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GÖRSEL BİLGİYLE TESPİTİ
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ABSTRACT

DETECTION OF PHISHING WEB PAGES BY COMBINING
SEMANTICAL AND VISUAL INFORMATION

Ahmad Hani Abdalla Almakhamreh

Master of Science, Computer Engineering
Supervisor: Asst. Prof. Dr. Ahmet Selman BOZKIR

April 2024, 134 pages

The increased frequency and sophistication of cybercrimes resulted in severe monetary loss

for individuals and entities, increasing the demand for robust and sustainable solutions.

Although there are countless anti-phishing solutions in the domain, cybercriminals exploit

these systems and bypass them with zero-day attacks. In this dissertation, a new end-to-end

deep learning model called CrossPhire is proposed, which uses semantic and visual features

to make machine learning-based classification between phishing and legitimate web pages.

CrossPhire extracts distinctive features from three different data environments, including

URLs, source code, and screenshots obtained from web pages, and is jointly trained. In this

work, we present the following novelties: (1) development of an end-to-end deep learning

model capable of capturing semantic and visual features from the page’s URL, plain textual

content, and screenshot, (2) a language-independent analysis approach, leveraging SOTA

sentence transformers and convolutional neural networks, enabling analysis without reliance

on third-party services, (3) a new highly diverse multimedia dataset compiling real-world

examples of legitimate and phishing web pages, called Phish360, (4) provision of statistical

reports based on extensive data analysis1 of Phish360 and other multimodal datasets in the
1Data Analysis Reports: https://github.com/almakhamreh/MM-datasets-EDA
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literature, and (5) conducting comprehensive experiments, including in-data and cross-data

validation across five different datasets to evaluate the generalization performance of the

proposed model.

A comprehensive series of experiments was conducted to identify the most effective model

configuration by exploring various combinations of (a) HTML parsers (BeautifulSoup and

Trafilatura), (b) sentence transformers (Sentence-BERT and multilingual XLM-R), and (c)

convolutional image classifier models (ResNet50 and DenseNet121). In the experiments,

CrossPhire demonstrated outstanding performance, achieving 99.21% accuracy on the

Phish360 dataset and maintaining an average accuracy of 99.26% across the four benchmark

datasets. Additionally, we fine-tuned the CLIP model using the available benchmark

datasets by integrating a two-hidden layer MLP. Our approach demonstrated superior results

compared to CLIP, consistently outperforming it across all employed datasets. These

findings establish CrossPhire as a highly effective solution across various scales and datasets,

surpassing existing approaches.

Keywords: cybersecurity, phishing detection, multimodality, natural language processing,

computer vision, transfer learning, deep learning, zero-day attacks.
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ÖZET

KİMLİK AVCISI WEB SAYFALARININ ANLAMSAL VE GÖRSEL
BİLGİYLE TESPİTİ

Ahmad Hani Abdalla Almakhamreh

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Asst. Prof. Dr. Ahmet Selman BOZKIR

Nisan 2024, 134 sayfa

Siber suçların artan sıklığı ve karmaşıklığı bireyler ve kurumlar için güvenlik zaafiyetleri ile

birlikte ciddi maddi kayıplarla sonuçlanmakta ve bunun sonucunda gürbüz ve sürdürülebilir

çözümlere olan talebi artırmıştır. Alanda sayısız kimlik avı önleme çözümü olmasına

rağmen, saldırganlar bu sistemleri istismar etmekte ve sıfırıncı gün saldırılarıyla bunları

atlatmaktadır. Bu tez çalışmasında, kimlik avcısı ve meşru web sayfaları arasında

makine öğrenimine dayalı sınıflandırma yapmak için anlamsal ve görsel özellikleri kullanan

CrossPhire isimli yeni bir uçtan uca derin öğrenme modeli önerilmiştir. CrossPhire,

web sayfalarından elde edilen URL, kaynak kod ve ekran görüntüleri olmak üzere üç

farklı ortamdan ayırt edici özellikler çıkarmakta ve bütünleşik bir öğrenme yöntemiyle

eğitilmektedir. Bu çalışmada maddeler halinde şu katkılar sunulmuştur: (1) Sayfanın URL

ve temel metinsel içeriği ile web sayfası şipşakından anlamsal ve görsel özellikleri yakalayan

uçtan uca derin öğrenme modeli, (2) üçüncü taraf hizmetlerden izole olarak, güncel “cümle

dönüştürücüler” ve evrişimsel sinir ağları yardımıyla dilden bağımsız bir analiz yöntemi,

(3) Phish360 adı verilmiş olan meşru ve oltalayıcı sayfaların yer aldığı gerçek dünya

örneklerinin derlendiği, çeşitliliği yüksek yeni bir çok ortamlı veri kümesi, (4) Phish360
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ve literatürde yer alan diğer veri kümelerinin veri analizine dayalı istatistiksel raporlar2 ve

(5) önerilen modelin genelleme başarımını ölçmek adına beş farklı veri kümesiyle iç-veri ve

çapraz-veri doğrulamasına dayalı kapsamlı deneyler.

En iyi modelin bulunması adına farklı (a) HTML ayrıştırıcılar (BeautifulSoup ve Trafilatura),

(b) cümle dönüştürücüleri (Sentence-BERT ve çok dilli XLM-R) ve (c) imge sınıflayıcı

evrişşimsel modeller (ResNet50 ve DenseNet121) arasındaki kombinasyonlar kapsamlı

deneylerle ölçümlenmiştir. Yapılan deneylerde CrossPhire, Phish360 veri kümesinde

99,21% doğruluk sunarken ve diğer dört kıyaslama veri kümesinde ortalama 99,26%

doğruluk başarımı elde edilmiştir. Ek olarak, iki gizli katmanlı MLP’yi entegre

ederek mevcut kıyaslama veri kümelerini kullanarak CLIP modelinde ince ayar yaptık.

Yaklaşımımız, CLIP’e kıyasla üstün sonuçlar ortaya koydu ve kullanılan tüm veri

kümelerinde sürekli olarak CLIP’ten daha iyi performans göstermiştir. Sonuç olarak

CrossPhire’ın, kullanılan tüm veri kümelerinde farklı ölçeklerin tamamında en yüksek

sonuçları yakaladığı saptanmıştır.

Keywords: siber güvenlik, kimlik avı tespiti, çok ortamlılık doğal dil işleme, bilgisayar

görüsü, transfer öğrenimi, derin öğrenme, sıfırıcı gün saldırıları

2Veri analiz raporları: https://github.com/almakhamreh/MM-datasets-EDA
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1. INTRODUCTION

In the past decade, rapid technological advancements have led to widespread digitalization.

Adapting to the constant developments, businesses, institutions, and individuals have shifted

towards the digital world. As a result, the number of internet users has increased by

133% between 2010 and 2020 [6]. Humans have become progressively dependent on

internet-based services like social media, banking systems, online news organizations,

educational institutions, and even some governmental services, as it eases their lives and

saves time. This widespread use of internet-based solutions opened the door for attackers

to capitalize on by threatening users and service providers with multiple cybercrimes and

phishing is one of them.

Phishing is a severe cybercrime that leverages deceptive websites, emails, and text messages

to mislead people and steal sensitive information like login credentials, email addresses,

and credit card information for financial gain. According to a study about the definition of

phishing in 2014 [7], they defined it as ”a scalable act of deception whereby impersonation

is used to obtain information from a target” (as cited in [8]). In other words, attackers try to

deceive and lure targets by impersonating a well-known, trustworthy entity. In fact, the more

famous a brand is, the more likely attackers will attempt to impersonate it. That is because

there is a higher chance that the target is using this famous brand’s service (e.g., Microsoft,

AT&T, and PayPal), so it would be more convincing to the victim.

Although phishing is an old tactic, it is still popular because it is simple and effective.

According to CISCO’s Cyber security threat trends in 2021, phishing accounted for 90%

of data breaches [9]. Attackers typically target the weakest link in the security chain, i.e.,

the user [9]. As a result, the average internet user suffers the most from cybersecurity

crimes. That is because attackers tend to exploit human vulnerabilities instead of software

vulnerabilities. This means that even if a system is technically secure enough, end users

may be tricked into accidentally disclosing personal information, which undermines the

system’s overall security. There is no shortage of examples demonstrating the damage done
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Figure 1.1 Annual financial loss caused by reported cybercrime in the United States from 2001 to
2022 [1].

by cybersecurity attacks. In the US in 2022 alone, more than 800 thousand complaints were

made to the FBI’s Internet Crime Complaint Center (IC3), resulting in a total potential loss

of $10.2 billion [10]. Which is considerably greater than the total loss in 2021, estimated

at $6.9 billion from ∼847 thousand complaints [11]. This shows that phishing attacks are

becoming more sophisticated leading to a higher attack success rate. Meaning that the trend

does not follow a direct correlation, but rather, an inverse correlation with more advanced

tactics focused on the targeted victims. As demonstrated in Fig. 1.1, the annual loss from

cybercrime in the United States is rapidly increasing, indicating that anti-phishing systems

are not keeping up with the advancements of cyberattacks.

There are two primary techniques in phishing: Deceptive phishing and Malware-based

phishing. Malware-based phishing aims to install malicious software or code using technical

subterfuge schemes (expand this point)[12]. On the other hand, deceptive phishing employs

techniques like social engineering to lure and deceive the targets into submitting their

sensitive information [12]. In this thesis, we focus on deceptive phishing attacks and their

countermeasure techniques, as they are employed more frequently, and the overall reach of
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Figure 1.2 The lifecycle of a landing web page based phishing attack

these attacks is far greater.

In deceptive phishing, attackers create fraudulent websites having input fields to obtain the

victim’s sensitive information. Then, they execute the phishing campaigns by sending out

spoofed emails or SMS in bulk, containing the malicious Uniform Resource Locator (URL)

with catchy subject lines like ’Urgent’, ’Notice’, or ’Password change required’. It is similar

to how a fisherman places bait in a lake with a high fish population, hoping to catch fish.

Therefore, this type of phishing is commonly referred to as Bulk Phishing. As demonstrated

in Fig. 1.2, the phishing attack cycle starts with a planning and website setup phase, followed

by the distribution of fraudulent websites via email or SMS, typically chosen for its ease of

reaching a large number of potential victims [13]. If the target visits the phishing website

and submits his credentials, the attackers immediately use this sensitive information such as

credit card details and login credentials for malicious purposes.

According to the Anti-phishing Working Group (APWG), the financial sector is one of the

highly targeted sectors in the second Quarter of 2023 [14]. We analyzed the APWG reports

from 2012 to 2023, showcasing the number of unique phishing websites created annually by

attackers. As demonstrated in Fig. 1.3, there has been a dramatic surge in the number of

phishing websites since 2020. Notably, between 2020 and 2023, there has been a staggering

228% increase, with the number of phishing websites reaching almost 5 Million. Given

the substantial financial implications and potential losses associated with these types of

3



Figure 1.3 The number of unique phishing websites detected by APWG (2012 - 2023).

phishing attacks, there is a desperate need for robust anti-phishing mechanisms to protect

both enterprises and individual users [15].

Numerous anti-phishing solutions in the literature address the different aspects of phishing

detection. Given the phishing attacks’ evolving and dynamic nature, researchers are

constantly battling in an attempt to adapt to new emerging phishing tactics. Early works

on phishing detection involved white and blacklisting (List-based) using URLs [16, 17].

However, the major disadvantage of these techniques is a minor change in the URL is

sufficient to bypass it [16]. In addition, List-based approaches lack the learning ability to

generalize on new URL samples. Later on, visual similarity approaches emerged to mitigate

the phishing detection problem. Like Vision-based approaches [18–20] and approaches

utilizing the structure of Source Code [21, 22]. More recently, machine learning-based (ML)

solutions have also been experimented with, using handcrafted features [23, 24], TF-IDF

[25] and N-gram features [26]. Nevertheless, handcrafted features demand extensive domain

knowledge and continuous updates to keep up with new phishing tactics [27]. Additionally,

the performance of models trained with handcrafted features has been shown to decrease

when tested on new samples [26]. In general, single-modal approaches (using single data

modality) are easier for attackers to bypass since the reliance on a single data source

creates a vulnerability. For this reason, cybersecurity researchers are shifting towards hybrid
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approaches, combining data modalities to create a more robust anti-phishing solution.

Despite the high performance achieved by ML anti-phishing solutions, phishing campaigns

are growing and can still bypass detection systems. Given the recent developments in

deep learning, it is apparent that researchers are shifting towards utilizing deep learning

approaches as they have been proven to outperform conventional ML algorithms in various

domains. Additionally, scholars have contributed with large anti-phishing datasets in

different categories like URL datasets [2, 25, 26, 28], image datasets [18, 29], and multimodal

datasets [29–32]. This contribution paves the way for new deep learning-based proposals.

The large anti-phishing datasets facilitate employing deep learning solutions with automatic

feature extraction rather than using handcrafted features. These multimodal datasets contain

the raw data modalities, unlike other anti-phishing datasets where the extracted features

are shared. The availability of raw multimodal datasets provides freedom and flexibility

to research scientists, where they can extract the relevant features to their study. Hence,

encouraging scholars to propose and evaluate new methodologies without needing to collect

their data, as it is a time-consuming and tedious job.

In this thesis, we conduct a comprehensive literature review while focusing on the recent

novel anti-phishing approaches. Although there are several different categorizations of

anti-phishing works in the literature. However, we categorize the explored anti-phishing

solutions into five major categories based on the data modality employed:

1. URL-based approaches.

2. Content-based approaches.

3. Image-based approaches.

4. Bimodal approaches (i.e., use of two different modalities).

5. Multimodal approaches (i.e., Use of more than two modalities).

Conducting a thorough literature review helped us identify the following gaps within the

anti-phishing research domain:

(i) A notable scarcity of multimodal anti-phishing benchmark datasets.

(ii) challenges associated with adapting anti-phishing systems to evolving phishing tactics,
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making it challenging to maintain their effectiveness over time.

(iii) limited examination or discussion on the generalization of proposed solutions to new

phishing samples.

1.1. Overview and Motivation

In this thesis, we aim to build an anti-phishing system using different data modalities,

employing two subfields of artificial intelligence: natural language processing for textual

data and computer vision for images. Textual data encompass various features integrated

from the website’s core content, including the website’s URL and the main content extracted

from the website’s source code. Additionally, screenshot images convey the web page’s

visual appearance which contains discriminative features that would indicate whether a web

page is a phishing or a legitimate one.

1.1.1. Research Questions

In this thesis, we attempt to address the following research questions:

RQ1: Are existing anti-phishing approaches effective and sustainable, what data sources are

they employing, and do they possess limitations?

RQ2: Are multimodal anti-phishing datasets available, incorporating raw data sources? If

so, what data sources do they include?

RQ3: How does combining textual and visual data sources impact the detection system’s

performance? How does it compare to single-modal alternatives in terms of generalizability?

1.2. Contributions

In this thesis, we propose a novel, heterogeneous, multimodal, end-to-end, deep learning

model named CrossPhire to classify phishing and legitimate web pages by fusing their

visual and semantical information. We follow an interdisciplinary approach by leveraging
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state-of-the-art models from natural language processing and computer vision fields.

CrossPhire employs state-of-the-art models to operate on the web page’s distinct data

modalities (i.e., URL, image, and text) in a parallel fashion. Hence, it represents the

different aspects of a web page by considering visual (screenshot image) and textual

information (URL and source code). This data-informed approach enhances the model’s

decision-making capabilities by capturing deep holistic visual features and informative,

contextual, and semantic textual relationships. Another novelty in this thesis is the

utilization of state-of-the-art Sentence Transformers (ST) on the web page’s extracted core

content in the scope of web page phishing detection. We consider various design options

by experimenting with different ST models, namely Sentence-BERT and multilingual

XLM-RoBERTa on English and non-English text extracted using various HyperText Markup

Language (HTML) parsing tools. We experimented with state-of-the-art deep CNN models,

namely DenseNet121 and ResNet50, and fine-tuned them on web page screenshot images for

our phishing detection task. Lastly, we consider URL-based phishing detection models for

URLs, namely, GramBeddings, URLNet, and URLTran. Combining the invaluable insights

from our extensive experiments, we propose the new architecture CrossPhire, by combining

sentence transformer and Deep CNNs models for web page phishing detection.

Our approach sets itself apart from other methodologies by: (i) Providing a

language-agnostic solution by fusing the web page’s primary data modalities (URL, Image,

HTML source code), (ii) Fine-tuning pre-trained state-of-the-art NLP and computer vision

models specifically for the phishing detection task and utilizing them to capture complex

temporal, visual, and semantical relationships, (iii) Providing robustness against zero-day

attacks while maintaining autonomy from third-party features, (iv) Mitigating the data

leakage problem created by duplicate samples in anti-phishing datasets by employing a

multimodal approach, and (v) Contributing a novel multimodal architecture that is robust

against evasion and obfuscation techniques.

The main contributions of this thesis can be summarized as follows:

• We propose a novel heterogeneous data-informed approach fixated on extracting
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meaningful, discriminative, and holistic features from raw data modalities named

CrossPhire. The inherent multimodal nature of CrossPhire empowers the collective

ability to distinguish phishing and legitimate web pages. Utilizing state-of-the-art

models capable of capturing and representing complex nuances between phishing and

legitimate samples.

• We conduct a detailed, thorough, and comprehensive literature review emphasizing

the recent novel approaches utilizing different data modalities while shedding light on

their advantages and drawbacks. Consequently, identifying and filling several gaps in

the anti-phishing research domain.

• We conduct a detailed exploratory data analysis on several benchmark anti-phishing

datasets, highlighting their strengths and weaknesses. We examine and report our

observations using various statistics.

• We present the Phish360 dataset by employing a qualitative and systematic approach

in sample collection. Ensuring the quality, diversity, and inclusivity of real-world

phishing samples in different languages. Additionally, Phish360 encompasses diverse

samples that include a wide range of phishing tactics while ensuring the uniqueness of

included samples.

• We obtain state-of-the-art results employing Transfer Learning by fine-tuning

pre-trained state-of-the-art models from computer vision and natural language

processing fields to the phishing identification task. Demonstrating that the employed

models are capable of capturing the permanent characteristics and intricacies of

phishing web pages.

• We employ several benchmarking datasets to evaluate CrossPhire on samples collected

in different time periods to investigate the cross-dataset generalization performance

of CrossPhire. On top of that, we conduct extensive experiments to investigate the

performance of the single-modal components, validating the design choice of our

proposed scheme.
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• We share our codebase and all the supplementary materials, including our Phish360

dataset, with the research community. Enabling dataset benchmarking and fair

comparison for future studies employing different features.

1.3. Organization

The organization of the thesis is as follows:

• Chapter 1: introduces the thesis, presents our motivation, contributions, and defines

the scope of this thesis.

• Chapter 2: provides a background overview of the crucial concepts that we address

in this thesis.

• Chapter 3: provides a comprehensive literature review on recent web page

anti-phishing solutions, highlighting their advantages and limitations. In this chapter,

we categorize the reviewed studies into five main categories based on the data modality

employed. We also summarize key studies from every subsection in separate tables,

showcasing important information like the size of the dataset employed and the

achieved performance.

• Chapter 4: investigates the quality and diversity of public multimodal anti-phishing

datasets and introduces our new multimodal dataset Phish360. We explain the

collection and sample selection process, showcasing the importance of the dataset by

conducting a detailed Exploratory Data Analysis. We also demonstrate the importance

of Phish360 by comparing it to the existing multimodal anti-phishing datasets.

• Chapter 5: provides a detailed description of the proposed methodology. We first

present an overview of the proposed scheme, CrossPhire, and then we explore each

component in separate subsections. Finally, we define the evaluation metrics.

• Chapter 6: presents our experimental results and corroborates our design options

by examining the results using different HTML parsers, Sentence transformers,
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and image models. We validate our proposed architecture by conducting several

ablation studies exploring the various components in CrossPhire. Additionally,

we analyze and compare CrossPhire’s performance using both multilingual and

monolingual English texts extracted using different HTML parsers. Finally, we

address several evaluation questions regarding the impact of multimodality on

detection performance, CrossPhire’s generalization capability by conducting extensive

out-of-sample evaluations, and a comparison between CrossPhire and its baseline

approaches.

• Chapter 7: explores the adaptability of our phishing detection framework and its

capability to adapt and integrate newly emerging models to process the different

data modalities. We highlight the effectiveness of leveraging the website’s textual

content by visualizing the textual embeddings. Finally, we discuss some limitations

and drawbacks of our proposed methodology.

• Chapter 8: concludes the thesis and provides possible future work.
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2. BACKGROUND OVERVIEW

2.1. Types of Phishing Attacks

As we discussed earlier, phishing is the act of deceiving people or entities to gain information

that can be used for financial benefits, yet this is a very general definition. There are multiple

types and methods where the phishers exploit different weak points to achieve their goals.

These types widely vary based on the techniques used to deceive but all share the same aim

which is to obtain valuable data that can be used against the victims.

Attackers tend to exploit the weakest link in the security chain, i.e., the user, as it is easier

for attackers with no strong technical skills to exploit human vulnerabilities by deceiving

them rather than exploiting some system’s vulnerabilities [33]. To do that, the attackers

rely on some form of communication, like emails, messages, or social networks, to contact

the victims. The attackers must impersonate a trusted entity such as the bank’s customer

services or a famous and trusted service provider like Apple or Microsoft for the victim to

believe them. A trick attackers use to look and feel legitimate when communicating with

victims using email is to spoof the source’s email address and add the appropriate company

logos to look legitimate. They might use ’security update’, ’password change notice’, or

’urgent’ in the subject line to grab the victim’s attention, and when the victim checks the

sender’s email, it will look legitimate since the email spoofed. From there, they can redirect

the victim to another fake website (phishing website) that the attackers have prepared to

collect the victim’s sensitive information [34]. Since this thesis focus on the deceptive types

of phishing, here are some of the well-known and frequently employed types of phishing

attacks:

• Spear Phishing: In this attack, the attackers aim to infiltrate organizations or

institutions by finding inside information or social data (which could be acquired from

social media such as Facebook and LinkedIn) on some users in the company. This

information will be used to craft an email that appears to be from a trusted source by
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the user, like a supervisor or IT department employee [35]. Since the victim thinks he

knows the sender’s identity, the victim would not be as skeptical, and the message’s

content would not raise any suspicion [36]. The high success rate of spear phishing

comes from faking an email or message from a person or entity known by the victim,

so the victim would not be as hesitant to provide his login credentials, for example, if

contacted by the company’s IT department [37] [38].

• Man-in-the-middle attack: The idea behind these types of attacks is that the attacker

sits in the middle of client-server communication, hence the name man in the middle.

By being in the middle of this two-way communication between a victim and a web

application, the attacker can intercept and collect the personal information that the

victim is sending to the server or web app [8] [34]. Additionally, the attacker in

this scenario can sit in the middle and establish two SSL connections separately, one

with the victim and the other with the real server [39]. To carry out this type of

attack, the attacker has to mislead the customer to a proxy server instead of the real

server; that way, he can capture the data in the middle. This can be achieved using

various methods like Transparent Proxies, DNS Cache Poisoning, URL Obfuscation,

and Browser Proxy Configuration [34].

• Whaling Attacks: The term is derived from whales within poker, which refers to

big-time gamblers that spend a significant amount of money [34]. Whaling in the

context of phishing refers to attacks focused and highly targeted towards high-level

senior executives (such as CEO, CFO, and CTO) within an organization. Unlike the

other typical phishing attacks that aims to deceive as many victims as possible, whaling

attacks are meticulously planned to target a small subset of individuals. In whaling

attacks, the attackers spend more time crafting the targeted message to achieve the

highest probability of success in stealing the high-level executives’ credentials[34].

• Smishing & Vishing: Smishing and Vishing attacks have recently gained vast

popularity among attackers. Like email phishing, Smishing and Vishing aim to steal

sensitive information from the victims. However, instead of using emails to distribute
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their phishing websites, attackers use mobile text messages in Smishing and voice calls

in Vishing [34].

2.2. Machine Learning

Machine learning (ML) stands as a subfield within artificial intelligence (AI), comprising

algorithms designed to empower computers with the ability to learn and enhance

performance through experience, mirroring human-like task execution [40, 41]. These

algorithms become invaluable in optimizing and automating specific tasks, eliminating the

necessity for direct human intervention. These algorithms can be classified into multiple

categories and types depending on the criteria used for that classification. One significant

criterion is the nature of the tasks they are designed to execute, and the type of data

employed for task execution. This results in two primary categories: supervised learning

and unsupervised learning. In supervised learning, labeled data is utilized to perform tasks,

while unsupervised learning makes use of unlabeled data, as labeled data may not always

be available. In supervised learning, the objective is typically to instruct the computer to

replicate a known system, providing it with labeled data for guidance. On the other hand,

unsupervised learning aims to enable the computer to grasp, extract, and utilize unseen

patterns without predefined guidance from labeled data [42].

The progress in machine learning can be attributed to various factors, one of which is the

increased usage as individuals and organizations exploring its capabilities, giving rise to

several subfields. One such subfield is natural language processing (NLP), which centers

on the interaction between computers and human language [43]. This fusion of machine

learning and linguistics has led to diverse applications, including but not limited to text

translation, paraphrasing, and text generation [44].

Deep learning stands as another significant subfield of machine learning, particularly

proficient in managing large and complex datasets. It achieves this capability by employing

multiple layers to process data, allowing it to discern complex patterns and relationships

inherent in the dataset. Deep learning has facilitated breakthroughs, particularly in
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applications related to processing videos, images, and audio [45, 46]. Also, deep learning

methods have demonstrated their ability to surpass earlier state-of-the-art machine learning

techniques across various fields, with computer vision standing out as one of the most

prominent examples [46].

The continued advancements in deep learning have given rise to the concept of transfer

learning, which involves incorporating additional sources of information beyond the usually

used training data. In transfer learning, knowledge from one or more related tasks is utilized

to enhance the learning process in the target task. The objective of using transfer learning

is to improve the performance of the given model in the target task by leveraging insights

gained from the source task or tasks in a way to mimic the human capability of transferring

knowledge between tasks [47].

14



3. RELATED WORK

Plenty of attempts used various methods to detect and identify phishing websites. The

majority of research studies have been categorizing these methods into (i) list-based, (ii)

similarity-based, and (iii) machine learning-based methods. However, we categorize the

methods in the literature into five main categories based on the data modality used, i.e.,

(1) URL-based, (2) Content-based, (3) Image-based, (4) Bimodal, and (5) Multimodal

approaches. In the first three categories, the studies utilize single-modal extracted features,

and the fourth category includes using a combination of modalities. However, the multimodal

category combines the URL, textual content, and image features.

In this section, we present an overview of the literature research by fixating on the

state-of-the-art approaches in recent years. We start by summarizing some anti-phishing

approaches available in the literature according to the categorization mentioned above. Then,

we select the most relevant studies and summarize them in multiple tables according to their

categories, highlighting important information like main findings, used datasets, and known

limitations.

3.1. URL-Based Phishing Detection

The earliest URL-based works relied on white and black lists, comparing a website’s

information to determine its legitimacy. Researchers have used URLs, domain names, and IP

addresses for comparisons. Identified phishing websites would then be added to the blacklist

[48]. The drawbacks of using such techniques are the need to maintain a database containing

the lists and the need to update these lists constantly. On the other hand, heuristic-based

approaches have been proven successful, especially with the recent rise of machine learning.

Machine Learning approaches on URLs have been widely utilized in phishing detection. To

extract extinguishable features, some researchers opted for manually extracting lexical and

statistical features that rely on experts’ knowledge from the URL string [23, 24], such as

URL length or the count of specific characters or symbols. Others utilized automatic feature
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extraction using NLP methods like TF-IDF in [25, 26, 49], N-gram features [30, 50], and

character or word embeddings [2, 51, 52].

3.1.1. URL Statistical & Lexical Feature Based Methods

Rao et al. [25] collected and published the CatchPhish URL dataset. The authors proposed

URL-based handcrafted features, TF-IDF features (see 3.1.2.), and a combination of both.

Using the handcrafted features (e.g., Ratio of hyphens in URL, num of digits in path and

hostname) with the RF classifier, they obtained the highest accuracy of 94.32% on the D1

proportion of their dataset.

Korkmaz et al. [23] used the CatchPhish URL dataset published in [25] to extract URL

statistical features. The authors reviewed some of the existing literature to pick these

distinctive features. Consequently, they picked 58 features and narrowed them down to the

top 48 URL features. These selected features include the count and presence of certain

characters or words in the URL and some ratios like the ratio of digits to letters. After

experimenting with eight different ML algorithms, they obtained the best performance using

the RF classifier on the three portions of the dataset: D1, D2, and D3. They reported

accuracies of 94.59% on D1, 90.5% on D2, and 91.26% on D3.

Similarly, Butnaru et al. [24] also obtained the highest evaluation metrics using the RF

classifier but using a combination of self-collected samples and samples from the Malicious

And Benign URLs dataset [53]. The authors picked 10 features from previous studies and

proposed two additional similarity index features (similarity between URL’s domain and

subdomain. domain and the top benign domains in the dataset). The authors argued against

using balanced datasets in phishing detection systems as they do not represent a realistic

scenario. When testing their proposed approach, they reported a testing accuracy of 99.29%

using 380k samples with around 80% legitimate URLs. Finally, the proposed system was

evaluated over time using samples from PhishTank [54], achieving around 94.5% accuracy.
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A new concept called intra-URL relatedness was introduced by Marchal et al. [55]. This

concept measures the relation between the domain and the rest of the URL string. The

authors argue that while all parts of legitimate URLs are related, phishing URLs’ domains

are not related to their targeted brand. Including their new proposed feature, the authors used

12 total features extracted from the URL and search engine queries. The features also reflect

the popularity of the URL based on third-party services like Google Trends and Yahoo Clues.

The authors collected around 96k URL samples from PhishTank [54] and DMOZ [56] for

phishing and legitimate samples. By experimenting with different ML models, they obtained

the highest results using the RF classifier with accuracy and TPR values of 94.91% and

91.27%, respectively.

In an attempt to create a lightweight URL phishing detection approach, Haynes et al. [57]

experimented with URL and HTML-based features (see 3.4.). In their URL-based phishing

detection method, they experimented with deep Artificial Neural Networks (ANNs) and

pre-trained transformers (see 3.1.2.1. for the transformer-based experiments). Given that

reason, they collected around 22,000 phishing and legitimate URL samples from PhishTank

[54] and CommonCrawl [58], respectively. Utilizing 31 URL-extracted features, they

reported an accuracy of 86.2% using deep ANNs (ANNU).

Another example of URL-based lightweight approaches suitable for Internet of Things (IoT)

environments was introduced by Bustio-Martı́nez et al. [59]. The authors proposed a system

by considering some URL-based features from the literature and introducing additional novel

ones. As the authors’ aim is to build a lightweight phishing detection system, they employed

a feature selection algorithm to reduce the number of features used. After evaluating

these features, they identified and used the nine most relevant distinctive features, 6 of

which were introduced by them (e.g., hostname length ratio to URL length and Entropy

of the URL). Experimenting with different classification methods, they obtained the best

performance using the Random Forest Classifier. They reported 99.57% accuracy using

their own collected dataset containing around 52k samples from Alexa and PhishTank [54].

Finally, it is worth mentioning that the authors decided to make their dataset public and

provided a link for it in their paper.
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Korkmaz et al. [28] implemented a Deep Neural Network (DNN) and compared its

performance with ML-based algorithms using 73 URL-based features obtained from an

earlier study [60]. Some examples of these features are the number of dots in the URL path,

the length of the hostname, and the length of domain name. They collected and published a

226K URL dataset (High-Risk Phishing URL Dataset on Kaggle) with equal samples from

both phishing and legitimate classes. The authors reported the highest accuracy of 86.64%

using DNN. Among the ML-based models, 86.62% accuracy was reported using the RF

classifier with 5-fold cross-validation. In a more recent study, the same authors, Korkmaz et

al. [50], utilized the self-collected High-Risk URL dataset from their earlier publication [28]

to investigate the use of CNNs with URL-based n-gram features. They created character

n-gram features using the values 1 to 5 for n (i.e., unigram, bigram, trigram, 4-gram, and

5-gram). The authors obtained the best performance using the CNN model while limiting the

URL characters to 70. Their proposed model achieved 88.9% accuracy on URL character

unigram features, and they reported a test time of 0.008 seconds for a single URL.

3.1.2. NLP Based Feature Methods

As discussed in the previous subsection, the experiments conducted by Rao et al. [25]

resulted in the highest accuracy of 94.32% using handcrafted features. Combining the

handcrafted features with extracted TF-IDF features, the RF’s accuracy increased to 95.67%

on D1. Finally, the authors validated their best-performing approach on EBBU2017 [61] and

PhishStorm [55] datasets, achieving accuracies of 98.04% and 98.57%, respectively.

In 2019, Sahingoz et al. [61] introduced the Ebbu2017 dataset containing around 73k URL

samples obtained from PhishTank [54] and Yandex. Using their proposed URL dataset, the

authors extracted words from the URLs to create a word list. The created word list is then

analyzed to filter out random words consisting of meaningless characters and symbols. First,

40 NLP-based features were extracted, like the average adjacent word length and consecutive

repetition of a character. Then, weka’s StringtoWordVector method was applied to obtain

word vectors (102 features). After merging the features, they were reduced to a total number
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of 104 hybrid features. The proposed approach was validated with seven different ML

models on the different features. Obtaining the highest accuracy of 97.98% using the RF

classifier on the 40 NLP-based features.

3.1.2.1. Character and Word Embeddings Based Methods The study we explored

earlier in subsection 3.1.1. (Statistical & Lexical URL features) also included the use of

pre-trained transformers on the strings of URLs [57]. The authors fine-tuned BERT and

ELECTRA models on the collected URLs. By experimenting with different variations of

pre-trained BERT and ELECTRA, they reported the highest accuracy of ∼96% using the

ELECTRA-base model fine-tuned on their collected URLs. Finally, their experiments on

both URL and HTML modalities are discussed in 3.4..

Similarly, Jishnu and Arthi [51] used BERT to provide a phishing URL detection approach.

The approach combines handcrafted features with BERT embeddings by concatenating them.

After generating the input features, fine-tuning is applied to the pre-trained BERT model

with a classification layer. Using a collection of 200,000 URLs with a 1:1 class ratio, their

approach obtained 97.32% accuracy and F1-score.

In another study, the same authors proposed a phishing detection approach by employing

RoBERTa for URL feature extraction and LSTM for classification. [52]. Their proposed

approach leverages pre-trained RoBERTa to create contextualized embeddings by adding

LSTM and FC layers. The proposed approach was evaluated on 300,000 URL samples with

a 1:1 class ratio, achieving 97.14% accuracy.

Arguing against the use of handcrafted and third-party dependent features, Bozkir et al.

[2] proposed a new deep neural network based on URL character-level n-grams called

GramBeddings. The authors argued that there is a desperate need for bigger and more

balanced URL datasets in the anti-phishing domain. Hence, they collected and published the

GramBeddings URL dataset comprised of 400k legitimate from the web, and 400k phishing

URLs from PhishTank and OpenPhish. The proposed model (GramBedding) employs

an n-gram selection method paired with CNN, BiLSTM, and attention layers. Through
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extensive validations on their self-collected URL dataset, they obtained an accuracy of

98.27%. Additionally, GramBeddings was evaluated on seven different public benchmarking

URL datasets, outperforming the proposed methods by the authors, achieving a minimum

accuracy of 98.32% accuracy (see table 3.1). It is worth noting that, in this thesis, we utilize

the GramBedding model in our proposed three-modality approach, and it will be further

explained in The Proposed Approach section.

Table 3.1 Summary of URL-based anti-phishing approaches

Ref Dataset Used Algorithm Evaluation Limitation

[55]

2014
Self-collected

PhishStorm (P: ∼48k

L: ∼48k)

Random Forest Acc: 0.9491

P: 0.9844

R: 0.9127

F1: 0.9472

Language and third-party service

dependency.

[61]

2019
Self-collected

Ebbu2017 (P: ∼37k

L: ∼36k)

Random Forest Acc: 0.9798

P: 0.970

R: 0.990

F1: 0.980

NLP features are dependent on (1)

experts’ knowledge, (2) English

language, and (3) third-party services

(Alexa).

[25]

2020
Self-collected

CatchPhish

(P: ∼122k

L: ∼171k)

and

evaluated on D4: [61]

and D5:[55]

Random Forest Accuracy:-

D1: 0.9567

D2: 0.9395

D3: 0.9426

D4: 0.9825

D5: 0.9857

TF-IDF is language specific. third-party

service dependency (brand names from

PhishTank).

[23]

2020
Used CatchPhish

dataset

Random Forest D1:

Acc: 0.9459

P: 0.9450

R: 0.9469

F1: 0.9459

D2:

Acc: 0.905

D3:

Acc: 0.9126

Using handcrafted URL-based features.

Lower accuracy compared to the authors

of CatchPhish [25].

cont’d

20



Table 3.1 – continued from previous page

Ref Dataset Used Algorithm Evaluation Limitation

[28]

2020
Self-collected

High-risk URL

(P: ∼113k

L: ∼113k)

ML vs DNN RF:

Acc: 0.8710

P: 0.8605

R: 0.8807

F1: 0.8705

DNN(M6):

Acc: 0.8664

Comparatively low accuracy and usage

of handcrafted features.

[24]

2021
Used Kaggle dataset

[53] and some

collected samples.

Total:

(P: ∼135k

L: ∼364k)

Random Forest Acc: 0.9929

P: 0.9740

R: 0.9906

F1: 0.9822

Using handcrafted URL-based features.

Some features depend on legitimate

domain lists. When evaluated on

PhishTank over time, accuracy drops to

∼94%.

[50]

2021
Used High-risk URL

dataset

CNN Acc: 0.889

P: -

R: -

F1: -

Comparatively low accuracy.

[59]

2022
Self-collected URL

samples (P: ∼26k

L: ∼26k)

Random Forest Acc: 0.9957

P: 0.9947

R: 0.9957

F1: 0.9968

handcrafted features and dependency on

experts’ knowledge.

[2]

2023
Self-collected

Grambeddings

(P: 400k

L: 400k)
used

seven public datasets

for evaluation

proposed DNN

architecture (CNN,

BiLSTM, and attention

layers)

Acc: 0.9827

P: 0.9894

R: 0.9759

F1: 0.9826

Eval Acc:

on [61]: 0.9914

on [48]: 1.00

on [55]: 0.9832

on [62]: 0.9873

on [63]: 1.00

on [53]: 0.9982

on [64]: 0.9982

The use of n-grams from URLs does not

capture semantics [2].

[51]

2023
Self-collected URL

samples (P: 100k

L: 100k)

fine-tuned BERT Acc: 0.9732

P: 0.9686

R: 0.9780

F1: 0.9733

The impact of handcrafted features’

on the overall performance was not

examined.

cont’d
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Table 3.1 – continued from previous page

Ref Dataset Used Algorithm Evaluation Limitation

[52]

2023
Self-collected URL

samples (P: 150K

L: 150K)

RoBERTa and LSTM

layer

Acc: 0.9714

P: 0.9716

R: 0.9711

F1: 0.9714

shortened URLs may pose a challenge.

No recorded training time.

3.2. Content-Based Phishing Detection

Benavides-Astudillo et al. [65] investigated the use of textual content features extracted

from the website’s HTML code. They aim to accurately detect phishing websites using

textual semantical features with DL algorithms. To do that, they used a public dataset called

Phishload; after filtering out the invalid samples, they were left with 9,198 phishing and

1,176 legitimate samples. The authors first used Regular Expressions to remove HTML

tags, digits, and junk characters from the HTML source code. They then applied some NLP

preprocessing steps, e.g., stop-word removal, tokenization, and lemmatization. They used

the Keras Embedding layer and GloVe word embeddings for feature representation. After

experimenting with different maxlen values to determine the maxlen of the string, the authors

chose 200. Finally, they tested four different DL algorithms and reported a mean accuracy of

97.39% with 5-fold cross-validation using the Bidirectional Gated Recurrent Unit (BiGRU).

Arguing against using handcrafted and manual feature extraction methods, Opara et

al. [66] proposed a DL-based approach called HTMLPhish. The proposed approach

concatenates word and character embeddings generated using the Raw HTML content. In

the preprocessing steps, the Raw HTML content is first tokenized and then padded (The

dimension for each vector is set to 100, maxlen for characters is 180 and 2000 for words)

before it is passed to the embedding layers. It is worth noting that HTML tags, punctuations,

and symbols were not removed from the HTML content. After separately creating word

(HTMLPhish-Word) and character (HTMLPhish-Character) embeddings, they employed a

dense layer for concatenation. The authors collected two separate datasets, D1 and D2:

D1 was collected in Nov 2018, consisting of 23k legitimate and 2.3k phishing samples.
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D2 was collected in Jan 2019, composed of 24k legitimate and 2.4k phishing samples. In

the evaluation step, HTTMLPhish-Full, HTTMLPhish-Word, and HTMLPhish-Character

were trained using D1 and tested on the D2 dataset. HTMLPhish-Full performed the

best, achieving a 93% testing accuracy, while HTMLPhish-Word and HTMLPhish-Character

achieved 90% and 91% testing accuracies, respectively.

Arguing against handling the HTML source code as a sequence of characters to extract

representative features, (Ouyang and Zhang) [21] proposed a Graph Neural Network-based

approach. The authors first parsed the HTML source code into DOM trees where tags and

inner tags are represented using nodes and edges, respectively. The authors used an RNN to

extract feature vectors from the node attributes. Max pooling was employed to ensure the

acquisition of fixed-length RNN output vectors. Additionally, the Topology Adaptive Graph

Convolutional Network (TAGCN) was used to capture the long-rage semantics between the

nodes in the graph. Finally, all embeddings were reduced using max-pooling and passed to

the fully connected layer for classification. Their experimental results on a self-collected

121,983 legitimate and 26,578 phishing samples achieved 95.5% accuracy.

Although Ariyadasa et al. [67] used both URL and HTML features to detect phishing

sites in their proposed approach PhishDet (see 3.4.). PhishDet consists of URLDet and

HTMLDet, handling the two different data modalities. HTMLDet is a representation

learning approach based on Graph Convolutional Networks (GCN). The HTML content of

the webpage containing tags is used to construct the graph structure, and the vectors for each

document (feature matrix) are generated using Doc2Vec. The HTMLDet approach trained

and validated using the HTML modality alone obtained 89.87% accuracy.

Finally, proposing a new phishing detection approach, Rao et al. [68] extracted plain and

domain-specific text from the web page’s source code. As the domain-specific extracted text

is concatenated with URL-based features, we only highlight the authors’ experiments using

the extracted plain text. The BeautifulSoup parser is first used to extract the text from the

HTML source code. Then, the extracted text is tokenized and lemmatized. The authors

used several word embedding generation methods for feature representation, achieving the
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best results using the FastText model with Skipgram. Evaluating their proposed approach

on 5,438 phishing and 5,076 legitimate samples with different ML algorithms, they obtained

98.28% accuracy using the Logistic Regression model.

Table 3.2 Summary of content-based anti-phishing approaches

Ref Dataset Used Algorithm Evaluation Limitation

[66]

2020
Self-collected ∼52k

HTML samples

(D1 = P: 2.3k

L: 23k

D2 = P: 2.4k

L: 24k)

Deep Learning (CNNs) HTMLPhish

-Full

D2:

Acc: 0.93

P: 0.92

R: 0.93

F1: 0.91

The used model doesn’t fully represent

the semantical relationship of the text

(representation of misspelled words

will be similar to the actual word).

And word-level embeddings depend

on the training data [27]. The

performance declines with time and

needs a retraining phase [67].

[69]

2020
Self-collected

samples combined

with PWD2016 [32]

(P: 20k

L: 20k)

CNNs HTML only:

Acc: 0.9170

P: -

R: -

F1: -

The performance of the single modal

approach (HTML only, referred to as

1D Conv in [69]) is comparatively

low. Manual feature extraction

(handcrafted).

[21]

2021
Self-collected ∼149k

samples (P: ∼27k

L: ∼122k)

Graph Neural Network

(GNN) and RNN

Acc: 0.9550

P: 0.9345

R: 0.8025

F1: 0.8634

The method can be bypassed by cloning

legitimate HTML code structure [22].

[68]

2022
Some self-collected

samples (P: ∼5.4k

L: ∼5k)

Logistic Regression EX1-PT

Acc: 0.9828

P: 0.9787

R: 0.9878

F1: 0.9832

The proposed approach fails when the

text is replaced with an image [68]. The

dataset contains only English samples.

[67]

2022
Some self-collected

samples with

PWD2016 [32],

web2vec [70], and

[71] (P: ∼66k

L: ∼70k)

(HTMLDet) Graph

Convolutional Network

(GCN)

HTMLDet

Acc: 0.8987

P: 0.9118

R: 0.8828

F1: 0.8971

Comparatively low accuracy

cont’d
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Table 3.2 – continued from previous page

Ref Dataset Used Algorithm Evaluation Limitation

[65]

2023
Used PhishLoad

(P: ∼9k

L: ∼1k)

BiGRU Acc: 0.9739

P: -

R: -

F1: 0.94

Limited and unbalanced dataset with

∼2k validation samples. Limited the

maxlen value to 200 (L= max number

of words).

[27]

2024
Self-collected legit

samples. Phishing

samples from

High-risk dataset [28]

(P: ∼23k

L: ∼23k)

CNN (referred to as

Option3 using only

HTML)

WebPhish

(O3) HTML

Acc: 0.965

P: 0.970

R: 0.961

F1: 0.965

The proposed model would need

retraining to stay relevant and maintain

high performance and the model cannot

classify webpages that replace DOM

with embedded images [27].

3.3. Image-Based Phishing Detection

(Phoka and Suthaphan) [20] proposed employing pre-trained CNNs on images of a login

web page in phishing detection by considering five different targeted brands. They aim to

conduct two main experiments: Binary and Multiclass classification. The authors proposed

a data augmentation method to enlarge their dataset by producing new sample images. Their

method consists of sub-image identification and sub-image random placement. It is done

by identifying regions of interest on a login page and replacing them with other randomly

identified sub-images from the same sample. By fine-tuning five different pre-trained CNNs

(Inception V3 & V4, ResNet V1 & V2, and ResNet-Incepttion) on their produced data

samples, they obtained the highest accuracy of 97.1% using the Inception-ResNet-v1 model.

(Bozkir and Aydos) proposed a vision-based phishing detection approach using logo

detection called LogoSENSE [19]. The web page’s logo is detected using Max-margin

objection detection (MMOD). The detected logo is used to extract features using the

Histogram of Oriented Gradients (HOG) descriptors. The generated HOG vector contains

visual information obtained using a logo-sized sliding window on the screenshot. The

resultant HOG vectors are classified based on their similarity with the targeted brand logos.

LogoSENSE was validated on a self-collected image dataset containing 3,060 training and

1979 testing image samples, achieving 93.50% precision and 85.02% F1-score.
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Addressing the unexplainable classification results of phishing detection systems, Lin et

al. [18] proposed a deep learning vision-based approach called Phishpedia using brand

logos identity. Phishpedia is a two-step solution where, given a screenshot, Phishpedia first

detects the logo and then matches it to a reference of legitimate brand logos. The Faster

R-CNN is used to recognize and detect the logos and input boxes (forms) from a webpage

using their self-collected and annotated 30,649 legitimate samples. The authors trained the

Faster R-CNN model by jointly training the region proposal network and Fast-RCNN on

the extracted feature maps. In the brand recognition task, the authors opted for a Siamese

model employing ResNet architecture to identify the logo’s brand. The ResNet backbone

model was pre-trained on the Logo2k+ and then fine-tuned on their self-collected samples

consisting of 181 targeted brands’ logos. To ensure that the features of dissimilar logo

variants of the same brand identity are represented, they connected the backbone model

with a global average pooling layer. Evaluating Phishpedia on their self-collected dataset,

they outperformed relevant state-of-the-art approaches, obtaining a detection rate of 89.2%

precision, 87.1% recall, and a phishing identification rate of 99.2%.

Table 3.3 Summary of image-based anti-phishing approaches

Ref Dataset Used Algorithm Evaluation Limitation

[20]

2019
Self-collected and

augmented image

samples (P: -

L: -)

pre-trained CNNs

(Inception- ResNet-v1)

Binary class.

Acc: 0.971

P: -

F1: -

The method does not consider highly

dynamic pages [20]. The dataset

size is not mentioned, and no real

phishing samples were employed. The

experiment only considers 5 brands.

[19]

2020
self-collected

LogoSENSE dataset

(P: ∼2.5k

L: ∼2.5k)

Histogram of Oriented

Gradients (HOG)

Support Vector

Machines

Acc:-

P: 0.9350

R: 0.7794

F1: 0.8502

Generalization capability is challenged

with unseen screenshots [18]. Limited

dataset and comparatively low

performance.

[18]

2021
self-collected

Phishpedia dataset

(P: ∼k

L: ∼k)

Siamese model (brand

identification) and

Faster-RCNN (Object

Detection, OD)

Identification

Rate: 0.992

Acc:-

P: 0.982

R: 0.871

F1: -

OD mAP: 59.7

Phishpedia cannot identify phishing

websites impersonating new legitimate

brands (not in the reference list).

Legitimate pages having a logo similar

to famous brands would be misclassified

as phishing [18].
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3.4. Bimodal Phishing Detection

Ariyadasa et al. [69] proposed a hybrid anti-phishing solution utilizing LSTM and CNNs

using URLs and HTML-based features. For the HTML features, the authors selected 15

features that are extracted from the HTML source code, such as the number of hyperlinks,

length of the HTML code, the count of some HTML tags (<script>, <link>, and <!->), and

a binary feature indicating the presence of the favicon. The URL characters are converted

into integer values and the URL’s longer than 150 are truncated. To process the URLs,

the authors implemented a feed-forward network containing convolution and LSTM layers,

referred to as model A. Model B on the other hand, consists of 1D convolutional layers

that handle the HTML features. The authors evaluated their proposed approach on 40,000

self-collected samples with a 1:1 class ratio, achieving 98.34% accuracy. However, the main

limitation of this approach is the dependency on manually extracted HTML features.

The solution proposed by Ariyadasa et al. [67], PhishDet, is a hybrid technique with

both URL and HTML features to detect phishing websites. The authors proposed a DL

architecture consisting of two networks trained separately on the two data modalities, then

combined using a concatenation layer. The first one is Long-term Recurrent Convolutional

Networks (LRCNs) for URLs referred to as URLDet. The second one is a Graph

Convolutional Network (GCN) referred to as HTMLDet for the HTML content (discussed in

3.2.). The authors used three different datasets to train and validate their proposed approach.

Dataset A, consisting of self-collected samples as well as samples from the PWD2016

dataset [32], dataset B [71], and web2vec dataset published by Feng et al. [70] (referred

to as benchmark dataset in PhishDet). Dataset A was used for the initial training, and then

their proposed approach was retrained on dataset B. When evaluated on dataset B, PhishDet

achieved 96.42% accuracy and F1-score.

Another example of an end-to-end DL-based network is WebPhish. WebPhish is a hybrid

approach using raw URL and HTML content proposed by Opara et al. [27]. The authors

proposed an end-to-end DNN approach using CNNs, creating character-level embeddings

from URLs and word-level embeddings from raw HTML. The URL preprocessing steps
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include URL protocol removal (HTTP:// and HTTPS://) and splitting by characters,

creating a dictionary of 75 unique letters. The Raw HTML content is tokenized into words,

considering punctuations as separate tokens, turning into a dictionary of 321,009 unique

words. The URL strings are truncated at 180 characters, creating a [180, 16] embedding

matrix, and the raw HTML tokenized words are truncated at 2,000 words, creating a [2000,

16] embedding matrix. The authors picked the max length values for URL and raw HTML

strings by examining their self-collected dataset. The collected dataset consists of 45,373

samples of URLs and HTML content and was published on Kaggle [72]. The embeddings

from the two different modalities are then concatenated into a matrix with [2180, 16]

dimensions. Their evaluations on the collected dataset resulted in a 98.1% for both accuracy

and F1 score.

Haynes et al. [57] experimented with URL modality using two different methods in

3.1.1. and 3.1.2.1., then combined both URL and HTML modalities to investigate their

performance. For this task, they used an extended version of a dataset produced by Shirazi

et al. [73], consisting of 48 URL and HTML-based features. They trained and tested

the proposed deep ANNs (ANNF) on the extended dataset, reporting 0.97 normalized

true-positive and true-negative values, respectively. It is worth noting that combining both

modalities (ANNF) achieved higher results (∼0.972 accuracy) compared to the handcrafted

experiments, i.e., ANNU in 3.1.1. and ELECTRA in 3.1.2.1..

Van Dooremaal et al. [31] proposed a hybrid phishing detection approach utilizing text

and visual features. The authors collected and published a multimodal dataset. However,

in their proposed approach, they randomly sampled 2,000 phishing and legitimate samples

with a 1:1 class ratio. The authors proposed using the HTML web page title as a textual

feature. To identify the targeted webpage, the authors first locate image regions that contain

identifiable information to determine the targeted brand. These image regions are then used

in a reverse image search to obtain visually similar associated web pages. To identify these

regions, Otsu’s thresholding algorithm, morphological closing, and topological structural

analysis were employed. As the image regions may contain non-identifiable information, a

filtering process was applied to remove these regions based on multiple variables like region
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dimensions and Dominant Color Percentage (DCP). This Target identification approach was

validated on 2k phishing and legitimate samples with a 1:1 class ratio, obtaining 99.2%

and 92.0% accuracies for phishing and legitimate target identification, respectively. After

identifying the targeted webpage for a given sample, the visual similarity between the two

images is computed using various approaches. Logistic regression was employed to compute

the threshold similarity value for classification. Validating their classification approach on

the 2k filtered samples, the authors achieved 99.66% accuracy and 99.77% F1-score using

the Structural Similarity Index Measure (SSIM) paired with the DCP filter.

Sánchez-Paniagua et al. [30] proposed a phishing detection approach using URL, HTML,

and web technology features. The authors highlighted the importance and the lack of

incorporation of website samples containing login forms. For that reason, a multimodal

Phishing Index Login Websites dataset (PILWD-134K) containing 134,000 samples was

collected and published. Utilizing their collected dataset, they proposed 27 novel handcrafted

features and adopted another 27 features from the literature. Experimenting with different

ML models, the highest accuracy of 97.95% was obtained using the LightGBM classifier

on the full 54 features. However, the proposed approach relies on handcrafted features

that are tedious and require significant human effort. It is worth noting that we utilize the

PILWD134k dataset (denoted as D1 in their original paper) in this thesis.

Liu et al. [29] proposed a hybrid reference-based phishing detection approach called

PhishIntention by visually extracting the targeted brand and the webpage’s credential-taking

intention. PhishIntention captures the brand and credential-taking intention using a

combination of deep learning vision models. PhishIntention first locates salient rectangular

regions like logo, button, and input box from the screenshot image, then extracts the

Abstract Webpage Layout (AWL) of the webpage. The authors employed an OCR-aided

brand recognition based on Siamese matching using the extracted logos by concatenating

embeddings from ResNetV2-50 and ASTER encoder. This logo-matching scheme was

trained and validated on Logo2k+, Synth90k, and SynthTesxt, achieving 89.1 % accuracy.

The classification of the Credential Requiring Page (CRP) is achieved using the screenshot

and AWL of the webpage with ResNetV2-50, reporting a 95.0% prediction accuracy.
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The authors define CRP transition as a link or a button that lures victims into another

webpage (CRP). CRP transition regions are located by first examining the HTML to find

clickable DOM elements with selected keywords (i.e., English or non-English text that

translates to login and sign up), and if this method fails to locate these elements, then a

visual object detection method is employed. Treating it as an object detection method,

the authors used a Faster R-CNN to predict the CRP transition regions by fine-tuning it

on labeled screenshots. Combining visual and HTML methods to locate CRP transitions

resulted in a 93.3 % accuracy. Some limitations of PhishIntention include the inability to

detect phishing webpages that use a new form of UI component to steal credentials like

QR codes. As PhishIntention interacts with the webpage to verify the credential-requiring

intention, CAPTCHA systems will challenge and block that interaction. Finally, it is worth

noting that in this thesis, we employ the PhishIntention multimodal dataset published by the

authors containing 29,496 phishing and 28,449 legitimate (Benign & Misleading) samples.

3.5. Multi-Modal Phishing Detection

Back in 2019, (Rao and Pais) [74] developed a search engine-based phishing detection

system, Jail-phish, addressing the issue of Phishing Sites Hosted on Compromised Servers

(PSHCS). They highlighted the limitations of existing search-engine-based detection

systems, especially when dealing with PSHCS. Their proposed solution, Jail-Phish, extracts

the domain from a given URL and the title from the webpage’s source code. The domain

and title are then used as a search query on Google to retrieve the first ten results. If the

query domain is not in the first ten results, the sample is classified as phishing. Otherwise,

the similarity between the query webpage and the results is computed using the Jaccard

Similarity. The similarity between two web pages is calculated by extracting URLs, CSS,

Javascript files, and images like logos or favicons from the web pages. The sample is

classified as legitimate if the similarity score is greater than zero and phishing otherwise.

Validating their proposed approach on a self-collected 6,067 legitimate and 5,384 phishing

samples, Jail-Phish obtained 98.61% accuracy. However, Jail-Phish depends entirely on the
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search engine and the query results. Additionally, Jail-Phish would fail to detect the phishing

site, PSHCS in particular, if the phishing site is indexed by the search engine.

Yu et al. [75] analyzed phishing websites to extract a few self-defined (handcrafted) features

from the URL, HTML, and images. Paired with that, they used a multilayer perception,

achieving 92.75% accuracy using the selected 11 statistical features alone. Next, they

processed the HTML by retaining the tag parts and then tokenized the processed HTML

and URL strings, building two separate lexicons. Followed by setting a maximum length

of 16 and 256 for URL and HTML words. Using the count occurrences from the created

lexicons, they transformed URL and HTML text into numbers to be fen into the LSTM

layers. The screenshot images were preprocessed using four steps: (1) Image binarization,

(2) Morphological closing, (3) Topological structural analysis, and (4) filtering out images

less than 20 in width or length and greater than 400 × 400 regions. A CNN with CBAM

attention layers was employed for image feature extraction. The authors collected 6,000

samples with a 1:1 class ratio to evaluate their proposed approach. The abovementioned

extracted vectors are then concatenated and fed into the fully connected neural network.

Combining the three different modalities, their proposed architecture obtained 97.75%,

96.65%, and 97.82% for accuracy, precision, and F1-score, respectively. Finally, it is worth

noting that they also experimented with combinations of the different modalities (Table 3.4)

and obtained accuracies of ∼93% and ∼96%.

Lin et al. [76] proposed a multimodal approach utilizing the three main data modalities

(URL, HTML, and screenshots) called SenseInput. The authors utilized 22 features (nine

novel features) divided into Statistical and Sensitive input features. The statistical features

include URL length, digit counts in domain and subdomain, and novel features like the

number of <input> tags in the HTML and the number of tags with class attributes. The

sensitive input features are (1) the existence of sensitive inputs and (2) the existence of

sensitive information. They first detected the sensitive input using the Faster-RCNN model

on the screenshot images to acquire the sensitive input features. Then, they extracted the

detected sensitive text using EasyOCR [77], a ready-to-use OCR model supporting various

languages. The authors collected and published their dataset containing ∼6k phishing
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and ∼42k legitimate samples of URL, HTML, and screenshot images. They also utilized

∼25k phishing and around 24k legitimate samples from the Phishpedia dataset [18]. For

their proposed sensitive input detection, 1k phishing and 4k legitimate screenshots were

annotated. Validating the sensitive input detection on ∼8k collected samples and ∼29k

samples from Phishpedia resulted in 96.94% and 96.73% F1-scores, respectively. To classify

the websites using their proposed 22 features, the authors used the LightGBM classifier,

reporting 98.48% F1-score on 1k self-collected samples and 95.87% F1-score on ∼48k

samples from Phishpedia.

Highlighting the limitations of existing works on identity-based detection, Tan et al. [78]

extended the work by introducing a new detection approach that leverages joint visual and

textual identity. For the textual identity discovery, the authors first extract identity keywords

from the URLs and plain text to be used as a textual reverse search query. The employed

identity keywords extraction approach is adopted from their earlier work, PhishWHO [79].

PhishWHO is a three-step phishing detection approach using (1) a weighted URL token

system and N-gram word extraction from relevant HTML tags, (2) finding the target domain

name using a reverse search engine, and (3) an identity-matching technique to determine the

legitimacy. The visual identity, on the other hand, is determined by first detecting the web

page’s logo and extracting it to be used as a reverse image search query. To detect and extract

the web page’s logo, the authors propose a novel logo detection technique inspired by human

vision. First, a logo candidate collection is identified by first rendering the webpage in a

browser and examining the DOM’s elements that potentially contain an image (excluding

the area outside the viewport). The number of obtained image candidates is then reduced

by applying a set of filtering rules, e.g., width or height less than min 15 pixels, image

height 1/3 of the image width. To decide which image is most likely to be the web

page’s logo, the authors picked eight features (F1 - F8) to rank the image candidates using

multiple criteria decision-making (MCDM). Some of the proposed features are the vertical

and horizontal position of the image, the padding space between the actual logo and the edges

of the image, and a novel feature called ”colourfulness” that differentiates between logo and

non-logo images. After selecting the logo with the highest rank, the authors apply some
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post-processing steps to optimize the logo to be used in a search engine query. Moreover, the

brand name is extracted from the logo image using an OCR service. In the cases where the

logo is undetected due to the use of textual logos, where the logo is loaded from text instead

of an image, or if a webpage does not have a logo (e.g., personal blogs or archive sites), the

proposed approach relies on the textual identity of the web page. By combining Visual and

Textual identity features, the returned search results are used to determine the legitimacy

of the queried sample by comparing their ccTLD (country-code Top-level Domain) and

IP addresses. To validate their proposed approach, the authors collected DS-1, containing

500 legitimate and 500 phishing samples, and DS-2, consisting of 250 legitimate samples,

ranked 5-6k in the Alexa top website list. The authors obtained a 98.60% accuracy, 99.40 %

recall, and 97.80% TNR on DS-1, outperforming their earlier work, PhishWHO. It is worth

noting that the proposed approach considers web pages with no input fields harmless, thus

classifying them as legitimate.

Arguing against single-modal approaches, Zhou et al. [80] proposed a new multimodal

phishing identification approach based on dicision-level fusion using model stacking. The

authors advocated for the integration of the three main data modalities, i.e., URL, Text,

and screenshot image. Contrary to the majority of the reviewed studies that framed the

problem as a binary classification problem, the authors defined 11 classes with each class

comprising of 1,000 samples, resulting in a total dataset of 11,000 samples. The authors

applied some pre-processing steps like word segmentation and stop-word removal, and used

BERT to extract textual features using the processed text data. Additionally, they extracted

six hand-crafted URL features such as the number of dots in the domain name, and URL

length, which are then fed into a logistic regression model. For processing screenshot images,

the authors opted for the ResNet model. The comparative analysis between the performance

of single-modal components and the ensemble multimodal approach (MultiiRECG) revealed

that the multimodal approach outperformed the single-modal ones by achieving an accuracy

of 88.82%.
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Table 3.4 Summary of multimodal anti-phishing approaches

Ref Dataset Used Algorithm Evaluation Limitation

[74]

2019
Self-collected

samples (P: ∼5.4k

L: ∼6.1k)

Jaccard Similarity

Index

Acc: 0.9861

P: 0.9926

R: 0.9777

F1: 0.9851

Third party dependency (search engine)

slows down the process. Jail-phish uses

the value zero as a similarity threshold,

which sometimes negatively affects the

identification of phishing pages. The

approach would misclassify a phishing

site indexed on the search engine as

legitimate [74].

[75]

2022
Self-collected

samples containing

URL, HTML, and

screenshot (P: 3k

L: 3k)

MLP, CNN, and RNN Full multimodal

Acc: 0.9775

P: 0.9665

F1: 0.9782

HC+Image:

Acc: 0.9333

HC+text:

Acc: 0.9616

Very limited dataset. employing

hand-crafted (HC) features.

[76]

2022
Self-collected

samples (D1)

containing URL,

HTML, and

screenshot
(P: ∼6k

L: ∼42k)
and (D2) Phishpedia

[18]

Faster-RCNN for

sensitive input

detection and

LightGBM for phishing

classification

Input det.

D1-F1: 0.9694

D2-F1: 0.9673

Phish classi.

D1-F1: 0.9848

D2-F1: 0.9587

Using handcrafted features. Sensitive

features depend on their detection and

recognition accuracies.

[78]

2023
Self-collected

samples (P: 500

L: 750)

Multiple Criteria

Decision-making

(MCDM)

Acc: 0.986

P: -

R: 0.994

F1: -

The proposed approach depends on a

third-party service (Search Engine),

where textual and visual identity

discovery is determined using image

and textual reverse Google search.

[80]

2023
Self-collected

samples (P: 5,000

L: 6,000)

Ensemble stacking

approach using BERT,

ResNet, and Logistic

Regression.

Acc: 0.8882

P: -

R: 0.8882

F1: 0.7949

Relatively low accuracy and

hand-crafted URL feature usage.
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4. DATASETS

The recent advancements in AI have shown that ML and DL approaches provide promising

solutions to diverse challenges across various domains. With the rise in the number and

sophistication of phishing attacks, researchers are enhancing their approaches by leveraging

newly emerged methods to stay ahead of these threats. Deep learning approaches, in

particular, have caught the attention of researchers due to their demonstrated superiority

over conventional machine learning algorithms in different subfields of AI. Unlike ML

algorithms, deep learning models can be pre-trained and fine-tuned on new data, which

is more sustainable and adaptable to the dynamic nature of phishing websites. However,

the absence of large standardized datasets poses a significant challenge in anti-phishing

research. The rapid advancements in computer vision and NLP domains can be attributed to

the large standardized public datasets like ImageNet [81], Microsoft COCO [82], and large

text corpora like the SNLI Corpus [83] English Wikipedia, and BooksCorpus [84].

Although the literature is rich with anti-phishing solutions leveraging various data modalities,

public datasets are deficient. Most of the studies in the literature are conducted on

self-collected private datasets, with important details like the source selection, sample

diversity, data content, included languages, and sample size being withheld. Therefore,

researchers desperately need a clear standard that can be followed in dataset construction.

Examining the available public anti-phishing datasets, we notice that there are several issues

regarding:

• Sample Size: There is no agreement among the scholars on the ideal dataset

sample size in the anti-phishing community. The number of samples employed in

anti-phishing studies ranges from ∼100 to over a million samples [32].

• Class distribution: while most scholars endorse using balanced datasets due to their

positive effect on model efficiency, others are employing and creating imbalanced

datasets, with most samples being legitimate. They argue that imbalanced datasets
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better represent the real-world distribution of phishing to legitimate websites on the

internet [21], which is a 1:10 ratio [66].

• Data source: Many anti-phishing works use PhishTank and OpenPhish to obtain

phishing samples. For legitimate samples, Alexa is frequently used to obtain popular

and highly ranked websites. However, numerous studies argued that excluding

less popular websites creates biased systems and leads to higher false positives.

Additionally, numerous research has pointed out that ranking lists like the ones found

in Alexa provide URLs in the form of domain and TLD (e.g., facebook.com), which

requires additional processing steps to retrieve the full URL. Therefore, recent studies

have started to utilize other sources like DMOZ and Common-crawl or create their

custom crawler to diversify the samples regarding website categories and languages

and to ensure unpopular websites are also included.

• Dataset content: public anti-phishing datasets have varying data sources without a

uniform agreed-upon procedure on what type of files to store the samples in or which

data source to share (raw sources or extracted features). Reviewing some public

anti-phishing datasets, we noticed a significant percentage of repeated and duplicate

samples. Moreover, some datasets contain dead (offline) web page samples, usually

showing error messages like ’not found’ or ’bad request’. These error messages

indicate that the web page source code was acquired after the website was shut down.

Finally, we also observed that most shared datasets lack an adequate description of the

dataset content.

• Open-sourcing: there is currently no commonly used platform to store and share

the datasets. Hence, researchers use platforms like GitHub, Mendeley, Kaggle, cloud

storage, and personal/institution websites to share their collected datasets. This lack

of a unified platform makes it difficult to navigate and explore the public anti-phishing

datasets. We have also observed that some links to published datasets in the original

publications are no longer valid due to the relocation of the datasets.
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The only viable solution for the unavailability of reliable supervised training anti-phishing

data is by cumulative and collaborative community efforts aimed at publishing collected

datasets as well as implemented models. With several phishing verification platforms

like PhishTank and OpenPhish, it is relatively easy to collect phishing URL samples even

after the websites get shut down. However, given the short lifespan of phishing websites,

collecting additional resources like the source code or image files while the websites are up

is significantly challenging. Therefore, it is crucial to acquire all the necessary data sources

from online phishing websites as soon as they are submitted.

4.1. Is There a Need for Multimodal Datasets?

Several studies have proposed some guidelines in an attempt to standardize anti-phishing

datasets and the collection process [24, 32, 85]. However, the lack of general consensus on

what data sources to include in datasets makes the process more challenging. Given the short

lifespan of phishing websites, retrieving all the necessary raw data sources from the website

before it shuts down is imperative. Therefore, datasets with single-modal data (e.g., most

commonly URLs) cannot be leveraged in bimodal or multimodal anti-phishing experiments

since additional data cannot be retrieved (source code or image files). Additionally, datasets

containing features rather than raw data (e.g., the UCI dataset) restrict the potential usage

of the dataset by restricting the extraction of new features and effectively making the

dataset inextensible. Therefore, collecting at least the three main data modalities (i.e., URL,

screenshot image, and HTML source code) and storing them in their raw format is necessary.

That way, the collected samples can be useful and serve the different needs of future research.

After an extensive literature review, we only found four public multimodal datasets with

adequate number of samples having at least raw URLs, screenshot images, and HTML

source code files. Compared with the tremendous number of anti-phishing studies in the

literature, having only four benchmarking datasets speaks to the severe lack of multimodal

datasets. Given this limitation, we constructed and published a new anti-phishing dataset to

fill this literature gap. In the upcoming subsections, we explore and analyze our collected
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multimodal dataset and the publicly available datasets, revealing their advantages and

disadvantages.

What are the benefits of multimodal anti-phishing datasets and their advantages over

single-modal datasets?

• Benchmarking: multimodal datasets include different raw data sources, which

broadens the potential use cases by increasing the usability of the dataset. Unlike

single-modal datasets, multimodal datasets can serve as benchmark datasets and be

useful for various studies with different objectives and approaches (i.e., single-modal,

bimodal, and multimodal schemes). Additionally, public datasets containing dated

samples are essential to keep track of phishing tactics evolution over time [86].

• Feature representation: multimodal raw data offers a versatile and simplified solution

for automatic feature extraction methods. In fact, several studies have demonstrated the

superiority of automatic feature extraction to manual ones in different fields. This also

enables researchers to extract and define new features for their proposed anti-phishing

solutions. Moreover, recent anti-phishing studies have demonstrated that bimodal and

multimodal features are more robust against evasion techniques than single-modal

features. Therefore, having access to multimodal datasets makes it easier to conduct

bimodal and multimodal experiments.

• Mitigating Data leakage: multimodal data sources are essential to mitigate the critical

data leakage issue in predictive models. Duplicate samples severely limit single-modal

anti-phishing datasets, as phishers use multiple URLs for the same website (detailed

in upcoming sections). However, multimodal data and its triplet nature guarantee

the uniqueness of phishing samples, which is critical to obtaining generalizable and

accurate predictive models.
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Figure 4.1 Phish360 dataset folder hierarchy showing the naming convention and the file types in the
dataset

4.2. Phish360 Dataset

The collection of the dataset spanned two and a half years to ensure the variety of the samples

in the dataset. We originally collected x samples, then filtered the samples and removed the

duplicates, leaving us with 11,007. After further investigation, we found some samples with

missing attributes, so we decided to remove such samples. The final number of samples after

the removal and filtration is 10,748 samples. The URL of each sample is the final URL of

the website.

This dataset is a collection of Legitimate and Phishing website samples. Each sample

contains the URL, Label, HTML content, and a screenshot of the website. The Phish360

dataset contains 10,748 samples, which consist of two main categories: phishing and

legitimate. There are 6,416 legitimate and 4,332 phishing samples. We divided the dataset

into two main folders for training and testing using a 3:1 split (75% training and 25% testing).

The folder hierarchy of the dataset is illustrated in Fig 4.1. And the class distribution in both

folders is shown in Fig. 4.2.
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Figure 4.2 Phish360 class distribution in Trainval and Test folders

4.2.1. Phish360 Folder Structure

Every sample in the dataset contains four files in separate folders as depicted in Fig. 4.1,

namely:

• Label: The label.txt file contains the targeted brand (e.g., Facebook) in phishing

samples and ’legitimate’ in legitimate samples.

• RAW-HTML: The index.html file contains the full HTML source code for the web

page.

• SCREEN-SHOT: screen shoot.png is a 1280x960 screenshot of the web page in .png

format.

• URL: The url.txt file contains the full URL string of the web page.

In addition to the Label file, brand information of the phishing samples can also be accessed

from the name of the folder sample, as the naming convention of phishing samples is in

the form of (Pxxxx brand). It is worth noting that brand information for test samples is
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Figure 4.3 The top 20 phishing brands in Phish360 dataset

unavailable, hence recorded as ’unknown’. The top 20 phishing targeted brands and their

counts are demonstrated in Fig. 4.3.

4.3. Benchmark Multimodal Datasets

As discussed earlier in 4.1., there is a lack of multimodal datasets in the Anti-phishing

domain. As a result, researchers are compelled to collect their own data samples based

on their specific needs. After a thorough review of the literature, we found four multimodal

datasets that fit our criteria of including at least the main three raw data modalities (i.e., URL,

HTML, and Screenshot Image), having diverse website samples from different sources and

an adequate number of samples. In Figure 4.5 and 4.6, we highlight the folder naming

convention and hierarchy of the benchmark datasets employed in this thesis, and Fig. 4.4

shows the sample size and class distribution of the benchmark datasets. Next, we provide an

overview and explore the selected datasets in more detail.

4.3.1. PILWD-134K Dataset

The Phishing Index Phishing Index Login Websites Dataset (PILWD-134k) is a multimodal

dataset consisting of 133,928 phishing and legitimate samples (class distribution shown in

Fig. 4.4), collected and published by Sánchez-Paniagua et al. in [30]. The authors collected
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Figure 4.4 Multimodal datasets class sample distribution

(a) (b)

Figure 4.5 Folder hierarchy of the (a) PILWD-134K and (b) VanNL126k datasets

legitimate samples from Quantcast top sites and Majestic List, and phishing samples from

PhishTank. The sample collection process was in 2019-2020, where for each sample in the

dataset, the following raw data were collected:-

• URL

• HTML Source Code

• Two Screenshot Images (Web page’s top and bottom)

• Additional data files like Technologies analysis, sample collection metadata, and WGET
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(a) (b)

Figure 4.6 Folder hierarchy of (a) PWD2016 and (b) PhishIntention datasets

4.3.2. VanNL126K Dataset

The Phishing website dataset is a multimodal dataset consisting of 125,938 phishing and

legitimate samples (see Fig. 4.4), collected and published by Van Dooremaal et al. in

[31]. Throughout this thesis, we will refer to this dataset as VanNL126k. The authors

collected legitimate samples from the DMOZ directory (to ensure the inclusion of less

popular websites), and phishing samples from PhishTank, OpenPhish, and PhishStats in

September-December 2019. The original dataset contains ”associated” legitimate samples

that were obtained by a reverse search query. However, in this thesis, we use only phishing

and legitimate samples. Each sample in the dataset has the following raw data:-

• URL

• HTML Source Code

• Screenshot Image

• Data Collection Metadata

4.3.3. PhishIntention Dataset

The PhishIntention dataset is a multimodal dataset published by Liu et al. [29], consisting

of 29,496 phishing, 25,400 legitimate, and 3,049 misleading legitimate samples. The

misleading legitimate samples are legitimate websites with links to social media websites
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(a) (b)

Figure 4.7 Misleading legitimate samples from PhishIntention dataset

like LinkedIn and Facebook or websites that allow sign-in and registration using Facebook

and Google. We demonstrate two misleading legitimate samples in Fig. 4.7 highlighting

the social media logos by red rectangles. In this thesis, we combine both legitimate and

misleading legitimate samples into the legitimate class (see Fig.4.4). The authors collected

legitimate samples from Alexa and phishing samples from OpenPhish in 2019-2020. Each

sample in the dataset has the following raw data:-

• URL

• HTML Source Code

• Screenshot Image

• Additional data files like coordinates of some objects in the Image

4.3.4. PWD2016 Dataset

The Phishing Websites Dataset (PWD2016) is a multimodal dataset published by Chiew et

al. in [32], consisting of 30,000 phishing and legitimate samples collected in 2016 (class

distribution shown in Fig. 4.4). The phishing samples were collected from PhishTank, and

to ensure the inclusion of less popular legitimate websites in different languages, the authors

collected legitimate samples from the DMOZ directory, BOTW, and Alexa. Each sample in

the dataset has the following raw data:-
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• URL

• HTML Source Code

• Screenshot Image

• Additional data files like favicons, JavaScript files, and WHOIS information

4.4. Data Processing: Cleaning, Extraction, and Representation

In this subsection, we provide an overview of the datasets’ pre-processing stages by detailing

how we extracted the data modalities, as well as our choice for data representation. Figure

4.8 abstractly demonstrates the overall procedure. As shown in Fig. 4.8, we handle the

different data sources from the multimodal datasets in a column-oriented fashion, storing the

information in a Panda’s DataFrame, which makes column retrieval easier. As storing all the

multimodal datasets in a single DataFrame is memory-inefficient, we opted for saving each

dataset into a separate DataFrame. For each multimodal dataset, we applied the same Python

procedure shown in Fig. 4.8 to create the DataFrames. We also added additional important

columns to the DataFrames, which are detailed in the following subsections.

To locally store the produced DataFrames using an efficient file format, we’ve considered

multiple file format options. Contemplating about (1) The large number of DataFrame

columns and rows, (2) Textual information loss and the large size of long textual data

(i.e., HTML code and extracted texts), (3) Disk space requirements and frequent reading

operations of specific columns (detailed in later sections), and most importantly, (4) The

compatibility of the file format with different programming languages as we are planning

to share the data with the research community. Considering the mentioned restrictions, we

chose the Parquet file format, which is a column-oriented format designed for efficient data

storage and retrieval. The parquet format is designed to handle all Pandas data types while

providing an efficient columnar binary serialization for DataFrames. Its column-oriented

nature makes retrieving single or multiple columns possible in a space and time-efficient

manner while being compatible with multiple programming languages (e.g., Java, C++, and

Python) [87]. In the code snippet below, we demonstrate how we can fetch selected columns

45



Figure 4.8 This figure illustrates the Python procedure implemented for Multimodal raw data
processing into a DataFrame

rather than reading the whole parquet file with the Pandas package in Python. Thus providing

an efficient method to fetch only the needed columns into memory. This is crucial because

we are dealing with multiple datasets having a large number of textual observations (rows).

df = pandas.read_parquet(’file_name.parquet’, columns = [’column_name_1’, ’column_name_2’])

Unlike the other explored alternatives (e.g., CSVs, pickle, SQL, and feather files), the option

to fetch selective columns with no limitation for the long text is only available in parquet

files.

4.4.1. DataFrame Creation Procedure

In this step, after obtaining all the samples from the different multimodal datasets employed,

we apply the procedure depicted in Fig. 4.8. Considering that there are minor differences in

the procedure when applied to the different datasets as their folder hierarchy slightly differs

(see Fig.4.5 and Fig. 4.6).

As mentioned before, our dataset contains three main data modalities: URLs, HTML source

code, and a screenshot of the top part of the webpage. Unlike other public multi-modal

datasets, we double-checked the validity of the samples after filtering, making sure that every

sample in the dataset contains these three data modalities. We demonstrate the employed
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approach to represent the DataFrame in Algorithm 1. Since the employed benchmark datasets

have missing and corrupt file samples, we had to implement a workaround to account for this

issue.

Algorithm 1 Python procedure to generate the DataFrame from Raw data with Phish360
dataset
0: for each folder name in directory do
1: begin
2: Create a dictionary where key = folder name.
3: Initialize the list of values for folder name with datasetname (’Phish360’).
4: Append folder name to the list.
5: Identify and append the sample’s class (’legit’ or ’phish’ using folder name or label.txt).
6: Determine the paths of URL, HTML, and Image files of the sample.
7: if url.txt exists and URL string read is successful then
8: Append the URL string to the list.
9: else

10: Append None to the list.
11: end if
12: if screen shoot.png file exists then
13: Append the full path to the list.
14: else
15: Append None to the list.
16: end if
17: if index.html exists and reading it is successful then
18: Append the HTML text string to the list.
19: Extract and append text from HTML string using different parsing tools.
20: else
21: Append None for the HTML and extracted text strings.
22: end if
23: end for
24: return dictionary

Next, we needed to extract the plain text from the website’s HTML source code using HTML

parsing tools (Textual Processing Module in Fig. 4.8). Using the algorithmic approach

demonstrated in Algorithm 1, we utilize five different HTML parsing packages available in

Python to extract plain text from HTML:

1. Trafilatura [88]

2. BeautifulSoup [89]

3. html2text [90]

4. lxml [91]

5. html text [92]
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The packages include methods that accept the HTML code string as input and return the

plain extract text as output. All the methods employed were used with default parameters. It

is worth noting that the length, spacing, and text structure of the extracted plain text varies

between the employed parsing tools. Table 4.1 demonstrates the resultant DataFrame by

providing a description of each column in a generic fashion.

Column Name Description

dataset name Name of the dataset

folder name Name of folder/file in the dataset

Class The Class of the sample (phish: 1/legit: 0)

URL The full URL of the sample

image path The relative local path of the screenshot Image

trafilatura text Extracted textual content using trafilatura package

trafilatura text language The language detected from extracted plain text

beautifulSoup text Extracted textual content using BeautifulSoup package

beautifulSoup text language The language detected from extracted plain text

html2text text Extracted textual content using html2text package

lxml text Extracted textual content using lxml package

html extract text Extracted textual content using html extract package

full html Web page’s Source Code

Table 4.1 A description of the columns in the created DataFrame containing the extracted features.

In addition to the features shown in Table 4.1, we extract several additional features that are

imperative to investigate dataset sample quality and diversity (e.g., top-level domain, domain,

and targeted brand). Moreover, these features are essential for an Exploratory Data Analysis

(EDA) of these multimodal datasets and are useful for the research community. Finally, since

the screenshot and URL will be used as raw input, we stored the URL string and the local

path of the screenshot in the URL and image path columns, respectively. To highlight the

difference between the extracted text using the text extraction methods and the fields of each

column, we show a random phishing sample from our Phish360 dataset in Table 4.2.

After processing every multimodal dataset separately by creating a single DataFrame for

every dataset (including our dataset Phish360). We locally stored each dataset’s DataFrame

into two separate Parquet files based on the samples’ class (Phish360 legit.parquet and
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Column Name Value
dataset name Phish360
folder name P11258
class phish
brand adobe
URL http://jaywatsonfiles.000webhostapp.com/
TLD com
Domain 000webhostapp
FLD 000webhostapp.com
Subdomain jaywatsonfiles
SSL False
image path phish360/trainval/P11258 adobe/SCREEN-SHOT/screen shoot.png
trafilatura text Adobe PDF Online/nAccount/nSign In/nConfirm yo...
trafilatura text language English
beautifulSoup text /n/n/nAdobe PDF/n/n/n/n/n/n/n/nAdobe PDF Onlin...
beautifulSoup text language English
html2text text | Adobe PDF Online | | Account | Sign I.../
lxml text /n/n/nAdobe PDF/n/n/na/n color:#454444;/n t...
html extract text Adobe PDF/n/nAdobe PDF Online Account Sign In/...
full html <html dir=”LTR” lang=”en”><head>/n<meta http-...
html text language English

Table 4.2 A sample from Phish360 dataset showing the possible values for the different columns in
the DataFrame, highlighting the difference between extracted text using different parser
tools.

Phish360 phish.parquet). As we have five total datasets (phish360 + 4 benchmark datasets),

a total of 10 parquet files were created. In the Next subsection, we utilize these parquet files

to further inspect the multimodal datasets.

4.5. Multimodal Datasets Analysis

In this step, we first analyze the multimodal datasets by inspecting the sample files, followed

by a URL analysis to investigate the diversity of the samples in each dataset. Finally, we

dive deeper into the remaining data modalities by investigating the processed data using the

created parquet files.

4.5.1. Missing Data Files

One of the most common issues with datasets is missing data samples. Hence, we analyzed

the samples to check for missing and corrupt files within the multimodal datasets. The

number of missing samples in each class is presented in table 4.3. Unlike the benchmark

datasets, our collected dataset, Phish360, has no missing or invalid files. The numbers
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Dataset Name Sample Size URL HTML Screenshot
Phish Legit Phish Legit Phish Legit Phish Legit

PWD2016 15,000 15,000 2 1 1,315 363 588 398
PhishIntention 29,496 28,449 0 3,426∗ 450 6,991∗ 0 0
PILWD-134K 66,964 66,964 0 0 0 31 0 11
VanNL126K 100,000 25,938 0 0 0 3,655 71 3,659
Phish360 (OURS) 6,416 4,332 0 0 0 0 0 0
∗All Missing files from benign category (no missing files in misleading samples)

Table 4.3 Number of missing/corrupt sample files in multi-modal datasets.

representing the missing samples in table 4.3 are obtained by first checking the existence

of the files inside the sample folders. Then, we added the number of unreadable corrupt files

due to several errors, e.g., file naming, invalid file extensions, or encoding errors in HTML

files.

4.5.2. URL Analysis

In this step, we aim to uncover trends and hidden patterns in the URL distribution by

exploring the differences between legitimate and phishing URLs in the datasets. Even though

our proposed scheme utilizes automatic feature extraction, which demonstrates superiority

over manual feature extraction methods in the literature. However, a concise EDA exploring

the trends among the employed datasets will be beneficial to the research community in

helping them choose the appropriate dataset that fits their research needs.

We first start with plotting URL length histograms to view the overall distribution of the data

as well as the frequency of every value, demonstrating the most and least common values.

Upon examining figure 4.9, we immediately notice the distinct differences in the URL length

distribution across the classes and between the datasets. Despite URL samples exceeding 200

characters, we limited the x-axis and y-axis range to 200 and 5,000, respectively, to ensure

consistency and comparability and avoid any potential bias in observations.

The most apparent URL length difference between phishing and legitimate samples is

observed in PWD2016 (sub-figure c in 4.9), where legitimate URLs are considerably shorter
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(a) (b)

(c) (d)

(e)

Figure 4.9 Histograms showing the distribution of URL character lengths for benchmark datasets:
(a) PhishIntention, (b) PILWD-134K, (c) PWD2016, (d) VanNL126k, and (e) Phish360.
The maximum values for the x and y axes were set to 200 and 5,000.
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compared to phishing ones. After examining the URL samples in PWD2016, we noticed that

legitimate URLs in the datasets lack most URL components and solely consist of the domain

and top-level domain (e.g., facebook.com, amazon.uk, etc.). This is one of the critical issues

in PWD2016, which potentially leads to biased results for URL-based approaches. Similarly,

most legitimate URL samples in PhishIntention and VanNL126k datasets (sub-figures a

and d in 4.9) are shorter than phishing ones, where the highest frequency is around 20-30

characters. Since phishers attempt to direct victims to a malicious website containing input

fields rather than homepages to steal their information, they use the URL path and query

parameters to direct victims to the specific landing page, increasing the URL’s character

length.

Therefore, anti-phishing datasets must incorporate legitimate login web pages instead of

solely focusing on home pages. Unlike home pages, login web pages feature login forms

used to authenticate users, resulting in URL lengths similar to phishing URLs. Similarly,

phishing sites incorporate these login forms to obtain and steal the victim’s credentials.

Some anti-phishing solutions like PhishWHO [79] consider suspicious pages legitimate since

they are harmless and do not feature an input form. That is why it is imperative to include

legitimate login web pages.

Examining the length distribution of legitimate URLs in our dataset, Phish360, and

PILWD-134K (sub-figures e and b in 4.9), it is evident that the inclusion of legitimate login

web pages increases the overall length of legitimate URLs. This makes the differentiation

between phishing and legitimate URLs based on the length of the URL more challenging

for detection systems and helps to avoid bias, especially in rule-based and hand-crafted

machine learning models. Additionally, the URLs of legitimate login web pages boost

the overall model generalization ability, especially in real-world scenarios [30]. That is

because current anti-phishing works are shifting towards representation learning approaches

utilizing automatic feature extraction methods, which dictate a standard distribution of the

URL character length [85].

Since there is no widely accepted method to analyze the diversity of anti-phishing datasets,
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Figure 4.10 URL example demonstrating the different components used to analyze sample diversity

Figure 4.11 Recent PhishTank URL submissions showing near-duplicate phishing URLs that use the
same domain.

some studies have used the number of unique domains and top-level domains (TLD) to

measure it. To investigate the diversity of the samples, we computed the unique percentages

of URL samples, domains, TLD, free-level domain (FLD, also known as Domain Name),

and subdomains. Figure 4.10 demonstrates these URL components. The diversity metrics

for phishing URL samples are presented in table 4.5, and the legitimate ones in table 4.4.

Comparing the percentages in the legitimate and phishing tables, it is evident that legitimate

samples in all datasets are far more diverse than phishing samples. That is because there

are far more legitimate websites on the internet, and obtaining legitimate URL samples from

online repositories and ranking lists is generally easier.

However, in the case of phishing URLs acquired from repositories such as PhishTank, it is

common to have consecutive submissions originating from the same domain but with various

subdomains, as demonstrated in figure 4.11. This pattern indicates that attackers often create
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Dataset Name Legit Domain Stats
Unique URLs (%) Unique Domains (%) Unique TLD (%) Unique FLD (%) Unique Subdomains (%)

PWD2016 100.0 92.97 2.46 - 0.65
PhishIntention 87.94 82.98 2.17 86.68 3.21
PILWD-134K 99.23 91.37 0.76 92.57 3.27
VanNL126K 100.0 84.90 2.16 85.68 9.94
Phish360 (OURS) 99.41 88.73 3.07 88.92 7.29

Table 4.4 Comparison of the percentage of unique legitimate URL domains among the multimodal
datasets.

Dataset Name Phish Domain Stats
Unique URLs (%) Unique Domains (%) Unique TLD (%) Unique FLD (%) Unique Subdomains (%)

PWD2016 38.25 17.71 1.40 17.85 2.74
PhishIntention 87.21 42.62 1.56 43.04 24.46
PILWD-134K 86.68 45.23 1.08 46.41 21.35
VanNL126K 100.0 25.91 0.67 26.85 13.65
Phish360 (OURS) 98.26 73.63 6.69 73.86 28.69

Table 4.5 Comparison of the percentage of unique phishing URL domains among the multimodal
datasets.

multiple subdomains under the same domain, using redirections to prolong the lifespan of

their phishing sites. To address this issue, in our sample collection process of Phish360, we

have minimized the near-duplicate URL samples by spacing out the collection process over

extended time periods. Compared with the benchmark datasets, our approach ensures a more

diverse range of phishing samples, as evidenced by the stats in table 4.5.

Upon examining the percentage of unique phishing URLs in table 4.5, we observe an

extremely low level of uniqueness in PWD2016 URL samples. The high number of exact

duplicate URL samples in PWD2016 poses a critical issue, as it leads to the well-known

problem of data leakage in machine learning. Data leakage occurs when testing samples are

’leaked’ into the training portion during model training. One cause for the data leakage

is duplicate samples, leading to overoptimistic models achieving high results during the

model development phase. However, the model underperforms and achieves poor results

when tested on new data. Therefore, datasets should mostly contain unique data samples

to prevent overlapping train and test samples. This issue is worth highlighting because a

single-modal URL-based approach would suffer from data leakage if duplicate URL samples

are not minimized, which leads to biased results and decreases the model’s generalization

capability.
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4.5.3. HTML and Image Analysis

As previously mentioned, the datasets contain numerous instances of repeated and duplicate

URL samples. However, relying solely on the count of unique URLs is insufficient to

determine whether a sample is repeated. Therefore, it is essential to examine the other data

sources as well. We start by analyzing the HTML source code and the extracted text using

the employed parsers. After thoroughly examining the extracted text using the parsing tools,

it became evident that the extracted plain text using html2text, lxml, and html text contains

many HTML code segments, symbols, and insignificant garbage values. This observation

suggests that the extracted text using Trafilatura (TF) and BeautifulSoup (BS) would provide

more informative textual content. Upon inspecting the texts extracted using TF and BS, we

selected the extracted text using the BS package, as it provides more comprehensive textual

content, including essential details such as the web page title.

In figure 4.12, we compare the datasets by computing the percentage of unique HTML and

BS text for both phishing and legitimate classes. As anticipated, the percentage of unique

HTML phishing samples is significantly lower than that of the URLS. This discrepancy

is because phishers often reuse the same HTML source code with different URLs when

the site gets detected and shut down. However, due to manual sample verification during

the collection process and the diversification of phishing sample sources, we observe a

notably high percentage of 96.63 unique HTML phishing samples in Phish360. Additionally,

spreading out the sample collection time ensures the uniqueness and diversity of the website

samples, encompassing a wide range of phishing tactics.

A significant limitation of single-modality in anti-phishing is the tendency for data leakage

due to the high percentage of duplicate samples within anti-phishing datasets. Therefore,

one of the benefits of utilizing multimodal datasets is the reliance on multiple data sources.

The multimodality ensures the uniqueness of training samples, even when the HTML or

URL is an exact or near-duplicate. An informative approach to evaluate the uniqueness

of multimodal samples is to consider each web page sample as a triplet entity composed

of the three primary data modalities: URL, HTML, and screenshot image. We explored
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Figure 4.12 Comparison of the percentages of unique HTML and BeautifulSoup text (BS) for
phishing (P) and legitimate (L) classes across multimodal datasets.

the uniqueness of multimodal data samples by creating a set for each sample containing

the URL and HTML strings. For the screenshot image representation, we had to devise a

method to generate a unique representation for each image sample. Thought this task could

be achieved by utilizing an image model such as ResNet or DenseNet to produce a unique

feature vector. However, given the large number of image samples in all the datasets, we

opted for hash functions to compute a hash value for every image in the datasets, which

demands less computational resources. To accomplish that, we chose the famous SHA-256

cryptographic hash algorithm that produces a unique fixed-size output (hash value) for each

unique input image.

The resulting unique identifier for a web page sample comprises a set containing:

(URL, HTML, hash(image)), as illustrated in figure 4.13. Comparing the percentage

of unique single-modal samples (figure 4.12) with multimodal triplet samples in figure

4.13, we observe a substantial increase in the percentage of unique samples. The

multimodal representation of phishing samples mitigates the data leakage tendency within

the anti-phishing datasets. Therefore, a side benefit of multimodality is the reliance on

multiple data sources, which makes the data samples unique even if the HTML or URL

is an exact or near-duplicate. Additionally, since we intend to employ the extracted plain

text rather than the HTML source code, we also examined the uniqueness of the data by
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(a) (b)

Figure 4.13 Comparison of the percentage of unique triplet representation of samples (a) (URL,
BS text, image hash) (b) (URL, HTML, image hash) across multimodal datasets.

representing it as triplets of URL, extracted textual content (BS or TF), and a hash value of

the image, as presented in figure 4.13. Notably, the percentages demonstrated in subfigures

a and b 4.13 are calculated by dividing the number of unique triplets by the number of valid

samples. The number of valid samples refers to the samples having a valid URL, HTML,

and image; samples missing one of these data sources are eliminated.

An important diversity measure often overlooked within anti-phishing datasets is the

linguistic composition of the website samples. Diversifying the languages included in the

datasets is essential given the multilingual nature of phishing websites, which target more

than just English-speaking users. Recent APWG phishing activity trend reports have shown

a significant increase in attacks across various countries. Therefore, datasets must include a

wide range of different languages. To this end, we incorporated several widely spoken world

languages, such as English, German, French, Spanish, and Portuguese. In our Phish360

collection process, we ensured the diversity of the samples by including 30 languages for

phishing samples and 27 for legitimate ones. Employing the langdetect Python package for

language detection, we identified the languages using extracted plain text, and we present

the language distribution of Phish360 samples for both classes in figure 4.14. Similarly, we

highlight the language distribution within the benchmark datasets, illustrating the number of

distinct languages in figure 4.15.

A widely utilized metric for assessing the website categories is the legitimate targeted brands
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Figure 4.14 The distribution of website languages in Phish360 in (a) phishing and (b) legitimate
samples

Figure 4.15 The language distribution within phishing and legitimate website samples across
multimodal datasets.

among the phishing samples. Analyzing phishing samples to explore the impersonated

brands provides valuable insight into the categories of the samples. While certain

well-known brands, especially in financial and payment services like PayPal and American

Express, are targeted more frequently, it is crucial to incorporate a wide range of website

categories, including government/institutional, social media, and E-Commerce/retail. Figure

4.16 presents the top 20 targeted brands among the datasets, with brand information available

in all datasets except PWD2016, which is regarded as ’unknown’. Approximately 36%

and 88% of targeted brands are considered unknown in PILWD-134K and VanNL126k,

respectively (subfigures b and d in 4.16). The ’phish’ brand category in Phish360 (subfigure

c 4.16) refers to phishing test samples lacking brand information.

58



(a) (b)

(c) (d)

Figure 4.16 Top 20 targeted legitimate brands within the multimodal datasets: (a) PhishIntention, (b)
PILWD134K, (c) Phish360, and (d) VanNL126k.

Screenshot Image Analysis: Upon examining the screenshot images within the benchmark

datasets, we observed a discrepancy in their resolution dimensions. Rather than having

a consistent image resolution across all the screenshots, we noted variations in their

dimensions. The image dimensions (expressed as width*height) for all the datasets are as

follows:

• PhishIntention: 38% of the screenshot image sizes are 1920*1080, 19% are

1366*768, and the remaining images are spread across 7,897 different dimensions.

• PWD2016: 6% of the screenshot image sizes are 510*1330, 2% are 18*18, and the

remaining images are spread across 14,836 different dimensions.

• PILWD-134K: 68% of the screenshot image sizes are 1906*922, 22% are 1853*922,

and the remaining images are spread across 26 different dimensions.

• Phish360: 99.8% of the screenshot images are 1280*960 and the remaining images

are spread across 8 different dimensions.
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• VanNL126k: All screenshot images are 1280*768.

60



5. THE PROPOSED APPROACH

5.1. Motivation

Reviewing the existing anti-phishing studies in the literature, we reveal several limitations

that attackers can exploit. We summarize and highlight the drawbacks of existing approaches

in the anti-phishing domain and define our motivation. A critical issue in the anti-phishing

research field is the lack of standard benchmarking datasets; this entails several other issues

that we previously discussed in the DATASETS section. Given the lack of a standardized

anti-phishing dataset, researchers are compelled to collect their own datasets based on their

specific tasks and needs by adopting certain criteria and standards.

The first drawback of the existing anti-phishing approaches is applying manual feature

engineering (extracting hand-crafted features). Although manual feature engineering has

several advantages in different domains, it is complicated and inefficient in the anti-phishing

domain. That is because it requires extensive technical skills and domain expertise.

Additionally, it is a time-consuming task that may only capture some relevant information

from the data, making it ineffective and impractical against the highly evolving and

volatile state of phishing tactics. Similarly, language-dependent detection systems (usually

English, since most sites are English websites) fail to detect phishing websites prepared

in a non-English language. The inherent nature of such detection systems makes it

almost impossible to detect zero-day attacks. Although some hand-crafted features are

discriminative, the robustness of the selected features is not examined, enabling easy

manipulation by phishers. For example, past works incorporated the existence of HTTPS

protocol in URLs and the length of the URL as highly discriminative features. These features,

however, became impractical as phishers easily manipulated them. In other words, manual

features are vulnerable once they have been discovered.

The second main limitation is third-party dependency, where an approach or an extracted

feature depends on a third-party service. For example, it is a common habit in image-based

approaches to use the logo, favicon, or regions of the image in a reverse image search using
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search engines, directly affecting the approach’s overall accuracy. Search engine-based

approaches usually suffer a high false positive rate (misclassifying legitimate websites as

phishing) because newly created legitimate or unfamous websites are not highly indexed

on search engines like Google, Bing, or Yandex [93]. Additionally, identifying phishing

landing pages hosted on compromised legitimate websites or legitimate websites that are

employed to obtain sensitive information maliciously (e.g., Google Forums) would be

extremely challenging [93]. Moreover, third-party dependent features like domain age,

WHOIS information, and ranking lists create a latency issue that decreases the system’s

runtime performance and robustness.

The third limitation to be aware of is the use of single-modality, which refers to detection

systems that rely on a single information source. Such detection systems are often easy for

attackers to bypass by exploiting their vulnerabilities. As previously mentioned, attackers

use various obfuscation and evasion tactics to evade these systems, including replacing text

with images, cloning the HTML code structure, HTML and Javascript obfuscations, and

link shortening or redirections. Furthermore, there is a lack of utilization of multi-modality

despite the demonstrated superiority of combining multiple data sources (bimodal/hybrid

approaches) over single-modal approaches in the literature.

The last and major issue which is from a research perspective, is that most anti-phishing

studies do not provide explicit instructions or steps to reproduce their experimental findings.

Essential details to obtain reproducible results include the train-test split ratio and seed value,

employed dataset details and class distribution, and model hyperparameters. Computational

reproducibility [94] refers to the ability to recreate models and results of past work

straightforwardly. The reproducibility is imperative as it increases the confidence in

produced results and expands the boundaries of discoveries, enabling scientific progress

[94]. Therefore, publishing the implemented codebase allows model replication, evaluation

experiments with new datasets, and fair comparison analysis with other detection systems.
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Figure 5.1 CrossPhire: Overview of our proposed deep neural network architecture

5.2. CrossPhire

Our approach CrossPhire is an end-to-end deep learning model that identifies phishing

samples using website raw multimodal data sources with minimal preprocessing. In

contrast to traditional phishing detection approaches, CrossPhire leverages automatic feature

extraction using the web page’s raw URL, screenshot image, and extracted textual content.

The website’s textual content is extracted from the HTML source code using HTML parsers

as a preprocessing step, while the website’s URL and the screenshot image are utilized

without any preprocessing. Notably, utilizing the website’s extracted markup-free textual

content has never been employed as an information source in the phishing website detection

domain.
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We hypothesize that the textual content of a website contains valuable information that can

effectively distinguish between phishing and legitimate websites. Unlike existing phishing

detection approaches that rely on Model Stacking, our framework is a novel multimodal

architecture that operates on distinct raw data modalities by combining them, as illustrated in

figure 5.1. CrossPhire incorporates three sub-neural networks, each specializing in extracting

deep features from each data source. CrossPhire captures both the textual and visual

essence of the website by fusing feature logits generated by (i) the GramBeddings model

[2] using URLs, (ii) fine-tuned pre-trained image models using the screenshot image, and

(iii) pre-trained Sentence Transformer models using the extracted textual content.

In the context of phishing website identification, the websites are classified into two

categories: phishing and legitimate. We aim to distinguish between phishing and legitimate

websites, making it a binary classification problem. Hence, we train the network to produce

the value ’1’ if the input is phishing and ’0’ otherwise. In the following steps, we discuss the

architecture of CrossPhire and how it processes each data modality by exploring its individual

components. Finally, we discuss combining the subnetworks and the joint training procedure.

5.2.1. URL Processing

As previously discussed, the web page’s URL contains essential information commonly

used to derive meaningful features to differentiate between phishing and legitimate

web pages. For URL feature representation, we consider the GramBeddings model

proposed in [2] to generate contextualized embeddings capturing the essential features of

the URL. We mainly opted for GramBeddings over other potential URL-based models

because Grambeddings outperformed its baseline approaches in their original study [2],

demonstrating high robustness and generalization capability while obtaining state-of-the-art

results. Additionally, we conduct our own experiments and further analyze the potential

anti-phishing URL models using the benchmark datasets in the Experimental Results section.

GramBeddings: The GramBeddings model concatenates character level (unigrams) and

n-gram level (i.e., 4, 5, and 6) features to create feature embeddings from URL strings. For
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Figure 5.2 The characters (Alphabet) considered by GramBeddings for URL encoding (adopted
from [2]).

Character-level embeddings, the input URL strings are first tokenized and then encoded by

replacing each character with its numerical representation based on the alphabetical order,

where the first alphabetical character a = 1 and ”/” = 94 (figure 5.2 showcases the considered

characters). The encoded vectors less than 128 are padded with zeros and truncated

otherwise. For N-gram feature selection, the authors used the chi-square method to overcome

the curse of dimensionality problem as the number of possible n-gram combinations rapidly

grows. By experimenting with different n values (3-7), the authors obtained the best

performance using the values (4, 5, 6). Thus, a feature mapping vector is created for every

n value (1, 4, 5, 6), and identical sub-networks are implemented to generate independent

feature vectors. Every sub-network consists of two cascaded convolutional layers followed

by a Spatial Dropout to minimize adjacent n-gram correlations. The output of the CNN layers

is fed into two bidirectional-LSTM (BiLSTM) layers to capture sequential relationships in

both directions. Next, an additive attention layer was implemented to benefit from selective

parts of the BiLSTM layer output vectors. Finally, the output from every sub-network (i.e.,

256 × 4 sub-networks = 1024) is concatenated to form a 1024 feature logit incorporating the

features from the different n-gram selections. Two cascaded hidden layers were employed

in the final fully connected layer, reducing the resultant feature vector to 256. In this thesis,

we utilize the GramBeddings architecture to generate contextualized embeddings from Raw

URLs. Figure 5.3 overviews the overall architecture of GramBeddings, and for a more

detailed explanation, you can refer to their original publication [2].

5.2.2. Screenshot Processing: Towards Visual Essence

Since phishers try to deceive users with websites that are visually similar to legitimate

websites, suspicious users usually inspect the web page’s appearance to determine its
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Figure 5.3 Overview of the GramBeddings neural network (adopted from [2]).

authenticity. The visual appearance of a site retains crucial factors like the design quality,

formatting, and logos that distinguish phishing from legitimate websites. However, capturing

the image’s low, mid, and high-level features is challenging.

Thanks to the recent breakthroughs led by deep convolutional neural networks in multiple

visual recognition and image classification tasks. In particular, very deep image models

(with +100 layers) like ResNets and DenseNet achieved state-of-the-art performance on

challenging datasets like ImageNet [81] and COCO [82]. This achievement was possible

by increasing the number of layers while maintaining the computational efficiency with a

smart approach to mitigate the well-known issue of exploding/vanishing gradients, thereby

effectively surpassing the 100-layer barrier [3, 95].

The works in the computer vision domain demonstrated the effectiveness and importance

of transfer learning from large pre-train models, particularly those trained models on the

ImageNet dataset, which are then fine-tuned for the specific task needed [96]. In our

approach, we leverage these large image models and fine-tune them for the phishing

identification task, enabling us to capture comprehensive visual features. Unlike existing

vision-based methods that rely on partial regions of the image, CrossPhire utilizes the entire

screenshot, providing a more holistic analysis.
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Figure 5.4 Overview of the DenseNet model architecture [3].

Residual Networks [95]: ResNets are sophisticated deep convolutional neural network

architectures famous for their depth and strong learning abilities. The network consists of

a series of residual blocks that contain multiple convolutional layers with skip connections.

The skip connections are one of the key features of ResNets that enable efficient training

by providing a shorter path for gradients to propagate, mitigating the vanishing gradient

problem. The ResNet architecture also addresses the degradation problem, where adding

more layers to the neural network degrades performance by implementing skip connections

(shortcut connections). The shortcut connection skips a couple of residual blocks, and their

output is added to the output of the stacked layers (skipped layers).

Densely Connected Convolutional Network [3]: DenseNet is a deep convolutional neural

network architecture known for its dense connectivity pattern, which facilitates feature reuse

and encourages future propagation. Unlike traditional CNNs, DenseNet connects each layer

to every other layer in a feed-forward fashion within a dense block, as demonstrated in

figure 5.4. As a result, this connectivity pattern solves the vanishing gradient problem and

creates shorter paths for better gradient flow during training. Unlike ResNets, where identity

mapping adds output feature maps, DenseNet combines the feature maps by concatenating

them.

Notably, ResNet and DenseNet excel in extracting deep and sophisticated features from

input images and capturing complex visual patterns and structures, which makes them an

ideal choice for tasks that require sophisticated image analysis, such as image classification.
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Given the high performance of both DenseNet-121 and ResNets-50, We leverage their ability

to learn rich representation by inputting the website’s screenshot image and capturing visual

and structural features to distinguish phishing from legitimate websites. We apply transfer

learning rather than training the models for phishing classification from scratch. This process

involves utilizing the pre-trained ResNet50 and DenseNet121 models on the ImageNet

dataset and fine-tuning them for the phishing classification task using the training images

from the benchmark datasets.

5.2.3. Markup-Free Textual Content Processing: Towards Textual Essence

The website’s main content includes rich textual content that can be utilized to extract

informative textual features. While some previous studies have utilized the source code

as a primary feature source to distinguish between phishing and legitimate web pages, none

have considered using plain, markup-free, and concise text from the website’s source code

without further processing steps. These processing steps might result in textual information

loss, failing to preserve and capture the semantic relationships within the text. Consequently,

we adopted a convenient method to extract the website’s main content, ensuring that the text

from different HTML tags, such as the title, paragraph, and heading tags, is included. We

employed several HTML parsers like BeautifulSoup [89] and Trafilatura [88] to extract all

the available text in the web page’s source code.

For textual feature representation, we employed the well-known state-of-the-art sentence

transformer models to convert the extracted text into a numerical representation that captures

the context and semantic meaning of the sentences. Despite the widespread use of Large

Language Models (LLMs) trained on massive text corpora in various NLP applications, they

have not been previously applied in phishing website detection.

Unlike context-independent word embeddings that are generated by processing single

words, sentence transformer models leverage the transformer architecture and self-attention

mechanism to create sentence embeddings that capture the semantic meaning, order,

and context of words within an entire sentence [4]. The transformers use self-attention

68



Figure 5.5 Overview of the Sentence-BERT model architecture [4].

mechanisms that allow the model to assign weights to each word in the sentence. The model

captures the long-range dependencies and relationships within a sentence by computing a

weight representing the importance of different parts of the input sequence.

The Sentence-BERT model, introduced in [4], modifies the BERT model [96] by employing

a siamese and triplet network architecture. This modification aims to generate semantically

meaningful sentence embeddings that are useful for various sentence-pair tasks like question

answering and semantic textual similarity (STS) [4]. Unlike BERT’s cross-encoder setup,

where two sentences are fed to the transformer for target value prediction, Sentence-BERT

incorporates two BERT models with tied weights (siamese network) along with a pooling

layer and a softmax classifier, as depicted in Figure 5.5.

Given the plenitude of websites in foreign languages on the internet, the website’s extracted

plain text comes in numerous languages. Therefore, our approach needs to handle

non-English text as well. To achieve that, we employ two different methods to process

the extracted textual content. The first method utilizes a multilingual ST model trained

on 100 different languages [97]. This model generates similar embedding vectors for

semantically similar texts across different languages. The second method involves translating
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all non-English text into English and then using a monolingual ST model to process the

English-translated text. The translation process allows us to compare the performance

between the monolingual and multilingual ST models. Consequently, we picked the

monolingual MPNet model [98] and the multilingual XLM-RoBERTa model [97], both

publicly available on the HuggingFace platform.

In contrast to how we integrated the pre-trained image models by fine-tuning them to the

phishing classification task. We utilize the pre-trained sentence transformer models as

encoders without fine-tuning. Both MPNet and XLM-R models are employed to produce

a fixed-size sentence vector of 768 for each sentence having a maximum of 512 tokens.

5.3. Combining Subnetworks

After generating deep features from the URL, image, and textual content, the different

encoders output the logits (embedding vectors) for each data modality. Following the

embedding generation, We implemented several hidden layers composed of dense layers

to reduce the dimension of the vectors. Next, we fuse the reduced feature vectors (URL-256,

image-512, and text-16) by concatenating them into a single vector with a dimension of 784.

Lastly, we add fully connected (FC) and classification layers.

5.4. Evaluation Metrics

In this subsection, we provide a brief description and a definition of the various evaluation

metrics used in this thesis. These metrics are calculated and used to reflect and evaluate

our approach’s performance. Additionally, understanding these evaluation methods leads

to correct performance interpretation and investigating the advantages and drawbacks of our

approach. We first start with introducing the Confusion Matrix as the used evaluation metrics

depend on it.

The Confusion Matrix in binary classification problems is a two-dimensional matrix that

summarizes the classifier’s performance. As demonstrated in table 5.1, the binary confusion

70



matrix consists of two classes, one designated as the positive class and the negative class

[99]. In our case, the positive class is the Phishing class, and the negative is the Legitimate.

The four cells in the confusion matrix in table 5.1 represent True Positive (TP), False Positive

(FP), True Negative (TN), and False Negative (FN).

Predicted Positive Predicted Negative

Actual Positive TP FN

Actual Negative FP TN

Table 5.1 Binary Class Confusion Matrix

The definitions of these values are [99]:

• True Positive (TP): The number of samples that are positive (Phish), and the model

correctly classified it as positive.

• False Positive (FP): The number of samples classified as positive (Phish) when they

are actually negative (Legit).

• True Negative (TN): The number of samples that are negative (Legit), and the model

correctly classified it as negative.

• False Negative (FN): The number of samples classified as negative (Legit) when they

are actually positive (Phish).

It is necessary to consider multiple evaluation metrics to obtain a comprehensive

understanding of a specific model. In consequence, we calculate and report the values of

accuracy, precision, recall, F1-score, False Positive Rate (FPR), False Negative Rate (FNR),

and True Negative Rate (TNR). This wide range of metrics provides a detailed summary of

the proposed model’s performance [100].

The definitions and the way to calculate these metrics are:
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• Accuracy: The proportion of correctly classified instances out of the total number of

instances.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

The accuracy equation can be explained as follows:

Accuracy =
Total number of correctly classified website samples

Total number of website samples
(2)

• Precision (positive predictive value): The proportion of correctly classified positive

instances out of the total predicted positive instances. This value reflects how

accurately the positive class is predicted [101].

Precision =
TP

TP + FP
(3)

The precision equation can be explained as follows:

Precision =
Number of correctly classified phishing samples
Total number of samples predicted as phishing

(4)

• Recall (Sensitivity): The proportion of correctly classified positive instances out of the

total actual positive instances. This value reflects how well the model avoids missing

positive samples [101].

Recall =
TP

TP + FN
(5)

The recall equation can be explained as follows:

Recall =
Number of correctly classified phishing samples

Total number of actual phishing samples
(6)
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• F1-score: is a combination of Recall and Precision that quantifies the accuracy of

identifying positive samples (precision) while also avoiding the misclassification of

negative samples (FP).

F1-Score = 2 · Precision · Recall
Precision + Recall

(7)

• False Positive Rate (FPR): The proportion of negative samples (legit) that are

misclassified as positive (phish).

FPR =
FP

TN + FP
(8)

• False Negative Rate (FNR): The proportion of positive samples (phish) that are

misclassified as negative (legit).

FNR =
FN

TP + FN
(9)

• True Negative Rate (TNR): (Specificity) The proportion of correctly classified

negative instances out of the total predicted negative instances. This value reflects

how accurately the negative class is predicted.

TNR =
TN

TN + FP
(10)

The Specificity equation can be explained as follows:

Specificity (TNR) =
Number of correctly classified legitimate samples

Total number of actual legitimate samples
(11)
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6. EXPERIMENTAL RESULTS

In this chapter, we discuss the implementation and results of our proposed multimodal

approach, CrossPhire, using five different anti-phishing datasets. In addition to our collected

dataset Phish360, we utilize four different benchmarking datasets, bringing the total number

of website samples in all datasets combined to approximately 358,000. In contrast to other

research that combines multiple anti-phishing datasets, we conduct evaluation experiments

on each dataset separately to assess CrossPhire’s performance across various datasets. Given

that the datasets employed in this thesis were collected from diverse sources spanned in

different years (from 2016 to 2020), it is crucial to evaluate CrossPhire’s effectiveness

on each dataset individually to investigate its adaptability to a wide range of phishing

tactics. Furthermore, we analyze CrossPhire’s generalization and robustness capabilities

by conducting numerous out-of-sample evaluation experiments. In these experiments, we

train CrossPhire on one dataset’s training proportion and test it on another dataset’s testing

proportion.

6.1. Experimental Setup

In this work, we implemented our proposed approach using Python 3 on the Keras platform.

To ensure computational reproducibility and facilitate the reuse and adoption of CrossPhire,

we publicly share our codebase and datasets with the research community. During training,

we configured CrossPhire with a batch size of 32. We employed the Adam optimizer with an

initial learning rate of 0.001. We implemented a cosine annealing learning rate schedule

to adjust the learning rate during training dynamically. Finally, we utilized the binary

cross-entropy function to monitor the model’s loss.

The number of training epochs varied based on the data source for the experiment. When

the training and testing data originated from the same source, we trained CrossPhire for 20

epochs. For cross-dataset evaluations, where training and testing data came from different

sources, we extended the training duration to 30 epochs. Another critical factor, often
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overlooked, is the train-test ratio. Although there isn’t a clear rule on splitting the datasets,

most anti-phishing research splits the data using an 80:20 or 70:30 train test ratio [102].

We divided the data into 80% training and 20% testing proportions for all evaluation

experiments, setting random state = 42 to ensure consistent sets every time the data is split.

We evaluated CrossPhire’s performance using the most commonly used metrics of Accuracy,

Precision, Recall, and F1-score (described in section Evaluation Metrics).

6.2. Single Modal Based Assessment

In this stage, we conduct several experiments to assess the individual components of

CrossPhire. To validate the single-modal components, we employ the benchmarking datasets

to experiment with each model and assess its generalization capability. Based on our

literature review, we identified suitable models that are compatible with our proposed

approach achieving state-of-the-art results in the phishing detection task. For URLs, in

addition to GramBeddings [2], we consider the URLNet [103], and URL Tran [104] models.

Furthermore, we propose utilizing pre-trained ResNet and DenseNet models for image

classification by fine-tuning them to the phishing identification task. Lastly, for the extracted

textual content, we employ pre-trained Sentence Transformers, specifically MPNet [98] to

process the English-translated BS text and XLM-RoBERTa [97] for the original multilingual

TF text.

6.2.1. Pure URL Based Assessment

We conduct comprehensive experiments using the URL samples from benchmark datasets to

assess the capabilities of selected models in phishing URL classification. As previously

mentioned, attackers constantly adjust their methods and develop new tactics to evade

detection systems. Consequently, the collected URL phishing samples from different years

within the benchmark datasets naturally encompass various phishing tactics. Therefore,

in addition to the traditional same dataset evaluation, a robust method to evaluate the

75



Table 6.1 In-dataset and cross-dataset benchmarking using different portions of several datasets.
The table presents the training and testing accuracies of three models (GramBeddings,
URLNet, and URL Tran) to examine the models’ same-dataset and cross-dataset
performance. Each cell contains the model’s accuracy using the corresponding train and
test sets. Bold entries highlight the best performance achieved within each experiment.

Data Modality Training Dataset Testing Dataset GramBeddings URLNet URL Tran
Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

URL PILWD-134K PILWD-134K 0.9832 0.9691 0.9878 0.9635 0.9562 0.8984
URL PILWD-134K VanNL126k 0.9834 0.9155 0.9878 0.9146 0.9551 0.8398
URL PILWD-134K PhishIntention 0.9840 0.9308 0.9756 0.9533 0.9547 0.7306
URL PILWD-134K PWD2016 0.9842 0.9107 0.9922 0.9528 0.9546 0.5420

URL VanNL126k PILWD-134K 0.9994 0.5741 0.9773 0.5808 0.9825 0.5283
URL VanNL126k VanNL126k 0.9994 0.9412 0.9773 0.9852 0.9716 0.9840
URL VanNL126k PhishIntention 0.9999 0.6015 0.9886 0.5510 0.9844 0.6227
URL VanNL126k PWD2016 0.9993 0.6738 0.9773 0.5420 0.9851 0.4915

URL PhishIntention PILWD-134K 0.9990 0.6807 0.9765 0.6467 0.9883 0.6624
URL PhishIntention VanNL126k 0.9981 0.9015 0.9922 0.8987 0.9871 0.7587
URL PhishIntention PhishIntention 0.9994 0.9900 1.0000 0.9889 0.9879 0.9363
URL PhishIntention PWD2016 0.9996 0.9937 0.9766 0.9985 0.9867 0.8948

URL PWD2016 PILWD-134K 0.9995 0.6515 1.0000 0.5000 0.9942 0.5526
URL PWD2016 VanNL126k 1.0000 0.7940 1.0000 0.7940 0.9999 0.7359
URL PWD2016 PhishIntention 1.0000 0.6717 1.0000 0.5410 1.0000 0.8581
URL PWD2016 PWD2016 0.9933 0.9948 1.0000 1.0000 1.0000 0.9983

performance of the selected URL phishing identification models is to conduct cross-dataset

evaluations.

In these experiments, we train the models using the training set of one dataset and test them

on the testing set of another dataset. This approach allows us to explore the generalization

capability of the models in identifying URL phishing samples collected in different years,

encompassing a wide range of phishing tactics to evade detection systems. Table 6.1 presents

a comparison between the performance of the selected models. To ensure comparability, we

used the same train-test split of 80% training and 20% testing with a seed value of 42. The

bold entries in table 6.1 highlight the highest test accuracy across the models employed

(row-wise).

Notably, the results in the table contain both same-dataset experiments, where the model

is trained and tested using the same dataset, and cross-dataset evaluation, where the model

is trained on one dataset’s train set (80%) and tested on another dataset’s test set (20%).

Examining the testing accuracies in table 6.1, it is evident that GramBeddings outperforms

the other models (URLNet and URL Tran) by achieving higher testing accuracy in the
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majority of the experiments (8 out of 16). Based on these findings, we integrated the

GramBeddings model to process the URLs in our proposed approach, CrossPhire.

6.2.2. Pure Screenshot Based Assessment

Similar to our experimental method applied using the websites’ URL samples, we conducted

several experiments utilizing pre-trained ResNet50 and DenseNet121 models, originally

trained on the ImageNet dataset. In these experiments, we leveraged the screenshot

images available in the multimodal datasets to fine-tune the image models for the phishing

classification task.

We employed both traditional same-dataset evaluation and cross-dataset evaluation

techniques to assess the robustness of the selected models. Rather than training the

image models from scratch, we opted for transfer learning. This involved utilizing the

trained weights from the pre-trained models on the large ImageNet dataset, which contains

approximately 14.2 million images. Similar to the train-test split method in previous

experiments, we fine-tuned these models using the screenshot images in the train set (80%)

and tested their performance on the test set (20%). Table 6.2 presents a comparison between

the image models using the benchmark datasets. Examining the testing accuracies in table

6.2, it is evident that the DenseNet121 model outperforms the ResNet50 in phishing image

classification. Due to the minor difference in accuracies achieved by both models, we opted

to include both image models in our CrossPhire evaluations for further experimentation.

6.2.3. Pure Textual Content Assessment

In these experiments, we utilize two types of extracted textual content, namely

Trafilatura text (TF) and BeautifulSoup text (BS), to classify web pages as phishing

or legitimate. Since the extracted text is multilingual, we employ the multilingual

XLM-R sentence transformer, namely ’aditeyabaral/sentencetransformer-xlm-roberta-base’,

available on the HuggingFace community. The model takes a maximum of 512 tokens as
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Table 6.2 Single-modal in-dataset and cross-dataset evaluations of image models (ResNet and
DenseNet) using web page screenshot image across benchmarking datasets

Data Modality Image Model Training Dataset Testing Dataset Test Acc. Test F1
Screenshot Resnet50 PILWD-134K PILWD-134K 0.9304 0.9248
Screenshot Densenet121 PILWD-134K PILWD-134K 0.9562 0.9544
Screenshot Resnet50 PILWD-134K VanNL126K 0.7309 0.8201
Screenshot Densenet121 PILWD-134K VanNL126K 0.7848 0.8569
Screenshot Resnet50 PILWD-134K PhishIntention 0.6392 0.6963
Screenshot Densenet121 PILWD-134K PhishIntention 0.7035 0.7350
Screenshot Resnet50 PILWD-134K PWD2016 0.6882 0.6740
Screenshot Densenet121 PILWD-134K PWD2016 0.6946 0.6547
Screenshot Resnet50 PILWD-134K Phish360 0.7445 0.5995
Screenshot Densenet121 PILWD-134K Phish360 0.7887 0.7064
Screenshot Resnet50 VanNL126K PILWD-134K 0.6457 0.6939
Screenshot Densenet121 VanNL126K PILWD-134K 0.6704 0.7088
Screenshot Resnet50 VanNL126K VanNL126K 0.9392 0.9627
Screenshot Densenet121 VanNL126K VanNL126K 0.9577 0.9733
Screenshot Resnet50 VanNL126K PhishIntention 0.6938 0.7395
Screenshot Densenet121 VanNL126K PhishIntention 0.7266 0.7633
Screenshot Resnet50 VanNL126K PWD2016 0.6501 0.5852
Screenshot Densenet121 VanNL126K PWD2016 0.7088 0.6264
Screenshot Resnet50 VanNL126K Phish360 0.8646 0.8303
Screenshot Densenet121 VanNL126K Phish360 0.8753 0.8413
Screenshot Resnet50 PhishIntention PILWD-134K 0.6438 0.6621
Screenshot Densenet121 PhishIntention PILWD-134K 0.6910 0.6745
Screenshot Resnet50 PhishIntention VanNL126K 0.6081 0.7005
Screenshot Densenet121 PhishIntention VanNL126K 0.6615 0.7497
Screenshot Resnet50 PhishIntention PhishIntention 0.9556 0.9564
Screenshot Densenet121 PhishIntention PhishIntention 0.9703 0.9696
Screenshot Resnet50 PhishIntention PWD2016 0.7121 0.6778
Screenshot Densenet121 PhishIntention PWD2016 0.6813 0.5950
Screenshot Resnet50 PhishIntention Phish360 0.7301 0.5156
Screenshot Densenet121 PhishIntention Phish360 0.7720 0.6099
Screenshot Resnet50 PWD2016 PILWD-134K 0.5720 0.5474
Screenshot Densenet121 PWD2016 PILWD-134K 0.5858 0.3959
Screenshot Resnet50 PWD2016 VanNL126K 0.7127 0.8077
Screenshot Densenet121 PWD2016 VanNL126K 0.7733 0.8616
Screenshot Resnet50 PWD2016 PhishIntention 0.6803 0.6151
Screenshot Densenet121 PWD2016 PhishIntention 0.6796 0.6673
Screenshot Resnet50 PWD2016 PWD2016 0.9321 0.9329
Screenshot Densenet121 PWD2016 PWD2016 0.9309 0.9294
Screenshot Resnet50 PWD2016 Phish360 0.6952 0.5036
Screenshot Densenet121 PWD2016 Phish360 0.7245 0.6530
Screenshot Resnet50 Phish360 PILWD-134K 0.6773 0.6760
Screenshot Densenet121 Phish360 PILWD-134K 0.6985 0.7132
Screenshot Resnet50 Phish360 VanNL126K 0.8589 0.9116
Screenshot Densenet121 Phish360 VanNL126K 0.8668 0.9153
Screenshot Resnet50 Phish360 PhishIntention 0.7492 0.7753
Screenshot Densenet121 Phish360 PhishIntention 0.7601 0.7801
Screenshot Resnet50 Phish360 PWD2016 0.7014 0.6952
Screenshot Densenet121 Phish360 PWD2016 0.7255 0.7308
Screenshot Resnet50 Phish360 Phish360 0.9386 0.9200
Screenshot Densenet121 Phish360 Phish360 0.9432 0.9263
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Table 6.3 Comparison of phishing identification performance using the text extracted with
Trafilatura (TF) and BeautifulSoup (BS) for Phish360 dataset. Train and test accuracy
scores are reported for Support Vector Machine (SVM), XGBoost (XGB), and CatBoost
(CatB) classifiers.

Dataset Text SVM XGB CatB
Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

Phish360 Original BS text 0.8663 0.8658 0.9995 0.9798 0.9970 0.9772
Phish360 Original TF text 0.8005 0.7980 1.0000 0.9403 0.9970 0.9356

input and outputs a 768-dimensional vector for each input. So, to compare the generated

embeddings using the two different extracted texts, we use the phish360 dataset and

implement conventional ML models to classify the textual content into two classes: phishing

and legitimate.

The generated embedding vectors are used as feature inputs to some widely utilized ML

models in text classification. Specifically, we employed the Support Vector Machine

(SVM), XGBoost classifier (XGB), and CatBoost classifier (CatB). We implemented the

ML algorithms with their default parameters and a linear kernel we selected for SVM. Using

the same train-test split and seed value with the previous experiments, we showcase the

results in table 6.3. Examining the results in table 6.3, it is apparent that BS text is more

comprehensive compared to the TF text, resulting in a superior feature representation and

higher performance across the same models.

Given the superior performance achieved with the BS text, we translate the BS text

for all the benchmark datasets to evaluate our method and explore the performance

difference between monolingual and multilingual sentence transformers on original and

English-translated text. We selected the MPNet monolingual sentence transformer, namely

’sentence-transformers/all-mpnet-base-v2’, available on the HuggingFace community.

Similar to XLM-R, MPNet also takes 512 tokens as input and produces a 768-dimensional

vector as output.

The results for all the datasets are presented in table 6.4, revealing that the MPNet

model provides better textual encoding using the English text compared to XLM-R

with multilingual text. These findings highlight the significance of the chosen sentence
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Table 6.4 Comparison of phishing identification performance across benchmark datasets using
the original and translated BeautifulSoup (BS) text with sentence transformer models.
Train and test accuracy scores are reported for Support Vector Machine (SVM), XGBoost
(XGB), and CatBoost (CatB) classifiers.

Dataset Text Transformer SVM XGB CatB
Train Acc. Test Acc. Train Acc. Test Acc. Train Acc. Test Acc.

PhishIntention Translated BS MPNet 0.9707 0.9687 0.9994 0.9860 0.9984 0.9838
PhishIntention Original BS XLM-R 0.8663 0.8658 0.9995 0.9798 0.9970 0.9772
VanNL126k Translated BS MPNet 0.9611 0.9600 0.9982 0.9749 0.9932 0.9744
VanNL126k Original BS XLM-R 0.9027 0.9023 0.9975 0.9754 0.9919 0.9734
PILWD-134K Translated BS MPNet 0.9211 0.9184 0.9913 0.9550 0.9801 0.9563
PILWD-134K Original BS XLM-R 0.7946 0.7969 0.9882 0.9529 0.9772 0.9512
PWD2016 Translated BS MPNet 0.9599 0.9528 0.9996 0.9899 0.9993 0.9882
PWD2016 Original BS XLM-R 0.9739 0.9614 0.9995 0.9882 0.9993 0.9862
Phish360 Translated BS MPNet 0.9641 0.9622 1.0000 0.9716 1.0000 0.9702
Phish360 Original BS XLM-R 0.8421 0.8531 1.0000 0.9571 0.9979 0.9590

transformer and its impact on the overall performance. This outcome was expected, given

that the monolingual transformer was pre-trained on a larger English corpus than the

multilingual transformer.

6.3. CrossPhire: Multimodal Detection Model Evaluations

After the extensive single-modal experiments validating our design choice in URL and image

models, we detail the experiments using the textual extracted content. As it is known that

monolingual LLM outperform multilingual ones, we conduct two main experiments with

two distinct text extraction methods using Trafilatura (TF) and BeautifulSoup (BS). As a

baseline, we used the original extracted TF text containing numerous languages with the

XLM-R multilingual Sentence Transformer (ST), as illustrated in figure 6.1; we refer to this

experiment as CP-EX-1. Since we have established that BS text is more comprehensive and

more detailed than TF text, we opted for translating the BS text into English to explore the

potential difference in the generated textual feature embeddings. Hence, we use the translated

BS text with the monolingual ST, referring to this experiment as CP-EX-2 (see figure 6.1).

80



Figure 6.1 Comparison between the two main configuration (1) CrossPhire-Experiment-1 with
original trafilatura text and (2) CrossPhire-Experiment-2 with English-translated
BeautifulSoup text

6.3.1. CP-EX-1: CrossPhire With Multilingual Text

This experiment employs the GramBeddings model for URLs, ResNet50 and

DenseNet121 for screenshot images, and the multilingual XLM-R sentence transformer

(’aditeyabaral/sentencetransformer-xlm-roberta-base’ available on the HuggingFace

community) model with the original Trafilatura text. The results are presented in table

6.8. CrossPhire (EX-1) achieves high testing accuracy and F1 scores across all datasets

with both image model components. Notably, across the benchmark datasets, both

ResNet and DenseNet achieve comparable results, indicating no significant difference in

their performance. However, Phish360 presents a challenge, as the performance of both

CrossPhire variants declines compared to the benchmark datasets.

6.3.2. CP-EX-2: CrossPhire With English Text

This experiment employs the GramBeddings model for URLs, ResNet50 and

DenseNet121 for screenshot images, and the monolingual BERT-like sentence transformer

(’sentence-transformers/all-mpnet-base-v2’ available on the HuggingFace community)
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Table 6.5 CP-EX-1: Assessing CrossPhire’s performance across multimodal datasets using
multilingual Trafilatura text

Image Model Dataset Train Acc. Test Acc. Test Precision Test Recall Test F1
Resnet50 PILWD-134K 0.9904 0.9812 0.9849 0.9763 0.9791
Densenet121 PILWD-134K 0.9804 0.9798 0.9805 0.9779 0.9782
Resnet50 VanNL126K 0.9933 0.9904 0.9953 0.993 0.9941
Densenet121 VanNL126K 0.9919 0.9909 0.9940 0.9948 0.9948
Resnet50 PhishIntention 0.9973 0.9945 0.9935 0.9972 0.9949
Densenet121 PhishIntention 0.9963 0.9955 0.9962 0.9960 0.9959
Resnet50 PWD2016 1.000 1.000 1.000 1.000 1.000
Densenet121 PWD2016 1.000 1.000 1.000 1.000 1.000
Resnet50 Phish360 0.9977 0.9748 0.9765 0.9606 0.9556
Densenet121 Phish360 0.9963 0.9687 0.9523 0.9711 0.9495

Table 6.6 CP-EX-2: Assessing CrossPhire’s performance across multimodal datasets using the
English-translated BeautifulSoup text

Image Model Dataset Train Acc. Test Acc. Test Precision Test Recall Test F1
Resnet50 PILWD-134K 0.9980 0.9804 0.9788 0.9810 0.9783
Densenet121 PILWD-134K 0.9974 0.9807 0.9784 0.9821 0.9883
Resnet50 VanNL126K 0.9995 0.9942 0.9957 0.9972 0.9963
Densenet121 VanNL126K 0.9919 0.9926 0.9949 0.9962 0.9952
Resnet50 PhishIntention 0.9981 0.9957 0.9950 0.9976 0.9961
Densenet121 PhishIntention 0.9990 0.9963 0.9954 0.9983 0.9966
Resnet50 PWD2016 1.000 1.000 1.000 1.000 1.000
Densenet121 PWD2016 1.000 1.000 1.000 1.000 1.000
Resnet50 Phish360 0.9991 0.9921 0.9818 0.9988 0.9835
Densenet121 Phish360 0.9988 0.9796 0.9790 0.9699 0.9653

model with the translated BeautifulSoup text. The results are presented in table 6.6.

CrossPhire (EX-2) with the English-translated BS text outperforms the models trained on

multilingual text (CP-EX-1) with an exception for the PILWD-134k dataset where CP-EX-1

achieved slightly better accuracy and precision scores. Notably, The accuracy on the

Phish360 dataset significantly improved from 97.49% with multilingual text to 99.21%

with translated English text. This demonstrates the superiority of monolingual sentence

transformers trained on English content, which is due to several previously mentioned

factors, such as access to larger and higher-quality English datasets.
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6.4. Evaluation of CrossPhire Performance and Comparative Analysis

To gain deeper insights into CrossPhire’s effectiveness, we explore the answers to critical

evaluation questions by analyzing the achieved results between CrossPhire (multimodal)

and single-modal alternatives. We further assess CrossPhire’s generalization capabilities

by analyzing the results of out-of-sample experiments. Then, we finally compare the

performance of CrossPhire with its baseline approaches utilizing the same anti-phishing

datasets.

6.4.1. Comparing CrossPhire Performance With Single-modal Components

Q1: Does incorporating multiple data sources enhance phishing detection accuracy?

This question investigates the performance of CrossPhire compared to its single-modal

components utilizing the following data modalities:

• URL: GramBeddings model

• Image: ResNet50 model

• Text: XGBoost model trained on English BS text embeddings

Figure 6.2 illustrates the accuracy of CrossPhire and the single-modal alternatives. To

ensure a fair comparison, CrossPhire-EX-2 (purple bar) utilizes the same architecture as

the single-modal models: GramBeddings for URLS, ResNet50 for images, and MPNet for

the translated BeatifulSoup text.

As evident from the figure, combining multiple data modalities significantly improves the

detection accuracy compared to the best-performing single-modal models across all datasets.

This finding aligned with various studies [27, 57, 75, 105], highlighting that combining

multiple data modalities (hybridization) increases the performance, creating more robust

anti-phishing models. Notably, the image model performs worse than the other single-modal

models (GramBeddings and XGBoost).
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Figure 6.2 Accuracy comparison between CrossPhire and its individual single-modal components on
benchmark datasets

6.4.2. CrossPhire Performance in Out-of-Sample Experiments

Q2: How does CrossPhire perform in out-of-sample (cross-dataset) experiments?

This is crucial since the performance of machine learning-based anti-phishing solutions,

especially those dependent on hand-crafted features, declines with time since attackers

develop new tactics to evade detection systems. When tested on newer phishing samples,

the anti-phishing solutions trained on outdated datasets often fail to maintain their original

performance. Sánchez-Paniagua et al. [26] also observed the performance decline, where

the authors conducted out-of-sample evaluations using URL datasets collected in different

years. The authors noted that anti-phishing models trained on outdated datasets struggled

to sustain high detection accuracy when tested on recent phishing URLs due to attackers’

constant development of phishing tactics.

The authors trained a LightGBM classifier on the PWD2016 and Ebbu2017 datasets,

reporting 97.60% and 95.94% testing accuracies. However, when the trained models
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Table 6.7 This table presents information on the datasets utilized in the study, including the dataset
names, sample collection year, the sample size in each class, and the legitimate and
phishing data sources

Dataset Name Samples Collection Year Sample Size Legitimate Data Source Phishing Data Source

PWD2016 Mar-Apr 2016
Phish: 15,000
Legit: 15,000

Alexa
DMOZ
BOTW

PhishTank

VanNL126k Sept-Dec 2019
Phish: 100,000
Legit: 25,938 DMOZ

PhishTank
OpenPhish
PhishStats

PhishIntention Oct 2019-Aug 2020
Phish: 29,496
Legit: 25,400
Misleading Legit: 3,049 (Apr. 2021)

Alexa OpenPhish

PILWD-134k Aug 2019-Sep 2020
Phish: 66,964
Legit: 66,964

Majestic Million
Quantcast PhishTank

Phish360 (Ours) 2019-2021
Phish: 4,332
Legit: 6,416

Custom crawl
Random Subsampling PhishTank

were tested on a more recently collected dataset in 2020 (PIU-60k), the testing accuracies

dropped to 87.18% for the model trained on PWD2016 and 65.25% for the model trained

on Ebbu2017. Similarly, Opara et al. [66] argued that the earliest collected data should

always be used for training, and the testing should be done on the most recently collected

data. For this reason, in their data collection process, the authors collected the training data

in November 2018 and testing data in January 2019 to assess their models’ robustness and

generalizability.

In our experiments, we take it a step further by utilizing the benchmark multimodal datasets

to evaluate the robustness and generalization of CrossPhire. As demonstrated in table 6.7,

the multimodal data samples were collected in different years, with the oldest dataset dating

back to 2016 and the most recent to 2021.

Similar to the evaluation experiments in the earlier subsection CrossPhire Evaluations, we

follow the exact configuration of both variants of CrossPhire. The first variant utilizes

multilingual trafilatura text with XLM-R ST, and the second one employs English-translated

BeautifulSoup text with MPNet.

In both experiments, we train CrossPhire using one dataset’s training set (80%) presented

in the Train Dataset column in table 6.8 and test it on another dataset’s testing set (20%)

presented in the Test Dataset column in table 6.8, ensuring consistent sets using the

seed value of 42. We first present the results of CrossPhire with multilingual trafilatura text
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Table 6.8 This table presents the out-of-sample evaluations of CrossPhire (CP-EX-1) to asses its
generalization capabilities using multilingual Trafilatura text

Image Model Training Dataset Testing Dataset Train Accuracy Val Accuracy Val Precision Val Recall Val F1
Resnet50 PILWD-134K VanNL126K 0.9772 0.9252 0.9484 0.9613 0.9534
Densenet121 PILWD-134K VanNL126K 0.9954 0.9172 0.947 0.9525 0.9482
Resnet50 PILWD-134K PhishIntention 0.9893 0.9261 0.9206 0.9564 0.9343
Densenet121 PILWD-134K PhishIntention 0.9886 0.9174 0.929 0.9302 0.9261
Resnet50 PILWD-134K PWD2016 0.9957 0.9111 0.9479 0.856 0.892
Densenet121 PILWD-134K PWD2016 0.9934 0.9289 0.9434 0.9014 0.9175
Resnet50 PILWD-134K Phish360 0.9894 0.9151 0.9231 0.8611 0.8749
Densenet121 PILWD-134K Phish360 0.9590 0.8861 0.8621 0.8542 0.8395
Resnet50 VanNL126K PILWD-134K 0.9959 0.6354 0.5746 0.9711 0.7116
Densenet121 VanNL126K PILWD-134K 0.9914 0.6998 0.6911 0.6949 0.6785
Resnet50 VanNL126K PhishIntention 0.9865 0.6167 0.6064 0.9866 0.7426
Densenet121 VanNL126K PhishIntention 0.9939 0.6175 0.6065 0.9895 0.7437
Resnet50 VanNL126K PWD2016 0.9827 0.4782 0.4782 0.9483 0.628
Densenet121 VanNL126K PWD2016 0.9963 0.4663 0.464 0.9471 0.6127
Resnet50 VanNL126K Phish360 0.9973 0.7354 0.6077 0.9699 0.7319
Densenet121 VanNL126K Phish360 0.9950 0.8068 0.9657 0.9259 0.7791
Resnet50 PhishIntention PILWD-134K 0.9995 0.7451 0.6898 0.8674 0.7578
Densenet121 PhishIntention PILWD-134K 0.9958 0.7491 0.6997 0.8507 0.7563
Resnet50 PhishIntention VanNL126K 0.9947 0.9124 0.9471 0.9462 0.9449
Densenet121 PhishIntention VanNL126K 0.9971 0.9122 0.9397 0.9544 0.9452
Resnet50 PhishIntention PWD2016 0.9866 0.9977 1.000 0.995 0.9973
Densenet121 PhishIntention PWD2016 0.9898 0.9988 0.9988 0.9988 0.9988
Resnet50 PhishIntention Phish360 0.9960 0.8427 0.7479 0.9201 0.8109
Densenet121 PhishIntention Phish360 0.9987 0.7867 0.6611 0.9664 0.7675
Resnet50 PWD2016 PILWD-134K 1.000 0.4876 0.4876 1.000 0.6457
Densenet121 PWD2016 PILWD-134K 1.000 0.4876 0.4876 1.000 0.6457
Resnet50 PWD2016 VanNL126K 1.000 0.8215 0.8215 1.000 0.8989
Densenet121 PWD2016 VanNL126K 1.000 0.8215 0.8215 1.000 0.8989
Resnet50 PWD2016 PhishIntention 1.000 0.5899 0.5885 1.000 0.7326
Densenet121 PWD2016 PhishIntention 1.000 0.5873 0.5869 1.000 0.7314
Resnet50 PWD2016 Phish360 1.000 0.4032 0.4032 1.000 0.5617
Densenet121 PWD2016 Phish360 1.000 0.4032 0.4032 1.000 0.5617
Resnet50 Phish360 PILWD-134K 0.9659 0.7925 0.7467 0.8694 0.7935
Densenet121 Phish360 PILWD-134K 0.9789 0.7787 0.7686 0.7814 0.7609
Resnet50 Phish360 VanNL126K 0.9839 0.9181 0.9367 0.9656 0.9492
Densenet121 Phish360 VanNL126K 0.9557 0.9400 0.9560 0.9717 0.9626
Resnet50 Phish360 PhishIntention 0.9729 0.9466 0.9303 0.9824 0.9533
Densenet121 Phish360 PhishIntention 0.9522 0.9054 0.8729 0.9816 0.9201
Resnet50 Phish360 PWD2016 0.9613 0.9101 0.9353 0.9668 0.8904
Densenet121 Phish360 PWD2016 0.9951 0.8826 0.8888 0.8548 0.8590

in table 6.8. Our dataset, Phish360, stands as the smallest among the multimodal datasets,

comprising roughly 8,600 training samples. Despite its size, models trained on Phish360

have demonstrated remarkable performance compared to those trained on PWD2016 and

VanNL126k. Notably, the model trained on Phish360 has outperformed all others, achieving

the highest accuracy of 94.66% when tested on PhishIntention.

Furthermore, CrossPhire trained on Phish360 achieved over 90% accuracy on all datasets

except PILWD-134k, which contains around 26,800 testing samples, three times the size
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of Phish360’s training set. The models trained on PWD2016 and VanNL126k showed the

poorest results when tested on other datasets, with accuracy scores of as low as 40%. The

results in table 6.8 also show that the PILWD-134k dataset challenges the models trained on

the other datasets.

Moving on to the evaluation experiments with the second variant of CrossPhire, we

maintained the same dataset setup with the same seed value to produce the exact train and

test sets. This time, we utilized the English-translated BeautifulSoup text with the MPNet

sentence transformer for out-of-sample evaluations. Similar to the earlier experiments

with the first variant of CrossPhire, the monolingual setup once again outperformed the

multilingual approach, boasting an accuracy gain of approximately 5%, as depicted in table

6.9.

Notably, the model trained on PhishIntention outperformed the others by obtaining an

outstanding 99.69% accuracy on the PWD2016 dataset. However, the model trained on

Phish360 outperforms PhishIntention’s when tested on PILWD-134k, achieving an accuracy

of 85.74%, the highest accuracy among all models trained on the other datasets. In the

case of the largest benchmark dataset, PILWD-134k, the models trained on it obtained the

highest testing accuracies of 93.17% on VanNL126k, 96.27% on PhishIntention, 93.7% on

PWD2016, and 93.38% on Phish360.

Overall, our findings highlight CrossPhire’s robustness and effectiveness across various

datasets, underscoring the importance of dataset selection and model configuration in

achieving optimal performance. This is especially noticeable in the case of PWD2016, where

the model achieves a perfect 100% across all metrics when trained and tested on PWD2016.

However, in the cross-dataset evaluations, the models trained on PWD2016 demonstrated the

poorest generalization performance across all the datasets.

6.4.3. Comparing CrossPhire With Baseline Approaches

Q3: Does CrossPhire outperform comparative approaches on benchmark datasets?
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Table 6.9 This table presents the cross-dataset evaluations of CrossPhire (CP-EX-2) to asses its
generalization capabilities using the English-translated BeautifulSoup text

Image Model Train Dataset Test Dataset Train Acc. Test Acc. Test Precision Test Recall Test F1
Resnet50 PILWD-134K VanNL126K 0.9819 0.9317 0.9644 0.9520 0.9565
Densenet121 PILWD-134K VanNL126K 0.9723 0.9302 0.9646 0.9499 0.9554
Resnet50 PILWD-134K PhishIntention 0.9906 0.9511 0.9356 0.9843 0.9573
Densenet121 PILWD-134K PhishIntention 0.9882 0.9627 0.9568 0.9807 0.9673
Resnet50 PILWD-134K PWD2016 0.9819 0.9370 0.9471 0.9162 0.9211
Densenet121 PILWD-134K PWD2016 0.9815 0.9301 0.9221 0.9285 0.9165
Resnet50 PILWD-134K Phish360 0.9894 0.9338 0.9021 0.9376 0.9068
Densenet121 PILWD-134K Phish360 0.9713 0.9305 0.8848 0.9514 0.9100
Resnet50 VanNL126K PILWD-134K 0.9939 0.6840 0.6102 0.9750 0.7406
Densenet121 VanNL126K PILWD-134K 0.9970 0.7042 0.6269 0.9728 0.7525
Resnet50 VanNL126K PhishIntention 0.9833 0.6388 0.6193 0.9967 0.7559
Densenet121 VanNL126K PhishIntention 0.9971 0.6854 0.6781 0.8820 0.7576
Resnet50 VanNL126K PWD2016 0.9940 0.5168 0.4910 0.9682 0.6403
Densenet121 VanNL126K PWD2016 0.9920 0.5050 0.4846 0.9542 0.6317
Resnet50 VanNL126K Phish360 0.9991 0.8494 0.7348 0.9803 0.8243
Densenet121 VanNL126K Phish360 0.9831 0.8308 0.7061 0.9942 0.8092
Resnet50 PhishIntention PILWD-134K 0.9972 0.8138 0.7788 0.8635 0.8081
Densenet121 PhishIntention PILWD-134K 0.9935 0.8061 0.7658 0.8679 0.8022
Resnet50 PhishIntention VanNL126K 0.9839 0.9069 0.9458 0.9552 0.9278
Densenet121 PhishIntention VanNL126K 0.9851 0.9155 0.9521 0.9447 0.9465
Resnet50 PhishIntention PWD2016 0.9973 0.9936 0.9987 0.9876 0.9901
Densenet121 PhishIntention PWD2016 0.9936 0.9969 0.9988 0.9946 0.9835
Resnet50 PhishIntention Phish360 0.9994 0.8834 0.7954 0.9572 0.9603
Densenet121 PhishIntention Phish360 0.9990 0.9380 0.8944 0.9595 0.9119
Resnet50 PWD2016 PILWD-134K 1.000 0.4876 0.4876 1.000 0.6457
Densenet121 PWD2016 PILWD-134K 1.000 0.4876 0.4876 1.000 0.6457
Resnet50 PWD2016 VanNL126K 1.000 0.8214 0.8214 1.000 0.8989
Densenet121 PWD2016 VanNL126K 1.000 0.8214 0.8214 1.000 0.8989
Resnet50 PWD2016 PhishIntention 1.000 0.6084 0.5996 1.000 0.7414
Densenet121 PWD2016 PhishIntention 1.000 0.6125 0.6021 1.000 0.7434
Resnet50 PWD2016 Phish360 1.000 0.4033 0.4033 1.000 0.5602
Densenet121 PWD2016 Phish360 1.000 0.4033 0.4033 1.000 0.5602
Resnet50 Phish360 PILWD-134K 0.9914 0.8582 0.8538 0.8556 0.8456
Densenet121 Phish360 PILWD-134K 0.9946 0.8574 0.8508 0.8582 0.8456
Resnet50 Phish360 VanNL126K 0.9822 0.9109 0.9786 0.9114 0.9417
Densenet121 Phish360 VanNL126K 0.9957 0.9309 0.9761 0.9388 0.9553
Resnet50 Phish360 PhishIntention 0.9918 0.9666 0.9630 0.9807 0.9701
Densenet121 Phish360 PhishIntention 0.9887 0.9615 0.9534 0.9824 0.9662
Resnet50 Phish360 PWD2016 0.9701 0.9175 0.9789 0.8414 0.8947
Densenet121 Phish360 PWD2016 0.9780 0.9333 0.9650 0.8893 0.9164
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Table 6.10 Comparison between our best performing configuration of CrossPhire and existing
baseline approaches employing the same benchmark datasets

Research - Dataset Approach Test Acc. Test Precision Test Recall Test F1
Sánchez-Paniagua et al. [30] - PILWD-134K LightGBM 0.9795 0.9830 0.9760 0.9800

Our Study - PILWD-134K CP-EX-1 0.9812 0.9849 0.9763 0.9806
Sánchez-Paniagua et al. [26] - PWD2016 LightGBM 0.9760 - - -
Sánchez-Paniagua et al. [106] - PWD2016 KNN 0.9735 - - -

Our Study - PWD2016 CP-EX-2 1.0000 1.0000 1.0000 1.0000
Liu et al. [29] - PhishIntention Vision-based approach - 0.9980 0.9060 -

Our Study - PhishIntention CP-EX-2 0.9963 0.9954 0.9983 0.9968
Van Dooremaal et al. [31] - VanNL126k SSIM 0.9966 0.9955 - 0.9977

Our Study - VanNL126k CP-EX-2 0.9942 0.9957 0.9972 0.9964

Upon examining the related works, we observed that the employed multimodal datasets

are underutilized in anti-phishing research due to various reasons that we previously

mentioned, including the lack of a standard dataset and the inconsistencies within the

datasets. Furthermore, since some of the datasets we used in this thesis were published

recently in 2022 (i.e., PILWD-134k and PhishIntention), researchers may be still unaware of

their existence or are currently working towards publishing studies utilizing them.

Given the lack of multimodal anti-phishing approaches, we searched for anti-phishing

solutions that utilize the benchmark datasets. We observed that numerous studies combine

self-collected data samples with sampled data from public datasets. Since comparing

CrossPhire with such approaches would be inequitable, we opted to select studies that

exclusively utilized one of the benchmark datasets. These studies include [26, 29–31, 106].

The approach proposed by Sánchez-Paniagua et al. [30] leverages 54 hand-crafted features

extracted from the URL, HTML, and web technology. The web technology features include

binary features such as Google Analytics, Apache, and Bootstrap. The authors collected and

published the PILWD-134k dataset to evaluate their approach using the LightGBM classifier.

PhishIntention [29] extracts the targeted brand visually and the web page’s credential-taking

intention by combining several deep learning models. To locate the logos and the input box,

it first locates the salient rectangular regions from the images. The logo’s brand is detected

using an OCR-aided recognition approach based on siamese matching. PhishIntention
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interacts with the webpage to confirm the credential-taking intention. The authors evaluated

their proposed scheme using their collected PhishIntention dataset.

Sánchez-Paniagua et al. [26] employed the PWD2016 dataset to implement several machine

learning models trained on 40 NLP-based features extracted from the web page’s URL,

obtaining the best performance using the LightGBM classifier. Similarly, the authors in

[106] implemented the KNN algorithm on the PWD2016 dataset using the same NLP-based

features to showcase the performance of the phishing detection systems using various

datasets collected in different years.

Van Dooremaal et al. [31] proposed a hybrid phishing detection approach utilizing text and

visual features. The authors used a subset of 2,000 samples from their published dataset.

The proposed approach uses reverse image search to find similar associated websites. Then,

the similarity between the suspicious and associated samples is computed to classify the

web page as phishing or legitimate. Table 6.10 presents existing approaches in the literature

employing these benchmark datasets.

Examining table 6.10 reveals that CrossPhire outperforms all the existing approaches.

Although Van Dooremaal et al. [31] achieves a higher accuracy of 99.66% compared to our

approach with an accuracy of 99.42%, however, the authors sampled 2,000 samples from the

dataset without mentioning their selection criteria. So their approach is validated only using

600 samples, while our approach is trained and validated on the whole dataset, containing

approximately 126,000 samples.

6.4.4. Comparing CrossPhire With Multimodal CLIP in Phishing Detection

Given the CLIP model’s recent popularity and impressive results, we decided to investigate

its performance by fine-tuning it. In order to examine its performance, we fine-tuned the

CLIP model on the benchmark datasets. Since the CLIP model takes image-caption pairs, we

utilized the screenshot images and English-translated BS text from the benchmark datasets.
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Figure 6.3 Contrastive pre-training of the CLIP model (adopted from [5])

6.4.4.1. CLIP : stands for Contrastive Language-Image Pretraining, which is a

groundbreaking approach proposed by Radford et al. [5]. This deep learning model,

developed by OpenAI in 2021, sets itself apart from traditional visual models in the computer

vision domain by employing a multimodal training approach. CLIP learns to associate

images with textual descriptions (captions) in a multimodal learning framework. The authors

trained the model on a huge collection of 400 million image-caption pairs that were scraped

from the internet. Despite not being specifically trained on the ImageNet dataset, the model

demonstrated remarkable zero-shot performance, matching the accuracy of ResNet. Given

the SOTA performance achieved by CLIP, we investigated its performance by fine-tuning it

on the phishing detection task.

The training process involves giving the model a batch of images and their associated textual

captions, as depicted in figure 6.3. CLIP combines the text and image modalities by using

the joint training of a text encoder and an image encoder, mapping their representations in

a shared embedding space. The model learns to map similar image and text embedding

vectors closer while pushing dissimilar pairs further. In other words, CLIP tries to minimize

the distance between correct image-text pairs (maximize cosine similarity) and maximize

the distance (minimize cosine similarity) between incorrect pairings. Notably, the authors
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Table 6.11 Comparison between CrossPhire and fine-tuned CLIP model on phishing detection using
the benchmark datasets

Model Dataset Train Acc. Test Acc.
CLIP Phish360 0.9938 0.9622

CrossPhire Phish360 0.9991 0.9921
CLIP PhishIntention 0.9904 0.9895

CrossPhire PhishIntention 0.9990 0.9963
CLIP PILWD-134K 0.9888 0.9648

CrossPhire PILWD-134K 0.9904 0.9812
CLIP VanNL126k 0.9842 0.9798

CrossPhire VanNL126k 0.9995 0.9942
CLIP PWD2016 0.9907 0.9922

CrossPhire PWD2016 1.0000 1.0000

trained the CLIP model from scratch without initializing the image and text encoders with

pre-trained weights.

Looking at figure 6.3, the process starts by encoding all the images in the batch; the encoded

image vectors are shown in green (denoted by I1, I2,,, In). Similarly, the text captions are

encoded using the text encoder, and the text vectors are shown in purple. The similarities

of the correct image-text pairs are the diagonal values highlighted in blue. The optimization

process employs a symmetric cross-entropy loss function (contrastive loss) that operates on

the similarity scores.

6.4.4.2. Fine-tuning CLIP: We fine-tuned the model for phishing detection using the

benchmark datasets by adding a multilayer perceptron (MLP) on top of CLIP. The MLP

consists of two hidden layers having 512 neurons. We conducted joint training of both the

MLP and CLIP, optimizing the network using an Adam optimizer with a learning rate of

0.0001 for 20 epochs. Our training data included screenshot images and translated body text

from benchmark datasets.
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We present the results obtained by the CLIP model and compare them with those achieved

by CrossPhires in Table 6.11. As illustrated in the summarized results, CLIP demonstrated

its highest performance on PWD2016, achieving a testing accuracy of 99.22%. However,

its performance was relatively lower on Phish360, reaching 96.22%. On the other hand,

CrossPhires outperformed CLIP on all datasets, achieving the highest accuracy of 100% on

PWD2016 and the lowest accuracy of 98.12% on PILWD-134K.

Notably, while the CLIP model exhibited its least impressive accuracy on the Phish360

dataset, the CrossPhires model achieved 99.21%. These results show the robustness and

resilience of our proposed model compared to the current state-of-the-art multimodal model,

as it consistently achieved higher results on all the datasets.
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7. DISCUSSION

In this thesis, we present a comprehensive solution to detect phishing web pages through

an innovative end-to-end framework. Our approach extracts multimodal features from the

site’s URL, source code, and screenshot image to effectively identify phishing web pages.

One advantage of this multimodal approach is enabling a comprehensive analysis of the web

page by considering the semantical and visual aspects of the web page. Furthermore, our

framework exhibits adaptability by accommodating new and emerging models. For instance,

we can seamlessly integrate improved sentence transformer models capable of capturing

longer text sequences for a more comprehensive understanding of textual content. Similarly,

we can update the image processing component with the latest state-of-the-art models. This

flexibility ensures that our solution remains up-to-date and maintains optimal performance

over time.

Fine-Tuning Capabilities and Transfer Learning:

While we did not explore the fine-tuning capabilities of CrossPhire, it is important to

note that our solution can be fine-tuned with new data. By leveraging a pre-trained

version of GramBeddings, we can pre-train CrossPhire on the benchmarking datasets,

incorporating knowledge from diverse datasets with various phishing tactics over different

years. Subsequently, fine-tuning the model with new data allows it to adapt to evolving

threats, ensuring consistently high performance. This adaptability stands out as one of

the key advantages of deep learning networks over traditional machine learning models.

In contrast to how we fine-tune pre-trained image models using screenshot images, we

take a different approach with pre-trained sentence transformers. Here, we employ them

as encoders, processing textual content on the fly. This means integrating the model as

frozen layers, where the model weights are not updated, thereby reducing the computational

demands for textual feature representation.
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Comparative Studies:

In the dataset-wise comparative studies, we made sure to select the studies utilizing

the exact datasets that we evaluated CrossPhire on. In contrast, other studies seem

to compare their proposed approaches with unrelated and different approaches making

inadequate comparisons. In dataset-wise comparisons, CrossPhire outperformed the baseline

approaches by a notable margin. While the increase in accuracy is significant, our approach

surpasses baseline methods by leveraging both visual and textual features of websites to

determine their legitimacy. This advantage is achieved without relying on third-party features

or requiring an extensive manual feature engineering process.

In method-wise comparisons with the bimodal CLIP model, which employs images

and text, we fine-tuned CLIP using benchmark datasets to facilitate a fair assessment

against CrossPhire. The performance evaluation on benchmark datasets demonstrated that

CrossPhire outperformed CLIP on all the datasets, with a particularly significant margin on

the Phish360 dataset. This highlights CrossPhire’s robustness and effectiveness, establishing

it as a highly effective anti-phishing solution across various scales and datasets.

7.1. Visualizing The Textual Content’s Embeddings

The notably high results, in line with our hypothesis, indicate that the main textual content

of the web pages offered a comprehensive representation of the websites. Despite the

limitation of pre-trained sentence transformers, which only consider the first 512 tokens,

the resulting 768-dimensional encoded vectors effectively distinguished between the text

in legitimate and phishing websites. In this high-dimensional space, the encoded textual

vectors belonging to the phishing class are mapped closer together and further away from

the legitimate ones. To visualize the high-dimensional vector embeddings, we utilized

t-Distributed Stochastic Neighbor Embedding (t-SNE) [107], a dimensionality reduction

technique that converts high-dimensional data into a two-dimensional space for easier

visualization. Given that the embeddings generated by MPNet on the English-translated

BeautifulSoup text provided the highest accuracy (refer to Textual Content Experiments),
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(a) (b)

(c) (d)

(e)

Figure 7.1 T-SNE visualization of embeddings generated with SBERT using translated BS text for
(a) PhishIntention, (b) PILWD-134K, (c) PWD2016, (d) VanNL126k, and (e) Phish360.
Phishing instances are depicted in red, while legitimate instances are depicted in blue.

we present their embedding visualizations for all datasets in figure 7.1. The sentence

transformer paired with The English-translated BeautifulSoup text was able to differentiate

between phishing (red points) and legitimate (blue points) instances, as demonstrated in

figure 7.1. The encoded embeddings showed varying effectiveness in separating the phishing

and legitimate classes across different datasets. Notably, in figure 7.1(c) representing the

Phish360 dataset, the encoded vectors appear to be linearly separable, successfully capturing

distinctive characteristics.
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7.2. Limitations

Despite demonstrating high performance, our proposed framework has an apparent limitation

which is the requirement for high computational resources. We did not explicitly

mention training time due to the use of multiple computers for numerous experiments.

Training deep neural networks efficiently with large multimedia datasets necessitates highly

computational-powered GPUs, posing a challenge for future research. However, given

recent technological advancements, acquiring such resources is becoming increasingly

feasible. Moreover, developing a sustainable and robust solution remains imperative given

the significant potential harm caused by phishing attacks.

97



8. CONCLUSION

In this thesis, we propose a novel end-to-end deep learning model named CrossPhire,

designed to combat phishing attacks’ increasing frequency and sophistication, particularly

zero-day attacks. CrossPhire leverages contextualized, semantic, and visual features

extracted from URLs, HTML source code, and screenshots of web pages to effectively

differentiate between phishing and legitimate websites. Unlike existing anti-phishing

solutions, CrossPhire is language-agnostic and operates independently of third-party services

and manually extracted features, thereby reducing latency and vulnerabilities to zero-day

attacks.

The contributions of this thesis are significant and multifaceted: (1) We introduce a novel

multimodal architecture, CrossPhire, capable of capturing complex temporal, visual, and

semantical relationships, thereby enhancing the robustness of phishing detection systems. (2)

The utilization of state-of-the-art sentence transformers and convolutional neural networks in

CrossPhire, fine-tuned for the website phishing detection task, demonstrates its effectiveness

in capturing nuanced differences between phishing and legitimate web pages. (3) Through

extensive data analysis and collection process, this thesis presents the Phish360 dataset,

a highly diverse collection of real-world legitimate and phishing examples in numerous

languages, addressing the scarcity of high-quality multimedia datasets and publishing a rich

resource for future research in the anti-phishing field.

We conduct comprehensive experiments to evaluate CrossPhire’s design in addition to in-data

and cross-data validation using five different datasets to measure the robustness of the

proposed model. Our findings indicate that CrossPhire outperforms its baseline approaches,

achieving 99.21% accuracy on the Phish360 dataset and an average accuracy of 99.26% on

the other four benchmark datasets. By sharing the CrossPhire codebase and supplementary

materials, including the Phish360 dataset, this thesis facilitates benchmarking and enables

fair comparison for future studies in website phishing detection. Overall, the findings of this

thesis underscore the importance of adopting multimodal approaches, such as CrossPhire,
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to address the evolving landscape of cybercrimes. The research not only advances the

understanding of multimodal phishing detection techniques but also opens new avenues

for further exploration, particularly in optimizing and applying deep learning models for

cybersecurity. Future work may explore the adaptation and scalability of CrossPhire in

real-world settings and its integration into existing cybersecurity frameworks to enhance

their resilience against phishing threats. By combining advanced deep learning models with

rigorous evaluation methodologies using diverse datasets, this research makes significant

strides toward enhancing the resilience of anti-phishing solutions in protecting individuals

and entities against malicious online activities.
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[59] Lázaro Bustio-Martı́nez, Miguel A Álvarez-Carmona, Vitali Herrera-Semenets,
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Enrique Alegre. Impact of current phishing strategies in machine learning

112



models for phishing detection. In 13th International Conference on

Computational Intelligence in Security for Information Systems (CISIS 2020)

12, pages 87–96. Springer, 2021.

[107] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.

Journal of machine learning research, 9(11), 2008.

[108] SETSCI. Cognitive models and artificial intelligence conference. https:

//ai-conf.com/bmyz2023/BMYZ2023_Proceedings.pdf, 2023.

[Accessed 16-01-2024].

[109] Ahmad H. A. Almakhamreh and A. Selman Bozkır. Conference

presentation. https://docs.google.com/presentation/d/

1Hj4i1uxgh7vBKka6I2Fu-ptup9YBMiWm/edit?usp=sharing&

ouid=112103976447992651512&rtpof=true&sd=true, 2023.

113

https://ai-conf.com/bmyz2023/BMYZ2023_Proceedings.pdf
https://ai-conf.com/bmyz2023/BMYZ2023_Proceedings.pdf
https://docs.google.com/presentation/d/1Hj4i1uxgh7vBKka6I2Fu-ptup9YBMiWm/edit?usp=sharing&ouid=112103976447992651512&rtpof=true&sd=true
https://docs.google.com/presentation/d/1Hj4i1uxgh7vBKka6I2Fu-ptup9YBMiWm/edit?usp=sharing&ouid=112103976447992651512&rtpof=true&sd=true
https://docs.google.com/presentation/d/1Hj4i1uxgh7vBKka6I2Fu-ptup9YBMiWm/edit?usp=sharing&ouid=112103976447992651512&rtpof=true&sd=true

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENTS
	CONTENTS
	TABLES
	FIGURES
	ABBREVIATIONS
	1. INTRODUCTION
	1.1. Overview and Motivation
	1.1.1. Research Questions

	1.2. Contributions
	1.3. Organization

	2. BACKGROUND OVERVIEW
	2.1. Types of Phishing Attacks
	2.2. Machine Learning

	3. RELATED WORK
	3.1. URL-Based Phishing Detection
	3.1.1. URL Statistical & Lexical Feature Based Methods
	3.1.2. NLP Based Feature Methods
	3.1.2.1. Character and Word Embeddings Based Methods


	3.2. Content-Based Phishing Detection
	3.3. Image-Based Phishing Detection
	3.4. Bimodal Phishing Detection
	3.5. Multi-Modal Phishing Detection

	4. DATASETS
	4.1. Is There a Need for Multimodal Datasets?
	4.2. Phish360 Dataset
	4.2.1. Phish360 Folder Structure

	4.3. Benchmark Multimodal Datasets
	4.3.1. PILWD-134K Dataset
	4.3.2. VanNL126K Dataset
	4.3.3. PhishIntention Dataset
	4.3.4. PWD2016 Dataset

	4.4. Data Processing: Cleaning, Extraction, and Representation
	4.4.1. DataFrame Creation Procedure

	4.5. Multimodal Datasets Analysis
	4.5.1. Missing Data Files
	4.5.2. URL Analysis
	4.5.3. HTML and Image Analysis


	5. THE PROPOSED APPROACH
	5.1. Motivation
	5.2. CrossPhire
	5.2.1. URL Processing
	5.2.2. Screenshot Processing: Towards Visual Essence
	5.2.3. Markup-Free Textual Content Processing: Towards Textual Essence

	5.3. Combining Subnetworks
	5.4. Evaluation Metrics

	6. EXPERIMENTAL RESULTS
	6.1. Experimental Setup
	6.2. Single Modal Based Assessment
	6.2.1. Pure URL Based Assessment
	6.2.2. Pure Screenshot Based Assessment
	6.2.3. Pure Textual Content Assessment

	6.3. CrossPhire: Multimodal Detection Model Evaluations
	6.3.1. CP-EX-1: CrossPhire With Multilingual Text
	6.3.2. CP-EX-2: CrossPhire With English Text

	6.4. Evaluation of CrossPhire Performance and Comparative Analysis
	6.4.1. Comparing CrossPhire Performance With Single-modal Components
	6.4.2. CrossPhire Performance in Out-of-Sample Experiments
	6.4.3. Comparing CrossPhire With Baseline Approaches
	6.4.4. Comparing CrossPhire With Multimodal CLIP in Phishing Detection
	6.4.4.1. CLIP
	6.4.4.2. Fine-tuning CLIP:



	7. DISCUSSION
	7.1. Visualizing The Textual Content's Embeddings
	7.2. Limitations

	8. CONCLUSION

