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The majority of earthquake-related losses are associated with fully collapsed buildings. So, the 

determination of the seismic risk of buildings is essential for building occupants located in 

active earthquake zones. Unfortunately, the existing techniques employed to assess the risk 

status of extensive building inventories lack the requisite speed and precision for dependable 

decision-making. Furthermore, post-catastrophe risk categorizations of structures heavily rely 

on the expertise of engineering teams. Consequently, the decision on risk distributions of 

building stocks before and after hazards requires more sustainable and precise methodologies 

that include other means of technological advancement. In this study, using a database 

consisting of 4,356 masonry buildings provided by the Ministry of Environment, Urbanization 

and Climate Change (general directorate of geographical information systems), Engineering 

Firms and Gazi University, the building properties were determined, and detailed static analyzes 

were made. Then, for the first time in the literature, a new, fast and accurate seismic evaluation 

method has been proposed, which is associated with detailed evaluation results of structures 

with the help of machine learning algorithms. Within the scope of the study, the data set was 

subjected to data preprocessing methods (Synthetic Minority Oversampling Technique 

(SMOTE), Backward Feature Elimination and Forward Feature Selection, Feature Importance, 

and Feature Correlation methods). First, fifteen parameters obtained from detailed seismic 
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analysis results, building drawings and building photographs were selected by applying data 

preprocessing and reduced to six parameters with the highest success impact. To achieve this, 

size reduction methods were used and considering some selected parameters from the street 

walking. In addition, the minority data classes were reproduced synthetically with the Synthetic 

Minority Oversampling Technique Method (SMOTE) during the training phase, and the 

success rate for test data was maximized. In this study, nine machine learning algorithms, 

namely; Logistic Regression, Decision Tree, Random Forest, Multivariate Adaptive Regression 

Spline, Support Vector Machine, K-Nearest Neighbor, Gradient Boosting Algorithm, Extreme 

Gradient Boosting Algorithm, LightGBM Algorithm and where all these algorithms work 

together with Voting Classifier Method are used. The risk layers of the buildings were estimated 

by creating risk classes according to the ratio of the floor shear force of the risky walls to the 

total floor shear force (Ve/Vr = RVS) or the damage detection level.. At the end of the study, 

this vulnerability assessment method that creates the risk layers of existing buildings in the 

literature and can determine the most dangerous or non-risk buildings class has been proposed. 

This is important for deciding the starting point of urban transformation and assessing the 

seismic vulnerability of buildings in different regions. As a result of the analysis of the 

algorithms in the study, the correct prediction rates of the three-tier risk class (RVS values) for 

the learning database (i.e., 3,484 buildings) and the test database (i.e., 872 buildings) of the 

proposed method were determined as approximately 99.19% and 86.58%, respectively. High 

success rates were also obtained in the estimation of RVS values with two and four layers. The 

parameter selections of the proposed method in the study were determined in a way that can be 

obtained from the photographs of the buildings with the Convolutional Neural Network 

structures. Therefore, without the need for technical personnel and without entering the 

building, with the automation methods of the structures, after the parameter selection, the 

estimations of the RVS values using machine learning methods can be made with high 

accuracy. This process is employed to identify, catalog, and prioritize the buildings at highest 

risk of sustaining damage in designated regions during an upcoming earthquake.. For this 

reason, this method is of great importance in order to determine and strengthen Turkey's weak 

structures and minimize the loss of life and property. 

 

Keywords: Seismic risk estimations, masonry structures, machine learning, seismic risk 

classification, Deep Learning, Pre-Trained Convolutional Neural Networks, dimension 

Reduction, SMOTE 
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Depremlerden kaynaklanan kayıpların çoğu, tamamen çökmüş binalarla ilişkilidir. Bu nedenle, 

aktif deprem bölgelerinde bulunan bina kullanıcıları için binaların sismik riskinin belirlenmesi 

büyük önem taşımaktadır. Ne yazık ki, büyük bina stoklarının risk durumunu tahmin etmek için 

kullanılan mevcut yöntemler, güvenilir, hızlı ve doğru karar vermek için yetersizdir. Ayrıca 

binaların büyük doğal afetler sonrası risk sınıflandırmaları tamamen mühendislerden oluşan 

teknik ekibin tecrübesine bağlıdır. Bu nedenle, bina stoklarının tehlikelerden önceki ve sonraki 

risk dağılımlarına ilişkin karar, diğer teknolojik ilerleme araçlarını içeren daha sürdürülebilir 

ve doğru yöntemler gerektirir. Bu çalışmada Çevre ve Şehircilik Bakanlığı, Mühendislik 

Firmaları ve Gazi Üniversitesi tarafından sağlanan 4356 adet yığma binadan oluşan veri tabanı 

kullanılarak bina özellikleri belirlenmiş ve detaylı statik analizleri yapılmıştır. Daha sonra 

literatürde ilk kez, yapıların ayrıntılı değerlendirme sonuçlarının makine öğrenmesi 

algoritmaları yardımıyla ilişkilendirildiği yeni, hızlı ve doğru bir sismik değerlendirme yöntemi 

önerilmiştir. Çalışma kapsamında veri seti veri ön işleme yöntemlerine (Sentetik Azınlık 

Yüksek Örnekleme Tekniği (SMOTE), Geriye Özellik Eleme ve İleriye Özellik Seçimi, Özellik 

Önemi ve Özellik Korelasyon yöntemleri) tabi tutulmuştur. Öncelikle ayrıntılı sismik analiz 

sonuçları, bina çizimleri ve bina fotoğraflarından elde edilen on beş parametre veri ön işleme 

uygulanarak seçilmiş ve sonunda başarı etkisi en yüksek altı parametreye indirgenmiştir. Bunu 

başarmak için boyut küçültme yöntemleri kullanılmış ve sokaktan elde edilebilecek verilerin 

olması göz önünde bulundurulmuştur. Ayrıca eğitim aşamasında Sentetik Azınlık Yüksek 
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Örnekleme Tekniği Yöntemi (SMOTE) ile azınlık veri sınıfları sentetik olarak yeniden 

üretilmiş ve test verilerinin başarı oranı en üst düzeye çıkarılmıştır. Bu çalışmada dokuz makine 

öğrenmesi algoritması; Lojistik Regresyon, Karar Ağacı, Rastgele Orman, Çok Değişkenli 

Uyarlanabilir Regresyon Spline, Destek Vektör Makinesi, K-En Yakın Komşu, Gradyan 

Artırma, Aşırı Gradyan Artırma, Hafif Gradyan Artırma Algoritmaları ve tüm bu algoritmaların 

birlikte çalıştığı Oylama Sınıflandırma Yöntemi kullanıldı. Çalışmada riskli duvarların kat 

kesme kuvvetinin toplam kat kesme kuvvetine (Ve / Vr =RVS) oranına veya hasar tespit 

seviyesine göre risk sınıfları oluşturularak binaların risk katmanları tahmin edilmiştir. Çalışma 

sonunda literatürde mevcut binaların risk katmanlarını oluşturan ve en tehlikeli veya risksiz 

bina sınıfını tespit edebilen bir yöntem önerilmiştir. Bu, kentsel dönüşümün başlangıç 

noktasının belirlenmesi açısından önemlidir. Çalışmadaki algoritmaların analizi sonucunda, 

önerilen yöntemin öğrenme veri tabanı (yani 3.484 bina) ve test veri tabanı (yani 872 bina) için 

üç katmanlı risk sınıfının RVS değerlerini doğru tahmin oranları sırasıyla yaklaşık %99,19 ve 

%86,58 olarak belirlenmiştir. İki ve dört katmanlı RVS değerlerinin tahmininde de yüksek 

başarı oranları elde edilmiştir. Çalışmada önerilen yöntemin parametre seçimleri Evrişimli Sinir 

Ağı yapıları ile binaların fotoğraflarından elde edilebilecek yöntemlere uygun olması da 

sağlanmıştır. Sonuç olarak, tez kapsamında en çok başarı yüzdesi elde edilen birleşik öğrenme 

ve tahmin etme yöntemi, teknik personele ihtiyaç duymadan ve binaya girmeden, yapıların 

otomasyon yöntemleri ile entegre olabilen, sokaktan yapılacak parametre seçimine uygun 

olarak RVS değerlerinin tahminleri yüksek doğrulukta yapılabilmektedir. Prosedür, belirli bir 

bölgede olabilecek bir deprem sırasında hasar görebilecek en savunmasız binaları tespit etmek, 

envanterini çıkarmak ve risk sıralamasını yapmak için uygulanır. Türkiye'nin zayıf yapılarının 

tespiti ve güçlendirilmesi bu nedenle can ve mal kaybının en aza indirilmesi için bu yöntem 

büyük önem taşımaktadır. 

 

 

 

Anahtar Kelimeler: Sismik risk tahminleri, yığma yapılar, makine öğrenimi, sismik risk 

sınıflandırması, Derin Öğrenme, Ön Eğitimli Evrişimli Sinir Ağları 
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1. INTRODUCTION 

Developing nations encounter various challenges related to urban planning and the quality 

of construction. This issue is mainly due to the lack of expertise, legislation and funds in 

developing countries. Also, the increase in population generally results in unplanned 

urbanization. The bad aspects of unplanned urbanization can only be seen by society when 

it becomes a problem for living. In other words, The haphazard development witnessed in 

many developing regions is unsustainable when it comes to effective city planning and 

urbanization.  The other aspect of this issue is that the low quality of construction causes 

loss of lives during natural hazards, including earthquakes, tsunamis, etc. Therefore, these 

countries are obliged to ameliorate their previous mistakes by implementing some 

precautions or re-urbanization methods. To this end, the non-vulnerable buildings should be 

filtered from the whole building stocks. This process requires a different approach. In the 

literature, there existed some attempts to determine the seismic vulnerability of individual 

buildings. But studies show that the results of these methods are far from reality when 

compared with detailed analyzes (Coskun et al. 2020). 

 

One of the most critical problems in our country is the earthquake risk. Our nation is located 

in the Mediterranean-Alpine-Himalayan seismic belt, which is one of the most active and 

seismically active areas in the world. According to the studies carried out as of 2010, it has 

been reported that one-fifth of the total earthquakes in the world occurred in the 

Mediterranean-Alpine-Himalayan seismic belt. Approximately 93% of our country's lands 

and approximately 98% of its population are in danger of earthquakes. This fact has been 

proven many times in recent years, both by the seismic hazard studies conducted in the 

literature on our country and by earthquakes of magnitude below and above that we 

encounter in our daily lives. As obtained from the annual reports published by the Kandilli 

Observatory, the number of earthquakes with a magnitude of five or more that have occurred 

in our country in the last twenty years is 73. Although it is challenging to determine the 

material and moral losses of our country during these earthquakes, according to the report 

published by the General Directorate of Disaster Affairs, Earthquake Research Department, 

Seismology Branch Directorate for the years 1900-2009, a total of 554,365 buildings were 

destroyed or severely damaged and out of use. And approximately 92,463 of our citizens 

lost their lives. The Disaster and Emergency Management Presidency Earthquake 
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Department's Van, İzmir, and Elazığ Earthquakes Report states that in the October 23, 2011, 

Mw = 7.2 Van Earthquake, 48666 buildings were destroyed or severely damaged, 604 people 

died, and 1301 people were injured. In the aftermath of the earthquake, significant damage 

was observed not only in structures designed in adherence to earthquake regulations 

predating 2007 but also in buildings designed according to the 2007 Turkish Earthquake 

Code. In the report, 117 dead, 1,034 injured and 15,000 homeless were recorded for Turkey, 

while in Greece; it was stated that there were 2 dead and 19 injured people. In addition, the 

number of destroyed buildings was determined as 71, and the number of buildings to be 

demolished urgently and heavily damaged was 653. In the Elazığ earthquake, with a 

magnitude of Mw = 6.8, 42 people lost their lives, 137 people were injured, and more than 

4,000 structures were severely damaged. According to the published report, only after the 

Elazığ earthquake the money that came out of the state's coffers exceeded 50 million dollars. 

The most destructive earthquake experienced recently is the 2023 Kahramanmaraş 

earthquakes. On February 6, 2023, two earthquakes with magnitudes of 7.7 Mw and 7.6 Mw 

struck, occurring nine hours apart. These seismic events had their epicenters in the Pazarcık 

and Ekinözü districts of Kahramanmaraş. Official statistics indicate that the combined 

impact of these earthquakes resulted in significant casualties. In Turkey, a minimum of 

50,783 individuals lost their lives, while in Syria, official records indicate that at least 8,476 

people perished. Furthermore, the total number of injuries exceeded 122,000 people. . 

According to the 2023 Parliamentary Earthquake Investigation Commission Report, the total 

cost of the earthquake was 148.8 billion dollars. 

 

In order to reduce the destructive effects of these earthquakes, many studies have been 

carried out to identify existing buildings in Turkey. Law No. 6306 was published on 

16/05/2012 for the identification of buildings in Turkey that are at risk of severe damage or 

collapse under the risk of earthquakes and the demolition and construction of new ones. 

When the initial publication of the law occurred, the approach used to assess the earthquake 

susceptibility of pre-existing structures relied upon the recommendations detailed in the 7th 

Chapter of the Regulations for Constructing Buildings in Seismic Areas. This chapter, titled 

'Assessment and Reinforcement of Existing Buildings,' was introduced in 2007." 

Subsequently, the damage level of the existing structures was tried to be estimated with the 

calculation methods titled Principles Regarding the Detection of Risky Buildings in the 

annex of the Implementation Regulation of the Law No. 6306 published in 2013 and 2019. 
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In this context, a method was published in the annex of the Implementing Regulation of the 

same Law, which calculates the rapid risky structure detection of existing structures. 

Although technical experts are required when using this method, the accuracy rate is very 

low compared to the detailed analysis of the structure (Coskun, 2019).  

 

When the activity reports of the Ministry of Environment, Urbanization and Climate Change 

are examined, the number of buildings demolished by the end of 2022 within the scope of 

this law is 242212 buildings. About 80% of these have been replaced with safer and more 

robust structures. However, considering the millions of risky buildings in Turkey, the 

conversion of such a small number of buildings shows that more destruction and loss of life 

await us in the upcoming disasters. To address and resolve this issue, it is essential that the 

buildings in Turkey are prepared for possible earthquakes, starting with the structures that 

require urgent intervention, by determining the priority order of the risky ones quickly and 

effectively before being exposed to an earthquake. But, It's a difficult task to continuously 

examine and monitor a building's seismic safety and vulnerability., Especially when 

extensive site assessments are required during the methods used with the first detailed data 

entry. The methodologies designed to determine the seismic risk by examining individual 

buildings in detail were quite mature, but these include material testing, plan drawings, 

material quality, etc. The main reason for this is; inputs and procedures require significant 

time, manpower, and computational power of experienced engineers. This required the use 

of sophisticated analysis tools with detailed inputs, such as these detailed seismic assessment 

techniques becoming useless if the number of buildings in question reaches thousands or 

more. In other words, These methodologies are not suitable for assessing the seismic risk of 

a substantial inventory of buildings  (Coskun and Aldemir, 2022).  

 

Also, most losses from earthquakes are associated with the local or total collapse of 

buildings. Especially examining structural cracks or determining the wall type in a masonry 

structure damaged by an earthquake is a very dangerous task for civil engineers. To 

overcome these difficulties, with the advancement of technology, it has become essential to 

determine the seismic risk of buildings by observations that can be made from outside the 

building. (Coskun et al., 2020) This motivates the search for technological solutions for the 

safety assessment of existing structures. Machine learning and artificial intelligence studies 
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are at the forefront of these technological solutions. With the advancement of machine 

learning, studies to assess the seismic risk of buildings, especially from the outside, have 

started to increase recently. Yet, none of these studies have put forth a versatile seismic risk 

assessment method for masonry structures that integrates machine learning algorithms. 

However, Masonry buildings make up a substantial portion of the urban infrastructure, 

constituting the majority of the existing building stock across European territories. While 

more recent structures often utilize reinforced concrete or steel frameworks, the historical 

and established urban landscape predominantly consists of masonry buildings.In this 

context, it is impossible to convert so many masonry stocks through detailed analysis, both 

in terms of technical staff and cost. For the stated reasons, current studies have focused on 

rapid seismic risk assessment methods. This is the key to salvation for fast and cheap 

transformation, especially before the Istanbul earthquake, which is expected to happen in the 

near future(Cardinali et al., 2022).  

Nonetheless, none of the studies within the existing literature have introduced a flexible 

seismic risk assessment approach for masonry structures that incorporates machine learning 

algorithms. Therefore, this thesis focused on developing a simple, rapid visual scanning 

method to estimate the damage level of masonry buildings using machine learning 

algorithms. It is aimed that the parameters required for the Procedure used in the proposed 

method can be collected quickly and safely without the need for technical personnel to enter 

the building. 

  



5 

 

2. LITERATURE REVIEW 

2.1.  Introduction 

Over the past few years, there has been a notable increase in the attention given to evaluating 

seismic risk for masonry buildings situated in areas susceptible to earthquakes. The way all 

kinds of structures are evaluated has changed due to increased computing capacity, which 

makes it possible to represent more degrees of freedom.At the same time, the utilization of 

artificial intelligence in the construction discipline allowed the calculation methods to be 

made faster. It is unrealistic to try to make a comprehensive review of all the methods applied 

in this section. Instead, studies on rapid risky structure detection of structures, their success 

rates and their contributions to the literature will be mentioned. This section will be divided 

into two main sections. Methods in rapid building safety assessments using artificial 

intelligence in risk analysis and rapid building safety assessments made with more detailed 

or statistical approaches will be reviewed. While these methods differ significantly in their 

assumptions and complexity, the question is "Which method is better?" should not be. 

Instead, realizing that all these methods are suitable for specific applications, their 

contributions to the literature will be mentioned.  

 

Vulnerability is defined by taking into account other factors such as the material of the 

structure, ground effect, condition of the buildings, construction quality, irregularity in the 

structure's design, earthquake resistant design level (Jeddah, 2016). In general, the studies 

were carried out on the basis of these features of the structures. 

 

The field of machine learning (ML), which includes algorithmic methods for learning from 

data, is one of the most important areas of science today. Intelligent systems that are driven 

by data have the capacity to transform human knowledge and experience into timely and 

well-informed decision-making. When attempting to forecast the future accurately, they mix 

concepts from the disciplines of statistics and probabilities with mathematical optimization 

approaches. Modern scientific research is leading the way in building seismic assessment. A 

number of scholars have presented forth techniques for calculating the damage response of 

structures subjected to seismic vibrations without extensive analysis. Modern fast computing 

techniques based on the usage of ML have been developed as a result of the increase in 
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computing capacity. However, a lack of experience with using complex ML architectures 

may have an impact on the AI model's performance, which ultimately lowers the algorithm's 

generalization and reliability, which should be characteristics of these systems. The most 

recent studies provide an interpretable, completely validated ML technique for forecasting 

building damage from earthquakes (Demertzis et al., 2023). 

 

In the literature, studies have also been carried out with methods that can be detected by 

walking on the street in rapid scanning. Rapid assessment methods started with (Federal 

Emergency Management Agency, 1998) in the US  and (Standard for Seismic Evaluation of 

Existing Reinforced Concrete Buildings, 2001)in Japan in the early 2000s. At the beginning 

of the first studies on this subject, (Hassan and Sozen, 1997) used the data from 46 buildings 

damaged in the earthquake in Erzincan in 1992. There are different studies proposed by 

many researchers, especially in Turkey, for the rapid assessment of buildings before 

earthquakes. 

 

There are also fast and automated methods in the literature that perform a quick scan of data 

from the building's photographs. The studies cited in the literature, such as those conducted 

by (C. Wang et al., 2021, Cooner et al., 2016, Li et al., 2018, Z. Xu et al., 2018,Sublime and 

Kalinicheva, 2019, Kerle et al., 2019, Stepinac and Gašparović, 2020, etc.) have achieved 

notable success in generating damage maps for post-earthquake damage assessment by 

employing unmanned aerial vehicles. In an attempt to develop new techniques that would 

shorten the time it takes to process data, these studies have also evolved to include post-

earthquake permanent displacement calculations. (LI et al., 2011, X. Wang et al., 2020), as 

well as research that categorizes post-earthquake damages. Last but not least, research is 

done using images taken by unmanned aerial vehicles to identify the physical characteristics 

of buildings and their structural flaws, such as soft floors (Yu et al., 2020). However, it's 

important to note that none of these studies were originally designed for proactive use before 

disasters to enhance preparedness efforts. Furthermore, ML techniques have been advanced 

for the prediction of structural systems based on image data, as exemplified by the research 

conducted by (Geiß et al., 2015). in their 2015 research. Their research revealed that machine 

learning techniques, particularly the random forest and support vector machine algorithms, 

have the capability to forecast various structural systems. 



7 

 

 (e.g., masonry, confined masonry, reinforced concrete frame, steel frame) with a high 

degree of accuracy. Nevertheless, it's worth emphasizing that none of these studies were 

explicitly developed for proactive, pre-disaster applications aimed at improving 

preparedness. The use of random forest and support vector machine algorithms constitutes a 

pivotal component of their methodologies. 

 

The process of assessing a building's potential for earthquake damage is known as the 

evaluation of seismic vulnerability in masonry buildings. This evaluation usually consists of 

a visual survey of the building as well as an examination of several structural features, such 

as the kind and caliber of the walls, the mortar's strength, and the presence of reinforcement. 

In addition to these data, a number of strategies and procedures have been established to 

assess the seismic vulnerability of masonry constructions. Some of these methods include: 

 

 Empirical methods: These methods rely on statistical data and historical earthquake 

damage records to estimate a building's potential for damage. Penalty points are 

assigned based on the significance of various parameters, as determined from 

statistical data and informed by past performance assessments of similar buildings 

during seismic events. 

 Analytical methods: These techniques employ mathematical models to replicate a 

building's response during an earthquake and predict potential damage. They 

encompass a range of methodologies, including finite element analysis, impulse 

analysis, and response spectrum analysis. These methods occupy a middle ground 

between swift structural assessment and comprehensive, in-depth evaluation. 

 Artificial intelligence integrated methods: These methods are methods that are 

performed by teaching the data of structural damages that occurred as a result of old 

earthquake data or existing detailed analysis of buildings using machine learning 

algorithms or artificial neural networks to these algorithms. (C. Wang et al. 2021, -

Cooner et al. 2016, Li et al. 2018, Xu et al., 2018, Sublime and Kalinicheva 2019, 

Kerle et al. 2019, Stepinac and Gašparović 2020, Coskun and Aldemir, 2022, etc.) 

 Detailed methods based on assumptions: These are capacity-based quick assessment 

methods that evaluate the building capacity based on the exterior visual of the 

building, as well as the location of the structural elements on the critical floor 
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(considered mostly as the ground floor), dimensions and types of the structural 

elements. Methods such as P25 (2005), Yakut (2005), DURTES (2003) and PERA 

(2014) are capacity-based second-stage methods in which both facade visual and plan 

information are used. These methods are not very suitable for Turkey's building stock 

due to both cost and technical staff demand. (Ekici, 2022) 

 Visual rapid scanning methods: These are rapid assessment methods that generally 

use the exterior image of the building (street photo or street view) and other 

seismicity parameters of the region. (FEMA- 154), Sucuoğlu et al. 2007, RYTEİE-

2019 ,(Aldemir et al., 2020, Coskun et al., 2020) 

 

Studies on this subject have emphasized the importance of considering both structural and 

non-structural components of masonry structures, also factors such as material and 

construction quality, age of the building, wall type, floor height, and presence of 

reinforcement. Reinforcement Many studies have taken into account the seismicity of the 

area where each structures is located, as well as the use of multiple methods and techniques 

in the assessment process. 

 

The swift assessment of seismic vulnerability in reinforced concrete and masonry buildings 

is a highly significant and widely discussed subject in Turkey. In addition, artificial 

intelligence methods/smart software based on field studies and analytical data have also been 

used in recent years regarding rapid pre-earthquake assessments. In the present day, 

sophisticated software solutions such as artificial intelligence, genetic algorithms, and fuzzy 

logic play a pivotal role in addressing intricate engineering challenges. These software tools 

are highly favored due to their ability to deliver remarkably accurate predictions and offer 

substantial benefits in terms of cost-effectiveness and time efficiency. (Ekici, 2022). The use 

AI started in the 1950s, thanks to the development of computer science, Machine Learning 

in the 1980s, Deep Learning in the 2010s, and especially in the last five years. This has led 

to the very popular use of Convolutional Neural Networks (CNN) methods. For the stated 

reason, rapid scanning methods based on visuals are also divided into two those made with 

the help of artificial intelligence and those made with statistical methods (Beyhan 2023).  
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2.2. With No Artificial Intelligence 

2.2.1. Detailed rapid assessment 

The methods in this class are evaluation methods made after the capacity or detailed survey 

calculations are made. The methods in this class fall between a quick assessment and a 

detailed assessment. Although these methods cannot be used in the damage assessment of 

the building, they are the methods made by the capacity calculation of the undamaged state 

of the building or calculated by the dimensions of the columns and beams of its survey.  

This process demands a different approach compared to previous practices. Existing 

literature has seen some efforts to evaluate the seismic vulnerability of individual structures.. 

Nonetheless, these approaches usually require the utilization of intricate analysis tools and 

the meticulous collection of extensive geometric and material data from the building under 

scrutiny. This data acquisition procedure necessitates a substantial investment of time and 

expertise to thoroughly assess the building's materials and structural characteristics. 

Unfortunately, due to constraints such as limited time, inadequate funds, and a shortage of 

personnel, These intricate procedures are ill-suited for concurrently evaluating a large 

quantity of buildings. 

The study proposed by (Johnson and Fick, 2018) examined a comprehensive dataset 

representing 752 buildings from seven different earthquakes, overall serious damage trends, 

and its correlation with the calculated priority index. In the study, recent building inspections 

Following earthquakes, a substantial dataset containing information about damage levels and 

building performance was generated. A high correlation was found between the priority 

index method proposed in the study and the damage detection rates. The priority index 

proposed in the study consists of the wall index and the column index. In the study, it is 

mentioned that this index can be used as a common screening criterion for low-rise and mid-

rise buildings. These two indices represent the weighted ratio of the cross-sectional areas of 

the columns and walls to the total floor area above the building's foundation.In the study, the 

Priority index was calibrated using the data obtained from 49 buildings examined after the 

1992 Erzincan Earthquake. In addition, after the 1999 Düzce, Turkey, 2008 Wenchuan, 

China and 2010 Haiti earthquakes, the results were evaluated in tabular form using similar 

studies. At the end of the study, it was determined that the severe damage trends after the 

Bingöl, Turkey and Pisco Peru earthquakes did not follow the increasing vulnerability trend 

for the smaller priority indices observed after the other earthquakes. In addition, a decreasing 
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trend was observed in the priority index, which decreases as the number of floors increases 

in the data set, indicating that the risk of serious damage is higher in buildings with three 

floors and above. 

 

Yücemen et al. (2004) implement a method called discriminant analysis to analyze 

earthquake damage data collected from the 12th November 1999 Düzce earthquake. The 

study was performed using Fisher's linear discriminant function and the SPSS statistical 

analysis program. Initially, six prediction variables were identified, but this was later reduced 

to 3. In the study, the damage status was classified into either two or three categories, and 

the success rates were compared. The six main forecast variables are as follows: 

 Number of Floors (N): The total count of floor systems located above ground. 

 Soft Story Index (SSI): This measure is characterized as the proportion of the 

ground floor's height in relation to that of the first floor.Overhang Ratio 

(OHR): Overhang area is defined as the floor area beyond the outermost 

frame lines on all sides in a typical floor plan. The overhang ratio is defined 

as the sum of the overhang areas on each floor divided by the area of the 

ground floor. 

 Normalized Redundancy Score (NRS): A reinforced concrete frame 

building's Normalized Redundancy Ratio is computed. 

 Minimum Normalized Lateral Stiffness Index (MNLSTFI): Calculating this 

index involves examining the columns and structural walls situated on the 

ground floor. Columns are defined as reinforced concrete elements with a 

"maximum cross-sectional dimension/minimum cross-sectional dimension 

ratio" below seven, whereas all other reinforced concrete elements are 

categorized as structural walls. 

 Minimum Normalized Lateral Strength Index (MNLSI): This index is 

established by considering the columns, structural walls, and partition walls 

(typically constructed using clay bricks) on the ground floor. To calculate it, 

reinforced concrete elements with a "maximum cross-sectional 

dimension/minimum cross-sectional dimension ratio" of less than seven are 

designated as columns, whereas all other reinforced concrete elements are 

classified as structural walls.. 
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The study found that the number of floors was the most effective prediction parameter, while 

the yield rate, minimum normalized lateral stiffness and minimum normalized lateral 

strength indices were less effective and could be statistically excluded from the discriminant 

analysis. However, from an engineering perspective, the study suggests that these other 

parameters should be included in damage estimation evaluations. When the damage class 

was estimated with a two-class statistical model, approximately 69% of the damaged 

buildings were correctly classified, with a correct classification rate of around 71% for 

heavily damaged or collapsed buildings. The study concludes that these correct classification 

rates were similar for the three- and six-parameter estimates. When the data was divided into 

three damage classes, the success rate dropped to 54%, with a success rate of 58% for heavily 

damaged and collapsed buildings. The damage from the 1992 Erzincan, 1999 Bolu, Düzce, 

and Kaynasli earthquakes is given in Table 2.1. 

 

Table 2.1. Correct classification rates of damage states for different earthquakes based on 
the proposed statistical model 

Damage 
database 

Number of 

buildings 
Correct classification rates (%) 

 

Two-damage states Three-damage states 

Six 

parameters 

Three 

parameters 

Six 

parameters 

Three 

parameters 

1992-
Erzincan 

43 95.3 88.4 65.1 62.7 

1999-
Bolu,Düzce,

Kaynasli 
152 81.6 82.2 66.4 67.1 

 

"A method developed by (Yakut, 2004) for rapid seismic safety assessment of reinforced 

concrete buildings. In order to implement this method, which was developed considering the 

building conditions in Turkey, the dimensions of the building support system on the ground 

floor and the results of the bearing pressure test must be known. Firstly, by assuming that 

there is no lateral load, the shear resistance of each column and partition element is 

calculated. By summing the values calculated for each element on the ground floor, the total 

base shear resistance (Vc) of the building is obtained. The method also calculates the building 

resistance value (Vyw), which includes the contribution of the fill walls to the horizontal load-
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carrying capacity. The method defines the building yield resistance from this value. To 

determine the safety degree of the building, the Base Capacity Index (BCPI), which can be 

called the capacity-effect ratio, is calculated. Although the method has been successful, the 

process of taking cores and conducting surveys can be time-consuming and costly." 

 

The FEMA 310 method, created by the Federal Emergency Management Agency (FEMA) 

in 1998, is designed for evaluating the seismic performance of pre-existing structures.The 

method is used to evaluate buildings classified according to various construction materials 

and load-bearing systems, such as reinforced concrete, masonry, and wood. The assessment 

of a building's seismic performance is based on non-structural and foundation-ground 

characteristics. This approach comprises three tiers of assessment within each seismic zone. 

Throughout these evaluation phases, buildings are appraised according to their performance 

in terms of life safety or immediate occupancy. The seismic behavior of the building before 

an earthquake is decided based on a control list. In the first stage of the control list, the 

structural safety level of the building is determined based on the load-bearing system and 

ground parameters. The process is detailed and time-consuming, particularly in the 

calculation phase, where values such as the base shear force, floor shear force, floor 

displacement values, and natural vibration period are calculated. Equations and tables in 

accordance with the building type are available for use in the calculation of these values. 

Comparing the obtained values with limit values yields the building's safety level. During 

the second stage of the evaluation, the unfavorable aspects of the building are juxtaposed 

with the obtained results. Obtained through the method for linear static, linear dynamic, 

special and non-structural elements. In the third stage of evaluation, a detailed analysis is 

required for buildings that exceed a height of 30.5 m, have lateral irregularity, have vertical 

irregularity, or have a plan dimension ratio greater than 1.4. 

 

The "Standard for Seismic Evaluation of Existing Reinforced Concrete Buildings" is a swift 

assessment technique utilized in Japan to appraise the vulnerability of pre-existing structures 

to seismic damage and to improve their earthquake resilience. This method relies on the 

examination and structural analysis of buildings at the actual site. It is intended for the use 

in buildings with a maximum of six floors. Before the method is applied, the type of 

structural system , the construction year , and the plan dimensions of the building should be 



13 

 

determined. The method is not recommended for buildings with unusual structural systems, 

very poor material quality, more than 30 years of history, or fire risk. The results obtained 

using this method allow for an assessment of the probable building's performance in response 

to seismic activity during an earthquake. The method consists of three different stages that 

provide more realistic results and require more detailed inspections and calculations. The 

initial stage of the evaluation entails an assessment of the building's structural system, age, 

and physical condition. Depending on the outcomes of these assessments, an index (Is) is 

established to characterize the seismic performance of the building. The estimated damage 

to the building during an earthquake is calculated by comparing the Is index with the 

comparison index (Iso) that is deemed appropriate for the building. This comparison is 

carried out separately for all critical floors and for two principal earthquake directions. If Is 

> Iso, the building is considered safe against earthquakes, otherwise, the seismic reliability 

of the building is considered uncertain. The second level of examination involves calculating 

the stiffness capacity of columns and beams using the load-carrying capacity method. The 

assumption is made that the beams in the structural system are rigid. The third level of 

examination takes into account the behavior of the beams. The SD and T calculations are the 

same as in the second level. In conclusion, The Japanese procedure relies on the seismic 

index (SI), which is derived from the basic seismic index, incorporating resistance and 

stiffness indices, irregularity index, and time index (TI), to forecast the overall seismic 

resistance capacity of a floor. The evaluation process is contingent on the various parameters 

mentioned earlier, and it may lack clarity in terms of categorizing buildings using a distinct 

scoring or rating system. The stages of the assessment require lengthy calculations, and the 

fact that it is only intended for buildings with six floors or fewer raises questions about its 

suitability for the building stock in many countries including Turkey. 

 

In the study of Cardinali et al. (2022), a hybrid approach was developed to assess the seismic 

sensitivity of modern masonry buildings already in existence. This method was designed to 

work at two distinct levels: the urban scale and the building scale. The integration of both 

scales led to the creation of a hybrid approach, which involves a systematic application of 

analytical techniques at the urban level.In this research, buildings were spatially defined, and 

information related to their vulnerability was categorized and stored in a Geographic 

Information System (GIS) database, which also contained essential architectural and 

structural details. The hybrid method allowed for the reversible application of analytical 
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studies in the city of Florence, and it introduced an innovative, rapid risk analysis method 

based on GIS. This method considered various factors, including building height, plan 

length, floor height, plan area, and the materials used in construction.  

The outcomes derived from this procedure were subsequently utilized to fine-tune a 

simplified methodology that relied on the geometric and structural attributes mentioned 

earlier for a large dataset of buildings. This dataset was then employed to categorize the 

buildings into typological groups, with a specific case study selected for further analysis. In 

the analytical phase, taking into account specific characteristics and feedback, fragility 

curves were derived, aiding in the assessment of seismic fragility for the chosen case study. 

The findings were presented in the shape of fragility curves and damage scenarios, which 

underscored the various response patterns and assessed the susceptibility of these structures 

within the city of Florence. Creating a spectral displacement/spectral acceleration curve that 

takes into consideration the masses and base motion involved in the analytical computations 

is the aim of this procedure. It can be characterized as "hybrid" since it provides a thorough 

assessment of seismic vulnerability by combining statistical and simplified data with 

numerical results. 

2.2.2. Rsv using building image and earthquake effect parameters 

The Maras earthquakes in 2023, which affected 10 provinces and caused unbearable pain to 

our country, shows that it is very important to quickly and effectively determine the priority 

order of the risky buildings and make them ready for the earthquake, starting with the 

structures that require urgent intervention. In the realm of literature, rapid seismic 

assessment methods have been devised to ascertain the risk conditions of existing buildings. 

The primary goal of rapid assessment methods is not to provide a precise classification of 

whether buildings are earthquake-resistant or not. Instead, the aim is to swiftly and 

accurately evaluate the current condition of buildings and their earthquake resistance status, 

categorizing them based on their priority, with a focus on identifying the most vulnerable 

structures. 

In a study by Sözen (2014) related to this topic, it was found that the evaluation of seismic 

risk of building stocks can only be achieved through detailed analysis tests and by shifting 

from an approach of searching for individual building safety to filtering out buildings with 

high vulnerability from the larger building stock. The efficacy of this approach hinges on 

the capacity to consistently identify high-risk buildings within a substantial building 
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inventory through appropriate techniques. This filtering approach is very important in terms 

of providing information on where to start the solution to the problem with a rational 

approach. In the literature, many efforts have been made to propose rapid assessment 

methods for determining the seismic risk distribution of building inventories. In general, in 

these studies, quick building performance evaluations are conducted using methods that rely 

on observations made from the outside of the building and certain assumptions, considering 

both the soil class and the seismic impact. 

 

A seismic risk assessment technique known as rapid visual screening (RVS) is employed to 

evaluate the earthquake resistance of typical reinforced concrete buildings with fewer than 

eight stories. This method, developed by Halûk Sucuoğlu in 2007, is widely utilized for 

assessing buildings in earthquake-prone regions. The assessment process begins by 

identifying several factors that influence the seismic performance of the building, such as 

the number of floors, the visual quality of the building, the presence of soft-story conditions, 

heavy loads, short column effects, collision risks, topographical effects, seismic hazards, and 

local soil conditions. Based on these factors, a base score is assigned to the building. 

Subsequently, the performance score is determined by taking into account the building's 

location within a seismic risk zone (earthquake zone) and referencing the relevant values 

from the Base Scores (BS) and Safety Scores (VS) table. The performance score is calculated 

by taking into account the scores of the observed safety effects, which are determined by the 

equation: PS = BS × VSMi × Vsi, where PS represents the performance score, BS represents 

the base score, VSMi represents the safety score multipliers, and Vsi represents the safety 

score. The performance score of a building in the range of 0 to 30, the building is considered 

to require the highest priority in terms of seismic assessment and further detailed analysis is 

necessary. Conversely, if the performance score exceeds 100, the building is deemed to 

necessitate the lowest-priority assessment. In summary, the RVS Method proves to be a 

valuable tool for appraising the seismic resilience of typical reinforced concrete buildings 

and determining the requisite measures for improving their seismic performance. 

Fema 155-ATC-21 (1998) is a rapid assessment method developed by FEMA 155-ATC-21, 

for buildings located in earthquake-prone areas. It is based on visual observations and allows 

the identification of structures that may experience severe damage during an earthquake 

through street views. The method is easy to apply, inexpensive, and does not require any 

static calculations. There are three different zones available based on the seismicity of the 
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area where the building is located (low, medium, and high-risk earthquake zones). The data 

collection form appropriate for the earthquake zone where the building is located is selected, 

and the main score of the building is obtained based on the type of building. Then, factors 

that may negatively affect the earthquake behavior of the building are identified on site. If 

the year of construction of the building is known, information about material properties, 

construction techniques, and regulations of that time can be obtained. Information about the 

researcher should be included in the form if necessary to obtain the researcher's observations 

during a more detailed investigation if required. Information affecting the performance of 

the building, such as the supporting system, the number of floors, floor area, and floor type, 

is used in building rating. When rating the building, the damage status of elements such as 

parapets, chimneys, exterior cladding, and roof openings that are not part of the supporting 

system and may pose a danger during an earthquake should be determined. Finally, a 

building sketch is drawn for the relevant area, and a photo of the building is taken and added 

to the form. The assessment stage consists of determining the supporting system and 

identifying the materials used, based on all the information collected, the information is 

rated. The final score (S) of the building, which is necessary for decision-making, is then 

obtained by subtracting the values of the factors that may change the earthquake performance 

of the building from this score. A higher final score means that the building has a higher 

earthquake resistance. If the score is less than 2, a detailed investigation is required. 

However, the opinions of the expert examining the building are more important. Based on 

this, ATC 21 categorizes existing structures into two groups. The first group consists of 

buildings with adequate earthquake performance (S>2), and the second group consists of 

buildings with insufficient earthquake resistance and requiring detailed investigation (S<2). 

FEMA 154, which has both a detailed and fast scanning method, is one of the cornerstones 

of rapid visual screening. 

 

Guidelines for assessing a building's seismic performance can be found in the "Handbook 

for the Seismic Evaluation of Buildings" (FEMA-301) published by the Federal Emergency 

Management Agency (FEMA). This handbook is intended to assist engineers, building 

officials, and others who are responsible for evaluating buildings in seismic hazard areas. It 

offers suggested practices for developing seismic retrofitting plans and evaluating the 

seismic stability of older structures. The handbook covers the entire process of seismic 

evaluation, including the evaluation of seismic hazard, the determination of seismic 
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demands, the evaluation of structural and non-structural components, and the development 

of seismic rehabilitation plans. The handbook also provides information on seismic 

rehabilitation techniques, codes and standards, and the development of seismic hazard maps. 

The aim of FEMA-301 is to provide practical information to help building owners, designers, 

and engineers make informed decisions about the seismic safety of their buildings. 

 

Grünthal (1998) employed the European Macroseismic Scale to assess the risk level of both 

masonry and reinforced concrete structures. Vulnerability classes (A to F) were assigned 

based on different levels of invulnerability. In the study, masonry building types were 

categorized into various classes, including:Rubble stone/fieldstone 

 Rubble stone/fieldstone 

 Simple stone 

 Massive stone 

 Unreinforced brick/conrete blocks 

 Unreinforced brick with RC floors 

 Reinforced brick and confined masonry 

 Reinforced concrete buildings 

 

Vulnerability within the scope of operation factors affecting the structure, material, quality 

and workmanship, ductility, location, the condition of the buildings, their design, irregularity 

of the building shape, earthquake resistant design (ERD) level, etc. defined by taking into 

account other factors such as "Validity Table" within the scope of the study classifies the 

durability of structures in a manageable way, taking into account both the building type and 

other factors. The subdivisions of the structures, marked with letters from “A” to “F”, are 

roughly determined according to different levels of invulnerability, not from an architectural 

point of view. Different building behavior and failure types are shown for both masonry, 

wood, steel and reinforced concrete buildings. These safety classes, determined to determine 

masonry pictures risk measures, lacked the limit to the actual performance of the structures. 

 

Aldemir et al. (2020) introduced a novel approach for evaluating the seismic risk of 

Unreinforced Masonry (URM) buildings. This method leverages binary logistic regression 

and draws from an extensive database comprising detailed seismic assessment analyses 
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carried out on 543 URM buildings. The research presents an innovative and quick screening 

approach for URM buildings, which is based on the outcomes of comprehensive seismic 

assessments. The proposed method and its key estimation variables are outlined in the table 

below (Table 2.2.) 

Table 2.2. URM subcategories and numeric displays of selected prediction variables of 
buildings 

Estimation Variables  Possible Values 

Number of Stories, N 1 2 3 4 5 6 7 8 

Seismic Zone, SZ 
SDS > 
0.75g  

: 1 

0.75g 
>SDS≥0.50g  

: 2 

 
0.50g>SDS≥0.25g  

: 3 

 

SDS < 0.25g  
: 4 

Soil Condition, SC 
Vs30 > 
700m/s  

: 1 

700>Vs30>400m/s  
: 2 

400>Vs30 
>200m/s  

: 3 

Vs30 < 
200m/s  

: 4 

Age of Building, AG Any integer value      

Structural System, SS 
RC Frame  

: 0 
RC Frame with Shearwall  

: 1 
   

Neighboring Structure 
Status, NS 

Separate  
: 0 

Adjacent  
: 1 

    

Short Column, SCol 
No  
: 0 

Yes  
: 1 

    

Vertical Irregularity, VI 
No  
: 0 

Yes  
: 1 

    

Overhang, OH 
No  
: 0 

Yes  
: 1 

    

Plan Irregularities, PI 
No  
: 0 

Yes  
: 1 

    

Soft Story, SoftS 
No  
: 0 

Yes  
: 1 

    

Position of Neighboring 
Slabs, SLoc 

Levelled  
: 0 

Non-leveled  
: 1 

    

Slope of the Soil, Sslop 
Flat  
: 0 

Sloped  
: 1 

    

Effect of Construction 
Date, CD 

After 
2007  
: 1 

Between 1997-
2007  
: 2 

Between 1975-
1997  
: 3 

Before 1975  
: 4 
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A system based on penalty scores (PSi) was suggested in this study. Following the 

establishment of penalty scores for the various URM building weaknesses (i.e., seven 

separate estimating variables), each building was given a base score (BS) based on its 

seismic class (SC). When all penalty scores and base scores were added together, the 

building risk score (BRS) was determined (Equation 2.1). According to this method, URM 

structures were deemed "risky" or seismically sensitive if their BRS rating was less than 

zero. Other structures were labeled as "non-risky" or "seismally unvulnerable." 

    𝐵𝑅𝑆 = 𝐵𝑆 + 𝑃𝑆                                       (2.1) 

The database was filtered by seismic class after the data were transformed into a format 

compatible with the chosen statistical methodology. Binary logistic regression was then 

performed individually on each filtered database. SPSS statistical analysis program was used 

in all analyzes performed in the study. In summary, the working principle of the proposed 

method, the data set with categorical variables as seismic reliability of the buildings, the base 

score that can increase with the positive features of each building and the penalty points of 

the building negativities were tried to be estimated. The significance of the parameters was 

ascertained using logistic regression. The method obtained at the end of the study was tested 

with 100 buildings and a successful result was obtained with a 5% margin of error. This 

study, which is the disadvantage of other rapid scanning studies, does not require too many 

skilled personnel and does not require too much time, has contributed to the literature in the 

field of prediction of rapid earthquake safety class. Consequelty, this study concluded that 

this approach resulted in a promising method with some accuracy problems in predicting the 

test database. 

In other study conducted by (Coskun et al. 2020), a new approach for fastly estimating 

seismic assessment results using statistical analysis methods was introduced. This method 

was specifically developed for assessing the seismic sensitivity of reinforced concrete 

buildings in Turkey and was based on the comprehensive evaluation outcomes of 545 such 

structures. To develop this new method, 400 of the detailed evaluation results were employed 

for training purposes. The variables used for estimating seismic assessment outcomes in this 

method are provided in the table below (Table 2.3). 
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Table 2.3. Numerical representation of the selected estimation variables 

Estimation Variables  Possible Values 

Number of Stories, N 1 2 3 4 5 6 7 8 

Seismic Zone, SZ SDS > 
0.75g  

: 1 

0.75g >SDS≥0.50g  
: 2 

 
0.50g>SDS≥0.25g  

: 3 

 

SDS < 0.25g  
: 4 

Soil Condition, SC Vs30 
> 

700m/
s  

: 1 

700>Vs30>400m/s  
: 2 

400>Vs30 >200m/s  
: 3 

Vs30 < 200m/s  
: 4 

Age of Building, AG Any integer value      

Structural System, SS RC 
Frame  

: 0 

RC Frame with Shearwall  
: 1 

   

Neighboring Structure 
Status, NS 

Separa
te  
: 0 

Adjacent  
: 1 

    

Short Column, SCol No  
: 0 

Yes  
: 1 

    

Vertical Irregularity, 
VI 

No  
: 0 

Yes  
: 1 

    

Overhang, OH No  
: 0 

Yes  
: 1 

    

Plan Irregularities, PI No  
: 0 

Yes  
: 1 

    

Soft Story, SoftS No  
: 0 

Yes  
: 1 

    

Position of 
Neighboring Slabs, 

SLoc 

Levell
ed  
: 0 

Non-leveled  
: 1 

    

Slope of the Soil, 
Sslop 

Flat  
: 0 

Sloped  
: 1 

    

Effect of Construction 
Date, CD 

After 
2007  
: 1 

Between 1997-2007  
: 2 

Between 1975-1997  
: 3 

Before 1975  
: 4 

 

In order to present a novel fast visual screening technique for reinforced concrete (RC) 

buildings, the risk characteristics of RC buildings as established by in-depth seismic 
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assessment studies utilizing intricate numerical models were considered. The risk conditions 

found during these thorough evaluations were converted into binary values (RS) as part of 

this procedure, with 0 denoting "non-risky" buildings and 1 denoting "risky" ones. Then, 

using the database that was chosen, a statistical model was built to assess how the selected 

estimation variables affected the risk status (see Equation 2.2). 

𝑅𝑆 = 𝛽 + 𝛽 𝑋 + 𝛽 𝑋 + ⋯ + 𝛽 𝑋                                (2.2) 

The binary risk states of RC buildings (RS) and the chosen estimation variables (X1, X2,..., 

Xn) were integrated into the statistical model. Then, using STATA (2015), an ordinary least 

square (OLS) regression analysis was carried out. In the STATA (2015) software, the results 

of this analysis were referred to as marginal effects. In this statistical model, variables with 

marginal effect values close to 1 suggest that the presence of those variables would elevate 

the seismic risk level of RC buildings. On the other hand, marginal effect values close to 

zero suggest a decrease in seismic vulnerability and a positive influence on seismic 

risk.Additionally, multiple linear regression analysis was carried out in SPSS (2006) 

utilizing the linear statistical model as stated in Equation 2.2 and incorporating all of the 

chosen estimation variables (i.e., n= 14).  As a result, according to the marginal effects of 

the parameters according to STATA (2015) and importance coefficients according to SPSS 

(2006), the new rapid scanning method was able to predict seismic risk analysis results with 

high accuracy (%80).  

Kumar et al. (2017) made a prioritization study as a result of the scores made with the forms 

prepared for masonry and reinforced concrete buildings. As masonry building types, scores 

were collected for reinforced concrete beam, brick masonry, stone masonry, adobe and 

mixed masonry structures and statistical analyzes were made with gaussian distribution 

curves. The structures' damage estimates were categorized as having no damage, light, 

moderate, severe, and high risk of collapsing as a result of the scoring analysis. In the study 

conducted for 9099 buildings in the state of Himachal Pradesh in India, it was mentioned 

that since the rapid screening scores of the structures were close to each other, it was difficult 

in the classification stage, detailed analysis was made for the low-scored structures, but the 

results were out of the scope of this article. 

 

Coskun (2019) proposed a method with a higher success rate as an alternative to the first-

stage assessment method in accordance with the points specified in the Annex-A part of the 
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Regulation on the Principles of Determination of Risky Structures (RYTEİE-2019) within 

the scope of the Law on Transformation of Areas Under Disaster Risk No. 6306. In this 

study, Structure Score (SS) were developed by determining the importance coefficient of the 

structure determined from complicated statistical analyses performed in SPSS and STATA 

programs. Based on these importance coefficients, certain parameters had their scores 

modified, and new parameters like building age were introduced. The success rates were 

then compared with the method utilized under Law No. 6306. In the study, using 100 test 

data, the success rate of the method employed under Law No. 6306 was found to be 64%, 

while the success rate of the method referred to as "Structure Score (SS)" was 84%. It was 

concluded within the scope of the study that factors such as reinforcement class and concrete 

compressive strength had a significant impact. However, they were excluded from the 

method to streamline the process of generating a rapid seismic safety classification for 

buildings. 

In another study, a database of 321 reinforced concrete school buildings in Istanbul was 

compiled (Mazilıgüney 2012). The construction year, average plan area, average floor 

height, average distance to fault, average concrete compressive strength, average steel tensile 

strength, and average duration were among the parameters that were identified in this study's 

initial assessment of school buildings. The World Bank-financed project involved an 

analysis of the buildings in question using Turkey's current seismic design code. The current 

preliminary seismic performance evaluation procedures used in the literature were 

compared. Mentioned methods, (FEMA 155, 1998, Halûk Sucuoğlu, 2007, (Yakut, 2004, 

Yücemen et al., 2004). Sucuoglu et al. and Ozcebe et al. procedures are not compatible for 

reinforced concrete school buildings in Turkey; Yakut procedures have a 50% success rate. 

It was concluded that the most successful method was ATC21 (FEMA 155) with a success 

rate of 78.68%. 

 

The seismic assessment of historic brick-masonry buildings in Vienna was investigated in 

the study by Adam and Achs (2012), using the RVS (Rapid Visual Scanning) method as a 

foundation or reference. The study presented a fast visual scanning technique that uses 

penalty points for a number of structural characteristics, such as the ground condition, 

foundation, secondary structures, seismic hazard class, plan regularity, height regularity, 

horizontal stiffness, and local failure. Due to the consistent typology of these specific 

building types, the RVS methodology was adopted, enhancing the validity and quality of the 
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seismic assessment. In this context, parameters associated with the structure, such as 

regularity, conservation status, and geometry of the examined buildings, were assessed. 

Additionally, the study considered the human and economic impact of earthquake-induced 

damage to the structures, the number of people exposed, and the significance of the 

buildings. Scores were calculated for each set of parameters, and based on these scores, the 

buildings were categorized into one of four vulnerability classes. The research, involving 

375 buildings, led to the identification of damage maps and the marking of potentially at-

risk structures on these maps. 

 

For the determination of the seismic safety of buildings with a coefficient of 5 or more in 

the city of Chennai, FEMA (2002) developed a methodology by adapting its proposed RVS 

format technique to the buildings in Chennai City (Rajarathnam and Santhakumar, 2015). 

Aerial photographs were used to detect irregularities in buildings for the first time for a rapid 

data collection. It was noted in the study's scope that evaluating a big number of buildings 

one at a time takes a lot of labor and time, and that using the aerial photography approach 

on the GIS platform is a great way to get around this issue. Aerial photos were utilized in 

the study to pinpoint a few significant irregularities that contribute to the building's seismic 

sensitivity. Within the scope of the study, it can be determined from an aerial photograph 

that a building has plan irregularities based on the plan profile; It is also mentioned that the 

height of each building can be obtained by photogrammetric approach on photographic 

images of different elevations. 
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Figure 2.1. Detection of the irregularity in the plan and the floor height of the building from 
satellite images. (Rajarathnam and Santhakumar, 2015) 

 

In the context of the study, measures to mitigate the vulnerability of structures with different 

irregularities were also addressed. The study concluded that these recommendations could 

be valuable in assessing the overall cost of upgrading structures at a site, serving as a 

preliminary study before conducting a more detailed assessment. In the proposed method, it 

is assumed that the combined influence of both plan and vertical irregularities contributes 

100% to the damage effect. The relative weights assigned to these irregularities are 30% for 

plan irregularities and 70% for vertical irregularities. The methodology of this approach is 

outlined below. 

 

 Zooming in on a building reveals its layer. 
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 Initially, the building ID is recorded, and the address/descriptions are entered 

into their respective columns. 

 The visual inspection of the building begins with an examination of its floor 

plan, focusing on the lateral dimensions. Subsequent observations and 

explanations are provided based on the floor plan. 

 The elevation assessment involves considering the height of each floor and 

documenting this information. 

 While certain vertical irregularities, such as floor standing and floating 

columns, were not identifiable through aerial imagery, they were confirmed 

during the ground truth assessment and were evaluated alongside the 

irregularities detected through aerial imagery for the scoring analysis. The 

influence of an expansion joint in enhancing the building's smoothness was 

also taken into account during the ground truth verification and was 

integrated into the score calculation, especially when the expansion joint 

wasn't visible in the aerial photograph. In the end, a score is determined by 

considering both plan and vertical irregularities. 

 A higher score signifies that a building is less susceptible to earthquake 

damage, whereas a lower score implies a higher vulnerability to earthquakes. 

 All of these specific details are recorded in a Microsoft Excel spreadsheet and 

subsequently integrated into the Geographic Information System (GIS) 

attribute data. 

 Building attributes can be extracted from the attribute table using aerial 

photographs of buildings in conjunction with the digital vector map. 

Finally, the effect of each parameter and the combination of irregularities on the damage 

status is mentioned (Figure 2.2). The graphs indicate that the most adverse irregularities 

are associated with the combination of soft story and non-parallel systems. It was further 

noted that this is followed by the combination of diaphragm discontinuity and soft story 

irregularities. Additionally, the presence of a soft floor has been identified as one of the 
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primary factors contributing to elevated damage levels in buildings in Chennai.

 

Figure 2.2. Effect of building properties on percentage of damage 

 

The study suggests a fast and low-cost method that can be used for risk reduction in general, 

to determine the vulnerability of GIS-based buildings by classifying them between A-D, and 

to develop the effect coefficients by evaluating the building parameters. 

2.2.3. Artificial intelligence-assisted rapid assessment 

Studies on artificial intelligence-supported rapid evaluation in the field of construction 

engineering are becoming increasingly significant as AI technologies are leveraged to 

enhance various aspects of civil engineering projects and infrastructure management. Within 

the construction industry, numerous research endeavors have been undertaken, 

encompassing areas such as Risk Assessment and Management, Structural Health 

Monitoring, and Construction Quality Control, with the utilization of artificial intelligence. 

These studies in the realm of civil engineering are predominantly centered on the 

development and implementation of artificial intelligence models, the seamless integration 

of sensor technologies, the harnessing of remote sensing techniques and data analytics, and 

the creation of decision support systems. The overarching objective of these research 

initiatives is to fortify the security, resilience, efficiency, and sustainability of civil 

infrastructure and projects. In this pursuit, researchers consistently seek novel and inventive 
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ways to leverage image processing and machine learning to effectively address the distinct 

and intricate challenges encountered within the realm of civil engineering. 

 

In their study, Achs and Adam (2012) introduced a method for the rapid seismic assessment 

of historical brick-masonry buildings in Vienna, Austria, employing a visual screening 

approach. The aim of the study was to develop a fast and efficient approach for evaluating 

the seismic safety of these buildings and to identify any potential structural weaknesses that 

may need to be addressed in order to improve their resistance to earthquakes. The study used 

visual inspections and limited non-destructive tests to gather data on the condition of the 

buildings and their structural components. The study's results revealed that the visual 

screening method proved to be a valuable tool for rapidly and accurately evaluating the 

seismic performance of historic brick-masonry buildings in Vienna. 

 

The study conducted by Milosevic et al. (2020) provides a methodology for defining fragility 

curves, which are graphical representations of a building's probability of exceeding various 

levels of damage over a given period of time. Ground motion density the study applies the 

methodology to a mixed masonry and reinforced concrete (RC) building stock and aims to 

measure their seismic fragility. The methodology involves performing nonlinear static 

analyzes on representative building models to derive fragility curves. The results of the 

analyzes are used to measure the seismic performance of the building stock and to identify 

key factors contributing to its seismic vulnerability. The study demonstrates the utility of the 

fragility curve approach for assessing the seismic performance of mixed masonry reinforced 

concrete stocks and provides valuable insight into the considerations  that influence their 

seismic behavior. The results of the research can be applied to enhance the seismic design 

and reinforcement of mixed masonry-reinforced concrete structures, ultimately mitigating 

the risk of damage and collapse in the event of earthquakes. The fragility curve approach 

can also be applied to other building stocks to assess their seismic susceptibility and inform 

decision-making regarding seismic hazard mitigation measures 

 

In a study proposed by Rashidi et al.2016, the detection of the building material type is aimed 

at using Multi-Layer Perceptor (MLP), Radial Basis Function (RBF) and Support Vector 

Machine (SVM) algorithms in machine learning. The study aims to differentiate between 
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three distinct building material types within a dataset of building images. This is 

accomplished through a two-step approach that includes feature extraction and classification. 

In the feature extraction stage, color and texture attributes of the image are extracted either 

for individual pixels or for clusters of neighboring pixels, which are often referred to as 

image blocks. Subsequently, these feature vectors are subjected to classification by a specific 

algorithm to accomplish the task of material detection. The primary goal of the research is 

to assess the outcomes of building material detection algorithms using various machine 

learning techniques. Instead of analyzing individual pixels, the researchers adopted a block-

based approach for material identification. The reason for adopting this block-based 

approach is that images of construction materials typically display consistent and 

interconnected pixel patterns. It is more efficient to process groups of pixels together rather 

than analyzing each pixel in isolation. In this suggested block-based method, each block in 

the target image consists of a set of m x m pixels, and the pertinent features are extracted 

from these blocks before being fed into a classifier for the identification of building 

materials. At the end of the study, visual estimation was made in three categories: concrete, 

brick, and others, and these estimates were evaluated with machine learning algorithms, 

resulting in successful outcomes (Figures2.3-2.5).  

Figure 2.3. Analysis of age and ground acceleration with machine learning algorithms   
(Mangalathu vd., 2020) 
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Figure 2.4. Performances of various machine learning techniques for the training set: (a) 
LDA, (b) KNN, (c) DT ve (d) RF (Mangalathu vd., 2020) 

 

 
Figure 2.5. Performance of various machine learning techniques for test set: (a) LDA, (b) 
KNN, (c) DT ve (d) RF (Mangalathu vd., 2020) 

 

Zhang et al. (2018)suggests the application of ML federate algorithms, particularly top-

performing decision trees and random forests, for predicting the damage that a building 
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might endure after an earthquake. The study categorizes "unsafe conditions" as positive class 

and "safe conditions" as negative class, as unsafe conditions are considered as critical and 

negative. The proposed machine learning framework is applied to reinforced concrete 

buildings for assessing structural safety. The significance of selecting optimal parameters 

for the efficient running of the study is also emphasized. In the study, the most appropriate 

parameters are selected through grid search methods. The study first calculates the 

probability of exceeding certain limit states based on either a known earthquake event or the 

post-earthquake damage status of the building. Secondly, The probability of surpassing limit 

states is determined by considering the risk posed by both the primary earthquake event and 

any subsequent aftershocks. A Markov process model is utilized to estimate the probability 

of a building transitioning from different damaged states to another after an earthquake, in 

both assessment categories. The study concludes that while a detailed examination of the 

structure with the proposed method may take time, accurate results were obtained in 

estimating the damage situation by using the obtained data. 

 

Yucemen et al. (2004) proposed a model combining engineering and Statistical techniques 

are employed to compute the potential damage of a building by considering seismic factors 

such as ground motion intensity and the structural characteristics of the building. The 

methodology uses a statistical approach and takes into account the uncertainty in the input 

data. The results of the methodology applied to earthquake damage data from the 1999 

Düzce earthquake showed that the model can accurately predict the damage potential of 

buildings under different seismic scenarios. The proposed methodology can provide useful 

information for seismic assessment and retrofit planning, and serve as a tool for decision-

making in earthquake engineering. 

 

Xu et al. (2019) proposes a machine learning approach to detecting damage to buildings in 

satellite imagery. The authors use convolutional neural networks (CNNs), a type of deep 

learning algorithm, to classify images of buildings as damaged or undamaged. The study 

shows that CNNs can achieve high accuracy in detecting building damage, even with low-

resolution and limited information satellite images. The methodology used in the study can 

be applied to post-disaster assessments and help first responders and other organizations 

quickly identify damaged buildings and prioritize response efforts. Valuable for its 
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contributions to the literature, this method concludes that the use of CNNs only for building 

damage detection in satellite imagery besides rapid assessment is a promising area of 

research and suggests that further studies could explore the use of other machine learning 

algorithms and improve the accuracy of the damage detection system.  

 

In a study by Kumari et al. (2022), the researchers explore the utilization of machine learning 

algorithms and web-based procedures for estimating the damage scores of pre-existing 

buildings. Utilizing the Django web framework in the Python programming language, this 

study evaluates the efficacy of different machine learning algorithms, including decision 

trees, random forests, and support vector machines, for predicting building damage scores. 

The performance of these algorithms is contrasted with the conventional visual inspection 

approach. Furthermore, the research investigates the potential of employing a web-based 

platform to enable building owners and stakeholders to access the estimated damage scores. 

The study's findings indicate that the use of machine learning algorithms can enhance the 

precision of damage score estimates, and a web-based platform offers a convenient and 

easily accessible means of obtaining these results. The authors concluded that the proposed 

approach has the potential to be a valuable tool for decision-making in the evaluation and 

management of existing buildings following natural disasters. 

 

The work by Stepinac and Gašparović (2020) provides a comprehensive examination of the 

latest technological advancements related to the assessment of safety and seismic 

vulnerability in masonry structures. The authors analyze various novel technologies such as 

machine learning, computer vision, and remote sensing, among others, and their potential 

utilization in masonry assessment. The research offers a framework for the efficient and 

accurate gathering of extensive spatial data for damage detection and mapping, leveraging 

the capabilities of modern technologies. The study, in particular, concentrates on the 

application of unmanned aerial vehicles (UAVs) for assessing building damage. The authors 

emphasize the importance of performing damage assessments with drones due to the 

limitation of visibility from ground level when making on-site assessments. The authors also 

discuss the use of different cameras such as RGB, thermal, multispectral, and hyperspectral 

cameras, as they have the capability to detect damage and anomalies in a building that cannot 

be observed by the naked eye. The study makes a substantial contribution to the literature by 
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presenting a damaged situation through the use of 3D modeling of the structure utilizing the 

data obtained from the cameras. The article also highlights the need for further research and 

development to integrate these technologies effectively for practical use in the evaluation of 

masonry structures. The authors assert that the development and application of these 

technologies can significantly enhance the safety and reliability of existing masonry 

structures in the event of earthquakes and other natural disasters. 

Shah (2016) assessed the seismic susceptibility of pre-existing masonry structures in two 

Jeddah, Saudi Arabian districts. The Rapid Visual Scan (RVS) method, a streamlined 

process for evaluating a building's seismic susceptibility through visual inspection of 

important structural elements like walls and foundations, was used in the study. An analysis 

of the outcomes from the RVS assessments was conducted to ascertain the overall 

susceptibility of the buildings in the two study regions. The findings indicated that a 

considerable portion of the buildings in these areas were at risk of experiencing seismic 

damage. The efficacious outcomes of this study can function as a basis for subsequent 

evaluations of seismic hazards and retrofit endeavors in Jeddah, thereby augmenting the 

area's resilience to earthquakes. In addition to highlighting the potential benefits of using the 

RVS method as a rapid assessment tool for evaluating building vulnerability in the context 

of seismic hazard assessment, this study highlights the significance of taking into account 

the seismic vulnerability of Jeddah's existing masonry structures. 

(Ruggieri et al., 2021) The article "Machine Learning-Based Vulnerability Analysis of 

Existing Buildings" investigates the application of machine learning methods for assessing 

the vulnerability of pre-existing buildings in the context of seismic events. The study's 

findings suggest that the machine learning-based approach is effective in accurately 

forecasting the susceptibility of buildings to seismic events, thereby offering valuable 

insights for seismic evaluation and retrofit planning efforts. One of the tools used in the study 

was VULMA, which involved the labeling and posting of photos obtained from Google 

Street View. The type of roofing material, the duration of intervention, the presence of 

negative parameters such as heavy overhang, vertical vision, and the number of floors were 

labeled by a team that held the photographs. In another tool called Bi-Vulma, the tagged 

controls were not created using an artificial neural network, and the validation success rate 

was over 97%. The results suggest that the system has the potential for further development, 

including the possibility of using artificial neural networks to create a Decision Support 

System. The study also addressed the issue of data collection and the importance of ensuring 
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the availability of sufficient and high-quality data for efficient forecasting models. The 

authors explained the selection of the data set to avoid unbalanced data and memorization, 

which are common issues in machine learning studies. The proposed framework can 

contribute to the literature by providing a method that can be developed using artificial neural 

networks and includes information such as the software interface, photos of buildings, and 

the number of people living in them. The sequencing scheme shown in Figure 2.6 contains 

the logical methodology of the study outlined. (Figure 2.6) 

 

 

 

Figure 2.6. The working methodology and flowchart of the finding method 
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3.  RESEARCH OF METHODOLOGY 

In this research, a modern approach has been introduced to rapidly and precisely forecast the 

seismic performance of buildings using Machine Learning algorithms and artificial neural 

networks. This method obviates the necessity for technical personnel to physically enter the 

building, offering a convenient and efficient solution. As a result of the detailed analysis of 

a building, if the Ve/Vr value, which is the ratio of the shear force to the total floor shear 

force on the walls exceeding the risk limit, is above 0.5, it is said that the building is risky 

In Law No. 6306. Within the scope of this study, a method will be presented that will enable 

to give priority to structures with very high RS ratio by estimating the RS ratio and 

classifying the risky structures within themselves with both the detection of risky structures 

by machine learning and regression analysis and classification algorithms. 

 

Within the scope of the study, a simple analysis of 12 parameters was made with the data, 

most of which were obtained from the protocols made by the Ministry of Environment, 

Urbanism and Climate Change and Gazi University, with detailed seismic analysis results 

and visual characteristics of the examination forms.  

 

The data obtained from the Ministry of Environment, Urbanization and Climate Change and 

Gazi University became suitable for analysis first. First of all, since the scarcity of non-risky 

structures in more than four thousand data will cause the algorithms to memorize, these data 

have been reproduced synthetically in the training dataset with the SMOTE method. After 

that, the outliers in the data were either deleted or the average values were written and the 

operations were continued. Missing data were filled in parameters not included in the data 

set, such as short-term acceleration value, obtained from the Turkey Earthquake Zones Map. 

In order to decide how many results the data set should be divided into, the culuster selection 

in the Dendograms and Unsupervised methods was made. As a result, the more classes we 

could divide the risk into, the lower the cost of the detailed analysis to be done in Turkey as 

a result of the prioritization to be made. Then, under the title of feature engineering, the 

feature importance tables were prepared by considering the effect of the parameters on the 

result, and then 4 parameters were selected to facilitate effective and fast determination of 

the analysis results. In this context, Dimensionality Reduction methods are used in parameter 

selection. Among the selected parameters, it was concluded that it was not important with 
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this data set, but considering the engineering knowledge, scientific and technical data, the 

required parameters were tried to be added to the detection method by multiplying the square 

of the parameters or other important parameters. Editing the data set, feature engineering 

and Dimensionality Reduction followed by modeling. In this section, success rates were 

compared under two sections, regression and classification, and all these algorithms were 

combined by selecting the parameters that would yield the most accurate results in the 

ensemble learning section. High success rates have been achieved by estimating algorithms 

with the voting method and Gradient Boosting. So as to obtain more accurate results, a 

hybrid method is obtained by using multivariate adaptive regression spline (MARS) used in 

regression analysis and classical machine learning algorithms, Gradient Boosting, Decision 

Tree Classifier, Logistic Regression, Random Forest, K-Mean Clustering, Support Vector 

Machine, LGBMClassifier, MLPClassifier.  

3.1. Data Pre-processing 

In this section, the procedure for addressing outliers will commence by initially scrutinizing 

the overall distribution and fundamental statistical outcomes pertaining to the dependent and 

independent variables within the dataset. Subsequently, an evaluation of data homogeneity 

and binary associations will be conducted through the application of parametric or 

nonparametric analysis tests. Following this, data pre-processing will culminate in the 

implementation of dimensionality reduction techniques and the optimal parameter selection, 

achieved through the utilization of Exploratory Data Analysis (EDA) methodologies. 

3.1.1. Data description and basic data analysis  

It is known that Turkey is an earthquake-prone country. Every major earthquake causes 

many casualties and economic losses by reason of the most of the buildings in Turkey have 

been built without engineering services. A rapid visual screening method was needed to filter 

the non-vulnerable buildings from the building stock as quickly as possible before or after 

the earthquake. Therefore, screening methods must finded by study solve this problem that 

rapid visual risk detech. This thesis examines the risk classification of structures built in 

Turkey between 1960 and 2021. The data used are 4,356 mansonry structure data obtained 

from the Turkish Ministry of Environment, Urbanization and Climate Change, engineering 

firms and Gazi University. In this context, twelve features were determined as inputs to 

predict the target feature, the risk situation. The data includes the structures of the masonry 

system. These data were labeled by obtaining detailed seismic analysis results, and risk 
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classification was made in the labeling section by considering the ratio (Ve/Vr), which 

expresses the ratio of the shear force coming to the floor to the total shear force.  

This study primarily aimed to create a straightforward and rapid visual screening method for 

predicting the damage level of masonry buildings using machine learning algorithms. The 

approach intended to collect the necessary parameters without requiring technical personnel 

to physically enter the potentially risky buildings. In essence, the study focused on 

developing a computational network based on external observations of structural properties. 

To achieve this, the network was trained using a substantial dataset of buildings for which 

detailed seismic risk assessment results were available. This dataset included 3,484 real 

buildings with seismic risk assessment analyses. Subsequently, the optimal ratio for data 

splitting, the performance of the algorithm in estimating seismic risk and damage levels was 

evaluated using 872 additional test real buildings with seismic risk assessment analyses 

(Joseph, V. R.2022).The machine learning algorithm created in this process is capable of 

estimating the risk and damage level that a structure may experience during a potential 

earthquake event. The earthquake risk analyses for the buildings in the database were 

conducted using the detailed seismic risk analysis method specified in the Urban 

Transformation Law No. 6306 (GABHR 2012) or the Turkish Earthquake Code (TEC 2007). 

In this context, detailed data such as architectural plans, material strengths, and other 

physical properties for all buildings were accessible. Technical analyses were carried out on 

these structures to train the machine learning algorithms. Before using the raw database, data 

preprocessing was conducted to eliminate irrelevant or misleading information, such as 

removing null values and categorizing selected parameters. Additionally, Table 3.1 provides 

information about the distribution of these parameters for reference.  

Table 3.1. Brief summary of selected attributes 

Abbreviation Variable names Data Type 

EZ Earthquake Zone Categorical/Nominal 

BA Building Age Numerical 

NF Number of Floors Numerical 

FA Critical Floor Area Numerical 

BM Building Mass Numerical 
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In Turkey, masonry structures are typically constructed with fewer than four stories. 

However, in regions with low seismic activity, it is possible to use masonry structures for 

buildings of up to 8 stories. It's important to note that such cases are relatively rare. 

Consequently, the database used in this study was intentionally designed to include a limited 

number of masonry buildings with more than four stories, comprising only 25% of the total 

database. 

 

The detailed seismic assessment of the buildings followed the guidelines outlined in 

GABHR (2012). In the numerical models used, all piers were represented by 2-node 3-D 

frame elements, and all slabs were modeled with 4-node thin shell elements. The modulus 

of elasticity in the numerical models was calculated using the formula (i.e., 200fm) specified 

in GABHR (2012). 

 

Within each story, a rigid diaphragm was defined, particularly when a reinforced concrete 

slab was present. Subsequently, a response spectrum analysis was conducted, taking into 

account a reduced design spectrum (R=2), with separate analyses performed for two 

orthogonal directions. During the response spectrum analysis, the requirement for 95% mass 

participation was met in each orthogonal direction. 

VQ Visual Crack and Mortar Quality Categorical/Ordinal 

CR Compressive Strength Categorical/Nominal 

SW Specific Weight Categorical/Nominal 

SS Shear Strength Categorical/Nominal 

TS Diagonal Tensile Strength Categorical/Nominal 

SD Design spectral acceleration coefficient of 1 s Numerical 

SC 
The short period (0.2s) is the design spectral 

acceleration coefficient 
Numerical 

RS 
Classified ratio of the floor shear force on the 

risk walls to the total shear force 
Numerical 
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In the detailed seismic assessment analysis, the performance limits for slab elements were 

determined. The performance of each pier was categorized as Minimum Damage (MD) if 

the pier had the capacity to withstand the reduced design spectrum and gravity demands, or 

as Collapse Damage (CD) if it lacked the necessary capacity. The capacity of each pier was 

estimated based on the effective height, considering the full height, and considering modes 

of failure as specified in TEC 2018, such as diagonal tension and base sliding. Additionally, 

the axial load demands were compared with the axial load capacities of each pier, with a 

correction applied based on the slenderness ratio. The correction factor was set at 1 for 

slenderness ratios less than 6, 0.8 for slenderness ratios between 6 and 10, 0.7 for slenderness 

ratios between 10 and 15, and 0.5 for slenderness ratios exceeding 15. Piers with an axial 

load capacity lower than the demand were classified as Collapse Damage (CD). 

 

The overall performance of each masonry building was considered satisfactory in terms of 

life safety if less than 50% of the total base shear at the first story was resisted by masonry 

piers categorized as having a Collapse Damage (CD) performance level. 

From these two large databases (populations), three sampled databases (samples) were 

derived for use in machine learning algorithms. At this stage, the Latin Hypercube sampling 

method was used (MacKay et al. 1979). As it is known, in Latin hypercube sampling, it must 

first be determined how much data will be used in the sampling database to be created. Since 

it was determined by preliminary calculations that the resulting population databases did not 

require a great deal of time in the machine learning algorithm study with the computers used 

within the scope of the project, it was decided to use 80 percent of the entire population data 

in the training database and 20% in the test database. 

The dataset used to determine the outcomes of this section is presented in Appendix A.  

In this part of the study, frequency graphs will be shown to understand the reference range 

of the obtained verification and test data and the distribution of the parameter properties 

within the data set.(Table 3.2. and 3.3.) Thanks to these graphs, if the distribution of a feature 

of any parameter in the data is too much or too little, this parameter may not give accurate 

results. In addition, outliers within the parameter can be clearly seen in these graphs. (Table 

0.7 and 0.8)  
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The tables contain statistical summaries of the data. When the statistical summaries were 

examined, parameters with large differences between minimum and maximum values (such 

as BA and BM) were detected. Additionally, it has been determined from these tables that 

there are many values with high standard deviations. This strengthens the possibility that 

there may be outliers in the data set. For this reason, data preprocessing must be applied to 

the data set. 

Outliers that could significantly affect the analysis results were handled on a feature-by-

feature basis. Each feature was examined individually and unrealistic values were removed 

based on predetermined thresholds. For example, as an upper limit, the building mass is 

limited to 500000, the coefficient is 7, and the building area is limited to 1000. Rows with 

lower values of 0 have been removed. 

 

Table 3.2. Number of Variables and Statistical Summaries for the Masonry Buildings 
Training Database 

Variable Abbreviation Data Type 
Distribution in the 

Database 

Number of 

Floors 
NF Numerical 

mean       2.358783 

std           1.149407 

min          1.000000 

25%         1.000000 

50%         2.000000 

75%         3.000000 

max         6.000000 

Critical Floor 

Area 
FA Numerical 

mean      107.402758 

std          58.476722 

min         12.650000 

25%        72.087500 

50%        95.550000 

75%       126.000000 

max       953.500000 
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Building Age BA Numerical 

mean       43.068312 

std           13.335290 

min         3.000000 

25%        32.000000 

50%        42.000000 

75%        52.000000 

max         82.000000 

Building Mass BM Numerical 

mean      336.093201 

std          303.439074 

min         6.000000 

25%       111.557525 

50%       263.535000 

75%       444.812575 

max        2003.330000  

Design Spectral 

Acceleration 

Coefficient of 1 s 

  mean      0.431811 

std          0.175160 

min         0.068000 

25%        0.326000 

50%        0.416010 

75%        0.548258 

max        1.042000  

SD 

                                                             

 

Numerical 

 

 

The short 

period (0.2s) is 

the design 

spectral 

acceleration 

coefficient 

SC Numerical 

mean        0.991995 

std            0.325233 

min          0.170010 

25%         0.821000 

50%         1.011000 

75%         1.165000 

max         2.335000 
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Classified ratio 

of the floor 

shear force on 

the risk walls to 

the total shear 

force 

RSV Numerical 

mean        0.803622 

std            0.249803 

min          0.000000 

25%         0.620000 

50%         0.930000 

75%         1.000000 

max         1.000000 

Earthquake 

Zone 
EZ Categorical/Nominal 

1              1228 

2              556 

3              1520 

4               60 

5               116 

Compressive 

Strength 
CR Categorical/Nominal 

1.2            1293 

1.4            1984 

1               12 

0.5            195 

Shear Strength SS  Categorical/Nominal 

0.15        2862 

0.18        427 

0.1          195 

Diagonal Tensile 

Strength 
TS Categorical/Nominal 

0.25         1291 

0.18         1988  

0.1           195 

0.2           10 
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Table 3.3. Number of Variables and Statistical Summaries for the Masonry Buildings Test 
Database 

Variable Abbreviation Data Type 
Distribution in the 

Database 

Number of 

Floors 
NF Numerical 

mean      2.361239 

std          1.140633 

min        1.000000 

25%        1.000000 

50%        2.000000 

75%        3.000000 

max        7.000000 

Critical Floor 

Area 
FA Numerical 

mean     106.834908 

std         53.750313 

min       10.540000 

25%       73.045000 

50%       96.580000 

75%      127.000000 

max      500.000000 

Building Age BA Numerical 

mean      43.036697 

std          14.213269 

min        4.000000 

25%       32.000000 

50%       42.000000 

75%       52.000000 

max       82.000000 

Building Mass BM Numerical 

mean     339.708337 

std         310.105220 

min        12.350000 

25%       113.050000 
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50%       268.425000 

75%       439.577575 

max       1978.420100 

Design Spectral 

Acceleration 

Coefficient of 1 s 

  mean     0.437660 

std         0.178701 

min        0.074000 

25%       0.331008 

50%       0.431005 

75%       0.553010 

max       1.502000 

SD 

                                                             

 

Numerical 

 

 

The short 

period (0.2s) is 

the design 

spectral 

acceleration 

coefficient 

SC Numerical 

ean         0.996670 

std          0.327448 

min         0.176000 

25%        0.817750 

50%        1.015000 

75%        1.176000 

max        2.006000 

Classified ratio 

of the floor 

shear force on 

the risk walls to 

the total shear 

force 

RSV Numerical 

mean       0.812729 

std           0.250238 

min         0.000000 

25%        0.640000 

50%        0.930000 

75%        1.000000 

max        1.000000 

Earthquake 

Zone 
EZ 

Categorical/Nomi

nal 

             1              13 

2              142 

3              372 

4              320 

             5              25 
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Compressive 

Strength 
CR 

Categorical/Nomi

nal 

1.2            348 

1.4           483 

1               37 

0.5            4 

Shear Strength SS  
Categorical/Nomi

nal 

0.15        732 

0.18        103 

0.1          37 

Diagonal Tensile 

Strength 
TS 

Categorical/Nomi

nal 

0.25         346 

0.18         485  

0.1           38 

0.2           3 
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Table 3.4. Training dataset distribution 
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The left skewness in RVS and FA values is caused by outlier data and unbalanced data. A 

more balanced data set was obtained by classifying the RVS values in the following sections 

and deleting the outliers in the fa values. 
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Table 3.5. Test dataset distribution 
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Basic statistical techniques are essential tools for data summarization, analysis, and 

interpretation. These techniques provide a basis for decrypting data and making 

intelligent decisions. Mean, Standard Deviation, mode, Variance, and range are some of 

the basic statistical techniques most commonly applied. This study involved an initial 

examination of the overall data distribution using basic statistical analysis tests 

Friedman, J. H. (2001). 

When the standard deviations, kurtosis, and diameter of the data were evaluated, it was 

observed that there were outliers. Therefore, these values have been changed to average 

values if possible. Moreover, comparisons of the basic statistical values of the test data 

and training data are similar, thus concluding that the test data is representative of the 

overall dataset. The data is a unique and valuable data set as it includes damage 

assessment data and detailed static analysis information (RVS). The sharing of data is 
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kept confidential in accordance with Law No. 6698. If requested, it can only be requested 

from the relevant public institutions. Since categorical data is nominal and numerical 

data is discrete, it is suitable for regression and correlation analysis methods. For the 

stated reason, the homogeneity of the data and their relationship with each other will be 

evaluated with these methods in the following sections. After examining the distribution 

of the datasets, the number of possible outcomes of the RS variable leading to the most 

accurate predictions was investigated. For this purpose, Euclidean distances were plotted 

against data points (i.e., dendrogram). The least possible number of outcomes can be 

determined by counting the fewest points that intersect with any possible horizontal line 

drawn on the dendrogram. For the risk status variable, this number was equal to two or 

three (Figure 3.1). Therefore, this cross-check also confirmed the validity of two or three 

selected possible outcomes of the RS variable (i.e., risky or non-risky or medium risky). 

In other words, the created machine learning network has high success rates that can 

distinguish not only risky and non-risky buildings, but also moderate risk buildings. 

 

Figure 3.1. Dendrogram representing the least number of outcomes for the variable RS 

 

After the dendogram method, another method was used to confirm the most optimal layer of 

the risk class. With the proposed Elbow method, the optimum “k” value is found and 

clustering is done with the k-means algorithm, algorithms such as this dendogram method 

can give us preliminary information about how many different results the data set can 
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produce. Using this information, we can figure out how many outcomes the algorithms 

should divide our dataset into (such as risk-free or risky, medium risk, no risk).  

 

The elbow technique is used to analyze how much variation is explained based on the 

number of clusters. It works on the tenet that the optimal number of clusters should be chosen 

so as to avoid having more clusters add noticeably to the data modeling or to the explanation 

of extra variation. The technique helps in determining an optimal number of clusters for 

clustering algorithms. Plotted against the number of clusters is the proportion of variation 

explained by the clusters. There will be a lot of information in the early clusters, but 

eventually the marginal gain will drop noticeably and the chart will show a different aspect 

(Bholowalia & Kumar, 2014). It was determined that the data set would be accurate using 

the bracket method based on 3 clusters, as shown in Figure 3.2. 

 

Figure 3.2. Elbow rule for classification of buildings 

 

Finally, a second validation was done with K-Means Clustering, which is another method of 

clustering the risk class. Geon recommended K-Means, one of the most popular partitioning-

based clustering techniques (Park et al., 2013). The cluster head selection process is 

relatively straightforward and quick. Initially, k out of n nodes are randomly categorized as 

either Risky, No Risk, or Moderate Risk. Subsequently, each of the remaining nodes 

determines its classification by selecting the nearest one among them based on the Euclidean 

distance. Consequently, the most suitable number of clusters for the data set is determined. 

As a result of the study with the data set, it is concluded that the separation into two clusters, 
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namely risk-free/risky, is more manageable and a high success rate can be achieved (Figure 

3.3). 

 

Figure 3.3. K-Means clustering method for classification of buildings 

 

In summary, the methods concluded different outcome options. For instance, the 

dendrogram method, the Elbow Rule and the K-Means Cluster Method suggested 3 classes, 

3 classes and 2 classes for the optimum classification of the Ve/Vr outcome parameter in the 

data set, respectively (Figure 3.2 - 3.4). Therefore, it has been determined that the Ve/Vr ratio 

for the algorithms to be used in the analysis should be arranged by taking the most optimum 

(for the most successful results) 3 classes or 2 classes (Figure 3.4).  

 

 

Figure 3.4. Optimum classification of Ve/Vr variable by means of Dendogram, Elbow rule 
and K-means clustering methods 
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The code used to determine the outcomes of this section is presented in Appendix 1.  

3.1.2. Synthetic ninority oversampling technique (SMOTE) 

In machine learning, class imbalance is a common problem, especially in classification tasks 

when one class significantly outnumbers the other.  

In the context of this study, the dataset exhibited a significant imbalance, with 4,000 "Risky" 

structures and only 356 "Not Risky" buildings. This skewed distribution is visualized in 

Figure 3.5. Addressing this class imbalance is crucial to ensure that the model can effectively 

identify and predict the minority class (e.g., "Not Risky" buildings) and not be biased toward 

the majority class (e.g., "Risky" structures). Various techniques, such as oversampling, 

undersampling, or using appropriate evaluation metrics, are often employed to tackle this 

issue and improve the model's performance on imbalanced datasets. 

.  

Figure 3.5. Showing balanced distribution of RVS values 

 

By producing synthetic samples, SMOTE is a commonly used technique for oversampling a 

minority class and producing a more balanced dataset for model training. Choosing 

comparable instances in the feature space, drawing a line between them, and then drawing a 

new example along this line is how the technique operates. This technique enhanced the 

model's performance and helped balance the classes, particularly in correctly forecasting the 

minority class. It is crucial to remember that, although though SMOTE worked well for this 
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study, there are a lot of different methods that can be used to correct class imbalance 

(Beyhan, 2023).  

Alternatively, addressing imbalanced datasets involves oversampling the minority class. A 

basic approach is to duplicate instances from the minority class, but these copies don't offer 

any new insights to the model. Instead, a more advanced technique is to generate new 

examples by synthesizing from the existing ones, as outlined in (Brownlee 2020). To tackle 

this issue, an alternative to traditional random oversampling was introduced by Chawla et 

al. (2002).It's known as the Synthetic Minority Oversampling Technique (SMOTE), and it 

serves as a form of data augmentation for the minority class. The core idea behind SMOTE 

is to perform interpolation among neighboring instances in the minority class. This allows 

for the creation of new minority class examples within the proximity of existing ones, thus 

aiding classifiers in enhancing their generalization capabilities. 

 

Upon a closer examination of the detailed analysis results within the dataset, it has been 

observed that there are imbalances in the ratio of risky wall shear force to the total wall shear 

force (RVS) across the entire floor. In other words, it is seen that the number of buildings 

with low-risk levels is unbalanced (Figure 3.4). For this reason, by synthetically increasing 

the number of low sismic risk buildings in the data set with the SMOTE method, the 

unbalanced data set was improved and the problems such as overfitting-low accuracy were 

eliminated. 

 

 

Figure 3.6. RVS scatter plot current dataset 
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With the SMOTE method, the number of buildings with low seismic risk in the training 

dataset has increased. As can be seen from the graph (Figure 3.6), this increase has resulted 

in a more balanced view of the building risk distribution. As mentioned before, this method 

prevented overfitting in the data set and increased success rates. 

 

 

Figure 3.7. RVS scatterplots reproduced low-risk structures with the SMOTE method. 

 

This synthetic replication process replicates the less risky structures in the training dataset 

after the dataset is separated as train/test. Therefore, there is no change in the number of data 

in the test data set. Following are the results of the distribution of risk-free, medium-risk, 

risky, and high-risk structures as a result of the four classification of the Ve/Vr variable in 

the training dataset and their synthetic reproduction with the SMOTE method. 

 Before Undersampling, counts of label '1': 505 

 Before Undersampling, counts of label '0': 103  

 Before Undersampling, counts of label '2': 484 

 Before Undersampling, counts of label '3': 2392  

 After Undersampling, counts of label '0': 2392 

 After Undersampling, counts of label '1': 2392 

 After Undersampling, counts of label '2': 2392 

 After Undersampling, counts of label '2': 2392 
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The code used to determine the outcomes of this section is presented in Appendix 1.  

3.1.3. Data scaling 

Normalization is utilized when algorithms operate independently of specific assumptions 

about the distribution of the data, whereas standardization is employed when algorithms 

make specific assumptions about the characteristics of the data distribution. The majority of 

Machine learning algorithms tend to underperform when dealing with numerical features 

that exhibit inconsistent scaling (Xue et al., 2019). The Min-Max scaler and the Standard 

scaler are two often used methods to address this problem (Kaur, 2020). The Min-Max scaler 

creates a range (typically 0-1) by zooming in or out, then scales numerical features into the 

specified range. The Standard-scaler, on the other hand, transforms numerical information 

in a way that produces a distribution with a mean value and a standard deviation of 0 and 1, 

respectively (Luo et al. 2020). In this study, considering normalization, the parameters in the 

data set were drawn to the same measure level by using the Standard-scaler. The standard-

scaler normalization method ends in Equation 3.1 below. Where μ is the mean value and σ 

is the standard deviation. 

𝑧 =
(𝑥 − 𝜇)

𝜎
                                   (3.1)        

In this part of the study, all parameters in the data were brought to the same scale and 

analyzes were performed in order to obtain accurate results. 

3.1.4. Variable selection with dimension reduction 

Dimensionality reduction involves the task of decreasing the quantity of attributes in a 

dataset while retaining as much of the variability present in the original dataset as feasible. 

In essence, it's a method for converting a large set of variables into a smaller set without 

sacrificing critical information. (Swarna et al. 2020). The section's major goal is to examine 

which dimensional reduction techniques are used in fast seismic risk estimation analysis. 

Here are a few advantages of using dimensionality reduction techniques on a dataset 

(Velliangiri et al. 2019).  

1. Data storage can be cut down when the number of dimensions decreases. 

2. It merely requires a shorter computation time. 

3. It is possible to eliminate noisy, redundant, and irrelevant data. 
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4. It is possible to enhance data quality.  

5. On more dimensions considered, some algorithms do not function effectively. 

Therefore, lowering these dimensions makes an algorithm more accurate and in

creases its efficiency.  

6. It streamlines the classification process and boosts productivity. 

If the parameters in the dataset have little or an adverse effect on the risk outcome (for 

example, the building becomes more non-risky as the age of the building increases), these 

parameters may prevent the algorithm from making the correct estimation of the outcome. 

In addition, the presence of highly correlated parameters or the removal of parameters with 

the same effects (eg soil class and spectral acceleration coefficient) before analysis can 

increase the computation speed of the algorithm. In the context of feature selection, a high-

dimensional dataset often contains a substantial number of attributes, some of which may be 

inaccurate, outliers, or redundant. This circumstance increases the search space's 

dimensionality and may make the dataset less suitable for learning. As a result, from the 

original dataset, a subset of the most pertinent features must be extracted. Computational 

principles guide the feature selection techniques that are used to select the most relevant 

features from the original set. Filtering, wrapping, and embedding are the three methods that 

these actions can be carried out. The use of feature rank in filter methods is the norm for 

feature collecting by arrangement (Velliangiri et al. 2019). It chooses only pertinent features, 

increasing the correlation between them in the original feature collection Figure 3.8.  

 

 

 

 

High-Dimensional Data                                          Low-Dimensional Data 

 

                                                                     

 

 

 

Figure 3.8. Dimension reduction advantages 
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In this study, the initial dataset consisted of twelve parameters. To enhance the analysis 

efficiency, five size reduction methods were employed to identify the six most influential 

parameters. Initially, a random forest regression algorithm was used to sort the parameters 

based on their feature importance, leading to the removal of the least effective ones. 

 

Next, in the second and third steps, advanced feature selection and retrospective feature 

elimination techniques were utilized to eliminate structural crack and mortar quality from 

the parameter list. This decision was made because the shear strength and diagonal tensile 

strength parameters had weak effects on the seismic risk analysis results. 

 

In the fourth step, the design spectral acceleration coefficient, which exhibited high 

correlation and similar effects on the results, was removed at 1 second. However, the short-

term (0.2 seconds) design spectral acceleration coefficient was retained for evaluation in the 

machine learning process. 

 

Finally, the building mass parameter was excluded from consideration due to its challenging 

detection for both technical personnel and automated rapid detection processes. This 

approach aimed to dissociate unnecessary parameters from the network and minimize bias 

(as depicted in Figure 3.9). 

 

 

Figure 3.9. Dimension reduction methods used in the study 
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3.1.5. Feature importance 

Many variable selection procedures rely on collaborative sequencing and model estimation 

of variable importance to create, evaluate, and compare a family of models. Generally, three 

types of variable selection methods are distinguished: the “filter”, in which the variable 

importance score is not dependent on a particular model design method; “wrapper,” that 

calculates scores using projected performance; and lastly, "embedded", which more closely 

integrates variable selection and model estimation. In the study, the "filter" model based on 

variable importance will be used (Kohavi and John 1997). The importance coefficients of 

the data generated in this step were determined according to the seismic risk analysis result 

with a random forest regressor (Breiman 2001) (Figure 3.10). These importance coefficients 

are used in algorithm analysis, and parameter selections are decided for variable selection.  

The features' relative importance that affect the RVS value with the Random Forest 

Classifier algorithm is given in Figure 3.10. According to this graph, the design earthquake 

acceleration coming to the building, which is thought to be the most effective for seismic 

detailed analysis, the number of building floors that affect the belief period, and the age of 

the building, which indicates the technology in which the building is made, were determined 

as the three most effective parameters (SC, NF and BA). 

 

Figure 3.10. Relative importance method 
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3.1.6. The backward feature elimination and forward feature selection methods 

In this section, unnecessary parameters were removed from the algorithms by using the 

Backward Feature Elimination and Forward Feature Selection methods, which are one of the 

Dimensionality Reduction techniques, and the parameters that affect the risk result. 

To narrow down your focus and implement the 'Backward Feature Elimination' method, 

follow the steps outlined (Figure 3.11): (Santos et al., 2011) 

• The dataset's current features had to be collected, then used for the testing model.  

• Calculating the level of model performance was necessary. 

• After calculating the model's output and removing one variable at a time—that is, one 

function would be removed in times the model would then be tested on the remaining 

n-1 variables. 

• Choose the variable whose deletion resulted in the least (or no) difference in the output 

of the model, and then eliminate that feature. 

• Keep repeating the previous technique until it becomes difficult for the variable to 

disappear. 
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Figure 3.11. The backward feature elimination method 
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To focus more and follow the ‘Backward Feature Elimination’ method, follow the coming 

steps (Figure 3.12): (Macedo et al., 2019) 

 Analyzes techniques that ignore complementarity against a baseline. 

Distribution environment Current research allows established techniques to 

interpret the objective function as approximations of a target objective 

function. 

 How, from a theoretical point of view, the useful properties of the objective 

function are affected by different types of approaches and the drawbacks of 

the selected feature selection techniques are pointed out. Methods to avoid 

and methods that currently work best are outlined. 

  After adding each function (n times) and calculating the output of the model, 

the model will be evaluated with all the additional variables, so each variable 

will be added one by one.  

 Finally, the most effective parameters will be selected, and the ineffective 

ones will be eliminated. 

 

Indeed, by applying the backward feature elimination method, not only does the 

algorithm's speed increase, but its success rate also improves. In this method, the initial 

step involves building a model using all the features simultaneously to assess its 

performance. Subsequently, the method systematically removes each variable one by one 

and evaluates the model's performance after each elimination. The variable that leads to 

the worst performance is eliminated from the final feature set. 

 

On the other hand, the forward feature selection method operates in the opposite 

direction. It begins with an empty feature set and iteratively adds one parameter at a time, 

evaluating the model's performance after each addition. The parameter that contributes 

the most to enhancing the results is selected and retained in the final feature set. 

 

Fundamentally, backward feature elimination focuses on removing the least important 

features, while forward feature selection systematically incorporates the most significant 

parameters to manage and enhance algorithm outcomes. Both of these techniques are 

pivotal in the context of feature selection and model optimization during data analysis. 
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Figure 3.12. Forward feature selection methods 
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3.1.7. Correlation of parameters with detailed assessment analysis results 

A comprehensive seismic assessment analysis of buildings is of utmost importance in 

understanding how a building behaves during seismic events. Typically, this detailed seismic 

assessment is mandated for the safety evaluation of all structures older than 20 years, 

particularly those situated in close proximity to earthquake-prone regions. Conversely, in 

countries with the objective of quickly identifying risky buildings for potential retrofitting, 

rapid screening methods should be employed. These methods are designed to swiftly filter 

and assess buildings, facilitating prompt action to address retrofitting needs. Therefore, this 

filtering operation is vital as structures that are at risk of collapse even in a small-scale 

earthquake (called a service earthquake) should be strengthened immediately, or new 

earthquake-resistant structures should be built instead of these structures. However, current 

rapid screening methods in the literature have a very limited correlation with the detailed 

assessment analysis results, as none of the methods was calibrated with the detailed analysis 

results. Thus, it is difficult to depend on the risk estimations of the rapid screening methods 

while taking actions at the seismic risk mitigation level. (Coskun & Aldemir, 2022) As a 

result, the primary aim of this study was to establish a network that can link seismic risk 

with building characteristics. Therefore, it was of great importance to determine the most 

effective variables to distinguish between risky and risk-free structures in line with the 

seismic risk assessments obtained from detailed analyses. This process can help eliminate 

unnecessary parameters from the network and reduce bias. Here, a very high correlation of 

one variable with another variable should also be excluded to improve algorithm 

performance. Within the scope of the study, the most effective parameter selection was made 

by examining the correlation maps and correlation graphs of each parameter with each other. 

The information provided shows the correlation between the variables in the dataset and the 

class label called “risk status” obtained from detailed analysis. (RS). (Table 3.6). 
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Table 3.6. Basic correlation analysis 

TS RS  SS RS  CR RS 

0.18 0.867  0.15 0.837  0.15 0.837 

0.1 0.787  0.10 0.787  0.10 0.786 

0.25 0.748  0.18 0.70  0.189 0.700 

0.20 0.70       

VQ RS  VD RS  NF RS 

1 0.865  1 1.000  7 1.000 

0 0.787  0 0.727  4 0.936 

      3 0.922 

EZ RS  SW RS  5 0.912 

4 0.864  18 0.868  6 0.818 

2 0.837  25 0.765  2 0.750 

3 0.811  13 0.775  1 0,680 

1 0.788   10 0.729 

0 0.600  15 0.700 

 

 

In Table 3.6, values above 0.5 contribute to the building's risk, while values below 0.5 

contribute to the building's risklessness. For example, if the Soil Zone Type is soil with 

loose sand, gravel and hard clay layers (EZ=0.864), the RS value increases to 0.864, 

indicating that it contributes to the risky nature of the building. If the Soil Zone Type is 

Solid Ground and hard rocky ground, the RS value is reduced by 0.600, contributing less 

to the building's risk. It can be said that the result obtained according to the structures in 

the data set is reasonable, since the soil with loose sand, gravel and hard clay layers 

affects the buildings negatively.  

 

Furthermore, the relationships among various parameters, including the spectral 

acceleration coefficient (EDA Multivariate Analysis), building age, number of floors, 
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typical plan area, and other factors, are illustrated in Figure 3.13. It's evident that the risk 

level exhibits a strong association with an increased likelihood, spectral acceleration 

coefficient, and building age. On the other hand, the correlation between floor area and 

the risk level, as determined by the detailed analysis, is relatively limited. Among these 

parameters, Short Period Spectral Acceleration (SC), Building Age (BA), and the 

number of floors (NF) exhibit the highest correlations with the results of the detailed 

seismic evaluation analysis. This correlation is theoretically sound. Older structures that 

have not undergone engineering upgrades are more prone to seismic risks. Similarly, as 

the number of floors and the spectral acceleration coefficient of a building increase, the 

horizontal displacement requirements and earthquake forces acting on the building 

naturally escalate, thereby increasing the seismic risk. (Coskun and Aldemir, 2022) 
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Figure 3.13. Correlation head maps with the risk situation (EDA Multivariate Analysis) 

 

The correlation of the parameters with each other also has an important effect on the 

parameter elimination. Since parameters with high correlation with each other will affect the 

result at the same rate, removing one of the parameters will affect the algorithm in a good 

way. In this context, there is a graph showing the relations of the parameters in Figure 3.14. 

As it can be understood from Figure 3.16, a direct correlation of the SC parameter with the 

SD parameter and the BM parameter with FA and NF parameters has been determined. 

Graphs showing the individual relations of these parameters with each other will be shown 

in the following sections. 
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Figure 3.14. All parameters correlation of graphich 

In addition, the distribution of some parameters to the risk result also gives information about 

the correlation. For example, in Figure 3.15, the effects of bad and good crack-and-mortar 

conditions on the risk outcome are the same. In reality, we conclude that the construction 

must be risky if the mortar quality is poor and cracks are present. However, since there is an 

equal distribution here, it is concluded that this parameter does not consist of real values. 

 

 

 

 

 

 

 

 

 

Figure 3.15. Effect of visual quality on risk outcome 
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In addition, parameters with high correlation with each other were chosen. For example, 

since the short spectral acceleration coefficient and the 2 s spectral acceleration coefficient 

have a very high correlation with each other, only one of these parameters was chosen. In 

another example, only one of these parameters was chosen because the linear correlation 

between BM parameter and the NF parameter was high. (Figure 3.16) 

 

 

 

 

 

 

 

 

Figure 3.16. Parameters that are highly correlated with each other 
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3.1.8. Not suitable for rapid detection 

In this study, a multi-step approach was employed to reduce the size of the data set 

by selecting parameters that have a significant impact on seismic analysis results and are 

easily detectable. Initially, the Backward Feature Elimination and Forward Feature Selection 

methods were utilized to prioritize and eliminate parameters based on their importance. 

Additionally, parameters that posed challenges for detection in the field and could potentially 

slow down human or machine detection processes were also eliminated. Among these, the 

building mass parameter was removed due to the difficulty in accurately determining its 

value.. For a visual representation of this process, refer to Figure 3.17. 

 

 

          

 

Figure 3.17. Algoritms with dimension reduction 

 



72 

 

3.1.9. Feature extraction and engineering 

The Feature Extraction (FE) method involves generating new features from the original 

dataset. It proves highly advantageous when the objective is to reduce the computational 

resources necessary for processing while retaining relevant features from the dataset. FE is 

instrumental in creating meaningful transformations of the initial features, resulting in more 

significant and informative features. (Velliangiri et al., 2019). In Figure 3.15, it is observed 

that the floor area parameter ranks 6th in terms of importance when using the random forest 

regression algorithm. However, its correlation value in the correlation heat map is quite low, 

indicated by -0.01, which suggests a weak linear relationship with the target variable (RVS 

value). To address this issue and increase the correlation with the RVS value, a Feature 

extraction process was employed. The method involved processing a few parameters 

together, resulting in the creation of a new variable called "total floor area" (FA_NF). This 

new variable was obtained by multiplying the number of floors by the ground floor area. 

After applying this method, the correlation between the "total floor area" (FA_NF) and the 

RVS value significantly improved and became 0.21, which is ten times higher than the 

original correlation value. Figure 3.18 visualizes this increase in correlation. As a result of 

this feature extraction process, a parameter (total floor area) with a higher correlation to the 

RVS value was produced. This new parameter is expected to have a stronger influence on 

the seismic risk analysis results as it increases, thereby contributing to a more accurate 

assessment of the risk situation. 
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Figure 3.18. Correlation best parameters (EDA Multivariate Analysis) 

 

3.1.10. Results of variable selection with dimension reduction 

Choosing the most effective parameters with dimension reduction and feature selection 

methods contributes to both speeding up the algorithm and increasing the success rate. These 

parameters are Entire Floor Area (FA_NF), Short time (0.2s) design spectral acceleration 

coefficient (SC), Compressive Strength (CR), Specific Gravity (SW), Building Age (BA), 

and Number of Floors (Table 3.7). All these parameters are necessary both for fast detection 

and to not reduce the success rate.  
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Table 3.7. The most effective parameters 

Variable Abbreviation 

Area of all floors FA_NF 

Building Age BA 

Specific Weight SW 

Compressive Strength CR 

The short period (0.2s) is the design 

spectral acceleration coefficient 
SD 

Number of Floors NF 

 

As a result of these studies in this section, twelve parameters obtained from a data set with 

detailed seismic analysis results, building photographs and building dimensions were 

reduced to six parameters with dimension reduction methods. Because this study propose 

without the need for technical personnel and without entering the building, with the 

automation methods of the structures, after the parameter selection, the estimations of the 

RVS values using machine learning methods can be made with high accuracy.  Data pre-

processing in this section is very important as the procedure will be applied to identify, 

inventory and sort the most vulnerable buildings that could be damaged by a possible 

earthquake in a given area with these six parameters. 

3.2. Analysis with Machine Learning Algorithms 

The core idea behind machine learning (ML) is the ability of data-driven models to learn 

about a system from observed data itself without requiring prior knowledge of the 

mechanical relationships that govern the system's behavior. With each new sample of data, 

machine learning algorithms can improve their performance adaptively, find relationships in 

complex, diverse, and high-dimensional data, and update their differentiable weights 

accordingly (Shaikhina et al., 2019). In this study, to achieve the highest success rate, a 

preference was given to utilizing multiple machine learning algorithms, a concept known as 

ensemble learning, as opposed to relying on a single algorithm. The ensemble learning 

approach encompassed a range of supervised machine learning algorithms that leverage 

labeled input data to acquire a function capable of producing precise outputs when 
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confronted with unlabeled data (Figure 3.19a).  To accomplish this, the dataset was initially 

partitioned into training, validation, and test datasets. Statistical measures, such as parameter 

correlations, were calculated, and feature engineering tasks were performed, including the 

definition of categorical variables. Following this, ensemble learning algorithms were 

applied to carry out the necessary learning procedures. Finally, the machine learning 

network's performance in predicting the risk state was assessed using the test dataset. (Figure 

3.19b, Figure 3.19a). 

In order to anticipate speedy seismic analysis findings, the study used a variety of machine 

learning techniques, such as Decision Tree Classifier, Gradient Boosting (GB), Logistic 

Regression (LR), Random Forest C., K-Mean Clustering, Support Vector Machine, 

LGBMClassifier, MLPClassifier, and MARS. Within the scope of the study, a method called 

the Unified Learning Framework is proposed in which the most effective machine learning 

algorithm is selected for each building class. 

 

Figure 3.19. (a) Supervised learning example and (b) Flow chart of the method used in this 
study (Coskun and Aldemir, 2022) 

  

(a) 

(b) 



76 

 

3.2.1. Background on the machine learning methods 

The working principles of the algorithms that form the basis of the ML techniques used in 

this thesis are explained in this section. Nine different ML techniques were applied to 

regression and classification to compare performances. In this section, the most accurate 

machine learning algorithms for estimating seismic risk are selected, and the underlying 

mathematics are explained. 

3.2.1.1. Logistic regression 

Understanding a binary or proportional response (dependent variable) based on one or more 

predictors is the aim of a logistic regression model  (Hilbe, 2009). Logistic Regression offers 

the advantage of interpreting the output of the prediction function as a posterior probability. 

This property is achieved through the sigmoid function, as illustrated in (Equation 3.2): 

𝑃(𝑌 = 𝑘|𝑋 = 𝑥) =
exp ( ⍵ + ∑  ⍵ 𝑥 ) 

1 + ∑ exp ( ⍵ + ∑  ⍵ 𝑥 )
                  (3.2) 

Logistic Regression (LR) was originally developed for binary classification tasks. However, 

it can be extended to solve multiclass problems using techniques such as adding a SoftMax 

layer. In this method, the classification of an example is usually created by considering the 

class to which the learning model assigns the highest probability  (Tan 2022). 

 

In Logistic Regression, for instance, the probability of being at risky is assumed to be the 

following functional form, which is a sigmoid (logistic) function (Equation 3.3). This value 

is always between 0-1. 

 

𝑇ℎ𝑒 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 1/(1 + e )                                               (3.3) 

 

In this study, binary logistic regression will be the focus. since it is more effective to use 

other algorithms for multiple predictions. It is aimed that the most risky buildings should be 

determined and new buildings resistant to earthquakes should be built, and this decision 

should be made by the algorithm.  
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3.2.1.2. Decision tree classifier 

In order to classify instances, decision trees lead them through the tree's structure, from the 

root to a particular leaf node that finally decides the instance's classification. One of the 

possible values for the attribute in question is represented by each branch that branches off 

of a node in the tree. Every leaf node designates a variable or category. The sample is 

categorized as negative because of its (building age = old, floor height = high, construction 

area = narrow, mortar quality = weak).  

Although decision tree learning can be expanded to learn functions with multiple output 

values, it is especially well-suited for Boolean classification tasks. When it comes to 

handling errors, such as misclassifications of training examples and misdescriptions of those 

examples in the attribute values, decision tree learning techniques demonstrate resilience. 

Decision tree techniques can also be used in situations where null or missing values are 

present in training examples. The application of decision tree learning has been widespread, 

encompassing various fields such as medical studies, equipment maintenance, and the 

categorization of loan applicants based on their likelihood of non-payment. The most useful 

feature should be revealed when creating branches of decision trees. The type of 

measurement required for this is İnformation Gain. In other words, the aim of Information 

Gain while growing the decision tree is to choose among the candidate features. A measure 

called entropy is used when calculating the Information Gain. In relation to this Boolean 

classification, the entropy of a collection S that contains both positive and negative examples 

of a target concept is (Equation 3.4): 

 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑆) = −𝑝  log 𝑝 − 𝑝  log 𝑝 …                   (3.4) 

 S represents a sample of training examples. 

 P+ denotes the proportion of positive examples. 

 P -  denotes the proportion of negative examples. 

A measure of the impurity in a set of training examples is called entropy. On the other hand, 

information gain is a metric that assesses how well an attribute can categorize the training 

set. It measures the anticipated drop in entropy that occurs when examples are divided or 

sorted according to a particular characteristic. In essence, information gain measures the 

effectiveness of an attribute in partitioning and classifying the training data. In short, he 



78 

 

decides on the name of the next branch of the Decision tree. The feature with the largest 

value of this value is placed on the next branch with its features (Equation 3.5). 

𝐺𝑎𝑖𝑛(𝑆, 𝐴) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆) − ∑ | |𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑆𝑣)        (3.5) 

 S – a collection of examples 

 A – an attribute 

 Values(A) – possible values of attribute A 

 Sv – the subset of S for which attribute A has value v 

 

The process of drawing broader, more general models by extrapolating from specific 

examples is known as inductive inference. In one setting, the goal is to become proficient at 

classifying things or circumstances by examining a collection of examples with predefined 

classes. 

A divide-and-conquer strategy can be used to build a decision tree from a collection of 

instances. The resulting tree will have a leaf node with the class labeled if every instance in 

the set is part of the same class. A test-defining node is present at the root of the tree, and for 

every possible result, a corresponding subtree is created by applying the same procedure to 

the subset of instances linked to that specific result. 

From a geometric perspective, a set of x attributes defines an x-dimensional feature space in 

which each instance is depicted as a point  (Quinlan, 1996). 

3.2.1.3. Random forest classifier 

The random forest classifier functions by choosing a random subset from the training dataset 

and constructing an ensemble of dt. In this algorithm, the predictions derived from these 

randomly selected subsets of dt are combined to make the final prediction. As a result, the 

random forest classifier is categorized as an ensemble learning method. (Shaikhina et al. 

2019). 

 
 

Eq. 3.7 is a widely used formula for computing the Gini index. In this equation, K denotes 

the number of classes; 𝜌  represents the impurity measures, and N is the number of 

samples. Impurity reflects the fraction of observations that pertain to class k within the region 
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𝑅 , where m signifies the majority class.. he Gini index assumes values between 0 and 1, 

and the closer it is to 0, the more effective the discrimination, as elaborated on.(Tan 2022). 

 

𝜌 (1 − 𝜌 )                                            (3.6) 

𝜌 =
1

𝑁
I(𝑦 = 𝑘)                              (3.7) 

 

The class assignment probabilities calculated by each of the generated trees in a Random 

Forest classifier are averaged, usually using the arithmetic mean, to determine the final 

classification. Given the computational efficiency and propensity for non-overfitting of the 

Random Forest classifier, it is possible to optimize performance by setting the number of 

trees (Ntree) to a high value (Guan et al. 2013). 

 

Recent years have witnessed an increase in interest in additional RF functions, including the 

use of variable significance (VS) to optimize feature space, internal proximity matrix 

measurements to measure correlation between high-dimensional datasets, and preliminary 

analysis of sample proximities to find outliers in training samples. The VI can be computed 

internally using a variety of methods, including the Mean Decrease in Accuracy (MDA) and 

the Mean Decrease in Gini (MDG). The majority of studies reported in this review used the 

MDA to determine the VS. Then, a search is made for the best division over the linear 

combinations obtained. If there are only a few inputs, let's say M, taking F a sizeable portion 

of M may enhance the strength but raise the correlation. A different strategy is defining extra 

features by choosing random linear combinations of a few of the input variables. This means 

that, the total number of variables to be merged, determines the feature that is produced. At 

each node, L variables are chosen at random and added with coefficients that are uniform 

random values on the range [1, 1]. The number of each tree is determined by this operation 

(Breiman 2001). Since RF is a classification tree-based algorithm, it can be used in both 

univariate and multivariate situations. As previously mentioned, an RF introduces the m 

parameter, a new parameter not present in conventional classification trees. Each node 

requires the specification of a subset of m predictive variables, ranging in number from 1 to 
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a maximum of 6 in this case study. As the tree develops, this value of m stays constant, and 

the variable is chosen at random. The generalization error and the accuracy of the classifier 

are thus also impacted by the definition of this parameter, which also influences the 

correlation and strength of each tree (Pal and Mather, 2003). 

Random Forest (RF) is a robust community-based machine learning model composed of 

multiple decision trees. Its robustness arises from the fact that the final decision is 

determined through majority voting, considering the outcomes of all the decision trees in 

classification tasks. In regression tasks, RF utilizes the average value of the outputs from all 

the available trees to make its final prediction. The prediction value that receives the most 

votes is chosen as a consequence of the voting process. For instance, the algorithm interprets 

the 3 red and 1 black outcome as red because of how the branches are arranged in Figure 

3.20. 

 

 

Figure 3.20. Example of a decision tree model 

 

3.2.1.4. Support vector machine (SVM) classifier 

For regression prediction and classification, machine learning techniques like Support 

Vector Machines (SVM) are employed. By automatically avoiding overfitting to the data, it 

maximizes predictive accuracy by utilizing machine learning principles. Systems that 



81 

 

function inside the hypothesis space of linear functions in a high-dimensional feature space 

are known as support vector machines (SVMs). They are trained using an optimization-

theory-derived learning algorithm that includes a statistical learning theory-inspired learning 

bias (Jakkula, 2006). 

 

The general form of the SVM decision boundary is next obtained as follows: 

𝑓(𝑥) = 𝑠𝑖𝑔𝑛( 𝑦 ∝ 𝐾 𝑥 𝑥 + 𝑏)                   (3.8) 

where S denotes a subset of training samples with Lagrange multipliers that are nonzero. 

(∝ ), called support vectors, and K is the kernel matrix, induced by a kernel functionk 𝑥 𝑥  

whose entries are 

𝐾 ≡ k 𝑥 𝑥 =(𝜙(𝑥 ), (𝜙 𝑥 )                           (3.9) 

Regarding  S-V-M, the function Φ typically represents a nonlinear kernel function. The 

performance of the SVM classifier depends critically on the choice of kernel parameters. 

Two key parameters that require optimal tuning are the kernel width parameter γ in the 

Radial Basis Function (RBF) kernel and the polynomial order denoted as d in the polynomial 

kernel. Unlike the linear kernel, the RBF kernel is particularly effective when dealing with 

situations where the relationship between class labels and features is nonlinear. In regression 

tasks, Support Vector Machines (SVM) aim to determine the best hyperplane that maximizes 

the number of data points falling within the chosen decision boundaries. (Tan 2022). 

3.2.1.5. K-Nearest neighbor (KNN) 

Instead of instructing the precise definition of the target function, example-based learning 

methods simply retain training instances. These instances are not generalized until there's a 

need to classify a new sample. When a newly encountered instance requires classification, a 

target function value is assigned based on its similarity to the stored instances. K-Nearest 

Neighbors (KNN) stands out as one of the widely used example-based learning algorithms.. 

Because instance-based techniques hold off on processing until a fresh sample needs to be 

classified, they are sometimes referred to as lazy learning techniques. Lazy learning 

techniques have the advantage of being able to estimate the target function locally and 

differently for each new instance that needs to be classified, as opposed to estimating it once 

for the entire instance space. The n-dimensional Rn space is the assumed space for all 
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samples corresponding to points in the K-Nearest Neighbor Learning algorithm. Conversely, 

the K-Nearest Neighbor classifier is a supervised, non-parametric learning algorithm that 

uses proximity to classify or predict how a single data point will be categorized. It is a 

versatile method used for addressing both regression and classification problems.K-nearest 

neighbor classifier (K-neighbors classifier), on the basis of; It is a classification algorithm 

that assumes that similar points can be found close to each other. However, the distance must 

be defined before a classification can be made in the K-nearest neighbors classifier 

algorithm. At this stage, the euclidean distance is used (Imandoust and Bolandraftar 2016). 

Here the Euclidean distances between the samples xi = <xi1,…,xin> and xj = <xj1,…,xjn> 

are calculated with the following formula (Equation 3.10): 

𝑑 𝑥 , 𝑥 = [ 𝑥 𝑥 ]                           (3.10) 

The closest distance to each assigned cluster is calculated with Euclidean distances, and the 

uncertain variable is assigned to its nearest neighbor. For a given query example xq, the 

function values of f(xq), xq's k-nearest neighbors are calculated. If the target function is true, 

the f values of the k nearest neighbors are averaged.When the target function is discrete, the 

K-nearest neighbor classification (K-neighbors classifier) involves a voting process among 

the f values of the k-nearest neighbors. In essence, it determines the class membership as the 

output.An input set is assigned to the same class as the outputs of the class in which it has 

the highest number of votes among its k nearest neighbors (Imandoust and Bolandraftar 

2016). 

𝑓 𝑥 =
𝑓(𝑥 )

𝑘
                                              (3.11) 

3.2.1.6. Gradient boosting 

GB algorithms are a machine operation technique used in regression and storage tasks. This 

expansion is to .increase the limits of the base model used in the machine learning run and 

reduce the memory. It works depending on light gradient boosting, reflecting the decision 

tree (decision tree). In this method, training samples are ordered from largest to smallest 

(from least untrained to most educated) according to the absolute values of the gradients of 

the missing values. Then, the first n data with the largest gradients are used in conjunction 

with randomly selected measures with such small gradients (the most educated measures) 
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that are designed for use later in progression, keeping the limits of prediction (Friedman, 

2001). 

LightGBM is an algorithm based on histograms, which decreases the computational 

workload by converting continuous variables into discrete ones. LightGBM is capable of 

handling categorical features as well. It shares many parameters with XGBoost, including 

the number of estimators, maximum tree depth, training instance subsampling ratio, number 

of iterations, and objective functions, making these parameters commonly used for model 

tuning purposes. (Tan 2022).  

GBDT is a widely-used ensemble-classifier algorithm. It operates on a training set 

containing data samples (x1, y1), (x2, y2), (x3, y3), and so on up to (xn, yn), where x 

represents the data samples, and y denotes the class labels. The algorithm employs F(x) to 

represent the estimated function, and its primary objective is to reduce the loss function L 

the loss function L(y, F(x)) (Chen et al. 2019) : 

𝐹 = 𝑎𝑟𝑔𝑚𝑖𝑛𝐸 , [𝐿(𝑦, 𝐹 (𝑥) + 𝛾 + ℎ (𝑥)]          (3.12) 

𝛾 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝐿(𝑦 , 𝐹 (𝑥 ) + 𝛾ℎ (𝑥 )               (3.13) 

Where, m is iteration number and hm(x) represents the base decision tree. 

 

LightGradientBoosting (LightGbm) and ExtremeGradientBoosting (XGBoost) are the two 

most used gradient boosting methods. A machine learning technique with a focus on model 

performance and computing speed is called XGBoost. It was first presented by Tianqi Chen 

and is now a part of the Distributed Machine Learning Community's larger toolset. This 

method can be used for both classification and regression tasks, and it is made to handle big 

and complex datasets. The dispersed high-performance framework, LightGBM, developed 

by Microsoft, employs decision trees for sorting, classification, and regression tasks, similar 

to XGBoost. The algorithm we wish to employ typically depends on the kind of processing 

unit we have available for running the models. XGBoost is actually faster on the CPU even 

though it performs comparably worse on the GPU than LightGBM (Bentéjac et al. 2021). 

3.2.1.7. Multi-layer perceptron 

A Multi-layer Perceptron (MLP) is a type of artificial neural network that incorporates 

multiple hidden layers and nodes in each layer. Its multi-layered structure enables it to learn 
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non-linear relationships. Multi-layer perceptron is based on logistic regression. Logistic 

regression is essentially a linear regression model with a sigmoid activation function for 

classification. It has a single layer and can only learn linear relationships. Logistic regression 

is easy and fast to train using simple optimization algorithms such as gradient descent. On 

the other hand, training an MLP is more complex. It requires the backpropagation algorithm 

for training. In cases with a large number of parameters, overfitting can occur. 

Regularization techniques (e.g., dropout) and optimization algorithms (e.g., Adam) can be 

employed in MLP to mitigate these issues. The multi-layered nature of MLP has been used 

in this study because it allows it to learn complex patterns and nonlinear relationships, 

resulting in better performance in various fields. A sample network is given in Figure 3.21.  

 

Figure 3.21. Multi-layer perceptron algorithm working principle 

 

3.2.1.8. Multivariate adaptive regression splines 

Friedman firstly proposed the multivariate adaptive regression line (MARS). Based on the 

basis functions that were recovered from the regression data, the MARS algorithm provides 

a dynamic link between the variables.  The construction of a flexible regression model 

involves the use of basis functions that map to several sets of independent variables. About 

the fundamental relationships that function between the independent and dependent 

variables, MARS makes no assumptions. The splines are typically coupled in a smooth 

manner, and the piecewise curves (polynomials), commonly referred to as basis functions 
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(BFs), produce a flexible model that can handle both linear and non-linear attitudes (Figure 

3.22) (Zhang and Goh 2016).  

 

 

Figure 3.22. Knots and linear splines for a simple MARS example 

 

The research on MARS demonstrates that it is hardly ever used, especially in the field of 

construction. Mars takes advantage of multicollinearity, which is the interplay of 

independent variables. So, unlike other algorithms, in the MARS algorithm, a single function 

is used to define the relationship each other the features of the building identified in the study 

(Koc 2022). 

 

The Mars algorithm performs analysis by determining the parameters that will have the 

greatest impact on estimating the outcome. The MARS model does this by employing the 

two fundamental processes of backward elimination and forward selection. Beginning with 

all features present in the model, backward elimination then eliminates the least important 

elements one at a time. The redundant BFs with the lowest contributions are removed during 

the backward phase. Forward selection starts with an empty model, and it incrementally adds 

the most crucial features. 
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3.2.1.9. Ensemble learning 

Employing several algorithms and combining their predictions is the basic idea behind the 

ensemble learning. Theoretically, the average error of a model can be decreased by a factor 

of M if we have a committee of M models with uncorrelated mistakes (Sewell 2008).  

 

Ensemble methods combine the results of two or more separate machine learning algorithms 

in an attempt to produce an aggregated result that is more accurate than either of the 

individual algorithms. In soft voting, the probabilities of each of the classes are averaged to 

produce a result. For example, if the first algorithm predicts a building with a 30% 

probability and the second algorithm predicts with 90% probability, the community predicts 

that the object is a risky building with a weighted mean with respect to the probability. In 

hard voting, each algorithm has its own vote. In the final vote, the predictions of each 

algorithm are taken into account, with the community choosing the class with the highest 

votes. For example, if the predictions of each algorithm are summed up and the majority 

concludes that the building is risky, the building in question will be classified as risky. In 

this study, 8 algorithms were combined and the highest success rate was obtained as a result 

of hard voting (Figure 3.23).  
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Figure 3.23. Emsemble learning study chart 

 

3.3. Performance and Evaluation Metrics 

The objective was to achieve precise predictions of the seismic risk distribution for a 

substantial building stock by employing machine learning algorithms. In all networks, if the 

risk score is 1 (0), the risk status is taken as risky (non-risky) from the machine learning 

algorithm. At the same time, more economical determinations are aimed by dividing the 

current seismic situation into more risk scores. However, while making these determinations, 

losses greater than the accuracy percentage of the algorithm should not be given. With this 

motivation, the performances of the algorithms used will be evaluated not only according to 

the percentage of success, but also according to metrics such as true positive (TP), true 

negative (TN), false positive (FP), false negative (FN). These metrics were converted to 

precision, recall, and combined measure (i.e., Fmeasure) given in Equations (Saito and 

Rehmsmeier 2015). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                      (3.14) 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                             (3.15) 

𝐹 =
2 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                 (3.16) 

 

Considering that our dataset is predominantly composed of risky structures, it is difficult and 

important for them to correctly select risk-free structures. In large data sets, algorithms 

sometimes make an overfitting error, that is, when a small number of data (i.e., risk-free 

structures) is encountered in the data set, they give the same answer with a large number of 

data (i.e., risky structures). In order to overcome this problem, it is aimed to make the 

necessary controls with confusion matrix (Sammut and Webb 2011). The confusion matrix 

is a fundamental concept in machine learning that provides a breakdown of the actual and 

predicted classifications made by a classification system. It has two dimensions, one indexed 

by the true class to which an object belongs, and the other indexed by the class that the 

classifier predicts for it. The fundamental confusion matrix for a multi-class classification 

problem is shown in Figure 3.24. In both columns of the matrix, the number relating to risky 

structures=1 denotes accurate forecasts, whereas the number related to risk-free structures=0 

denotes inaccurate predictions (Deng et al., 2016). 

 

 

Figure 3.24.  Example of confusion matrix used in the study 
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4. RESULTS 

This study sought to create a quick and straightforward visual screening technique 

utilizing machine learning algorithms to estimate the damage severity of masonry 

buildings. The goal was to create a calculation network based on external observations 

of the structures, eliminating the need for technical personnel to enter the buildings for 

assessment. 

 

The dataset of 4356 buildings was utilized and analyzed with various machine learning 

algorithms, including regression and classification algorithms. All calculations were 

conducted using the Google Colaboratory framework, which provides high-speed 

computations and allows for easy access to large datasets. 

 

The original dataset was split into 3,484 training samples and 872 test samples (Joseph, 

V. R.2022). To address the issue of imbalanced data, the Smote method was applied to 

synthetically increase the number of buildings with low earthquake risk in the training 

dataset. From the original 12 parameters, the study reduced the number to the six most 

influential and easily detectable parameters, as described in the Data Preprocessing 

section. K-fold cross-validation was performed to validate the federated  models and 

prevent overfitting. 

 

The study utilized multiple ML algorithms, including Decision Tree Classifier, Gradient 

Boosting, Logistic Regression, Random Forest, K-Mean Clustering, Support Vector 

Machine, LGBMClassifier, MLPClassifier, and MARS, to predict rapid seismic analysis 

results. The Ensemble Learning method was proposed as the first approach to combine 

predictions from these algorithms. Voting was used as a simple and effective way to 

aggregate the predictions. The post-voting method was used for the dataset where the 

algorithms provided seismic analysis results with percentage estimates (soft voting) in 

binary format (1 or 0) or in multiple format (1.0 or 2, 3). The decision to triple, double, 

or quadruple classification depends on cost and the number of prioritization layers. If 

buildings only need to be classified as risky or risk-free, binary classification will be a 

costly option as more detailed analyses will be made for risky buildings. Other options 

can be divided into many classes such as risky, medium risk, and no risk, and are less 

costly options as they can lower the number of buildings that require in-depth inspection. 
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The components and schematic representations of the Ensemble Learning method were 

presented in Figure 4.1, showcasing its application in the study to predict seismic 

analysis results more accurately and efficiently. 

 

 

Figure 4.1. Future engineering+dimensiol Reduction+emsemble learning classifier+voting 
classifier 

 

It's crucial to emphasize the significance of selecting the appropriate hyperparameters for 

this algorithm to enhance accuracy. Each model has numerous hyperparameters, and an 

effective approach to finding the best set of hyperparameters is to experiment with various 

combinations and assess the outcomes. For instance, in logistic regression, the choice of an 

l2 penalty is preferred because it yields better predictions when the output variable is 

influenced by all input characteristics. Likewise, the coefficient value was determined based 

on the values that resulted in the highest success rate, as illustrated in Figure 4.2(a).In the 

decision tree algorithm, there are many parameters that affect the success percentage. Of 

these, one of the values "maximum depth" providing the highest percentage of success was 
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selected in the graph in Figure 4.2. In the random forest algorithm, there are many parameters 

that affect the success percentage. Among these parameters, "minimum samples split" was 

selected as one of the values that yielded a high success percentage, as shown in the graph 

in Figure 4.2(c). It's worth noting that this algorithm comprises multiple parameters that 

influence the results. When implementing the KNN algorithm in this study, the "number of 

data points (k)" parameter proved to be of utmost importance for improving the success 

percentage.Therefore, it was clear from Figure 4.2(d) that the worst neighbor values for the 

dataset were k < 2, 3 < k < 4, and k > 13. In this case, these values should be avoided in 

choosing the k value. It has been observed that all values do not change the percentage of 

success in the penalty parameter selection of the Support Vector Machine Classifier 

algorithm (Figure 4.3.). In this study, these graphs were employed, and the optimal values 

necessary for enhancing the success rate of each algorithm were identified through the grid 

search method. 
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Figure 4.2. Effect of algorithm parameters: (a) LR, (b) DTC, (c) RFC, (d) KNN and (e) 
SVMC 

 

In this study, the grid-search approach was utilized to optimize the ensemble models, 

particularly focusing on the stacking model's base model hyperparameters. The optimization 

process was depicted in Figure 4.3, where the intervals for the hyperparameters were 

determined based on graphics drawn within the scope of the study. 

 

 

 

(a) (b) 

(c) (d) 

(e) 
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The steps involved in the meta-model optimization procedure are as follows: 

 Determine the Hyperparameter Value Range: The first step is to determine 

the value range for the hyperparameters that require optimization. In this 

study, these intervals were selected from the graphs created for each 

algorithm during the analysis process. 

 Iteratively Train and Evaluate Model: After that, the model is iteratively 

trained by experimenting with different hyperparameter combinations. A 

model is linked to every combination, and its error or performance metric is 

found. 

 Compare Errors: Through the comparison of errors across various 

combinations of hyperparameters, the optimization algorithm aims to 

pinpoint the hyperparameters that align most effectively with the prediction 

criteria and yield the most accurate results.. 

 Select Optimal Hyperparameters: Based on the comparison of errors, the 

hyperparameters that result in the best predictive performance are selected.  

 The grid-search algorithm is an effective method to systematically explore 

different hyperparameter combinations and find the optimal set that leads to 

improved model performance. It allows for fine-tuning the models, ultimately 

enhancing the accuracy and reliability of the ensemble approach for seismic 

analysis prediction in this study ((Qu et al., 2021)). 

 

 

Figure 4.3. Grid search method whose intervals are selected from the graphs 
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So as to obtain more accurate results, a hybrid method was obtained by using regression 

method (i.e MARS and Decision Regressor) and classical ML algorithms, Decision Tree 

Classifier, Logistic Regression, Random Forest, K-Mean Clustering, Support Vector 

Machine used in regression analysis. LGBTMSClassifier, MLPSClassifier. The working 

principle of this hybrid system is to estimate the Ve/Vr ratios of the buildings with the MARS 

algorithm and then classify these values with ensemble learning algorithms. That is, this 

method is based on the comparison of regression estimates after classification rather than the 

classification of Ve/Vr values before analysis. This Methot is seen in the summary in Figure 

4.4. 

 

Figure 4.4. Future engineering+dimensiol reduction+tuple (regression+emsemble learning 
classifier+voting classifier) 

 

If the success rate of the combined MARS (Multivariate Adaptive Regression Splines) and 

Voting Classifier algorithm approach proves to be unsatisfactory, the utilization of 

regression algorithms for estimating RVS (Risk Versus Safety) values would be 

reconsidered." 
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4.1. Machine – Learning Based Rapid Seismic Risk Estimation Results 

Urban transformation in Turkey, which is located in an earthquake-prone zone, is primarily 

driven by the need to demolish risky buildings and replace them with earthquake-resistant 

structures. However, due to the large number of at-risk buildings that have not received 

engineering services, it is not feasible to demolish all of them and construct new buildings 

in their place. As a result, a prioritization approach is essential, and urban transformation 

should start from the most risky buildings. In this study, the filtering and classification of 

masonry structures were performed based on the value (Ve/Vr = RVS), which represents the 

ratio of shear force on risky walls to the total floor shear force. The study proposed three 

different risk classes for urban transformation: 

Two Risk Classes: Buildings falling under this category are considered difficult and costly 

to undergo urban transformation due to their high-risk nature. 

Three Risk Classes: This method was determined as the most optimum separation method 

in the study. Buildings are classified into three risk classes based on their RVS values, 

allowing for a more efficient and targeted urban transformation process. 

Four Risk Classes: This classification involves dividing buildings into four risk classes. 

However, it was found to be less successful compared to the three-risk class method and 

may not provide as effective results for urban transformation. 

By utilizing these risk classifications, urban transformation efforts can be focused on the 

most vulnerable buildings, ensuring a more strategic and cost-effective approach to seismic 

risk mitigation in Turkey. 

4.1.1. Experimental results of 2 option 

The study involved analyzing a dataset comprising 4356 buildings using multiple machine 

learning algorithms. All computations and analyses were carried out using the Google 

Colaboratory framework, which employs Python programming. To begin, the dataset was 

initially split into two sets: a training set of 4356 samples and a test set containing 872 

samples. The data division was carried out using the "Train Test Split" function from the 

"Sklearn model selection" library, ensuring that the data was correctly partitioned for both 

training and evaluation purposes. To categorize the buildings based on their seismic risk 

levels, the "cut()" method from two different Pandas libraries was utilized. The method 

facilitated the creation of two classes within the "rvs" parameter, effectively grouping the 
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data. By implementing this technique, estimates were generated for the dataset, which was 

then divided into two risk classes: "non-risk" and "risky." The limit RVS values that define 

the risk classes are detailed in Table 4.11. In summary, the study involved analyzing the 

dataset using various machine learning algorithms within the Google Colaboratory 

framework. The data was divided into training and test sets, and the "cut()" method was 

employed to group the data into two distinct risk classes based on the RVS parameter values. 

Table 4.1 provides essential information regarding the RVS thresholds defining the risk 

classes. 

 

Table 4.1. RVS risk classification thresholds 

Risk Status Classification Threshold  

Non-Risky 0 0-0,50 

Risky 1 0,51-1 

 

Furthermore, K-fold cross-validation was utilized in the validation phase to reduce the risk 

of overfitting in the trained dataset resulting from the algorithms. As mentioned earlier, the 

study incorporated a range of machine learning algorithms, such as MARS, logistic 

regression, decision tree classifier, gradient boosting, LightGBM, random forest classifier, 

support vector machine classifier, and K-neighbors classifier. The accuracy of each method 

and their respective performance metrics are summarized and presented in Table 5.1. This 

table serves as a comprehensive evaluation of the models' performance, allowing for a direct 

comparison of the different algorithms used in the study. Researchers can use this table to 

gain insights into the strengths and weaknesses of each method in predicting the seismic risk 

situations of structures when divided into two classes. The K-fold cross-validation technique, 

by partitioning the data into multiple subsets and validating the models on different 

combinations of training and test data, aids in obtaining more reliable and generalizable 

performance measures, thereby enhancing the credibility of the study's findings. 
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Table 4.2.  Results of all machine learning methods 

Method Training Error Accuracy 

(%) 

Testing Error 

Accuracy (%) 

Logistic regression (LR) 74.54 75.92 

Decision tree classifier (DTC) 91.44 81.42 

Random forest classifier (RFC) 99.4 86.8 

Voting Classifier (VC) 98.63 87.50 

Mlp Classifier (Mlp) 97.70 86 

Gradient Boosting (GB) 100 88.30 

Extreme Gradient Boosting 

(XGB) 

100 88.36 

Light GBM (LGB) 97.86 87.27 

Mars and VC with Grid Search 

(MVC) 

99.11 86.99 

KNeighborsClassifier (KNN) 94 79.2 

 GB XGB VC 

 TS=1 TS=0 TS=1 TS=0 TS=1 TS=0 

TS=1 97 TP 55 FN 90 TP 62 FN 98 TP 54 FN 

TS=0 0 FP 47 TN 36 FP 684 TN 55 FP 665 TN 

Precision (%) 0.88 0.88 0.88 

Recall (%) 0.88 0.88 0.88 

Fscore (%) 0.88 0.88 0.88 

 

When evaluating all models using appropriate evaluation metrics and classifying the seismic 

risk situations of structures into 2 classes, the Voting Classifier algorithm emerges as the 

most successful estimator among the models (as depicted in Figures 5.1, 5.2, and 5.3). In 
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these figures, the performance and results of different algorithms are presented, and it is 

evident that the Voting Classifier algorithm outperforms the others in accurately predicting 

the seismic risk situations, achieving the highest levels of success in the binary classification 

task.  This observation highlights the effectiveness and robustness of the Voting Classifier 

in this specific context. 

 

Figure 4.5. Comparison of accuracy rates of algorithms 
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Figure 4.6. Comparison of precision rates of algorithms 

 

 

Figure 4.7. Comparison of recall rates of algorithms 
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Among the algorithms, Voting Classifier, Grading Boosting and Extreme Grading Boosting 

have very close success rates. However, since it is the most difficult and important to predict 

the non-risk ones in the data set, the most suitable algorithm to use the more successful 

Voting Classifier algorithm for the two-risk estimation of structures is selected in this 

section. When we examined the confusion matrix of Voting Classifier, which is the most 

successful algorithm, highly accurate prediction results were obtained in both test and train 

in all risk classes.(Figure 4.8 and 4.9) 

 

 

Figure 4.8. Voting classifier algorithm confusion matrix result train 

 



101 

 

 

Figure 4.9. Voting classifier algorithm confusuan matrix result test 

 

4.1.2. Experimental results of 3 option 

In this study, an analysis was conducted on a dataset comprising 4,356 buildings using 

various machine-learning algorithms. The calculations and analyses were conducted using 

the Google Colaboratory framework, which is based on Python. Initially, the dataset was 

split into two sets: a training set comprising 4,356 samples and a test set containing 872 

samples. This partition was carried out using the "Train Test Split" function from the 

"Sklearn model selection" library, ensuring that the data was divided into suitable subsets 

for training and evaluation. To categorize the buildings based on their seismic risk levels, 

the Pandas Library's "cut()" method was utilized. This method allows for the creation of 

three classes within the "rvs" parameter, effectively grouping the data. The "cut()" method 

offers two options: dividing data into custom-sized bins and dividing data into equal-sized 

bins. In this study, both methods were employed. Equal-sized bins provide an easy 

visualization of the data distribution, while custom bins allow for logical categorization 

based on specific risk levels. 
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As a result of applying the "cut()" method, the data set was categorized into three risk classes: 

"no risk," "risky," and "very risky." The table in the study, referred to as "Table 0-1," shows 

the limit values of the RVS parameter corresponding to each risk class.In summary, this 

study used machine learning algorithms in Google Colaboratory to analyze a dataset of 

buildings. The buildings were then categorized into three risk classes based on their RVS 

values, providing valuable insights for seismic risk assessment and urban transformation 

decisions. Table 4.3. 

 

Table 4.3. RVS risk classification thresholds 

Risk Status Classification Threshold  

Non-Risky 0 0-0,3333 

Risky 1 0,3333-0.66667 

 

High-Risky 2 0.66667-1 

 

In addition to the successful performance of LightGBM, K-fold cross-validation was applied 

during the validation stage to mitigate the risk of overfitting in the trained dataset caused by 

the various algorithms. As previously explained, the study utilized a range of machine 

learning algorithms, including MARS, logistic regression, decision tree classifier, gradient 

boosting, LightGBM, random forest classifier, support vector machine classifier, and K-

neighbors classifier. To impartially assess the performance of each method, a range of 

performance metrics, including accuracy, precision, recall, F1-score, and others, were 

computed and are displayed in Table 5.4. This table serves as a comprehensive summary of 

the models' effectiveness in predicting the seismic risk situations of structures when divided 

into three risk classes: "no risk," "risky," and "very risky." K-fold cross-validation plays a 

pivotal role in the evaluation process by mitigating the impact of particular data splits during 

training and testing, thereby ensuring that the models' performance is more robust and 

generalizable. By validating the models on multiple folds of the data, the study attains more 

robust and generalizable performance metrics, making the results more reliable and 

applicable in practical scenarios. Researchers and decision-makers can refer to Table 4.4 to 

gain insights into the strengths and weaknesses of each algorithm in predicting the seismic 
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risk situations across the different risk classes. This information can be used to make 

informed choices about the most suitable algorithm for seismic risk assessment to three risk 

class and urban transformation endeavors. 

 

Table 4.4 Results of all machine learning methods 

Method Training Error Accuracy 

(%) 

Testing Error 

Accuracy (%) 

Logistic regression (LR) 67.09 61.45 

Decision tree classifier (DTC) 86.26 77.98 

Random forest classifier (RFC) 99.76 84.06 

Voting Classifier (VC) 99.31 84.43 

Mlp Classifier (Mlp) 97.70 86 

Gradient Boosting (GB) 100 85.32 

Extreme Gradient Boosting (XGB) 100 86.46 

Light GBM (LGB) 99.19 86.58 

Regression and VC with G.Search 

(MVC) 

99.60 81.99 

KNeighborsClassifier (KNN) 94 79.2 

 GB   XGB LightGBM 

 TS=0 TS=1 TS=2 TS=0 TS=1 TS=2 TS=0 TS=1 TS=2 

TS=0 26 1  0  26 0 1 26 1 0 

TS=1 2 155 59  1 157 58  3 157 56 

TS=2 1 65 563 2 56 571 2 55 572 

Precision (%) 0.853 0.864 0.865 

Recall (%) 0.854 0.864 0.865 

Fscore (%) 0.853 0.864 0.865 
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Upon comparing all models using evaluation metrics and dividing the seismic risk situations 

of structures into 3 classes, LightGBM emerges as the algorithm that achieves the most 

successful estimations (as illustrated in Figures 4.10, 4.11 and 4.12). The evaluation metrics 

employed in the study likely include accuracy, precision, recall, F1-score, and possibly 

others to assess the performance of each model in predicting the three risk classes (i.e., "no 

risk," "risky," and "very risky"). The consistently high performance of LightGBM across 

these evaluation metrics indicates its effectiveness in accurately classifying buildings into 

the appropriate risk categories. The superior predictive capabilities of LightGBM make it a 

promising choice for seismic risk assessment, providing valuable insights for urban 

transformation decisions and seismic risk mitigation strategies. These figures provide visual 

evidence of LightGBM's proficiency in handling the complex task of classifying buildings 

into multiple risk classes, further reinforcing its position as the most successful algorithm in 

this specific study. 

 

Figure 4.10. Comparison of accuracy rates of algorithms 
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Figure 4.11. Comparison of precision rates of algorithms 

 

 

Figure 4.12. Comparison of recall rates of algorithms 
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Upon examining the confusion matrix of LightGBM, the most successful algorithm, it was 

observed that highly accurate prediction results were obtained for all risk classes in both the 

test and train datasets (as depicted in Figures 4.13 and 4.14). An excellent tool for evaluating 

a classification model's performance is the confusion matrix. It offers a comprehensive 

breakdown of both correct and incorrect predictions for each class, enabling researchers to 

evaluate the model's accuracy, precision, recall, and other performance metrics. The 

excellent performance demonstrated by LightGBM in both the test and train datasets across 

all risk classes indicates its robustness and effectiveness in accurately predicting seismic risk 

situations for the buildings in the study. Consequently, these promising results reinforce the 

credibility of the approach and highlight the potential utility of LightGBM for three seismic 

risk assessment and urban transformation decisions. 

 

 

Figure 4.13. LightGBM confusion matrix result train 
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Figure 4.14. LightGBM confusion matrix result test 

 

4.1.3. Experimental results of 4 option 

The research involved the analysis of a dataset containing 4,356 buildings using a variety of 

machine-learning algorithms. All calculations and analyses were conducted using the 

Google Colaboratory framework, which utilizes Python programming. To begin, the dataset 

was initially split into two sets: a training set consisting of 4356 samples and a test set 

containing 872 samples. This division was achieved using the "Train Test Split" function 

from the "Sklearn model selection" library, ensuring that the data was appropriately divided 

for training and evaluation purposes. To categorize the buildings based on their seismic risk 

levels, the "cut()" method from two different Pandas libraries was utilized. The method 

facilitated the creation of four classes within the "rvs" parameter, effectively grouping the 

data. By implementing this technique, estimates were generated for the dataset, which was 

then divided into four risk classes: "non-risk," "medium risky," "risky," and "high risky." 

The limit RVS values that define the risk classes are detailed in Table 4.5. 
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In summary, the study involved analyzing the dataset using various machine learning 

algorithms within the Google Colaboratory framework. The data was divided into training 

and test sets, and the "cut()" method was employed to group the data into four distinct risk 

classes based on the RVS parameter values. Table 4.5 provides essential information 

regarding the RVS thresholds defining the risk classes. These findings offer valuable insights 

for seismic risk assessment and urban transformation decisions, providing a comprehensive 

classification scheme for buildings based on their level of seismic risk. 

 

Table 4.5. RVS risk classification thresholds 

Risk Status Classification Threshold  

Non-Risky 0 0-0,25 

Medium 

Risky 

1 0,25-0.50 

 

Risky 2 0.50-0.75 

High Risky 3 0.75-1 

 

With this number of classification, urban transformation costs will be reduced to the 

minimum and the success rates will be kept at the lowest level. This means a rapid risk 

transformation for an endangered area.  Moreover, K-fold cross-validation was employed 

during the validation stage to mitigate the risk of overfitting the algorithm to the training 

dataset. As previously mentioned, this study utilized various algorithms, including Mars, 

logistic regression, decision tree classifier, gradient boosting, LightGBM, random forest 

classifier, support vector machine classifier, and K-nearest neighbors classifier.The accuracy 

of each method and performans metrics is presented in Table 4.6.  
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Table 4.6. Results of all machine learning methods 

Method Training Error 

Accuracy (%) 

Testing Error 

Accuracy (%) 

Logistic regression (LR) 57.45 49.06 

Decision tree classifier (DTC) 68.69 77.09 

Random forest classifier (RFC) 99.64 75.68 

Voting Classifier (VC) 98.95 77.6 

Mlp Classifier (Mlp) 90 75.2 

Gradient Boosting (GB) 100 77.6 

Extreme Gradient Boosting (XGB) 100 79.01 

Light GBM (LGB) 98.05 78.2 

Mars and VC with Grid Search 

(MVC) 

99.69 73.74 

KNeighborsClassifier (KNN) 92.61 62.84 

 VC   XGB LightGBM 

 TS=

0 

TS=

1 

TS=

2 

TS=

3 

TS=

0 

TS=

1 

TS=

2 

TS=

3 

TS=

0 

TS=

1 

TS=

2 

TS=

3 

TS=0 20 3 1  2 22 2 1 1 22 2 1 1 

TS=1 0 61 37 28 3 63 31 29 6 63 32 25 

TS=2 0 24 52 45 0 29 52 40  0 32 53 36 

TS=3 2 24 29 544 1 20 26 552 6 35 24 534 

Precisi

on (%) 

0.77 0.78 0.78 

Recall 

(%) 

0.77 0.79 0.78 

Fscore 

(%) 

0.77 0.79 0.78 
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When we compare all models with evaluation metrics and divide the seismic risk situations 

of structures into 4 classes, XGB is the algorithm that makes the most successful estimations. 

Figure (4.15,4.16,4.17) 

 

Figure 4.15. Comparison of accuracy rates of algorithms 

 

 

Figure 4.16. Comparison of precision rates of algorithms 
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Figure 4.17. Comparison of recall rates of algorithms 

 

Upon examining the confusion matrix of Extreme Gradient Boosting (XGBoost), which is 

identified as the most successful algorithm, it was evident that highly accurate prediction 

results were achieved in both the test and train datasets across all risk classes (as illustrated 

in Figures 4.18 and 4.19). For each risk class, the confusion matrix offers comprehensive 

information on the model's prediction accuracy, including true positive, true negative, false 

positive, and false negative values. The high accuracy of XGBoost in both test and train 

datasets for all risk classes signifies its exceptional performance in accurately classifying 

buildings based on their seismic risk levels.These findings reinforce the efficacy of XGBoost 

as a powerful machine learning algorithm for seismic risk assessment. The robustness and 

consistency of its accurate predictions across different risk classes make it a promising 

choice for practical applications in urban transformation decisions and seismic risk 

mitigation strategies. 
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Figure 4.18. Extreme gradient boosting algorithm confusion matrix result train 

 

 

Figure 4.19. Extreme gradient boosting algorithm confusion matrix result test 
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5. SUMMARY OF ML-BASED SEISMIC RISK PRIORITIZATION 

METHOD 

In light of the findings from the study, the following steps can be applied when computing 

the rapid seismic analysis results for a group of buildings (Figure 6.1): 

Data Preparation: Gather the necessary data for the buildings in the group, including 

relevant parameters that influence seismic risk. 

Data Preprocessing: Ensure that the data is properly cleaned, normalized, and preprocessed 

before feeding it into the selected algorithm. (i.e Feature Extraction and Dimension 

Reduction) 

Algorithm Selection: Depending on the desired classification of seismic risk, choose the 

appropriate algorithm. For classifying seismic risk into two degrees, the Voting Classifier 

algorithm is recommended. For three degrees, use the lightGBM algorithm, and for four 

degrees, use Extreme Gradient Boosting (XGBoost). The balance of economy or success 

rate will be important for the selection to be made in this section. 

Techniques Prevent Overfitting: Hyperparameter Tuning, Model Evaluation with Cross-

Validation and Grid Search with Cross-Validation: 

Model Training: Train the chosen algorithm with the prepared training dataset. This process 

entails adjusting the model to understand the connections between the input parameters and 

the seismic risk categories. If there is an imbalance in the outcome variables within the 

dataset, balance the training dataset by employing synthetic data generation methods, such 

as the SMOTE method. 

Model Evaluation: Evaluate the trained model's performance using cross-validation 

methods or the test dataset. Assess the model's performance using a variety of metrics, such 

as accuracy, precision, recall, F1-score, and other pertinent indicators. 

Deployment and Prediction: After the model is trained and assessed, it can be put into 

operational use to provide swift seismic analysis predictions for new groups of buildings. 

Provide the necessary input parameters, and the model will classify the buildings into their 

respective seismic risk classes (two, three, or four degrees). 

Result Interpretation: Interpret the model's predictions and assess the seismic risk of each 

construction in the group based on the assigned risk class. 
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By following these steps and using the appropriate algorithm for the desired classification, 

one can efficiently perform rapid seismic analysis for a building group, providing valuable 

insights for decision-making in urban transformation and seismic risk mitigation efforts. 

 

 

Figure 5.1. Unified learning framework working chart 
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6. DISCUSSION and CONCLUSIONS 

6.1. Discussion of Results 

The existing rapid screening methods in the literature typically assess earthquake risk in 

large building stocks by penalizing certain structural deficiencies without a calculated 

correlation to detailed seismic risk analysis. In this novel approach, a significant 

advancement is introduced to the rapid screening method. It leverages a large database 

to establish a correlation between seismic risk analysis results and rapid screening scores. 

Unlike conventional rapid screening methods found in the literature, this proposed 

approach enables the creation of a risk distribution map for extensive building stocks 

that exhibits a substantial correlation with detailed seismic risk analysis results. As a 

result, the machine learning network introduced in this study can be effectively utilized 

in the development of seismic risk mitigation systems. The reliability of the proposed 

machine learning network is further strengthened through an evaluation of its 

performance using both extensive datasets and numerical seismic analysis results. 

 

The performance of the proposed network is enhanced by incorporating ensemble 

learning, relying on both the hard voting scheme and hybrid methods. Increasing with 

SMOTE the number of low-risk buildings applied to the training data set contributed to 

the success rate of the study. In addition, by getting rid of unnecessary parameters with 

dimension reduction methods, the success rate has been increased as well as speeding up 

algorithms and field detections. In other words, These manipulations significantly 

improved the success rate of estimations for both the training and test databases. This is 

because; risk score estimation performance (i.e., percentage of the failed elements or 

percentage of the shear capacities of failed specimens, etc.) as the proposed network was 

detected to have some deficiencies regarding the seismic risk score estimations. There 

are studies that classify buildings as risky and non-risky before, but there is no study that 

divides the risk class into 3 or 4. When the results of the study, in which the risk class is 

divided into 3, are analyzed, only 1 out of 27 non-risky structures is estimated as medium 

risk and this is calculated in seconds without detailed analysis. This means a success rate 

of over 98% in non-risky structures. In addition, it has a success rate of over 75%, even 

in the estimation of medium-risk structures with the lowest success rate. In addition, only 

4 out of 216 medium-risk constructs were labeled as risk-free. This shows that even when 
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the algorithm is faulty, it provides over 98% success in naming a risky structure as non-

risky. This observation also boosted confidence in the proposed network. However, when 

considering its actual application, the scenario appears different. 

 

The outcomes attained within the purview of the study can be compared with the damage 

results obtained after the earthquake. For example, a risky structure can be used to predict 

a heavily damaged structure after an earthquake, while a medium-risk structure for a 

moderately damaged structure can be used to predict a no-risk, low-east or undamaged 

structure. Since the success rate of the MARS integrated hybrid system is low, it was 

concluded that this method should not be used in estimating the seismic risk level of 

masonry buildings. 

 

6.2. Conclusions 

Identifying the most vulnerable buildings and taking preventive measures before major 

earthquakes occur is crucial for saving lives. Nevertheless, the current detailed 

assessment procedures are demanding in terms of resources and are not well-suited for 

evaluating a large number of buildings. Moreover, current rapid visual screening 

methods used to estimate the seismic risk of large building stocks often lack reliability 

and accuracy. In light of these challenges, this study aimed to introduce a fresh 

perspective on filtering buildings based on their seismic risk. To achieve this, a 

computational network was developed, which could assess the risk of structures using 

external observations. This network was trained using data from known detailed seismic 

risk analyses. Subsequently, the algorithm's performance in estimating seismic risk was 

evaluated on buildings that were not part of the training dataset. 

 

In this study, the approach was to not rely solely on a single method for estimation but 

rather to employ ensemble learning and hybrid methods to achieve the highest level of 

success. In the context of ensemble learning, a range of distinct supervised machine 

learning algorithms were employed. These algorithms included logistic regression, 

decision tree classifier, random forest classifier, support vector machine classifier, K-

neighbors classifier, MlpClassifier, GradientBoosting, Mars, and LightBossting, all 

utilized for predicting building damage levels.Then, hard voting was utilized as the 

outcome of the proposed method was designed to be composed of risky and non-risky 
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buildings (i.e., 1-0 or 1-0-2, or 1-0-2-3). Unfortunately, recent earthquakes have shown 

that most of the structures in Turkey are structures that have not received engineering 

service. Specifically, on February 6, 2023, two earthquakes, one with a magnitude of 7.8 

Mw (± 0.1) and the other with a magnitude of 7.5 Mw, occurred just nine hours apart. 

These earthquakes had epicenters in the Pazarcık and Ekinözü districts of 

Kahramanmaraş, and they caused extensive damage to most of the structures in the area. 

Considering this point, within the purview of the study, buildings were not only classified 

as risky/non-risky, but also prioritized for the number of risky buildings by classifying 

risky structures (according to Ve/Vr estimates). This method will be able to provide a 

solution to the risky building detection, which is very costly to be done all at once in 

Turkey, and which of these risky buildings should be firstly demolished. By using the 

method in the study, risky buildings can be divided into 2 or 3 or 4 classes and the 

selection of the most critical structures that need to be demolished immediately can be 

performed with high accuracy. The success rates of the proposed ensemble learning for 

the training and test databases were 88.36%, 86.58%, and 79.01%, respectively. As 

mentioned above, the method that we classify as the Hybrid method is Reinforced 

Learning. It classifies all its solutions with reinforcement learning algorithms like 

Random Forest Classifier with feature importance to increase the success rate of a 

particular problem type. In addition, by combining the most used Regression, Gradient 

Boosting algorithms and Ensemble Learning algorithms in the literature, it has achieved 

a classification and success rate that has not been presented before. In total, they observe 

real risk-free observations, including the positive contributions they have accumulated. 

 

This procedure is used to find, list, and rank the most vulnerable buildings in a given 

area that might sustain damage in the event of an earthquake. This makes the approach 

crucial for identifying and fortifying Turkey's weak structures as well as for reducing the 

amount of casualties and property damage. 

 

In addition, more accurate results can be obtained with a more precise assessment of the 

years of manufacture for the determination of the engineering service and building 

inspection service that the residence has received since the recent past in Turkey. 

This approach could be more effective if mobile apps or web-based software are 

developed to facilitate on-site data input. 

 



118 

 

Automation systems can be established by determining the parameters of Duronla 

buildings using a vision computer, and then estimating the seismic risk analysis result 

with this method. 

In recent studies, it has been claimed that ADASYN (an innovative, adaptive synthetic 

sampling methodology designed to extract information from unbalanced data sets) could 

be utilized to generate more accurate synthetic data. Since ADASYN can produce more 

synthetic data for minority class examples that are harder to learn than for minority 

examples that are easier to learn (Haibo et al. 2008). In future studies, SMOTE could be 

replaced with ADASYN to compare the performance of the machine-learning networks. 
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Chapter 1. Dendogram, Elbow rule and K-means clustering methods (page:79) 

Dendrogram 

from scipy.cluster.hierarchy import linkage, dendrogram 

merg = linkage(xC_train,method="ward") 

dendrogram(merg,leaf_rotation = 90) 

plt.xlabel("data points") 

plt.ylabel("euclidean distance") 

plt.show() 

---------------------------------------------------------------------
-- 

Kmeans and Elbow rule 

from sklearn.cluster import KMeans 

wcss = [] 

 

for k in range(1,10): 

    kmeans = KMeans(n_clusters=k) 

    kmeans.fit(xC_train) 

    wcss.append(kmeans.inertia_) 

 

plt.plot(range(1,10),wcss) 

plt.xlabel("number of k (cluster) value") 

plt.ylabel("wcss") 

plt.show() 

#kmeans uygulama   6 cluster but we apply 2 

kmeans2 = KMeans(n_clusters=3) 

clusters3 = kmeans2.fit_predict(xC_train) 

xkC_train=xC_train 

 

#xkC_train["label"]= clusters3 

data=xkC_train 

#but 7 cluster 

#10 centers plot 

plt.scatter(kmeans2.cluster_centers_[:,0],kmeans2.cluster_centers_[:,
1],color = "yellow") 
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plt.show() 

Chapter 2. Synthetic Minority Oversampling Technique (page:80) 

print("Before Undersampling, counts of label '1': 
{}".format(sum(yC_train == 1))) 

print("Before Undersampling, counts of label '0': {} 
\n".format(sum(yC_train == 0))) 

print("Before Undersampling, counts of label '2': 
{}".format(sum(yC_train == 2))) 

print("Before Undersampling, counts of label '3': {} 
\n".format(sum(yC_train == 3))) 

# apply near miss 

from imblearn.under_sampling import NearMiss 

from imblearn.over_sampling import SMOTE 

sm = SMOTE(random_state = 99) 

 

xC_train_miss, yC_train_miss = sm.fit_resample(xC_train, 
yC_train.ravel()) 

 

print('After Undersampling, the shape of train_X: 
{}'.format(xC_train_miss.shape)) 

print('After Undersampling, the shape of train_y: {} 
\n'.format(yC_train_miss.shape)) 

 

print("After Undersampling, counts of label '0': 
{}".format(sum(yC_train_miss == 1))) 

print("After Undersampling, counts of label '1': 
{}".format(sum(yC_train_miss == 0))) 

print("After Undersampling, counts of label '2': 
{}".format(sum(yC_train_miss == 2))) 

print("After Undersampling, counts of label '2': 
{}".format(sum(yC_train_miss == 3))) 

 

 

 

 

 


