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With the onset of the 5th generation of wireless communications, new requirements have 

formed for various types of users. The New Radio systems are required to serve users of 

diverse needs such as personal mobile devices, autonomous driving vehicles, industrial 

machines, dark factories and household appliances. The demand on data rate, reliability 

and traffic volume have increased immensely. To accommodate the much higher user 

traffic and data rates, new frequency ranges have been introduced. The higher frequencies 

have made it essential to use beamforming as a way to increase the Quality of Service by 

improving signal integrity at the User Equipment, making beam management an 

important point to optimize. To allocate the available resources of a 5G network, Radio 

Resource Management is conducted, allocating power and frequency resources, handling 

user associations and handovers etc. The management of beams, power and resource 

blocks can be formulized as an optimization problem, where we aim to maximize the CQI 

of each user, as an indicator of quality of the downlink connection. In this thesis, we 

investigate the use of reinforcement learning to allocate space, power and frequency 
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resources jointly. We aim to achieve better performance with a Deep Q-Network than 

classical optimization methods or an exhaustive search in the resource space.      
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ÖZET 

 

5. NESİL AĞLARDA UZAY, FREKANS VE GÜCÜN MAKİNE 

ÖĞRENMESİ İLE KAYNAK YÖNETİMİ  

 

 

Elçinur YALÇIN 

 

 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Cenk Toker 

Nisan 2024, 87 sayfa 

 

 

5. Nesil kablosuz iletişimin gelişmesiyle birlikte, çeşitli kullanıcı türleri için yeni 

gereksinimler ortaya çıkmıştır. Bu gereksinimler doğrultusunda Yeni Radyo 

sistemlerinin, kişisel mobil cihazlar, otonom sürüş araçları, endüstriyel makineler, 

karanlık fabrikalar ve ev aletleri gibi farklı ihtiyaçlara sahip kullanıcılara hizmet vermesi 

gerekmektedir. Veri hızına, güvenilirliğe ve trafik hacmine olan talep büyük ölçüde 

artmaktadır. Çok daha yüksek kullanıcı trafiğine ve veri hızlarına uyum sağlamak için 

yeni frekans aralıkları tanıtılmıştır. Daha yüksek frekanslar, Kullanıcı Ekipmanındaki 

sinyal bütünlüğünü iyileştirerek Hizmet Kalitesini artırmanın bir yolu olarak hüzme 

oluşturmayı ve hüzme yönetimini optimize edilmesi gereken önemli bir nokta haline 

getirmiştir. Bir 5G ağının mevcut kaynaklarını tahsis etmek için, güç ve frekans 

kaynaklarının atanması, kullanıcı ilişkilerinin ve devirlerin yönetilmesi vb. ile Radyo 

Kaynak Yönetimi gerçekleştirilmektedir. Hüzmelerin, güç ve kaynak bloklarının 

yönetimi, bir optimizasyon problemi olarak formüle edilerek, bağlantı kalitesinin bir 

göstergesi olarak her kullanıcının CQI'sinin en iyilenmesi amaçlanmaktadır. Bu tezde, 
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uzay, güç ve frekans kaynaklarının ortaklaşa tahsis edilmesi için Pekiştirmeli Öğrenme 

kullanımı araştırılmaktadır. DQN ile klasik optimizasyon yöntemlerinden veya kaynak 

uzayında tam kapsamlı aramadan daha iyi performans elde etmek hedeflenmektedir. 

 

 

Anahtar Kelimeler: RRM, Hüzme Yönetimi, Pekiştirmeli Öğrenme, DQN, Hüzme 

Oluşturma  
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1. INTRODUCTION 

The need for higher data rates for new generation communication networks is rapidly 

increasing as new requirements form. Managing spatial resources has become an 

important issue for the realization of new generation networks aiming to serve personal 

mobile vehicles, autonomous driving, industrial machines and dark factories. With 

beamforming and steering, high-frequency signals can be delivered to users with narrow 

beams. Increasing the SINR at the user equipment to the level possible while minimizing 

inter-user interference can be achieved by beamforming. Allocation of space, power and 

frequency resources for 5th Generation and Beyond Networks is the subject of this thesis. 

This optimization is supported by machine learning to provide a fast and efficient 

solution.  

 

We aim to solve the problem of resource management in space for 5G networks. By 

sending data to the user, with higher gain through beamforming, the power level 

transmitted to the user equipment is increased and the service quality is improved. 

Another aim is to minimize interference between users by optimizing the beams directed 

to users in space. Real-time resource allocation is provided to serve as many users as 

possible.  

 

There are three basic use cases of 5th Generation Networks defined by ITU-R. eMBB 

requires high data rate, mMTC requires a large number of users to connect to the network, 

and URLLC requires low latency and a very reliable connection [4, 5].  

 

In order to meet the 5G requirements, it becomes necessary to operate at higher 

frequencies. It is possible to spatially focus high-frequency signals by creating beams 

with antenna arrays and send data to the user with high gain [11, 12]. While making this 

improvement, the tracking ability of the user will decrease as the user will need to be 

followed with a narrow beam. The way to minimize interference between users is to 

separate users in space and direct narrow beams at them. It is possible to achieve 
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optimization in space by developing techniques such as DFT-based beamforming, beam 

focusing, beam broadening, codebook-based and non-codebook-based beamforming, for 

a multi-user scenario with an interference-aware approach [5].  

 

Serving as many users as possible while providing real-time resource allocation requires 

dealing with large and complex data. Reinforcement Learning is a type of machine 

learning that learns from past experiences and balances exploration and exploitation by 

maximizing the reward [6]. It is suitable for solving complex problems. Building the 

decision-making mechanism on RL is fast and efficient [4]. 

 

1.1 New Radio Use Cases and Performance Measures 

The usage scenarios for 5G NR can be defined in three main groups so as to cater to a 

diverse range of user requirements. These scenarios were defined in [3]: 

 

Enhanced Mobile Broadband: Performance is improved for mobile broadband, allowing 

for seamless user experience. The eMBB applications include “access to multi-media 

content, services and data” which require large bandwidths reserved for mostly human 

use. Two of the use cases covered by this scenario are hotspot and wide-area coverage. 

Operating hotspots require serving a large number of users in a small location, where 

users have limited mobility. Data rates and traffic capacity is high. For wide-area 

coverage, mobility is higher than the hotspot case, with lower user density. Data rates and 

traffic capacity is lower compared to hotspot. 

 

Ultra-reliable and low latency communications: some systems are highly sensitive to 

delay in communication such as remote medical procedures, automated transportation 

vehicles or wireless industrial control. Thus, very strict “throughput, latency and 

availability” capabilities are necessary. 
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Massive machine type communications: Massively large number of users are connected 

to the same network. Unlike URLLC, the data is not latency sensitive. The data 

transmitted is also typically low in volume, data rate requirements are lower compared to 

eMBB. Due to the high number of units, low-cost and energy-efficient devices need to be 

designed.  

 

The parameters used to describe the performance of a New Radio network were also 

defined: 

Peak data rate: Highest possible data rate per UE. 

User experienced data rate: Data rate available to UEs across the coverage area. 

Latency: The time delay between packet transmission and UE reception. 

Mobility: The maximum speed of UEs that still allows for seamless handover and a 

predefined connection quality. 

Connection density: Number of connected UEs per km2. 

Energy efficiency: The amount of data transmitted and received per unit energy 

consumption.  

Spectrum efficiency: The average amount of data transmitted per frequency and time 

resource. 

Area traffic capacity: Total data throughput per geographic area. 

Spectrum and bandwidth flexibility: The ability of the system to operate in different 

scenarios that require different bandwidth and frequencies. 

Reliability: The ability of the system to be available to serve UEs most of the time. 

Resilience: The system’s durability in face of disturbance. 

Security and privacy: Protection of user data against privacy violations and outside threats 

with encryption and integrity protection. 

Operational lifetime: Operation duration of mainly machine-type users per stored energy 

capacity. 
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1.2. Frame Structure and Physical Resources 

3GPP specification 38.211 defines the 5G NR frame structure [61]. In 5G NR 

numerology, different subcarrier spacings were used for more flexible and efficient 

connection in contrast to LTE where subcarrier spacing is fixed. The reason for the added 

numerology options mainly relates to the increased operating frequency range. In order 

to maintain performance for both sub 3 GHz, sub 6 GHz and mmWave frequencies, 

different numerologies were introduced as given in Table 1.1. 

 

Table 1.1. Supported Numerologies. 

 

Subcarrier Spacing 

Configuration 𝜇 

 

Δ𝑓 = 2𝜇 ∙ 15 [𝑘𝐻𝑧] 

0 15 

1 30 

2 60 

3 120 

4 240 

5 480 

6 960 

 

Using smaller subcarrier spacings allows us to transmit with higher data rates compared 

to the larger SCSs. Which is preferable for the sub 6 GHz range since the available 

bandwidth appears to be narrow. Subcarrier spacings lower than 15 kHz are not used since 

the fading channel causes the carrier frequencies to drift, disrupting orthogonality 

between subcarriers. The subcarrier frequency drift is worse for higher frequencies due 

to larger Doppler spread which calls for even wider subcarrier spacing. Also, according 

to [56], it is easier to control the phase of a signal with larger SCS for mmWave 

beamforming. 
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As described in TS 38.300, these numerologies cannot all be used for every purpose [67]. 

Since 60 kHz subcarrier spacing only supports data transmission and 240 kHz subcarrier 

spacing only supports transmission of synchronization signals. Similarly, some have 

reserved purposes such as initial access, CSI-RS etc.  

 

The basic time unit for NR is defined as ( )fmaxc 1 NfT =  where Δ𝑓max = 480 ∙ 103 Hz 

and 4096f =N . The transmission frame 𝑇𝑓  is defined to be 10 ms, consisting of ten 1 ms 

subframe durations 𝑇𝑠𝑓. There are 𝑁symb
subframe,𝜇

= 𝑁symb
slot 𝑁slot

subframe,𝜇
 symbols per subframe. 

The carrier carries one set each of downlink and uplink frames, where the uplink frame 

starts to get transmitted with a time advance. For different numerologies, subcarrier 

spacings differ, thus, the number of slots per subframe 𝑁slot
subframe,𝜇

  also increase with 

increased SCS as shown in Table 1.2.  

 

Table 1.2. Frames and Slots of Numerologies. 

 

Subcarrier Spacing 

Configuration 𝜇 

 

𝑁symb
slot  

 

𝑁slot
frame,𝜇

 

 

𝑁slot
subframe,𝜇

 

0 14 10 1 

1 14 20 2 

2 14 40 4 

3 14 80 8 

4 14 160 16 

5 14 320 32 

6 14 640 64 

 

The OFDM symbols can be determined and signaled to be in downlink, uplink or flexible 

configurations. Not every symbol needs to be transmitting or receiving in a slot. A single 

slot can have multiple sections that can be configured independently, allowing for both 
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downlink and uplink of different data within a time slot given a transition gap is reserved 

between downlink and uplink formats. Figure 1.1 shows the frame structure for 

numerologies 0 and 1. 

 

 

Figure 1.1. Radio Frame Structure for Numerologies 0 and 1. 

 

A resource element is a physical resource and refers to a symbol duration for a single 

subcarrier. 12 consecutive resource elements from 12 consecutive subcarriers form a 
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resource block, which then forms a resource grid as given in Figure 1.2, when all symbols 

from a subframe are considered. We can refer to specific resource element in a grid by its 

frequency and time domain positions (𝑘, 𝑙). The frequency 𝑘 of a subcarrier refers to the 

center frequency for given subcarrier, the time domain position 𝑙 is the symbol number 

for the given time slot relative to a starting point: point A. 

 

 

Figure 1.2. Resource Grid Structure. 

 

Maximum number of resource blocks were described in TS 38.101. For subcarrier 

spacing of 15 kHz in sub 6 GHz communication, two of the options for the number of 

resource blocks 𝑁𝑅𝐵  are 25 and 52, which correspond to 5 MHz and 10 MHz of 

transmission bandwidth respectively. 
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1.3. Channel Models 

Throughout this thesis, Clustered Delay Line (CDL) model is adopted as the channel 

model as defined in 3GPP specification TR 38.901 [60]. Each channel cluster is defined 

by coefficients for delay, path gains and corresponding angle of departures. The 

coefficients for 23 clusters of different delays are generated to model three NLOS channel 

types CDL-A/B/C. For the two LOS channel profiles CDL-D/E, the number of clusters is 

14. The first two components in the LOS cluster coefficients correspond to the LOS 

components and are generally used to approximate the LOS channel since they dominate 

the rest of the components. In Figure 1.3 and 1.4, delay profiles for CDL-B and CDL-D 

channels are given.  

 

Figure 1.3. CDL-B Delay Profile for an Element 

 

Figure 1.4. CDL-D Delay Profile for an Element 
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Path loss and LOS probability for various 5G scenarios were also defined in TR 38.901 

for possible network scenarios. Without going into the details of all the scenarios, log-

normal shadow fading was assumed with varying standard deviations. From the model 

defined in the specification, we calculate path loss according to the scenario, environment 

height, carrier frequency, LOS/NLOS, transmitter and receiver position.  

 

1.4. Antenna Array and Beamforming 

As carrier frequency increases in NR, the physical antenna size needed to transmit gets 

smaller with the decreasing wavelength. As described in the channel model section, with 

the higher frequencies, path loss increases as well. By beamforming with an antenna 

array, higher gain, better coverage and less interference can be achieved [54]. 

Beamforming allows us to send information more selectively in space by shifting the 

phase of the signal delivered to each antenna array element. A translation in space means 

a phase shift will occur in the frequency domain, increasing directivity in a certain 

direction with a change in phase [11]. This allows for a narrow beam directed in space 

when multiple signals with uniform weights are transmitted through equally spaced array 

antenna elements. Separation of transmit signals in space reduces interference at 

unwanted locations. By increasing the number of array elements, both directivity gain 

and array gain at the receiver is increased. Which in turn improves coverage.   

 

A beamforming codebook contains predefined weights for the array antenna elements – 

beam steering vectors. By choosing a beam steering vector from the codebook, we can 

choose to transmit in a specific direction in space or scan the gNB sector by moving up 

or down the codebook. 

 

The radiation pattern of a single NR antenna array element was defined in given in Figure 

1.6 as defined in ITU-R M.2135. We adopt this beam pattern to form the antenna arrays 

for beamforming.  
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Figure 1.5. Simplified antenna pattern [ITU-R M.2135]. 

 

 

Figure 1.6. Antenna array with four NR cross-polarized antenna elements. 

 

Let us assume an array antenna with four cross-polarized dipole antenna elements. By 

defining a codebook with steering angles in the range of (-60,60) degrees, we can obtain 

beams directing to the said steering angles in space. 

 

 

Figure 1.7. Azimuth cut of the radiation pattern of the four-element uniform linear array 

antenna for eight beams defined in the codebook. 
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The steering vectors 𝒂(𝜃𝑛) are defined as in [11] as 

𝒂(𝜃𝑛) =
1

√𝑀
[1, 𝑒𝑗𝑘𝑑𝑐𝑜𝑠(𝜃𝑛) , … 𝑒𝑗𝑘𝑑(𝑀−1)cos (𝜃𝑛)]

𝑇
.                 (1.1) 

𝑘 =
2𝜋

𝜆
         (1.2) 

d: antenna separation, M: number of antenna array elements, 𝜃𝑛: steering angle 

𝜆: wavelength 

Hence, the codebook is given in Table 1.4 for 3.5 GHz carrier frequency and an antenna 

separation of 𝜆/2. 

 

Table 1.3. Codebook example 

 

Codebook Index 

 

Steering 

Angle 𝜃𝑛 

 

Codebook Element 𝒂(𝜃𝑛) 

0 
-52.5 

1

2√2
[1, 𝑒𝑗𝜋𝑐𝑜𝑠(−52.5

𝜋
180

) , … 𝑒𝑗7𝜋cos (−52.5
𝜋
180

)]
𝑇

 

1 -37.5 1

2√2
[1, 𝑒𝑗𝜋𝑐𝑜𝑠(−37.5

𝜋
180

) , … 𝑒𝑗7𝜋cos (−37.5
𝜋
180

)]
𝑇

 

2 -22.5 1

2√2
[1, 𝑒𝑗𝜋𝑐𝑜𝑠(−22.5

𝜋
180

) , … 𝑒𝑗7𝜋cos (−22.5
𝜋
180

)]
𝑇

 

3 -7.5 1

2√2
[1, 𝑒𝑗𝜋𝑐𝑜𝑠(−7.5

𝜋
180

) , … 𝑒𝑗7𝜋cos (−7.5
𝜋
180

)]
𝑇

 

4 7.5 1

2√2
[1, 𝑒𝑗𝜋𝑐𝑜𝑠(7.5

𝜋
180

) , … 𝑒𝑗7𝜋cos (7.5
𝜋
180

)]
𝑇

 

5 22.5 1

2√2
[1, 𝑒𝑗𝜋𝑐𝑜𝑠(22.5

𝜋
180

) , … 𝑒𝑗7𝜋cos (22.5
𝜋
180

)]
𝑇

 

6 37.5 1

2√2
[1, 𝑒𝑗𝜋𝑐𝑜𝑠(37.5

𝜋
180

) , … 𝑒𝑗7𝜋cos (37.5
𝜋
180

)]
𝑇

 

7 52.5 1

2√2
[1, 𝑒𝑗𝜋𝑐𝑜𝑠(52.5

𝜋
180

) , … 𝑒𝑗7𝜋cos (52.5
𝜋
180

)]
𝑇
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For each point in space, the actively transmitting beams will cause interference on each 

other. By approaching the base station sector [-60°,60°] as a discrete set of azimuth 

angles, we can obtain the received power and interferences inferred upon a UE at any of 

the 121 angles spaced (1°) apart. Let us choose an angle as an example, (-10°) azimuth. 

The normalized power received from each beam is given in Table 1.5. 

 

Table 1.4. Normalized power at (-10°) azimuth. 

Beams Normalized power 

1 0.151961 

2 0.048228 

3 0.694159 

4 0.945057 

5 0.253994 

6 0.015770 

7 0.132184 

8 0.009457 

 

For a user at this angle, the fourth beam would be ideal, but in the case of the third beam 

also being active, the user would experience high interference. For each active beam, 

interference would increase and SINR or SIR would deteriorate.  

 

Another example would be two UEs at Azimuth angles -23° and -15°, equidistance to the 

base station at 200 m. Assume LOS coverage. We would like to achieve at least CQI 5, 

which translates to 2.4 dBs of SINR. In this scenario, we investigate if there is any room 

for improvement of channel quality to the individual measurements. 
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Beam 3 turns out to be the ideal beam for both of these UEs, given no inter-beam 

interference is present, as seen in Figure 1.9. If beam 3 is assigned to both UEs, the SINRs 

are expected to be lower than required. Thus, a search is conducted to achieve higher CQI 

values. The SINRs and CQIs for the assignment of beams according to individual 

measurements and search results are given in Table 1.6. Similarly, better CQI may be 

achievable for a number of UE locations. 

 

Table 1.5. Achieved SINR and CQI. 

UE 1 Beam UE 2 Beam 
SINR 1 

(dB) 

SINR 2 

(dB) 
CQI 1 CQI 2 

3 3 0 0 3 3 

2 3 -2.7364 7.3998 2 7 

3 4 4.0411 -0.0627 5 3 

2 4 1.3047 7.3371 4 7 

 

  

Figure 1.8. Beam 3 Assigned to Both UEs. 

 

 

UE 1 UE 2 
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Figure 1.9. Beam pair 2-3 and beam pair 3-4 

 

 

Figure 1.10. Beam 3 and 4. 

 

  

UE 2 

UE 1 

UE 2 

UE 1 

UE 1 

UE 2 
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1.5. Beam Management 

Beam management procedures for NR are defined in 3GPP specification TR 38.802 [64]. 

Transmission-Reception Points (TRP) refer to any array of antennas that act as both a 

transmission and a reception point and typically refer to the gNBs.  Beam management is 

conducted to establish and maintain downlink or uplink connection between gNB and 

UEs. The TRP and the UE are able to select their own transmission or reception beams 

which is called beam determination. The TRP and UE can both perform measurements 

on their received signals. As a part of channel state information reporting, the UE can 

report back beam measurements to the TRP. Beam sweeping allows for the TRP and UE 

to try available beams in a spatial area to determine best beam for connection. Based on 

the reported beam measurements, proper beams for transmission/reception are selected at 

the TRP/UEs.  

 

The L1/L2 (Physical Layer/Data Link Layer) downlink beam management procedures 

P1, P2 and P3 are explained in Table 1.7 and Figure 1.13.  

 

Table 1.6. Beam Management Procedures P1, P2 and P3. 

 

Process 

 

Function 

P1 Both UE and gNB conducts beam sweeping and beam measurements. The 

TRP beam with the best measurements for the best UE beam is reported to 

the gNB to determine the TRP beam [90].  

P2 To refine the transmit beam, the gNB conducts a more detailed beam 

sweeping with narrower beams for the UE to measure and report back the 

best refined beam [64]. 

P3 If the UE supports beamforming, the UE beam is refined for better reception 

by transmitting the same fixed TRP beam while the UE conducts beam 

sweeping and tunes the receiver antenna array [77]. 
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The measurements mentioned in these processes depend on CSI-RS reports that consist 

of measurement of all the configured beams and the UE-selected beams. The reporting 

setting should include indications of the selected beams and L1 measurements. The 

resource setting should include time-domain behavior, Reference Signal (RS) type and at 

least one CSI-RS set containing all configured beams. 

 

 

Figure 1.11. Beam Management Procedure P1, P2 and P3. 

 

The mobility of the UEs is not considered here since this beam management process only 

allows for initial beam selection. In case of loss of connection due to the selected beam 

pair’s performance worsening to predetermined point, which is called beam failure, the 

UE triggers the mechanism for beam recovery. The UE is then instructed to commit 

resources to transmit UL signals for beam recovery, while the gNB listens to all spatial 

directions. This process can be simultaneous with PRACH or not. If simultaneously 
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transmitted, the recovery signals and PRACH need to use orthogonal resources. To 

identify potential beams, DL signals can also be transmitted for the UE to observe.  

 

1.6. Deep Reinforcement Learning 

Reinforcement-learning is a type of machine learning based on finding the best possible 

action to take in a given situation by maximizing expected future rewards [6]. The agent 

interacts with the environment, gaining knowledge of and updating the value of the 

actions it takes. Figure 1.14 depicts the reinforcement learning model with one agent. 

 

 

Figure 1.12. Single-agent RL. 

 

The knowledge of the environment is kept in the state-action value function. In this 

context, states can be defined as discretized measurements of the environment properties. 

Actions are the choices the agent can take. They map the current state s to the new state 

s’. Rewards are gained by taking an action in each state. The reward r carries the 

information of the environment for the given state-action pai. Policy π maps the state to 

actions.  The goal of reinforcement learning is to find a policy that obtains as much reward 

as possible [79].  

 

In a tabular setting, the state-action value function Qπ (s, a) given in eqn. 1.3 is defined 

by a table Q∈R|S|×|A|. The table is called a Q-table and stores the value of taking each 



 

 

 

18 

possible action in each state. Such a table is only maintainable when the number of states 

and actions are small enough. This method is named Tabular Q-Learning. Discount Factor 

𝛾 keeps the expected future reward finite by discounting the expected future reward by a 

factor between 0 and 1. Learning Rate 𝛼 is the rate at which the values of the state-action 

value function are updated with the new reward and the discounted expected future 

reward. A portion of the old value of the state-action value function is preserved through 

the term (1 − 𝛼) 𝑄𝜋(𝑠𝑡, 𝑎𝑡). 

 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) : = (1 − 𝛼) 𝑄𝜋(𝑠𝑡, 𝑎𝑡) + 𝛼 (𝑟𝑠,𝑠′,𝑎 + 𝛾max
𝑎′

𝑄𝜋(𝑠
′, 𝑎′))     (1.3) 

 

𝛾: Discount Factor, 𝛼: Learning Rate, 𝑟𝑠,𝑠′,𝑎: Reward for taking action a in state s  

max
𝑎′

𝑄𝜋(𝑠
′, 𝑎′) : The maximum reward obtainable in the next state s’  

 

In order to update the state-action value function, the agent explores the environment with 

probability ϵ, and exploits the evaluated state-action value function with probability 1-ϵ. 

Exploration broadens knowledge of the environment, resulting in long-term benefit. 

Exploitation enables the agent to use the current knowledge for short-term benefit. 

Epsilon-Greedy Action Selection is defined in (1.4).  

 

𝐴𝑡 ← {
argmax

𝑎
𝑄𝑡(𝑎) , 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝜖

𝑎~𝑈𝑛𝑖𝑓𝑜𝑟𝑚({𝑎1…𝑎𝑘}),𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝜖
         (1.4) 

 

𝐴𝑡: Action taken at time step t  

𝑄𝑡(𝑎): Action value function at time step t 

An optimal policy achieves highest possible reward in every state. To improve a policy, 

we evaluate and greedify the policy iteratively. 
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The Tabular Q-Learning suits problems with small state spaces where maintaining a Q 

table is possible and computationally efficient. We aim to to maximize Qπ(s,a) by using a 

DQN instead. The states provide input to the DQN while the network outputs map the 

values of each action. The learning rate in the equation for Qπ(s,a) is no longer needed, 

as the back-propagation of the neural network already has a term for learning rate. Only 

one learning rate term is enough, so one of the terms is removed. The expression Qπ(s,a) 

estimated by the DQN is 

 

𝑄𝜋
∗ (𝑠𝑡, 𝑎𝑡) ∶= 𝐸𝑠′ {𝑟𝑠,𝑠′,𝑎 + γmax

𝑎′
𝑄𝜋
∗(𝑠′, 𝑎′) |𝑠𝑡, 𝑎𝑡}.      (1.5) 

 

We store the experiences 𝑒𝑡 = (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) gained by the agent  at each time-step, in 

a dataset 𝐷 = 𝑒1, … , 𝑒𝑁, collected over many episodes, into a replay memory. During the 

learning process, we pick random minibatches from the experience dataset, then update 

the network weights by training on the picked minibatch. The advantages of this being 

stability and avoidance of local minimum convergence. The Deep Q-Network assigns 

actions for the agent to take, and the resulting reward from taking an action in a specific 

state is learned by the agent.  

 

The rough algorithm for the epsilon-greedy DQN with replay memory for resource 

management based on SINR is given in Algorithm 1.  

Algorithm 1: 

1: Initialize time, states, actions and replay memory 

2: while network active do 

3: Set time step 𝑡 ∶= 𝑡 + 1 

4: Observe current state 

5: Set threshold 𝜖 for 𝜖-greedy action selection 

6: 𝑝~𝑈(0,1)  
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7: if 𝑝 ≤ 𝜖  

8: Select an action at random 

9: else  

10: Select the action with maximum Q-value 

11: end if  

12: Calculate SINR and reward signal 𝑟[𝑡] 

13: if 𝑆𝐼𝑁𝑅 ≤ 𝑆𝐼𝑁𝑅𝑚𝑖𝑛 or constraints violated  

14: 𝑟[𝑡] = 𝑟𝑚𝑖𝑛 

15: Abort episode 

16: else if 𝑆𝐼𝑁𝑅 ≥ 𝑆𝐼𝑁𝑅𝑡𝑎𝑟𝑔𝑒𝑡 

17: 𝑟[𝑡] = 𝑟𝑚𝑎𝑥 

18: end if  

19: Observe next state 

20: Store state, action, next state, reward in replay memory 

21: Train on a mini-batch from replay memory 

22: Update weights of the network 

23: end while 
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2. LITERATURE 

The study by Mismar et al. presented a way to power control in wireless networks by 

jointly performing “beamforming, power control, and interference coordination between 

base stations” [1]. The proposed method required the user equipment (UE) to send its 

coordinates and received SINR to the base station and then to a central location. The agent 

at the central location issued commands to the base stations to mitigate interference and 

control power levels. Only sending SINR and coordinates removed the need for channel 

information, which minimized UE involvement in sending feedback. Maximizing SINR 

performance for two base stations by joint beamforming, interference mitigation and 

power complex is a highly complex problem. The time required to optimize such a 

scenario would be prohibitive on the network. The multiple involved base stations need 

to resolve the race condition between them, which was handled by a central location 

which results in some communication overhead.  

 

The joint resource management of beam, power and interference was formulated as an 

optimization problem, subject to the constraints of available total power, available 

codebook elements and target SINR as given in (2.1). DRL was proposed to solve the 

formulated non-convex optimization problem since the complexity of an exhaustive 

search would increase exponentially with the number of base stations.  

 

max
𝒇𝒋[𝑡],∀𝑗

𝑃𝑇𝑋,𝑗[𝑡],∀𝑗

∑ 𝛾𝑗[𝑡]𝑗∈{1,2,…,𝐿}   

subject to           (2.1) 

𝒇𝑗[𝑡] ∈ 𝐹, ∀𝑗

𝑃𝑇𝑋,𝑗[𝑡] ∈ 𝑃, ∀𝑗

𝛾𝑗[𝑡] ≥ 𝛾𝑡𝑎𝑟𝑔𝑒𝑡

   

𝛾𝑗[t]: achievable sum rate of the users at BS j, L: number of BSs,  𝛾𝑡𝑎𝑟𝑔𝑒𝑡: target SINR 

𝑃𝑇𝑋,𝑗[𝑡] : transmit power of BS j at time step t, 𝒇𝑗[𝑡]: beamforming vector at time step t 

P: candidate transmit powers, F: beamforming codebook 
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The Deep Q-Network structure was adopted to estimate best possible performance. The 

states of the DQN consisted of the coordinates of the served user, coordinates of the 

interfering user, power level of the served user, power level of the interfering user, 

codebook index of the assigned beam for the served user and the codebook index of the 

assigned beam for the interfering user. For voice bearers, the actions were to increase or 

decrease the transmit power of the served and the interfering user. For data bearers, the 

actions also included stepping down or up the beamforming codebook indices of the 

served and the interfering user. The reward was a function of the changes made to the 

transmit power levels or SINR. 

 

The proposed DQN-based algorithm was compared with fixed power allocation, tabular 

Q and brute force for multiple antenna array sizes in terms of convergence, run time, 

coverage and sum-rate. Reporting overhead was reduced significantly while achieving 

the upper-bound performance due to not reporting channel information or commands for 

changes and skipping channel estimation altogether.   

 

The channel modelling of this study defined the following parameters. The nth codebook 

element was defined in (2.2). 

𝒇𝒏: = 𝒂(𝜃𝑛) =
1

√𝑀
[1, 𝑒𝑗𝑘𝑑𝑐𝑜𝑠(𝜃𝑛) , … 𝑒𝑗𝑘𝑑(𝑀−1)cos (𝜃𝑛)]

𝑇
                (2.2) 

𝑘 =
2𝜋

𝜆
       (2.3) 

d: antenna separation, M: number of antenna array elements, 𝜆: wavelength 

 𝜃𝑛: steering angle, 𝒂(𝜃𝑛): array steering vector 

 

Equation 2.4 defines the channel from BS b to the user in BS l [1]. 

𝒉𝒍,𝒃 =
√𝑀

𝜌𝑙,𝑏[𝑡]
∑ 𝛼𝑙,𝑏

𝑝 𝒂∗(𝜃𝑙,𝑏
𝑝 )

𝑁𝑙,𝑏
𝑝

𝑝=1     (2.4) 

𝜌𝑙,𝑏[𝑡]: path-loss between BS b and the user served in the area of BS l [1]. 

 𝛼𝑙,𝑏
𝑝

: complex path gain of the pth path 
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𝑁𝑙,𝑏
𝑝

: number of channel paths, 𝜃𝑙,𝑏
𝑝

: angle of departure  

 

Received signal power where receive gain is unity, 

𝑃𝑈𝐸
𝑙,𝑏[𝑡] = 𝑃𝑇𝑋,𝑏[𝑡]|𝒉𝒍,𝒃

∗ [𝑡]𝒇𝒃[𝑡]|
2
      (2.5) 

PTX,b : the transmit power from BS b 

 

The  obtained SINR, 

𝛾𝑙[𝑡] =
𝑃𝑇𝑋,𝑙[𝑡]|𝒉𝒍,𝒍

∗ [𝑡]𝒇𝒍[𝑡]|
2

𝜎𝑛
2+∑ 𝑃𝑇𝑋,𝑏[𝑡]|𝒉𝒍,𝒃

∗ [𝑡]𝒇𝒃[𝑡]|
2

𝑏≠𝑙

   .       (2.6) 

 

In [2], Deep Q-Learning aided dynamic network slicing was conducted for dense user 

traffic. In the past SDN and NFV techniques have been studied to fulfill the 5G new radio 

requirements. Network slicing was developed to enable flexibility of a network, satisfying 

UEs with heterogenous requirements within a single network. The RF spectrum is getting 

more crowded, and resource management for better spectrum efficiency (SE) is getting 

more important in radio access networks (RAN). Optimization of the resource 

management problem would not be fast enough to provide real-time solutions because of 

the large amount of data that need to be used. The increasing complexity would make 

finding exact scheduling solutions unfeasible. 

 

Reinforcement Learning (RL) was adopted to make real-time decisions while minimizing 

queue overflows [2]. Each user in each network slice has different QoS and latency 

requirements. The developed algorithm turns down some user requests to optimize the 

percentage of allocated resources for better spectrum efficiency and user satisfaction. 

Maximum possible number of users are served according to their respective network 

slices in real-time in a dense network.  DQL is applied to mitigate the limitations of tabular 

Q-Learning for the network orchestration problem.  
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Due to the lack of availability of real-world usage data, a data model is adopted from [57] 

to synthetically generate users with different user density weights for the slices eMBB, 

mMTC, and URLLC [2]. The slices varied in the properties “delay tolerance, QoS class, 

maximum bandwidth for one serving time, client density weight, arrived packet length, 

and usage frequency”.  

 

The states of the DQN are the allocated BW ratio, instantaneous used bandwidth ratio and 

client density ratio for each slice [2]. The available actions are discrete changes in the 

slice percentages. The reward is a function of delay tolerance and throughput. The DQN 

allocates resources by changing slice percentages, either allowing for enough resources 

for packet transmission requests or limiting the “maximum bandwidth for one serving 

time” property. If the maximum bandwidth for a slice in a given time is limited by 

reducing the slice’s allowed bandwidth, some packets are added to a waiting queue, while 

large request packets are divided into sub-packets and also queued. The DQN agent is 

designed to receive larger rewards when the queue is shorter. The agent predicts future 

reward using it’s replay memory, anticipating the upcoming users each slicing period.  

 

The designed network was tested for sparse and dense networks. In sparse networks, the 

algorithm increased the eMBB slice’s percentage to allow for higher data rates. In dense 

networks, eMBB slice was scaled down, allowing for more continuous communication 

in the URLLC and mMTC slices. The rewards were higher, and the blocked request count 

was lower in the sparse network scenario compared to the dense network scenario.  

 

In [48], an RL solution for beam tracking of multiple beams in a multi-user MIMO 

scenario is proposed. This study depends on constructing a Q-table, rather than a Deep 

Q-Network. However tabular-Q is known to have large computational complexity. 

Complexity rises exponentially with the size of the codebook, number of users and the 

number of beams per user, as the size of the Q-Table that needs to be filled increases with 

every beam employed per user. To overcome this complexity, the authors suggest a multi-

agent approach. Multi-agents train simultaneously, reducing overall learning time. In this 

scheme, agents correspond to each transmit-receive beam pair. The reinforcement 
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learning states are, for a given codebook, transmit-receive beam pairs. The actions are 

taken to apply pre-defined discrete phase rotations to the transmit and receive beams. The 

reward is a function of SINR. The available set of beams make up the environment. The 

Q-Learning agent runs at the UE to decide phase rotation actions in given beam pair 

states. Q-learning allowed for a faster beam alignment than beam sweeping, while also 

providing better spectral efficiency. 

  

An RL based resource allocation method for Fog-Radio Access Networks is studied in 

[47]. This study aimes to minimize the maximum delay and energy consumption. The 

resource allocation problem is formulated as a multi-objective Markov Decision Process. 

Q-Learning is adopted to allocate resources without knowledge of the model of the 

environment. As a first step, unused resources are reserved for the FNs based on their 

requirements. Then, computing resources are dynamically allocated with the 

reinforcement learning based algorithm. The states consist of allocated resource fraction, 

average QoS utility, average CPU utilization and CPU reserve at any given time slot. The 

actions are discrete increases or decreases in percentage resource, while the reward is a 

function of average QoS utility and average CPU utilization. 

In [51], the feasibility of Deep Reinforcement Learning for beam tracking is investigated, 

where an overhead messenger wire carried a mmWave node subject to complicated 

dynamics. This study stands out in its cost analysis section. Training time, communication 

overhead and computing resource consumption during training are adopted as cost 

measures. The communication overhead during training results from the sub-optimal 

solutions before achieving convergence. 

  

A Deep Reinforcement Learning approach is taken for radio resource allocation and beam 

management for 5G mmWave networks with location uncertainty in [42]. A two-step 

process is applied. First, a UK-Means based clustering, second, deep reinforcement 

learning. Clusters of user equipment are formed under location uncertainty by means of 

the UK-Means clustering algorithm. Radio resources are allocated for each beam by the 

long short-term DRL algorithm. This combined method is compared with K-means based 

clustering and is shown to outperform in terms of data rate and delay for the users in the 

network. 
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The network is assumed to contain a gNB serving multiple UEs which are to be clustered 

to groups. Some UEs suffer from localization errors that lower performance. To solve this 

issue, UK-Means clustering is applied, then, the beams each serve multiple UEs via 

Orthogonal Frequency Division Multiple Access (OFDMA). The reason for the choice of 

OFDMA is the existence of intra-beam interference when a single beam serves multiple 

UEs. Resource Block Groups (RBG) make up the available bandwidth, where each RBG 

is formed by contiguous Resource Blocks. The DRL algorithm then proceeds to maintain 

the high QoS requirements brought on by ultra-reliable low latency communications 

(URLLC) and enhanced mobile broadband (eMBB) users. The Actions of the DRL 

algorithm are taken by assigning an RBG to a user for a given beam. The States are the 

channel quality indicator (CQI) reported by the UE for a given beam. The Reward is a 

partial function of signal-to-noise ratio (SINR) of the link, SINR requirement of eMBB 

users, latency requirement of URLLC users and the queuing delay, calculated separately 

for eMBB and URLLC users. 

  

In [41] a sequential method for resource management is proposed to reduce inter-cell 

interference, using an EdgeSON architecture with multiple antennas at each BS managed 

by a single edge server. The proposed method does not contain a Machine Learning 

application. The problem is formulated as a long-term utility maximization problem. 

Constraints included the transmit power time-averages of each cluster. The optimization 

problem is then solved sequentially by means of beam pattern selection, scheduling of 

UEs and power management. To solve the problem slot-by-slot for each time slot, the 

problem is decomposed with Lyapunov optimization. The algorithm CRIM is proposed 

for power allocation. CRIM is introduced to be heuristic and low-complex, since it takes 

into account only the two critical UEs that receive the worst interference in and between 

base stations. Two virtual queues are designed to improve user utility: the power sharing 

queue and the fairness queue. Also, the beam patterns are updated periodically. The 

proposed CRIM algorithm is simulated extensively to show that it outperformed 

previously existing combinations of power allocation and scheduling algorithms in utility 

and average throughput criteria. 
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In [40] an ML based beam management method is proposed to address the misalignment 

of beams when subject to user mobility. The proposed method conducted advanced beam-

handoff and improved throughput and signal disconnection duration thanks to the 

predicted solution. A disadvantage of the solution is that it is for a single UE. As the 

complexity of the problem rises due to the existence of multiple UEs, beam hand-off 

resources also increase.  

  

The deep learning based proposed technique learns the mobility information of the UE 

and predicts a beam to match its movement pattern [40]. Thus, the beam is switched in 

advance, to prevent disconnection and provide seamless service. The used information 

for deep learning is provided by the gNBs and are the SNR, currently used beam, the 

mobility vector and location axis of the UE. The algorithm runs on the gNB and receives 

the previously mentioned information as input from the UEs. Then, a prediction is made. 

Depending on the result, the agent either initiates hand-off or just passes on the 

information. In high mobility environments, disconnection duration is reduced by 60 

msec per second and throughput is improved by 255% compared to the basic beam-

tracking scheme. 

  

In [38], the use of learning-based approaches such as kNN, SVC and MLP are 

investigated for beam selection in a hybrid beamforming scheme. For multi-carrier 

signals in existence of multipaths, novel spatial statistics and an advanced learning 

algorithm is proposed. The spatial statistics are based on singular value decomposition of 

the channel matrix, the subcarrier-averaged covariance matrix and the covariance matrix 

of a given subcarrier. This architecture is designed to allow for continuity of operation 

while avoiding losses caused by the effect switching beamformers have on spectral 

efficiency. Three different strategies are proposed for selection of beamformer from the 

codebook: “Singular Value Decomposition of Effective Channel matrices (SVDECh), 

Average Effective Covariance Matrix (AECv), and Effective Covariance Matrix (ECv).” 

Selection of the analog beamformer is expected to maximize “the sum rate at the output 

of the digital beamforming block”. 
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Exhaustive search is avoided by selecting beamformers with supervised learning. A 

training set is generated by, in order: “generating the received signals (user locations, 

transmit powers, path-loss), computing the spatial statistics, performing analog and 

digital beamforming on the received signal, computing sum rates and letting the label of 

each example be the index of the analog beamformer yielding the highest sum rate”. Since 

the spatial statistics computed are specific to each analog beamformer, different learning-

blocks are used for each SS. More memory and computational complexity are required to 

up-keep several learning blocks running in parallel in order to prevent degradation in 

performance that would arise from using a single SS set. 

  

A multi-layer perceptron structure is used for deep learning, as it can be considered the 

standard approximator. All hidden layers used ReLU as activation functions whereas the 

output layer used Softmax function to predict a beamformer. To prevent overfitting, a 

dropout layer is added after each hidden layer. 

  

“Codebook-based beam selection and local learning-based clustering algorithm with 

feature selection” is proposed in [37]. The proposed method aimed to reduce overhead of 

on-line processing while beamforming by use of machine learning and off-line training. 

The method involves two-stages: off-line and on-line processing. Training off-line 

reduces processing time while selecting beams in real-time by eliminating some candidate 

beams for beam selection. This results in a reduced overhead during communication. In 

off-line training, pre-collected data is exploited to compute an eigen-beam set. Then, 

channel information is collected on the eigen-beam set to conduct a search in on-line 

processing. With help of the Rosenbrock search algorithm, optimal beam index is selected 

from the beam space, as the algorithm provided a numerical optimization. 

  

Two performance criteria are defined for simulation results: “the average number of 

active beams and average spectral efficiency.” The average number of active beams is 

used to evaluate the communication overhead per round of beam search. The average 

spectral efficiency is used to evaluate the capacity and transmission quality of the 

environment at that time. The utilization of AI allowed the proposed method to learn from 
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the given channel and construct a beam set for better decision-making while selecting 

mmWave beams. Lower time and power consumption is achieved compared to exhaustive 

search. The proposed method can benefit both LOS and NLOS conditions. 

  

In [36], Double Deep Q-Learning is adopted to control the motion of mobile relays for 

distributed beamforming. The study aimed to maximize cumulative Signal to Interference 

+ Noise Ratio (SINR) with reinforcement learning. The states are pre-processed with 

Fourier feature mapping and then passed into the Q-Network. This technique allowed for 

each relay to create their own motion policy independent of the other relays. ReLU 

activation function is used for the hidden layers of the Double Deep Q-Networks. Every 

relay give inputs and receives actions from the same DQN. An ϵ-greedy action policy is 

applied at the network according to the estimated action value function. The states are 

designed to consist of the coordinate vector of the given relay’s cell. The rewards are a 

function the SINR at destination UE. The actions are possible discrete displacements. 

Out-of-grid actions are not allowed by the algorithm and only one relay occupied a cell 

at any given time slot to avoid assigning the same cell. A predeterminate choice is made 

in the case of collisions. In order to stabilize the network, an experience replay buffer is 

used. By passing the inputs through Fourier feature mapping first, new examples are 

introduced to the neural network gradually. This method improved both the convergence 

speed and the cumulative SINR. 

  

An RNN is selected to improve mmWave beam sweeping in [35]. The study focuses on 

the use of CDR data to increase the speed of determining sweeping direction. For 

mmWave cellular networks, beam sweeping during cell search is crucial to avoid 

coverage loss. An ML approach is developed for the optimization of the sweeping pattern 

of the gNB, using UEs’ historical data. According to the user’s predicted spatial 

distribution, beam direction and sweeping order are optimized. Data of text messages, 

internet activity and phone calls from Milan are utilized to form the dataset for training 

the neural network. The interaction level between UEs and the cellular network is 

measured from the dataset. Then, a GRU NN is used to obtain the data-driven beam 

sweeping order and the number of CDRs per spatial sectors. For most of the time, the 

GRU model predictions are tested to perform the same as the true solutions. According 
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to the prediction, the sector containing the largest number of CDRs is targeted by the 

pseudo-omni beam. The limited data about the user equipment locations does not allow 

for sweeping with a narrower beam. 

  

An ML algorithm is proposed to jointly solve the problem associate user and cells and 

allocate power [34]. The study aimes to improve sum rate for 5G mmWave networks by 

reducing “intra-beam interference along with inter-beam inter-cell interference” [34]. 

While mmWave beamforming and NOMA techniques are used for better spectral 

efficiency, gNBs from adjacent cells cause interference on served users, which has a 

negative effect on network capacity, especially in areas where coverage of different cells 

intersects. Inter-beam power management is used to overcome these effects. Interference 

cancellation is improved by user-cell association by allocating users to cells. 

  

An online Q-learning algorithm is designed and compared to uniform power allocation 

[34]. The results of simulations showed a possible improvement on sum rate of 13-30% 

in low and high traffic loads, respectively. The Q-Learning agents are the gNBs. The states 

are a function of the average SINR as a measure of interference in the environment.  

  

In [33], a deep learning approach to power allocation is investigated for cell-free mMIMO 

using TDD. Cell-free mMIMO is considered an innovative approach to wireless 

communication, achieved by distributing multiple RAA in an area to be controlled by a 

CC. The power level for each user at each antenna is determined by the central controller. 

Any antenna sub-array distributed in a coverage area can serve any UE in that area. By 

having all antennae serve any user equipment, the cell structure is omitted. There are some 

advantages to cell-free massive MIMO compared to the regular centralized massive 

MIMO. The size of the antenna arrays can be made smaller, better performance can be 

achieved for the same number of antennas and the negative effects of shadow fading can 

be better mitigated due to the diverse distribution of RAAs in space. Still, the total cost 

of deploying each RAA is higher and the propagation delay is worse at the fronthaul 

compared to centralized massive MIMO. Because of the geometry of the antenna arrays, 

controlling inter-user interference becomes particularly important. Power control plays a 
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key role in the mitigation of interference and optimization of performance. To this end, a 

max-min power control optimization is considered with fairness in mind. However, 

obtaining an exact solution to this excessively complex optimization problem with a 

limited time budget is not feasible. 

  

Deep learning is adopted since the time spent training is offline and the real-time response 

is competitive compared to non-machine learning communication schemes. The max-min 

power allocation problem is formulated. A heuristic algorithm that combined a non-

convex iteration with bisection method is proposed to solve the optimization problem. A 

deep neural network (DNN) based Supervised Learning is used to approximate the 

heuristic solution. The DNN takes the long-term fading coefficients as inputs and gives 

the transmit power for each antenna as outputs. The dataset is generated with help of the 

designed heuristic algorithm. The DNN architecture is compared to the heuristic 

algorithm for approximation accuracy. It is found to be a remarkably similar 

approximation that required much less time. The tuning of a DNN or the decision on the 

type of DNN to be used is not a simple decision, thus the search for a better structure is 

expressed to be still possible. 

  

In [7], an ML RRM and hybrid beamforming scheme is designed for downlink in MU 

mmWave massive MIMO. A closed-form solution is not available for such a problem. 

The neural network has one hidden layer and is tested for a limited number of users. 

Spectral efficiency, obtained from the channel state information reported from the users 

are passed as inputs to the neural network, and “the selected users' set for subchannel 

allocation” is obtained as the network output [7]. Lower run times are achieved for 

identical performance compared to CVX-based optimal RRM. 

  

Reinforcement learning for 5G vehicular networks is investigated in [31]. The study 

proposes an RL-based approach that changes TDD configuration by considering future 

network status, allowing the base station to change UL/DL ratio. The aim is to maximize 

throughput, maintain high data rates for UEs, and avoid the negative effects of busy traffic 

demand and varying mobility patterns. By not only considering the current state, and 
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taking future states into consideration, congestion can be avoided more effectively, but 

large sets of labeled data is necessary for the neural network based supervised learning. 

Thus, the authors chose to not use a deep-learning method. 

  

Q-learning is adopted to decide on the optimal resource management policy in each action 

policy interval. The agent is the base station. The states consist of the ratio of the uplink 

and downlink data rates to the channel capacity for a given time t. The reason for choosing 

these parameters for the states is that they are the most important parameters to optimize. 

The ratio should not be lower than one as it would mean the capacity is being isted 

unnecessarily. The ratio should also not be much higher than one since packet losses 

would be increased. The actions are selected from a set of DL/UL ratios. With each action 

taken, the TDD configuration is re-selected from six patterns. The reward is granted by 

closeness of the ratio of the UL and DL data rates to the channel capacity to one. 

Simulations showed that compared to conventional methods, higher throughput and lower 

packet loss is achieved. 

  

In [29], a Deep Q-Network solution is investigated for downlink resource management 

of RF/VLC systems that are used to achieve 5G high data rate requirements. The 

allocation of power, bandwidth and users is hard to solve with conventional optimization 

algorithms. The study considers both active and idle APs when calculating interference 

to improve the system model. A central unit is used to train the DQN, instead of separately 

at each AP to achieve better coordination between access points. Transfer learning is 

adopted for faster convergence of the DQN. Actions are a function of allocated bandwidth 

and power. States and rewards are functions of SINR.   
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3. PROBLEM FORMULATION 

3.1. Network Model 

 

Figure 3.1. UE distribution in space. 

 

We consider the downlink connection of 𝑛𝑈𝐸  users to the base station at (0,0). We assume 

a base station is located at the center of our coordinate system. The UEs are distributed in 

the (-60°,60°) azimuth sector as depicted in Figure 3.1. Users are distributed randomly in 

the range (𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥). We let the range (𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥) be (80 𝑚, 500 𝑚) to the scenarios 

described in the section 1.3. The distribution of UEs is uniform in angle and distance. 

Carrier frequency 𝑓𝑐 is assumed to be 3.5 GHz. We conduct power, beam and frequency 

control for the active UEs in the environment. 

 

During the environment simulations, SINRs are translated to CQI, since CSI reporting 

already allows for CQI to be reported from UE to base station. The structure of the 

channel quality indicator was defined in 3GPP specification TS 38.214 [63]. Instead of 

maximizing SINR, we adopt CQI as a measure of SINR, and maximize CQI instead. The 
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UEs measure channel characteristics and report CQI periodically. The relation between 

SINR and CQI is given in Table 3.1.  

 

Table 3.1. SINR to CQI. 

 

CQI 

 

SINR (dB) 

  

CQI 

 

SINR (dB) 

1 -6.7  9 10.3 

2 -4.7  10 11.7 

3 -2.3  11 14.1 

4 0.2  12 16.3 

5 2.4  13 18.7 

6 4.3  14 21.0 

7 5.9  15 22.7 

8 8.1    

 

3.2. System Model 

The DL signal is transmitted through the base station antenna array along with the other 

active interfering beams. Both the signal 𝑥𝑗 (to the UE j) and the interference are exposed 

to the channel and received by the UE as given in Figure 3.2. Noise is present at the 

receiver. 

 

Figure 3.2. System Model. 
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Beamforming vectors are defined in the same fashion as [1]. The nth codebook element is 

given by 

𝒃𝒏: = 𝒂(𝜑𝑛) =
1

√𝑀
[1, 𝑒𝑗𝑘𝑑𝑐𝑜𝑠(𝜑𝑛) , … 𝑒𝑗𝑘𝑑(𝑀−1)cos (𝜑𝑛)].𝑇       (3.1) 

𝑘 =
2𝜋

𝜆
       (3.2) 

𝑑: antenna separation, M: number of antenna array elements 

 𝜑𝑛: steering angle, 𝒂(𝜑𝑛): array steering vector, 𝒃𝒏: nth codebook element 

The beams assigned to the UEs are selected by moving up or down the beam index in this 

codebook. The base station has limited total transmit power. Transmit power is increased 

to improve SINR or decreased to improve interference while not exceeding the said 

transmit power limit 𝑃𝑚𝑎𝑥 . There are  𝑛𝑅𝐵  number of resource blocks available. We 

navigate through the resource blocks for each UE, aiming to reduce interference.  

 

3.3. Channel Model 

We  have adopted the CDL channel model, and the path loss model described in Section 

1.3 “Channel Models”. Extrapolating from [1] and [68], we define the channel from BS 

to a given UE at time t in eqn. 3.3 and 3.4. ℎ𝑗,𝑙(𝑡) defined in eqn. 3.3 refers to the element 

l of the channel response defined in eqn. 3.4. The beam squinting effects are neglected 

for different subcarriers. 

 

ℎ𝑗,𝑙(𝑡) = ∑ 𝛽𝑗
𝑝𝛿(𝑡 − 𝜏𝑗

𝑝)𝑎𝑙
∗(𝜃𝑗

𝑝)
𝑁𝑗
𝑝

𝑝=1     (3.3) 

𝒉𝒋(𝑡) = ∑ 𝛽𝑗
𝑝𝛿(𝑡 − 𝜏𝑗

𝑝)𝒂∗(𝜃𝑗
𝑝)

𝑁𝑗
𝑝

𝑝=1     (3.4) 

 

𝒉𝒋(𝑡): channel response, 𝛽𝑗
𝑝
: complex path gain of the pth path at UE j 

𝑁𝑗
𝑝
: number of multipath components received by UE j 

𝜏𝑗
𝑝
 : propagation delay of the pth path at UE j, 𝜃𝑗

𝑝
: AoD of the pth path 

𝒂∗(𝜃𝑗
𝑝): conjugate of the array steering vector, 𝑎𝑙

∗(𝜃𝑗
𝑝): conjugate of the array factor  
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The channel 𝒉𝒋(𝑡) is hindered by path loss and is related to the path gains provided by 

the CDL channel model, the AoD and the propagation delay of each path. The received 

signal 𝑦𝑗(𝑡) consists of the sum of receiver noise and message and interference signals 

convolved with the channel. 

 

𝑦𝑗(𝑡) = (𝒉𝒋
𝑻(𝒕)𝒃𝒏

𝒋
) ∗ 𝑥𝑗(𝑡) + ∑ (𝒉𝒋

𝑻(𝒕)𝒃𝒏
𝒊 ) ∗ 𝑥𝑖(𝑡)

𝑁𝑈𝐸
𝑖=1
𝑖≠𝑗

+ 𝑛(𝑡)     (3.5) 

 

𝑥𝑗(𝑡) : message signal sent to UE j, 𝑦𝑗(𝑡) : received signal by UE j, 𝑛(𝑡): noise signal 

 

We can define 𝑔𝑗(𝑡)  as the composite channel, containing the beamforming-applied 

multipath channel in eqn. 3.6. Similarly, we define the composite channel used by the 

interfering signals in eqn. 3.7, by applying the pattern of the interfering beam to the 

channel for UE j. For each subcarrier the UE occupies, the same beamforming weights 

are used as in analog beamforming.  

 

𝑔𝑗(𝑡) = 𝒉𝒋
𝑻(𝑡)𝒃𝒏

𝒋
        (3.6) 

𝑔𝑖,𝑗(𝑡) = 𝒉𝒋
𝑻(𝑡)𝒃𝒏

𝒊         (3.7) 

 

The frequency domain channel with beamforming is obtained by taking the DFT of the 

composite channel. The frequency response of the composite channel and the interfering 

channel is given in 3.8 and 3.9. 

 

𝐺𝒋[𝑘] = 𝐷𝐹𝑇(𝑔𝑗(𝑛))        (3.8) 

𝐺𝒊,𝒋[𝑘] = 𝐷𝐹𝑇(𝑔𝑖,𝑗(𝑛))       (3.9) 

𝑡 = 𝑛𝑇𝑠      (3.10) 

𝑓 = 𝑘
1

𝑇𝑠
      (3.11) 

𝑇𝑠 ∶ sample duration, 𝑘: subcarrier index, 𝑛: sample index 
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With probability 𝑝𝐿𝑂𝑆, path gains 𝛽𝑗
𝑝  are obtained from CDL-D or E models. 𝑁𝑗

𝑝
 is the 

number of multipath components. With probability (1 − 𝑝𝐿𝑂𝑆),  path gains 𝛽𝑗
𝑝   are 

obtained from CDL-A, B or C models. The number of multipath components is 

determined by these models as 

 

𝑁𝑗
𝑝 = {

2 , LOS 
   23, 𝑁𝐿𝑂𝑆 

.     (3.12) 

 

Noise amplitude per receive antenna depends on the bandwidth and receiver temperature 

as given by 

𝑁0 = 𝑘𝑇𝑒       (3.13) 

𝜎𝑛
2 = 𝑁0𝐵.     (3.14) 

𝑇𝑒: equivalent temperature, 𝜎𝑛
2: noise power, 𝑘: Boltzmann constant 

 

Received signal power where receive gain is unity is obtained by applying transmit power 

to the channel to user j when the transmit power is 𝑃𝑇𝑋,𝑗[𝑘], 

 

𝑃𝑈𝐸
𝑗 [𝑘] = 𝑃𝑇𝑋,𝑗[𝑘]𝐺𝑗[𝑘].      (3.15) 

 

Received interference power from the beams at the same frequency as UE j, 

 

𝑃𝑖𝑛𝑡
𝑗 [𝑘] = ∑ 𝑃𝑇𝑋,𝑖[𝑘] 𝐺𝑖,𝑗[𝑘]

𝑁𝑈𝐸
𝑖=1
𝑖≠𝑗

.     (3.16) 

 

The SINR for a given UE can thus be defined as 

𝛾𝑗[𝑘] =
𝑃𝑈𝐸
𝑗 [𝑘]

𝜎𝑛
2+𝑃

𝑖𝑛𝑡
𝑗 [𝑘]

 .        (3.17) 
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3.4. Problem Formulation 

The resource allocation of the defined system is formulated as an optimization problem 

bound by the constraints of available beam, power and frequency resources in eqn. 3.18. 

The SINRs of the UEs are discretized by conversion to CQIs according to Table 3.1 to be 

optimized. Reported CQIs of each UE can be expressed as the set {𝐶𝑄𝐼1, … 𝐶𝑄𝐼𝑁𝑈𝐸} for 

the set of UEs, {1, …𝑁𝑈𝐸}. Where j is the served UE with minimum CQI at a given time 

step,  and 𝑘𝑗 is the assigned subcarrier index to that UE, we maximize 𝐶𝑄𝐼𝑗. Since each 

UE is competing for resources, setting 𝐶𝑄𝐼𝑗 = min {𝐶𝑄𝐼1, … 𝐶𝑄𝐼𝑁𝑈𝐸} each time step 

allows us to sequentially improve the utilization of resources, starting from the UE with 

worst quality of service. 

 

max

𝒃𝒏
𝒋

𝑃𝑇𝑋,𝑗
𝑘𝑗

 

𝐶𝑄𝐼𝑗  

                     (3.18)   

subject to 𝒃𝒏
𝒋
∈ 𝐵  

𝑃𝑇𝑋,𝑗 ∈ 𝑃  

𝑘𝑗 ∈ 𝐹  

𝐶𝑄𝐼𝑗 ≥ 𝐶𝑄𝐼𝑚𝑖𝑛  

𝐶𝑄𝐼𝑗 ≥ 𝐶𝑄𝐼𝑡𝑎𝑟𝑔𝑒𝑡, 𝑗 ∈ 𝐶𝑈𝑅𝑅𝐿𝐶  

𝑃𝑇𝑋,𝑡𝑜𝑡𝑎𝑙 ≤ 𝑃𝑇𝑋,𝑚𝑎𝑥  

 

 

j: Served UE with minimum CQI at a given time step 

𝐶𝑄𝐼𝑗: CQI of UE j, 𝐶𝑄𝐼𝑚𝑖𝑛: minimum acceptable CQI, 𝐶𝑄𝐼𝑡𝑎𝑟𝑔𝑒𝑡: target CQI 

𝑃𝑇𝑋,𝑗: Transmit power to UE j, 𝑃𝑇𝑋,𝑡𝑜𝑡𝑎𝑙: Total transmit power  

𝒃𝒏
𝒋
: Beam assigned to UE j, 𝑘𝑗: Subcarrier index assigned to UE j  

P: Candidate transmit powers, B: Beamforming codebook, F: Candidate frequencies 

𝑃𝑇𝑋,𝑚𝑎𝑥 : Maximum transmit power available for the base station 

CURLLC: The set of URLLC users   
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Since the first three constraints regarding the search space of the optimization are non- 

convex, the optimization problem is mixed-integer non-convex. Finding an optimal 

solution to this problem requires exhaustive search, which is too time-consuming to be 

effective due to the large search space 𝐵 × 𝑃 × 𝐹 and the existence of multiple UEs. The 

debilitating effect of the exhaustive search on overhead is aimed to be overcome by deep 

reinforcement learning in search of the best achievable CQI for users. 

 

Throughout this thesis, this optimization problem is solved in increasing complexity. 

First, we examine the beam management case, where only beams are assigned without 

power or frequency management. Then, as the next step, power levels are also assigned. 

Followed by frequency assignment in the next step. 
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4. PROPOSED SOLUTION 

4.1. Proposed Algorithm 

We investigate two methods in this thesis, online and offline learning. Offline learning 

utilizes a pretrained neural network to get resource assignments rapidly in real-time. This 

method aims to improve the CQI of users in case the initial resource assignment results 

in poor performance either due to inter-beam interference or the effects of the channel. 

Online learning doesn’t require channel measurements but requires the UEs to report back 

CQI. The network is not previously trained which results in a slower real-time response 

but the overhead due to channel measurement also does not exist. Both the offline and 

online training algorithms are given in Algorithm 2, which is a DQN learning algorithm 

similar to algorithm 1. To obtain algorithm 2, algorithm 1 was modified to simulate the 

environment and solve the problem presented in section 3. The contents of the states 

change with each method, as explained in the following sections. The dimensions of 

resources, states and actions all increase with increasing complexity in the next sections, 

but the baseline algorithm stays the same.  

 

Algorithm 2: 

1: Initialize radio network parameters 

2: Load UEs and UE related parameters 

3: Initialize time, network state matrix, list of UEs, the navigation list, states, actions 

4: Initialize or load replay memory 

5: Compute array patterns, path gains 

6: Set initial state and observation 

7: while environment active do 

8: Set time step 𝑡 ∶= 𝑡 + 1 

9: Observe current state 

10: Set LOS property  

11: Set threshold 𝜖 for 𝜖-greedy action selection 
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12: 𝑝~𝑈(0,1)  

13: if 𝑝 ≤ 𝜖  

14: Select an action at random 

15: else  

16: Select the action with maximum Q-value 

17: end if  

18: Update the network state matrix and the navigation list according to the action 

19: Compute the channel 𝒉𝒋(𝑡) 

20: Compute received signal power, interference power and SINR 

21: Convert the SINR to CQI 

22: Compute reward signal 𝑟[𝑡] 

23: if 𝐶𝑄𝐼 ≤ 𝐶𝑄𝐼𝑚𝑖𝑛 or constraints violated  

24: 𝑟[𝑡] = 𝑟𝑚𝑖𝑛 

25: Abort episode 

26: else if 𝐶𝑄𝐼 ≥ 𝐶𝑄𝐼𝑡𝑎𝑟𝑔𝑒𝑡 

27: 𝑟[𝑡] = 𝑟𝑚𝑎𝑥 

28: end if  

29: Observe next state 

30: Store experience 

31: Train on a mini-batch from D 

32: Update network weights 

33: end while 

 

With each step of the DQN agent, an action is taken for a single UE, then the next state 

is observed for the UE with the lowest known CQI. If there are users with URRLC 

requirements, they are given priority in assignment of resources when they are below the 

required CQI level. 
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The reward function used in the algorithm is either derived from the CQI calculated for 

the current state, the minimum reward as penalty for failure, or the maximum reward for 

achieving target CQI. 

 

When 𝑟𝑚𝑎𝑥 is set to 20 and 𝑟𝑚𝑖𝑛 is set to -5, the reward signal is given by 4.1. 

 

𝑟𝑗[𝑡] =

{
 
 

 
 CQI

𝑗,                                             CQI𝑚𝑖𝑛 < CQI
𝑗 < CQI𝑡𝑎𝑟𝑔𝑒𝑡

  𝑟𝑚𝑖𝑛,            CQI
𝑗 ≤ CQI𝑚𝑖𝑛 𝑜𝑟 𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑢𝑡 𝑜𝑓 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑟𝑚𝑎𝑥,                                                               CQI
𝑗 ≥ CQI𝑡𝑎𝑟𝑔𝑒𝑡

  (4.1) 

CQI𝑚𝑖𝑛 = 5 

CQI𝑡𝑎𝑟𝑔𝑒𝑡 = 9 

CQI𝑗: CQI of UE j at time step t, CQI𝑚𝑖𝑛: minimum CQI, CQI𝑡𝑎𝑟𝑔𝑒𝑡: target CQI 

𝑟𝑚𝑖𝑛: as penalty for failure, 𝑟𝑚𝑎𝑥: maximum reward 

 

This reward system allows gradual rewarding for each UE that have CQIs between the 

minimum and target CQI range. Assignment of a resource to a UE can result in an increase 

or decrease of the CQI of another UE. By rewarding each UE separately, we allow the 

users to compete for resources. As can be seen from Table 4.1 and Equation 4.1, 

performances below a predetermined minimum CQI limit results in failure of the 

Reinforcement Learning episode. In case of violation of constraints or the minimum CQI 

limit, the episode is aborted, and the agent receives a negative reward, 𝑟𝑚𝑖𝑛. When the 

target CQI is reached for a UE, the agent receives the maximum reward 𝑟𝑚𝑎𝑥, and the episode 

continues with a large positive reward. Since resources are limited and the target CQI of 9 is 

chosen to be desirable enough for a good connection, increasing the CQI further only 

results in the same reward and not in a larger increase. The target CQI can be set 

differently according to each network’s requirements. 
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Table 4.1. Reward System. 

 

CQI 

 

Reward 

  

CQI 

 

Reward 

0 -5  8 8 

1 -5  9 20 

2 -5  10 20 

3 -5  11 20 

4 -5  12 20 

5 5  13 20 

6 6  14 20 

7 7  15 20 

 

 

4.2. Network Parameters and User Generation 

To simulate the radio environment, we generate UEs according to the defined network 

model in Section 3.1. The users are randomly distributed in the cell sector. The training 

algorithm utilizes the parameters defined during user generation to initialize and maintain 

the matrices used to keep the state of the network containing previous assignments. The 

network is initialized with the parameters in Table 4.2. The channel is defined for each 

subcarrier index in section 3.4. However, training and testing for the frequency-selective 

channel introduces increased complexity to the simulations and requires a long time 

period. For ease of simulations, narrowband channel is assumed in the following sections. 

 

We conduct beam measurements to compare with the DQN assignments and find the 

initial beam assignments for offline learning for each UE in the environment. Beams are 

assigned from 1 to 8 for online learning as no measurements are conducted. For both 

methods, power is initially assigned in the lowest possible level, frequency is assigned 

with equal spacing. 
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Table 4.2. Network Parameters. 

Parameter Value 

Base station maximum transmit power 50 W 

Sector angular range [-60°,60°] 

Channel model CDL-D, B 

LOS probability 0.8 

Number of transmit beams 8 

Cell Radius 500 m 

Random UE distribution in space Uniform 

Downlink frequency band 3.5 GHz 

Number of multipaths 2, 23 

Radio frame duration 10 ms 

Path loss scenario UMa 

Maximum Doppler Shift 10, 300 Hz 

Subcarrier spacing 15 kHz 

Number of users 3, 10 

 

The UE generation outputs a file containing the locations of UEs in a list, the state of the 

resources in a network state matrix and a list containing the UE locations, assigned initial 

resources, ids, demanded and assigned bandwidth, named the navigation list. The 

navigation list essentially summarizes the network state matrix by storing the values that 

forms the matrix in a list. This allows us to access any parameter of any UE when 

required.  

 

We then generate many sets of UEs with varying number of users to be used for training 

and testing. We divide the generated UEs in 85-15% sections as training and test data for 

the offline learning method.  
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4.3. DQN Setup 

The DQN agent is trained with the generated training set UEs. Experiences are stored in 

the experience buffer and saved alongside each agent after a training period. This allows 

the agent to make use of past experiences when training in different scenarios. The 

hyperparameters of the DQN are given in Table 4.4.  

 

Training of the network starts with a high exploration rate and decays with the exploration 

rate decay as the agent takes steps. Every four steps, the target network is updated. For 

the update, a mini-batch with 32 samples from the experience buffer is used. The expected 

future rewards are discounted by a factor of 0.99 in order to keep the expected future 

reward finite. 

 

Table 4.3. Deep Q-Network Hyperparameters. 

 

Parameter 

 

Value 

Discount factor 0.99 

Initial exploration rate 0.9 

Number of states 4, 5, 7 

DQN width, H 13, 20, 30 

Epsilon decay 0.005 

Number of actions 3, 9, 27 

Deep Q-Network depth 2 

Activation function ReLu 

Experience buffer length 1000000 

Mini batch size 32 

Learning rate 0.001 

Maximum steps per episode 1000 

Target update frequency 4 
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The network width is a hyperparameter that in accordance with structure of the neural 

network. While there is not a single best solution for the number of neurons of the hidden 

layers, guidelines are described in [59]. The width of a network can be calculated as 𝐻 =

 √(|𝐴| + 2)𝑁𝑀𝐵, where |𝐴| is the size of the action space and 𝑁𝑀𝐵 is the mini-batch size. 

Following this rule, the network is initialized with two hidden layers of widths 13, 20 and 

30 for different stages of resource management. 

 

Two methods are used to improve resource allocation: offline learning and online 

learning. Offline learning utilizes a trained network to produce fast results for resource 

allocation. The DQN is trained with the generated training set of UEs before deployment. 

The time spent training is offline, so it does not affect performance. Online training is a 

method for initial resource assignment in absence of information of the channel. This 

method does not require channel measurements, but the training time is online, resulting 

in overhead before achieving acceptable performance. 

 

4.4. Beam Management 

First stage of resource allocation is assignment of beams to each UE to maximize their 

CQI as shown in Figure 4.1. Each UE is assigned an initial beam. As the network selects 

actions, the agent acquires information about the quality of the beam-user pairs. Reward 

is received based on the reported CQI.   

 

 

Figure 4.1. UEs are assigned to beams via actions. 
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Offline Learning 

States consist of the beam, interference information, initial beam selection and UE type 

as given in 4.2. The interfering beams and the initial beam measurement of the UE 

describe the state of the environment and the general direction of the UE. These two states 

are necessary for the trained network to be able to generalize the results of the training to 

distribution of UEs it has not encountered before. The number of states and input neurons 

for the DQN in this configuration is 4. The states are input to the neural network as in 

Figure 4.2. The Deep Q Network has two hidden layers of 13 neuron width. 

 

𝑠 ∶= [𝑏, 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑖𝑛𝑔  𝐵𝑒𝑎𝑚𝑠, 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐵𝑒𝑎𝑚,𝑈𝐸 𝑇𝑦𝑝𝑒]𝑇   (4.2) 

 

Actions consist of going up, down or staying still on the beamforming codebook as given 

in 4.3. The number of actions and output neurons for the DQN is 31 = 3. 

 

𝑎 ∶= [−1,0, +1]𝑇 .      (4.3) 

 

 

Figure 4.2. Deep Q Network for offline beam management. 
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The DQN is trained with 30 sets of UEs. 8 beams are assigned to 3 users. The training is 

ended according to the average reward of all episodes in one training session. The average 

reward to stop is determined by trial and error, according to the convergence of the 

performance parameters. The agent is then trained with the next set of UEs. 

 

The obtained episode rewards and average reward can be seen in Figure 4.3. Through 

figures 4.4-10, it can be seen that the first steps taken by the agent results in rapid changes 

in outage rates and data rates. This is a result of the initial exploration rate decaying in 

time and the updated network yielding better actions with more experience. The agent 

initially does not seek high rewards but explores the action space. As it gains more 

information of the environment, the network weights are updated to better approximate 

the state-action value function. The updated network is then exploited for high rewards 

as the exploration rate decays.  

 

The initial percentage of served users were 33% at the beginning of training. For the 

URLLC users, outage rate was 50%, for the eMBB users, 100%. Figures 4.5 and 4.7 show 

that the UEs of both slices were served at the end of training but the URLLC users trained 

faster and achieved better performance sooner than the eMBB user due to URLLC users 

being given priority during resource allocation. 

 

 

Figure 4.3. Episode reward and average reward of the DQN agent for a training session. 
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Figure 4.4. Served user percentage of a training session. 

 

 

Figure 4.5. URLLC outage rate percentage. 

 

Figure 4.6. URLLC sum rate in Mbps. 

 

                               

           

  

  

  

  

  

  

  

 
 
 
  

 
 
  

 
 
  

 
 

            

                                

           

 

  

  

  

  

  

  

  

 
 
 
  

 
 
  

 
 
  

 
 

                 

                                

           

    

    

    

    

   

    

    

    

    

   

    

 
 
  

  
 
  

  
 

 
 
 
 

              



 

 50 

 

Figure 4.7. eMBB outage rate percentage. 

 

 

Figure 4.8. eMBB sum rate in Mbps. 

 

 

Figure 4.9. Outage rate percentage. 
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Figure 4.10. Sum rate in Mbps. 

 

Trained with multiple scenarios, the DQN is able to give rapid results to new scenarios. 

In case of a particularly challenging set of UE distribution in space, bad channel 

conditions or the training not generalizing enough, the agent needs to take steps similar 

in number to that of a training session. Which means a slower response compared to a UE 

set that the network generalized well to. Assuming the agent takes a step each time slot, 

1000 steps as taken in the training session given in figures 4.3-10 would be a duration of 

1 s. In case of the platform that the DQN runs does not support a duration of one time slot 

for each agent step, this duration can be longer. 

 

Table 4.4. Beam management test results. 

Test Sets 

Initial 

UE 

Outage 

Final UE 

Outage 

Initial 

eMBB 

Outage 

Final 

eMBB 

Outage 

Initial 

URRLC 

Outage 

Final 

URRLC 

Outage 

1 33% 0% 50% 0% 0% 0% 

2 66% 0% 100% 0% 0% 0% 

3 66% 33% 50% 50% 100% 0% 

4 66% 33% 50% 50% 100% 0% 

5 100% 66% 100% 100% 100% 0% 
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The trained network resulted in improved performance in each test case, either increasing 

the number of served users or increasing the number of served URLLC users. The DQN 

is able to adapt to future changes in the channel by storing every action of the agent in the 

experience buffer and updating the network. 

 

Online Learning 

User ID becomes a state in this configuration, replacing the information gained by beam 

measurements in 4.4. The network given in Figure 4.11 trains on the current users, the 

results cannot be generalized according to information about the location of the UE or the 

initial beam selection. The communication continues during optimization but depending 

on the CQI at a given time not being suitable, it can deteriorate in quality. The network 

hyperparameters are unchanged. 

 

𝑠 ∶= [𝑏, 𝐼𝐷]𝑇      (4.4) 

𝑎 ∶= [−1,0, +1]𝑇      (4.5) 

 

 

Figure 4.11. Deep Q Network for online beam management. 
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Table 4.5. Beam management online learning results. 

Test Sets nUE Final Outage Total Agent Steps 

1 2 0% 994 

2 2 0% 603 

3 2 0% 708 

4 2 0% 709 

5 3 33% 1021 

6 3 100% 20010 

 

 

The table 4.5 shows tested scenarios for online learning. Beam selection more easily 

achievable for fewer users in the network. The 5th test case has a LOS probability of 0.8 

while the 6th test case has 0 LOS probability. The network is not able to converge to a 

final result due to all users causing severe interference to each other in absence of LOS. 

 

4.5. Beam and Power Management 

Second stage of resource allocation is the assignment of beams and power to each UE to 

maximize their CQI. Each UE is assigned an initial beam and the minimum available 

power level. Through the actions of the network output, power levels are adjusted along 

with the selected beams and stored as depicted in Figure 4.12. The training and testing of 

the DQN is conducted in a similar manner to section 4.4. 

 

 

Figure 4.12. After assignment of beam and power levels, the information of the state of 

users is stored in a matrix. 
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Offline Learning 

States as defined in 4.6 consist of the beam, power level, interference information and 

initial beam selection. The number of states and input neurons for the DQN presented in 

figure 4.13 in this configuration is 5. 

 

𝑠 ∶= [𝑏, 𝑝, 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑖𝑛𝑔 𝐵𝑒𝑎𝑚𝑠, 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐵𝑒𝑎𝑚𝑠, 𝑈𝐸 𝑇𝑦𝑝𝑒]𝑇    (4.6) 

 

Actions consist of going up or down or staying still on the beamforming codebook and 

power level. The number of actions and output neurons for the DQN is 32 = 9. 

 

𝑎 ∶=

[
 
 
 
 
 
 
 
 
−1,−1
−1,    0
−1,+1
0, −1
0,     0
0, +1
+1,−1
+1,   0
+1,+1]

 
 
 
 
 
 
 
 
𝑇

     (4.7) 

 

The Deep Q Network has two hidden layers of 20 neuron width. Other hyperparameters 

of the network are unchanged compared to the previous section. 

 

Figure 4.13. Deep Q Network for offline beam and power management. 
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Similar to section 4.4, served users increase with agent steps during training, achieving 0 

outage when converged. The URLLC user achieves better performance faster than eMBB 

users due to the priority given to URLLC slice during resource allocation. In figures 4.15-

21 we can see that there are periods where served user percentage is high, but the training 

continues. This is likely due to all users achieving CQI levels close to the minimum, 

resulting in low data rates. When the network receives enough average reward around 

2000 steps of the agent, both the served users and the sum rate is maximized. 

 

 

Figure 4.14. Episode and average reward of the DQN agent for a training session. 

 

 

Figure 4.15. Served user percentage for a training session. 
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Figure 4.16. URLLC outage rate percentage. 

 

 

Figure 4.17. URLLC sum rate in Mbps. 

 

 

Figure 4.18. eMBB outage rate percentage. 
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Figure 4.19. eMBB sum rate in Mbps. 

 

 

Figure 4.20. Outage rate percentage. 

 

Figure 4.21. Sum rate in Mbps. 
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Table 4.6. Beam and power management test results. 

Test 

Sets 

Initial 

UE 

Outage 

Final UE 

Outage 

Initial 

eMBB 

Outage 

Final 

eMBB 

Outage 

Initial 

URRLC 

Outage 

Final 

URRLC 

Outage 

1 33% 0% 0% 0% 100% 0% 

2 66% 0% 100% 0% 0% 0% 

3 66% 0% 100% 0% 0% 0% 

4 66% 33% 100% 100% 100% 0% 

5 66% 33% 100% 100% 100% 0% 

 

When tested on sets of UEs that have low CQI values caused by physical proximity or 

NLOS channel, outage rates were improved for each test case as given in Table 4.6. 

URLLC users were able to reach acceptable CQI levels. 

 

Online Learning 

Similar to the section 4.4, states differ from offline learning as given in 4.8 while actions 

are the same with offline learning. 

 

𝑠 ∶= [𝑏, 𝐼𝐷, 𝑝]𝑇     (4.8) 

𝑎 ∶=

[
 
 
 
 
 
 
 
 
−1,−1
−1,    0
−1,+1
0, −1
0,     0
0, +1
+1,−1
+1,   0
+1,+1]

 
 
 
 
 
 
 
 
𝑇

     (4.9) 
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Figure 4.22. Deep Q Network for online beam and power management. 

 

Table 4.7. Beam and power management online learning results. 

Test 

Sets 

nUE Final 

Outage 

Total Agent 

Steps 

1 2 0% 696 

2 2 0% 568 

3 2 0% 183 

4 2 50% 10265 

5 3 33% 12522 

6 3 66% 3016 

 

Table 4.7 shows that online learning for beam and power management has worse 

performance for higher number of UEs. The agent was able to assign resources with good 

CQI levels for 2 users whereas management of 3 users both took longer training time and 

resulted in non-zero outage. This is due to random initial assignments causing unsolvable 

scenarios through taking steps in the resource space. 
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4.5. Beam, Power and Frequency Management 

The third stage of resource allocation is the assignment of beams, frequency and power 

to each UE to maximize their CQI. Power and beam are assigned similar to the previous 

sections. Frequency is also assigned as the agent takes steps. The users occupy locations 

in the 𝐵 × 𝑃 × 𝐹 space, according to their bandwidth requirements as shown in Figure 

4.23. The resource blocks the UE occupies start at the assigned frequency value and 

extend to the limit designated by the bandwidth requirement of that UE. The training and 

testing of the DQN is conducted in a similar manner to section 4.4.  

 

 

Figure 4.23. The resource blocks to be assigned to UEs. 

 

Offline Learning 

 

States as defined in 4.10 consist of the beam, frequency, power level, bandwidth, 

interference information, initial beam selection and UE type. In this configuration the 

number of states and input neurons for the DQN given in Figure 4.24 is 7. 

𝑠 ∶= [𝑏, 𝑓, 𝑝, 𝐵𝑊, 𝐼𝑛𝑡𝑒𝑟𝑓𝑒𝑟𝑖𝑛𝑔 𝐵𝑒𝑎𝑚𝑠, 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐵𝑒𝑎𝑚𝑠, 𝑈𝐸 𝑇𝑦𝑝𝑒]𝑇    (4.10) 
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Actions consist of going up or down the beamforming codebook, power level and 

frequency. The number of actions and output neurons for the DQN is 33 = 27. 

𝑎 ∶=

[
 
 
 
 
 
−1,−1,−1
−1,−1,   0
−1,−1, +1

⋮
+1,+1,   0
+1,+1,+1 ]

 
 
 
 
 
𝑇

     (4.11) 

 

The Deep Q Network has two hidden layers of 30 neuron width. Other hyperparameters 

of the network are unchanged compared to the previous sections. 

 

 
 

Figure 4.24. Deep Q Network for offline beam, power and frequency management. 

 

Two training sessions are presented in Figures 4.25-40. Both scenarios have 10 users with 

different spatial distributions. The first and second set of UEs have 30% and 50% initial 

outage respectively. The first set of UEs in Figures 4.25-32 converge to 0% blocked user 

in around 850 steps whereas the second set of UEs in Figures 4.33-40 takes 3000 steps of 

the DQN agent to achieve the same performance. The second set of UEs also have periods 

where the agent is temporarily stuck with unstable results. This is due to the updated 

network not being able to compensate the randomness in the channel and agent to produce 

good enough rewards, since the UE distribution in space is challenging. The agent is able 

to overcome this unstable period around 2000 steps of the agent by collecting experiences. 

In a particularly difficult distribution of the UEs, this may not be possible.  
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The increased number of users may cause longer training periods and more outage during 

training, which is not an issue for the training duration is offline. 

 

Similar to the previous sections, the change in data rates and outages during the initial 

steps of the agent are rapidly changing due to the high exploration rate.  

 

 

Figure 4.25. Episode and average reward for training session 1 of joint beam, power and 

frequency management. 

 

 

Figure 4.26. Served user percentage. 
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Figure 4.27. URLLC outage percentage. 

 

 

Figure 4.28. URLLC sum rate in Mbps. 

 

Figure 4.29. eMBB outage percentage. 
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Figure 4.30. eMBB sum rate in Mbps. 

 

 

Figure 4.31. Outage percentage. 

 

Figure 4.32. Sum rate in Mbps. 
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Figure 4.33. Episode and average reward for training session 2 of joint beam, power and 

frequency management. 

 

 

Figure 4.34. Served user percentage. 

 

 

Figure 4.35. URLLC outage percentage. 
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Figure 4.36. URLLC sum rate in Mbps. 

 

 

Figure 4.37. eMBB outage percentage. 

 

 

 

Figure 4.38. eMBB sum rate in Mbps. 

                        

           

 

   

   

   

   

 

   

 
 
  

  
 
  

  
 

 
 
 
 

              

                        

           

 

 

  

  

  

  

  

  

  

  

  

 
  

  
 

 
  

 
  

 
 
 

                

                        

           

 

 

 

 

  

  

  

 
 
  

  
 
  

  
 

 
 
 
 

             



 

 67 

 

Figure 4.39. Outage percentage. 

 

Figure 4.40. Sum rate in Mbps. 

 

 

Table 4.8. Test results for beam, power and frequency management. 

Test 

Sets 

Initial 

UE 

Outage 

Final UE 

Outage 

Initial 

eMBB 

Outage 

Final 

eMBB 

Outage 

Initial 

URRLC 

Outage 

Final 

URRLC 

Outage 

1 30% 0% 29% 0% 33% 0% 

2 50% 0% 50% 0% 0% 0% 

3 60% 10% 63% 13% 50% 0% 

4 40% 0% 43% 0% 33% 0% 

5 30% 0% 25% 0% 50% 0% 
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All of the test cases showed improvement on data rates and outage rates. Joint beam, 

power and frequency allocation was observed to be less susceptible to local minima 

during training for optimum CQI. Depending on the spatial distribution of the UEs, it is 

possible for the users to end up in a scenario with low performance that is not easily 

overcome by moving in the codebook in fixed steps. During training, the agents that could 

not produce good rewards were discarded in the two previous sections for this reason.  

The ability to also move in frequency greatly improves the training process since it is 

much more difficult for no action in a given state to yield high reward. 

 

The performance measures outage rate and sum rate of each slice of the test case 5 given 

in Table 4.8 are given in Figures 4.41-47. The trained algorithm is tested on 10 pedestrian 

users with 10 Hz maximum Doppler shift, for 1000 steps of the agent. As described in 

section 4.4, each step corresponds to a time slot. As time progresses, the beams, power 

levels and resource blocks are assigned to each UE. Outage rates converge to 0% by step 

75, and sum rates converge around step 150. URLLC users in the network are faster to 

converge, with fewer time slot spent in outage compared to eMBB users. Sum rates 

increase around step 150 as the agent increases the power levels more freely since the 

interferences are already managed around step 75. The reason for the delay between the 

convergence of the sum rates and served user percentages is the worsening interference 

caused by increasing the power levels while the users still cause interference to each other. 

The change in the data rates after convergence are caused by the changes in the channel. 

 

 

Figure 4.41. Served user percentage of test set 5. 
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Figure 4.42. Sum rate of test set 5. 

 

Figure 4.43. URLLC outage rate of test set 5. 

 

Figure 4.44. URRLC sum rate of test set 5. 
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Figure 4.45. eMBB outage rate of test set 5. 

 

 

Figure 4.46. eMBB sum rate of test set 5. 

 

Figure 4.47. Outage rate of test set 5. 
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The performance of the algorithm is also observed for when one of the users is highly 

mobile with a maximum Doppler shift of 300 Hz. Through figure 4.48-4.55, it can be 

seen that the algorithm moves the assigned resources around the resource space in order 

to compensate for the loss of performance caused by the single user’s mobility while the 

highly mobile user is being tracked in space. Both the resources assigned to the moving 

UE and the pedestrian UEs are changed in time to accommodate the worsening quality of 

services. Some of the UEs exhibit better performance due to the mobile UE causing less 

interference to the UEs which were closer to them in the beginning. Whereas some UEs 

need new adjustments to mediate the newly increased interference. 

 

As new solutions are found, some outage is present in the system, but the outage is 

compensated fairly quickly. The URLLC users are given priority during resource 

assignment, causing them to search for a better resource set more frequently and resulting 

in fluctuating outage in URLLC users while eMBB users have stable outage during the 

same time period. Some interesting fluctuations in the URLLC sum rate and eMBB sum 

rate is also present. This is due to the movement of the assigned resources as the highly 

mobile user interacts with them in space.  

 

 

Figure 4.48. Served user percentage for test set 5 with high mobility. 
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Figure 4.49. Sum rate for test set 5 with high mobility. 

 

Figure 4.50. URLLC outage rate for test set 5 with high mobility. 

 

Figure 4.51. URLLC sum rate for test set 5 with high mobility. 
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Figure 4.52. URLLC minimum data rate for test set 5 with high mobility. 

 

Figure 4.53. eMBB outage rate for test set 5 with high mobility. 

 

Figure 4.54. eMBB sum rate for test set 5 with high mobility. 
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Figure 4.55. Outage rate for test set 5 with high mobility. 

 

Online Learning 

In this configuration, the states consist of the beam, ID, power and frequency of the UE 

as shown in 4.12. The actions are to move up, down or staying still on the beam, power 

and frequency assignments. 

𝑠 ∶= [𝑏, 𝐼𝐷, 𝑝, 𝑓]𝑇     (4.12) 

𝑎 ∶=

[
 
 
 
 
 
−1,−1,−1
−1,−1,   0
−1,−1, +1

⋮
+1,+1,   0
+1,+1,+1 ]

 
 
 
 
 
𝑇

     (4.13) 

 

 

Figure 4.56. Deep Q Network for online beam, power and frequency management. 
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Table 4.9. Test results for online beam, power and frequency management. 

Test Sets nUE 

Maximum 

Demanded nRB per 

User 

Final 

Outage 

Total Agent 

Steps 

1 6 5 0% 21500 

2 6 5 0% 23453 

3 10 5 10% 51269 

4 10 5 30% 13440 

5 10 10 20% 409341 

6 10 10 40% 117237 

 

Table 4.9 shows with larger number of users, the assignment of beams, power levels and 

resource blocks require a higher number of agent steps to produce results without any 

additional information of the network.  
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5. CONCLUSIONS AND FUTURE WORK 

In this thesis, we investigated the use of reinforcement learning to aid the resource 

management of 5th Generation and Beyond telecommunication schemes. The allocation 

of space, power, and frequency resources for multiple users of diverse needs poses a 

complex problem that is time-extensive to solve in real-time transmissions, since the 

exhaustive search space increases exponentially with the number of users in the network.   

 

Resource allocation was formulated as an optimization problem to be solved by a DQN 

to improve service quality for each user. The Deep Q-Network structure allows us to 

obtain fast, approximate solutions to problems that do not have closed-form solutions by 

interacting with the environment and training on the feedback it receives.  In this study, 

we assume two network slices eMBB and URLLC.  The environment state consists of the 

beams, power and resource blocks allocated to the users, the information we have of the 

interferers, and the network slice of the users. Each UE is competing in order to maximize 

their CQIs. By assigning resources based on the reward gained from UE’s CQI values, 

we maximize the lowest CQI in the network at each step of the DQN Agent. Due to the 

heterogeneity of the requirements of the network slices, the URLLC users are prioritized 

while maximizing the minimum CQI in the network.  

 

Resource management is conducted in three steps: beam, beam-power and beam-power-

frequency. For each of these three steps, two approaches are taken: with or without 

channel measurements. Online learning utilizes UE-reported CQI values in order to 

assign resources. The overhead caused by channel measurements is eliminated but this 

results in a training process for each new state of the network, resulting in some overhead 

before convergence. Offline learning is based on existing channel measurements and 

improves data rates and outage rates by mitigating inter-beam interference and channel 

impairments. This method assigns resources swiftly due to previously trained DQN.  
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In the literature, various methods of resource allocation are proposed for different stages 

of beam management and radio resource management. Joint beam, power and 

interference management is conducted by using the UE coordinates. Machine learning for 

power management and beamforming are also frequently studied. Joint beam, power, and 

frequency management for different network slices via machine learning haven’t been 

considered. The proposed methods in this thesis also do not require knowledge of the user 

locations. 

 

For all steps of resource allocation, number of served users and sum rate were improved. 

The users in the URLLC slice achieved lower outage rate faster than the users of the 

eMBB slice during training. In some cases, the CQIs of the URLLC users were increased 

at expense of the service quality of the eMBB users. The assignment of the resource 

blocks to UEs alongside beam and power achieves better performance compared to only 

beam and power allocation in terms of the number of users that can be served. Online 

learning produced poorer results compared to offline learning due to the lack of 

information of the environment used as input for training. For the same reason, online 

training does not generalize to other sets of users but acts as a real-time initial resource 

allocation algorithm.  

 

This study shows that it is possible to improve QoS for UEs with diverse needs by joint 

beam, power and frequency management with deep reinforcement learning. With even 

large sets of training data, the resource allocation performance of the Deep Q-Network 

can be improved to generalize to many possible real-world scenarios such as higher 

number of users, a larger service area or worse channel conditions. 

 

Future work may include considering dense networks for applying machine learning to 

joint resource management. High traffic volume scenarios or rapidly changing channels 

could also be considered. Digital beamforming techniques may be leveraged to optimize 

the beam assignments for each subcarrier used by a UE. The algorithm proposed in this 

thesis also does not cover scheduling, which is an important aspect of resource 

management. Scheduling can also be conducted jointly with beam, power and frequency 

management. 
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