlignment', 'right',...

'VerticalAlignment', 'top', 'Interpreter', 'latex');

hold on

end

for i = 1:length(w_n_c)

for j = 1:length(zeta_c)

indeces = find(and([results.(resultname).w_n_c]==...

w_n_c(i),[results.(resultname).zeta_c]==...

zeta_c(j)));

plot([results.(resultname)(indeces).rmsdz_c]*...

1000,...

[results.(resultname)(indeces).wrmsac_s],...

'r','LineWidth',2)

hold on

end

end

grid on

xlabel('RMS Cab Deflection [mm]')

ylabel('Weighted RMS Combined Seat Acceleration [m/s^2]')

hold off

figure

for i = 1:length(w_n_c)

indeces = find( and( [results.(resultname).w_n_c]==...

w_n_c(i) , [results.(resultname).b_c] == 0));

plot( [results.(resultname)(indeces).J2],...

[results.(resultname)(indeces).J1],...

'-k','LineWidth',2)

hold on
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for j = 1:length(zeta_c)

indeces = find(and([results.(resultname).w_n_c]==...

w_n_c(i),[results.(resultname).zeta_c]==...

zeta_c(j)));

plot([results.(resultname)(indeces).J2],...

[results.(resultname)(indeces).J1],...

'r','LineWidth',2)

hold on

end

end

grid on

xlabel('J2')

ylabel('J1')

optindex1 = find([results.(resultname).J]==...

min([results.(resultname).J]));

plot([0 [results.(resultname)(optindex1).J2]],...

[0 [results.(resultname)(optindex1).J1] ],'--b')

indeces = find([results.(resultname).b_c]==0);

axis equal

hold off

% INITILIZATION FOR PLOTTING AND SIMULATION

load('road.mat'); % load road data

t_end = (road(1,end)-wl(end))/Vels; % simulation end time

[num, den] = numden(Wk);

numWk = double(coeffs(num,'All'));

denWk = double(coeffs(den,'All'));

[num, den] = numden(Wd);

numWd = double(coeffs(num,'All'));

denWd = double(coeffs(den,'All'));
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% result numbers for plottings

index1 = find(and([results.(resultname).w_n_c]==w_n_c(1),...

and([results.(resultname).zeta_c]==zeta_c(1),...

[results.(resultname).b_c]==b_c(1))));

index2 = find(and([results.(resultname).w_n_c]==w_n_c(1),...

and([results.(resultname).zeta_c]==zeta_c(1),...

[results.(resultname).b_c]==b_c(end))));

index3 = find(and([results.(resultname).w_n_c]==...

w_n_c(end),and([results.(resultname).zeta_c]==...

zeta_c(end),[results.(resultname).b_c]==b_c(1))));

index4 = find(and([results.(resultname).w_n_c]==...

w_n_c(end),and([results.(resultname).zeta_c]==...

zeta_c(end),[results.(resultname).b_c] == b_c(end))));

% state space matrices for plottings

symvars = symvar(Ass);

A1 = subs(Ass,symvars(1),0);

A1 = subs(A1,symvars(2),b_c(1));

A1 = subs(A1,symvars(3),0);

A1 = subs(A1,symvars(4),0);

A1 = subs(A1,symvars(5),0);

A1 = subs(A1,symvars(6),results.(resultname)...

(index1).c_cabf_v);

A1 = subs(A1,symvars(7),results.(resultname)...

(index1).c_cabr_v);

A1 = subs(A1,symvars(8),c_sx0);

A1 = subs(A1,symvars(9),c_sz0);

A1 = subs(A1,symvars(10),results.(resultname)...

(index1).k_cabf_v);
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A1 = subs(A1,symvars(11),results.(resultname)...

(index1).k_cabr_v);

A1 = subs(A1,symvars(12),k_sx0);

A1 = subs(A1,symvars(13),k_sz0);

A1 = double(A1);

B1 = double(subs(Bss));

C1 = double(Css);

D1 = double(Dss);

A2 = subs(Ass,symvars(1),0);

A2 = subs(A2,symvars(2),b_c(end));

A2 = subs(A2,symvars(3),0);

A2 = subs(A2,symvars(4),0);

A2 = subs(A2,symvars(5),0);

A2 = subs(A2,symvars(6),results.(resultname)...

(index2).c_cabf_v);

A2 = subs(A2,symvars(7),results.(resultname)...

(index2).c_cabr_v);

A2 = subs(A2,symvars(8),c_sx0);

A2 = subs(A2,symvars(9),c_sz0);

A2 = subs(A2,symvars(10),results.(resultname)...

(index2).k_cabf_v);

A2 = subs(A2,symvars(11),results.(resultname)...

(index2).k_cabr_v);

A2 = subs(A2,symvars(12),k_sx0);

A2 = subs(A2,symvars(13),k_sz0);

A2 = double(A2);

B2 = double(subs(Bss));

C2 = double(Css);

D2 = double(Dss);

146



A3 = subs(Ass,symvars(1),0);

A3 = subs(A3,symvars(2),b_c(1));

A3 = subs(A3,symvars(3),0);

A3 = subs(A3,symvars(4),0);

A3 = subs(A3,symvars(5),0);

A3 = subs(A3,symvars(6),results.(resultname)...

(index3).c_cabf_v);

A3 = subs(A3,symvars(7),results.(resultname)...

(index3).c_cabr_v);

A3 = subs(A3,symvars(8),c_sx0);

A3 = subs(A3,symvars(9),c_sz0);

A3 = subs(A3,symvars(10),results.(resultname)...

(index3).k_cabf_v);

A3 = subs(A3,symvars(11),results.(resultname)...

(index3).k_cabr_v);

A3 = subs(A3,symvars(12),k_sx0);

A3 = subs(A3,symvars(13),k_sz0);

A3 = double(A3);

B3 = double(subs(Bss));

C3 = double(Css);

D3 = double(Dss);

A4 = subs(Ass,symvars(1),0);

A4 = subs(A4,symvars(2),b_c(end));

A4 = subs(A4,symvars(3),0);

A4 = subs(A4,symvars(4),0);

A4 = subs(A4,symvars(5),0);

A4 = subs(A4,symvars(6),results.(resultname)...

(index4).c_cabf_v);

A4 = subs(A4,symvars(7),results.(resultname)...
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(index4).c_cabr_v);

A4 = subs(A4,symvars(8),c_sx0);

A4 = subs(A4,symvars(9),c_sz0);

A4 = subs(A4,symvars(10),results.(resultname)...

(index4).k_cabf_v);

A4 = subs(A4,symvars(11),results.(resultname)...

(index4).k_cabr_v);

A4 = subs(A4,symvars(12),k_sx0);

A4 = subs(A4,symvars(13),k_sz0);

A4 = double(A4);

B4 = double(subs(Bss));

C4 = double(Css);

D4 = double(Dss);

% SEAT FORE-AFT RESULTS

u=logspace(log10(.5),log10(80),500);

tempfunb0(f) = results.(resultname)(index1).S_wx_s;

tempfunbmax(f) = results.(resultname)(index2).S_wx_s;

figure

loglog(u,tempfunb0(u),'-k')

hold on

loglog(u,tempfunbmax(u),'--k')

tempfunb0(f) = results.(resultname)(index3).S_wx_s;

tempfunbmax(f) = results.(resultname)(index4).S_wx_s;

loglog(u,tempfunb0(u),'-r')

loglog(u,tempfunbmax(u),'--r')

xlim([0.1 100])

grid on

xlabel('frequency [Hz]')

ylabel(['seat fore-aft acceleration response PSD ' ...
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'[((m/s^2)^2)/Hz]'])

legend(sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(end))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(end))),...

'Location', 'best', 'Interpreter', 'latex');

hold off

A=A1; B=B1; C=C1; D=D1; % set state-space

% matrices for simulink

% Run the simulation for the first set

% of matrices (A1, B1, C1, D1)

out1 = sim('time_domain_simulation');

time1 = out1.logsout{4}.Values.Time; % Extract time data

data1 = out1.logsout{4}.Values.Data; % Extract

% acceleration data

A=A2; B=B2; C=C2; D=D2; % set state-space

% matrices for simulink

% Run the simulation for the second set

% of matrices (A2, B2, C2, D2)

out2 = sim('time_domain_simulation');

time2 = out2.logsout{4}.Values.Time; % Extract time data
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data2 = out2.logsout{4}.Values.Data; % Extract

% acceleration data

% Plot the main figure

figure;

% Plot the full data

subplot(2,1,1);

plot(time1, data1, '-k');

hold on;

plot(time2, data2, '--k');

xlabel('time [s]');

ylabel('acceleration [m/s^2]');

grid on;

legend(sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(end))),...

'Location', 'best', 'Interpreter', 'latex');

% Define the zoomed-in region

zoom_region_start = 4; % Define the start

% of the zoomed region

zoom_region_end = 6; % Define the end

% of the zoomed region

% Plot the zoomed-in area

subplot(2,1,2);

plot(time1, data1, '-k');

hold on;

plot(time2, data2, '--k');
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xlim([zoom_region_start, zoom_region_end]);

xlabel('time [s]');

ylabel('acceleration [m/s^2]');

grid on;

legend(sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(end))),...

'Location', 'best', 'Interpreter', 'latex');

title('Zoomed-In Area');

hold off

A=A3; B=B3; C=C3; D=D3; % set state-space

% matrices for simulink

% Run the simulation for the first set

% of matrices (A1, B1, C1, D1)

out1 = sim('time_domain_simulation');

time1 = out1.logsout{4}.Values.Time; % Extract time data

data1 = out1.logsout{4}.Values.Data; % Extract

% acceleration data

A=A4; B=B4; C=C4; D=D4; % set state-space

% matrices for simulink

% Run the simulation for the second set

% of matrices (A2, B2, C2, D2)

out2 = sim('time_domain_simulation');

time2 = out2.logsout{4}.Values.Time; % Extract time data

data2 = out2.logsout{4}.Values.Data; % Extract

% acceleration data
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% Plot the main figure

figure;

% Plot the full data

subplot(2,1,1);

plot(time1, data1, '-r');

hold on;

plot(time2, data2, '--r');

xlabel('time [s]');

ylabel('acceleration [m/s^2]');

grid on;

legend(sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(end))),...

'Location', 'best', 'Interpreter', 'latex');

% Define the zoomed-in region

zoom_region_start = 4; % Define the start

% of the zoomed region

zoom_region_end = 6; % Define the end

% of the zoomed region

% Plot the zoomed-in area

subplot(2,1,2);

plot(time1, data1, '-r');

hold on;

plot(time2, data2, '--r');

xlim([zoom_region_start, zoom_region_end]);
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xlabel('time [s]');

ylabel('acceleration [m/s^2]');

grid on;

legend(sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(end))),...

'Location', 'best', 'Interpreter', 'latex');

title('Zoomed-In Area');

hold off

% SEAT VERTICAL RESULTS

u=logspace(log10(.5),log10(80),500);

tempfunb0(f) = results.(resultname)(index1).S_wz_s;

tempfunbmax(f) = results.(resultname)(index2).S_wz_s;

figure;

loglog(u,tempfunb0(u),'-k')

hold on

loglog(u,tempfunbmax(u),'--k')

tempfunb0(f) = results.(resultname)(index3).S_wz_s;

tempfunbmax(f) = results.(resultname)(index4).S_wz_s;

loglog(u,tempfunb0(u),'-r')

loglog(u,tempfunbmax(u),'--r')

xlim([0.1 100])

grid on

xlabel('frequency [Hz]')

ylabel(['seat vertical acceleration response PSD ' ...

'[((m/s^2)^2)/Hz]'])
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legend(sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(end))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(end))),...

'Location', 'best', 'Interpreter', 'latex');

hold off

A=A1; B=B1; C=C1; D=D1; % set state-space

% matrices for simulink

% Run the simulation for the first set of

% matrices (A1, B1, C1, D1)

out1 = sim('time_domain_simulation');

time1 = out1.logsout{5}.Values.Time; % Extract time data

data1 = out1.logsout{5}.Values.Data; % Extract

% acceleration data

A=A2; B=B2; C=C2; D=D2; % set state-space

% matrices for simulink

% Run the simulation for the second set of

% matrices (A2, B2, C2, D2)

out2 = sim('time_domain_simulation');

time2 = out2.logsout{5}.Values.Time; % Extract time data

data2 = out2.logsout{5}.Values.Data; % Extract
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% acceleration data

% Plot the main figure

figure;

% Plot the full data

subplot(2,1,1);

plot(time1, data1, '-k');

hold on;

plot(time2, data2, '--k');

xlabel('time [s]');

ylabel('acceleration [m/s^2]');

grid on;

legend(sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(end))),...

'Location', 'best', 'Interpreter', 'latex');

% Define the zoomed-in region

zoom_region_start = 4; % Define the start of

% the zoomed region

zoom_region_end = 6; % Define the end of

% the zoomed region

% Plot the zoomed-in area

subplot(2,1,2);

plot(time1, data1, '-k');

hold on;

plot(time2, data2, '--k');

xlim([zoom_region_start, zoom_region_end]);
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xlabel('time [s]');

ylabel('acceleration [m/s^2]');

grid on;

legend(sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(end))),...

'Location', 'best', 'Interpreter', 'latex');

title('Zoomed-In Area');

hold off

A=A3; B=B3; C=C3; D=D3; % set state-space

% matrices for simulink

% Run the simulation for the first set of

% matrices (A1, B1, C1, D1)

out1 = sim('time_domain_simulation');

time1 = out1.logsout{5}.Values.Time; % Extract time data

data1 = out1.logsout{5}.Values.Data; % Extract

% acceleration data

A=A4; B=B4; C=C4; D=D4; % set state-space

% matrices for simulink

% Run the simulation for the second set of

% matrices (A2, B2, C2, D2)

out2 = sim('time_domain_simulation');

time2 = out2.logsout{5}.Values.Time; % Extract time data

data2 = out2.logsout{5}.Values.Data; % Extract

% acceleration data

% Plot the main figure
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figure;

% Plot the full data

subplot(2,1,1);

plot(time1, data1, '-r');

hold on;

plot(time2, data2, '--r');

xlabel('time [s]');

ylabel('acceleration [m/s^2]');

grid on;

legend(sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(end))),...

'Location', 'best', 'Interpreter', 'latex');

% Define the zoomed-in region

zoom_region_start = 4; % Define the start of

% the zoomed region

zoom_region_end = 6; % Define the end of

% the zoomed region

% Plot the zoomed-in area

subplot(2,1,2);

plot(time1, data1, '-r');

hold on;

plot(time2, data2, '--r');

xlim([zoom_region_start, zoom_region_end]);

xlabel('time [s]');

ylabel('acceleration [m/s^2]');
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grid on;

legend(sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(end))),...

'Location', 'best', 'Interpreter', 'latex');

title('Zoomed-In Area');

hold off

% CAB DEFLECTION

u=logspace(log10(0.01*Vels),log10(10*Vels),500);

% first points

indeces = find(and([results.(resultname).w_n_c]==...

w_n_c(1), and([results.(resultname).zeta_c] ==...

zeta_c(1), [results.(resultname).b_c] == b_c(1))) );

tempfunb0(f) = results.(resultname)(indeces).S_dz_c;

indeces = find(and([results.(resultname).w_n_c]==...

w_n_c(1),and([results.(resultname).zeta_c]==...

zeta_c(1),[results.(resultname).b_c]==b_c(end))));

tempfunbmax(f) = results.(resultname)(indeces).S_dz_c;

figure

loglog(u,tempfunb0(u),'-k')

hold on

loglog(u,tempfunbmax(u),'--k')

% last points

indeces = find(and([results.(resultname).w_n_c]==...

w_n_c(end),and([results.(resultname).zeta_c]==...

zeta_c(end),[results.(resultname).b_c]==b_c(1))));
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tempfunb0(f) = results.(resultname)(indeces).S_dz_c;

indeces = find(and([results.(resultname).w_n_c]==...

w_n_c(end),...

and([results.(resultname).zeta_c] == zeta_c(end),...

[results.(resultname).b_c] == b_c(end))) );

tempfunbmax(f) = results.(resultname)(indeces).S_dz_c;

loglog(u,tempfunb0(u),'-r')

loglog(u,tempfunbmax(u),'--r')

grid on

xlabel('frequency [Hz]')

ylabel('cab deflection response PSD [m^2/Hz]')

legend(sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(end))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(end))),...

'Location', 'best', 'Interpreter', 'latex');

hold off

A=A1; B=B1; C=C1; D=D1; % set state-space

% matrices for simulink

% Run the simulation for the first set of

% matrices (A1, B1, C1, D1)
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out1 = sim('time_domain_simulation');

time1 = out1.logsout{1}.Values.Time; % Extract time data

data1 = out1.logsout{1}.Values.Data; % Extract

% acceleration data

A=A2; B=B2; C=C2; D=D2; % set state-space

% matrices for simulink

% Run the simulation for the second set of

% matrices (A2, B2, C2, D2)

out2 = sim('time_domain_simulation');

time2 = out2.logsout{1}.Values.Time; % Extract time data

data2 = out2.logsout{1}.Values.Data; % Extract

% deflection data

% Plot the main figure

figure;

% Plot the full data

subplot(2,1,1);

plot(time1, data1*1000, '-k');

hold on;

plot(time2, data2*1000, '--k');

xlabel('time [s]');

ylabel('deflection [mm]');

grid on;

legend(sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(end))),...

'Location', 'best', 'Interpreter', 'latex');
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% Define the zoomed-in region

zoom_region_start = 4; % Define the start

% of the zoomed region

zoom_region_end = 6; % Define the end

% of the zoomed region

% Plot the zoomed-in area

subplot(2,1,2);

plot(time1, data1*1000, '-k');

hold on;

plot(time2, data2*1000, '--k');

xlim([zoom_region_start, zoom_region_end]);

xlabel('time [s]');

ylabel('deflection [mm]');

grid on;

legend(sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(1)), num2str(zeta_c(1)),...

num2str(b_c(end))),...

'Location', 'best', 'Interpreter', 'latex');

title('Zoomed-In Area');

hold off

A=A3; B=B3; C=C3; D=D3; % set state-space

% matrices for simulink

% Run the simulation for the first set of

% matrices (A1, B1, C1, D1)

out1 = sim('time_domain_simulation');

time1 = out1.logsout{1}.Values.Time; % Extract time data
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data1 = out1.logsout{1}.Values.Data; % Extract

% acceleration data

A=A4; B=B4; C=C4; D=D4; % set state-space

% matrices for simulink

% Run the simulation for the second set of

% matrices (A2, B2, C2, D2)

out2 = sim('time_domain_simulation');

time2 = out2.logsout{1}.Values.Time; % Extract

% time data

data2 = out2.logsout{1}.Values.Data; % Extract

% deflection data

% Plot the main figure

figure;

% Plot the full data

subplot(2,1,1);

plot(time1, data1*1000, '-r');

hold on;

plot(time2, data2*1000, '--r');

xlabel('time [s]');

ylabel('deflection [mm]');

grid on;

legend(sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(end))),...

'Location', 'best', 'Interpreter', 'latex');

% Define the zoomed-in region
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zoom_region_start = 4; % Define the start

% of the zoomed region

zoom_region_end = 6; % Define the end

% of the zoomed region

% Plot the zoomed-in area

subplot(2,1,2);

plot(time1, data1*1000, '-r');

hold on;

plot(time2, data2*1000, '--r');

xlim([zoom_region_start, zoom_region_end]);

xlabel('time [s]');

ylabel('deflection [mm]');

grid on;

legend(sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(1))),...

sprintf('$\\omega_n=%s$, $\\zeta=%s$, $b=%s$',...

num2str(w_n_c(end)), num2str(zeta_c(end)),...

num2str(b_c(end))),...

'Location', 'best', 'Interpreter', 'latex');

title('Zoomed-In Area');

hold off

APPENDIX 4 - Simscape Model

Design description of the simscape model generated through System Design Report tool of

the Simulink is given below.
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Chapter 1. Root System
Figure  1.1. v11_verification
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Chapter 2. Subsystems

CAB
Figure  2.1. v11_verification/CAB
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CAB FRONT SUSPENSION
Figure  2.2. v11_verification/CAB/CAB FRONT SUSPENSION
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CAB REAR SUSPENSION
Figure  2.4. v11_verification/CAB/CAB REAR SUSPENSION
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ROAD PROFILE
Figure  2.5. v11_verification/ROAD PROFILE
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SEAT MEASUREMENT
Figure  2.6. v11_verification/CAB/SEAT MEASUREMENT
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SEAT SUSPENSION
Figure  2.7. v11_verification/CAB/SEAT SUSPENSION
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TRACTOR
Figure  2.8. v11_verification/TRACTOR
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TRACTOR CHASSIS
Figure  2.9. v11_verification/TRACTOR/TRACTOR CHASSIS
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TRACTOR FRONT AXLE
Figure  2.10. v11_verification/TRACTOR/TRACTOR FRONT AXLE
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TRACTOR REAR AXLE
Figure  2.11. v11_verification/TRACTOR/TRACTOR REAR AXLE
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TRAILER
Figure  2.12. v11_verification/TRAILER
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TRAILER FRONT AXLE
Figure  2.13. v11_verification/TRAILER/TRAILER FRONT AXLE

TRACTOR REAR AXLE SUSPENSION

TRAILER AXLE MASS 1

TRAILER TYRE STIFFNESS 1

TRAILER TYRE INPUT1

h_5tr

1 ROAD INPUT

1TRAILER CONNECTION

Chapter 2. Subsystems
 

 
13

177



TRAILER MIDDLE AXLE
Figure  2.14. v11_verification/TRAILER/TRAILER MIDDLE AXLE
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TRAILER REAR AXLE
Figure  2.15. v11_verification/TRAILER/TRAILER REAR AXLE
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Chapter 3. System Design Variables
Table  3.1. Design Variables

Variable Nam
e

Parent Blocks Size Class

A State-Space 28x28 double

B State-Space 28x5 double

C State-Space 28x28 double

D State-Space 28x5 double

I_c CAB MASS
CAB MASS

1x1 double

I_st TRAILER MASS
TRAILER MASS

1x1 double

I_tr TRACTOR FRAME MASS
TRACTOR FRAME MASS

1x1 double

V Gain2
Gain3
Gain4
Gain5
Gain6

1x1 double

b_cfx Gain
Gain

1x1 double

b_crz Gain2
Gain2

1x1 double

b_sx Gain3
Gain3

1x1 double

b_sz Gain4
Gain4

1x1 double

c_cfx CAB FRONT SUSPENSION 1x1 double

c_cfz CAB FRONT SUSPENSION 1x1 double

c_crz CAB REAR SUSPENSION 1x1 double

c_st1 Bushing Joint 1x1 double

c_st2 Bushing Joint 1x1 double

c_st3 Bushing Joint 1x1 double

c_sx SEAT SUSPENSION 1x1 double

c_sz SEAT SUSPENSION 1x1 double

c_trf Bushing Joint 1x1 double

c_trr Bushing Joint 1x1 double

 

 
16

180



Variable Nam
e

Parent Blocks Size Class

h_5st Rigid Transform5 1x1 double

h_cf Rigid Transform2
Rigid Transform3

1x1 double

h_cs Rigid Transform4 1x1 double

h_tr5 h_5tr
h_tr5
h_tr5
l_tr5 h_tr5

1x1 double

k_1 TRACTOR FRONT TYRE STIFFNESS 1x1 double

k_2 TRACTOR REAR TYRE STIFFNESS 1x1 double

k_3 TRAILER TYRE STIFFNESS 1 1x1 double

k_4 TRAILER TYRE STIFFNESS 2 1x1 double

k_5 TRAILER TYRE STIFFNESS 3 1x1 double

k_cfx CAB FRONT SUSPENSION 1x1 double

k_cfz CAB FRONT SUSPENSION 1x1 double

k_crz CAB REAR SUSPENSION 1x1 double

k_st1 Bushing Joint 1x1 double

k_st2 Bushing Joint 1x1 double

k_st3 Bushing Joint 1x1 double

k_sx SEAT SUSPENSION 1x1 double

k_sz SEAT SUSPENSION 1x1 double

k_trf Bushing Joint 1x1 double

k_trr Bushing Joint 1x1 double

l_5st Rigid Transform5 1x1 double

l_cf Rigid Transform2 1x1 double

l_cr Rigid Transform3
Rigid Transform

1x1 double

l_cs Rigid Transform4 1x1 double

l_st1 Rigid Transform8
Rigid Transform9

1x1 double

l_st2 Rigid Transform10
Rigid Transform11

1x1 double

l_st3 Rigid Transform6
Rigid Transform7

1x1 double

l_tr5 Rigid Transform9
Rigid Transform11
Rigid Transform7
l_tr5 h_tr5

1x1 double
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Variable Nam
e

Parent Blocks Size Class

l_trfa Rigid Transform
l_trfa

1x1 double

l_trfc l_trfc 1x1 double

l_trra Rigid Transform1
l_trra

1x1 double

l_trrc l_trrc
Rigid Transform

1x1 double

m_1 TRACTOR FRONT AXLE MASS 1x1 double

m_2 TRACTOR REAR AXLE MASS 1x1 double

m_3 TRAILER AXLE MASS 1 1x1 double

m_4 TRAILER AXLE MASS 2 1x1 double

m_5 TRAILER AXLE MASS 3 1x1 double

m_c CAB MASS 1x1 double

m_s SEAT MASS 1x1 double

m_st TRAILER MASS 1x1 double

m_tr TRACTOR FRAME MASS 1x1 double

road 1-D Lookup Table
1-D Lookup Table1
1-D Lookup Table2
1-D Lookup Table3
1-D Lookup Table4
1-D Lookup Table
1-D Lookup Table1
1-D Lookup Table2
1-D Lookup Table3
1-D Lookup Table4
1-D Lookup Table
1-D Lookup Table1
1-D Lookup Table2
1-D Lookup Table3
1-D Lookup Table4

2x20001 double

wl Bias
Bias1
Bias2
Bias3
Bias4
Bias
Bias1
Bias2
Bias3
Bias4

5x1 double
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