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ABSTRACT

SWITCHED DECISION TREE FOR SIMULTANEOUS LEARNING OF
MULTIPLE DATASETS

Ayça Kula Arslan

Master of Science, Computer Engineering
Supervisor: Prof. Dr. Mehmet Önder Efe

January 2024, 83 pages

This paper proposes a framework to learn multiple datasets simultaneously using a single

full decision tree structure. The threshold values are changed with respect to the dataset and

stored in a matrix called “mask”. Therefore, the full-tree model is called as a switched

decision tree. First of all, solvable version of the problem is studied in order to find

the decision tree parameters using a genetic algorithm. Then, the proposed algorithm is

adapted for a real dataset. Obtained results demonstrate the usefulness of the algorithm for

representing multiple datasets within a single switched tree structure.

Keywords: Simultaneous learning, decision trees, classification, multiple datasets, genetic

algorithm, optimization

i



ÖZET

DEĞİŞTİRİLEBİLİR KARAR AĞACI ALGORİTMASI İLE ÇOKLU
VERİNİN EŞ ZAMANLI OLARAK ÖĞRENİLMESİ

Ayça Kula Arslan

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Mehmet Önder Efe

Eş Danışman: Doç. Dr. Adı Soyadı
Ocak 2024, 83 sayfa

Bu makale, tek bir tam karar ağacı yapısını kullanarak birden fazla veri kümesini aynı

anda öğrenmek için bir çerçeve önermektedir. Eşik değerleri veri setine göre değiştirilerek

“maske” adı verilen bir matriste saklanır. Bu nedenle tam ağaç modeline anahtarlamalı karar

ağacı adı verilir.Karar ağacı parametrelerinin genetik bir algoritma kullanılarak belirlenmesi

için öncelikle problemin çözülebilir versiyonu üzerinde çalışılarak çözüm bulundu. Daha

sonra önerilen algoritma gerçek bir veri seti üzerinde denedi. Elde edilen sonuçlar,

algoritmanın tek bir anahtarlamalı ağaç yapısı içerisinde birden fazla veri kümesini temsil

etme konusundaki kullanışlılığını göstermektedir.

Keywords: Eş zamanlı öğrenme, karar ağacı, sınıflandırma, çoklu veri seti, genetik

algoritma, optimizasyon
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ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ABBREVIATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Scope Of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. BACKGROUND OVERVIEW .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2. Algorithm for Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1. Splitting Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1.1. Information Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1.2. Gini Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1.3. Gain Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2. Stopping Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.3. An Illustrative Example for Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3. Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1. Components of a Genetic Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1.1. Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1.2. Crossover (Recombination) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1.3. Mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2. Selection of Genetic Algorithm Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3. Search Termination (Convergence Criteria) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



2.3.4. Fitness Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4. Performance Metrics for Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1. Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2. Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.3. Recall (Sensitivity) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.4. Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.5. Specificity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4.6. F1 Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3. RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4. PROPOSED METHOD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1. Full Decision Tree Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2. Switching Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5. EXPERIMENTAL RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1. Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.1. Using a Solvable Problem Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1.2. Using Real Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1.2.1. Iris and Balance Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.2.2. Pumpkin Seeds and Heart Failure Clinical Records Dataset . . . . . . . . . . . 55

5.1.2.3. Penguin and Seeds Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

v



TABLES

Page

Table 2.1 Summary of decision tree inducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Table 2.2 Weather Conditions and Tennis Playing Decision [1] . . . . . . . . . . . . . . . . . . . . 13

Table 2.3 Confusion Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Table 2.4 Predicted vs Observed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 2.5 Example of multi-class classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Table 3.1 Parameters defined for the experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 5.1 GA parameter settings for solvable problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 5.2 Datasets from the Kaggle and UCI repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 5.3 GA parameter settings for datasets Iris and balance . . . . . . . . . . . . . . . . . . . . . 51

Table 5.4 Train and test accuracy for iris and balance dataset . . . . . . . . . . . . . . . . . . . . . . 52

Table 5.5 GA parameter settings for datasets pumpkin seeds and heart records . . 56

Table 5.6 Train and test accuracy for pumpkin seeds and heart records dataset . . . 57

Table 5.7 GA parameter settings for datasets penguin and seeds . . . . . . . . . . . . . . . . . . 59

Table 5.8 Train and test accuracy for penguin and seeds dataset . . . . . . . . . . . . . . . . . . . 61

vi



FIGURES

Page

Figure 2.1 Simple Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.2 Selection of next attribute for play tennis example . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.3 Decision tree for play tennis example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Figure 2.4 Population, chromosome and gene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 2.5 Flow chart for genetic algorithm[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 2.6 Single point crossover. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 2.7 Two point crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.8 Uniform crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 2.9 Bit flip mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.10 Swap mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 2.11 Scramble mutation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.12 Converting multiclass confusion matrix to binary confusion matrix

with respect to class C1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Figure 3.1 Gradients for splitting and updating leaf value . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Figure 3.2 Superposition of parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Figure 3.3 Storing and retrieving ωk using context information [3] . . . . . . . . . . . . . . . . 37

Figure 3.4 Permuted MNIST task[4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.5 Accuracy vs. Number of Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.6 Cross Entropy Loss vs. Number of Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 3.7 Loss vs. Number of Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Figure 4.1 Decision tree for Iris dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.2 Decision tree for Wheat seeds dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 4.3 Full Tree Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 5.1 Simple decision tree structure for a solvable problem. . . . . . . . . . . . . . . . . . . 47

Figure 5.2 Solvable problem simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 5.3 Accuracies for dataset 1 and 2 for a solvable problem . . . . . . . . . . . . . . . . . . 48

vii



Figure 5.4 Class distribution plot for Iris dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 5.5 Class distribution plot for balance dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 5.6 Simulation of iris and balance dataset with depth of 8 . . . . . . . . . . . . . . . . . . 52

Figure 5.7 Simulation of iris and balance dataset with depth of 10 . . . . . . . . . . . . . . . . . 53

Figure 5.8 Confusion matrix of Iris dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 5.9 Confusion matrix of balance dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 5.10 Class distribution plot for pumpkin seeds dataset . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 5.11 Class distribution plot for heart failure record dataset . . . . . . . . . . . . . . . . . . . 56

Figure 5.12 Simulation of pumpkin seeds and heart records dataset . . . . . . . . . . . . . . . . . 57

Figure 5.13 Confusion matrix of pumpkin seeds dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 5.14 Confusion matrix of heart failure record dataset . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 5.15 Class distribution plot for penguin dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.16 Class distribution plot for seeds dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 5.17 Simulation of penguin and seeds dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 5.18 Confusion matrix of penguin dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 5.19 Confusion matrix of seeds dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 5.20 Penguin and seeds dataset with depth of 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

viii



ABBREVIATIONS

DT : Decision Tree

GA : Genetic Algorithm

FT : Full Tree

MT : Multi Task

WL : Weak Learner

GB : Gradient Boosting

GBDT : Gradient Boosting Decision Tree

ExtraTrees : Extremely Randomized Trees

FNR : False Negative Rate

FDR : False Discovery Rate

ix



1. INTRODUCTION

In the recent years, due to the increasing amount of generated data, machine learning

algorithms aim to continually develop the performance of algorithms while using huge

amounts of information [5]. Therefore, this paper searches for techniques to efficiently use

massive data to increase performance. Learning multiple datasets is a problem in machine

learning that needs improvement. Therefore, a decision tree model structure is built to learn

multiple datasets simultaneously by increasing the performance.

In literature, transfer learning, multi-label learning and multi-task learning deals with

learning multiple datasets. Multi-task learning involves acquiring knowledge in multiple

tasks concurrently and enhancing a model’s capacity to handle each task by leveraging

information from either all or a subset of the tasks [6]. Faddoul et al. [7] presents a

multi-task Adaboost framework that employs Multi-Task Decision Trees as weak classifiers

and modifies the information gain rule used in decision trees for learning multiple tasks.

Moreover, Ying et al. [8] builds a Multi-task Gradient Boosting Machine (MT-GBM) by

utilizing GBDT method where the branches of the tree have been split using multi-task

losses. Simm et al. [9] proposes a novel approach called MT-ExtraTrees, a tree-based

ensemble method for both classification and regression, built upon extremely randomized

trees. MT-ExtraTrees is described as a multi-task learning method that employs a binary

decision tree ensemble. However, this paper is inspired by the idea of Cheung et al. [10]

which presents a method for training a single neural network that simultaneously learns K

different tasks. The same number of parameters can be used to train a single task and a

multiple-task operation within a single neural network architecture.

In the literature, insufficient research has been identified to address the multi-task problem

through the application of decision trees.Furthermore, decision trees are chosen for their

merits, emphasizing on their advantages, and notably, the relatively limited research

conducted in comparison to neural networks. Decision trees offer numerous benefits,

1



including robustness to outliers and straightforward interpretability. Therefore, this thesis

leverages decision trees to address the challenge posed by multiple datasets.

This thesis proposes a new model to learn multiple datasets simultaneously using a

switched decision tree structure. Each dataset is associated with its own specific decision

tree, characterized by unique split parameters, including thresholds, features, and classes.

However, in this thesis, a single full decision tree structure algorithm is obtained where

the feature and classes are fixed and thresholds are switchable with respect to the dataset.

The threshold values are changed with respect to the dataset and stored in a matrix called

”mask”. Using the mask structure enables the classification of different datasets within a

single decision tree model. The decision tree parameters including, thresholds, features and

classes are optimized using genetic algorithm for different datasets. After finalizing the full

tree model, the initial step involves constructing a solvable problem to determine the optimal

decision tree parameters using a genetic algorithm. Then, the framework is adapted to the

real datasets. Subsequently, conclusions are drawn by evaluating performance metrics used

for the classification task. The evaluation of the model’s performance involves analyzing

accuracy, examining cost plots, and studying confusion matrices.

1.1. Scope Of The Thesis

This thesis mainly focuses on learning different datasets at the same time using a single

decision tree structure. A single full decision tree structure has been built for classifying

different datasets. This full decision tree has a feature and class set that is compatible with

different datasets. On the other hand, the full tree also has a threshold set that is switchable

for each specific dataset. Additionally, the goal is to design a decision tree for utilizing

the genetic algorithm in identifying optimal thresholds, features, and classes. Finally, the

objective is to achieve satisfactory accuracy results for each dataset.
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1.2. Contributions

In this research, we cover these deficiencies by proposing a novel, simple, and efficient

approach. The main contributions of this paper can be summarized as follows:

• We propose a switched full decision tree model for simultaneous learning of multiple

datasets.

• Unlike most of the previous works, we use the ”mask” concept where we store

thresholds in an array and use each row of values with respect to the datasets.

• For the first time, a unique full decision tree model is built for multiple datasets, and

by switching the thresholds of a DT with respect to the dataset the classification results

are obtained.

• Our simulation results show that a single full decision tree structure can be obtained

for datasets that have the same number of feature values and classes.

• The genetic algorithm is used in identifying optimal thresholds, features, and classes

for each dataset.

1.3. Organization

The organization of the thesis is as follows:

• Chapter 1 presents our motivation, contributions, and the scope of the thesis.

• Chapter 2 provides background knowledge for decision trees and genetic algorithms

in order to understand the proposed method.

• Chapter 3 gives a brief literature review of the works that are related to the thesis topic.

• Chapter 4 introduces the proposed method.

• Chapter 5 demonstrates the results of the thesis.

• Chapter 6 states the summary of the thesis and possible future directions.
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2. BACKGROUND OVERVIEW

In this section, decision tree and genetic algorithm are explained in detail in order to

understand the proposed method. The subjects are explained with simple examples,

flowchart or algorithm.

2.1. Decision Tree

A decision tree is a supervised machine learning classifier that has a hierarchical data

structure which represents the data and organizes decisions. Decision trees can be used

both in classification and regression problems. A decision tree operates as a predictor and

represents a map h : X → Y , by foretelling the assigned label y for a given instance x as it

traverses from the tree’s root node to a leaf node [11]. It maps the features x ∈ X of a data

point to a predicted label h(x) ∈ Y [12].

Decision trees can handle both classification and regression tasks. A classification tree is

used for classification tasks where the objective is to assign instances to predefined classes or

categories. On the other hand, regression trees aim to predict continuous numerical values.

Regression trees are employed when dealing with continuous outcomes, with the primary

objective being the prediction of numeric values. In this thesis, we will mainly focus on

classification trees.

An example of a simple classification using a decision tree is illustrated in figure 2.1. To

check if the fruit is mandarin, green plum or watermelon, the decision tree first examines the

color of the fruits. If this color is orange, then the tree immediately predicts that the fruit is

an orange. Otherwise, the tree turns to examine the sizes of the fruits. If the size of the fruits

are small, the decision tree predicts that the fruit is a green plum. Otherwise, the prediction

is watermelon.

Decision trees consist of root node, internal nodes, and leaf nodes. The top-level node is the

root node that has no parent nodes, which means that it has no incoming edges. The leaf
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nodes represent the class labels and these nodes do not have any child nodes (no outgoing

edges). The internal nodes are the ones that are between the root and leaf nodes. An internal

node might represent a test on the attribute and the branches would lead to different outcomes

based on whether the test is true or false.

Figure 2.1 Simple Decision Tree

The depth of the tree, the total number of nodes, leaves, and the number of attributes are

used as a measure of the complexity of the tree [13]. The complexity of the tree is important

because it affects the accuracy of the decision tree [14]. As a result, it is better to build a

simpler decision tree with the help of pruning and stopping criteria. Moreover, performance

of the DT is directly proportional to the size of the training data. However, an increase in

training data leads to a long training time. In practical applications, the most apparent factor

is the constraint on resources; thus, training data should be limited in accordance with these

resource constraints.

According to [15], it is more efficient to utilize decision trees for problems characterized by

the features described below.

• Attribute-value representation for instances

In figure 2.1, for decision tree learning the decision tree is represented by the attributes

(color, size) and its values (orange, small).

• Discrete output target values

It is less common to train models on learning target functions with real-valued
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values. The more prevalent scenario involves the learning of discrete classifications

or categorical outcomes.

• Training data that includes errors or missing attribute values

Decision trees are known for their robustness to errors in the training set. They

can effectively handle imperfect data, and their inherent structure often allows them

to adapt to variations and outliers without significantly compromising their overall

performance. Decision trees are generally capable of handling training data with

missing values for certain attributes. A common approach is to estimate the missing

attribute values based on the information available from other examples. Assigning the

most common value among the training examples at a particular node to fill in missing

attribute values is a common strategy. Decision trees can naturally navigate and make

decisions based on the available information, allowing them to accommodate datasets

with missing values without compromising their overall effectiveness in learning and

making predictions.

• Contains disjunctive expressions

Broadly speaking, decision trees encapsulate a series of conjunctions of conditions

related to the attribute values of instances. Every route from the tree’s starting point to

its terminal leaf signifies a specific conjunction of attribute evaluations, with the overall

tree embodying a collection of these conjunctions presented as a disjunction. For

example figure 2.1, the watermelon leaf corresponds to (Color = green) ∧ (Size =

big).

Decision tree induction is building a decision tree based on a provided dataset [16].

Decision tree induction algorithms play a crucial role in diverse domains, including medicine,

manufacturing, financial analysis, astronomy, molecular biology etc. [17]. These algorithms

have gained popularity due to their numerous advantages. The advantages can be listed as

follows:

1. Comprehensible and easy interpretation: Decision tree representation is particularly

considered user-friendly, as even a compact decision tree can be visualized, utilized,
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and comprehended by individuals without specialized expertise. The ability to convert

a decision tree into a set of rules enhances its explanatory power.

2. Fast algorithm speed: Compared to neural networks and the k-nearest neighbor, the

speed of the decision tree algorithm is high [18].

3. Handle both numeric and categorical input attributes: Decision trees stand out

for their versatility in handling both numerical and categorical attributes, offering an

advantage over classification methods like neural networks, k-nearest neighbor, and

support vector machines, which may face challenges in directly managing categorical

data [19].

4. Tolerant to missing values: Decision trees demonstrate the ability to handle datasets

that may contain missing values.

On the other hand, decision trees come with certain disadvantages, such as:

1. Prone to overfitting: The greedy approach of decision trees, can be a drawback as

it tends to cause over–sensitivity to the training set, to irrelevant attributes and noise

[20]. Thus, this may lead to overfitting.

2. Sensitive to changes in data: Indeed, any modification to the training data leads to a

shift in attribute selections, consequently affecting the entire structure of the tree [21].

3. Induction time and data diversity correlation: The induction time is directly

proportional to the data diversity. The increase in data diversity may be associated with

the high number of attribute values. Therefore, this situation will lead to an increase

in the number of possible splits. Potentially leading to a notable impact on the time

required for the induction process.

In summary, despite disadvantages, decision trees offer many advantages, such as simplicity,

interpretability, and effectiveness. Due to this reason, decision tree becomes a valuable

method that is used in data analysis and knowledge discovery in various domains.
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2.2. Algorithm for Decision Trees

The procedure of constructing a classifier by deriving the structure of a decision tree is

commonly referred to as decision tree induction. There are many decision trees algorithms

such as ID3 (Quinlan, 1986), C4.5 (Quinlan, 1993), CART (Breiman et al., 1984) which can

be briefly described as:

1. ID3 (Quinlan, 1986): ID3 is the most straightforward decision tree algorithm,

employing information gain as its criteria for splitting [16]. ID3 does not incorporate

any pruning procedures, and it does not manage numeric attributes or missing values.

2. CART (Breiman et al., 1984): In classification and regression trees (CART), the

decision tree splitting is based on the towing criteria. It can manage both numerical

and categorical attributes.

3. C4.5 (Quinlan, 1993): The C4.5 algorithm is a more advanced version compared

to ID3, capable of handling numeric attributes and addressing missing values in the

data. Additionally, the gain ratio criterion is employed instead of information gain for

splitting the decision tree.

These decision tree algorithms are summarized in table 2.1.

Splitting
Criteria

Prunning
Method

Attribute
Type

Missing
Values

ID3 Information Gain No prunning Categorical value Not accepted

CART Towing
Cost-complexity

pruning
Categorical and
numeric value Accepted

C4.5 Gain ratio
Error based

pruning
Categorical and
numeric value Accepted

Table 2.1 Summary of decision tree inducers

A typical algorithmic framework for top–down inducing of a decision tree can be written as

in algorithm 1. The algorithm is obtained using [22] and [13]. The algorithm mainly consists

of two classes:
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• Node Class: The ”CreateNode” class in algorithm 1, adds a new node to the decision

tree. In the algorithm, it can be seen that a node consists of a label and a test

condition. If the node is not a leaf node, each node has its feature, threshold values

and information about its branching left and right nodes. Otherwise, the node has a

non-zero leaf node value. All parameters are initially set to None.

• Decision Tree Class: Generally, a decision tree class holds many functions related

with finding the best split, finding entropy, information gain and most common label,

predicting the classes, recursively growing tree function etc. The constructor of

decision tree holds values for minimum sample split and maximum depth which are the

hyper-parameters. The minimum sample split is used to define the minimum number of

samples required to split a node. Both are used in recursive functions as exit conditions.

The functions are shown in capital letters in the algorithm. If the stopping condition is

satisfied, it returns a leaf node (line 1-2). The leaf node is characterized by the most prevalent

class within the existing subset of data (line 3). However, if the stopping condition is not

satisfied, the algorithm searches for the best split (line 5-7) and creates a new node (line

6). The algorithm explores all viable splitting options and identifies the most advantageous

one. Then, the training data is split into subsets. The resulting data subsets obtained from

splitting rule iteratively invokes the construction of subtrees using recursive TreeGrowth call

(lines 8-9-10). These subtrees are then appended as children to the primary node, resulting

in the formation of a comprehensive tree structure (line 10). The culmination of this process

is the generation of a decision tree, which serves as the output of the function.
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Algorithm 1 Algorithm for Full Decision Tree Model [13]
Input: Training set S, attribute set A

Output: Decision tree structure

TreeGrowth(S,A) :

1: if StoppingCond(S,A) = true then

2: leaf = CreateNode()

3: leaf.label = Classify(S) # Mark the root node in T as a leaf with the most common

value of y in S as a label

4: return leaf

5: else

6: root = CreateNode()

7: root.test cond = FindBestSplit(S,A)

let V = { v | v is a outcome of root.test cond }

8: for each v ∈ V do

9: Sv = {s | root.test cond(e) = v and s ∈ S }

10: child = TreeGrowth(Sv,A)

add child as descendent of root and label the edge (root → child ) as v

11: end for

12: return root

13: end if

2.2.1. Splitting Criteria

How to split the decision tree is an important question that needs a solution. It is important

to determine the attribute that causes a split. Given a training set S and target attribute y,

internal node is split with respect to the value vi,j of a single attribute a [13]. Some of

impurity based measures are information gain and gini index. There are many methods for

splitting, such as information gain, gini index, gain ratio, DKM Criterion, Likelihood Ratio

Chi-squared Statistics etc.
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In order to split the training data, an attribute has to be chosen as a test condition [22]. For

different attribute types (Binary, Nominal, Ordinal, Continous attributes), an appropriate test

condition must be chosen.

2.2.1.1. Information Gain Entropy is a measure of impurity in a distribution and

evaluates the homogeneity of a dataset. Meaning that for more homogenous dataset, lower

entropy is necessary. Lower entropy is desirable because it indicates a more homogeneous

subset of data in terms of class labels. For example, if the entropy is 0, it indicates that all

members of the training set belong to the same class.

Information gain shows the decrement of entropy after the split of a specific attribute and

chooses the best feature for decision-making. When the dataset is split by a specific feature,

the high information gain value tells that the feature is a good choice for splitting the node.

The information gain formulation uses entropy as:

InformationGain (ai, S) = Entropy(y, S)−
∑

vi,j∈dom(ai)

∣∣σai=vi,jS
∣∣

|S|
·Entropy

(
y, σai=vi,jS

)
(1)

where entropy is defined as:

Entropy(y, S) =
∑

cj∈dom(y)

−
∣∣σy=cjS

∣∣
|S|

· log2

∣∣σy=cjS
∣∣

|S|
(2)

Entropy and information gain can be calculated from equation 1 and 2, respectively. For

example, if we consider a data given as s = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1] where there are two

labels (”0” and ”1”). We may calculate entropy as:

E(S) = − 7

10
log2

7

10
− 3

10
log2

3

10
= 0.8813 (3)

Moreover, the information gain as:

Gain(S,A) = 0.97095− 12

20
∗ 0.65002− 8

20
∗ 1 = 0.18094 (4)
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2.2.1.2. Gini Index Gini index takes values between 0 and 1, where 1 indicates

inequality. A smaller Gini index indicates a purer distribution. Gini index quantifies the

difference in probability distributions among the values of the target attribute [23] which is

calculated as:

Gini(y, S) = 1−
∑

cj∈dom(y)

(∣∣σy=cjS
∣∣

|S|

)2

(5)

GiniGain (ai, S) = Gini(y, S)−
∑

vi,j∈dom(ai)

∣∣σai=vi,jS
∣∣

|S|
·Gini

(
y, σai=vi,jS

)
. (6)

2.2.1.3. Gain Ratio According to Quinlan [24], the gain ratio gives better performance

results when compared to simple information gain criteria. Gain ratio is found by

normalizing the information gain as [16]:

GainRatio (ai, S) =
InformationGain (ai, S)

Entropy (ai, S)
(7)

2.2.2. Stopping Condition

The decision tree algorithm splits the data and obtains the leaf nodes recursively. In algorithm

1, the stopping condition is shown as ”StoppingCond()”. However, when the stopping criteria

are met then the tree-growing process stops. There are several ways to define the stopping

criteria as[20]:

• All training data have the same class label or attribute values

• When the maximum tree depth is reached

• Defining the minimum number of instances required to establish a terminal node (leaf)

deployment
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• Defining minimum number of samples for a node split

• When the best splitting criterion is not greater than a certain threshold

2.2.3. An Illustrative Example for Splitting

In table 2.2, a tennis dataset has been provided, which is one of the most widely used

datasets. The dataset illustrates decisions related to playing tennis based on varying weather

conditions. The decision tree obtained is an example of boolean classification, as the target

values are either ’yes’ or ’no’. The objective of this example is to construct a simple decision

tree and use information gain to choose the attributes. The training set S contains a total

of 14 data points, comprising 5 days when tennis is not played and 9 days when tennis is

played. This distribution leads to an entropy value, which is then used in the calculation of

information gain. The entropy value is:

Entropy ([9+, 5−]) = −(9/14) log2(9/14)− (5/14) log2(5/14)

= 0.940
(8)

Day Outlook Temperature Humidity Wind Play Tennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overeast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Table 2.2 Weather Conditions and Tennis Playing Decision [1]
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In Equation 1, the first term represents the entropy of the training set S, while the second

term represents an entropy estimate after splitting the training set S with respect to attribute

a. The information gains for each attribute (Outlook, Humidity, Wind) need to be calculated,

and the attribute with the highest information gain should be selected as the first test for

the decision tree. If the first attribute is chosen as Outlook, the entropy values need to be

calculated for each value of Outlook (Sunny, Overcast, Rain) as follows:

Values( Outlook ) = Sunny, Overcast, Rain

SSunny :[2+, 3−] ⇒ Entropy
(
SSunny

)
= 0.971

SOvercast :[4+, 0−] ⇒ Entropy (SOvercast ) = 0

SRain :[3+, 2−] ⇒ Entropy (SRain ) = 0.971

(9)

Gain(S, Outlook ) = Entropy (S)−
∑

i∈| Sunny, Overcast, Rain|

|Sv|
|S|

Entropv (Sv)

= Entropy (S)− (5/14) Entropy
(
SSunny

)
− (4/14) Entropy (SOvercast )

− (5/14) Entropy (SRain ) = 0.246

(10)

When we continue to do the same calculations for other attributes, we find that

Gain (S, Outlook ) = 0.246, Gain (S, Humidity ) = 0.151, Gain (S, Temperature ) =

0.029. Next, we choose the attribute with the highest information gain, which, in this case,

is Outlook.

Having identified the root node, it is necessary to add additional nodes beneath the root

node (Outlook). In figure 2.3, the next attribute has to be chosen. All examples of outlook

= overcast belong to the category of ’yes’ for playing tennis. Therefore, the nodes belong

under rain and sunny should be found. Because, there are both ”yes and ”no” samples.

For the Ssunny subtree, the information gain is found for each attribute. First, the temperature

attribute is tested and the information gain is found as:

14



Figure 2.2 Selection of next attribute for play tennis example

Gain(Ssunny,Temperature) = Ssunny −
[
2

5
Entropy(Ssunny ∧ Temperature=hot)

+
1

5
Entropy(Ssunny ∧ Temperature=cool) +

2

5
Entropy(Ssunny ∧ Temperature=mild)

]
= Ssunny −

[
2

5
Entropy

(
0

2
,
2

2

)
− 1

5
Entropy

(
1

1
,
0

1

)
− 2

5
Entropy

(
1

2
,
1

2

)]

= 0.971−
(
2

5
× 0 +

1

5
× 0 +

2

5
× 1

)
= 0.971− 0.4 = 0.571

(11)

For ”humidity” attribute the information gain is found as:

Gain(Ssunny,Humidity) = Ssunny −
[
3

5
Entropy(Ssunny ∧ Humidity=high)

+
2

5
Entropy(Ssunny ∧ Humidity=normal)

]
= Ssunny −

[
3

5
Entropy

(
0

3
,
3

3

)
− 2

5
Entropy

(
2

2
,
0

2

)]

= 0.971−
(
3

5
× 0 +

2

5
× 0

)
= 0.971

(12)
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The information gain for ”wind” can be written as:

Gain(Ssunny,Wind) = Ssunny −
[
3

5
Entropy(Ssunny ∧ Wind=weak)

+
2

5
Entropy(Ssunny ∧ Wind=strong)

]
= Ssunny −

[
3

5
Entropy

(
1

3
,
2

3

)
− 2

5
Entropy

(
1

2
,
1

2

)]

= 0.971−
(
3

5
× 0.918 +

2

5
× 1

)
= 0.971− 0.951 = 0.02

(13)

The attribute ”humidity” yields the maximum information gain for the ”sunny” subtree.

Similar calculations should be performed for the ”rain” subtree as well. The final decision

tree structure has been obtained as in figure 2.3.

Figure 2.3 Decision tree for play tennis example

2.3. Genetic Algorithm

The genetic algorithm (GA) is a method inspired by biological evolution that is used to solve

search and optimization problems[25]. GA’s key elements are that it is a stochastic algorithm

(randomness) and in each iteration, there is a population of solutions [26]. The population
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constitutes of solutions within the current generation and can alternatively be characterized

as a collection of chromosomes as seen in figure 2.4. Chromosome is an individual in

population which is defined by a group of parameters, commonly referred to as genes. The

chromosomes represents a solution.

Figure 2.4 Population, chromosome and gene

GA is a sub-class of the evolutionary algorithms therefore it uses the terminologies selection,

crossover (also called recombination), and mutation. The primary motivation for employing

genetic algorithm in this paper is that, in comparison with other traditional methods, it can

enhance the classification accuracy in decision trees. Papagelis et al. [27] states that, GA can

be used to evolve binary decision trees in order to create simple and accurate decision trees.

Moreover, it states that GA chooses the most appropriate features for classification tasks.

Moreover, papers [28] and [29] also used genetic algorithm for building decision trees.

The basic flow chart of a genetic algorithm can be shown as in figure 2.5. The algorithm can

be summarized as [30]:

1. The cost function and the genetic algorithm variables are defined. Moreover, to

converge faster the constraints are defined for some variables.

2. An initial population is randomly created.

3. Next population is created using individuals from the current generation. At each

generation the new populations are created as:
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Figure 2.5 Flow chart for genetic algorithm[2]

(a) Each individual’s score is computed using its fitness values in a population where

these values are called ”raw fitness scores”. Then, these values are scaled to

obtain improved results and values are referred to as ”expectation values”.

(b) The selection of parents is determined by the individual’s ”raw fitness scores” or

”expectation values.”

(c) Elite individuals, possessing the highest fitness or cost values, are directly carried

over to the next generation of population. Elite children refers to the succeeding

individuals present in the next generation.

(d) Children are obtained using crossover and/or mutation.
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(e) The next population/generation is produced by substituting children from to the

current population.

4. When the stopping criteria is satisfied, the genetic algorithm concludes its execution.

2.3.1. Components of a Genetic Algorithm

The basic process for a genetic algorithm consists of the selection of parents, generating new

children (offsprings) by crossing parents, and then switching old ones with new children in

the population [26].

2.3.1.1. Selection Based on the fitness values, the parents or chromosomes are selected

from the population. Those who have appropriate fitness values play an active role in the

reproduction process [2]. Using the evaluation function the chromosomes are selected from

the population. According to [31], ” The fitter the chromosome, the more times it is likely to

be selected to reproduce.”. This means that a higher fitness function causes the individual

to be selected. This situation affects the convergence rate of GA where higher fitness values

relate to higher convergence rates.

There are many methods used for selection such as:

• Roulette Wheel (Fitness proportionate) Selection : This selection method is inspired

by the game of roulette. In roulette wheel selection, the probability of choosing a

population member is linearly proportional to its fitness value [32]. This means that

individuals with higher fitness scores have a greater chance of being selected as a

parent. The wheel is turned repeatedly to choose additional individuals, gathering a

sufficient number of individuals to constitute the next generation, which may lead to

the possibility of selecting the same individual more than once.

• Tournament Selection: The tournament size is the number of randomly selected

individuals from the population. After randomly choosing the tournament size of
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individuals, the member with the best fitness is selected. Since sorting takes a

significant amount of time, tournament selection is useful for large population sizes.

Random, uniform, rank-based and Boltzman selection are some of the different selection

methods.

2.3.1.2. Crossover (Recombination) The parts in each parent’s encoded string are

exchanged to form children for the next generation. Randomly each parent is chosen for

mating (from the mating pool). The crossover point is defined as a randomly selected

one or more points in parent chromosomes. These chromosome parts are exchanged with

respective to the crossover points. By using the crossover operation, offspring contain some

knowledge from each of the parents. The crossover probability defines the frequency of

occurrence of crossover. For example, a hundred percentage of crossover means the all

children are obtained by crossover. There are many crossover methods such as ordered

crossover, partially matched crossover, etc. However, the most general used ones are:

• Single Point Crossover: A single point is randomly chosen as a crossover point.

Using this point the offspring are obtained by exchanging the parts after the crossover

point as shown in figure 2.6. For example, if a parent chromosome contains good

genetic knowledge on the head and after the crossover point, each offspring would not

have the good attributes together. Therefore, usually two-point or uniform crossover is

used to eliminate this negative effect. The outcome of an N-point crossover is directly

influenced by the gene placements within the chromosome.

Figure 2.6 Single point crossover
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• Two Point and Multi-Point Crossover: If the crossover point is more than one,

the crossover is defined as a multi-point crossover. While obtaining the offspring,

the chromosome parts that lie between these randomly chosen crossover points are

swapped. An example of a two-point crossover can be seen in figure 2.7.

Figure 2.7 Two point crossover

• Uniform Crossover: In uniform crossover, some bits are randomly selected and

parents are combined at these bits as seen in 2.8. In previous crossover methods, the

probability of passing neighbor genes is higher. Moreover, passing neighbor genes can

cause undesirable correlations within genes [26]. Therefore, to eliminate this drawback

related to gene placements, uniform crossover is recommended.

Figure 2.8 Uniform crossover

2.3.1.3. Mutation Mutation is followed after crossover and a mutated child is obtained by

randomly changing a bit string of a single parent chromosome [1]. Mutation helps explore all

the search space and thus safeguards the algorithm from getting stuck in a local minimum.

Also, mutation creates a genetic variation within the population. The mutation operator
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works on a single individual or parent, and introduces random changes such as flipping a bit

in a binary representation or modifying a value in a numerical representation. The mutation

methods can be classified as:

• Bit Flip Mutation In the context of bit flip mutation which is employed in

binary-encoded Genetic Algorithms, random genes or bits are chosen, and their values

are inverted. As illustrated in the figure 2.9, the 0 bit is switched to 1.

Figure 2.9 Bit flip mutation

• Swap Mutation The swap mutation technique is mostly used in permutation encoding

where each chromosome shows sequence of numbers.In swap mutation, a pair of genes

on the chromosome are randomly chosen and their values are exchanged with each

other as seen in figure 2.10.

Figure 2.10 Swap mutation

• Scramble Mutation Scramble mutation is employed in permutation encoding. In

this approach, a subset of genes is randomly selected and then subjected to a random

shuffling process as seen in figure 2.11.
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Figure 2.11 Scramble mutation

2.3.2. Selection of Genetic Algorithm Parameters

Choosing GA parameters is a challenging endeavor. Random number generations also affect

GA parameter selection to be challenging. Random number generators are primarily used

in generating the initial population, performing mating, and managing mutation in genetic

algorithms [25]. It is a hard task to test a wide range of intervals for each genetic algorithm

parameter. DeJong’s investigation into genetic algorithms for function optimization involved

a series of parametric studies across a five-function suite of problems. These studies

indicated that achieving good performance with genetic algorithms necessitates selecting

a high crossover probability, a low mutation probability ( inversely proportional with the

population size), and a moderate population size[33]. In order to run the algorithm efficiently,

certain key points must be taken into account:

• When there is a rough idea of where the solution to a problem might be located, it is

advisable to specify the initial population range or search space so that the best estimate

of the solution can be reached [34]. This can help narrow down the search and improve

the efficiency of the optimization process. If the problem is small and easy it is good to

choose a small population size. However, if the problem is complex small population

size would not be sufficient. As a side note, choosing a large population size increases

the computational time. Moreover, increased population size is directly correlated with

an increased probability that the initial population state will include a chromosome

presenting the optimal solution [35]. Goldberg’s research has demonstrated that the
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efficiency of genetic algorithms in converging towards global optima, rather than local

ones, is predominantly influenced by the population size [26].

• During each iteration the percentage of mutated bits in the population is commonly

referred to as the ”mutation rate.” The genetic algorithm may transform into a random

search if the mutation rate is excessively increased and therefore, the diversity of the

population is large [32]. Generally, as the population size increases the mutation rate

should be decreased. The range for mutation rate is [0, 1].

• Crossover rate represents the number of how much crossover happens among

chromosomes within a single generation [36]. The crossover rate takes values between

[0, 1]. Higher crossover rates contribute to the diversity of the population since new

chromosomes are produced, while a diminished crossover rate, in contrast, results in

insufficient production of new offspring. According to [25], crossover rate, selection,

and crossover methods have less impact on solution convergence when compared with

parameters such as population size and mutation rate.

• If elitism is used in the algorithm, it improves the performance. In elitism, a new

population is obtained by using the first best or few best chromosomes. Therefore, in

each iteration, the top-performing individuals are enforced to stay.

Mutation rate and population size have a critical effect in finding the global minimum in a

problem. The number of generations is another hyperparameter. Also, the stopping criteria

is a hyper-parameter that is mentioned in the later section.

2.3.3. Search Termination (Convergence Criteria)

The genetic algorithm continues to iterate until the stopping criterion has been reached and

therefore, the best individual in the population is found. When the optimal solution is

reached the genetic algorithm stops. The category of stopping condition belongs to the direct

termination criteria when the predefined condition is met without using any information
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derived from the ongoing evolutionary search process [37]. Some of the stopping conditions,

which belongs to the category of direct termination, can be defined as:

• Maximum number of generations: The algorithm has attained the predefined upper

limit on the number of generations. Furthermore, defining this limit effectively restricts

the algorithm’s run-time and mitigates the consumption of computing resources[32].

GA may endlessly continue to work if the maximum number of iterations is not defined

and also other stopping conditions are not satisfied.

• Stall generations: The algorithm ceases its operation when there is no enhancement

observed in the objective function over a continuous sequence of generations, where

the length of this sequence is defined as ”Stall generations” [26]. The genetic algorithm

will terminate if the population’s best fitness remains unchanged for a predetermined

number of generations.

A variety of termination criteria may be specified. Moreover, the determination of

the optimal number of iterations in a genetic algorithm can be accomplished through a

convergence analysis, which can be approached from various perspectives, including scheme

theory or Markov chains[38]. If the genetic algorithm does not reach the optimum value, first

try changing the population size and mutation rate.

2.3.4. Fitness Function

In every step of the algorithm, the individuals undergo evaluation using a fitness function.

The input to the cost function is a chromosome that has to be optimized. The chromosome

consists of Nvar variables where for every variable the cost is evaluated using cost function

f [25]. Finally, every chromosome will have a cost defined as:

cost = f( chromosome ) = f (p1, p2, . . . , pNvar ) (14)
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2.4. Performance Metrics for Classification

In order to effectively show the success of machine learning models, it is crucial to conduct

demonstrative presentations or evaluations. For this reason, various performance metrics

are suggested in the literature to quantify and evaluate the effectiveness of machine learning

models. The performance metric should be selected considering the characteristics of the

problem[39]. In determining a suitable performance metric, one must take into account not

only the unique characteristics of the task but also the data distribution. The efficiency of the

trained classifier should be assessed by testing it on previously unseen data. Subsequently,

selecting the relevant performance metric and summarizing the classifier’s performance

became important [40].

2.4.1. Confusion Matrix

A confusion matrix provides a comprehensive summary of a classifier’s performance in

classifying test data, outlining the distribution of predicted and actual class labels [41].

The confusion matrix, reveals both accurately and inaccurately classified instances across

all classes.

A simple confusion matrix can be defined for a binary classification problem as in table 2.3.

In a binary classification scenario, where the target classes are either positive or negative, the

corresponding confusion matrix is a 2x2 matrix. The matrix consists of true positive (TP),

false positive (FP), false negative (FN), true negative (TN).

Actual Values
Positive (P) Negative (N)

Predicted Values
Positive (P) True Positive (TP) False Positive (FP)

Negative (N) False Negative (FN) True Negative (TN)

Table 2.3 Confusion Matrix

The components of the confusion matrix are:

26



1. True Positive (TP): The model accurately identifies and classifies a certain number of

instances as positive that are indeed positive.

2. True Negative (TN): The model accurately identifies and classifies a certain number

of instances as negative that are indeed negative.

3. False Positive (FP): The model incorrectly identifies and categorizes a certain number

of instances as positive that are actually negative.

4. False Negative (FN): The model incorrectly identifies and categorizes a certain

number of instances as negative that are actually positive.

Using the confusion matrix the performance metrics given below can be found [42]:

• True positive rate(TPR) = TP
FN+TP

• False positive rate(FPR) = FP
TN+FP

• True negative rate(TNR) = TN
TN+FP

• False negative rate(FNR) = FN
FN+TP

• Sensitivity = TPR

• Specificity = TNR

• Precision = TP/(TP + FP )

• Recall = sensitivity = TPR

• Type I error rate = FPR

• Type II error rate = FNR

• False discovery rate(FDR) = FP/(TP + FP )
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For a multiclass classification task, the confusion matrix is an NxN matrix where N is the

N number of classes. The matrix shows the number of correctly and wrongly classified

predictions for each class C1, C1, ...CN . Along the diagonal of the matrix the correct

classifications C11, C22, ...CNN are shown in table 2.4. Moreover, the rest of the part in

the matrix show misclassifications.

Actual

Pr
ed

ic
te

d C1 C2 . . . CK

C1 C11 C12 . . . C1N

C2 C21 C22 · · · C2N

. . . . . . . . . . . . . . .
CN CN1 CN2 . . . CNN

Table 2.4 Predicted vs Observed

A multiclass classification confusion matrix can be turned into a 2x2 matrix (binary-class

confusion matrix) for each class in order to calculate performance metrics such as accuracy,

precision, recall, etc. Using the basic example in table 2.5, a basic multiclass classification

confusion matrix is built and converted to a binary-class confusion matrix in figure 2.12. C11

is the number of true positive samples. The sum of C1 column except C11 indicates the false

negative samples. The sum of C1 row except C11 indicates the false positive samples.

2.4.2. Accuracy

Percentage of correctly predicted instances relative to the total number of instances in the

dataset is defined as accuracy. The most common used performance metric is accuracy

Classes Number of Samples
C1 30
C2 20
C3 15
C4 45

Table 2.5 Example of multi-class classification
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Figure 2.12 Converting multiclass confusion matrix to binary confusion matrix with respect to class
C1

where a high accuracy value expresses that the model is making a significant proportion

of accurate predictions, meaning it correctly classifies instances most of the time. On the

other hand, a low accuracy value shows that the model is making a considerable number of

wrong predictions, implying a less reliable performance in classification tasks. Accuracy can

be defined as:

Accuracy =
TP + TN

n
(15)

where n indicates the total number of samples.

2.4.3. Recall (Sensitivity)

Recall performance metric is also known as Sensitivity or True Positive Rate (TPR) and it is

computed as the number of true positives divided by the total number of actual positives.

Sensitivity =
TP

TP + FN
(16)

In the context of assessing the efficacy of a diagnostic test in the medical field, sensitivity

represents the percentage of individuals with the disease (positive examples), indicating
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that the test result is positive [41]. Conversely, specificity quantifies the percentage of

individuals without the disease (negative examples), indicating that the test result is negative.

In medical scenarios, prioritizing the detection of true positive cases takes precedence over

the possibility of triggering false alarms. It is frequently used in conjunction with additional

metrics such as precision, specifcity, NPV and accuracy for a comprehensive assessment.

2.4.4. Precision

Positive Predictive Value (PPV) is the fraction of true positives over the number of predicted

positives denoted as:

Precision =
TP

TP + FP
(17)

It is frequently used in conjunction with additional metrics such as sensitivity, specifcity,

NPV and accuracy for a comprehensive assessment. Precision is important where the

emphasis is on minimizing the occurrence of False Positives rather than False Negatives.

2.4.5. Specificity

Machine learning classifiers aims to enhance sensitivity while maintaining specificity.

Nevertheless, there exists a trade-off between these two metrics, as elevating sensitivity often

results in a reduction of specificity and vice versa.

Specificity =
TN

FP + TN
(18)

Since Sensitivity, precision, specifcity and NPV fails to account for the entirety of the

confusion matrix, none of these four metrics can be employed individually to assess the

performance of a machine learning method [39].
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2.4.6. F1 Score

By combining the results of both precision and recall, the F1 Score is calculated [43].

F1Score = 2× Precision×Recall

Precision+Recall
(19)

The Fβ is a generalized version for F1 Score where β is assigned to 1. When the β value is

smaller than 1, it prioritizes precision over recall. Conversely, with a beta value larger than

1, the emphasis shifts towards recall.

Fβ =
(1 + β2)× Precision×Recall

(β2 × Precision) +Recall
(20)

3. RELATED WORK

Multi-label learning or multi-view learning, and multi-task learning are areas that work

with multiple datasets. However, according to the study done in [6], Multi-task learning

fits more into the thesis study. The objective of Multi-task learning is to simultaneously

acquire knowledge in m tasks, enhancing a model’s capacity to handle each task {Ti}mi=1

by leveraging information from either all or a subset of the tasks[6]. Multi-task learning

operates under the assumption that the involved tasks exhibit close interrelationships [44].

It enhances the overall generalization capability by serving a preventive measure against

overfitting in each specific task.

Faddou et al. [7] presents a multi-task Adaboost framework that employs Multi-Task

Decision Trees as weak classifiers and modifies the information gain rule used in decision

trees for learning multiple tasks. AdaBoost is a boosting algorithm where it constructs a

”strong classifier” gradually by fine-tuning the weights and integrating one weak classifier

at a time using a greedy approach [45]. In this paper a multi-task decision tree algorithm is
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defined where an optimal split is found using the maximum value among information gains

of IGJ , IGU and IGM . IGJ refers to joint information gain which is defined as:

IGJ = IG
(
⊕N

j=1Yj; a
)

(21)

Moreover, the unweighted sum of individual task information gains (IGU ) and the maximum

value among the individual IGs (IGM ) are used as:

IGU =
T∑

j=1

IG
(
Yj; a

)
(22)

IGM = max
{
IG
(
Yj; a

)
, j = 1, . . . , N

}
(23)

Unlike traditional decision trees where final decisions are typically made at the leaves, a

MT-DT may reach a conclusive decision for certain tasks within an internal test node. This

occurs when the internal test node gathers adequate information to classify an instance

pertaining to a particular task. As a result, a decision leaf is incorporated into the

tree, containing the appropriate classification decision for that specific task and algorithm

proceeds with the unresolved tasks. In order to enhance overall classification accuracy

the paper focus lies in concurrently addressing N classification tasks. The input of the

MT-Adaboost algorithm is the training sample for each classification task j ∈ {1, 2, ...N}

whereas the output is the multi-task classifier H . The complete MT-Adaboost algorithm can

be seen in algorithm 2.For each boosting iteration (t = 1, 2, ...T ) the weak learner (WL)

returns a multi-task decision tree classifier ht using the training sample and distribution

over (X ,Y) (D). When the classifier ht accurately categorizes the samples, their weights

undergo multiplication by βt and division by the normalization constant Zt. The values of

βt fall within the range of 0 ≤ βt ≤ 1. Consequently, the weights are reduced following the

multiplication process. The ultimate classifier H for a specific task j is defined with respect

to the highest ln(1/βt) weight value.
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Algorithm 2 Algorithm for a MT-Adaboost [7]

Input: S = ∪N
j=1

{
ei =< xi, yi, j >| xi ∈ X ; yi ∈ Yj

}
Output: Classifier H defined as Hj(x) = argmax

y∈Yj

(∑i=T
i=1

(
ln(1/βt)

))
, 1 ≤ j ≤ N

1: D1 = init(S) initialize distribution

2: for t=1 to T do

3: ht = WL(S,Dt) {train the weak learner and get an hypothesis MT-DT }

{ht : X → Y1 × . . .× YN }

4: Calculate the error of ht : ϵt =
∑N

j=1

∑
i:ht

j(xi )̸=yi
Dj (xi).

5: if ϵt > 1/2 then

6: Set T = t− 1 and abort loop.

7: end if

8: βt =
ϵt

1−ϵt

{ Update distribution: }

9: if ht
j (xi) == yi then

10: Dt+1 (ei) =
Dt(ei)×βt

Zt

11: else

Dt+1 (ei) =
Dt(ei)
Zt

12: end if

13: end for

{Where Zt is a normalization constant chosen so that Dt+1 is a distribution }

14: return H

Furthermore, Ying et al. [8] once again employ a boosting technique to address a multi-task

learning objective. A multi-task Gradient Boosting Machine (MT-GBM), is built by utilizing

GBDT method where decision trees are trained sequentially. In contrast to AdaBoost, the

emphasis in gradient boosting is on optimizing a differentiable loss function. In the paper,

the tree is split using multi-task losses which is based on Gradients and Hessians.

33



L∗ = −1

2

T∑
j=1

G2
j

Hj + λ
+ γT (24)

In order to split the node, Ensemble Gradients (Ge) and Hessians (He) are used and defined

as:

Ge = fG(G1, G2, ..., G3) (25)

He = fH(H1, H2, ..., H3) (26)

In this equation, function f is employed to assess the correlation among the gradient vectors

corresponding to each label in the ongoing iteration. On the other hand, for updating the the

leaf value Updating Gradients (Gu) and Updating (Hu) are used. Each leaf node corresponds

to multiple values as in figure 3.1. Finally, all gradients are gathered and a shared decision

tree structure is found in order to learn multiple tasks.

Figure 3.1 Gradients for splitting and updating leaf value
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In [9], the author proposes a novel approach called MT-ExtraTrees, a tree-based ensemble

method for both classification and regression, built upon extremely randomized trees.

ExtraTrees effectiveness in efficiently handling big datasets enhances its attractiveness.

MT-ExtraTrees is described as a multi-task learning method that employs a binary decision

tree ensemble. The tree incorporates branches exclusively allocated to specific subsets of

tasks that exhibit similar behavior.

In addition to introducing a novel algorithm, objective of the studies is to address and mitigate

the challenge of catastrophic forgetting. Catastrophic forgetting is an important problem

for continual learning. Continual learning characterizes a learning framework wherein the

model is systematically exposed to a variety of data and tasks sequentially [46]. In the

initial research conducted by McCloskey and Cohen, it was discovered that when training

new tasks, neural networks exhibit a proclivity to discard or neglect information previously

acquired from tasks that were trained earlier. Catastrophic forgetting has been solved in

streaming decision trees by using a class-conditional attribute estimation[5]. There are hardly

any resources found except the paper [5], for catastrophic forgetting problem solved for

decision trees. However, there are many resources for neural networks such as [47] [48] etc.

However, this paper is inspired by the idea of [10] which presents a method for training

a single neural network that simultaneously learns K different tasks. The same number of

parameters can be used to train a single task and a multiple-task operation within a single

neural network architecture. Nevertheless, the paper employed neural networks. However, it

will provide valuable insights for future studies for the thesis.

Within the framework of parameter superposition, multiple models are concurrently

encapsulated within a unified set of parameter. The set of parameters are denoted as

W1,W2, ...WK for each K number of tasks. This means that for each K task, a set of

parameters is learned separately and kept in superposition with one another as in figure 3.2.

Moreover, the models could also be taken back separately after the superposition.
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Figure 3.2 Superposition of parameters

For neural networks, the main equation is written as:

y = Wx (27)

where we multiply the inputs
(
x ∈ ℜN ) with a weight matrix

(
W ∈ ℜM×N ) and compute

the output. And for a parameter superposition problem the equation is rewritten as:

yk = W (Ckx) (28)

According to [10], in order to reach the specific parameters related to each task ”context”

information can be used. Under the assumption of small subspace ℜN exist for each WK ,

the transformation of every individual WK can be obtained using the context information

(C−1
k ). As seen in figure 3.3, each WkC

−1
k is mutually orthogonal with each other. And, each

task-specific parameter can be stored or retrieved by using a context. Since these vectors are

in different subspaces and do not overlap with each other, equation can be summarized as:

W =
K∑
i=1

WiC
−1
i (29)

Due to its computational and memory advantage, the context vectors are chosen as c(k)j ∈

{−1, 1} for this literature study. This is called the binary superposition. There are many

other superposition types such as rational superposition, complex superposition etc.
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Figure 3.3 Storing and retrieving ωk using context information [3]

Equations has been applied to the layers of the whole neural network model and the final

equation is written as:

x(l+1) = g

(
W (l)

(
c(k)(l) ⊙ x(l)

))
(30)

where g() is a non-linearity function. For this study, RELU has been used as a non-linearity

function.

The ”Input interference” scenario, where the input distribution changes with respect to time,

has been studied. Changing the input distribution means obtaining new tasks over time. In

order to obtain new tasks over time, permuted MNIST dataset has been used. Permuted

MNIST dataset is obtained by permuting image pixels over time which can be seen in figure

3.4.

Figure 3.4 Permuted MNIST task[4]

Permuted MNIST dataset has been applied to fully connected networks for different numbers

of units respectively as 128, 256, 512, 1024, and 2048. The identical iteration number and
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permutation period, as outlined in the paper referenced as [10], are employed in this context.

In table 3.1, some of the parameter’s values have been shown.

Parameters Values
Activation Function RELU

Iteration number 50000
Number of units 128, 256, 512, 1024 and 2048

Permutation period 1000
Batch size 128

Table 3.1 Parameters defined for the experiment

The permutation period (P) indicates that the inputs are permuted after every 1000 iterations.

This means that, when the number of iterations (N) is 50000, 50 different tasks (T) are

obtained. This can be shown as:

T = N/P (31)

Moreover, for each task, a new context vector has been chosen. The context is randomly

chosen from values of {−1, 1} for every permutation period. The feature vector has been

calculated from equation 28 when the forward function is called. According to [10], more

units mean a bigger network and fitting more data which causes the network to be robust

to catastrophic forgetting. Therefore, as seen in figure 3.5 larger networks behave better for

the parameter superposition model. The classification accuracy is much greater in a network

with 2048 units.

For multi-class problems, displaying the cross-entropy loss provides a valuable perspective.

As expected, the total loss and cross-entropy loss get smaller as the number of units increases

in a network as seen in figures 3.6 and 3.7. The cross-entropy loss decreases when there is a

less disparity between the predicted probability and the true label.
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Figure 3.5 Accuracy vs. Number of Units

Figure 3.6 Cross Entropy Loss vs. Number of Units

Figure 3.7 Loss vs. Number of Units
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4. PROPOSED METHOD

In this section, the full decision tree structure and the switching mechanism are presented.

The first part for this section introduces the algorithm responsible for constructing the entire

decision tree structure, shedding light on its fundamental components. Subsequently, in

the second part of this section, the parameters fine-tuned through the genetic algorithm are

presented and a comprehensive understanding of the optimization process is provided.

4.1. Full Decision Tree Structure

A single decision tree structure has to be chosen in order to switch between datasets. At the

beginning of the study, a decision tree structure was chosen based on the maximum depth

criteria. The maximum depth criteria means choosing the decision tree structure of a dataset

that has the maximum depth. Each dataset has its own decision tree and therefore, different

depths. The initial concept was to build a decision tree based on the dataset tree which

has the highest depth and optimize the thresholds, features, and classes for each dataset.

However, it is hard to fit different datasets where there is a specific tree split and path since it

represents specific data. Accommodating diverse datasets becomes challenging when aiming

to build a specific tree that represents distinct sets of data. As illustrated in Figure 4.1 and

Figure 4.2, for instance, the Iris and wheat seeds datasets exhibit disparate tree splits and

depths. A dataset featuring an initial right split leading to a leaf node might have resulted

in undesirable outcomes when applied to the Iris dataset. This is due to the distinctive node

generation pattern of the Iris dataset, which originates from the right side.

A better way to reach the solution is to use a full tree model as in figure 4.3 where the

switching mechanism is much more simple. The full tree (FT) is a tree where every node has

zero or two children. It was easier to achieve better results in this structure. According to

this full-tree model, the depth of the full tree is selected larger than or equal to the maximum

depth among datasets.
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Figure 4.1 Decision tree for Iris dataset

Figure 4.2 Decision tree for Wheat seeds dataset

Given that the decision tree is set to be optimized through a genetic algorithm, it becomes

imperative to define a cost function. The cost function of the decision tree model is chosen
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Figure 4.3 Full Tree Structure

as:

J =
m∑
i=1

100− αi (32)

where, α is the accuracy percentage, and indicates the percentage of data that are correctly

classified. Since the accuracy of the entire data set should be examined, the cost function

is written in terms of αm. Moreover, increasing the total accuracy is critical. Therefore, a

summation symbol is added to the definition of the cost function at the outermost part. For

the total number of datasets (m) the accuracy must be increased.

The algorithm for the full decision tree can be written as in Algorithm 3. In full tree there

is no term as finding best split as in decision tree structure. Every node is split until the

maximum depth is reached. The stopping condition of the full decision tree is defined with

respect to the maximum depth of the entire tree. The genetic algorithm comprehensively

updates the entire full tree structure. Parameters, including class labels, threshold values,

and the feature array, are fed into the genetic algorithm, where they undergo a fine-tuning

42



process. By iteratively reducing the cost function, the algorithm fine-tunes the parameters

and enhances the overall performance and efficiency of the optimization process. The genetic

algorithm tries to converge towards an effective solution and, therefore, finds the optimal

parameters.

Algorithm 3 Algorithm for Full Decision Tree Model [13]
Input: Training set S, attribute set A

Output: Full decision tree structure

TreeGrowth(S,A) :

1: if stoppingCond(S,A) = true then

2: leaf = createNode()

3: leaf.label = classLabels

4: return leaf

5: else

6: root = createNode()

7: root.test cond = split(S,A)

let V = { v | v is a outcome of root.test cond }

8: for each v ∈ V do

9: Sv = {s | root.test cond(e) = v and s ∈ S }

10: child = TreeGrowth(Sv,A)

add child as descendent of root and label the edge (root → child ) as v

11: end for

12: return root

13: end if

4.2. Switching Model

Every dataset possesses its distinctive decision tree representation, where features,

thresholds, classes, and splits can vary. Integrating decision trees from diverse datasets

into a unified full tree model demands considerable effort due to these inherent differences.

However, the existence of a full tree model with consistent positions for features, class sets
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and thresholds underscores the significance of optimization in streamlining this integration

process. Especially in mask structure there can be a huge amount of parameters that need to

be optimized through a genetic algorithm. Due to its extensive depth, a tree will have large

number of threshold values. Consequently, the computation time may become excessively

high due to the processing of huge number of threshold values in a tree with significant

depth. In genetic algorithm, it is important to define the contraints on the optimization

parameters which are the thresholds, classes, and features for each dataset. By constraining

the optimization parameters, the algorithm will operate within specified bounds and may

reach the optimal solution faster. Before, starting the genetic algorithm process, the initial

step involves constructing decision trees for each dataset. Subsequently, for each tree (tm),

the respective depths are determined. Then, the maximum depth among them is chosen.

Then, the parameter D, representing the depth of the full tree to be constructed, is determined

as follows:

D ≥ max
(
depth (t1) , depth (t2) , . . . , depth (tm)

)
(33)

The full tree depth, D, is a hyperparameter. D should be chosen greater or equal to the

maximum depths among datasets as defined in equation 33. After finding this limit value the

highest D value can be selected by trial and error. Once the full tree depth is determined, the

construction of the tree can proceed accordingly. The established full tree depth will provide

valuable insights into the numerical values and constraints for the optimization parameters.

First of all the total number of thresholds are defined as (n):

n = 2D−1 − 1 (34)

When the tree depth is large, the exponential calculations result in a significant number of

thresholds that need to be optimized. The mask is a matrix that stores threshold values for

each dataset which is shown in equation 35. The number of rows in the mask matrix is
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equal to the number of datasets, while the number of columns corresponds to the number of

thresholds.

mask =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...

am1 am2 . . . amn


m×n

(35)

The total number of threshold variables within a mask structure is defined as:

nvarmask = mn (36)

The class array consists of dataset labels. The size of the class array is [1, nvarclass].

Moreover, the number of feature variables should be the same as the number of threshold

variables.

nvarclass = 2D−1 (37)

nvarfeature = n (38)

It should be noted that the dataset has a certain class and feature numbers. This should not be

confused with the variable size here. For example, if the dataset has three classes, the class

array will have size of nvarclass. However, this array consists of the three class labels.

5. EXPERIMENTAL RESULTS

The simulations are performed in MATLAB. First of all, the designed model is tested on a

solvable problem, where the datasets are generated via switched decision trees. This ensures
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that there is a solution with zero cost. Then, the model is applied to different datasets and an

appropriate tree with an associated mask is sought.

5.1. Performance Evaluation

In order to evaluate the classification accuracy and performance of the proposed method for

different classification tasks, firstly, data obtained from a solvable problem is used. Then,

some of the real-world datasets are used to demonstrate the merits and effectiveness of the

proposed scheme. Utilizing parallel processing can enhance processing speed, particularly if

there is a multicore processor.

5.1.1. Using a Solvable Problem Dataset

First of all the problem is simplified. Matlab’s ”meshgrid” command is used to create a

two-dimensional array that contains values between -1 to 1. The array can be thought of

as a dataset. And, the data has passed through a decision tree where each of the splitting

values and features are known. Also, each node split is defined. Finally, the aim is to solve

the problem in reverse. The main problem is to find the decision tree using the datasets. In

figure 5.1, the problem is visualized. Each leaf contains a class label whereas each internal

node has a feature and threshold value. In order to switch between datasets the mask matrix

is used. The feature and class labels are stationary. On the other hand, the thresholds are

switched with respect to the datasets.

Consequently, the new proposed algorithm has worked as expected on a solvable problem.

The cost function is minimized and it has reached zero as shown in figure 5.2. This indicates

that the accuracy is maximum and the decision tree parameters for the solvable problem has

been found through the proposed algorithm. As the cost function is formulated based on

incorrect class predictions, the genetic algorithm endeavors to minimize the occurrences of

misclassified classes. In figure 5.3, the accuracies are shown. As expected, while the cost

function decreases, the accuracies for each dataset increase. The drop in accuracy at higher
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Figure 5.1 Simple decision tree structure for a solvable problem

values is attributed to the stochastic nature inherent in the genetic algorithm.

The genetic algorithm requires the definition of two essential parameters: population size

and the number of generations. Since there are fewer variables in the algorithm that need

optimization, the population size is set to 150 as seen in table 5.1. The maximum generation

number is found by trial and error.

GA Parameters Values

Population Size 150

Max Generations 200

Number of Variables 13

Depth of Full DT 3

Elite count 8

Crossover Fraction 0.8

Table 5.1 GA parameter settings for solvable problem

The mask parameters, feature, and class array are found through the new algorithm. The

best cost value indicates the minimum or optimal value reached among all members of the

population. On the other hand, the mean fitness shows the average of all members of the
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current population. For populations with low diversity, the mean and best value are the same

or close to each other.

Figure 5.2 Solvable problem simulation

Figure 5.3 Accuracies for dataset 1 and 2 for a solvable problem
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5.1.2. Using Real Datasets

A literature review was done for datasets in order to find better results. The datasets used

for classification tasks were filtered. For classification tasks, the selected datasets are used as

benchmarks in literature. These datasets are found from Kaggle and UCI. For each dataset

the knowledge of feature, class size, number of instances and data source was examined and

finalized in table 5.2. All of the datasets used in the study has been splitted into two subsets

of %80 train data and %20 test data.

Dataset Name Feature Size Class Size No. of instances Data Source

Golf Play Dataset with Extended Features 4 2 14 kaggle

Iris dataset 4 3 150 UCI

Balance Scale 4 3 625 UCI

Car Evaluation 6 4 1728 UCI

Seeds 7 3 210 UCI

Penguin 7 3 335 Kaggle

Diabetes prediction dataset 8 2 100000 kaggle

Tic-Tac-Toe Endgame 9 2 958 UCI

Water Quality and Potability 9 2 3276 kaggle

Breast Cancer Wisconsin (Original) 9 2 699 UCI

(Diabetes, Hypertension and) Stroke Prediction 10 2 40910 kaggle

Heart Failure Prediction Dataset 11 2 918 kaggle

Pumpkin Seeds Dataset 12 2 2500 kaggle

Heart failure clinical records 12 2 299 UCI

Heart Disease Dataset 13 2 303 UCI

(Diabetes,) Hypertension (and Stroke) Prediction 13 2 26083 kaggle

Wine 13 3 178 UCI

Statlog (Heart) Data Set 13 2 270 kaggle

Adult 14 2 48842 UCI

Credit Approval 15 2 690 UCI

Diabetes (Hypertension and Stroke) Prediction 17 2 70692 kaggle

Table 5.2 Datasets from the Kaggle and UCI repository

The order of the datasets is arranged based on the feature size. To observe the results

systematically, the initial focus is on datasets with the smallest feature size. Also, if the
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class sizes are equal the results should be better. Therefore, the simulations are done with

datasets that have the same feature and class size. Since the number of instances increase the

computation time, it is good to start with Iris and balance dataset. Due to the high number of

instances, the computation time in MATLAB significantly increases.

5.1.2.1. Iris and Balance Dataset Iris dataset is an iris plant dataset that consists of

four feature measurements from three different species [49]. The features of the Iris dataset

include sepal length, sepal width, petal length, and petal width. These feature measurements

consist of continuous-valued numbers. Moreover, the dataset consists of three classes: Iris

setosa, Iris versicolor and Iris virginica. In balanced dataset there are approximately equal

number of instances across each class. As seen in figure 5.4, Iris is a balanced dataset.

Figure 5.4 Class distribution plot for Iris dataset

On the other hand, the second dataset which is ”balance scale” gives information on whether

the balance scale tip is at left, right or balanced. The dataset is classified according to the

greatness between (left-distance * left-weight) and (right-distance * right-weight). If the

values are equal it is classified as balanced. Moreover, it is important to note that this dataset

consists of categorical values for each measurements. It is crucial to emphasize that the

dataset is imbalanced which means that it contains unequal distribution of classes. In figure
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5.5, it can be observed that class ’B’ constitutes the minority, accounting for 8% of the

dataset. Since the dataset is imbalanced accuracy performance metric may be misleading.

The predictions made for the minority class may not be sufficient.

Figure 5.5 Class distribution plot for balance dataset

During the operation of the algorithm for these datasets, the parameters of the genetic

algorithm defined in table 5.3 are used. As discussed in section 2.3.2., since there are 509

variables passed into the genetic algorithm, the population size is set to 200. Because of the

large number of optimized variables, the maximum generation is chosen as 500.

GA Parameters Values

Population Size 200

Max Generations 500

Number of Variables 509

Depth of Full DT 8

Elite count 10

Crossover Fraction 0.8

Table 5.3 GA parameter settings for datasets Iris and balance

51



Training
Accuracy (%)

Test
Accuracy (%)

Iris Dataset 98.33 % 86.67 %
Balance dataset 75.20 % 70.97 %

Table 5.4 Train and test accuracy for iris and balance dataset

In order to make predictions, the dataset has been splitted into two subsets as: %80 train

data and %20 test data. Both train and test accuracy are separately calculated and shown in

table 5.4. To estimate the performance on a new data, the test data is not used in the training

process. By using this new decision tree structure the classification accuracy’s for ”balance

scale” dataset is approximately %75, whereas for Iris is %98. The model achieved sufficient

performance. In single decision tree based models the classification accuracy values for

”balance scale” dataset was approximately %87, whereas for Iris it was %95 − 100. The

simulation result is shown in figure 5.6. As time progresses, the cost function can only

minimize to a certain extent.

Figure 5.6 Simulation of iris and balance dataset with depth of 8

The study is also examined with different genetic algorithm parameters in order to decrease
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the cost value. According to the study [50], decreasing elite count can lead to better results.

However, decreasing elite count has made a negative effect on our thesis study. Especially

when there were fewer best score values in the population, a lower value was chosen for

the elite count. After the change in the value of the elite count, no further decrement has

been observed in the cost function.Therefore, the study continued by increasing the depth

of the full tree as shown in figure 5.7. However, it took longer time to reach the similar

results. Therefore, it is better to choose the full tree depth by adding maximum of three to

the maximum depth among dataset depths.

Figure 5.7 Simulation of iris and balance dataset with depth of 10

The confusion matrices for each dataset is shown in figure 5.8 and 5.9 in order to show the

classification performance. Also, the recall, precision, FNR and FDR results are shown in

figure. In Iris dataset, the classes ”setosa” and ”versicolor” has recall of 100 % . The recall

value of 63.6% for ”virginica” indicates that out of 11 samples belonging to this class, only 4

of them were correctly identified. For ”versicolor”, model predicts the class with a precision

of 73.3% . Precision indicates that model classifies 15 samples as ”versicolor” whereas 11

samples are actually belonging to this class.
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Figure 5.8 Confusion matrix of Iris dataset

Figure 5.9 Confusion matrix of balance dataset

In balance dataset, as expected, model’s performance on the minority class is low due to the

less amount of class portion of the minority class. Applying over-sampling to the minority

class, using F1-score as an evaluation metric can be used for classifying the imbalanced
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dataset with higher performance. As a further study, the cost function can be modified

according to desired performance criteria. Therefore, if the goal is to increase the F1 Score,

the cost function should be chosen with respect to the F1 score instead of accuracy.

5.1.2.2. Pumpkin Seeds and Heart Failure Clinical Records Dataset Pumpkin Seeds

is a dataset that consists of two types of pumpkin seeds which are ”Çerçevelik” and ”Ürgüp

Sivrisi” [51]. The dataset has 12 features such as: Major axis length , minor axis length,

perimeter, convex area, area, equivalent diameter, aspect ratio, roundness, compactness,

extent, eccentricity and solidity. These feature measurements consist of continuous-valued

numbers. The dataset can be thought of balanced since the class proportions are nearly the

same as seen in figure 5.10.

Figure 5.10 Class distribution plot for pumpkin seeds dataset

On the other hand heart failure clinical records dataset has two boolean classes where it

indicates if the patient died (1) or not (0) [52]. Moreover, it has 12 features as: age, anaemia,

creatinine phosphokinase level, diabetes, ejection fraction, high blood pressure, platelets,

level of serum creatinine, level of serum sodium, sex, smoking and time. As seen in figure

5.11, the class distribution is imbalanced. Category ”1” is the minority class.
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Figure 5.11 Class distribution plot for heart failure record dataset

The genetic algorithm has been initialized using parameters defined in table 5.5. For these

datasets, the depth of the full decision tree is smaller. Therefore, there are less number of

variables to optimize.

GA Parameters Values

Population Size 200

Max Generations 500

Number of Variables 253

Depth of Full DT 7

Elite count 10

Crossover Fraction 0.8

Table 5.5 GA parameter settings for datasets pumpkin seeds and heart records

After approximately 80 iterations, the algorithm could not converge to a better solution as

seen in figure 5.12. It may be stuck on local optimum point. Since finding a decision tree

is a NP-complete complex problem, the traditional decision trees may want to reach to local

optimum instead of global optimum [53].
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Figure 5.12 Simulation of pumpkin seeds and heart records dataset

It can be seen that in table 5.6, the training and test accuracy is almost the same. This

situation shows that the model behaves similar in the test data which is usually considered as

a positive outcome.

Training
Accuracy (%)

Test
Accuracy (%)

Pumpkin Seeds Dataset 87.65 % 87.40 %
Heart records dataset 70.83 % 61.07 %

Table 5.6 Train and test accuracy for pumpkin seeds and heart records dataset

The confusion matrices for the two datasets are given in figure 5.13 and 5.14. The heart

failure record dataset comprises approximately 8% of the sample size of the pumpkin seed

dataset. This indicates that the heart failure record dataset is relatively small when compared

with the pumpkin seed dataset. It is important to mention that the train and test split gives

better performance results when the dataset is large. When the dataset is small, there will be

insufficient amount of training data to learn the model.
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Figure 5.13 Confusion matrix of pumpkin seeds dataset

Figure 5.14 Confusion matrix of heart failure record dataset

5.1.2.3. Penguin and Seeds Dataset Penguin dataset contains three types of classes

which are Adelie, Chinstrap and Gentoo [54]. The dataset has 7 features such as: island,
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culmen length (mm), culmen depth (mm), flipper length (mm), body mass, sex and year. The

dataset is considered balanced as seen in figure 5.15.

Figure 5.15 Class distribution plot for penguin dataset

Seeds dataset contains three different kinds of wheat which are Kama, Rosa and Canadian

[55]. The dataset has 7 features such as: area , perimeter, compactness , length of kernel,

width of kernel, asymmetry coefficient and length of kernel groove. As can be seen in figure

5.16 the class distribution is imbalanced.

The genetic algorithm parameters are defined as in table 5.7.

GA Parameters Values

Population Size 200

Max Generations 500

Number of Variables 253

Maximum Depth of DT 7

Elite count 10

Crossover Fraction 0.8

Table 5.7 GA parameter settings for datasets penguin and seeds
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Figure 5.16 Class distribution plot for seeds dataset

The cost function is decreased until the value of 62.58 as seen in figure 5.17. The mean cost

value could not attain an appropriate level to induce a decrease for the optimal cost.

Figure 5.17 Simulation of penguin and seeds dataset
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The final results for train and test accuracy is summarized in table 5.8. The test and train

accuracy is low because the cost value did not decrease to a satisfactory level.

Training
Accuracy (%)

Test
Accuracy (%)

Penguin Dataset 73.13 % 71.64 %
Seeds dataset 64.29 % 54.76 %

Table 5.8 Train and test accuracy for penguin and seeds dataset

The confusion matrices in figures 5.18 and 5.19 shows the the predicated classes. There

were 13 samples of Chinstrap penguin in the dataset. However, the model did not predict

any Chinstrap penguin. The same situation happened for the seed dataset’s 3rd category. As

a result, the FNR for the both classes are 100 %.

Figure 5.18 Confusion matrix of penguin dataset

The depth of the full tree is a hyperparameter. Therefore, additional simulations were

conducted at a greater depth; nevertheless, these revealed a decrease in performance

associated with this modification as seen in figure 5.20.
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Figure 5.19 Confusion matrix of seeds dataset

Figure 5.20 Penguin and seeds dataset with depth of 8
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6. CONCLUSION

In this thesis, a new switched decision tree structure is proposed, which is built for the

classification of multiple datasets within a single switched decision tree structure. A single

full decision tree structure has been used and a mask is defined to switch between datasets.

The depth of the full decision tree is defined as a hyper-parameter. However, it is shown

that the full tree depth should be chosen bigger than the depth of decision trees obtained for

each dataset. The simulations showed that it is important to avoid excessively high full tree

depths, as they can cause the cost function to remain at elevated values.

The thesis provides insight into the applicability of genetic algorithms for finding critical

parameters of decision trees, including thresholds, features, and classes. Experimental

studies has been performed on a number of real-world scenarios. Moreover, it is shown

that for similar datasets, the classification accuracy is fairly good. Using the related

multiple datasets better results can be obtained. If the datasets differ from each other, the

lower accuracy values are expected. However, the proposed method demonstrates favorable

outcomes even when applied to unrelated datasets.

Further studies can be made to increase the accuracy for different datasets. A new perspective

can be added to increase the performance of the model. Moreover, the cost function can be

manipulated according to the desired performance metric. For imbalanced datasets, a cost

function that contains F1 score can be selected. The code can be implemented in Colab or a

GPU environment to speed up training. Overall, obtained results seem promising. The study

is generally useful in places where hardware resources are limited.
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