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ABSTRACT

DEFENDING AGAINST DISTILLATION-BASED MODEL STEALING
ATTACKS

Eda Yılmaz

Master of Science, Computer Engineering
Supervisor: Assoc. Prof. Dr. Hacer YALIM KELEŞ

May 2024, 72 pages

Knowledge Distillation (KD) allows a complex teacher network to pass on its skills to a

simpler student network, improving the student’s accuracy. However, KD can also be used in

model theft, where adversaries try to copy the teacher network’s performance. Influenced by

the ”Stingy Teacher” model, recent research has shown that sparse outputs can greatly reduce

the student model’s effectiveness and prevent model theft. This work, using the CIFAR10,

CIFAR100, and Tiny-Imagenet datasets, presents a way to train a teacher that protects its

outputs, inspired by the ”Nasty Teacher” concept, to prevent intellectual property theft. To

enhance the teacher’s defenses, this method mixes sparse outputs from adversarial images

with original training data. Additionaly, a new loss function, the Exponential Predictive

Divergence (EPD) loss, is introduced to hide the model’s outputs without reducing accuracy.

This method effectively reduces the EPD loss between the model’s responses to adversarial

and clean images, allowing the creation of adversarial logits without harming the network’s

performance.
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ÖZET

DAMITMA YÖNTEMİ İLE MODEL ÇALMA ATAKLARINA KARŞI
SAVUNMA

Eda Yılmaz

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Doç. Dr. Hacer YALIM KELEŞ

Mayıs 2024, 72 sayfa

Bilgi Damıtma (BD), karmaşık bir öğretmen ağından basit bir öğrenci ağına temel becerilerin

aktarılmasını sağlayarak daha yüksek doğruluk sağlar. Ayrıca, BD, düşmancıl çalma

saldırıları aracılığıyla öğretmen ağının işlevselliğinin kopyalanmasının hedeflendiği model

hırsızlığı senaryolarında kullanılır. Stingy Teacher modelinden etkilenen son araştırmalar,

seyrek çıktıların öğrenci model etkinliğini önemli ölçüde azaltabileceğini ortaya koymuştur.

Bu çalışma, öğretmenin çıktılarını koruyan ve entelektüel mülkiyet hırsızlığı riskini azaltan

Nasty Teacher konseptinden esinlenerek, CIFAR10, CIFAR100 ve Tiny-Imagenet verisetleri

kullanarak, bir öğretmen model eğitme tekniği sunmaktadır. Öğretmenin öğrencilere

karşı savunmalarını güçlendirmek için, bu strateji düşmancıl örneklerin seyrek çıkrıları ile

orijinal eğitim verilerini benzersiz bir şekilde birleştirir. Yeni bir kayıp fonksiyonu olan

Exponential Predictive Divergence (EPD), bu yaklaşımda modelin çıktılarını manipüle etmek

için kullanılır ve uygulanırken doğruluğu azaltmaz. Bu strateji, modelin düşmancıl ve

orijinal görüntülere verdiği yanıtlar arasındaki EPD kayıp fonksiyonunu etkin bir şekilde

azaltarak, ağın performansı üzerinde neredeyse hiç negatif etkisi olmadan düşmacıl çıktıların

üretilmesini sağlar.
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1. INTRODUCTION

As the volume of data increases exponentially and technical capabilities continue to progress,

deep learning models are becoming more and more essential in the artificial intelligence

area. These models have demonstrated amazing effectiveness in a variety of applications

because of their capacity to learn hierarchical data representations. These models, enables

the extraction of high-level complex abstractions as data passes through their successive

layers. As a result, deep learning models have become essential in advancing AI research

and applications. They play a key role in driving innovation and improving machines’

ability to understand the complex world around us. The impressive capabilities of deep

learning models come with a significant demand for computational power and extensive

data. This poses challenges for deploying these models on smaller or mobile devices.

Consequently, there is a need for smaller, more efficient models that can achieve similar

performance to their advanced counterparts. Knowledge Distillation (KD) is a method

that compresses the knowledge embedded within large, complex models into a smaller

network. Hinton et al. introduced KD for the first time. This technique generalizes model

compression using soft targets [3]. Most classifiers employ the softmax function in their

final layer. However, the output of the softmax function tends to be overly confident,

with low entropy, resulting in almost zero probabilities for incorrect classes. The intuition

behind knowledge distillation lies in leveraging these incorrect class probabilities to learn

the similarities and differences between classes from this distribution. KD addresses this

issue by utilizing ’soft targets’, which are softened versions of the output logits, achieved

by introducing a temperature parameter. This temperature parameter reduces the distance

between correct and incorrect classes within probability distribution. Subsequently, KD

aims to reduce the Kullback-Leibler (KL) divergence between the outputs of a complex

model, referred to as the ’teacher’ network, and a simpler ’student’ model. Through this

method, the performance of a student network may be improved by transferring information

from the outputs of a complicated neural network to it. Success of KD has caused a

growing interest among researchers. This method has been applied to different kinds
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of knowledge, distillation algorithms, teacher-student architectures, varying numbers of

teacher-student pairs, and across various domains. Traditional KD uses output responses

of a neural network as knowledge. However, in classification problems with a small

number of classes, response-based distillation may become inefficient. To address this issue,

feature and relationship-based distillation algorithms have been developed. Feature-based

methods leverage intermediate features to inherit the functionality of a model, while

relationship-based techniques utilize both intermediate features and output knowledge,

including relationships between different layers. Furthermore, this method has been applied

to improve student’s prediction accuracy without the requirement for a teacher network.

Self-distillation transfers information from the last layers to the previous levels, compressing

the network itself [4]. Additionally, attention mechanisms have been used for improving

the performance of KD by learning the behavior of attention maps from the teacher model

[5]. These advancements have contributed to the effectiveness and efficiency of knowledge

distillation in various machine learning applications. However, leveraging from only the

outputs of a neural networks poses risks to the privacy and security of the intellectual

property associated with these sophisticated, complex, and expensive models. While deep

learning methods and models becomes developed also the techniques that tries to steal,

harm or tries to make them wrong prediction developed. As deep learning methods

and models evolve, there are also advancements in techniques for unauthorized access to

models, replicating functionality, and accessing the sensitive data they use. Additionally,

there is a growing concern regarding the potential for adversarial actions to harm the

model, leading to incorrect predictions [6]. Adversarial examples are anomalies carefully

created to trick models into making incorrect predictions. Its been proved that most

high-performing classifiers are vulnerable to adversarial examples [7]. Adversarial images

are often imperceptible to humans, yet machines frequently misclassify these examples. The

transferability of adversarial images is an interesting characteristic. An image generated

to mislead one network also tends to deceive another network into misclassifying it. This

characteristic of adversarial images, underscores the generalizability of the ability to confuse

deep neural networks across various models with diverse structures and training data [8].

To develop more robust models against adversarial examples the most known technique

2



called ”adversarial training” can be used. Adversarial training makes networks familiar with

adversarial examples by using them while training alongside with original images. With

these images as training material, the model learns key aspects and becomes capable of

accurate prediction.

However, this process requires creating an additional dataset and also greater computation

power. Since training a large network is expensive, needing more computational power

is infeasible but defense is still necessary. Some improvements on this field has been

made to create more efficient defenses. One of the example techniwues named Adversarial

Logit Pairing (ALP) also uses adversarial examples to make model more robust against

them but it doesn’t feed them to the model. It reduces the difference between model’s

output probability distributions for clean images and their adversarial counterparts by

minimizing the L2-norm between them. This process widens the decision boundary and

regularizes the model. With these model trained with ALP achieves adversarial robustness

[9]. Furthermore, combining logit pairing methods with adversarial training techniques

has shown improved accuracy compared to using either method alone [10]. Another

growing concern about privacy and security of deep learning models is model stealing

or extraction attacks. As artificial Intelligence (AI) systems become more common and

advanced in various domains, the risk of protecting Intellectual Property (IP) and integrity

of these models arise. Model stealing and extraction attacks represent sophisticated methods

used by adversaries to identify weaknesses in AI systems. Therefore, they may copy the

functionality, parameters or hyperparameters of complex black-box models with much less

cost. Nevertheless, sharing a model black-box does not mean that model is robust against

stealing attacks. Adversaries can steal from only the hard labels of a neural network. A

cloud-based service known as ”Machine Learning as a Service” (MLaaS) enables customers

to access machine learning tools and algorithms online without having to pay for expensive

software or hardware infrastructure. However, MLaaS companies face the risk of model

theft when providing access to their customers. They must carefully strike a balance

between protecting their intellectual property and offering value to clients [11]. Model

stealing attacks, often leverage the predictions obtained from queries exploiting MLaaS’s

3



Application Programming Interface (API) which operates on a pay-for-query basis most

of the time. Attackers obtain output label or probability of the specific class. By sending

queries and observing the model’s responses, attackers aim to reconstruct the model or

copy the performance of it, potentially obtaining sensitive information such as training data,

hyperparameters, or even the model itself. For instance, Orekondy et al. trains a ”knockoff”

model from image-prediction pairs obtained from original model by applying black-box

version of KD. Milli et al. reconstructs the victim model by querying the gradient of it

[12].

Various defense methods has been developed against model stealing attacks. Among these

techniques, some focuses on verification of ownership. Watermarking, for instance, adds

a unique identifier named watermark to network to proof ownership. In cases where

verification remains insufficient, passport-based methods can be used. These methods

involves adding a passport to the network, which contains information for verifying

ownership. However, unauthorized access can cause the network to fail. Additionally,

there are methods similar to passport-based methods that fail when they detect an adversary

but without an identifier. These methods includes a trigger mechanism for detecting

out-of-distribution harmful activities. When an attack is detected, it causes the model

to fail for protecting. Recently, some defensive methods have been developed against

distillation-based attacks that do not trigger failure. These techniques involve creating

a model that maintains its behavior regardless of whether it is under attack. These

defensive teachers produce outputs that provide correct predictions but mislead student

models attempting to replicate the teachers’ functionality from their outputs. Nasty Teacher

(NT), for example, creates a defensive version of a neural network by increasing the distance

between logits of the base model and NT while maintaining performance with minimizing

cross-entropy loss between ground truth and predictions [13]. Another method, Stingy

Teacher (ST), achieves defense by revealing only a small portion of the output probability

distribution, which is softened with a temperature parameter, while putting zero on the

remaining distribution. This strategy not only reveals the hard label but also top n predictions

in the distribution, causing the student to fail in knowledge transfer [14]. Additionally,
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Semantic Nasty Teacher calculates semantic relationship within dataset to decide the weight

of KL divergence in the loss function then uses a similar combined objective function with

NT to prevent model compression attacks [15].

The motivation behind our study is to prevent model stealing attacks, even in fully revealed

white-box scenarios, by developing a defensive teacher model. The proposed teacher model,

which we refer as Adversarial Sparse Teacher (AST), shares similarities with NT. Both

models maintain consistent behavior across various circumstances and lack an adversary

detection mechanism. Moreover, they both leverage logit responses to enhance their

defensiveness. However, while NT focuses on maximizing the KL divergence between

the output responses of the teacher and student models with one term while minimizing

cross-entropy loss with another, AST has a different primary objective. AST aims to achieve

a more stable loss function by minimizing all terms in its combined loss function. Adversarial

examples are known to trick image classifiers by making minimal modifications to original

images. Thus, AST minimizes the distance between the output probabilities of models

for original images and their adversarial versions. The methodology involves training a

base model using the original dataset and then synthesizing adversarial versions of this

dataset. Subsequently, the teacher model is trained with the objective of minimizing the

Exponential Predictive Divergence (EPD) loss between adversarial and clean images, while

simultaneously minimizing cross-entropy loss between the labels and predictions. In this

thesis, a novel loss function, EPD, is proposed alongside with the training mechanism of

the AST. It has been observed that using KL divergence while training AST, can lead to

performance degradation. The proposed EPD loss addresses this issue effectively, providing

a more robust training mechanism for AST. More detailed explanation about EPD is given in

Chapter 4..

1.1. Scope Of The Thesis

This thesis primarily concentrates on model stealing attacks, exploring the vulnerabilities of

models to these attacks and proposing strategies to mitigate these vulnerabilities. This study
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covers a novel and efficient technique that can be used for protecting deep neural networks

against theft attempts. Moreover, alongside with this approach, a new objective function is

introduced which helps to model to enhance its performance while increasing its robustness.

1.2. Contributions

In this work, these shortcomings of other methods are addressed by introducing an innovative

and effective method. The following is a summary of this paper’s main contributions:

• We provide Adversarial Sparse Teacher (AST), a novel training paradigm that makes

use of sparse logits, adversarial examples. By strengthening the model’s robustness

against stealing attacks, this approach seeks to solve a critical issue in modern model

security, as proposed in our related paper [1].

• A new divergence metric Exponential Predictive Divergence (EPD) is proposed. This

function provides a novel technique for distance reduction between predicted and target

probability distributions. Particularly in our study this metric enables the improve

security while keeping accuracy high. The metric is also introduced in our related

paper [1].

• In contrast to other approaches that involve creating defensive teachers, AST does

not rely on training a secondary defensive teacher model from the base model.

Instead, AST utilizes sparse logits of adversarial examples during training to enhance

robustness. This methodology aims to fortify model resilience directly through the

incorporation of adversarial examples, rather than relying on an additional teacher

model.

1.3. Organization

The organization of the thesis is as follows:
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• Section 1 covers the reasons behind the study, gives a general summary, discusses the

contributions, and outlines the scope of the thesis.

• Section 2 provides detailed, technical background overview of this thesis to understand

the technical aspects of proposed methods.

• Section 3 provides a detailed review of the literature relevant to each category this

study addresses.

• Section 4 introduces our novel defense method and objective function.

• Section 5 demonstrates experimental setup.

• Section 6 outlines the results of our defense method across various network

architectures and datasets. Additionally, this section includes an analysis of the impact

of different parameters.

• Section 7 summarizes the thesis and suggests possible directions for future research.
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2. BACKGROUND OVERVIEW

In this section, the basics of our subject matter is explored. A comprehensive overview of

key concepts and relevant theoretical frameworks is provided. The objective is to equip the

readers with the essential knowledge required to navigate through the complexities of our

discussion as well as understand the background of our study. This section dives into the

background information that shapes understanding and guides the study.

2.1. Neural Networks

Neural Networks (NNs) are a machine learning method that replicates the human brain by

creating mathematical representations of neurons and the connections between them. Their

capacity to extract complicated patterns and representations from input via a network of

interconnected neurons is what makes them unique. In image classification the network

takes an image as input, with each pixel value typically representing a feature. In hidden

layers connected neurons process the input data. Subsequently, the final layer produces

the network’s output, which is a probability distribution over possible classes in image

classification task [16].

2.2. Knowledge Distillation

Working process of KD is illustrated in Figure 2.1. Training a student network, symbolized

as fS(·), to extract the information inside the outputs of a teacher network, denoted as fT (·),

is the main objective of KD. Each network operates with its unique set of parameters, where

θT indicates the parameters of the teacher and θS indicates the student’s. The dataset used for

training, denoted by X , consists of images and their respective labels, expressed as (x(i), y(i)).

For every sample x(i), the output response generated by the network f(·) is represented by the

symbol f(x(i); θ). The softmax temperature function, denoted as στ (·) which is introduced

by Hinton et al. [3], plays a crucial role in this process. The softmax function typically yields

a highly confident prediction for the correct class, while assigning near-zero probabilities to
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Figure 2.1 The framework for KD. Diagram is obtained from [2].

other classes. This scenario makes the distillation process more difficult because it limits

the model to learn from the probabilities of incorrect classifications. This function converts

logits into soft probabilities under the influence of a temperature parameter τ , typically set

higher than 1. When the temperature τ equals 1, the function defaults to the standard softmax

operation, σ(·). For a deeper understanding of the softmax and temperature scaled softmax

activation functions, detailed information is provided in the Section 2.3.. The loss function

of KD, which is developed for the effective training of the student, is displayed in Equation

1.

LKD = ωτ 2 LKL(στ (fT (x
(i); θT )), στ (fS(x

(i); θS))+(1−ω)LCE(σ((fS(x
(i); θS)), y

(i)) (1)

This equation is containing two segments. The initial part quantifies the KL divergence.

This divergence is calculated between the temperature scaled outputs from the teacher,

(στ (fT (x
(i); θT )), and the student, (στ (fS(x

(i); θS)). This divergence serves as a measure

of the variance in the soft probability distributions yielded by the two models. Moreover,

the second part of the equation assesses the cross-entropy loss between the soft probabilities

derived from the student model, (στ (fS(x
(i); θS)), and the true labels. This improves the

model’s prediction accuracy by ensuring that the student maintains a direct connection with

the true labels, in addition to learning from the teacher.

The balancing act between reducing the distance between predicted and target probability

distributions and cross-entropy between labels and predictions is controlled by a
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hyperparameter, ω. By adjusting ω, one can fine-tune the training process to either

increase the importance of direct label prediction or prioritize the mimicking of the teacher’s

output distribution, thereby optimizing the student network’s performance according to

the particular demands of the task. This approach underscores the flexibility and

adaptability inherent in knowledge distillation strategies, making them particularly useful

for compressing complex models into more efficient, easy to deploy counterparts.

2.3. Softmax and Temperature Scaled Softmax Activation Functions

The softmax activation function is a mathematical function commonly used in machine

learning and neural networks. It operates on a vector of real-valued inputs and produces

an output vector whose elements represent probabilities. These probabilities are normalized

in such a way that they sum up to 1, ensuring that the output vector forms a valid probability

distribution. It is commonly used in classification tasks, where it transforms the raw output

of a neural network into probabilities corresponding to each class. Since the softmax

function produces a probability distribution as an output, wherein the model must estimate

the likelihood that each class is right, it is appropriate for multi-class classification tasks. The

formula for the softmax function is provided in equation (2)

σ(z)i =
e(zi)

K∑
j=1

e(zj)
(2)

σ(z)i, denotes the probability distribution of the raw output, represented by z, of the neural

network. K represents the number of classes. Each member zi of the input vector z is

subjected to the exponential function, and the resultant values are normalized by dividing by

the total of the exponentials. In essence, the softmax function turns the raw output scores

into probabilities, making it easier to interpret and compare the model’s predictions across

different classes [16].

In the context of KD, information related to incorrect class predictions holds significant

value. The student model enhances its performance not solely from the hard label
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information but also from learning through these incorrect class probabilities. A confident

distribution is usually produced using the softmax activation function, which gives the

right class a probability near to one and the remaining classes a probability close to zero.

However, the softmax temperature function simplifies KD by scaling this distribution with

a temperature parameter. Dividing the logits by a constant narrows the gap between

probabilities, effectively reducing the distance between them. Softmax temperature function

is given in equation (3).

στ (z)i =
e(

zi
τ
)

K∑
j=1

e(
zj
τ
)

(3)

The expression στ (z)i indicates the temperature scaled probability distribution, where z

represents the raw output of the neural network. zi resperesents each element of the raw

output and K indicates how many classes there are. Additionally, the temperature parameter

τ scales the distribution by dividing all values by this constant. When the temperature

value rises, it increases the entropy of the distribution, making it more akin to a uniform

distribution. Conversely, a decrease in this value reduces entropy, resulting in a distribution

with higher confidence. Setting the value to 1 causes the function to behave just like the

standard softmax function [3].

2.4. Generation of Adversarial Examples

Projected Gradient Descent (PGD) emerges as a pivotal method in the realm of adversarial

machine learning, especially in the crafting of adversarial examples. It initiates its process

from a randomly chosen point within a specified range near original input x, encapsulated

by what is known as the ϵ-ball. The core of this technique involves iteratively modifying the

input towards increasing the loss function, where each iteration’s modification magnitude is

carefully controlled by a predetermined parameter, α. The equation that dictates how each

modification is made in each iteration is shown in (4).

x(t+1) = Projectϵ
(
x(t) + α · sign

(
∇xL(θ, x, y)

))
(4)
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The function ’Project’ ensures that each step’s alterations are carefully recalibrated within

the specified allowable range, as defined by the ϵ-ball, thus preventing any going beyond

the setted ϵ threshold [17]. The findings of Mandry et al. [17] highlight the significant

impact of incorporating adversarial examples, generated via the PGD methodology, into the

training of classifiers. This strategic approach has the potential to greatly improve classifier

robustness, making them more resilient against various types of adversarial attacks. Our

approach is specifically designed to undermine the student’s capacity to properly copy the

teacher’s functioning by utilizing such examples. The property of transferability associated

with adversarial examples stands out as a intresting characteristic, where such examples,

though crafted for a particular network, frequently result in misclassification by different

network models as well [8]. This characteristic of transferability suggests an intriguing

ability of adversarial perturbations to navigate across diverse neural network architectures,

maintaining their disruptive effect. This characteristic of adversarial examples may reduce

the computation time for techniques that use adversarial images to enhance the robustness of

a neural network.

2.5. Sparse Logits

The concept introduced in the Stingy Teacher framework posits that enhancing the

smoothness within model’s output distribution can lead to significant improvements in the

student model’s performance during the Knowledge Distillation (KD) process. The pivotal

element that makes a teacher model less susceptible to effective distillation lies in the sparsity

characteristic of its output signals. Achieving this sparsity involves selectively maintaining

only a small portion of the top class probabilities within the logits and setting rest of it to the

zero. This inherently shifts the focus of the model towards the most critical classes, thereby

pushing the less important classes to the background. This methodological approach serves

to deceive the distillation process, effectively diminishing the adversary’s ability to steal the

model’s performance [14].
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ST, maintains its performance while preventing model stealing attacks through distillation.

Unlike other methods that manipulate outputs, ST adopts a more different approach. It

selectively removes the probability from less accurate classes while revealing the remaining

insights. Moreover, ST employs temperature scaling to adjust the output distribution,

enhancing the confidence of classes other than the correct one. In conclusion, ST keeps

accuracy high by always keeping the most confident class and prevents adversaries from

stealing the model by emphasizing the most relevant classes with high confidence while

filtering out less confident ones. This approach ensures that the adversary fails to extract

valuable insights, thereby safeguarding the model’s integrity.
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3. RELATED WORKS

3.1. Knowledge Distillation

Knowledge distillation involves optimizing deep learning models with the goal of

transferring information from a bigger, more complicated ”teacher” network to a simpler,

more streamlined ”student” network. This technique not only improves the efficiency

of smaller models but also deals with limitations regarding computational resources and

deployment in environments with restricted resource. The concept of Knowledge Distillation

(KD) was first introduced by Buciluǎ et al. [18] and later expanded upon by Hinton et al.

[3]. Since then, many researchers have been working to improve and broaden its uses and

effectiveness. KD can generally be classified by the kind of knowledge being transferred:

this includes output responses [3, 19], features [5, 20, 21], and relationships [22–24]. Each

type aims to capture a distinct dimension of the teacher’s understanding, from its final output

decisions and the connections it forms internally, to how it processes and relates different

pieces of information [2]. In KD approaches that utilizes information from features, a

student is trained to copy the internal features that the teacher has learned. This makes

the richer and more detailed representations available to the student model, that the teacher

model has learned, which may boost the student model’s accuracy on a variety of tasks [20].

Relationship-based knowledge distillation examines the relationships between the various

layers of the model and makes use of both the intermediate features and output responses.

The student model can perform better on a variety of tasks and obtain a comprehensive

understanding of the data’s underlying structure by utilizing these relationships. When

dealing with classification models that have a small number of classes, output-based KD

techniques might not be feasible since they cannot efficiently learn from inaccurate class

probabilities. Relationship and feature-based knowledge distillation techniques therefore

provide more workable and efficient solutions in these kinds of situations. An innovative

approach within KD is called Self Distillation, in which a model is designed to learn from

14



its own predictions, thereby enhancing its accuracy and performance without relying on a

separate, more complex teacher model [4].

3.1.1. Distance Metrics for Knowledge Transfer

KD algorithms differs from each other in the terms of knowledge, method, number of

teachers and more. The distance metric used for copying the knowledge from is also a

parameter that affects the performance of KD. Traditional KD employs KL divergence as

distance metric [3]. Aguilar et al. also utilize this divergence function but with internal

representations as knowledge, different from traditional KD [25]. In the Nasty Teacher

method which shares similar loss function structure with response-based KD, KL divergence

is employed as a part of the objective function. In most of the KD related works L1

and L2 distance related metrics are used by researcher [26]. For instance, Romero et al.

[20], Komodakis and Zaguruyko [5], Gao et al. [27] and Changyong et al. [28] utilizes

L2 distance while Wang et al. [29] and Zhang et al. [30] employs L1 distance instead.

Additionaly, Adversarial Logit Pairing (ALP), also employs the L2 distance for reducing the

divergence between the pairs of logits [9]. Utilizing KL divergence is more efficient when

knowledge comes from output representations as probability distribution [31]. However,

while transferring knowledge from features and internal relationship L1 and L2 distance

based metrics is more usable. Moreover, some researchers like Shin et al. [32] and Park et

al. [22] utilizes cosine-similarity for calculating similarities in their works.

3.2. Model Stealing Attacks

Deep learning model stealing attacks, also known as model extraction attacks, are a type

of security threat where an adversary attempts to replicate a target deep learning model by

observing its behavior, such as querying it with inputs and analyzing its outputs. When

the target model is proprietary or has been trained on sensitive data, these attacks are very

concerning. Recent research has confirmed that adversaries that only access the responses of

the model can effectively steal its functionality. For instance Tramer et al. [33] demonstrated
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the vunerability of machine learning models to stealing attacks and adversaries could steal the

models by prediction APIs. Employing the concept of KD [3], multiple studies have showed

the feasibility of extracting the functionality of deep neural networks. Orekondy et al. [34]

showcased that even with weakly associated queries, or in some cases, entirely random

queries [35], it is possible to replicate the performance of the targeted model. However, it’s

important that attacks employing queries more closely aligned with the target task tend to

provide better outcomes. Similarly, Lopes et al. [36] introduced a KD method to extract

model without original training data. This technique only uses some extra information

by getting metadata from pretrained teacher’s activation layers. Additionaly, Chen et al.

[37] employed a Generative Adversarial Network (GAN) to enable data-free KD. In this

method, a pretrained teacher model serves as the discriminator while a generator creates

training data. In certain instances, these methods facilitate the compression of models

trained with extensive datasets, offering significant reductions in model size and easier

deployment. However, it is important to acknowledge that these techniques also pose a risk

to the intellectual property of machine learning models.

3.3. Security and Privacy of Machine Learning Models

The rise of deep learning models has revolutionized various industries, from healthcare

to finance and beyond. These models have become necessary tools for solving complex

problems and extracting valuable knowledge from huge amounts of data. Nonetheless, the

necessity to preserve the intellectual property (IP) of these models grows along with their

importance and complexity. Developing deep learning models requires a combination of

expert knowledge, access to sensitive data, and substantial computational resources. As

such, it represents a significant investment for organizations and researchers alike. It is

crucial to safeguard this investment and the innovations included in these models. Some

methods had been developed to protect the IP of these valuable models [38]. These methods

can be categorized and examined under several key categories. Watermarking methods adds

an identifier inside the model’s parameters or outputs. These watermarks serve as unique

signatures, enabling the verification of model ownership and tracing unauthorized usage
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[39, 40]. Nevertheless, the majority of watermarking techniques do not prevent model theft;

rather, they just confirm ownership. Passport-based defense methods involve embedding a

digital passport within the deep learning model. This passport serves as a key that must

be provided for the model to function properly. Without a valid passport, unauthorized

access results in the model to fail. This approach effectively prevents the from being used

illegaly an guarantees that only users with permission can access to the functioning model

[41, 42]. Backdoor attacks, conversely, operate effectively under normal circumstances

but fail to perform when they detect adversarial behavior or an attack [43]. Similarly,

Kariyappa and Qureshi proposes a defense strategy that incorporates system which detects

out-of-distribution and identify adversarial behaviour. The approach dynamically handles

these behaviours by providing incorrect predictions from an secondary ”misinformation

model” which generates predictions that is uncorrelated with original predictions [44].

Juuti et al. introduced PRADA, a detection mechanism designed to identify model stealing

attacks. It examines the pattern of successive API requests and triggers an alert when

this pattern diverges from typical harmless behavior [45]. Recently some works presented

defensive teacher networks that cannot be distilled . Nasty Teacher, trains a defensive teacher

from base model by increasing the distance between logits of base and defensive teacher

while keeping high performance by decreasing the cross-entropy loss between training

images and labels [13]. Stingy Teacher is a theoretical method that shows making outputs

of the base model sparse and soft creates an effective defense [14]. Furthermore, while

training the teacher model, Semantic Nasty Teacher deconstructs the semantic relationships

within the output logits.It first converts class names into vectors with n dimensions using

a Word2Vec model, and then it uses a cosine similarity metric to evaluate the logical ties

within the classes and it dynamically sets the weight of KL divergence loss depending on

class similarities [15].
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3.4. Adversarial Examples

Adversarial examples represent a fascinating yet concerning aspect of machine learning

models, particularly neural networks. These examples are carefully crafted input images

that cannot be distinguished with human eye, yet capable of causing the model to make

significant mistakes in its predictions. Fast Gradient Sign Method (FGSM) is a technique

to synthesis these examples [8]. The underlying concept is straightforward: following the

computation of the objective function derived from the classification of the input image, the

gradient of this loss is computed. However, rather than employing this gradient to minimize

the loss, it is utilized to maximize it. Accordingly, adjustments are made to the pixels in

a manner that increases the loss, thereby leads model to misclassify the image [8]. Basic

Iterative Method (BIM) is very similar to FGSM but it changes the image iteratively with

small steps instead of single step [46]. Projected Gradient Descent (PGD), is almost works

like BIM. It applies perturbations iteratively with small steps until it reaches the maximum

permissible magnitude. The difference between BIM and PGD is PGD initializes in a random

point within ϵ-ball while BIM starts in a fixed point [17].

3.5. Defense Against Adversarial Attacks

Defense mechanisms against adversarial examples are essencial for making machine learning

models more robust and reliable. Adversarial training is a widely used approach to protect

neural networks from the effects of adversarial images. In this approach, models are trained

with both clean and adversarial images. By teaching the model with adversarial examples

during training, it learns to classify these images, thus improving its robustness [47].

However, adversarial training is highly time consuming and expensive process. To tackle

this issue, Kannan et al. introduced the Adversarial Logit Pairing (ALP) technique. Unlike

adversarial training, ALP does not involve feeding the model with adversarial examples.

Instead, it focuses on minimizing the L2 distance between the model’s responses to clean

and adversarial images. Additionally, in the same study, pairing only logits of two clean

images was found to enhance the model’s robustness against adversarial examples [9]. Our
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research is inspired by the logit pairing method, which demonstrates that models can be made

more robust by adjusting their logits and thereby altering the decision boundary.
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4. PROPOSED METHOD

4.1. Adversarial Sparse Teacher

This research’s main goal is to construct a teacher network capable of producing adversarial

output probabilities designed to hinder the extraction of information by models analyzing

these outputs. The effectiveness of this approach can be measured based on the performance

of the defensive teacher compared to non-defensive networks with similar structures. Hence,

the primary design objective is to deceive student models while maintaining performance.

First, a base model is trained with original dataset. This model has the same architecture

with Adversarial Sparse Teacher (AST). Then, an adversarially perturbed dataset which

has identical structure with the clean one is generated from this base model. This dataset,

which has been adversarially augmented, is subsequently utilized as a supplementary dataset

during the training process of the proposed defensive teacher network. Given that adversarial

images are created to increase the objective function of the network, their output probabilities

shares the same features as they. Within this framework, our goal is to reduce the

divergence between the AST’s logits for both clean and perturbed images, thereby achieving

adversarially perturbed output responses to clean images. The training diagram of AST is

illustrated in Figure 4.1.

Clean Image

Adversarial Image
Adversarial Teacher

Adversarial Sample
Logits

Clean Sample Logits Clean Sample
Probabilities

Sparsity Function

EPD LOSS CE LOSS ADVERSARIAL
SPARSE

TEACHER LOSS

Figure 4.1 Training scheme for AST. KL loss refers to the Kullback-Leibler divergence loss, which
utilizes logits from both adversarial and original images. CE represents the cross-entropy
objective function, which is calculated using the probabilities of clean samples and their
corresponding labels. The AST loss is the aggregate of these two loss components [1].
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Inspired by the Stingy Teacher concept, AST also employs sparseness to logits and it

accomplishes protection in a defensive manner. Unlike ST, which manipulates its outputs

by retaining only the small portion of its output probability distribution with the highest

probabilities and cutting out the rest, our proposed method involves training a defensive

teacher model that naturally produce confusing output distribution. This is accomplished

by concurrently feeding the algorithm with sparse versions of the adversarial image logits

that were generated during training. Furthermore, AST maintains its performance while

enhancing robustness, demonstrating similar accuracy levels compared to the non-defensive

base network. The principal benefit of our strategy lies in its application: by creating a

teacher model inherently inclined to generate altered outputs, we effectively protect our

model without the need for a detection mechanism or failing the model after detection. AST

not only safeguards the teacher network’s integrity but also strengthens its defenses against

stealing attacks, offering a more robust and feasible option for deployment in real scenarios.

AST’s loss function is displayed in equation (5)

LAST = ωτ 2LEPD(στ (f(x
(i); θ), στ (S(f(x

(i)
adv; θ), β)))

+(1− ω)LCE(σ(f(x
(i); θ), y(i))

(5)

In the context of our neural network model, several parameters play crucial roles in defining

and optimizing the loss function given in equation (5).

• ω: Weight parameter ω serves to calibrate the contributions of the (LCE) and the

proposed Exponential Predictive Divergence (EPD) loss (LEPD) Adjusting ω allows

us to calibrate the impact of each loss component on the overall objective function.

• f : The function f , represents our neural network, which takes input images (x)

and produces corresponding predictions. The subsequent step involves feeding these

predictions into the softmax function to derive probability distributions across the

classes.

• θ: The network’s parameters are indicated by the symbol θ.
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• σ: The symbol σ represents the softmax function, which is implemented on the

distribution generated by our neural network (f ). It creates a probability distribution

across potential classes from the raw output scores. In our formulation, σ is often used

in conjunction with temperature scaling στ to manage the distribution’s entropy.

• στ : The softmax function with temperature parameter τ , denoted as στ is a variant

of the standard softmax that adjusts the sharpness of the probability distribution. By

manipulating τ , we can regulate the model’s confidence in its predictions. When τ

is set to 1 this function behaves like the regular softmax function while increased τ

leads to a distribution with higher entropy, distributing probabilities more evenly across

classes.

• x(i): x(i) represents a clean image from our dataset, while y(i) represents the correct

label associated with that image. These pairs (x(i), y(i)) constitute our clean training

examples.

• x
(i)
adv: x

(i)
adv refers to the adversarially perturbed version of a clean image x(i).

Adversarial examples are crafted for the non-defensive version of network f .

• β: The parameter β denotes the sparsity ratio of the function S.

• S: The symbol S denotes the sparsity function implemented on the output generated

by our model. for x(i)
adv. The function S, takes a probability distribution and retains

the most confident classes in proportion to β while setting the remaining classes to

negative infinity.

• LCE and LEPD: The cross-entropy and the introduced EPD cost functions are

indicated by these phrases, respectively. LCE measures the discrepancy between

predicted and true class probabilities, while LEPD captures the divergence between

predicted and sparse adversarial distributions.

To sum up, AST is a technique which utilizes an adversarial dataset that is identical to the

original dataset. Generating these examples necessitates a baseline network with an identical
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structure to AST, trained on the original dataset. Subsequently, AST utilizes both datasets at

the same time, and iterates through them simultaneously. While maintaining high accuracy

by diminishing the cross-entropy loss in the latter portion of its combined objective function,

it concurrently mitigates the divergence between predicted class probabilities of clean and

adversarial images through the EPD loss in the former portion of its combined loss function.

The primary objective is to inherit the characteristics of adversarial examples. Similar to

adversarial examples, which are unnoticeable by humans yet frequently misclassified by

neural networks, the aim is to imbue the output distribution with a similarly deceptive nature.

Since adversarial examples caries the adversary information to the output distribution, the

goal is to create an output distribution that mimics the perplexing qualities of adversarial

examples, challenging neural networks and potentially deceiving attempts to learn from them

[1].

4.2. Exponential Predictive Divergence Loss

During our investigation, we found that the use of KL divergence loss limited our capacity

to manipulate the logits in the manner we aimed for. While applying sparse logits, KL

divergence also poisons the teacher itself. This led us to look for other ways to calibrate the

distance between the predicted and target probability distributions. This search resulted in

the creation of a new divergence function, which we describe in equation (6).

DEPD(P,Q) =
∑
i

eP (i) · (P (i)−Q(i)) (6)

In this equation, the divergence function receives two probability distributions as input. The

distribution Q represents the predicted distribution which is going to be updated, while the

distribution P corresponds to the target distribution. P (i) and Q(i) are the logits of the

corresponding distributions. The exponential components eP (i) is included to allow these

differences to be adjusted based on the value of P (i). This function is specifically designed to

incorporate adversarial logits into the output distribution more smoothly. The EPD function
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applies a weight proportionate to the target value to modify the model’s predictions. In

particular, it quickly raises the model’s predictions when there is a significant deviation from

a high target probability. When predictions are nearly zero, the exponential term ensures

that the remaining classes are not cut off. For these lower target probabilities, it boosts

predictions more slowly and progressively. By adding ambiguity and increasing prediction

entropy, this approach makes the model’s responses less predictable, discouraging replication

or ”stealing”. As a result, the EPD function is not only a traditional ”divergence” function.

Rather, it makes adjustments to predictive divergence in a manner that guards against illegal

duplication of the model.

KL divergence, with its logarithmic nature, helps to mitigate the impact of large differences

between two probability distributions P and Q. This characteristic contributes to a more

stable training experience, reducing the risk of overfitting by controlling the model’s learning

pace. By using KL divergence as a loss term, we can steer the predicted distribution towards

the target distribution. Using KL divergence in our approach makes the outputs of the model

directly sparse. In our approach, we frequently feed the model with its own predictions.

However, when the model is fed sparse inputs, it tends to fail [14]. This challenge led us to

develop a new function that addresses this issue. Unlike KL divergence, our function does

not directly force the output distribution to become sparse. Instead, it gently incorporates

adversarial sparse probabilities into the overall distribution.

Our function utilizes the term eP (i) to exponentially increase the weights of sparse classes

(those with non-zero probabilities). Conversely, in classes with probabilities nearly as low

as zero, the term approaches to 1, ensuring these probabilities are not entirely eliminated

but increased at a slower rate than the adversarial ones. This approach maintains a

non-sparse overall output, preventing the model from undermining its own predictions,

while simultaneously increasing entropy and incorporating adversarial outputs with a

greater impact. Additionally, EPD function exhibits resilience against numerical problems

frequently posed by small probabilities in standard distance measures. By exponentially

increasing the divergence, it diminishes the effects of tiny probabilities. This is particularly

beneficial as small probabilities often present computational difficulties in KL divergence
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assessments. In Figure 6.4, distinctions in output responses of an AST trained with EPD

and trained with KL divergence can be observed. KL divergence tends to induce sparsity in

the model’s output, leading to more pronounced peaks for certain classes and almost zero

probabilities for others. On the other hand, EPD maintains a smoother distribution among

non-peaky classes, which can increase entropy. This smoothness often contributes to higher

model accuracy while maintaining security.

Employing this divergence function in our experiments led to promising results, closely

aligning with our expectations of discrepancies within this domain. It provides a clear and

insightful metric, especially in situations where traditional measures fail to fully capture the

nuances of model predictions [1].
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5. EXPERIMENTAL SETUP

The AST model is trained using a synthesized adversarial dataset generated from the base

model. Base model is trained with same clean dataset as AST. The generation process

employs the PGD technique with specific parameters: an epsilon value of 0.3, a step length

of 0.01, and 40 iterations.

Our research utilized three well-regarded datasets within the domain: CIFAR10, CIFAR100

[48] and Tiny-Imagenet [49]. In the experiments conducted on CIFAR10, the teacher

network utilized the Resnet18 architecture. We examined several student model structures.

These architectures involves a Convolutional Neural Network (CNN) with five layers,

another Resnet18, and a couple of modified Resnet architectures designed for CIFAR10. The

designed architectures, ResnetC-20 and ResnetC-32, were developed by He and colleagues

[50]. For experiments conducted on CIFAR100, the influence of network capacity and

dataset complexity is investigated. As teacher model structures Resnet18 and Resnet50 are

utilized. The student architectures for these tests included ShufflenetV2 [51] and Resnet18.

Additionally, the respective teacher networks themselves were employed. In Tiny-Imagenet

experiments, a Resnet50 teacher network and a Resnet18 student network is utilized for

examining the effect of the dataset’s size.

The CNN was trained for 100 epochs and learning rate fixed at 0.001. In CNN training

Adam optimizer is employed [52]. In other experiments SGD optimizer is used. The SGD

optimizer is configured with the following settings: momentum is set to 0.9, weight decay

is set to 0.0005, and the learning rate is set to 0.1 in initiation. During the training period

of 160 epochs for CIFAR10, the learning rate was decreased by multiplying it by 0.1 at the

80th and 120th epochs. The training for CIFAR100 and Tiny-Imagenet continued for 200

epochs. Learning rate reduction were applied by multiplying it by 0.2 at specific epochs

which are the 60th, 120th, and 160th epochs. A thorough comparison was made possible

by the experiments’ and parameters’ strict adherence to the Nasty Teacher investigation’s

guidelines [13].
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All experiments were performed using five distinct algorithms. Traditional distillation was

employed as a baseline for comparison [3]. Two defensive algorithms from the literature,

ST and NT, were applied [13, 14]. Additionally, a trained version of ST, which operates

similarly to NT but utilizes sparse probabilities, was employed and named Stingy Sparse

Teacher (STT). STT is excluded in the Tiny-Imagenet experiments. Finally, all experiments

were conducted using our introduced method AST [1].

In the training of the Nasty Teacher, the temperature parameter, represented by τ , was set to

4 for CIFAR10 and 20 for both CIFAR100 and Tiny-Imagenet. Furthermore, the weighting

parameter, denoted as ω, was chosen as 0.04 for CIFAR10, 0.005 for CIFAR100 and 0.01 for

Tiny-Imagenet [13].

In the Stingy Teacher experiments, the outputs of the base model were adjusted to be sparse,

and knowledge distillation (KD) was subsequently applied using these sparse outputs. The

KD settings adhered to the recommendations provided in the related work [14].

During the training phase of the Stingy Trained Teacher, the sparsity ratio was designated as

0.2 for CIFAR10 and 0.1 for both CIFAR100 and Tiny-Imagenet, aligning with the guidelines

outlined in the related work [14]. The parameter τ was specified as 4 for CIFAR10 and 20 for

CIFAR100 and Tiny-Imagenet. Furthermore, the weight parameter was established at 0.04

for CIFAR10, 0.005 for CIFAR100 and 0.01 for Tiny-Imagenet, consistent with the settings

proposed in [14].

In the Adversarial Sparse Teacher training, the parameter τ was configured to 6, while ω was

set to 0.05, and the sparse ratio was established at 0.2 for CIFAR10 experiments. Conversely,

in CIFAR100 experiments, the sparse ratio was adjusted to 0.02 and 0.03 for Resnet18 and

Resnet50 teachers, respectively. Temperature parameter τ was standardized to 20 and the

weight parameter ω was set to 0.03 for both teacher networks. During the Tiny-Imagenet

experiments, τ was setted to 30, ω was setted to 0.0175 and sparsity ratio was setted to 0.015

which is 3 out of 200 classes [1].
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The configuration of distillation experiments remained consistent across all methods. For

CIFAR10, the temperature parameter was assigned a value of 4, and the weight parameter

was set to 0.9. In the cases of CIFAR100 and Tiny-Imagenet, the temperature parameter was

set to 20, with the weight parameter also being set to 0.9.
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6. EXPERIMENTAL RESULTS

6.1. CIFAR10 Results

The findings of the tests for the CIFAR10 dataset are summarized in Table 6.1. The Student

Base row illustrates student models’ base performance depending on the label below it.

The ’Teacher Type’ column’s abbreviations, explained in the table caption, include various

models such as ST [14], KD [3], NT [13], STT, and AST, which is introduced teacher model.

The ’Teacher Performance’ column aims to showcase results as close as possible to the

baseline model. Experiments reveal that the AST teacher model performs comparably to

other teacher models like ST, STT, and AST. Notably, student models distilled from AST

exhibit significantly improved performance, showing relative reductions in accuracy, which

are detailed upon alongside each corresponding score in the table.

ResnetC-20 student model experience a slight accuracy decline of about 0.1% after

distillation, while ResnetC-32 models exhibit a decline of approximately 0.47%. There are

performance gains of up to 1% for remaining student structures. Comparing the effectiveness

of knowledge distillation between NT and AST—methods that train undistillable teacher

models to inhibit knowledge transfer—it’s observed that both methods result in diminished

student accuracy, especially in models with less complexity. However, AST consistently

outperforms NT across all student models. STT, which is the trained version of the Stingy

Teacher, shows marginally better teacher performance than AST but is less effective in

preventing knowledge distillation.

Interestingly, the Stingy Teacher (ST) model, which reveals just a small portion of the

base teacher’s output responses to the students without specifically creating inherintly

defensive model, significantly influences simpler Resnet architectures, outperforming AST.

Surprisingly, for the simple CNN student model, AST manages to surpass ST’s performance,

highlighting the nuanced effectiveness of these diverse training methodologies.
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Teacher Network Teacher Student Performance ↓

Type Architecture Perf% ↑ CNN ResnetC-20 ResnetC-32 Resnet18

– Student Base – 86.64 92.37 93.41 95.03

ST Resnet18 95.03 83.11(-3.53) 67.98(-24.39) 74.08(-19.33) 92.47(-2.69)

BASE Resnet18 95.03 87.76(+1.12) 92.27(-0.1) 92.94(-0.47) 95.39(+0.23)

NT Resnet18 94.37(-0.67) 82.98(-6.62) 88.54(-3.73) 90.07(-2.87) 93.76(-1.63)

STT Resnet18 94.94(-0.09) 86.70(+0.06) 91.30(-1.07) 91.85(-1.56) 94.48(-0.68)

AST Resnet18 94.61(-0.42) 79.82(-7.94) 87.08(-5.19) 88.70(-4.24) 93.66(-1.73)

Table 6.1 Accuracy of Resnet18 networks trained on the CIFAR10 using different methods and the
accuracy of student networks distilled from these models [1].

6.2. CIFAR100 Results

Table 6.2 presents the outcomes of the tests carried out using the CIFAR100 dataset. In

these experiments, we utilized two distinct teacher architectures: Resnet18 and Resnet50.

The choice of these architectures allowed us to evaluate the effect of increased network

capacity on KD performance due to the larger number of categories in this dataset. The

results indicate that the AST teacher, while utilizing the Resnet18 architecture, performs

slightly less effectively than the NT and STT methods. However, with the more sophisticated

Resnet50 structure, AST teacher model demonstrates superior performance compared to all

other teachers, including the base model.

The newly introduced AST teacher shows a significant drop in accuracy and exhibits

defensiveness. Notably, in Resnet18 experiments, AST outperforms all existing methods,

including ST, which employs a different training scheme than AST. When distilling our

robust teacher model to ShufflenetV2, AST reduces the student model’s accuracy by 70.01%,

and when distilling to Resnet18, it reduces the accuracy by 44.01%. These results are

notably superior to all other methods. In the Resnet50 teacher setting, except for the

Resnet18 student experiments, our method is also superior. Although ST shows slightly

better performance with the Resnet18 student, it relies on partially revealing the outputs.

Therefore, our method is the best among scenarios with fully revealed outputs. Additionaly,
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since the only change in the training of the STT was the modification of the teacher’s input, it

suggests that adversarialy altered distributions exert a more significant influence than solely

sparse distributions in creating a defensive teacher.

Teacher Network Teacher Student Performance ↓

Type Arhchitecture Perf.% ↑ ShufflenetV2 Resnet18 Teacher Arch.

– Student Base – 72.10 78.28 –

ST Resnet18 78.28 50.49(-21.61) 55.30(-22.98) 55.30(-22.98)

ST Resnet50 77.55 46.46(-25.64) 54.22(-24.06) 54.14(-23.41)

BASE Resnet18 78.28 74.38(+2.28) 79.12(0.84) 79.12(0.84)

NT Resnet18 77.80(-0.48) 65.01(-7.09) 74.68(-3.60) 74.68(-3.60)

STT Resnet18 77.92(-0.36) 68.47(-3.63) 77.42(-0.86) 77.42(-0.86)

AST Resnet18 77.02(-1.26) 4.37(-70.01) 44.01(-34.27) 44.01(-34.27)

BASE Resnet50 77.55 74.00(+1.90) 79.27(+0.99) 80.03(+2.48)

NT Resnet50 76.88(-0.67) 67.14(-4.96) 73.87(-4.41) 75.99(-1.56)

STT Resnet50 77.25(-0.3) 70.28(-1.82) 76.16(-2.12) 77.50(-0.05)

AST Resnet50 77.69(0.14) 26.32(-45.78) 58.63(-19.65) 46.62(-30.93)

Table 6.2 Accuracy of Resnet18 and Resnet50 networks trained on the CIFAR100 using different
methods and the accuracy of student networks distilled from these models AST.

6.3. Tiny-Imagenet Results

A quantitative analysis with Resnet50 teacher architecture and Resnet18 student architecture

utilizing Tiny-Imagenet is conducted. In this analysis, traditional KD using baseline teacher,

NT, ST and our AST is applied. Table 6.3 displays the corresponding results. NT

struggled to maintain security in settings provided by the related paper [13]. The student

model exhibited approximately a 2% higher performance than NT but had a 2% lower

accuracy compared to the baseline teacher model. Conversely, the ST method showed the

expected accuracy drop in the student network. Notably, the method significantly reduced the

adversary’s performance by around 24%. However, as we already emphasized in CIFAR10

and CIFAR100 experiments, creation of ST is completely different that NT and AST and
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Teacher Teacher Teacher Student Student

Type Architecture Perf.% ↑ Architecture Perf.% ↓

– Student Base – — 63.44

ST Resnet50 66.11 Resnet18 36.73(-24.06)

BASE Resnet50 66.11 Resnet18 67.12(+1.01)

NT Resnet50 64.08(-2.03) Resnet18 66.33(+2.25)

AST Resnet50 66.65(+0.54) Resnet18 66.06(-0.59)

Table 6.3 Tiny-Imagenet results [1].

results are provided because sparseness is included in both AST and ST methods. In

AST, the teacher model slightly outperformed the baseline model and reduced the student

model’s performance by 0.59%. However, this reduction is significantly less compared to

experiments on CIFAR10 and CIFAR100 datasets. Yet, still we observed that AST is superior

to the NT method, but further research is required to generalize this technique across different

datasets.

6.4. Qualitative and Quantitative Analysis

6.4.1. CIFAR100 Analysis

This part enhances the experimental findings in sections 6.2. and 6.1. by providing

supplementary qualitative and qualitative analysis. CIFAR100 is a more fine grained dataset

that CIFAR10. Considering this fact, particular attention directed towards examining the

Resnet18 architecture and CIFAR100 dataset. The output distributions of various networks,

which are the base teacher, NT, STT, and AST, are depicted in Figure 6.1. In alignment

with the approach in [14], a softmax temperature has been applied to the output distributions

for the purpose of more understandable representation. In the third column the probability

distributions generated by the baseline teacher for corresponding adversarial samples are

provided. Entropy of the probabilities is displayed below them. The baseline model usually

produces a distribution that is almost uniform across classes with one class showing elevated
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confidence. This distribution can be seen for both adversarial and clean samples. In

clean samples, peaks often appears for the true category, while in adversarial samples, they

commonly appear for an incorrect category.

When compared to responses for clean samples, the output responses for adversarial samples

show higher levels of confidence and lower entropy. In contrast, outputs of AST has peaks in

multiple classes, which typically remains below the true class slightly. This scenario arises

due to the implemented sparsity during training and the utilization of the EPD loss. For the

classification scenarios with a larger number of classes, smoother distribution combined with

the extra peaks increases the entropy of the logit distributions and make the stealing process

more difficult .
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Figure 6.1 Shown is a visualization of output probability distributions post the application of
softmax temperature. The columns represent different aspects: (A) clean image
examples, (B) baseline network output probability distributions to these clean samples,
(C) baseline network output probability distribution to adversarially perturbed images,
(D) NT model responses to clean samples, (E) STT model responses to clean images,
and (F) Introduced teacher (AST) responses to clean samples. Entropy values for each
distribution are displayed below. The figure provides insights into the models’ behaviors
under various conditions [1].
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Additionally, for every teacher network, the entropy values of the output distributions have

been obtained for the whole test dataset. The Table 6.4 furnishes statistical data on the

entropy values for two specific classes. The numerical outcomes corroborate the qualitative

observations and maintain coherence across various classes. Notably, both the baseline

network and AST exhibit higher entropy levels in their outputs compared to the NT and STT

networks. Nevertheless, the AST demonstrates a greater variance in entropy compared to the

baseline teacher network. This disparity stems from the sparsity imposed during training,

resulting in output probability distributions with more than one highly confident classes. An

additional set of measurements has been formulated, involving the random selection of a

reference example from each of two classes. Subsequently, with respect to the results of

other samples in the same category, the KL divergence of these reference cases is calculated.

The results, outlined in Table 6.4, reveal substantial diversity across the models.

As anticipated, the baseline teacher network reliably displays the lowest average KL

divergence for both classes. This indicates a strong alignment with the expected distribution,

reflecting accurate model outputs with high confidence. This trait is favorable for recognition

tasks but may not be as advantageous for protective measures. On the flip side, the NT

network exhibits a higher degree of variability in KL divergence, especially concerning

class 10. This disparity from the standard distribution implies a broader deviation and may

suggest unstable predictions aimed at deceive the student network. The STT network shares

resemblance with the NT network. However, calculated highest KL divergence value among

the classes is slightly lower in the in the STT network, indicating a little narrower probability

distribution. In the same metric of highest calculated KL divergence, the AST network attains

a significantly lower value compared to these models, albeit greater than the baseline teacher

model. This emphasizes the stability of the output signals of the AST model.

Furthermore, compared to the baseline teacher network, it exhibits higher variance in

divergence values. It is possible to conclude that the intended outputs are being produced in

order to deceive the student networks depending on the entropy and KL divergence values.
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KL Divergence Entropy

Model Label Mean Variance Min Max Mean Variance Min Max

BASE 0 0.00082 8.56e-8 0 0.00215 1.99831 4.63e-8 1.99626 1.99958

NT 0 0.49432 0.26566 0 3.63332 0.25185 0.14789 0.00895 1.68001

STT 0 0.20675 0.09579 0 2.37950 0.23811 0.09251 0.02666 1.58349

AST 0 0.00240 3.68e-6 0 0.01016 1.98986 1.55e-5 1.98219 1.99746

BASE 10 0.00161 2.61e-7 0 0.00286 1.99841 8.11e-7 1.99361 1.99954

NT 10 1.06778 1.20049 0 4.21843 0.70504 0.21716 0.00968 1.74953

STT 10 0.96356 0.73454 0 4.06417 0.67207 0.24490 0.06806 1.81497

AST 10 0.01149 4.42e-5 0 0.04374 1.98177 0.00058 1.87968 1.99830

Table 6.4 KL Divergences and Entropies Within Class for Resnet18 Model Outputs on CIFAR100
Across Two Categories. The table is extracted from our paper [1].

6.4.2. CIFAR10 Analysis

A comprehensive qualitative analysis utilizing the Resnet18 architecture with the CIFAR10

dataset is presented. This analysis examines the responses of several models to clean images:

the baseline teacher, Nasty Teacher (NT [13]), Stingy Teacher (ST [14]), Stingy Trained

Teacher (STT)—the operational version of the Stingy Teacher—, and Adversarial Sparse

Teacher (AST), as indicated in Figure 6.2. Additionally, the baseline teacher’s reaction

to altered images is analyzed in a separate column, echoing similar experiments with the

CIFAR100 dataset discussed in the previous section.

The results reveal that AST’s responses are considerably more sparse than those observed in

the CIFAR100 studies, with a tendency to incorrectly favor the same class across different

samples from varied categories, aligning with prior model behaviors noted in CIFAR100

analyses.

It’s important to note that AST’s strategy involves a sparsity ratio of 0.2, limiting it to

generate strong responses for only two classes. This restriction often results in NT exhibiting

higher entropy in its responses than AST. While this sparse setting modifies the entropy

levels in CIFAR10, it is crucial for AST’s approach to thwart potential theft of the model.
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Despite generating incorrect predictions consistently, AST effectively deters stealing attacks.

This consistency in response is also seen in CIFAR100, but the impact of sparsity is more

noticeable in CIFAR10 due to its smaller number of classes and a higher sparsity ratio,

demonstrating the significant influence of model settings across different dataset conditions.
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Figure 6.2 The figure illustrates the logit responses after applying softmax with temperature. Each
column provides different information: (A) samples of clean images, (B) responses of
the baseline model to these clean samples, (C) responses of the baseline model to the
adversarial counterparts of the clean images, (D) responses of the NT model to clean
samples, (E) responses of the STT model to clean images, and (F) responses of our
proposed method AST to clean images. Under each distribution, the entropy of the
distributions is provided. All models utilize the Resnet18 architecture and are trained
using the CIFAR10 dataset [1].

The analysis provided herein utilizes the Resnet18 architecture with the CIFAR10 dataset

to measure the response characteristics of various models by computing the entropy values

of the prediction distributions for specified classes within the related categories of the test

set. The entropy values are organized into two groups and are detailed in Table 6.5.

Both quantitative and qualitative assessments demonstrate consistent results across these
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categories. When compared to CIFAR100 experiments, the entropy levels of the AST outputs

are lower than those of the NT models but higher than those from the STT model. This

variation is attributed to AST’s very low sparsity ratio, akin to that of the STT model, leading

it to frequently peak at a single incorrect class. In this configuration, the entropy for the STT

model is at least ten times lower than that of AST.

Moreover, a KL divergence analysis for the CIFAR10 dataset was conducted. A reference

image was picked at random from the selected categories, and its KL divergence was

calculated against the outputs of other samples in the same category. The results, which

are presented in Table 6.5, show that there are significant variations amongst the models.

Similar to the CIFAR100 experiments, the mean relative entropy of AST is higher than that

of the base and NT models, which suggests more confusing outputs; however, it is lower

compared to the STT model, indicating a consistency in the generated outputs, which also

proves to be effective during stealing attacks.

KL Divergence Entropy

Model Label Mean Variance Min Max Mean Variance Min Max

BASE 5 0.06159 0.00277 0 0.58339 0.68850 0.01113 0.33726 0.96591

NT[13] 5 0.07565 0.03233 0 2.41124 0.46232 0.00259 0.28000 0.81502

STT[14] 5 0.41480 1.49405 0 6.70777 0.03091 0.00675 4.66e-7 0.61720

AST 5 0.15954 0.18883 0 2.54734 0.32618 0.00810 0.02961 0.76299

BASE 7 0.02263 0.00283 0 0.46163 0.70362 0.00674 0.45502 0.97086

NT[13] 7 0.03958 0.06340 0 3.83768 0.44704 0.00114 0.30123 0.76110

STT[14] 7 0.23204 0.93246 0 5.95962 0.02352 0.00654 4.56e-7 0.61105

AST 7 0.08092 0.10757 0 2.42702 0.31025 0.00552 0.00775 0.73662

Table 6.5 KL divergences and entropies within class for Resnet18 model outputs on CIFAR10 across
two categories. The table is obtained from our paper [1].

6.4.3. Tiny-Imagenet Analysis

The output probability distributions of AST to random images of Tiny-Imagenet is illustrated

in Figure 6.3. Three or more peaky class other than the correct class (illustrated in red) can
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be observed in the figure. However, while entropy is high and distributions showes similar

behavior with other datasets, peakyness of the sparse classes in this distributions is reduced

relatively. This causes lower security compared to the CIFAR10 and CIFAR100 datasets but

still degrading the student performance compared to the teacher. The selection of parameters

were more tricky with Tiny-imagenet due to the higher class and image size. Higher value

of τ resulted in uniform predicted distribution and too strong weight parameter for EPD

loss. So, the parameters of Tiny-ImageNet AST were chosen by considering the selection

of ωτ 2 to be higher than the weight of cross-entropy, but not too dominant. This is because

when we increase the τ predicted distribution becomes flat and cross-entropy loss remains

relatively weak. When we higher the ω it degrades the weight of cross-entropy and result in

lower teacher accuracy. Therefore, a smaller SR was selected to strengthen the signal from

adversarial logits and boost the security of the model while maintaining performance.

E=1.76146 E=1.76459 E=1.76505E=1.75915

Figure 6.3 Output responses of AST to Tiny-Imagenet test images. Entropy value of each
distribution is provided below distributions.

6.5. Ablation Studies

To investigate various parameter values, experiments were conducted using the CIFAR100

dataset and the Resnet18 architecture. In ω and τ experiments sparsity ratio parameter is set

to two different values: 0.02 and 0.03. The results for the 0.02 sparsity ratio are provided in

Table 6.6, while the results for the 0.03 sparsity ratio are provided in Table 6.7. Generally,

a lower weight parameter (ω) resulted in higher teacher performance for both sparsity ratio

settings. However, reducing this parameter did not always lead to improved defensiveness.
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The impact of the τ and sparsity ratio parameters plays a significant role in achieving optimal

teacher and defense performance.

Regarding the temperature parameter (τ ), setting it between 20 and 30 typically enhanced

defensiveness and caused a significant drop in student accuracy, while maintaining high

teacher accuracy. However, higher values of τ led to a decrease in teacher performance

and defensiveness, while lower values of τ generally increased teacher performance but

decreased defensiveness. We achieved optimal performance with a sparsity ratio of 0.03

and a temperature (τ ) value of 20, resulting in a student accuracy drop of 33.01%. The ω

and τ parameters are highly dependent since the total loss is calculated using the term ωτ 2.

Therefore, these parameters were selected with consideration for both optimal teacher and

student performance.

ω 0.03 0.035 0.04

τ 10 20 30 40 10 20 30 40 10 20 30 40

Teacher 77.87 77.02 76.80 75.69 77.21 76.53 76.13 75.27 76.62 76.67 75.28 74.57

Student 78.55 44.01 57.24 74.53 78.40 52.46 60.87 72.65 50.91 64.05 71.73 76.30

Table 6.6 The table displays how various values of the ω and τ parameters affect a Resnet18 AST
network trained with the CIFAR100 dataset utilizing sparsity ratio of 0.02.

ω 0.03 0.035 0.04

τ 10 20 30 40 10 20 30 40 10 20 30 40

Teacher 77.60 76.65 76.75 75.83 77.16 76.38 75.99 75.43 77.20 76.38 75.45 74.88

Student 78.84 72.50 56.47 63.60 78.32 54.96 59.15 73.09 75.87 56.46 71.71 69.51

Table 6.7 The table displays how various values of the ω and τ parameters affect a Resnet18 AST
network trained with the CIFAR100 dataset utilizing sparsity ratio of 0.03.

Additionally, the effects of the sparsity ratio were analyzed in three different τ and ω settings.

The findings of ω = 0.035 and τ = 30 are documented in Table 6.8. The findings of ω = 0.035

and τ = 20 are presented in Table 6.9. The findings of ω = 0.03 and τ = 20 are displayed in

Table 6.10. In all scenarios, the best teacher performance is observed without using sparsity.
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Teacher Teacher Student Teacher-Student Teacher

Type SR Perf.% ↑ Perf.% ↓ Difference(D) Difference(P) D/P↑

BASE — 78.28 — — — —

AST 0.01 75.34 72.75 2.59 2.94 0.88

AST 0.02 76.13 60.87 15.26 2.15 7.10

AST 0.03 75.99 59.15 16.84 2.29 7.35

AST 0.05 76.27 63.30 12.97 2.01 6.45

AST 0.07 76.61 65.90 10.71 1.67 6.41

AST 0.1 76.46 66.77 9.69 1.82 5.32

AST 1 77.87 79.69 -1.82 0.41 -4.44

Table 6.8 The table illustrates the effects of varying sparsity ratios on a Resnet18 AST model trained
with the CIFAR100 dataset with the ω value of 0.035 and τ value of 30.

Teacher Teacher Student Teacher-Student Teacher-Base

Type SR Perf.% ↑ Perf.% ↓ Difference(D) Difference(P) D/P↑

BASE — 78.28 — — — —

AST 0.01 76.71 70.99 5.72 1.57 3.64

AST 0.02 76.53 52.46 24.07 1.75 13.75

AST 0.03 76.38 54.96 21.42 1.90 11.27

AST 0.05 76.64 62.32 14.32 1.64 8.73

AST 0.07 76.94 69.53 7.41 1.34 5.53

AST 0.1 76.75 78.25 -1.50 1.53 -0.98

AST 1 78.24 79.36 -1.12 0.04 -28.00

Table 6.9 The table illustrates the effects of varying sparsity ratios on a Resnet18 AST model trained
with the CIFAR100 dataset with the ω value of 0.035 and τ value of 20.

However, this also means the elimination of the defense mechanism. Lower sparsity ratios

generally lead to increased defense.

Setting the sparsity ratio to lower values implies assigning higher values to these classes

compared to higher values due to the softmax function applied to these logits. This increased
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Teacher Teacher Student Teacher-Student Teacher-Base

Type SR Perf.% ↑ Perf.% ↓ Difference(D) Difference(P) D/P↑

BASE — 78.28 — — — —

AST 0.01 77.07 75.56 1.51 1.21 1.25

AST 0.02 77.02 44.01 33.01 1.26 26.20

AST 0.03 76.65 72.50 4.15 1.63 2.55

AST 0.05 77.40 77.08 0.32 0.88 0.36

AST 0.07 77.29 77.86 -0.57 0.99 -0.58

AST 0.1 77.12 78.26 -1.14 1.16 -0.98

AST 1 77.61 79.05 -1.44 0.67 -2.15

Table 6.10 The table illustrates the effects of varying sparsity ratios on a Resnet18 AST model
trained with the CIFAR100 dataset with the ω value of 0.03 and τ value of 20.

value enhances the impact of these logits, particularly due to the exponential term in the EPD

function, resulting in better defensiveness.

To select the AST model with optimal performance, we defined a new metric considering

defensiveness (D) and performance degradation (P) of the trained model utilizing teacher and

student accuracies. In this approach, we first calculated the defensiveness of the model by

subtracting the accuracy of the student model from that of the teacher model. This indicates

the degree of defensiveness of the trained model. Additionally, to assess the performance

degradation of the teacher model, we calculated the difference between the baseline teacher

and the AST teacher models. Our goal is to increase defensiveness of the ATS model without

sacrificing much from its performance. Therefore, we calculated the metric by taking the

ratio of model’s defensiveness (D) to its performance degradation (P). We selected the model

with the highest D/P value. Considering this metric, the best performance is achieved, with

a D/P value of 26.20, when ω is set to 0.03, τ is set to 20, and a sparsity ratio is set to 0.02.
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6.6. Comparative Analysis of EPD and KL Divergence Metrics

Experiments were conducted on CIFAR100 dataset using Resnet18 architecture to examine

the behaviour of the EPD function. Figure 6.4 displays the results of these experiments. Four

distinct classes were selected and for each class, four images along with their corresponding

output distributions are presented.

E=1.993E=1.987E=1.985E=1.982 E=1.989 E=1.992E=1.994 E=1.986

E=1.322 E=0.949 E=1.088 E=1.363 E=1.198 E=1.446 E=1.456 E=1.158

E=1.067E=1.197E=1.255E=1.203E=0.957E=1.585E=1.134E=1.132

E=1.942 E=1.992 E=1.992 E=1.992E=1.995 E=1.996 E=1.995 E=1.997

Figure 6.4 The responses from the Resnet18 AST utilizing EPD and the AST utilizing KL
divergence to original images from four identical class sets are displayed. The first and
fourth rows features input images, the second and fifth rows shows responses from the
AST trained with EPD loss, and the third and sixth row presents responses from the AST
trained with KL divergence loss. Samples from the same classes are found in the first
four columns on the left and the last four columns on the right for both picture rows. The
entropy values for each distribution are provided below them, and all results are after
softmax temperature [1].

The AST model incorporating EPD exhibits a response with high entropy, leading to an

almost uniform distribution across most categories. Within this distribution, there are

noticeable peaks for a few classes, which emerge due to adversarial sparse logits. These
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peaks are positioned between the highest peak, representing the correct class, and the lower,

nearly uniform values of the remaining classes. The correct class, highlighted in red for

emphasis, stands out as the most prominent peak in the distribution.

The AST model with KL divergence demonstrates responses characterized by increased

sparsity and low entropy. Due to the incorporation of adversarial sparse logits, it also shows

peaks in some classes other than the correct class.

Loss Function Teacher Student

Perf.%↑ Perf.%↓

KL Divergence 67.25 62.34

EPD 77.02 44.01

Table 6.11 The table shows the impact of cost function on a Resnet18 AST network trained with
CIFAR100.

The accuracies of the AST models trained with KL divergence and EPD loss, along with

the corresponding student accuracies, are given in Table 6.11. For these experiments,

two different teachers were utilized: one trained using KL divergence and the other with

EPD loss. This setup allows for a comparison of the impact of the different divergence

metrics, with both teachers configured with ω = 0.03, τ = 20, and a sparsity ratio

of 0.02. The EPD method resulted in better teacher performance with the EPD-trained

teacher exhibiting approximately 10% higher accuracy than the teacher trained with KL

divergence. This improvement highlights the effectiveness of the EPD method in enhancing

teacher performance. The lower performance of the teacher trained with KL divergence

can be attributed to the highly confident and sharply sparse outputs it produces. These

sparse outputs make it challenging for the student model to effectively distill knowledge,

ultimately reducing the student’s accuracy [14]. KL divergence as a loss function tends to

lead to such sparse outputs. In the AST framework, where the model’s own outputs are

used during training, this sparsity diminishes teacher performance. On the other hand, the

EPD method produces non-sparse outputs, which contributes to the higher performance of
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the EPD-trained teacher. EPD incorporates adversarial sparse logits while maintaining high

entropy by quickly increasing the adversarial sparse logits and more gradually increasing

the other logits thus resulting in a non-sparse output. Moreover, EPD loss also outperforms

the KL divergence in the terms of defensiveness. The teacher trained with KL divergence

causes a 4.9% drop in student accuracy, while the EPD teacher caused a 33.0% drop. These

results indicate that maintaining high entropy while incorporating adversarial sparse logits

has a greater impact on the defense mechanism.

Following the CIFAR100 analysis, further experiments were conducted on CIFAR10 to

examine the effect of the number of classes. The output responses of the AST model,

trained using EPD loss and KL divergence loss, are showcased for specific classes using

the Resnet18 architecture on the CIFAR10 dataset. In these experiments with AST, all

parameters were kept identical except for the divergence part of the loss. Specifically, ω

was set to 0.05, τ to 6, and the sparsity ratio to 0.2 for both teachers. Figure 6.5 illustrates

the models’ responses to randomly chosen samples from two separate categories.

E=0.57498 E=0.28140 E=0.28354 E=0.28256 E=0.39046 E=0.28572 E=0.28109 E=0.28159

E=0.81970 E=0.68674 E=0.68771 E=0.68342 E=0.80562 E=0.67617 E=0.70342 E=0.68429

Figure 6.5 On the CIFAR10 dataset, the outcomes of a Resnet18 AST model utilizing EPD and KL
divergence losses are shown. The first row displays the input examples. In the middle
row, the responses generated by the AST utilizing EPD loss can be observed, while the
bottom row displays the outputs produced by the AST utilizing KL divergence loss.
Images in the first four columns and the last four columns are categorized similarly. All
logits have been subjected to the softmax temperature; the entropies of each distribution
is displayed below [1].

When comparing the AST models trained with datasets containing 10, 100, and 200 classes,

we observed that the number of classes influenced the entropy of the models trained
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with EPD. Specifically, the model trained with the 10-class dataset (CIFAR10) exhibited

lower entropy compared to both the 100-class(CIFAR100) and 200-class (Tiny-Imagenet)

datasets, which had higher entropy. Both versions of the AST models’ outputs in CIFAR10

experiments repeatedly had peaks in the same incorrect classes across all samples. The

outputs of the model trained with EPD was more sparse and confident than the model

with KL divergence. Due to the chosen sparsity ratio, where 2 out of the 10 classes

are selected, the output distribution of the model trained with EPD mostly displayed two

peaks. In contrast to the CIFAR100 experiments, the entropy of the model trained with KL

divergence in the CIFAR10 experiments was higher than that of the EPD model. However,

despite the increased sparsity, the EPD model did not experience a degradation in its own

performance. This can be attributed to the reduced number of classes: After applying the

softmax function to a distribution with a smaller number of classes, the confidence and

impact of the correct class in the EPD model’s outputs are enhanced, allowing the model

to preserve its performance.

45



7. CONCLUSION

This thesis presents a novel training method tailored to neural networks engaged in

classification tasks.Termed the Adversarial Sparse Teacher, this approach is strategically

devised to mitigate knowledge theft through Knowledge Distillation, thereby enhancing

the network’s resilience against such threats. A dedicated objective function was crafted

to reduce the divergence in output probability distribution between adversarial and original

images. Consequently, AST deliberately furnishes deceptive responses, ensuring a consistent

stream of misinformation to confound potential adversaries.

The success of this approach has been demonstrated by several tests conducted on a

variety of datasets and teacher-student structures. AST dramatically lowers opponents’

accuracy in situations when they have full information, including access to training data.

When applied to more complicated teacher structures and datasets, our method outperforms

existing approaches in completely revealed model settings. Additionally, a divergence metric

which used as an objective function in this study named Exponential Divergence Loss is

proposed. This function enhances the defensive capabilities and accuracy of AST compared

to KL divergence. Nonetheless, additional investigation is necessary to enhance this

methodology and examine its broader impacts, specifically for its computational efficiency

and potential generalizability across diverse network structures. Additionally, there is room

for further exploration to decrease the computational time required for generating adversarial

examples, thereby expediting the overall AST training process. One potential avenue

involves leveraging the transferable characteristics of adversarial examples, particularly

those synthesized from smaller networks. It would be worthwhile to investigate the impact

of training AST with adversarial examples generated from a subset of the original dataset

and involving a limited set of adversarial images.

Additionally, the training of AST is highly dependent on the hyperparameters of the

loss function, and the number of these hyperparameters is considerable. The optimal

performance of AST relies on both accuracy and defensiveness. To find the best settings,
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we created a new measure using the accuracies of both the teacher and student models.

We calculated defensiveness (D) by subtracting the student’s accuracy from the teacher’s

accuracy. Performance deterioration (P) was found by comparing the baseline teacher

model’s accuracy with the AST teacher model’s accuracy. Our measure is the ratio of D

to P, and we chose the model with the highest D/P value.

However, searching through these parameters depends on the accuracy of both the teacher

and the student models, so careful calibration requires significant time and computational

resources. Adjusting these parameters necessitates extensive research. In future work, the

number of parameters could be reduced, and the selection process for these parameters could

be thoroughly examined. Moreover, the generalizability of the proposed model, especially

on datasets with a high number of classes, is another area for further research.

In summary, this study presents a network that is resilient to model stealing via knowledge

distillation. It explores the influence of adversarial examples on defensive strategies,

contributing to a more comprehensive understanding of neural networks.
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