

DATA AUGMENTATION FOR NATURAL LANGUAGE

PROCESSING

DOĞAL DİL İŞLEME İÇİN VERİ ARTIRMA

MUSTAFA ÇATALTAŞ

PROF. DR. İLYAS ÇİÇEKLİ

Supervisor

ASSOC. PROF. DR. NURDAN BAYKAN

Co-Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Engineering

July 2024

i

ABSTRACT

DATA AUGMENTATION FOR NATURAL LANGUAGE PROCESSING

Mustafa ÇATALTAŞ

Master of Science, Computer Engineering

Supervisor: Prof. Dr. İlyas ÇİÇEKLİ

Co-Supervisor: Assoc. Prof. Dr. Nurdan BAYKAN

July 2024, 88 pages

Advanced deep learning models have greatly improved various natural language

processing tasks. While they perform best with abundant data, acquiring large datasets

for each task is not always easy. Therefore, by using data augmentation techniques,

comprehensive data sets can be obtained by creating synthetic samples from existing data.

This thesis undertakes an examination of the efficacy of autoencoders as a textual data

augmentation technique targeted at improving the performance of classification models

in text classification tasks. The analysis encompasses the comparison of four distinct

autoencoder types: Traditional Autoencoder (AE), Adversarial Autoencoder (AAE)

Denoising Adversarial Autoencoder (DAAE) and Variational Autoencoder (VAE).

Moreover, the study investigates the impact of different word embedding types,

preprocessing methods, label-based filtering, and the number of epochs for training on

the performance of autoencoders. Experimental evaluations are conducted using the SST-

2 sentiment classification dataset, consisting of 7791 training instances. For data

augmentation experiments, subsets of 100, 200, 400, and 1000 randomly selected

ii

instances from this dataset were employed. Experimental evaluations involved

augmenting data at ratios of 1:1, 1:2, 1:4, and 1:8 when working with small datasets.

Comparative analysis with baseline models demonstrates the superiority of AE-based

data augmentation methods at a 1:1 augmentation ratio. These findings underscore the

effectiveness of using autoencoders as data augmentation methods for optimizing text

classification performance in NLP applications.

Keywords: Natural Language Processing, Autoencoders, Data Augmentation, Text

Classification

iii

ÖZET

DOĞAL DİL İŞLEME İÇİN VERİ ARTIRMA

Mustafa ÇATALTAŞ

Yüksek Lisans, Bilgisayar Mühendisliği

Danışman: Prof. Dr. İlyas ÇİÇEKLİ

Eş Danışman: Doç. Dr. Nurdan BAYKAN

Temmuz 2024, 88 sayfa

Gelişmiş derin öğrenme modelleri, çeşitli doğal dil işleme (DDİ) görevlerinin etkinliğini

büyük ölçüde artırmıştır. Bu modeller genellikle bol miktarda veriyle en iyi performansı

gösterirken, her görev için büyük veri kümeleri elde etmek her zaman kolay

olmamaktadır. Bu nedenle, veri artırma teknikleri kullanılarak, mevcut veriden sentetik

örnekler oluşturarak kapsamlı veri kümelerinin elde edilmesi sağlanabilmektedir. Bu tez,

metin sınıflandırma görevlerinde sınıflandırma modellerinin performansını artırmayı

amaçlayan bir metinsel veri artırma tekniği olarak otokodlayıcıların etkililiğini

incelemektedir. Analiz, Geleneksel Otokodlayıcı (GO), Değişimsel Otokodlayıcı (DO),

Çekişmeli Otokodlayıcı (ÇO) ve Gürültü Önleyici Çekişmeli Otokodlayıcı (GÖÇO)

olmak üzere dört farklı otokodlayıcı türünün karşılaştırılmasını kapsamaktadır. Ayrıca

çalışma; farklı kelime gömme (temsil) türlerinin, ön işleme yöntemlerinin, etiket tabanlı

filtrelemenin ve eğitme sayılarının otokodlayıcıların performansı üzerindeki etkisini

araştırmaktadır. Deneysel çalışmalarda 7791 eğitim verisine sahip SST-2 duygu

sınıflandırma veri seti kullanılmıştır. Veri arttırma çalışmaları için bu veri setinden

rastgele seçilmiş 100, 200, 400 ve 1000 boyutundaki verilerle çalışılmıştır. Deneysel

değerlendirmelerde, küçük veri setlerinde çalışırken 1:1, 1:2, 1:4 ve 1:8 oranlarında veri

arttırma yapılmıştır. Temel modellerle karşılaştırmalı analizler, arttırma oranı 1:1'de GO

tabanlı veri arttırma yöntemlerinin üstünlüğünü göstermektedir. Bu bulgular,

iv

otokodlayıcıların, doğal dil işleme uygulamalarındaki metin sınıflandırma performansını

optimize etmek için veri arttırma yöntemleri olarak kullanılmasının etkililiğini

vurgulamaktadır.

Anahtar Kelimeler: Doğal Dil İşleme, Otokodlayıcılar, Veri Artırma, Metin

Sınıflandırma

v

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisors, Prof. Dr. İlyas ÇİÇEKLİ

and Assoc. Prof. Dr. Nurdan BAYKAN, for their invaluable guidance, and insightful

feedback throughout the entirety of this research journey. Their expertise,

encouragement, and patience have been instrumental in shaping this thesis and enhancing

my academic growth.

I am also profoundly thankful to my wife, Gözde Düriye ÇATALTAŞ for her unwavering

love, understanding, and endless encouragement during this challenging yet rewarding

endeavor. Her unwavering support, sacrifices, and belief in my abilities have been my

pillars of strength, motivating me to persevere through the obstacles and strive for

excellence.

Finally, I would like to express my heartfelt gratitude to all my friends and family

members who have supported me in many ways throughout this journey.

vi

CONTENTS

ÖZET .. iii

ACKNOWLEDGEMENTS .. v

CONTENTS ... vi

FIGURES ... viii

TABLES .. x

ABBREVIATIONS .. xi

1. INTRODUCTION ... 1

2. BACKGROUND OVERVIEW .. 3

2.1. Data Augmentation .. 3

2.2. Textual Data Augmentation .. 3

2.2.1. Noise-Based DA Methods ... 4

2.2.2. Paraphrasing-Based DA Methods .. 5

2.2.3. Sampling-Based DA Methods ... 6

2.3. Text Classification ... 7

2.4. Autoencoders .. 7

3. RELATED WORK ON DATA AUGMENTATION ... 9

3.1. Noising-based DA Methods ... 9

3.2. Paraphrasing-based DA Methods ... 10

3.3. Sampling-based DA Methods .. 12

3.4. Autoencoders for Data Augmentation .. 14

4. PROPOSED DATA AUGMENTATION METHOD ... 16

4.1. Tokenization and Vectorization ... 17

4.1.1. Bag-of-Words (BoW) .. 17

4.1.2. Word2Vec Word Embeddings (w2v) .. 18

4.2. Long Short-Term Memory (LSTM) ... 19

4.3. Autoencoders ... 24

vii

4.3.1. Variational Autoencoders (VAE) .. 25

4.3.2. Adversarial Autoencoder (AAE) ... 26

4.3.3. Denoising Adversarial Autoencoders (DAAE) ... 28

4.3.4. Autoencoder’s Utilization for DA ... 29

4.4. DistilBERT .. 30

4.5. Data Augmentation Pipeline ... 31

4.6. Data Augmentation with Filtering .. 33

5. EXPERIMENTAL RESULTS .. 35

5.1. Dataset ... 35

5.2. General Parameters for Data Augmentation .. 35

5.3. Classifier ... 36

5.4. Evaluation Metrics .. 36

5.5. Number of Training Epochs Comparison for Autoencoders 37

5.6. Effect of Filtering Pipeline .. 39

5.7. Comparison of Different Autoencoders in Data Augmentation 41

5.8. Embedding Comparison .. 42

5.9. Effect of Preprocessing on AE Input .. 44

5.10. Comparison of Results with Baseline Methods ... 46

5.11. Interpretation of Generation of Synthetic Samples from An Original Sample .. 53

6. CONCLUSION ... 55

REFERENCES ... 58

APPENDIX A. EXAMPLE RECONSTRUCTIONS ... 67

CURRICULUM VITAE .. Error! Bookmark not defined.

viii

FIGURES

Figure 2.1. Example of paraphrasing-based, noising-based and sampling-based

textual DA methods, adapted from [26]. ... 4

Figure 2.2. Example of noising-based DA methods, adapted from [26]. 5

Figure 2.3. Example of paraphrasing-based DA methods, adapted from [26]. 6

Figure 2.4. A basic representation of architecture of a typical autoencoder. 8

Figure 3.1. Example crop and rotation transformation proposed in [49]. 10

Figure 3.2. PWSS example, adapted from [51]. .. 11

Figure 3.3. DRAWS example, adapted from [51]. .. 12

Figure 3.4. An example of KoMT method, adapted from [57]. 14

Figure 4.1. General overview of the proposed method in this thesis. 16

Figure 4.2. An example of BoW vector representation. .. 18

Figure 4.3. Block diagrams for (a) CBOW model and (b) Skip-gram model. 19

Figure 4.4. Architecture of an RNN model [73]. ... 20

Figure 4.5. Architecture of an LSTM model [73]. ... 21

Figure 4.6. A diagram of autoencoder used in this thesis. ... 25

Figure 4.7. Variational Autoencoder model used in the experiments. 26

Figure 4.8. Adversarial Autoencoder model used in the experiments. 28

Figure 4.9. Denoising Adversarial Autoencoder model used in the experiments. 29

Figure 4.10. Knowledge distillation on BERT and DistilBERT. 31

Figure 4.11. Augmentation by reconstruction pipeline .. 33

Figure 4.12. Filtering pipeline for augmentation with reconstruction 34

Figure 5.1. Average accuracies of DistilBERT classifier when the training epochs

of autoencoders is 50 and 100, considering different dataset sizes and

augmentation ratios. ... 37

Figure 5.2. Average accuracies of DistilBERT classifier when the training epochs

of autoencoders is 50 and 100, for (a) AAE, (b) AE, (c) DAAE and (d)

VAE. .. 38

Figure 5.3. Average performances filtered pipeline and unfiltered pipeline of

AE’s for different dataset sizes and augmentation ratios. 39

Figure 5.4. Average performances filtered pipeline and unfiltered pipeline of

AE’s for different dataset sizes and augmentation ratios, considering

different dataset sizes and augmentation ratios for (a) AAE, (b) AE,

(c) DAAE and (d) VAE. .. 40

ix

Figure 5.5. Average performances different types of AE’s for different dataset

sizes and augmentation ratios. ... 41

Figure 5.6. Average performances of different types of embedding layers of AE’s

for different dataset sizes and augmentation ratios. 42

Figure 5.7. Average performances of different types of embedding layers of AE’s,

considering different dataset sizes and augmentation ratios for (a)

AAE, (b) AE, (c) DAAE and (d) VAE. .. 43

Figure 5.8. Average performances of AE’s when preprocessing applied or not

applied for different dataset sizes and augmentation ratios. 44

Figure 5.9. Average performances when preprocessing applied or not applied,

considering different dataset sizes and augmentation ratios for (a)

AAE, (b) AE, (c) DAAE and (d) VAE. .. 45

Figure 5.10. Average of accuracies for each variant of (a) AAE, (b) AE, (c) DAAE,

and (d) VAE. ... 47

Figure 5.11. Training and validation losses for two DistilBERT classifier: (a)

trained with aae-token-clean-100-NoFilter with augmentation ratio

1:1 dataset and (b) aae-token-clean-100-NoFilter with augmentation

ratio 1:8. .. 54

x

TABLES

Table 5.1. Number of samples in each class of SST-2 dataset. 35

Table 5.2. Parameters used for DistilBERT model. ... 36

Table 5.3. Comparison of the selected AE-based DA methods with baseline

models from the literature for the dataset size of 100 on SST-2

dataset. ... 49

Table 5.4. Comparison of the selected AE-based DA methods with baseline

models from the literature for the dataset size of 200 on SST-2

dataset. ... 50

Table 5.5. Comparison of the selected AE-based DA methods with baseline

models from the literature for the dataset size of 500 on SST-2

dataset. ... 51

Table 5.6. Comparison of the selected AE-based DA methods with baseline

models from the literature for the dataset size of 1000 on SST-2

dataset. ... 52

Table 5.7. Comparison of the selected AE-based DA methods with baseline

models from the literature for the dataset size of 7791 (Full Set) on

SST-2 dataset. .. 53

Table A.1. Example sentence and its cleaned version. .. 67

Table A.2. Reconstructions from the selected DA methods, for example

sentence in Table A.1 for dataset size of 100. ... 68

Table A.3. Reconstructions from the selected DA methods, for example

sentence in Table A.1 for dataset size of 200. ... 69

Table A.4. Reconstructions from the selected DA methods, for example

sentence in Table A.1 for dataset size of 500. ... 70

xi

ABBREVIATIONS

NLP : Natural Language Processing

DA : Data Augmentation

DL : Deep Learning

ML : Machine Learning

LSTM : Long Short-Term Memory

AE : Auto Encoder

AAE : Adversarial Auto Encoder

DAAE : Denoising Adversarial Auto Encoder

VAE : Variational Auto Encoder

W2V : Word2Vec

BoW : Bag-of-Words

Seq2Seq : Sequence-to-Sequence

TF-IDF : Term Frequency-Inverse Document Frequency

RNN : Recurrent Neural Networks

1

1. INTRODUCTION

Over the past few decades, there have been a dramatic rise in the use of Deep Learning

(DL) methodologies within the field of Natural Language Processing (NLP) which caused

by remarkable efficacy of DL techniques in handling complex linguistic structures [1].

Thanks to emergence of advanced DL architectures such as Attention-based models [2]

and Long Short-Term Memory (LSTM) [3], which have exhibited superior capabilities

in capturing semantic information and long-range dependencies inherent in natural

language data [4], significant progress have been achieved in tasks such as text

classification and language modeling. Moreover, advancements in computational power

of hardware infrastructures and parallel processing [5] have contributed to larger DL

models, enabling DL models to capture more linguistic nuances [6]. As a result, most

NLP applications have utilized DL models to obtain improved performance such as

question answering, and sentiment analysis [7-11].

One drawback of DL models is their requirement of large volumes of data which cannot

be supplied in every scenario [12]. To overcome this problem, different approaches are

employed, such as transfer learning and data augmentation (DA) [13]. While all of these

have contributed to tackling the problem, DA is the only solution which can increase the

volume of the data used without having a change on the DL model.

DA serves as a pivotal technique in Machine Learning (ML), providing the expansion

and enrichment of training datasets by introducing diverse variations to existing data

samples [14]. Widely employed across various ML domains, this method addresses

limitations posed by limited or imbalanced data, enhancing model performance and

robustness [15]. Tailored augmentation strategies, such as flipping and rotating for image

classification or paraphrasing and word dropout for sentiment analysis, underscore its

adaptability to specific tasks, optimizing model efficacy amidst real-world complexities.

Particularly in NLP, where the demand for diverse and abundant data is paramount,

augmentation techniques hold high significance, promoting advancements in model

generalization and performance through the manipulation of linguistic structures and

semantics.

Text classification, a crucial aspect of NLP, involves assigning labels to textual

documents according to their content, including sentiment analysis, spam detection, and

2

topic categorization [16]. While traditional methods like Naive Bayes and decision trees

have been effective, they struggle with capturing semantic nuances. Deep learning

methods, including transformers and LSTMs, have become effective instruments for text

classification by encoding semantic details with exceptional performance [17]. Similarly,

sentiment classification, a subtask of text classification, focuses on identifying emotional

tone in text [18], with deep learning techniques revolutionizing the field by capturing

contextual information and sentiment nuances effectively.

This thesis explores the application of autoencoders for textual DA in the context of text

classification. Various autoencoder architectures and data augmentation strategies were

examined on the SST-2 dataset. Furthermore, the influence of augmented data on the

performance and robustness of text classification models is evaluated. By leveraging the

power of autoencoders for DA, it is aimed to enhance the scalability, efficiency, and

effectiveness of text classification systems, particularly in situations where obtaining

labeled data is limited or costly.

The structure of this thesis is as outlined: an introduction to the primary focus of the thesis

is given in Section 1. Section 2 gives detailed information on fundamentals of the thesis.

Section 3 examines existing literature on textual DA methods and AE-based DA methods.

Section 4 introduces methods used in this thesis. Section 5 presents findings on dataset

comparisons and method evaluations. Section 6 provides a summary of significant

discoveries and suggests implications for future research endeavors.

 3

2. BACKGROUND OVERVIEW

2.1. Data Augmentation

Data augmentation (DA) is a commonly employed method in machine learning (ML) to

augment the size and diversity of a training dataset [15]. General methods for DA making

changes or adjustments to the existing data, generating new samples that resemble

original samples but are not exact replicas of the original samples. DA has proven to be

an effective method for improving the performance and robustness of ML models [19],

Particularly in scenarios where there is a shortage or imbalance in the training data.

Different ML tasks require tailored DA techniques to optimize model performance. For

example, in computer vision tasks like image classification, common augmentations

include flipping, rotating, and changing colors [20] along with deep learning approaches

such as Adversarial Training [21] and Neural Style Transfer to create variations in the

training images [22]. Similarly, in NLP tasks such as topic modelling, paraphrasing and

word dropout can be used to augment textual data, improving the model's ability to

understand language nuances. Likewise, in speech recognition tasks, augmentations like

pitch shifting and introducing noise can enhance the model's robustness against variations

in speech patterns and background noise [23-25]. Adapting augmentation methods to

specific tasks is crucial for enhancing model performance and adaptability across

different real-world scenarios.

2.2. Textual Data Augmentation

Recent years have seen notable progress in Natural Language Processing (NLP),

propelled by the adoption of Machine Learning (ML) techniques and increased

computational capacity. Given the data-intensive nature of these ML approaches, the

significance of textual Data Augmentation (DA) has grown, as it produces varied and

high-caliber data samples crucial for training and evaluating ML models. In this section,

fundamental textual DA techniques that have been effective in improving the

performance and generalization capabilities of NLP models will be explored.

By introducing variations in sentence structure, semantics, and syntax, textual DA

techniques unlock new possibilities for tackling challenges such as data scarcity, domain

 4

adaptation, and model robustness. Textual DA methods can be grouped into 3 categories

based on the underlying techniques as proposed in [26]. These categories are Noising-

based DA, Paraphrasing-based DA and Sampling-based DA. Each technique offers a

unique approach to augmenting textual data, providing researchers and practitioners with

valuable tools to tackle real-world language processing tasks.

Figure 2.1 illustrates the basics of each DA technique. Here, paraphrasing-based DA is

demonstrated with a substitution with hyponym; noising-based DA is demonstrated with

random insertion of plural form and random deletion and sampling-based DA is

demonstrated with a new sentence which created by sampling new attributes obtained

from the dataset.

Figure 2.1. Example of paraphrasing-based, noising-based and sampling-based textual DA

methods, adapted from [26].

2.2.1. Noise-Based DA Methods

Noise-based DA serves as a pivotal technique in NLP, aiming to simulate real-world

complexities by introducing random variations into the original text [26]. Operating

across character, sentence, and word levels, this method enriches the dataset, however, it

does not ensure semantic coherence of the textual data unlike paraphrasing-based or

sampling-based DA. The idea behind adding noise to textual data is to introduce new

challenges to the DL models which cannot be found in natural text data.

 5

At the character level noise, individual characters are manipulated through processes like

random insertion [27]. At word level, random swapping, random insertion, random

substitution, random deletion [28] of words are generally used to introduce noise to text

by modifying tokens in sentences without affecting the structure of the sentence. Sentence

level noising focuses on perturbing entire sentences to diversify structures and wording

like combining [29] or sentence shuffling [30]. By exposing NLP models to diverse

linguistic expressions encountered in real-world scenarios, noise-based augmentation

enhances their robustness and generalization capabilities. In Figure 2.2, examples for

noising-based DA methods are given.

Figure 2.2. Example of noising-based DA methods, adapted from [26].

2.2.2. Paraphrasing-Based DA Methods

Paraphrasing-based DA involves altering the initial sentence to create new sentences

while preserving the original meaning, despite changes in structure and wording [26].

These methods operate across various levels including lexical, phrase, and sentence

paraphrasing. Thesauruses like WordNet offer a straightforward approach by replacing

words with synonyms or hypernyms to maintain semantic integrity [28].

Semantic embeddings offer an advancement over thesaurus-based methods by using pre-

trained word embeddings to replace words with their closest neighbors in embedding

space [31]. Language models, particularly pretrained models like BERT, introduce a

context-aware approach to paraphrasing. The use of conditional BERT for sentence

augmentation, masking and predicting words based on context is demonstrated in [32].

Examples
DA Method

AugmentedOriginal

The childrenpark oyfully in theplayedThe children played oyfully in the park andom Swapping

There is a tree behind themThere is a tree behind them andom Deletion

Leaves petals are slowly fallingLeaves are slowly falling andom Insertion

 6

Another approach is Backtranslation [33], which employs Sequence-to-Sequence

(Seq2Seq) language models. This method translates the original sentence into different

target languages before translating it back to the source language. While the translated

data may not precisely match the original, it maintains semantic similarity.

In Figure 2.3, examples from selected paraphrasing-based DA methods are given. Here,

rule-based method paraphrases the sentence using predefined regular expression [34].

Another example given in Figure 2.3 is Backtranslation [33] where paraphrasing is done

through translation. The last example utilizes word embeddings for paraphrasing [35].

Figure 2.3. Example of paraphrasing-based DA methods, adapted from [26].

2.2.3. Sampling-Based DA Methods

Sampling-based DA entails the generation of novel instances from an existing corpus

using various sampling techniques [26]. Unlike methodologies that might focus on

individual instances during generation, this approach considers the entire corpus as a

basis. Consequently, the resulting text manifests as a novel variant while upholding

patterns consistent with the original corpus. Various sampling strategies, such as random

sampling, stratified sampling, or oversampling of underrepresented classes, can be

employed in this technique, tailored to the specific needs of the DA task. By leveraging

sampling-based DA, the augmented dataset encompasses a wider array of variations,

thereby increasing model robustness and generalization capabilities. Moreover, this

technique proves particularly advantageous in scenarios characterized by limited original

 7

dataset sizes, enabling the creation of additional training instances without necessitating

manual data collection or annotation efforts.

2.3. Text Classification

Text classification in the field of NLP pertains to the fundamental task of assigning labels

to text documents, playing a pivotal role in numerous applications ranging from sentiment

analysis to document classification [16]. Over time, many methods have been devised to

tackle the intricacies of text categorization. Traditionally, ML algorithms such as k-

Nearest Neighbors, and decision trees were prominently employed for constructing

classification models [16], where numerical representation methods were utilized to

encode textual information. Despite their historical effectiveness, these conventional

methods exhibit limitations in capturing semantic nuances at both the sentence and

document levels, rendering them inadequate for addressing more intricate text

classification tasks such as intent classification and irony detection [17]. Therefore, Deep

learning models, such as recurrent neural networks (RNNs) and transformers [36-38],

have emerged as powerful tools for text classification, leveraging their ability to learn

intricate patterns and capture semantic relationships across large datasets [17].

Sentiment classification, a subtask of text classification within NLP, involves the

automatic identification and categorization of the emotional tone or sentiment expressed

within textual content [39]. Sentiment classification holds particular significance in

applications such as customer feedback analysis and social media monitoring. Traditional

machine learning methods have been widely employed for sentiment classification, often

utilizing features like word embeddings and lexicon-based approaches [40]. However,

deep learning techniques have revolutionized sentiment classification in recent years,

offering enhanced capabilities in capturing contextual information and nuances of

sentiment expression [18], as explained for text classification.

2.4. Autoencoders

An autoencoder represents a neural network structure extensively employed in

unsupervised learning and dimensionality reduction endeavors [41]. Comprising two

primary components, namely the encoder and decoder, autoencoders are trained to

 8

reconstruct input data. The encoder condenses the input into a latent representation, while

the decoder strives to reconstruct the initial input from this representation. Through the

process of learning to reconstruct the input, the autoencoder effectively acquires the

capability to generate a condensed representation of the data [42].

The autoencoder architecture consists of three primary components: an encoder, a

bottleneck, and a decoder. Both the encoder and decoder may be constructed with

multiple layers, such as convolutional layers or LSTM layers. The main goal of training

an autoencoder is to minimize the reconstruction error, usually assessed through a loss

function [43]. The autoencoder learns to encapsulate the most significant characteristics

of the data in the latent representation by reducing the discrepancy between the input and

output.

Autoencoders find applications across various domains. They are used for dimensionality

reduction [44], where they learn condensed representations of data with high dimensions,

which can be beneficial for tasks like feature extraction and data visualization.

Additionally, autoencoders are employed in anomaly detection [45], where they learn the

normal patterns of a dataset to detect anomalies or outliers. Variants of autoencoders [46],

such as variational autoencoders (VAEs) [47] and generative adversarial networks

(GANs) [48], are used for generative modeling. In Figure 2.4, a basic representation of

architecture of a typical autoencoder is shown.

Figure 2.4. A basic representation of architecture of a typical autoencoder.

 9

3. RELATED WORK ON DATA AUGMENTATION

As stated in Section 2, textual DA techniques have been categorized into three categories

which are Noising-based DA, Paraphrasing-based DA and Sampling-based. Thus,

previous works in literature are analyzed under these categories.

3.1. Noising-based DA Methods

The approach of noise-induced DA aims to enrich datasets by introducing random

perturbations into textual data. One prominent application in the realm of textual DA is

Easy Data Augmentation (EDA) [28] which combined various rule-based transformations

to enhance the text classification performance of ML models. These methods include both

noising-based and paraphrasing-based DA methods, so EDA could be considered under

both categories. DA techniques employed in the study by Wei and Zou [28] unfolds as

follows:

• Synonym Replacement: This method involves selecting a specified quantity of

non-stop words from the sentence and then substituting them with equivalent

synonyms.

• Random Insertion: This approach involves randomly selecting a non-stop word

from the sentence, then inserting a random synonym of that word into a randomly

chosen position within the sentence.

• Random Swap: This operation entails randomly selecting two words from the

sentence and then exchanging their positions.

• Random Deletion: Words from the sentence are subject to random deletion with

a certain probability 𝑝.

In the study conducted by [27], an innovative technique known as An Easier Data

Augmentation (AEDA) aimed at augmenting textual data solely through the insertion of

random punctuation marks was introduced. This operation involves determining the

quantity of punctuation for each sentence, selecting insertion points, and punctuation

randomly. In comparison with the widely used method of EDA [28], AEDA offers a

simpler approach and avoids the loss of information associated with random deletion

operations inherent in EDA. Empirical evaluations indicate that AEDA consistently

outperforms EDA across various datasets in the context of text classification tasks [27].

 10

3.2. Paraphrasing-based DA Methods

Paraphrasing-based DA methods aim to generate new samples based on original samples,

while preserving the semantic coherence of original samples. A fine example of

paraphrasing-based DA is proposed in [49] where the data is augmented via cropping and

rotating the sentence with the help of dependency parsing [50]. While performing

rotations and crops on sentences, the dependency parser algorithm determines the

interrelated words and ensures the connectivity of such words is preserved throughout the

transformational process. Furthermore, the parser identifies the essential components of

the sentence and refrains from cropping them out of context. This method requires a

dependency parser to work with any language. In experiments, this method is applied for

different low-resource languages such as Lithuanian, Turkish for PoS-tagging task. The

results showed that both cropping and rotating are valid DA methods that increase the

accuracy of PoS-taggers. Figure 3.1 shows an example of methods proposed in [49].

Figure 3.1. Example crop and rotation transformation proposed in [49].

Some of the studies in the literature propose precise augmentation techniques for more

specific tasks to improve the performance gain attained from the augmentation process.

In [51], a DA pipeline specifically tailored for aspect-based sentiment analysis was

 11

proposed. Aspect-based sentiment analysis is used to determine sentiment orientation

towards an entity or aspect within the text. The research in this area has accelerated since

the arrival of advanced DL models since DL models can encode aspect-based sentiment

information without manually extracted features unlike previous ML algorithms. DA

techniques used in [51] were:

• Part-of-speech (PoS) wise synonym substitution (PWSS): After PoS-tagging the

original sentence, synonyms with the same PoS-tags are identified. Then, the

synonym with the highest semantic similarity score to the original word is selected

and replaced within the sentence. An example of PWSS is given in Figure 3.2. In

Figure 3.2, all words except for “quality” are candidates for synonym substitution.

That is because “quality” is considered as an aspect term for this sentence.

Figure 3.2. PWSS example, adapted from [51].

• Dependency relation-based word swap (DRAWS): A dependency syntax tree,

representing a sentence's structure with a root and dependency arcs between

words, is utilized. This tree serves as the basis for a DA method where synonym

words with the same arc to the root node are exchanged between sentences to

generate new sentences. An example of this DRAWS is given in Figure 3.3.

 12

Figure 3.3. DRAWS example, adapted from [51].

3.3. Sampling-based DA Methods

Since large language models have been successful at understanding natural language and

generating text within the boundaries of natural language, they are well-suited for

generating new data samples upon original data samples. There have been numerous

works that utilizes LLM's for DA [4].

In [52], a novel approach for leveraging prompt-based Large Language Model (LLM)

architectures for DA was introduced. Prior to this investigation, existing studies utilized

LLMs fine-tuned solely on text data, demonstrating their effectiveness. However, this

study extended the scope by incorporating additional contextual information in the form

of class labels, thereby enhancing the conditionality of the DA process. Specifically,

employing a structured prompt format comprising text tags, class tags, and corresponding

class labels for three distinct LLM architectures, namely the Bidirectional Encoder

Representations from Transformers (BERT) [53], the Generative Pre-trained Transformer

2 (GPT-2) [54] and the Bidirectional and Auto-Regressive Transformers (BART) [55]

were fine-tuned for DA. Experimental evaluations conducted for text classification tasks

revealed superior performance of models trained with datasets tailored for BART.

Although BERT exhibits comparable results to BART, it was observed that the GPT-2

model fails to effectively retain the target class information embedded within the text

prompts, resulting in suboptimal outcomes.

 13

In [56], a novel method employing GPT-3 for Data Augmentation (DA) was introduced.

The authors critiqued the prompt-based approach, highlighting limitations such as the

constraint on the size of in-context augmentation and challenges posed by real-world

issues like memory constraints. This study addressed these concerns by fine-tuning GPT-

3 using a structured prompt format, wherein the job description was presented initially,

followed by the text and target classes. This structured prompt guided GPT-3 to generate

text in a format that includes both the text itself and its associated probability of belonging

to a specific class. This inclusion of class probabilities proved advantageous for DA, as

it enables the filtering of generated data samples that may not confidently belong to a

particular class based on their probabilities.

In [57], a pioneering approach to DA for NLP was presented, where a versatile language

model was trained to satisfy the DA requirements across various NLP tasks, ranging from

text classification to text generation. This approach introduced the Knowledge Mixture

Training (KoMT) strategy, designed to train a pre-existing encoder-decoder generative

language model named KnowDA. The KoMT strategy was structured around four

fundamental components. Firstly, a diverse collection of datasets spanning a broad

spectrum of NLP tasks was assembled, facilitating the training of the multi-task DA

model, KnowDA. Secondly, a standardized format was devised for all tasks, adopting a

key-value structure that encompasses features, feature descriptions, and actual samples.

This format ensures uniformity across tasks. Thirdly, the training process involved

denoising objectives, wherein key-value pairs within each sample were randomly masked

to enhance the robustness of KnowDA. The primary aim of KnowDA was to predict these

masked fields, thereby improving its ability to generate coherent outputs. Lastly, to

address challenges stemming from rare or unseen NLP tasks during training, a

demonstration component is integrated into the samples. Leveraging its pretraining and

instruction-following capabilities, KnowDA adapted to previously unseen NLP tasks

through demonstration exemplars. In Figure 3.4, an example of KoMT is given.

 14

Figure 3.4. An example of KoMT method, adapted from [57].

3.4. Autoencoders for Data Augmentation

Autoencoders are used for data augmentation on a variety of data types such as image,

text, and tabular data. In [58], Self-Supervised Manifold Based Data Augmentation

(SSMBA) was introduced which resembles Denoising Autoencoders [59] by corrupting

the input by a predefined corruption function and then reconstructing the original input

from corrupted input using a reconstruction function. The motivation behind SSMBA was

to create a DA model that could work with any supervised NLP task regardless of domain.

In [60], the effectiveness of sparse, undercomplete, deep, and variational autoencoders

for augmenting and generating synthetic data, focusing on financial datasets was

explored. Autoencoder augmentation significantly enhances predictive performance, with

a notable average model score improvement. Variational autoencoders notably capture

non-linear correlations more effectively.

In [61], DA for binary text classification is done through using Variational Autoencoder

(VAE) as a generative model. In their approach, they train a VAE with original dataset

and use the decoder of VAE with random sampling on latent vector of VAE. To provide

conditionality, they trained one VAE per class which makes the output of DA specific to

each class.

In [62], Variational Hierarchical Dialog Autoencoder (VHDA), which is tailored to

capture linguistic features and structured annotations, was introduced. By leveraging

interconnected latent variables, VHDA produces cohesive purposeful dialogs while

 15

addressing training intricacies linked with variational models. Empirical findings across

various dialog datasets highlight VHDA's effectiveness in enhancing subsequent dialog

trackers through generative data augmentation. Furthermore, our integrated methodology

surpasses prior benchmarks in tasks related to dialog response generation and user

simulation.

 16

4. PROPOSED DATA AUGMENTATION METHOD

This thesis investigates the efficacy of data augmentation techniques for enhancing

natural language processing tasks. The proposed methods involve a series of steps: initial

acquisition of a dataset, optional preprocessing of the text, selection of tokenization

methods including Bag-of-Words or Word2Vec, followed by the training of various

autoencoder (AE) types such as Traditional AE, Variational AE (VAE), Adversarial AE

(AAE) and Denoising Adversarial AE (DAAE). All autoencoders utilize LSTM networks

for both encoder and decoders. Subsequently, synthetic samples are generated by

reconstructing original samples using the trained AEs, with the flexibility to apply

different augmentation ratios using the proposed augmentation strategy. Optionally, a

filtering pipeline may be employed to refine the generated samples. Figure 4.1 shows the

general overview of the proposed methods in this thesis.

Figure 4.1. General overview of the proposed method in this thesis.

 17

4.1. Tokenization and Vectorization

Tokenization is the process of dividing text into its atomic parts, usually words or

subwords, in order to make textual data processable by machine learning models [63].

With the help of tokenization, text data is converted into numerical representations that

ML algorithms can understand. There are various techniques that involve tokenization,

such as n-gram tokenization [64] and tokenization using pre-trained transformer models

[65]. These techniques ensure that textual data is broken down into manageable units,

enabling the application of further text processing and analysis methods.

Vectorization refers to the methods that transform tokenized text into numerical vectors,

which can be used as input features for machine learning models. Common vectorization

techniques include Bag-of-Words (BoW) [66] and Word2Vec word embeddings [67].

Bag-of-Words creates vectors based on word frequencies within a text, while Word2Vec

generates dense word embeddings that capture semantic relationships between words. In

this study, both Bag-of-Words and Word2Vec were employed to represent text data,

allowing for a comprehensive analysis of the textual information.

4.1.1. Bag-of-Words (BoW)

Bag-of-Words is a fundamental method for vectorization in NLP [68]. In Bag-of-Words,

sentence level embeddings are created based on frequencies of words. Conceptually, the

corpus containing all documents is considered as a “bag” where words are kept without

any word order or grammar rule.

Bag-of-Words method begins with vocabulary creation from the corpus [68]:

• Let 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑁} be the corpus which contains 𝑁 documents, where 𝑑

represents document from the dataset.

• Create Vocabulary 𝑉 = {𝑤1, 𝑤2, . . . , 𝑤𝑀} where 𝑀 is the total unique words

count in the dataset and 𝑤 represents a word from the dataset.

In the next step where documents are vectorized [68]:

• Each document 𝑑𝑖 from the dataset is depicted in the form of a one-dimensional

vector 𝑥𝑖 with 𝑀 elements.

 18

• The 𝑗-th element of 𝑥𝑖, which is denoted as 𝑥𝑖𝑗, shows the frequency of the word

𝑤𝑗 in 𝑑𝑖 . So, 𝑑𝑖 can be expressed as 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑀] where 𝑥𝑖𝑗 =

𝑐𝑜𝑢𝑛𝑡(𝑤𝑗, 𝑑𝑖) which denotes how many occurrences of the word 𝑤𝑗 in 𝑑𝑖.

An example of the creation of BoW vector representation is shown in Figure 4.2.

4.1.2. Word2Vec Word Embeddings (w2v)

Word2Vec is a well-known method when generating vector representations of words,

developed by Google [69]. Two main algorithms play a role in Word2Vec which are

Continuous Bag-of-Words (CBOW) and Continuous Skip-Gram.

CBOW [67] is used to forecast the target word by analyzing its neighboring words.

Mathematically, 𝑤𝑡 is predicted using the list of its surrounding context words where 𝑘

is window size. A mathematical representation of this process is given in Eq. 4.1 [67] for

a vocabulary with size 𝑇.

1

𝑇
 ∑ log𝑃 (𝑤𝑡 | 𝑤𝑡−𝑘 , … , 𝑤𝑡−1, 𝑤𝑡+1, … , 𝑤𝑡+𝑘)

𝑇−𝑘

𝑡=𝑘+1

 (4.1)

Figure 4.2. An example of BoW vector representation.

 19

The Skip-Gram Model [70] is employed to forecast the context words provided a target

word. Consequently, the objective of the Skip-Gram Model is to maximize the log

probability of the context words given the target word, as illustrated in Eq. 4.2 [70].

1

𝑇
 ∑ ∑ log𝑃(𝑤𝑡+𝑗|𝑤𝑡)

−𝑘≤𝑗≤𝑘,𝑗≠0

𝑇

𝑡=1

 (4.2)

Figure 4.3 shows block diagrams explaining how CBOW and Skip-Gram models work.

(a) (b)

Figure 4.3. Block diagrams for (a) CBOW model and (b) Skip-gram model.

In this thesis, a pretrained Word2Vec model [71] is used by restricting the vocabulary

size to 100,000 words. Embeddings from Pretrained Language Models like BERT

Embeddings [53] are not considered, because the proposed method is meant to be less

dependent on language models.

4.2. Long Short-Term Memory (LSTM)

Recurrent Neural Networks (RNNs) [41] are a class of neural networks designed to

process sequential data by retaining hidden state (ℎ𝑡) information over multiple time

steps, allowing them to capture temporal dependencies. A graphical representation of

RNNs is given in Figure 4.4. Nevertheless, classic RNNs face the vanishing gradient

 20

problem, causing gradients to decrease exponentially as they move back in time, limiting

the network's capacity to learn long-term relationships. [72].

Figure 4.4. Architecture of an RNN model [73].

To address this limitation, Long Short-Term Memory (LSTM) networks [3] were

introduced. LSTMs are a specialized form of RNNs that include gated mechanisms to

control the flow of information through memory cells, effectively mitigating the

vanishing gradient problem. By using input, forget, and output gates, LSTM networks

can selectively update and retain relevant information over extended sequences. This

capability allows LSTM networks to capture long-range dependencies more effectively

than RNNs. This architectural improvement renders LSTMs particularly effective for

tasks that involve modeling sequential data with complex temporal dynamics.

LSTM networks are characterized by their unique architecture, which consists of memory

cells and gating mechanisms. Figure 4.5 depicts the structure of a single LSTM unit. The

memory cell is shown as a horizontal line running through the unit, symbolizing the flow

of information over time.

 21

Figure 4.5. Architecture of an LSTM model [73].

The input gate is responsible for the information entering the memory cell, the forget gate

is responsible for the information exiting the memory cell, and the output gate manages

the information remaining within the memory cell.

The input gate in an LSTM network regulates the flow of new information that is

incorporated into the memory cell. At each time step, the input gate computes a sigmoid

activation function over the input 𝑥𝑡 and the previous hidden state ℎ𝑡−1. This activation

determines which information from the current input and the previous hidden state is

pertinent for updating the memory cell. The output of the input gate, which is represented

as 𝑖𝑡, ranges between 0 and 1, with values close to 1 indicating that the corresponding

input is important for updating the cell state. Mathematically, the operations performed

by input gate are shown in Eq. 4.3 [74], where 𝑊 represents weights and 𝑏 represents

biases.

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (4.3)

The forget gate is tasked with deciding which information stored in the memory cell will

be retained or discarded. Like the input gate, the forget gate computes a sigmoid

activation function over the input 𝑥𝑡 and the previous hidden state ℎ𝑡−1. The value of 𝑓𝑡

determines how much of the previous cell state 𝐶𝑡−1is maintained for the current time

step. Mathematically, the operations performed by forget gate is shown in Eq. 4.4 [74],

where 𝑊 represents weights and 𝑏 represents biases.

 22

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (4.4)

In an LSTM network, the output gate regulates the passage of information from the

memory cell to the current hidden state ℎ𝑡, which functions as the output of the LSTM

unit. The output gate applies a sigmoid activation function to both the input 𝑥𝑡 and the

previous hidden state ℎ𝑡−1 . Additionally, it calculates a hyperbolic tangent activation

function over the candidate cell state 𝐶̃𝑡, which contains the information proposed for

inclusion in the updated cell state 𝐶𝑡. The output gate activation, which is represented as

𝑜𝑡, decides the extent to which the updated cell state should be revealed to the rest of the

network. Mathematically, the operations performed by output gate are shown in Eq. 4.5

[74], where 𝑊 represents weights, 𝑏 represents biases and 𝜎 represents sigmoid

activation function.

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (4.5)

The cell state is the core component of an LSTM unit, responsible for retaining and

updating information over time. At each time step, the cell state is updated based on the

inputs from the input and forget gates. The updated cell state, indicated as 𝐶𝑡, results from

a fusion of the previous cell state 𝐶𝑡−1 and the new information suggested by the input

gate. It acts as a long-term memory storage unit, enabling the LSTM network to capture

dependencies across extended sequences of data. Mathematically, the operations

performed to update cell state is shown in Eq. 4.6 and Eq. 4.7 [74], where 𝑊 represents

weights, 𝑏 represents biases and 𝑡𝑎𝑛ℎ represents hyperbolic tangent activation function.

In Eq 4.7, ⊙ represents element-wise multiplication.

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (4.6)

𝐶𝑡 = 𝑓𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡 ⊙ 𝐶̃𝑡 (4.7)

 23

The hidden state within an LSTM network embodies the network's memory at a specific

time step, containing the information distilled from the input sequence up to that point. It

serves as the LSTM unit's output and acts as a condensed representation of the input

sequence. The formula to calculate the hidden state ℎ𝑡 at time step 𝑡 is represented

mathematically in Equation 4.8 [74].

ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝐶𝑡) (4.8)

The hidden state captures dependencies for short-term as well as long-term in the input

sequence, allowing the network to make predictions or perform tasks based on the context

accumulated over multiple time steps. The hidden state is frequently employed as the

input to subsequent layers in the neural network or as the final output for various tasks

such as sequence prediction, classification, or generation. By updating the hidden state

iteratively across time steps, an LSTM network can effectively capture complex patterns

and relationships in sequential data.

In this thesis, LSTM networks serve as pivotal components within the autoencoder

models, facilitating the learning and preservation of linguistic patterns inherent in the

dataset which is a fundamental aspect of data augmentation tasks. By employing LSTM

networks with 1024 hidden layer units for both encoders and decoders, the models are

equipped to comprehend and encode intricate linguistic structures. The chosen sequence

lengths of 512 for the encoder's LSTM and 128 for the decoder's LSTM are tailored to

enhance the networks' capability to accurately capture and replicate these patterns. This

strategic integration of LSTM networks underscores their crucial role in enabling the

autoencoder models to effectively learn and replicate linguistic nuances, thereby

enhancing the richness and diversity of the augmented dataset.

 24

4.3. Autoencoders

An autoencoder is a class of unsupervised neural network which is designed primarily to

replicate the input as accurately as possible [75]. In the middle of an autoencoder, there

is a unique architectural feature known as the bottleneck layer. Contrary to conventional

network architectures, where the number of neurons typically increases through

successive layers, the bottleneck layer imposes a restriction by decreasing the

dimensionality of the input data. This reduction creates a compression effect, compelling

the model to capture the most useful features while discarding redundant or less

informative aspects of the input.

Autoencoders comprise two components: the encoder and decoder. In the flow of an

autoencoder, first, a representation of input data in a lower-dimensional vector space is

created by the encoder block. The resulting vector is called the latent vector, which

encapsulates the crucial features of the data. After creating this vector, the vector is taken

by the decoder block and used to reconstruct the input given to the encoder. Formally, let

𝑥 denote the input data, 𝑧 represent the latent vector, and 𝑥 denote the reconstructed

output. The encoder 𝑓𝑒𝑛𝑐 maps the input 𝑥 to the latent vector 𝑧, and the decoder 𝑓𝑑𝑒𝑐

attempts to reconstruct the original data from 𝑧. Mathematically, this process can be

expressed as in Eq. 4.9 and Eq. 4.10:

𝑧 = 𝑓𝑒𝑛𝑐(𝑥) (4.9)

𝑥 = 𝑓𝑑𝑒𝑐(𝑧) (4.10)

A schematic diagram of the autoencoder used in this thesis is shown in Figure 4.6.

 25

Figure 4.6. A diagram of autoencoder used in this thesis.

4.3.1. Variational Autoencoders (VAE)

Variational Autoencoders (VAEs) [47] represent a sophisticated advancement of

conventional autoencoders, leveraging a probabilistic framework to enhance their DA

capabilities. VAEs depart from deterministic representations by encoding input data into

probability distributions within the latent space. Mathematically, given an input 𝑥, a VAE

encoder 𝑞(𝑧|𝑥) approximates the posterior distribution 𝑝(𝑧|𝑥) over latent variables 𝑧,

which captures the underlying structure of the data. This probabilistic perspective enables

VAEs to model the inherent uncertainty in the data, offering a more nuanced and

adaptable representation.

The training of VAEs revolves around optimizing two key objectives: (1) a reconstruction

loss, 𝐿𝑟𝑒𝑐 , which ensures fidelity to the input data, and (2) a Kullback-Leibler (KL)

divergence term, 𝐿𝐾𝐿 , that regularizes the latent space distribution. The overall loss

function is thus formulated as in Eq. 4.11 [76]:

𝐿𝑉𝐴𝐸 = 𝐿𝑟𝑒𝑐 + 𝛽. 𝐿𝐾𝐿 (4.11)

where 𝛽 corresponds to a hyperparameter governing the balance between reconstruction

accuracy and regularization of the latent space. This dual objective empowers VAEs to

 26

not only produce faithful reconstructions but also to generate a variety of samples by

sampling from the learned latent space distributions. Such stochasticity introduces

controlled variability, rendering VAEs particularly effective for tasks requiring the

generation of novel and diverse instances, such as DA. The inherent probabilistic nature

of VAEs renders them a robust choice for learning rich representations and generating

augmented data with meaningful diversity, thereby contributing to improved performance

in downstream tasks.

In VAE, the encoder maps the input 𝑥 to the parameter of a variational posterior 𝑞(𝑧|𝑥),

which is typically a gaussian distribution of mean vector 𝜇(𝑧|𝑥) and a standard deviation

vector σ(𝑧|𝑥).

Figure 4.7 shows the VAE architecture used in this thesis. Here, σ represents standard

deviation vector and 𝜇 represents mean vector.

Figure 4.7. Variational Autoencoder model used in the experiments.

4.3.2. Adversarial Autoencoder (AAE)

Adversarial Autoencoders (AAEs) [77] integrate the fundamental concepts of

autoencoders with the adversarial framework of generative adversarial networks (GANs).

In contrast to traditional autoencoders, which solely focus on minimizing reconstruction

loss, AAEs incorporate a discriminator network alongside the encoder-decoder

architecture. This discriminator operates in tandem with the autoencoder, distinguishing

between the encoded latent representations and a predefined prior distribution. This prior

distribution is typically a normal distribution 𝑁, defined in Eq. 4.12 [77] :

 27

𝑧 ∼ 𝑁(𝜇, 𝜎2𝐼) (4.12)

where 𝜇 = 0 is the mean vector and 𝜎2𝐼 is the covariance matrix with 𝜎 = 1, making the

covariance matrix 𝐼 the identity matrix. The adversarial training mechanism prompts the

encoder to generate latent representations that align with this normal distribution, thereby

improving the diversity and semantic meaningfulness of the representations.

Mathematically, the objective function of AAEs combines the reconstruction loss term

(𝐿𝑟𝑒𝑐) with the adversarial loss term (𝐿𝑎𝑑𝑣), defined as in Eq. 4.13 [77]:

𝐿𝐴𝐴𝐸 = 𝐿𝑟𝑒𝑐 + 𝜆 . 𝐿𝑎𝑑𝑣 (4.13)

where λ controls the balance between reconstruction fidelity and adversarial training.

This adversarial component facilitates the discovery of more diverse and semantically

meaningful latent representations, thereby enhancing both data generation and

representation learning capabilities of AAEs.

The motivation for using AAEs in data augmentation stems from the need to address the

lack of variability and overfitting observed with traditional autoencoders. By leveraging

the adversarial framework, AAEs achieve more diverse and robust augmented data

through a unique combination of reconstruction loss and adversarial training. The

adversarial component ensures that the latent representations generated by the encoder

align with a predefined normal distribution, promoting diversity and preventing

overfitting. This alignment forces the model to explore a broader range of semantic

variations, resulting in more varied and meaningful augmented data. Consequently, this

enhanced diversity in the latent space translates to more effective data augmentation,

significantly improving the generalization performance of text classification models.

Figure 4.8 shows the AAE architecture used in this thesis.

 28

Figure 4.8. Adversarial Autoencoder model used in the experiments.

4.3.3. Denoising Adversarial Autoencoders (DAAE)

Denoising Adversarial Autoencoders (DAAEs) [78] amalgamate the denoising

mechanism inherent in Denoising Autoencoders (DAEs) [59] with the adversarial training

paradigm of Adversarial Autoencoders (AAEs). The integration of these components

equips DAAEs with the ability to reconstruct original sentences from perturbed versions,

thereby enhancing the robustness of the learned latent representations. This denoising

process serves to refine the geometry of the latent space, ensuring that semantically

similar texts correspond to proximate latent representations. Mathematically, the

objective function of DAAEs combines the reconstruction loss 𝐿𝑟𝑒𝑐 with adversarial loss

𝐿𝑎𝑑𝑣 as shown in Eq. 4.12. Figure 4.9 shows DAAE architecture used in this thesis.

 29

Figure 4.9. Denoising Adversarial Autoencoder model used in the experiments.

4.3.4. Autoencoder’s Utilization for DA

In this thesis, AEs are employed as an approach for data augmentation for textual data.

The primary ob ective is to explore capabilities AE’s in generating synthetic textual data

based on only original data samples without using any other resource. By generating such

synthetic data, it is aimed to enhance robustness and generalization of text classification

models.

The autoencoder architecture comprised an encoder and a decoder, each made up of

LSTM networks with 1024 hidden layer units. The encoder's role was to acquire a

condensed representation of the input text data, while the decoder's objective was to

reconstruct the original input from this latent space. However, by restricting the

dimension of latent space to 128, autoencoders are aimed to have some losses during

reconstruction process, leading to new data samples that resemble original samples.

In this study, four types of autoencoders (AEs) are employed to explore their performance

and efficacy in text data augmentation. The three main variants utilized are Variational

Autoencoder (VAE) [47], Adversarial Autoencoder (AAE) [77] and Denoising

Adversarial Autoencoder (DAAE) [78] along with traditional AE. Each variant of AE

 30

offers unique advantages. VAE incorporates probabilistic modeling, enabling the

generation of diverse and semantically meaningful variations of input data by sampling

from a learned latent space. This makes it particularly well-suited for generating novel

text samples and enhancing the diversity of augmented datasets. On the other hand, AAE

incorporates an adversarial component, leveraging a discriminator network to encourage

the learned latent space to match a specified prior distribution Finally, DAAE is chosen

for its simplicity and effectiveness in reconstructing clean input from noisy data, making

it suitable for tasks where robustness to input perturbations is crucial. Within the scope

of the thesis, it is aimed to gain insights into their respective strengths and limitations by

comparing the performance of these different AE variants, ultimately informing the

selection of the most suitable model for text data augmentation tasks.

4.4. DistilBERT

Text classification models are computational algorithms that are designed to categorize

text data into predefined classes based on the content of data [79]. These models

traditionally range from rule-based models to statistical approaches like Naïve Bayes or

ML approaches like Support Vector Machines (SVM) [79]. Modern text classification

often utilizes deep learning, particularly with neural network architectures like LSTMs

and transformers such as BERT [53].

BERT is a transformative model that is designed to grasp the contextual meaning of words

within a sentence, taking into account both preceding and subsequent contexts, thus

making it bidirectional [53]. his is achieved through a transformer architecture utilizing

self-attention mechanisms [80]. Unlike previous models that read text sequentially, BERT

processes text in both directions simultaneously, capturing richer contextual information.

Having been pre-trained on extensive volumes of text data, BERT can be further refined

for particular tasks, such as text classification.

When evaluating DA methods, it is essential to use an unbiased classifier model.

Throughout this thesis, all experiments utilize DistilBERT (a distilled version of BERT)

[81]. DistilBERT leverages knowledge distillation [82], where it learns from a larger

'teacher' model, which is BERT [53] for DistilBERT, to replicate its behavior, retaining

around 97% of BERT's language understanding while being 40% smaller and 60% faster

[81]. This model is particularly beneficial in real-time applications or environments with

 31

constrained computational resources. Like BERT, DistilBERT is pretrained on extensive

text data, enabling it to deliver strong performance even when fine-tuned on smaller

datasets. Figure 4.10 shows the knowledge distillation process of DistilBERT.

Figure 4.10. Knowledge distillation on BERT and DistilBERT.

4.5. Data Augmentation Pipeline

In typical applications, autoencoders are principally employed to accurately reconstruct

input data while simultaneously reducing the dimensionality of the input space, making

them suitable for compression tasks. However, in this study, autoencoders are repurposed

for DA purposes where their primary objective shifts from precise input reconstruction to

the generation of comparable versions of the input data. Achieving this entails a

divergence from the autoencoder's conventional goal. This modification can be facilitated

by constraining the dimensionality of the latent representation vector, thereby compelling

the autoencoder to prioritize the generation of synthetic data that closely resembles the

original input.

 32

The methodology employed in this thesis is delineated in Figure 4.11. The initial phase

of this process involves training an autoencoder (AE) with the original dataset,

constituting the most resource-intensive aspect of the pipeline. During this phase, the AE

tries to learn the intricacies of reconstructing the input data. Subsequently, the second

phase entails employing the trained AE to reconstruct the input data, thereby generating

an augmentation ratio of 1:1 relative to the original dataset. To achieve higher

augmentation ratios, such as 1:2 or 1:4, successive iterations of reconstruction are

performed. Specifically, to generate a 1:2 augmentation ratio, the output of the AE from

the 1:1 augmentation ratio is reconstructed once more. Similarly, to attain a 1:4

augmentation ratio, the output from the 1:2 augmentation ratio is subjected to further

reconstruction.

An iteration of reconstruction involves passing the output data from the previous iteration

through the AE again. Each iteration effectively doubles the number of augmented

samples. For example:

• Iteration 1 (1:1 augmentation ratio): The AE takes the original dataset as input and

reconstructs each sample, resulting in twice the number of samples as the original

dataset, including original samples.

• Iteration 2 (1:2 augmentation ratio): The AE takes the 1:1 augmented dataset as

input and reconstructs each sample, resulting in three times the number of samples

as the original dataset, including original samples.

• Iteration 3 (1:4 augmentation ratio): The AE takes the 1:2 augmented dataset as

input and reconstructs each sample, resulting in five times the number of samples

as the original dataset, including original samples.

This strategy yields promising outcomes in scenarios characterized by limited dataset

sizes. However, this reconstruction pipeline may lack diversity due to the intrinsic nature

of autoencoders, which primarily aim to accurately reproduce the input data without

introducing substantial variations. Data augmentation examples are detailed in Appendix

A.

 33

Figure 4.11. Augmentation by reconstruction pipeline

4.6. Data Augmentation with Filtering

As the outputs of autoencoders do not always perfectly replicate the original text, they

can introduce variations in the information they encapsulate. This may result in

reconstructed samples exhibiting characteristics reminiscent of other classes in the

dataset, potentially harming classifier performance. Hence, there arises a need for a

method to weed out falsely labeled reconstructed samples. One approach involves

training a classifier solely on the original data and then employing it to classify

reconstructed samples. If the classifier's prediction contradicts the label of the original

sample, the reconstructed sample is discarded. This strategy ensures the reliability of the

 34

reconstructed data. Figure 4.12 illustrates this process in a schematic diagram. The

filtering mechanism with using a classifier trained with original data is adapted from [83].

Figure 4.12. Filtering pipeline for augmentation with reconstruction

 35

5. EXPERIMENTAL RESULTS

5.1. Dataset

The Stanford Sentiment Treebank (SST-2) dataset [84] is a common dataset which is used

as a baseline for sentiment analysis tasks in NLP. It comprises movie reviews labeled

with either positive or negative sentiments. The SST-2 dataset provides a valuable

benchmark for evaluating the performance of sentiment classification models. Table 5.1

gives the numbers of positive-negative samples in the training, validation, and test sets of

SST-2 dataset.

Table 5.1. Number of samples in each class of SST-2 dataset.

Class

Number of Samples

Training Set Validation Set Test Set

Positive 4054 900 909

Negative 3737 900 912

Total 7791 1800 1821

5.2. General Parameters for Data Augmentation

To evaluate the effectiveness of Data Augmentation (DA) methods across different

scenarios, two parameters are chosen: 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 and 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒.

• 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜: This parameter refers to the ratio of synthetic sentences

generated for each original sentence in the training set.

• 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒 : This parameter indicates the size of the training dataset. The

original training dataset is divided into smaller portions to evaluate DA methods'

performance in scenarios with limited data.

For each experiment, the final training set size (#𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎) is determined using Eq.

5.1.

#𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑡
= (𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 × 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒) + 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒 (5.1)

 36

5.3. Classifier

Throughout this thesis, all experiments utilize DistilBERT [81] which is explained in

Section 4.4. The parameters employed in training DistilBERT across all experiments are

outlined in Table 5.2.

Table 5.2. Parameters used for DistilBERT model.

Parameter Value

Optimizer AdamW [85]

Training Epochs 2

Batch Size 8

Learning Rate 5e-5

Activation Function Gaussian Error Linear Units (GELUs)

Pretrain checkpoint distilbert-base-uncased

Dropout 0.2

Loss Function Cross entropy

5.4. Evaluation Metrics

When assessing machine learning models in supervised learning scenarios, commonly

utilized evaluation metrics include accuracy, precision and recall [86]. However, due to

the balanced nature of the SST-2 dataset, as observed from Table 5.1, the sole evaluation

metric employed to gauge the model's performance in classification tasks is accuracy

[86]. Accuracy is a metric that quantifies the proportion of correct classifications relative

to the total number of classifications made. It is often favored for classification

evaluations as it offers a straightforward and intuitive measure of a model's overall

capability to classify instances accurately. Eq. 5.2 illustrates the calculation of accuracy.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (5.2)

 37

5.5. Number of Training Epochs Comparison for Autoencoders

In this study, the influence of the number of training epochs on the efficacy of

autoencoder-based textual DA is investigated. By selecting the duration of training

epochs as 50 or 100, it is aimed to understand how the autoencoder's ability to reconstruct

input texts evolves over time and its consequent impact on the quality and diversity of

augmented data. Through qualitative and quantitative evaluations, it is analyzed how

different numbers of epochs affect the model's capacity to capture underlying textual

patterns and generate meaningful augmentations. In Figure 5.1, it is observed that when

the number of epochs for autoencoders is 100, the classifier performs significantly better

in dataset size 100. However, as the dataset size grows, this effect diminishes.

Figure 5.1. Average accuracies of DistilBERT classifier when the training epochs of autoencoders

is 50 and 100, considering different dataset sizes and augmentation ratios.

Figure 5.2 presents 4 different line graphs illustrating the impact of the training epochs

on different AEs’ performance. For dataset sizes of 200, 500, 1000 and 7791, no notable

effect is observed on any type of AE. For dataset size of 100, all AE types are boosted

with increasing training epochs to 100. While the other three AE types boosted

significantly, the impact of increasing training epochs on DAAE is relatively low.

 38

(a)

,

(b)

(c)

(d)

Figure 5.2. Average accuracies of DistilBERT classifier when the training epochs of

autoencoders is 50 and 100, for (a) AAE, (b) AE, (c) DAAE and (d) VAE.

 39

5.6. Effect of Filtering Pipeline

As outlined in Section 4.5, applying a filter on reconstructed samples could be useful. To

gauge the efficacy of our filtering pipeline, a comparative analysis is conducted between

the filtered and unfiltered pipelines, focusing on the average accuracies attained by

classifiers trained on datasets augmented by each respective method, which is shown in

Figure 5.3. The results of this comparison underscore a significant impact of the filtering

process, particularly pronounced in datasets of smaller sizes, where the filtering

mechanism yields discernible improvements in classification accuracy. However, as

dataset size increases, the influence of filtering diminishes.

Figure 5.3. Average performances filtered pipeline and unfiltered pipeline of AE’s for different

dataset sizes and augmentation ratios.

Figure 5.4 presents 4 different line graphs illustrating the impact of filtering pipeline on

different AEs’ performance. For dataset sizes of 500, 1000 and 7791, no notable effect of

filtering pipeline is observed on any type of AE. For dataset size of 100, all AE types are

boosted with filtering pipeline, except traditional AE when augmentation ratio is 1:1 and

AAE when augmentation ratio is 1:2. For the dataset size of 200, traditional AE and VAE

boosted with filtering pipeline when augmentation ratio is 1:1.

 40

(a)

,

(b)

(c)

(d)

Figure 5.4. Average performances filtered pipeline and unfiltered pipeline of AE’s for different

dataset sizes and augmentation ratios, considering different dataset sizes and augmentation

ratios for (a) AAE, (b) AE, (c) DAAE and (d) VAE.

 41

5.7. Comparison of Different Autoencoders in Data Augmentation

The line chart depicted in Figure 5.5 presents the average accuracies of classifiers trained

on datasets augmented with four distinct types of AEs. Observing Figure 5.5, it becomes

evident that across dataset sizes of 200, 500, 1000, and 7791, classifiers exhibit similar

performances when the augmentation ratio is 1:1. However, with an increase in the

augmentation ratio within these dataset sizes, a notable decline in classifier accuracy is

observed for AAE and VAE, whereas the drop is comparatively less pronounced for

traditional AEs and DAAE. Notably, in the case of a dataset size of 100, DAAEs

demonstrate poor performance across all augmentation ratios, with traditional AEs

surpassing other AE types except at a 1:1 augmentation ratio. Moreover, in the dataset

size of 100, both traditional AEs and VAEs exhibit a positive impact stemming from an

increase in the augmentation ratio.

Figure 5.5. Average performances different types of AE’s for different dataset sizes and

augmentation ratios.

 42

5.8. Embedding Comparison

In experiments, the effect of integrating pre-trained Word2Vec embeddings into the

embedding layer of AEs is analyzed. Word2Vec enriches vocabulary variability and

provides a contextually richer representation which comes with an increase in parameters

and training time. The comparison is done between Word2Vec and bag-of-words (BoW)

tokenization which simplifies text representation by counting word frequencies. Figure

5.6 shows the average accuracies of the classifier that uses data augmented with

Word2Vec embedding layered AEs and BoW embedding layered AEs while Figure 5.7

shows the same analysis for each AE type.

As seen from Figure 5.6, using pretrained Word2Vec as embedding layer of AE’s does

not make much difference on dataset sizes of 200, 500, 1000 and 7791. Furthermore, it

even decreases the performance of the classifier on augmentation ratios 1:2 and 1:8 of

dataset size of 100. When the cost of using Word2Vec embeddings is considered, it

becomes an irrelevant choice.

Figure 5.6. Average performances of different types of embedding layers of AE’s for different

dataset sizes and augmentation ratios.

Figure 5.7 presents 4 different line graphs illustrating the impact of different embedding

layers on different AEs performance. For dataset sizes of 200, 500, 1000 and 7791, no

notable effect of using w2v as embedding layer is observed on any type of AE. For dataset

size of 100, AAE and DAAE are affected adversely from using w2v as embedding layer

for all augmentation ratios, while traditional AE and VAE’s performances are relatively

higher with w2v embeddings.

 43

(a)

(b)

(c)

(d)

Figure 5.7. Average performances of different types of embedding layers of AE’s, considering

different dataset sizes and augmentation ratios for (a) AAE, (b) AE, (c) DAAE and (d) VAE.

 44

5.9. Effect of Preprocessing on AE Input

Textual datasets are prone to being noisy which might cause ambiguity and confusion to

AE models. Thus, a series of preprocessing steps is applied to the dataset used in this

thesis. These preprocessing steps involve lowercasing, removal of non-alphanumeric

characters and extra spaces and changing numeric characters with the tag < 𝑛𝑢𝑚𝑏𝑒𝑟 >.

Figure 5.8 and Figure 5.9 present line graphs illustrating the impact of preprocessing on

AE performance. As depicted in Figure 5.8, which displays the average accuracies for all

AEs, significant enhancements are observed in smaller dataset sizes with preprocessing,

resulting in approximately a 5% increase in accuracy for a dataset size of 100 and

approximately a 2% increase in accuracy for a dataset size of 200.

Figure 5.8. Average performances of AE’s when preprocessing applied or not applied for

different dataset sizes and augmentation ratios.

Figure 5.9 presents 4 different line graphs illustrating the impact of preprocessing on

different AEs performance. For dataset sizes of 500, 1000 and 7791, no notable effect of

applying preprocessing is observed on any type of AE. For dataset size of 100, only AAE

and VAE are affected adversely from preprocessing when augmentation ratio is 1:1, while

traditional AE’s performance increased significantly. For other augmentation ratios of

dataset size of 100, preprocessing boosted all AE’s performance.

 45

(a)

,

(b)

(c)

(d)

Figure 5.9. Average performances when preprocessing applied or not applied, considering

different dataset sizes and augmentation ratios for (a) AAE, (b) AE, (c) DAAE and (d) VAE.

 46

5.10. Comparison of Results with Baseline Methods

In the exploration of autoencoder-based text DA method, a thorough examination of

numerous parameters was conducted to optimize its performance. These parameters

included the type of AE, ranging from traditional AE to advanced variations which are

AAE, VAE, and DAAE. Additionally, consideration was given to the preprocessing of

data, whether specific preprocessing techniques were applied or not. Furthermore,

different embedding layer types, including Word2Vec (w2v) and token embeddings, were

investigated to evaluate their impact on augmentation quality. The number of training

epochs for the autoencoders selected as 50 or 100 epochs, and the effectiveness of

applying filtering techniques during augmentation was also explored. In total, these

parameter permutations yielded 32 distinct variations of autoencoders.

The naming convention for the AE-based DA methods consists of abbreviations

representing key parameters. These include the type of autoencoder (“ae” for traditional

AE, "aae" for AAE, “vae” for VAE, “daae” for DAAE), the type of embeddings used

("token" for Bag-of-Words or "w2v" for Word2Vec), data preprocessing ("clean" or

"raw"), the training epochs (50 or 100 epochs), and whether filtering techniques were

applied during augmentation ("Filter" or "NoFilter"). As an example, “aae-token-clean-

100-Filter” refers to AAE-based DA method with Bag-of-Words tokenization,

preprocessing applied, trained for 100 epochs and filtering pipeline applied. This naming

system enables straightforward identification and comparison of different DA methods

based on their key characteristics.

To facilitate comparison with existing literature, two variants from each autoencoder type

were selected for detailed analysis in this section. When selecting these variants, the

parameters considered were their overall performance on all dataset sizes and

augmentation ratios and their performances on each dataset size separately. Figure 5.10

shows the average accuracies of each AE type’s all variants. The selected variants are

highlighted with green. As can be seen from Figure 5.10, most selected variants are

selected because they have the best average performance on all dataset sizes and

augmentation ratios. There are a few exceptions that do not follow this rule such as “daae-

w2v-clean-50-Filter”. The reason for such selections is that these variants perform better

on most dataset sizes compared to the others from the same AE type, but their average

accuracy is affected adversely due to these variants’ poor performance on particular

dataset size.

 47

(a) AAE (b) AE

(c) DAAE (d) VAE

Figure 5.10. Average of accuracies for each variant of (a) AAE, (b) AE, (c) DAAE, and (d)

VAE.

 48

The selected baseline models from literature include An Easier Data Augmentation

(AEDA) [27] as noising-based DA method, Easy Data Augmentation (EDA) [28] as

paraphrasing-based DA method, and Language Model Based Data Augmentation

(LAMBADA) [83] as sampling-based DA method. These models were chosen to provide

a comparison across diverse data augmentation strategies. EDA is a popular DA method

commonly used as a baseline, providing a benchmark for evaluating other data

augmentation techniques. AEDA is a completely noise-based and simple method, which

helps to understand the impact of random noise on data augmentation. LAMBADA is the

best-performing model among the baselines and is powered by a pretrained large

language model, demonstrating the effectiveness of leveraging advanced pretrained

models for data augmentation. However, the augmentation strategy proposed in this

thesis, based on autoencoders, is distinct in that it does not depend on any other pretrained

models. By comparing our autoencoder-based augmentation strategy with these well-

established techniques, it is aimed to highlight its strengths and potential advantages, as

well as identify areas for further improvement.

Tables 5.2 through 5.6 present the effect of each DA method on accuracy of DistilBERT

classifier for various augmentation ratios corresponding to dataset sizes of 100, 200, 500,

1000, and 7791 (Full set), respectively.

Table 5.3 presents the accuracy results of DistilBERT on datasets augmented using

various DA methods, with a dataset size of 100. Initially, without any augmentation, the

DistilBERT classifier achieves an accuracy of 49.9%, resembling the performance of a

random classifier for a two-class dataset. When DA methods are applied with a 1:1

augmentation ratio, all methods exhibit significant performance improvements, ranging

from a gain of 19.6% to 33.9%, except for daae-w2v-clean-50-NoFilter, which struggles

to effectively generate textual data with this dataset size. For augmentation ratios of 1:2,

1:4, and 1:8, LAMBADA consistently outperforms other DA methods, as expected due

to its sampling-based approach powered by a pretrained LLM. AE-based DA methods

yield the best results for a 1:1 augmentation ratio. Although performance seems to

decrease as the augmentation ratio increases, the results achieved in data augmentation

using AE are higher than those achieved without DA. This shows that AE-based DA can

be used on low data set sizes.

 49

Table 5.3. Comparison of the selected AE-based DA methods with baseline models from

the literature for the dataset size of 100 on SST-2 dataset.

Dataset Size = 100

Accuracy

No

Aug.

Aug. ratio

1:1

Aug. ratio

1:2

Aug. ratio

1:4

Aug. ratio

1:8

 No Augmentation 0.499 - - - -

DA

methods

LAMBADA (GPT-2) - 0.836 0.839 0.839 0.844

EDA - 0.793 0.817 0.755 0.768

AEDA - 0.799 0.806 0.772 0.757

aae-token-clean-100-Filter - 0.835 0.821 0.76 0.745

aae-w2v-raw-100-Filter - 0.711 0.822 0.704 0.762

ae-token-clean-100-NoFilter - 0.833 0.796 0.795 0.771

ae-w2v-clean-100-NoFilter - 0.831 0.8 0.813 0.76

daae-token-clean-100-Filter - 0.695 0.74 0.798 0.812

daae-w2v-clean-50-NoFilter - 0.508 0.499 0.499 0.499

vae-token-clean-100-Filter - 0.787 0.821 0.818 0.792

vae-w2v-raw-100-Filter - 0.838 0.822 0.814 0.722

Table 5.4 displays the accuracy results of DistilBERT on datasets augmented using

various DA methods, with a dataset size of 200. Initially, without any augmentation, the

DistilBERT classifier achieves an accuracy of 82.8%, a significant improvement

compared to the dataset size of 100. When applying DA methods with a 1:1 augmentation

ratio, EDA, AEDA, and two AE-based methods show a slight decrease in classifier

performance, approximately 1%. Conversely, VAE-based DA methods and LAMBADA

exhibit an increase of approximately 2% in classifier performance. For augmentation

ratios of 1:2 and 1:4, LAMBADA consistently outperforms other DA methods, like the

dataset size of 100. Additionally, AE-based DA methods demonstrate the best results for

augmentation ratio 1:1. Although the performance seems to decrease compared to that of

augmentation ratio 1:1, the results obtained in higher augmentation ratios are at a level

that can compete with the methods from the literature.

 50

Table 5.4. Comparison of the selected AE-based DA methods with baseline models from

the literature for the dataset size of 200 on SST-2 dataset.

Dataset Size = 200

Accuracy

No

Aug.

Aug. ratio

1:1

Aug. ratio

1:2

Aug. ratio

1:4

 No Augmentation 0.828 - - -

DA

methods

LAMBADA (GPT-2) - 0.844 0.845 0.853

EDA - 0.812 0.824 0.813

AEDA - 0.818 0.796 0.805

aae-token-clean-100-Filter - 0.834 0.806 0.824

aae-w2v-raw-100-Filter - 0.824 0.825 0.807

ae-token-clean-100-NoFilter - 0.841 0.828 0.812

ae-w2v-clean-100-NoFilter - 0.824 0.834 0.802

daae-token-clean-100-Filter - 0.815 0.807 0.811

daae-w2v-clean-50-NoFilter - 0.839 0.831 0.829

vae-token-clean-100-Filter - 0.844 0.823 0.802

vae-w2v-raw-100-Filter - 0.846 0.83 0.796

Table 5.5 presents the accuracy results of DistilBERT on datasets augmented using

various DA methods, with a dataset size of 500. Initially, without any augmentation, the

DistilBERT classifier achieves an accuracy of 85%, indicating a 2.2% increase compared

to the dataset size of 200, as expected. When DA methods are applied with augmentation

ratio 1:1, all methods show an improvement in classifier performance. Like other dataset

sizes, the VAE-based DA method demonstrates the highest increase, approximately 2.3%.

For augmentation ratio of 1:2, the "aae-w2v-raw-100-Filter" DA method outperforms

other methods, unlike any other AE-based DA method. For a 1:4 augmentation ratio,

LAMBADA outperforms other methods, consistent with dataset sizes of 100 and 200 In

addition, for dataset sizes of 100 and 200, the performance of AE-based DA methods does

not decrease as the augmentation ratio increases. In fact, in some cases, it increases for a

1:2 augmentation ratio.

 51

Table 5.5. Comparison of the selected AE-based DA methods with baseline models from

the literature for the dataset size of 500 on SST-2 dataset.

Dataset Size = 500

Accuracy

No

Aug.

Aug. ratio

1:1

Aug. ratio

1:2

Aug. ratio

1:4

 No Augmentation 0.850 - - -

DA

methods

LAMBADA (GPT-2) - 0.858 0.864 0.87

EDA - 0.853 0.863 0.838

AEDA - 0.855 0.85 0.85

aae-token-clean-100-Filter - 0.866 0.865 0.863

aae-w2v-raw-100-Filter - 0.866 0.877 0.85

ae-token-clean-100-NoFilter - 0.856 0.857 0.849

ae-w2v-clean-100-NoFilter - 0.872 0.863 0.853

daae-token-clean-100-Filter - 0.863 0.866 0.861

daae-w2v-clean-50-NoFilter - 0.866 0.864 0.855

vae-token-clean-100-Filter - 0.873 0.868 0.864

vae-w2v-raw-100-Filter - 0.867 0.863 0.865

Table 5.6 displays the accuracy results of DistilBERT when applied to datasets

augmented using different DA methods, each with a dataset size of 1000. Initially,

without any augmentation, the DistilBERT classifier achieves an accuracy of 87.5%,

marking a 2.5% increase compared to the dataset size of 500. When DA methods are

employed with a 1:1 augmentation ratio, none of them manage to surpass the result

without augmentation, with some experiencing a decrease in the classifier’s performance

of up to 1.9%. Notably, DAAE-based DA methods exhibit improved performance as the

dataset size increases, being the only method capable of achieving the same accuracy as

the scenario with no augmentation. For a 1:2 augmentation ratio, EDA emerges as the top

performer, matching the accuracy of the scenario without augmentation, while most AE-

based DA methods and LAMBADA show similar performance. Conversely, with a 1:4

augmentation ratio, LAMBADA exhibits the highest performance, while the accuracy of

other DA methods remained the same.

 52

Table 5.6. Comparison of the selected AE-based DA methods with baseline models from

the literature for the dataset size of 1000 on SST-2 dataset.

Dataset Size = 1000

Accuracy

No

Aug.

Aug. ratio

1:1

Aug. ratio

1:2

Aug. ratio

1:4

 No Augmentation 0.875 - - -

DA

methods

LAMBADA (GPT-2) - 0.874 0.866 0.879

EDA - 0.86 0.875 0.853

AEDA - 0.874 0.872 0.859

aae-token-clean-100-Filter - 0.863 0.862 0.83

aae-w2v-raw-100-Filter - 0.87 0.86 0.861

ae-token-clean-100-NoFilter - 0.874 0.859 0.856

ae-w2v-clean-100-NoFilter - 0.856 0.846 0.855

daae-token-clean-100-Filter - 0.875 0.85 0.862

daae-w2v-clean-50-NoFilter - 0.87 0.858 0.854

vae-token-clean-100-Filter - 0.866 0.864 0.863

vae-w2v-raw-100-Filter - 0.862 0.872 0.854

Table 5.7 presents the accuracy outcomes of DistilBERT applied to datasets augmented

using various DA methods, each with a dataset size of 7791, which constitutes the full set

size. Without any augmentation, the DistilBERT classifier achieves an accuracy of

90.3%, indicating a 2.8% increase compared to the dataset size of 1000. Upon analyzing

the results of the DA methods, it is observed that none of them significantly enhance the

performance of DistilBERT. On the other hand, there is no DA method that affects the

results too adversely unlike other dataset sizes. Table 5.7 excludes results for an

augmentation ratio of 1:4 due to resource limitations. Although the success rate without

DA is 90.3%, it is seen that DA achieves the same success in all other methods.

 53

Table 5.7. Comparison of the selected AE-based DA methods with baseline models from

the literature for the dataset size of 7791 (Full Set) on SST-2 dataset.

Dataset Size = 7791 (Full Set)
Accuracy

No Aug. Aug. ratio 1:1 Aug. ratio 1:2

 No Augmentation 0.903 - -

DA methods

LAMBADA (GPT-2) - 0.909 0.902

EDA - 0.90 0.906

AEDA - 0.906 0.906

aae-token-clean-100-Filter - 0.901 0.907

aae-w2v-raw-100-Filter - 0.909 0.905

ae-token-clean-100-NoFilter - 0.907 0.906

ae-w2v-clean-100-NoFilter - 0.907 0.912

daae-token-clean-100-Filter - 0.901 0.903

daae-w2v-clean-50-NoFilter - 0.904 0.909

vae-token-clean-100-Filter - 0.907 0.900

vae-w2v-raw-100-Filter - 0.906 0.902

* No results available for augmentation ratio 1:4

5.11. Interpretation of Generation of Synthetic Samples from An Original Sample

In this section, reconstructions of autoencoders on various aspects are interpreted through

example outputs provided in Appendix A. When outputs in Appendix A are analyzed, the

observations on different aspects of this thesis are as follows:

• Preprocessing: For dataset sizes of 100, 200, 500, and 1000; the methods where

preprocessing applied generally produce sentences that closely resemble the

original sentence, demonstrating limited variability. In contrast, methods where

preprocessing is not applied, particularly those using Word2Vec, introduce more

variation but often include <unk> tokens.

• Embedding Types: Token-based methods tend to maintain the original sentence

structure more faithfully with small changes in the sentences, while Word2Vec

methods introduce more semantic diversity.

• Different AE Types: At small dataset sizes, Traditional AEs and AAE can

generate synthetic sentences that are more consistent with the original sentence

compared to DAAE and VAE. On the other hand, for higher dataset sizes,

 54

Traditional AE and AAE are not able to generate different variations, mostly

reconstructing the original sentence, while DAAE and VAE is more successful at

generating sentences that varies from the original sentence.

As observed from some outputs from Appendix A (Table A.3-ae-token-clean-100 or

Table A.4- aae-token-clean-100), some AEs learn to replicate the original sentences

without introducing sufficient diversity. This replication leads to multiple entries of the

same sample in the augmented dataset. This lack of variability in augmented text data can

affect adversely text classification models, especially with higher augmentation ratios.

Because, when generated sentences are too similar to the original, the model may fail to

learn robust, generalized features, leading to overfitting—where the model performs well

on training data but poorly on unseen data. This issue is worsened at higher augmentation

ratios, where increased data quantity lacks diversity, causing the model to memorize

rather than generalize. An example of this situation is seen on Figure 5.11 where the

validation and training losses of two DistilBERT models are compared, one trained with

data augmented by “aae-token-clean-100-NoFilter” with augmentation ratio 1:1 and the

other with augmentation ratio 1:8. “aae-token-clean-100-NoFilter” fails to generate new

variations of original text as can be seen in Appendix A. This situation resulted in a

decrease on training loss while an increase on validation loss which implies overfitting

for the model trained with data with augmentation ratio 1:8, which is not observed for the

model trained with data with augmentation ratio 1:8 in Figure 5.11.

(a) aae-token-clean-100-NoFilter with

augmentation ratio 1:1

(b) aae-token-clean-100-NoFilter with

augmentation ratio 1:8

Figure 5.11. Training and validation losses for two DistilBERT classifier: (a) trained with aae-

token-clean-100-NoFilter with augmentation ratio 1:1 dataset and (b) aae-token-clean-100-

NoFilter with augmentation ratio 1:8.

 55

6. CONCLUSION

In recent years, the emergence of Deep Learning (DL) techniques has transformed the

field of Natural Language Processing (NLP), facilitating significant progress in various

tasks such as named entity recognition, language modeling, and question answering.

However, the success of DL models largely depends on the availability and quality of the

training data. Given the complex and diverse nature of natural language, acquiring a

sufficiently large and diverse dataset can be challenging. This situation creates the need

for data augmentation (DA). DA techniques seek to artificially increase the size and

diversity of the training data by applying various transformations. In the context of NLP,

where annotated datasets are often limited and expensive to obtain, data augmentation

emerges as a crucial tool for enhancing model performance and generalization.

This thesis focuses on exploring the effect of leveraging the reconstruction capabilities of

autoencoders as data augmentation method for enhancing performance of text

classification tasks. In the scope of the work, four distinct types of autoencoders are

investigated, namely traditional Autoencoders (AE), Variational Autoencoders (VAE),

Denoising Adversarial Autoencoders (DAAE), and Adversarial Autoencoders (AAE).

Two primary embedding types, Bag-of-Words and Word2Vec, are considered for

representing textual data, and their effect on the performance of autoencoders are

analyzed. Additionally, the impact of preprocessing methods is examined. Furthermore,

the training duration, represented by the number of epochs, selected from 50 or 100

epochs to assess its influence on model performance. Finally, the effectiveness of

applying a specific filtering technique, determining whether to retain or discard

augmented samples based on its consistency with the prediction of a classifier is

evaluated.

To assess the effectiveness of leveraging autoencoders for data augmentation in text

classification tasks, experiments were conducted using the SST-2 dataset and accuracy as

the evaluation metric. The performance in different data availability scenarios was

evaluated by changing the size of the dataset partitions as 100, 200, 500, 1000 randomly

selected data from this dataset, including the full dataset containing 7791 samples.

Additionally, augmentation ratios indicating the ratio of augmented samples to original

samples ranging as 1:1, 1:2, 1:4 and 1:8 were experimented. The performance of

autoencoder-based data augmentation methods was compared with three baseline models

 56

which are Easy Data Augmentation (EDA), An Easy Data Augmentation (AEDA), and

Language Model Based Data Augmentation (LAMBADA). These baseline models were

compared with two selected variants from each AE type.

The contributions of the thesis are as follows:

• Autoencoder-based data augmentation methods for enhancing text classification

performance were investigated.

• Four distinct types of autoencoders (AE, VAE, DAAE, AAE) in the context of

data augmentation for text classification task were evaluated.

• The impact of embedding types (Bag-of-Words, Word2Vec) on the performance

of autoencoder-based data augmentation was analyzed.

• Preprocessing’s influence on model performance was examined.

• The effect of training epochs (50 vs. 100) on the efficacy of autoencoder-based

data augmentation was evaluated.

• Augmentation ratios (1:1, 1:2, 1:4, 1:8) were analyzed to determine optimal

augmentation strategies.

• The effectiveness of filtering pipeline in improving the quality of augmented data

was evaluated.

• Varying dataset partition sizes to assess model performance under different data

availability scenarios were analyzed.

The experiments conducted across varying dataset sizes revealed intriguing insights into

the performance of AE-based DA methods for text classification tasks. Notably, for

dataset sizes of 100 and 200, Traditional AE and VAE demonstrated superior

performance compared to other AE types, highlighting their effectiveness in augmenting

small datasets. Moreover, preprocessing had a considerable impact on performance for

smaller dataset sizes, whereas its influence diminished for larger dataset sizes.

Interestingly, the choice of embedding type did not significantly affect performance, with

w2v offering no considerable advantage over BoW despite its higher computational cost.

However, increasing the number of training epochs from 50 to 100 and implementing a

filtering pipeline proved beneficial, particularly for poorly performing AEs on smaller

dataset sizes. When compared with baseline models, AE-based DA methods exhibited

 57

superior performance on augmentation ratio of 1:1. However, for higher augmentation

ratios, LAMBADA, which requires a pretrained LLM, outperformed other DA methods.

These findings highlight the importance of choosing augmentation strategies based on

dataset size, preprocessing methods, and augmentation ratio to maximize performance

gains in text classification tasks.

While this thesis primarily focuses on leveraging the reconstruction capabilities of

autoencoders for data augmentation in text classification tasks, there exist promising

avenues for further exploration in this domain. One potential direction is to explore

alternative ways of utilizing autoencoders beyond direct reconstruction of input text. For

instance, instead of generating augmented samples by reconstructing input data,

autoencoders could be utilized to sample from the latent space or generate synthetic

samples solely from the decoder component. This approach could offer greater flexibility

in generating diverse and realistic augmented data. Moreover, considering the potential

computational complexity of training autoencoders on large datasets, in future research,

strategies for training autoencoders on a partition of the dataset and then utilizing the

trained autoencoder to reconstruct unseen data samples could be investigated.

Additionally, exploring novel architectures or variations of autoencoders tailored

specifically for text data could lead to more effective data augmentation methods.

Furthermore, integrating autoencoder-based data augmentation techniques with other

augmentation strategies or ensemble methods could be explored to further enhance model

robustness and generalization across diverse datasets and tasks.

 58

REFERENCES

[1] P. Goyal, S. Pandey, K. Jain, Deep learning for natural language processing, New

York: Apress, (2018).

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.N. Gomez, Ł.

Kaiser, I. Polosukhin, Attention is all you need, Advances in neural information

processing systems, 30 (2017).

[3] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural computation, 9

(1997) 1735-1780.

[4] J. Chen, D. Tam, C. Raffel, M. Bansal, D. Yang, An empirical survey of data

augmentation for limited data learning in NLP, Transactions of the Association

for Computational Linguistics, 11 (2023) 191-211.

[5] Y. Wang, G.-Y. Wei, D. Brooks, A systematic methodology for analysis of deep

learning hardware and software platforms, Proceedings of Machine Learning and

Systems, 2 (2020) 30-43.

[6] A. Torfi, R.A. Shirvani, Y. Keneshloo, N. Tavaf, E.A. Fox, Natural language

processing advancements by deep learning: A survey, arXiv preprint

arXiv:2003.01200, (2020).

[7] Q.T. Ain, M. Ali, A. Riaz, A. Noureen, M. Kamran, B. Hayat, A. Rehman,

Sentiment analysis using deep learning techniques: a review, International Journal

of Advanced Computer Science and Applications, 8 (2017).

[8] S. Ali, K. Masood, A. Riaz, A. Saud, Named entity recognition using deep

learning: A review, 2022 International Conference on Business Analytics for

Technology and Security (ICBATS), IEEE, 2022, pp. 1-7.

[9] L. Deng, Y. Liu, Deep learning in natural language processing, Springer2018.

 59

[10] T. Iqbal, S. Qureshi, The survey: Text generation models in deep learning, Journal

of King Saud University-Computer and Information Sciences, 34 (2022) 2515-

2528.

[11] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, J. Gao, Deep

learning--based text classification: a comprehensive review, ACM computing

surveys (CSUR), 54 (2021) 1-40.

[12] G. Marcus, Deep learning: A critical appraisal, arXiv preprint arXiv:1801.00631,

(2018).

[13] L. Alzubaidi, J. Bai, A. Al-Sabaawi, J. Santamaría, A.S. Albahri, B.S.N. Al-

dabbagh, M.A. Fadhel, M. Manoufali, J. Zhang, A.H. Al-Timemy, A survey on

deep learning tools dealing with data scarcity: definitions, challenges, solutions,

tips, and applications, Journal of Big Data, 10 (2023) 46.

[14] A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete

data via the EM algorithm, Journal of the royal statistical society: series B

(methodological), 39 (1977) 1-22.

[15] K. Maharana, S. Mondal, B. Nemade, A review: Data pre-processing and data

augmentation techniques, Global Transitions Proceedings, 3 (2022) 91-99.

[16] M. Razno, Machine learning text classification model with NLP approach,

Computational Linguistics and Intelligent Systems, 2 (2019) 71-73.

[17] S. González-Carvajal, E.C. Garrido-Merchán, Comparing BE T against

traditional machine learning text classification, arXiv preprint arXiv:2005.13012,

(2020).

[18] S. Seo, C. Kim, H. Kim, K. Mo, P. Kang, Comparative study of deep learning-

based sentiment classification, IEEE Access, 8 (2020) 6861-6875.

[19] S.-A. Rebuffi, S. Gowal, D.A. Calian, F. Stimberg, O. Wiles, T.A. Mann, Data

augmentation can improve robustness, Advances in Neural Information

Processing Systems, 34 (2021) 29935-29948.

 60

[20] E.D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, Q.V. Le, Autoaugment: Learning

augmentation strategies from data, Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, 2019, pp. 113-123.

[21] X. Yi, E. Walia, P. Babyn, Generative adversarial network in medical imaging: A

review, Medical image analysis, 58 (2019) 101552.

[22] C. Shorten, T.M. Khoshgoftaar, A survey on image data augmentation for deep

learning, Journal of big data, 6 (2019) 1-48.

[23] T. Ko, V. Peddinti, D. Povey, S. Khudanpur, Audio augmentation for speech

recognition, Interspeech, 2015, pp. 3586.

[24] T. Ko, V. Peddinti, D. Povey, M.L. Seltzer, S. Khudanpur, A study on data

augmentation of reverberant speech for robust speech recognition, 2017 IEEE

international conference on acoustics, speech and signal processing (ICASSP),

IEEE, 2017, pp. 5220-5224.

[25] D.S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E.D. Cubuk, Q.V. Le,

Specaugment: A simple data augmentation method for automatic speech

recognition, arXiv preprint arXiv:1904.08779, (2019).

[26] B. Li, Y. Hou, W. Che, Data augmentation approaches in natural language

processing: A survey, Ai Open, 3 (2022) 71-90.

[27] A. Karimi, L. Rossi, A. Prati, AEDA: An Easier Data Augmentation Technique

for Text Classification, Findings of the Association for Computational

Linguistics: EMNLP 2021, 2021, pp. 2748-2754.

[28] J. Wei, K. Zou, Eda: Easy data augmentation techniques for boosting performance

on text classification tasks, arXiv preprint arXiv:1901.11196, (2019).

[29] F.M. Luque, Atalaya at TASS 2019: Data augmentation and robust embeddings

for sentiment analysis, arXiv preprint arXiv:1909.11241, (2019).

[30] G. Yan, Y. Li, S. Zhang, Z. Chen, Data augmentation for deep learning of

judgment documents, Intelligence Science and Big Data Engineering. Big Data

 61

and Machine Learning: 9th International Conference, IScIDE 2019, Nanjing,

China, October 17–20, 2019, Proceedings, Part II 9, Springer, 2019, pp. 232-242.

[31] W.Y. Wang, D. Yang, That’s so annoying!!!: A lexical and frame-semantic

embedding based data augmentation approach to automatic categorization of

annoying behaviors using# petpeeve tweets, Proceedings of the 2015 conference

on empirical methods in natural language processing, 2015, pp. 2557-2563.

[32] X. Wu, S. Lv, L. Zang, J. Han, S. Hu, Conditional bert contextual augmentation,

Computational Science–ICCS 2019: 19th International Conference, Faro,

Portugal, June 12–14, 2019, Proceedings, Part IV 19, Springer, 2019, pp. 84-95.

[33] R. Sennrich, B. Haddow, A. Birch, Improving neural machine translation models

with monolingual data, arXiv preprint arXiv:1511.06709, (2015).

[34] C. Coulombe, Text data augmentation made simple by leveraging nlp cloud apis,

arXiv preprint arXiv:1812.04718, (2018).

[35] S. Kobayashi, Contextual augmentation: Data augmentation by words with

paradigmatic relations, arXiv preprint arXiv:1805.06201, (2018).

[36] P. Liu, X. Qiu, X. Huang, Recurrent neural network for text classification with

multi-task learning, arXiv preprint arXiv:1605.05101, (2016).

[37] Y. Luan, S. Lin, Research on text classification based on CNN and LSTM, 2019

IEEE international conference on artificial intelligence and computer applications

(ICAICA), IEEE, 2019, pp. 352-355.

[38] C.B. Do, A.Y. Ng, Transfer learning for text classification, Advances in neural

information processing systems, 18 (2005).

[39] B. Pang, L. Lee, S. Vaithyanathan, Thumbs up? Sentiment classification using

machine learning techniques, arXiv preprint cs/0205070, (2002).

[40] B. Ohana, B. Tierney, Sentiment classification of reviews using SentiWordNet,

(2009).

 62

[41] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning Internal Representations

by Error Propagation, Parallel Distributed Processing, Explorations in the

Microstructure of Cognition, ed. DE Rumelhart and J. McClelland. Vol. 1. 1986,

Biometrika, 71 (1986) 599-607.

[42] P. Baldi, Autoencoders, unsupervised learning, and deep architectures,

Proceedings of ICML workshop on unsupervised and transfer learning, JMLR

Workshop and Conference Proceedings, 2012, pp. 37-49.

[43] W.H.L. Pinaya, S. Vieira, R. Garcia-Dias, A. Mechelli, Autoencoders, Machine

learning, Elsevier2020, pp. 193-208.

[44] W. Wang, Y. Huang, Y. Wang, L. Wang, Generalized autoencoder: A neural

network framework for dimensionality reduction, Proceedings of the IEEE

conference on computer vision and pattern recognition workshops, 2014, pp. 490-

497.

[45] M. Sakurada, T. Yairi, Anomaly detection using autoencoders with nonlinear

dimensionality reduction, Proceedings of the MLSDA 2014 2nd workshop on

machine learning for sensory data analysis, 2014, pp. 4-11.

[46] J. Zhai, S. Zhang, J. Chen, Q. He, Autoencoder and its various variants, 2018

IEEE international conference on systems, man, and cybernetics (SMC), IEEE,

2018, pp. 415-419.

[47] D.P. Kingma, M. Welling, Auto-encoding variational bayes, arXiv preprint

arXiv:1312.6114, (2013).

[48] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.

Courville, Y. Bengio, Generative adversarial networks, Communications of the

ACM, 63 (2020) 139-144.

[49] G.G. Sahin, M. Steedman, Data Augmentation via Dependency Tree Morphing

for Low Resource Languages, 2018 Conference on Empirical Methods in Natural

Language Processing, ACL Anthology, 2018, pp. 5004-5009.

 63

[50] G. Eryiğit, J. Nivre, K. Oflazer, Dependency parsing of Turkish, Computational

Linguistics, 34 (2008) 357-389.

[51] G. Li, H. Wang, Y. Ding, K. Zhou, X. Yan, Data augmentation for aspect-based

sentiment analysis, International Journal of Machine Learning and Cybernetics,

14 (2023) 125-133.

[52] V. Kumar, A. Choudhary, E. Cho, Data augmentation using pre-trained

transformer models, arXiv preprint arXiv:2003.02245, (2020).

[53] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert: Pre-training of deep

bidirectional transformers for language understanding, arXiv preprint

arXiv:1810.04805, (2018).

[54] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, Language models

are unsupervised multitask learners, OpenAI blog, 1 (2019) 9.

[55] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V.

Stoyanov, L. Zettlemoyer, BART: Denoising Sequence-to-Sequence Pre-training

for Natural Language Generation, Translation, and Comprehension, Association

for Computational Linguistics, Online, 2020, pp. 7871-7880.

[56] K.M. Yoo, D. Park, J. Kang, S.-W. Lee, W. Park, GPT3Mix: Leveraging Large-

scale Language Models for Text Augmentation, Findings of the Association for

Computational Linguistics: EMNLP 2021, 2021, pp. 2225-2239.

[57] Y. Wang, J. Zheng, C. Xu, X. Geng, T. Shen, C. Tao, D. Jiang, Knowda: All-in-

one knowledge mixture model for data augmentation in few-shot nlp, arXiv

preprint arXiv:2206.10265, (2022).

[58] N. Ng, K. Cho, M. Ghassemi, SSMBA: Self-supervised manifold based data

augmentation for improving out-of-domain robustness, 2020 Conference on

Empirical Methods in Natural Language Processing, EMNLP 2020, Association

for Computational Linguistics (ACL), 2020, pp. 1268-1283.

 64

[59] P. Vincent, H. Larochelle, Y. Bengio, P.-A. Manzagol, Extracting and composing

robust features with denoising autoencoders, Proceedings of the 25th

international conference on Machine learning, 2008, pp. 1096-1103.

[60] J.M.D. Delgado, L. Oyedele, Deep learning with small datasets: using

autoencoders to address limited datasets in construction management, Applied

Soft Computing, 112 (2021) 107836.

[61] F. Piedboeuf, P. Langlais, Effective data augmentation for sentence classification

using one VAE per class, Proceedings of the 29th International Conference on

Computational Linguistics, 2022, pp. 3454-3464.

[62] K.M. Yoo, H. Lee, F. Dernoncourt, T. Bui, W. Chang, S.-g. Lee, Variational

hierarchical dialog autoencoder for dialog state tracking data augmentation, arXiv

preprint arXiv:2001.08604, (2020).

[63] S.J. Mielke, Z. Alyafeai, E. Salesky, C. affel, M. Dey, M. Gallé, A. a a, C. Si,

W.Y. Lee, B. Sagot, Between words and characters: A brief history of open-

vocabulary modeling and tokenization in NLP, arXiv preprint arXiv:2112.10508,

(2021).

[64] M. Jimenez, C. Maxime, Y. Le Traon, M. Papadakis, On the impact of tokenizer

and parameters on n-gram based code analysis, 2018 IEEE International

Conference on Software Maintenance and Evolution (ICSME), IEEE, 2018, pp.

437-448.

[65] N. Rajaraman, J. Jiao, K. Ramchandran, Toward a Theory of Tokenization in

LLMs, arXiv preprint arXiv:2404.08335, (2024).

[66] W.A. Qader, M.M. Ameen, B.I. Ahmed, An overview of bag of words;

importance, implementation, applications, and challenges, 2019 international

engineering conference (IEC), IEEE, 2019, pp. 200-204.

[67] T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient estimation of word

representations in vector space, arXiv preprint arXiv:1301.3781, (2013).

 65

[68] S. Ma, X. Sun, Y. Wang, J. Lin, Bag-of-words as target for neural machine

translation, arXiv preprint arXiv:1805.04871, (2018).

[69] J. Lilleberg, Y. Zhu, Y. Zhang, Support vector machines and word2vec for text

classification with semantic features, 2015 IEEE 14th International Conference

on Cognitive Informatics & Cognitive Computing (ICCI* CC), IEEE, 2015, pp.

136-140.

[70] T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, J. Dean, Distributed

representations of words and phrases and their compositionality, Advances in

neural information processing systems, 26 (2013).

[71] Anonymous, Word2vec embeddings,

https://radimrehurek.com/gensim/models/word2vec.html.(Access Date:

16.05.2024)

[72] S. Hochreiter, The vanishing gradient problem during learning recurrent neural

nets and problem solutions, International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 6 (1998) 107-116.

[73] Y. Yang, J. Wang, B. Wang, Prediction model of energy market by long short

term memory with random system and complexity evaluation, Applied Soft

Computing, 95 (2020) 106579.

[74] Y. Yu, X. Si, C. Hu, J. Zhang, A review of recurrent neural networks: LSTM cells

and network architectures, Neural computation, 31 (2019) 1235-1270.

[75] M.A. Kramer, Nonlinear principal component analysis using autoassociative

neural networks, AIChE journal, 37 (1991) 233-243.

[76] S. Odaibo, Tutorial: Deriving the standard variational autoencoder (vae) loss

function, arXiv preprint arXiv:1907.08956, (2019).

[77] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, B. Frey, Adversarial

autoencoders, arXiv preprint arXiv:1511.05644, (2015).

 66

[78] T. Shen, J. Mueller, R. Barzilay, T. Jaakkola, Educating text autoencoders: Latent

representation guidance via denoising, International conference on machine

learning, PMLR, 2020, pp. 8719-8729.

[79] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, D. Brown,

Text classification algorithms: A survey, Information, 10 (2019) 150.

[80] B. Ghojogh, A. Ghodsi, Attention mechanism, transformers, BERT, and GPT:

tutorial and survey, (2020).

[81] V. Sanh, L. Debut, J. Chaumond, T. Wolf, DistilBERT, a distilled version of

BERT: smaller, faster, cheaper and lighter, arXiv preprint arXiv:1910.01108,

(2019).

[82] G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network,

arXiv preprint arXiv:1503.02531, (2015).

[83] A. Anaby-Tavor, B. Carmeli, E. Goldbraich, A. Kantor, G. Kour, S. Shlomov, N.

Tepper, N. Zwerdling, Do not have enough data? Deep learning to the rescue!,

Proceedings of the AAAI conference on artificial intelligence, 2020, pp. 7383-

7390.

[84] R. Socher, A. Perelygin, J. Wu, J. Chuang, C.D. Manning, A.Y. Ng, C. Potts,

Recursive deep models for semantic compositionality over a sentiment treebank,

Proceedings of the 2013 conference on empirical methods in natural language

processing, 2013, pp. 1631-1642.

[85] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, arXiv preprint

arXiv:1711.05101, (2017).

[86] D.M. Powers, Evaluation: from precision, recall and F-measure to ROC,

informedness, markedness and correlation, arXiv preprint arXiv:2010.16061,

(2020).

 67

APPENDIX A. EXAMPLE RECONSTRUCTIONS

Table A.1. Example sentence and its cleaned version.

Variant Sentence
Predicted

Label

Original Sentence
“this bond film goes off the beaten path , not necessarily for the

better .”
0

Clean Sentence
“this bond film goes off the beaten path not necessarily for the

better”
0

Note: In the subsequent tables (Table A.2, Table A.3, Table A.4, and Table A.5), the

following conventions apply for the synthetic sample compositions based on

augmentation ratios:

• The first element of each bullet list represents synthetic samples for an

augmentation ratio of 1:1.

• The first two elements of each bullet list collectively represent synthetic samples

for an augmentation ratio of 1:2.

• All four elements of each bullet list together represent synthetic samples for an

augmentation ratio of 1:4.

 68

Table A.2. Reconstructions from the selected DA methods, for example sentence in Table

A.1 for dataset size of 100.

 Variant Sentence

Dataset

Size

100

aae-token-clean-

100

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

aae-w2v-raw-100

• "it treats <unk> <unk> journey with honesty that is tragically rare in the

depiction <unk> young women in film <unk>"

• "<unk> be more he can cross swords with the best <unk> them <unk> helm

<unk> more traditionally plotted popcorn thriller while surrendering little <unk>
his intellectual rigor or creative composure <unk>"

• "it treats <unk> <unk> journey with honesty that is tragically rare in the

depiction <unk> young women in film <unk>"

• "<unk> be more he can cross swords with the best <unk> them <unk> helm

<unk> more traditionally plotted popcorn thriller while surrendering little <unk>

his intellectual rigor or creative composure <unk>"

ae-token-clean-100

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

ae-w2v-clean-100

• "i solemn pretension prevents off from beaten path not in the the the"

• "i solemn pretension prevents us from sharing the awe awe which which holds"

• "i solemn pretension prevents us from sharing the awe awe which which holds"

• "i solemn pretension prevents us from sharing the awe awe which which holds

holds"

daae-token-clean-

100

• "a fascinating curiosity piece fascinating that is for about ten minutes"

• "a strong first act and absolutely inescapably gorgeous motion deliver the

amazing"

• "a strong first act and absolutely inescapably gorgeous motion deliver the

amazing"

• "this is a gorgeous film vivid that color music and life and again"

daae-w2v-clean-50

• "<unk> proves <unk> lousy <unk> <unk> pic <unk> <unk> <unk><unk> have

<unk> <unk> have dramatized the <unk> <unk> novel which itself felt like"

• "<unk> <unk> excels <unk> lousy <unk> <unk> pic <unk> <unk> <unk> have

<unk> <unk> have dramatized the <unk> <unk> novel which itself felt like"

• "<unk> <unk> excels <unk> lousy <unk> <unk> pic <unk> <unk> <unk> have

<unk> <unk> have dramatized the <unk> <unk> novel which itself felt like"

• "<unk> <unk> excels <unk> lousy <unk> <unk> pic <unk> <unk> <unk> have

<unk> <unk> have dramatized the <unk> <unk> novel which itself felt like"

vae-token-clean-

100

• "the bond film goes off the beaten path not necessarily for the better"

• "the filmmakers know how to please the eye but not not not not the best the best

the best"

• "the filmmakers know how to please the eye but not not not not the best the best

the best"

• "the filmmakers know how to please the eye but not not not not the prettiest

pictures that best the best"

vae-w2v-raw-100

• "<unk> proves film goes off the beaten path <unk> not necessarily for the better

<unk>"

• "<unk> <unk> measured <unk> <unk> gently tedious in its comedy <unk>

secret ballot is <unk> purposefully <unk> movie <unk> which may be why it
<unk> so successful at lodging itself in the brain <unk>"

• "<unk> <unk> measured <unk> <unk> gently tedious in its comedy <unk>

secret ballot is <unk> purposefully <unk> movie <unk> which may be why it
<unk> so successful at lodging itself in the brain <unk>"

• "<unk> <unk> measured <unk> <unk> gently tedious in its comedy <unk>

secret ballot is <unk> purposefully <unk> movie <unk> which may be why it

<unk> so successful at lodging itself in the brain <unk>"

 69

Table A.3. Reconstructions from the selected DA methods, for example sentence in Table

A.1 for dataset size of 200.

 Variant Sentence

Dataset

Size

200

aae-token-clean-100

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

aae-w2v-raw-100

• "contradicts everything we they come <unk>"

• "<unk> bond film goes off the beaten path <unk> not necessarily for the

better <unk>"

• "the pedestrian as they come <unk>"

• "<unk> bond film goes off the beaten path <unk> not necessarily for the

better <unk>"

ae-token-clean-100

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

ae-w2v-clean-100

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

daae-token-clean-100

• "playing only film goes off the beaten path not necessarily for the

better"

• "not only does deliver but i suspect it might deliver again and again"

• "not only does deliver but i suspect it might deliver again and again"

• "not only does deliver but i suspect it might deliver again and again"

daae-w2v-clean-50

• "the <unk> never <unk> almost directly influenced this love story but

<unk> <unk> <unk> making his directorial feature debut does strong
measured work"

• "the <unk> seems <unk> have directly influenced this love story but

even more reassuring <unk> the"

• "the <unk> seems <unk> have directly influenced this love story but

even more reassuring <unk> the"

• "the <unk> never <unk> have directly influenced this love story but

even more reassuring <unk> can"

vae-token-clean-100

• "the bond film goes off the beaten path not necessarily for the better"

• "the bond film goes off the beaten path not necessarily for the better"

• "the bond film goes off the beaten path not necessarily for the better"

• "the bond film goes off the beaten path not necessarily for the better"

vae-w2v-raw-100

• "contradicts everything best sports the best little ever <unk>"

• "<unk> be more genial than ingenious <unk> but it gets the job done

<unk>"

• "the pathetic junk is movie best little ever seen <unk>"

• "<unk> be more genial than ingenious <unk> but it gets the job done

<unk>"

 70

Table A.4. Reconstructions from the selected DA methods, for example sentence in Table

A.1 for dataset size of 500.

 Variant Sentence

Dataset

Size

500

aae-token-clean-100

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

aae-w2v-raw-100

• "the bond film goes off the beaten path <unk> not necessarily for the

better <unk>"

• "the bond film goes off the beaten path <unk> not necessarily for the

better <unk>"

• "the bond film goes off the beaten path <unk> not necessarily for the

better <unk>"

• "the bond film goes off the beaten path <unk> not necessarily for the

better <unk>"

ae-token-clean-100

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

ae-w2v-clean-100

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

daae-token-clean-100

• "this charming but slight tale has warmth wit and interesting

characters compassionately portrayed"

• "this charming but slight tale has warmth wit and interesting

characters compassionately portrayed"

• "this charming but slight tale has warmth wit and interesting

characters compassionately portrayed"

• "this charming but slight tale has warmth wit and interesting

characters compassionately portrayed"

daae-w2v-clean-50

• "the film <unk> pace is actually one <unk> its strengths"

• "the <unk> the <unk> dynamite sticks built only controversy would

recognize"

• "the <unk> the <unk> dynamite sticks built only controversy would

recognize"

• "the <unk> the <unk> dynamite sticks built only controversy would

recognize"

vae-token-clean-100

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

vae-w2v-raw-100

• "the bodily function shines on all beaten path <unk> not necessarily

for the better <unk>"

• "the film brilliantly shines on all beaten path <unk> not necessarily

for the better <unk>"

• "the film brilliantly shines on all beaten path <unk> not necessarily

for the better <unk>"

• "the film brilliantly shines on all beaten characters <unk> as the for

the better <unk>"

 71

Table A.5. Reconstructions from the selected DA methods, for example sentence in Table

A.1 for dataset size of 1000.

 Variant Sentence

Dataset

Size

1000

aae-token-clean-100

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

aae-w2v-raw-100

• "the movie is about the worst thing <unk> has done in the united

states <unk>"

• "<unk> has no affect the the their flaws <unk> <unk> heaven is one

such beast <unk>"

• "the result your sat scores are below slightly <unk> kids would

quickly change the channel <unk>"

• "<unk> has no affect the the energy <unk> <unk> but is one such

beast <unk>"

ae-token-clean-100

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

ae-w2v-clean-100

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

daae-token-clean-100

• "the film is impressive for the sights and sounds of the wondrous beats

the world has to offer"

• "the film is impressive for the sights and sounds of the wondrous beats

the world has to offer"

• "the film is impressive for the sights and sounds of the wondrous beats

the world has to offer"

• "the film is impressive for the sights and sounds of the wondrous beats

the world has to offer"

daae-w2v-clean-50

• the <unk> <unk> <unk> fault <unk> flashy <unk> is <unk> <unk>

relaxed <unk> displays"

• "<unk> <unk> <unk> <unk> <unk> <unk> dim echo <unk> <unk>

<unk>"

• "<unk> <unk> <unk> <unk> <unk> <unk> dim echo <unk> <unk>

<unk>

• "<unk> <unk> <unk> make the oddest <unk> couples <unk> in this

sense the movie <unk> <unk> <unk>

vae-token-clean-100

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

• "this bond film goes off the beaten path not necessarily for the better"

vae-w2v-raw-100

• "the film is about the worst thing <unk> has done in the united states

<unk>"

• "<unk> film is not be by the flaws <unk> <unk> heaven is one such

beast <unk>"

• "the film is about the worst thing <unk> has done in the united states

<unk>"

• "<unk> film is not be by the flaws <unk> <unk> heaven is one such

beast <unk>"

