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The shallow landslides, increased by climate change, currently rank high in the list of 

natural disasters that humanity frequently struggles with, posing significant irreparable 

problems for many societies. The aim of the dissertation is to test empirically-statistically 

developed shallow landslides runout distance models to estimate possible damages by 

shallow landslides for large area. Eocene flysch facies, cover a quite extensive area and 

determined considering the geological natural boundary in Western Black Sea region of 

Türkiye, are exceedingly active with respect to shallow landslides occurrence. The 

shallow landslide inventory for the studied region was primarily prepared. Considering 

that the field covers a very large area, the field was divided into three sub-basins in order 

to model more realistically. In addition, descriptive statistical evaluations on the sub-basin 

basis regarding the travel angle, depth and observed runout distance of the shallow 

landslides in the prepared inventory were separately made for each three sub-basins. The 
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testing of the runout distance probability assessment of shallow landslides requires to 

conduct the process of the detection of shallow landslides initiation points and their 

propagations. It is also necessary to generate a shallow landslide susceptibility map to 

allow for the most reliable prediction of possible initiation points of shallow landslides. 

Shallow landslides susceptibility maps were created using machine learning logistic 

regression method to determine the shallow landslide initiation points. This study was 

conducted based on two phases, one with Representative Concentration Pathway (RCP) 

scenario values and one without. Critical threshold values for shallow landslide initiations 

selected by considering shallow landslide susceptibility maps and RCP scenarios’ 

precipitation values. In the initial analysis, it was assumed that only the shallow landslide 

susceptibility is required to be greater than 0.70 in order for the cell to be accepted as the 

shallow landslide initiations. In the reckon with RCP scenarios, it was assumed that if the 

cell's shallow landslide susceptibility value is greater than 0.70 and it receives more than 

81 mm of precipitation according to the RCP rainfall scenarios, that cell is accepted as 

the shallow landslide initiations. In the second stage of the study, runout distance 

empirical probability models were prepared for both models with RCP scenarios and 

without RCP scenarios. The Flow-R 1.0.0 software was utilized by applying Modified 

Holmgren algorithm and Simplified Friction-Limited Model (SFLM) algorithm 

parameters, aiming to offer an empirical estimation of runout distances during the 

propagation process. Two types of parameter sets were created, namely the debris flow 

parameters model and the shallow landslide parameters model for runout distance 

estimation, and their comparative evaluations were conducted. The determination 

coefficients for predicting the maximum runout distance probability of shallow landslides 

and debris flows using the empirical runout distance model were found to be 0.62 and 

0.64, respectively. When the obtained results are also assessed by reckoning with RCP 

scenarios, it is manifested that the possible shallow landslides initiations and their runout 

distances will decline in the future according to RCP scenarios. 

 

 

Keywords: Shallow landslide, Debris flow, Empirical method, Runout distance, Flow-

R, Climate change, RCP, Eocene flysch facies. 
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İklim değişikliğiyle artan sığ heyelanlar, günümüzde insanlığın sıklıkla mücadele ettiği 

doğal afetler listesinde üst sıralarda yer almakta ve birçok toplum için telafisi mümkün 

olmayan önemli sorunlara neden olmaktadır. Bu doktora tezinin amacı, geniş alanlar için 

sığ heyelanların olası hasarlarını tahmin etmek amacıyla ampirik-istatistiksel olarak 

geliştirilmiş sığ heyelan yayılım mesafesi modellerini test etmektir. Türkiye'nin Batı 

Karadeniz Bölgesi'nde oldukça geniş bir alanı kaplayan ve jeolojik doğal sınır dikkate 

alınarak belirlenen Eosen Fliş Fasiyesi, sığ heyelan oluşumu açısından son derece aktiftir. 

Çalışılan bölge için öncelikle sığ heyelan envanteri hazırlanmıştır. Sahanın oldukça geniş 

alanı kapsadığı göz önüne alındığında daha gerçekçi olarak modelleme yapabilmek için 

saha 3 alt havzaya bölünmüştür. Tanımlayıcı istatistiksel değerlendirmeler, hazırlanan 

envanterdeki sığ heyelanların erişim açısına, kayma derinliğine, yayılım mesafesine 

yönelik havza bazında her 3 alt havza için ayrı ayrı yapılmıştır. Sığ heyelanların yayılım 

mesafesi olasılık değerlendirmesinin test edilmesi, sığ heyelan başlangıç noktalarının ve 
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onların yayılmalarının tespit edilmesi sürecinin yürütülmesini gerektirir. Sığ heyelanların 

olası başlangıç noktalarının en güvenilir şekilde tahmin edilebilmesi için sığ heyelan 

duyarlılık haritasının oluşturulması da gerekmektedir. Sığ heyelan duyarlılık haritaları, 

sığ heyelan başlangıç noktalarının belirlenmesi amacıyla makine öğrenimi lojistik 

regresyon yöntemi kullanılarak oluşturulmuştur. Bu çalışma, biri Temsili Konsantrasyon 

Yolları (RCP) senaryoları değeri olan, diğeri olmayan iki aşamaya dayalı olarak 

yürütülmüştür. Sığ heyelan başlangıç noktalarının kritik eşik değerleri, sığ heyelan 

duyarlılık haritaları ve RCP senaryolarının yağış değerleri dikkate alınarak seçilmiştir. İlk 

analizde hücrenin sığ heyelan başlangıcı olarak kabul edilebilmesi için yalnızca sığ 

heyelan duyarlılığının 0,70' ten büyük olması gerektiği kabul edildiği varsayılmıştır. RCP 

senaryoları dikkate alındığında, hücrenin sığ heyelan duyarlılık değeri 0.70' ten büyükse 

ve RCP yağış senaryolarına göre 81 mm' den fazla yağış alıyorsa o hücre sığ heyelan 

başlangıcı olarak kabul edildiği varsayılmıştır. Çalışmanın ikinci aşamasında RCP 

senaryolu ve RCP senaryosuz her iki model için de yayılım mesafesi ampirik olasılık 

modelleri hazırlanmıştır. Yayılım süreci sırasında yayılım mesafelerinin ampirik bir 

tahminini sunmayı amaçlayan Modifiye Holmgren algoritması ve basitleştirilmiş 

sürtünme sınırlı model (SFLM) algoritması parametreleri uygulanarak Flow-R 1.0.0 

yazılımı kullanılmıştır. Yayılım mesafesi tahmini için moloz akması parametreleri modeli 

ve sığ heyelan parametreleri modeli olmak üzere iki tip parametre seti oluşturulmuş ve 

bunların karşılaştırmalı değerlendirmeleri yapılmıştır. Yayılım mesefesi ampirik modeli 

sonuçları, sığ heyelanların ve moloz akmalarının maksimum yayılma mesafesi olasılığını 

tahmin etmedeki determinasyon katsayıları sırasıyla 0.62 ve 0.64 olarak bulunmuştur. 

Elde edilen sonuçlar RCP senaryoları da dikkate alınarak değerlendirildiğinde, gelecekte 

olası sığ heyelan başlangıçlarının ve bunların yayılım mesafelerinin azalacağı ortaya 

çıkmaktadır. 

 

 

Anahtar Kelimeler: Sığ heyelan, Moloz akması, Ampirik yöntem, Yayılım mesafesi, 

Flow-R, İklim değişikliği, RCP, Eosen fliş fasiyesi.  
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1. INTRODUCTION  

 

The maps prepared to include runout distances as part of an integrated study of shallow 

landslides and Representative Concentration Pathway (RCP) scenarios document the 

runout distances in the Western Black Sea region (Eocene flysch facies) of Türkiye with 

combining effects of climate change in this dissertation. This chapter primarily aims to 

provide insight into the dissertation's motivation, highight the main problem, pose 

research questions, specify the research scope, summarize the purposes and objectives, 

give detail information about research’s materials and methodology, and present the 

organization of the dissertation by summarizing chapters. 

 

 Motivation 

Shallow landslides are considered to be natural disasters capable of causing noteworthy 

tragedies by rocking the countries in today's world. Shallow landslides may actually lead 

to millions economic damage to tangible resources and numbers of casualties each year 

(Froude and Petley, 2018; Haque et al., 2019; Luino et al., 2022). For instance, the news 

of roads being partially buried due to shallow landslides has been increasingly prevalent 

in social media or television channels’ news bulletins. With rapidly advancing 

technological capabilities, having more detailed information about the most current 

shallow landslides, which are also widely covered in the media, is crucial for future 

advanced studies (Pennington et al., 2022). Considering this information, the necessity of 

scientifically researching ways to overcome negative effects of shallow landslides has 

emerged. Society might get rid of the possible destructive effects of the shallow landslide 

disasters in the least possible and safest way with researching on shallow landslide runout 

distances. Runout distance predictions are so essential to shallow landslide studies for 

quantifying the detrimental effects of them in a possible disaster event that prolific 

researchers have been eager to enhance the existing knowledge in this field (Guthrie and 

Befus, 2021; Goetz et al., 2021; Vegliante et al., 2024). Runout distance can be explained 

that when the landslides start to mobilize, how far lanslides can travel by reaching 

maximum velocity (Ray et al., 2022). No developing runout strategy will be effective in 

improving runout distance achievement, unless researchers analyze shallow landslides’ 

triggering factors accurately and consistently. There is a significant connection between 
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shallow landslides, climate change, and heavy rainfall. When heavy rainfalls are triggered 

by climate change, heavy rainfall leads to shallow landslides (Tiranti, Nicolò and Gaeta, 

2019; Zhu et al., 2021a; Asada and Minagawa, 2023; Jemec Auflič et al., 2023; Smith et 

al., 2023; Song et al., 2023; Tiranti and Ronchi, 2023). Due to rapid climate change, 

observation of an increase in shallow landslide activity needs rapid adaptation and 

detailed plans in order to eliminate the negative effects of shallow landslides. When the 

existing various approaches on shallow landslides are combined with runout distance 

information, stronger foundational data will be provided for further advanced studies. For 

instance, shallow landslides susceptibility maps should include much information such as 

runout distances of shallow landslides so that society or government can effectively take 

precautions to be one step ahead in facing natural disaster threats of shallow landslides. 

In other words, the runout information of shallow landslide is obviously key marker of 

country’s resilience. Although the landslide susceptibility is popular research topic in the 

landslide literature, the runout of landslide probability has frequently not been studied 

due to its uncertainties and challenging nature. 

 

It is clearly revealed that a comprehensive map, which includes not only shallow landslide 

susceptibility and but also consists of their runout distances, can help to progress 

country’s standing on the global stage about disaster management with respect to its 

landslide disasters resilience improvements. Based on this information, it should 

prioritize selecting more exposed to disastered locations for mapping the runout distance 

of shallow landslides in areas where shallow landslides frequently occur. Small-scale 

especially flow type of landslides frequently triggered in the Western Black Sea Region 

because of heavy rainfalls (Duman et al., 1998; Ocakoglu, Gokceoglu, and Ercanoglu, 

2002; Can et al., 2005; Akgun, Gorum and Nefeslioglu, 2021). Eocene flysch facies are 

interesting and distinctive study area, where notable and significant observations can be 

made, in terms of abundance of shallow landslides occurrence. Thus, Eocene flysch 

facies, which are situated in the Western Black Sea Region, will be troughly tested in 

terms of shallow landslides such as their runout distances in this dissertation. It is note 

that Eocene flysch facies were actually chosen by considering based on natural geological 

boundaries to investigate the shallow landslide tendency. Preparation of the shallow 

landslide inventory map was actually a primary step that can examine shallow landslides 

in the study region in terms of their statistical descriptions. Satellite images and Google 
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Earth images allowed the observation of the shallow landslides in order to prepare the 

landslide inventory map. The shallow landslide susceptibility map was also prepared by 

using Machine Learning (ML) Logistic Regression (LR) to adapt to the technological 

developments. The determination of threshold of the shallow landslide’s susceptibility 

constituted the determinant factor in this study. The use of empirical-statistical method, 

which offers researchers more practical researches, to examine shallow landslide runout 

distance was preferred runout calculation method due to its low cost. Shallow landslides’ 

geometry and energy relationships, which indicate the line between failure initiations and 

their reached locations, and size were evaluated with empirical statistical method in this 

study. Angle of reach (“Fahrböshung”) or Travel Angle (TA), is generally preferred 

method and depends on Simplified Friction Limited Method (SFLM), was used as the 

empirical method to analyse the runout distances in this study. Runout flow direction was 

estimated with Modified Holmgren (Horton et al., 2013) algorithm in this research. Flow-

R 1.0.0 software (Horton et al., 2013), which can combine the SFLM and Modified 

Holmgren flow direction algoritms, was used in the empirical runout distances analyses 

in the dissertation.  

 

Moreover, the exploration of connections between these previous mention steps and 

climate change is a highly valuable approach. Over the years, awareness of climate 

change has been better improved than it was in the past. Many researchers studied on 

relationships between landslide and climate change (Gariano and Guzzetti, 2016; Ciervo 

et al., 2017; Peres and Cancelliere, 2018; Park and Lee, 2021; Araújo et al., 2022; Lim 

and Kim, 2022; Wijaya et al., 2022; Guo et al., 2023; Jakob and Owen, 2023; Jemec 

Auflič et al., 2023; Kim, Jung and Kim, 2023; Nefros et al., 2023; Tiranti and Rochi et 

al., 2023; Park et al., 2024). However, shallow landslide runout relations and climate 

change relations have yet not been discussed. It was critical to tie a link between shallow 

landslides and climate change considering the precipitation data. The increasing 

prevalence of extreme rainfall events possessed a major concern because of its potential 

adverse effects such as triggering of shallow landslides events in the Eocene flysch facies. 

Increasing awareness about climate change RCP scenarios precipitation values had 

become a key priority in runout distances of shallow landslides in this study scope. This 

research suggests that, rather than scrutinizing on runout distance analyses only without 
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RCP precipitation, runout distance prediction should also be investigated through RCP 

precipitation scenarios in order to improve the perspective of future landslide hazard map. 

 

Despite its difficulties, this thesis investigates not only the possible current runout 

distance of shallow landslides but also examine future possible shallow landslide runout 

distance in the Eocene flysch facies by considering climate change scenarios’ 

precipitations effects. Thus, this dissertation might foster and deploy the next researches 

about the shallow landslide runout and climate change combinations applications. In fact, 

this thesis can also mainly highlight the importance of maps which include the shallow 

landslide runout distance information in the Eocene flysch facies. Additionally, the results 

of this thesis will not only support development of susceptible maps in terms of shallow 

landslide runout distance but also guide good practises with respect to investigation of 

incorporating the relationships between climate change and future hazard maps which 

also include future possible shallow landslide runout distance. Therefore, the present 

research can also provide as a valuable reference for researchers conducting future 

empirical runout distance analyses of shallow landslides. The main stages of the present 

research are (i) to scrutinize and test the empirical-statistical model for the shallow 

landslide runout distance in Eocene flysch facies, (ii) determine possible shallow 

landslide initiations for both the stages that include RCP precipitation scenarios and those 

that do not and (iii) generate the probable maximum runout distances of shallow landslide 

maps for both the stages that include RCP precipitation scenarios and those that do not 

for each determined period. In the following sections, the fundamental steps, including 

the definition of main problem, scope and objectives, goals, materials, methods, and thesis 

organization, have been examined separately to better specify basic stages of dissertation. 

 

 Problem Statement 

Determining the dissertation problem statement is critical for the rest of the thesis 

structure and organization. It is clearly observed that many shallow landslides have 

occurred in the Western Black Sea Region in recent years due to the change in climatic 

conditions. Heavy rains in Eocene flysch facies trigger many shallow landslides across 

the region. Considering the potential in the region, runout maps are needed in order to be 

affected by all the negativities that may occur such as loss of life and property in the least 
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possible way. However, there is no information about runout distances on maps in 

Türkiye. Therefore, in this dissertation, it is aimed to reach a comprehensive assessment 

by including the runout distance on the maps for Eocene flysch facies.  

 

 Research Questions 

Specific questions, which are chosen for this research topic in order to reduce 

uncertainties, are listed in the following: 

 

i. How to improve the knowledge of runout distances of shallow landslides in the 

Eocene flysch facies economically and practically?   

 

ii. Is it possible to observe the effect of changing climate on shallow landslide runout 

distance with future climate scenarios? 

 

 Research Scope and Purposes 

It is possible to notice that the shallow landslide activity is increasing day by day both in 

Türkiye and in the world. When the recent studies are examined, it is seen that many 

researchers are very interested in shallow landslides due to the unexpected destructive 

impacts of the pending. It is clearly noticed that the quality of the studies has increased 

considerably with the developing technology. Nevertheless, the shallow landslide runout 

distance investigation is not common and missing on the susceptibility maps which are 

prepared in Türkiye. The precipitation data related to climate change are also included in 

the study to attempt to improve and expand the level of the study by envisoning in the 

coming years. Therefore, when this study is successfully completed, a very important and 

original development will be made in determining the shallow landslide runout distance 

in order to contribute to the landslide literature. To progress a detail comprehension of 

runout distances of shallow landslides and of the influence of the using empirical methods 

and climate changes on runout distance results, empirical-statistical modelling is executed 

in this study. In order to give better understand of the research scope and purposes, 

research objectives are also listed the form of the smart goals setting in the following sub-

chapter.  
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 Research Objectives 

Objectives of the dissertation are listed below in order to develop runout models in Eocene 

flysch facies. 

 Introduce Eocene flysch facies formation and analyse their characteristics, 

 Analyse satellite and Google Earth images of the study area in terms of occurrence 

of shallow landslides,  

 Prepare the shallow landslide events inventory map for the study area, 

 Visualize the shallow landslides inventory in Eocene flysch facies, 

 Prepare descriptive statistical analyses for the shallow landslide inventory, 

 Prepare the shallow landslide susceptibility map by using ML logistic regression, 

 Identify potential shallow landslide initiations, 

 Decide critical parameters of the runout distance assessment in the empirical 

approach, 

 Present simulation results and analyse them, 

 Evaluate climate scenarios by considering precipitation data to examine the 

effects of climate change, and prepare spatial distribution of modelling of the RCP 

precipitation data in Geographic Information System (GIS) environment, 

 Discover new possible shallow initiations by reckoning with RCP precipitation 

scenarios, 

 Examine the future runout distance of shallow landslides by using the empirical-

statistical method with same determined parameters. 

 

The main contribution of this dissertation can be stated that by the end of study, 

researchers will have gained a comprehensive understanding of how relationship between 

future RCP precipitation scenarios and landslides runout distances predictions in the 

shallow landslide assessment can be important to resilience. Additionally, embracing 

software technology in both susceptibility mapping and runout assessment significantly 

boosted study success and visualisations, making it pivotal aspect of modern landslide 

assessment.  
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 Materials  

The research success is mostly depending on the available data set. Data sources are listed 

in Table 1.1 which offers a synopsis of data obtained from public open sources, the 

published literature and tecnical reports. Even though this study consists of many stages, 

the field studies and examination of satellite images or Google Earth images constitute 

the primarily part of the study in order to develop the landslide inventory database. 

Prepared landslide inventory will also be analysed in terms of considering multiple 

attributes. Therefore, it is very significant to rigorously work on these stages as the other 

stages will be based on these stages. Not only landslide inventory is critical for runout 

assessment but also development of the shallow landslide susceptibility model by using 

ML is also critical in terms of determination of the possible source areas in order to 

determine runout distances. Table 1.1 has a high level of importance in preparation of 

susceptibility maps and determination of landslide initiations.  

 

Table 1.1. Data sources in this study. 

Data Type Source 

Data 

Resolution 

/Scala 

DEM SRTM DEM 25 m 

Land Use 
CORINE Land Cover (CLC 2018 version is 

v.2020_20u1) 
50000 m2 

NDVI 
Copernicus Open Access Hub 

(https://scihub.copernicus.eu/dhus/#/home) 
10 m 

Geology 
Eocene flysch facies from Akbaş et al. (2011) 

1:1.250.000 Türkiye Geological Map 
1:1.250.000 

Geology 

Türkiye Landslide Inventory Map, 

1/500.000 scale Zonguldak Section (Duman et al., 

2005a, 2005b) 

1:500.000 

Daily historical 

precipitations record 
Turkish State Meteorological Service - 

RCP scenarios 

precipitations 
NCAR (https://gis.ucar.edu/inspector) 105 km 

 

 

Software have been utilized for the professional evaluation of the materials used in the 

thesis. Google Earth Pro, GIS software (ArcGIS 10.8.2, QGIS 3.30.1, SAGA GIS 7.8.2), 

and Flow-R 1.0.0 were used for performing data analysis and scientific computations. 

Python 3.11 (via the Spyder), is the programming language, was also used in this study.   



8 

 

 Methodology 

This study methodology is a multifaceted to stem from a range of interconnected steps. 

First, the shallow landslide susceptibility map preparation by using machine learning 

Logistic Regression (LR) is the fundamental part. Second, selection of the critical 

threshold values to determine possible shallow landslide initiations by checking shallow 

landslide susceptibility map and RCP scenarios precipitation values is very critical step 

of this study. Third, shallow landslide runout distance empirical methodology, which 

depends on the flow direction and SFLM (travel angle), is applied on the detected possible 

shallow landslide initiations to forecast the possible runout. The empirical runout analyses 

are implemented with the assistance of Flow-R 1.0.0 software. Finally, relevant parameter 

configuration is adjusted in order to obtained accurate models in the runout distance 

assessment. Flow diagram of the research frame is illustrated in Figure 1.1. It provides a 

general perspective of the relationship between the different dissertation steps.  

 

 

Figure 1.1.The process flow diagram representing the main stages of the shallow landslide 

runout distance assessment in this study. 
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 Organization of the Dissertation  

Dissertation framework can be summarized as follows: 

• Chapter 1 is an introduction chapter. It introduces the motivations, research 

problem statement and questions, scope, purposes and objectives. Data and 

methodology are also presented in this chapter.   

 

• Chapter 2 is an overview of the literature review. 

 

• Chapter 3 gives information about the characterization of study area in terms of 

its location, geomorphological characteristics, geology, land use and vegetation, 

seismicity and climate and rainfall characteristics of the study area. Division of 

sub-basins is also illustrated in this chapter. 

 

• Chapter 4 presents the shallow landslide inventory and susceptibility maps. 

Necessary statistical descriptions are also presented in this chapter.  

 

• Chapter 5 describes the runout analysis of shallow landslides in terms of their 

initiation’s detections and propagations. 

 

• Chapter 6 presents the assessment of shallow landslide runout distance by 

including RCP climate change precipitation scenarios. Climate change scenarios 

precipitation data are assessed by considering the study area climate conditions. 

Runout maps are prepared by considering these shallow landslides initiation 

changes. Shallow landslide frequency changes are also evaluated.  

 

• Chapter 7 is a discussion chapter. It is critical to summarize and evaluate the 

results. Benefits and limitations of the study are also emphasized in this chapter.  

 

• Chapter 8 is a conclusion chapter. Recommendations of future works are also 

suggested and evaluated in this chapter according to simulation results.  

 

• References are presented in the end of the dissertation.  
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2. LITERATURE REVIEW 

 

This chapter is extensively prepared to assess the stage of the literature concerning 

fundamental concepts for the study. 

 

 Shallow Landslides 

Landslides are globally known as natural disasters (Froude and Petley, 2018; Bellugi et 

al., 2021). If the latest natural disaster events are examined, it is not surprise to reach that 

of all the various kinds of natural disasters, shallow landslides increasingly tend to be 

catastrophic disasters that societies strive for the most. Therefore, considering the 

frequency of shallow landslides disasters that have occurred in the world, it is expected 

that researchers will contribute more to studies on this subject in order to provide effective 

resilience against disasters. Shallow landslides are generally triggered by heavy rainfalls 

(Guo et al., 2021; Zhou et al., 2022; Ortiz-Giraldo, Bitero and Vega, 2023; Guo et al., 

2023; Song et al., 2023; Thomas et al., 2023). Although shallow landslides are generally 

triggered by heavy rainfalls and earthquakes, it is possible observe that human activities 

also cause shallow landslides. The surge in shallow landslides caused by human activity 

(such as mining and road construction) has been observed in recent years compared to 

previous years (Maki Mateso et al., 2023). Tanyaş et al. (2022) also allege that road 

construction leads to shallow landslides occurrence as if shallow landslides are triggered 

by the earthquake with a magnitude of 6. The latest some examples of studies conducted 

on the earthquake indicuded shallow landslides are Fan et al. (2023), Salinas-Jasso et al. 

(2023) and Yunus et al. (2023). The earthquake induced shallow landslides are also 

affected by antecedent rainfalls (Martino et al., 2022). To elaborate on the concept of 

shallow landslides, it is necessary to recall the definitions of landslide and debris flow 

closely associated with shallow landslides. In accordance with Cruden and Varnes (1996), 

a landslide is the downward displacement of rock, debris, or soil by gravitational forces. 

Debris flow is also defined as very rapid landslide type (Varnes, 1978). Debris flow is a 

flow type landslide which is composed of soil, rock and water (Colorado Geological 

Survey). Liang et al. (2021) attempted to illustrate potential relationships between 

landslide and debris flow by using machine learning supervised method of Random Forest 

(RF) in the preparation stage of landslide susceptibility mapping. Shallow landslides are 
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generally defined as movements occurring within a limited depth. Shallow landslides’ 

depth has been recognized as different values such as less than 3 or 5 m in recent studies. 

For instance, while shallow landslides depths are defined as less than 5 m in studies 

Zaruba and Mencl (1969), Duman et al. (2005b), Li et al. (2020a), Keles and Nefeslioglu 

(2021), Durmaz et al. (2023), Maki Mateso et al. (2023), Wang et al. (2023) and Djukem 

et al. (2024), shallow landslides depths are less than < 3 m in the studies Cascini, Ciurleo 

and Di Nocera (2017), Shirzadi et al. (2017), Shirzadi et al. (2018), Troncone, Pugliese 

and Conte (2022), Zhou et al. (2022), Song et al. (2023) and Thomas et al. (2023).  

 

Shallow landslides may be transformed into debris flows in the downstream regions with 

accumulating additional channel sediments (Stancanelli et al., 2017; Ortiz-Giraldo, Bitero 

and Vega, 2023; La Porta et al., 2023; Thomas et al., 2023). Debris flows tend to 

selectively channelize, frequently streaming from open slopes into pre-existing 

concavities and channel networks (Rosser et al., 2021). Debris flows often stem from 

shallow landslides in the majority of cases (Cuomo, 2020). It has also been observed in 

recent studies that shallow landslides and debris flows have been evaluated separately 

within the same study. For instance, shallow landslide and debris flow susceptibility maps 

were separately prepared in the study of Liang et al. (2021) in order to detect hazard areas. 

In addition, shallow landslides and debris flow were studied separately on propagation 

simulations in order to get accurate hazard chain prediction in the study of Zhou et al. 

(2022).  

 

Increases in the frequency of shallow landslides associated with climate change may lead 

to big problem in many countries. Therefore, many researchers continue to elaborate on 

researching on shallow landslides. The shallow landslide inventory represents the spatial 

distribution of past landslides which are triggered factors such as precipitation and 

earthquake (Licata et al., 2023). In the following sub-chapter, the shallow landslide 

susceptibility map will be discussed.  

 

 Shallow Landslide Susceptibility Map 

Landslide susceptibility mapping indicates on spatial distribution of anticipating possible 

landslide occurrence (Merghadi et al., 2020; Achu et al., 2023). Due to necessity of 
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enhancing resilience to disasters, it is also required to create a landslide susceptibility 

map, which commonly enable to handle the mitigation stage within disaster management 

scope. If literature is reviewed about landslide susceptibility maps, it is observed that GIS, 

remote sensing, quantitative techniques, frequency ratio, logistic regression analysis, 

artificial neural network analysis, fuzzy logic and ML methods have been used to 

preparation of landslide susceptibility in the studies. The rapid advancement in Artificial 

Intelligence (AI) technologies have created a huge and perpetual improvement in 

preparation of the landslide susceptibility map. There are main ML methods which are 

supervised, unsupervised, deep learning and reinforcement methods (Sun, Bocchini and 

Davison, 2020; Tehrani et al., 2022). Many types of ML methods have been favoured for 

preparation of the shallow landslide susceptibility map in the recent studies. It should be 

remarked that choosing appropriate machine learning methods in landslides susceptibility 

performance in a study may affect the success of the study. LR (Sevgen et al., 2019; Xion 

et al., 2020; Nhu et al., 2020; Qiu et al., 2022; Zhang et al., 2022a; Zydroń, Demczuk, 

and Gruchot, 2022; Song et al., 2023; Liu et al., 2024; Gu et al., 2023), Logistic Model 

Tree (Nhu et al., 2020; Naemitabar and Asadi, 2021; Ling et al., 2022; Ghasemian et al., 

2022), RF (Adnan et al., 2020; Karakas et al., 2020; Nam and Wang, 2020; Pradhan and 

Kim, 2020; Xion et al., 2020; Wang, Liu and Liu et al., 2020; Naemitabar et al., 2021; 

Akinci, 2022; Ghasemian et al., 2022; Nnanwuba et al., 2022; Zhang et al., 2022a; 

Zydroń, Demczuk, and Gruchot, 2022; Ansar et al., 2023; Hussain et al., 2023; Song et 

al., 2023; Kaya Topacli, Ozcan and Gokceoglu, 2024; Liu et al., 2024; Unal, Kocaman 

and Gokceoglu, 2024), SVM (Adnan et al., 2020; Nhu et al., 2020; Nam and Wang, 2020; 

Wang et al., 2020; Xion et al., 2020; Naemitabar and Asadi, 2021; Akinci, 2022; Qiu et 

al., 2022; Gu et al., 2023; Kumar and Sarkar et al., 2023), XGBoost (Zhang et al., 2019; 

Pradhan and Kim, 2020; Can, Kocaman and Gokceoglu, 2021; Nnanwuba et al., 2022) 

are main supervised method to decide landslide susceptibility in studies. Deep Learning 

(DL) is also used in landslide susceptibility mapping (Zhan et al, 2019; Nam and Wang, 

2020; Pradhan and Kim, 2020; Azarafza et al., 2021; Ado et al., 2022; Nikoobakht et al., 

2022; Zhang et al., 2022a; Hussain et al., 2023; Mondini et al., 2023). Literature reviews 

indicate that RF is also frequently used ML method in the assessment of the landslide 

susceptibility. Nevertheless, LR machine learning will also be used in the studies in order 

to predict landslide prone areas. LR is deemed to be satisfactory for shallow landslides 
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susceptibility mapping in this thesis. Following equations, Equation 2.1 and 2.2, represent 

the utilized equations of the logistic regression landslide probability of occurrence. 

 

P = 1 / (1 + e-y) = e / (1 + ey) 

 

y = b0 + b1a1 + b2a2 +⋯… + bnan 

 

In this context, P represents the probability of landslide occurrence, varying between 0 

and 1, with “e” denoting the exponential constant (Menard, 1995). In other words, when 

the pixel value of 1 shows landslide-prone areas, the value of 0 represents non-landslide 

areas. It can be grasped from the equations that the “a” value represents the independent 

variables, while the “b” coefficient denotes the regression coefficients associated with the 

independent variables. In contrast to a and b, y represents a dependent variable. 

 

 Runout Analysis Methods 

Due to increasing severe shallow landslides hazard possibilities, that runout distance topic 

has virtually unrestricted potential for researching is extremely intriguing to researchers 

seeking to bring out the best method with respect to study conditions and its limitation. 

Runout distance can be defined that the distance between landslide’ start and end points 

line, which indicates the landslide path of the movement and influenced by material 

properties and slope geometry, accounts for landslide runout distances (Zahra, 2010; 

Cuomo, 2020). The flow type of landslide such as a debris flow’ horizontal distance 

length is called debris flow runout (Ortiz-Giraldo, Bitero and Vega, 2023). In order to 

assess behaviour of shallow landslides after following their initiations, runout analyses 

are necessary to be performed. A runout distance is influenced by controlling the factors 

are topography, geology, material properties, land cover etc. (Zahra, 2010; Guthrie and 

Befus, 2021). Prediction of landslide runout distance can be modelling by empirical- 

statistical methods, numerical methods and physical methods. In addition, a data-driven 

approach for estimating of shallow landslide runout was applied in the research of Giarola 

et al. (2024).  

 

(2.2) 

(2.1) 
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2.3.1. Empirical-Statistical Methods 

Landslide initiation and its final location are empirically-statistically described by using 

landslide geometry or energy relationship. Angle of reach method is commonly used the 

empirical model in the studies (Di Napoli et al., 2021; Ju et al., 2022; Marchesini et al., 

2024). The angle of reach, which also called fahrböschung angle (Heim, 1932) and travel 

angle (Cruden and Varnes, 1996) is measurement of the angle of line between initiation 

source and displaced mass (Corominas, 1996; Luna, 2012) (Figure 2.1). While L shows 

the travel distance, H represents the height difference between the shallow landslide 

initiation and maximum runout distance (Di Napoli et al., 2021) (Figure 2.1). “α” also 

denotes the reach angle in Figure 2.1 and Equation 2.3. Reach angle can be calculated 

from Equation 2.3. Landslide volume, movement type and topographic limitations along 

the travel line affect the reach angle (Corominas, 1996).  

 

Figure 2.1. Reach angle and kinetic energy limitation (Modified after Horton et al., 2013 

and Di Napoli et al., 2021). 

 α = tan-1(H/L) 

 

Moncayo and Ávila (2023) estimated landslide runout distance by using simple and 

multiple regression techniques depends on empirical relationships. Determination of the 

spatial distributions of the past landslides requires both field works and image 

interpretations (Luna, 2012). Field observation and image interpretation have also an 

important role in preparation of the empirical runout model with respect to analysing 

characteristic of past landslides’ travel angle and velocity. The simultaneous utilization 

(2.3) 
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of advanced technologies, which were increasingly added continuous innovations by 

researchers, along with empirical methods for runout distance investigation, is an 

important opportunity brought by the era.  

 

Combining ML and empirical statistical method have been carried out a wide range of 

research studies. For instance, a novel terrain matching-targeted machine learning model 

was utilized to predict landslide runout distance and path in the study of Ju et al. (2022). 

Di Napoli et al. (2021) combined machine learning and ensemble approach with reach 

angle method to decide landslide runouts. They claimed that the empirical-statistical 

method is suitable for quick assessments. Tian, Xu and Li (2023) utilized Bayesian 

approaches to develop the empirical debris flow runout model by employing multichain 

method (DREAM(ZS) algorithm) and single chain (M–H algorithm). In addition, 

photogrammetric techniques may enhance the success of shallow landslide contemporary 

runout analyses. For instance, Roman Quintero et al. (2024) explored the utilization of 

geometric approximations for assessing landslide runout distances, employing 

photogrammetric techniques to characterize morphology of specified study area.  

 

Furthermore, incorporating geometric approaches alongside assessing kinematic 

parameters such as velocity can greatly enhance the effectiveness of runout distance 

implementation (Falconi et al., 2023). Energy calculation and geometric relationships 

were used together in many studies (Horton et al., 2013; Park, Lee and Woo, 2013; 

Pastorello, Michelini and D’Agostino, 2017; Pradhan et al., 2016; Rahman, Ahmed and 

Di, 2017; McCoy, 2019; Sturzenegger et al., 2019; Do, Yin and Guo, 2020; Polat and 

Erik, 2020; Ali et al., 2021; Bera, Melo and Guru, 2021; Charbel and El Hage Hassan, 

2021; Giano, Pescatore and Siervo, 2021; Jiang et al., 2021; Liu et al., 2022; Putra et al., 

2022; Xu et al., 2022; Sharma et al., 2023) (Figure 2.1). Steger et al. (2022) also studied 

on data-driven approaches based on geomorphometric analyses to simulate debris flow 

runout. Vegliante et al. (2024) used the Legros equation (Legros, 2002) to find shallow 

landslide runout. Equation 2.4 shows the Legros equation (Legros, 2002) that L represents 

the extent of the runout in a planar direction, and V stands for the volume of the initial 

area of activity (Vegliante et al., 2024). a and b also represent the coeffcients in Equation 

2.4. 
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L = aVb 

 

2.3.2. Numerical Methods 

Various numerical methods have been studied for shallow landslides and debris flows. A 

flow type of landslide flow can be examined as a non-Newtonian fluid motion (Hong, 

Jeong and Kim, 2020). Unlike Newtonian fluids, non-Newtonian Fluids focus on material 

properties in addition to density and viscosity. Motion of fluids contains two kinds of 

equivalent descriptions which are Eulerian and Lagrangian. Both of them can be used in 

the runout distance calculations. Navier-Stokes equation (Equation 2.5) and depth 

averaged equations are critical equations of applying of the numerical methods to 

simulate fluid mobility. Depth-averaging the Navier-Stokes equations enable to examine 

debris flow simulation economically (Kang, Hong and Jeong, 2021). These equations can 

solve the rheologies.  

 

ρ (∂v⃗ /∂t+v⃗ ⋅∇v⃗ )= -∇P +ρg⃗ + μ∇2v⃗  

 

Rheology explores the interplay between the viscosity and shear stress experienced by a 

debris flow (Khan et al., 2021). Rheological model is also used to define material property 

of debris flow which can be obtained from back-analysis (Cuomo, 2020). Bingham 

(Equation 2.6), Herschel Bulkley (Equation 2.7) and Voellmy Equation (2.8) rheologies 

are recurringly used for debris flows in the studies. Equation elements’ explanations were 

given in Table 2.1. While Bingham and Herschel Bulkley rheologies are obtained from 

considering the studies of Kang, Hong and Jeong (2021), Xia and Tian (2022) and Paul 

et al. (2023), Voellmy equation is also obtained from RAMMS software online page 

under the title of debris flow theory of the friction parameters. 

 

τ = {τ0+ μ ⋅∣γ˙∣ if ∣ τ ∣> τ0 or, 0 if ∣ τ ∣ ≤ τ0} 

 

τ = τ0 + K ⋅ ∣γ˙∣n 

 

S = μ N + ((ρgu2) / ξ) 

  

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2.4) 
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The shear stress (τ) is calculated by using the yield stress (τ0), viscosity (μ) and shear rate 

(γ˙). “K” and “n” are also index values. Furhermore, frictional resistance (S) is obtained 

by using not only relations between the viscosity and normal stress (N) but also 

combining the relations between multiple elements which are density (ρ), gravitational 

acceleration (g), velocity (u) and turbulent coefficient (ξ). 

 

Table 2.1. Equations' element clarification. 

Equation element Explanation 

∇P Pressure gradient 

τ Shear stress 

τ0 Yield stress 

μ Viscosity 

γ˙ Shear rate 

K Consistency index (fluid's resistance to flow) 

n Flow behavior index 

S Frictional resistance 

ξ Turbulent coefficient 

N The normal stress on the running surface (ρhgcos(φ)) 

ρ Density 

u Flow velocity 

g Gravitational acceleration 

 

Numerical analyses have changed and promoted greatly with the event of using software. 

Software, which were a superb success and improvement from a technological point of 

view, are tools to easily apply the numerical methods with using these equations and 

rhelogies in the studies. For instance, RAMMS: DEBRIS FLOW (DF) uses Eularian 

equations by applying Voellmy rheology, DAN3D employs Lagrangian equation and 

different rheologies. Moreover, Xu et al. (2023) employed the Coupled Eulerian–

Lagrangian (CEL) method to estimate run-out distances in their debris flow runout 

assessment. The researchers have fostered significant numerical models by using 
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appropriate software and rheologies in their studies. Landslide runout distances are 

successfully predicted with help of numerical model DAN-W software by using Voellmy 

rheology for debris flow and frictional rheological model in the sliding source area (Yang 

et al., 2019). Numerical model in order to inspect runout of debris flow by applying 

Voellmy rheology in RAMMS: DF software in the studies of Calista et al. (2020), 

Abraham et al. (2021), Dash, Kanungo and Malet (2021), Vicari, Nordal and Thakur 

(2021), Mikoš and Bezak (2021), Oh et al. (2021), Zhou et al. (2022), Alene et al. (2023) 

and Bolliger, Schlunegger, and McArdell (2024). Numerical simulation was also applied 

to research into runout distance by using Debris-2D in the study of Chae et al. (2020). 

REEF3D code, which is a numerical model depending on Navier-Stokes equation in 

three-dimensions and developed in NTNU by Marine Civil Engineering group (Clark, 

2018), was used to determination of runout distance in the study of Fornes et al. (2017) 

and Clark (2018). The Navier–Stokes momentum equation and continuity equation by 

considering the rheology of Herschel–Bulkley was used to simulate initiation and 

deposition of the debris flows and landslides in the study of Hong, Jeong and Kim (2020). 

In addition, debris flow runout simulations were completed by FLOW-3D which employs 

3D Navier–Stokes equations using the finite difference method in the study of Zhang et 

al. (2021). r.avaflow depends on Voellmy rheology was used in the study of Fischer et al. 

(2020), Zhao, Amann, and Kowalski (2021) Baggio, Mergili, and D'Agostino (2021), and 

Zhao and Kowalski (2022). LPF3D, which depends on Newtonian fluid, investigates three-

dimensional landslide runout for flow-like landslide (Gao et al., 2023a). Its results were 

also verified with not only flume test but also real landslides in the study of Gao et al. 

(2023a). Debris flow runout prediction was also applied by using SFLOW, which solves 

shallow-flow model and the finite volume method, in the study of Li et al. (2020b). 

PFC3D software was used to numerically model flow type landslides movement by 

evaluating runout distances stages (Gao et al., 2023b). Comprehensive shallow landslide 

maps containing numerically calculated runout distances have been developed by using 

various combined stages in some studies. For instance, shallow landslides and debris flow 

hazard prediction were prepared by using combined with Transient Rainfall Infiltration 

and Grid-Based Regional Slope Stability (TRIGRS) and Rapid Mass Movements 

Simulation (RAMMS) (Zhou et al., 2022). RASH 3D, which depends on numerical 

modelling by calculating depth-averaged balance equations with considering Bingham 

rheology, and TRIGRS were used together during the scope of study to find runout 
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distance in the research of La Porta et al. (2023). Adjusted rainfall information, which is 

obtained by using a supervised machine learning method RF, and RAMMS were 

combined to forecast the debris flow in the study of Oh et al. (2021). Landslide 

hydrodynamic triggering model and the Pudasaini model (Pudasaini, 2012) were used 

together to simulate the shallow landslide motion under rainfall conditions in the study of 

Yin, Zhou and Peng (2023). The analysis of the landslide's runout characteristics and the 

conversion of energy is conducted using numerical model in the study of Li et al. (2022). 

Numerical model results were also verified with video recording in the study of Li et al. 

(2022). 

 

2.3.3. Physical Methods 

Flume tests, often in association with physical method, are principally conducted under 

controlled conditions in the laboratory by analysing of the flow rates, channel geometries, 

and material compositions for the landslide runout estimation. Proper identification of 

flow type of landslides runout was carried out by flume test, which is the physical method, 

in the studies of Baselt et al. (2021) and Gao et al. (2023). Video records are also strongly 

support to prepare an effective physical model. For example, videos are critical to find 

velocity of debris flow (Clark, 2018). The combined use of physical modeling with 

numerical models has been common in recent studies. For instance, Zhu et al. (2021b) 

combined numerical and physical model in an attempt to understand the failure 

mechanism. The studies (Clark, 2018; Melo, van Asch and Zêzere, 2018; Gan and Zhang, 

2019) employed a combination of both physical flume testing and numerical methods to 

examine runout distances. Runout distances were numerically calibrated using rheologies 

by considering previous experimental flume test runout results in these studies. Despite 

physical models’ results are more realistic than numerical models result (Zhu et al., 2020), 

it is arduous to reflect the real-time condition of the field in the laboratory (McDougal, 

2017; Tang, Gratchev and Ravindran, 2023). Physical methods can not reconstruct the 

3D topography due to scaling effects (Wei, Cheng and Dai, 2023). In fact, it is very 

difficult to perform the landslide events to repeated anymore at the same conditions in 

terms of adjusting their sensitivity of the measurement’s accuracy. In addition, it is hard 

to perform physical modeling of runout distance in large areas because it is necessary to 

observe many events for accurate modelling (Goetz et al., 2021). 
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2.3.4. Comparisons of Runout Methods 

While prediction of runout distance is the rife solution to negative effects of shallow 

landslides in almost every country, there is ongoing debate whether empirical methods 

might be more effective alternative. This part of the research has covered why the 

empirical method was chosen to use in the following analyses by comparing the both 

methods. There is no universally adopted method for runout analysis because each study 

has its own set of limitations and advantages. In other words, it is difficult to claim that 

one method can be superseded the other method because it depends on study requirements 

and conditions. Therefore, study conditions should be analysed more carefully in order to 

detect the suitable method.  

 

Recent researches’ results suggest that empirical-statistical runout methods in the 

analyses can lead to easy and practical work satisfaction and even enhanced reaching 

general and realistically simple approach by spending less time for computation. 

Although researchers are revolutionizing landslide runout strategies with helping of 

technology, the empirical method is still frequently preferred method so that it can 

provide profound results at runout distance studies without not having at a high level of 

expertise of statistic. Profuse dataset may bring successful estimation in empirical-

statistical method. In fact, sufficient data sets obtained from field observations about clues 

of past landslides have given opportunity to predict future runout distances by using 

empirical-statistical method (Clark, 2018).  

 

In addition, researches about studying with statistical-empirical and numerical models 

have developed in an extraordinary fashion thanks to improvement of software. A 

software enables to keep up with predicting possible future hazards by providing realistic 

simulations and visual data (Komu, Nefeslioglu and Gokceoglu, 2024). Runout distance 

can be empirically-statistically estimated with software having potent capabilities such as 

Flow-R (Horton et al., 2013), DFLOWZ (Bertie et al., 2014), DebrisFlow Predictor 

(Guthrie and Befus, 2021) and Progressive Debris-Flow Routing and Inundation (ProDF) 

model (Gorr et al, 2022), whereas RAMMS (Christen, Kowalski and Bartelt, 2010) 

DAN3D (Hungr and McDougall, 2009), r.avaflow (Mergili, Krenn and Chu, 2017)  and 
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TITAN2D (Pitman et al., 2003) have been robust numerical software in order to predict 

runout distance in recent studies.  

 

In general, statistical methods are accepted as powerful and easy (Chen et al., 2020a). 

Instead of only focusing of advantages of the empirical-statistical method, it is necessary 

to underline the disadvantages of this method for an objective decision. The previous 

studies evidences substantiate that approximate runout results are obtained in empirical-

statistical methods. In addition, lack of the data is prone to errors because the empirical 

statistical correlation reliability is decreasing (Chen et al., 2020a). In addition, despite 

possessing extensive datasets, it is important to acknowledge the potential for errors or 

inaccuracies in the obtained results by using an empirical method. The precise evaluations 

may also prove challenging in a complex environment with using statistical-empirical 

methods (Komu, Nefeslioglu and Gokceoglu, 2023). Neglection of the initial material 

leads to conceptual uncertainty in the empirical method studies (Milledge et al., 2019). 

Not including volume information may also cause bias in the analyses. Unlike empirical-

statistical method, numerical analyses have discriminant capabilities to characterize the 

effects of initial volume in simulations (Peruzzetto et al., 2020). It is noteworthy that due 

to computational complexities and their costly (Motamedi, 2013), numerical analyses 

should be guided by experts with strong knowledge and experience in terms of numerical 

methods (Khalkhali and Koochaksaraei, 2019). Allocating additional time to the 

calculation of runout distances in numerical analyses is necessary due to trying variety of 

rheological parameter options (Peruzzetto et al., 2020). Consequently, these analyses may 

not be suitable for studies requiring rapid decision-making. Unless rheology parameters 

of an of the shallow landslide event is explicitly stated, the event might not be realistically 

represented with numerical methods due to importance of the precision (McDougall, 

2014; Melo, van Asch and Zêzere, 2018). It is highly valuable to complete the study with 

a more limited input dataset and budget (Melo et al., 2018).  

 

To sum up, a simple, publicly available model that can provide accurate results for 

researchers is often the ideal option for many important studies. When considering the 

advantages of using empirical models, it is not surprising that they have been widely 

preferred in this study and in other recent studies.  
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2.3.5. Previous Works 

It should not be forgotten that runout distance is a very current topic that is open to 

research and needs improvements. In this section, while it is focused on the previous 

studies about runout distance by statistically empirically modelling, it will be also 

evaluated how has the academic publication interest trend of empirically–statistically 

runout distance evolved from in recent years. Empirical-statistical runout method applied 

studies compiled between 2011 and 2024 are shown in Table 2.2.  

 

Among the international researches focused on empirical investigation of landslide runout 

distance up to 2024, although Landslides, J. Mt. Sci., Engineering Geology and Remote 

Sensing have several publications related to this topic, scholarly journals showing the 

most favourite attentions in this topic are Nat. Hazards Earth Syst. Sci and Natural 

Hazards (Table 2.2).  

 

The bar charts show numbers of studies about empirical-statistical approach for landslide 

runout distance at the landslide literature in the world from 2011 to 2024 (Figure 2.2). 

Figure 2.2, is good indicators of understanding the interest and progress in empirical 

landslides runout distances in terms of years, indicates that the interest in empirical runout 

distance researches has increased especially in the years 2021 and 2022. In fact, 2021 

reached the highest number of publications about considering landslide runout distance 

by using the empirical method. 

 

Landslide empirical runout studies have appeared as top priority in terms of studied 

current topic in landslide literature in recent years for many countries. Figure 2.3. shows 

the studies about using empirical method to scrutinize landslide runout with respect to 

country. Although Italy is the lead in academic contributions of this topic because of 

especially frequently occurrence of this type of landslide in this country, Canada and 

China contribute in the empirical runout landslide investigation as significant as Italy 

(Figure 2.3). 
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Table 2.2. Previous studies about empirical-statistical runout method. 

Authors Year Published in Country 

Baumann 2011 Pan-Am CGS Geotechnical Conference Argentina 

Park, Lee and Woo 2013 International Journal of Innovative Research 

in Science, Engineering and Technology 

Korea 

Horton et al.  2013 Nat. Hazards Earth Syst. Sci. Switzerland 

Krikitos and Davies  2015 Landslides New Zealand 

Polting et al. 2016 Austrian Journal of Earth Sciences Austria 

Blais-Stevens and Behnia 2016 Natural Hazards  Canada 

Gregoretti, Degetto and 

Boreggio 

2016 Journal of Hydrology Italy 

Pradhan et al. 2016 Geocarto International Korea 

Pastorello, Michelini and D' 

Agostino 

2017 J. Mt. Sci. Italy 

Sharir, Simon and Roslee 2018 ASM Sc. J. Malaysia 

Melo et al. 2018 Nat. Hazards Earth Syst. Sci. Portugal 

Mergili, Schwarz and Kociu 2019 Landslides Austria 

McCoy 2019 7th International Conference on Debris-Flow 

Hazards Mitigation 

USA 

Sturzenegger 2019 7th International Conference on Debris-Flow 

Hazards Mitigation 

Canada 

Do, Yin and Guo 2020 Geomat. Nat. Haz. Risk Vietnam  

Polat and Erik 2020 J. Mt. Sci. Türkiye 

Peruzzetto et al. 2020 Geosciences Hong Kong 

Bera, Melo and Guru 2021 Bulletin of Engineering Geology and the 

Environment 

India 

Ali et al. 2021 Natural Hazards  Pakistan 

Charbel and El Hage Hassan  2021 Geo-Eco-Trop. Lebanon 
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Table 2.2. continued. Previous studies about empirical-statistical runout method. 

 

Author Year Published in Country 

Di Napoli et al. 2021 Water Italy 

Giano, Pescatore and Siervo 2021 Remote Sensing Italy 

Goetz et al. 2021 Nat. Hazards Earth Syst. Sci. Chile 

Gutrie and Befus  2021 Nat. Hazards Earth Syst. Sci. Canada 

Jiang et al. 2021 Frontiers in Earth Science China 

Liu et al. 2021 Geoscience Frontiers Norway 

Paudel, Fall and Daneshfar 2021 Geotech. Geol. Eng. Nepal 

Wallace and Santi 2021 Environmental & Engineering Geoscience USA 

Arghya, Hawlader and 

Guthrie 

2022 Geohazard 8 Conference Canada 

Apriani et al. 2022 Tahun Indonesia 

Gorr et al. 2022 Landslides Italy 

Liu et al. 2022 Remote Sensing China 

Putra et al. 2022 RISET Geologi dan Pertambangan 

Indonesian Journal of Geology and Mining 

Indonesia 

Xu et al. 2022 Geoenvironmental Disasters China 

Hien et al. 2022 VNU Journal of Science: Earth and 

Environmental Sciences 

Vietnam  

Ju et al.  2022 Engineering Geology China 

Sharma et al. 2023 Natural Hazards India 

Falconi et al. 2023 Natural Hazards  Italy 

Giorala et al. 2024 Catena Italy 

Vegliante et al. 2024 GeoHazards Italy 

Roman Quintero et al. 2024 Sustainability Colombia 

Marchesini et al. 2024 Engineering Geology Italy 
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Figure 2.2. Empirical method runout interest in literature in terms of years. 

 

 

 

Figure 2.3. Empirical method runout interest in literature in terms of countries.  
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The keywords of recent researches, especially those focusing on empirically landslide 

runout, have also been examined. Keywords such as “runout, runout distance runout path, 

runout zone propagation” were frequently chosen in the researches (Kritos and Davies, 

2015; Poltnig et al., 2016; Gregoretti, Degetto and Boreggio, 2016; Pradhan et al., 2016; 

Sharir, Simon and Roslee, 2018; Melo, van Asch and Zêzere, 2018; Mergili, Schwarz and 

Kociu, 2019; McCoy, 2019; Do, Yin and Guo, 2020; Polat and Erik, 2020; Peruzzetto et 

al., 2020; Bera, Melo and Guru, 2021; Di Napoli et al., 2021; Paudel, Fall and Daneshfar, 

2021; Wallace and Santi, 2021; Apriani, Credidi and Khala, 2022; Gorr et al., 2022; Liu 

et al., 2022; Ju et al., 2022; Falconi et al., 2023; Sharma et al., 2023; Giarola et al., 2024; 

Roman Quintero et al., 2024; Vegliante et al., 2024). It is not surprising that “runout” is 

the frequently preferred as a keyword in the studies; thus, it is an index of the popularity 

status of this research topic. 

 

“GIS” was the other frequently used keyword in landslide runout analyses (Park, Lee and 

Woo, 2013; Kritikos and Davies, 2015; Poltnig et al., 2016; Gregoretti, Degetto and 

Boreggio, 2016; Pradhan et al., 2016; Mergili, Schwarz and Kociu, 2019; Polat and Erik, 

2020; Charbel and El Hage Hassan, 2021; Di Napoli et al., 2021; Liu et al., 2022; Paudel, 

Fall and Daneshfar, 2021; Wallace and Santi, 2021; Vegliante et al., 2024). With the 

developing technology, it is seen that GIS is widely used, as in many areas, together with 

the existing methods. However, it is clear that there are points that still need attentions. 

For example, Mergili (2008) and Mergili et al. (2008) stated that there is a required for 

an algorithm that needs flow direction in studies where GIS is combined with an 

empirical-statistical approach. It is also important to determine the correct flow algorithm 

for the study area. Researchers also combined different methods with GIS in their studies 

to examine the propagation distance. For instance, the investigation of runout analysis for 

shallow landslides involved the application of specialized GIS tools, utilizing an 

empirical approach on a basin scale within the context of the study on Vegliante et al. 

(2024). 

 

A keyword “susceptibility” (Park, Lee and Woo, 2013; Kritikos and Davies, 2015; Melo, 

van Asch and Zêzere, 2018; Mergili, Schwarz and Kociu, 2019; Sturzenegger et al., 2019; 

Polat and Erik, 2020; Bera, Melo and Guru, 2021; Di Napoli et al., 2021; Giano, Pescatore 



27 

 

and Siervo, 2021; Xu et al., 2022; Marchesini et al., 2024) was frequently used in the 

runout studies.  

 

Keywords such as “landslide” (Kritikos and Davies, 2015; Sharir, Simon and Roslee, 

2018; Do, Yin and Guo, 2020; Peruzzetto et al., 2020; Hien et al., 2022; Ju et al., 2022, 

Sharma et al., 2023; Roman Quintero et al., 2024), “debris flow” (Kritikos and Davies, 

2015; McCoy, 2019; Sturzenegger et al., 2019; Giano, Pescatore and Siervo, 2021; Xu et 

al., 2022; Hien et al., 2022; Ju et al., 2022; Vegliante et al., 2024; Marchesini et al., 2024),  

“shallow landslide” (Poltnig et al., 2016; Di Napoli et al., 2021, Liu et al., 2021; Giarola 

et al., 2024), and “mudflow” (Charbel and El Hage Hassan, 2021) were also used in the 

empirical landslide runout studies. These keywords indicate that empirical models applied 

in previous studies have generally been used for flow-type landslides in order to 

investigate runout distance. 

 

In addition, a number of scientific studies have scrutinised how to estimate runout 

distance using software. They used various software in the analysis. There is an empirical 

software called Flow-R, developed by the University of Lusanna, which was written in 

MATLAB using these algorithms, which allows automatic source area identification and 

evaluation of spread coverage in debris flow or shallow landslides (Horton et al., 2013). 

Guthrie and Befus (2021) developed a physical-empirical software called "DebrisFlow 

Predictor" that can reach the propagation distance by modelling the complex behavior of 

the debris flow. In addition, Progressive Debris-Flow Routing and Inundation model 

(ProDF) (Gorr et al., 2022) is also empirical model software in order to inspect runout. 

Flow-R and DebrisFlow Predictor, are both empirical models, are compared in the study 

of Arghya, Hawlader and Guthrie (2022), DebrisFlow Predictor might be indicated as 

providing better landslide hazard assessment. DebrisFlow Predictor requires the user-

defined failure initiations (Arghya, Hawlader and Guthrie, 2022). Unlike DebrisFlow 

Predictor, Flow-R offers an opportunity in detecting a landslide initiation (Arghya, 

Hawlader and Guthrie, 2022). 'Debris Flow Predictor', and estimates the area, volume and 

depth along the landslide path for shallow landslides and fast flowing type landslides with 

using 5 m spatial resolution (Guthrie and Befus, 2021). The ability to perform runout 
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simulations even for very small cells can be expressed as the most significant strength of 

the program. 

 

Another issue that researchers are interested in today is contributing to the studies with 

machine learning. Considering this information; with the increasing interest in machine 

learning, it is not a surprise to realize that many researchers also benefit from machine 

learning in their studies on shallow landslides. Shirzadi et al. (2018) mentioned that using 

machine learning to develop quantitative models that predict landslides spatially has 

become more popular in recent years. Shallow landslide modelling (Liu et al., 2021) has 

been successfully applied with machine learning method in their studies. With the rapidly 

changing technological developments, especially recently, shallow landslide propagation 

distance sensitivity has started to be investigated in more detail by using machine learning 

and expert systems. Machine learning has been used in recent runout studies (Di Napoli 

et al., 2021, Liu et al., 2021; Hien et al., 2022; Ju et al., 2022; Sharma et al., 2023). 

 

“Reach angle or travel angle” is critical for empirical runout studies (Horton et al., 2013; 

Park, Lee and Woo, 2013; Poltnig et al., 2016; Pastorello, Michelini and D’Agostino, 

2017; Rahman, Ahmed and Di , 2017; Sharir, Simon and Roslee, 2018; Kaafarani et al., 

2019; McCoy, 2019; Mergili, Schwarz and Kociu, 2019; Paudel, 2019; Sturzenegger et 

al., 2019; Do, Yin and Guo, 2020; Ali et al. 2021; Bera, Melo and Guru, 2021; Charbel 

and El Hage Hassan, 2021; Jiang et al., 2021; Paudel, Fall and Daneshfar, 2021; Di Napoli 

et al., 2021; Pradhan, 2021; Putra et al., 2022; Xu et al., 2022; Sharma et al., 2023).  

Perla’s friction model was also empirically used for debris flow runout distance in the 

studies (Fischer, Keiler and Zimmermann, 2016; Goetz et al., 2021; Polat and Erik, 2020; 

Giano, Pescatore and Siervo, 2021). The travel angle is more frequently preferred 

alternative friction model for runout assessment in studies (Poltnig et al., 2016; Rahman, 

Ahmed and Di, 2017; Sharir, Simon and Roslee, 2018; Kaafarani er al., 2019; Mergili et 

al., 2019; Sturzenegger et al., 2019; Di Napoli et al., 2021; Paudel, Fall and Daneshfar, 

2021; Pradhan et al., 2021; Marchesini et al., 2024). In this part of research was pinpointed 

current empirical runout researches. 
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By using a set of probability rules over the Digital Elevation Model (DEM), a completely 

predictive model has been developed to determine the deposition, path selection and 

propagation behavior for flowing type landslides (Guthrie and Befus, 2021). Melo et al. 

(2019) also proposed a simple cellular automata model to determine propagation in 

shallow slides. The spread was determined using the probability density function (Guthrie 

and Befus, 2021). The propagation path is determined according to the random walk 

theory based on Monte Carlo simulation by using The Gravitational Process Path ((GPP) 

Wichmann, 2017) model (Goetz et al., 2021). The flow path was determined by following 

the steepest path from the potential source area in the study of Sharir, Simon and Roslee 

(2018). Marchesini et al. (2024) also used the random walk theory implements Monte 

Carlo simulation identify probable source areas and observe their runout by using reach 

angles. GIS software enable to visualize both flow directions and runout distances in the 

analyses. For instance, flow path is visualized with the SAGA-GIS software in the study 

of Goetz et al. (2021). ArcGIS software was also used in the studies in order to visualize 

the runout. "Field of View" tool developed in ArcGIS was used in the study of Kaafarani 

et al. (2019). A tool that can calculate propagation distance called "Add-In" has been 

developed to be used in ArcGIS (Poltnig et al., 2016). Data from the modular 

"r.landslides.statistics", which examines the regional probability function, and 

"r.randomwalk", which uses Monte Carlo simulation, which evaluates the orientation of 

the flow, were combined by using GRASS-GIS software in the study of Mergili, Schwarz 

and Kociu (2019). In addition, Statistical R software was also used to visualize the runout 

distance in the study of (Goetz et al., 2021). Mergili, Schwarz and Kociu (2019) pointed 

out that landslide spread analyses make important contributions to hazard and risk 

assessment. Runout distance is also important for planning the land use areas and 

determining the necessary priorities against the hazards (Kritikos and Davies, 2015). 

 

This dissertation involves detailed research on previous works that utilized the Flow-R 

software. 19 interesting Flow-R software used studies, were pooled from after the detail 

literature review, were listed in Table 2.3 between the years 2013 and 2024. It was 

interpreted from Table 2.3 that the choice to focus on debris flow was frequently preferred 

research topic in order to investigate on the runout distance in the listed publications. 

These studies have goals at minimizing the hazards negative effects in the communities 

and providing proficient prevention by offering effective visualisation in a practical sense. 
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It is easily noticeable from Table 2.3 that these studies have generally focused on 

landslides exhibiting flow type characteristics.  

 

Unlike using debris flow runout studies with Flow-R, Ali et al. (2021) and Noël et al. 

(2023) also used Flow-R software to rockfall runout simulation. Horton et al. (2021) also 

suggested suitable parameters for rockfall runout examination.  

 

The other differences between the studies can also be discernible from Table 2.3. For 

example, determining the initiations of shallow landslides and the method to be applied 

during propagation are differently promoted in the studies. Although many researchers 

conduct their runout distance research based on user defined shallow landslide initiations, 

which they have determined themselves, many researchers have also utilized the 

advantage fostered by the Flow-R software by using automatically detected shallow 

landslides initiations (Table 2.3). While flow direction was also generally thrived with 

Holmgren or Modified Holmgren in studies, SFLM was also the most preferred method 

during the propagation stage in the previous studies (Table 2.3). 

 

Different spatial resolutions of DEMs have been used in the Flow-R studies. For instance, 

5 m (McCoy, 2019; Do, Yin and Guo, 2020; Giano, Pescatore and Siervo, 2021), 10 m 

(Park, Lee and Woo, 2013; Charbel and El Hage Hassan, 2021; Jiang et al., 2021), 12 m 

(Ali, Haider and Abbas, 2021), 12.5 m (Xu et al., 2022), 20 m (Polat and Erik, 2020; 

McParland et al., 2021) and 30 m (Ali et al., 2021; Liu et al., 2022) were utilized.  

 

As seen in the literature studies, several researchers have been trying to calculate and 

measure runout distance with using Flow-R. The main aims of these works are to make 

use of limited information efficiently thanks to the Flow-R software. It should be noted 

that even the best models can achieve a generalized view of reality. Therefore, the 

awareness that a generalized approach will be reached at the end of this study has 

emerged.  
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Table 2.3. The previous studies which used the Flow-R software. 

Authors Research Landslide Initiations Runout 

Method 

Flow 

Direction 

Algorithm 

Horton et al. (2013) Debris flow runout 

susceptibility map 

Initiations detected by Flow-R SFLM Holmgren 

Modified 

Park, Lee and Woo 

(2013) 

Debris flow runout 

susceptibility map 

Initiations detected by Flow-R SFLM Holmgren 

Modified 

Pastorello, 

Michelini and 

D’Agostino (2017) 

Debris flow runout 

susceptibility map 

User-defined initiations by 

considering flow 

accumulation and slope 

gradient 

SFLM Holmgren 

Modified 

Pradhan et al. 

(2017) 

Shallow landslide runout 

susceptibility map 

User-defined initiations SFLM Holmgren 

Rahman, Ahmed 

and Di (2017)  

Landslide runout 

susceptibility map 

User-defined initiations SFLM Holmgren 

Modified 

McCoy (2019) Debris flow runout 

susceptibility map 

User-defined initiations  SFLM Holmgren 

Modified 

Sturzenegger et al. 

(2019) 

Debris flow runout 

susceptibility map 

User-defined initiations SFLM Holmgren 

Modified 

Paudel (2019) Debris flow runout 

susceptibility map 

User-defined initiations by 

considering landslide 

susceptibility map 

SFLM Holmgren 

Modified 

Do, Yin and Guo 

(2020) 

Landslide runout 

susceptibility map 

Initiations detected by Flow-R SFLM Holmgren 

Modified 

Polat and Erik 

(2020) 

Debris flow runout 

susceptibility map 

User-defined initiations by 

considering landslide 

susceptibility map 

Perla  Holmgren 

Modified 

Ali et al. (2021) Debris flow runout 

susceptibility map 

User-defined initiations with 

remote sensing and slope 

gradients distributions 

SFLM Holmgren 

Bera, Melo and 

Guru (2021) 

Debris flow runout 

susceptibility map 

User-defined initiations with 

GPS and multi-temporal 

satellite images like Google 

earth, GeoEye-1 and 

worldview-2  

SFLM Holmgren  

Charbel and El 

Hage Hassan (2021) 

Mudflow runout 

susceptibility map 

Initiations detected by Flow-R SFLM Holmgren  

Giano, Pescatore 

and Siervo (2021) 

Debris flow runout 

susceptibility map 

Initiations detected by Flow-R Perla  Holmgren 

Modified 

Jiang et al. (2021) Debris flow runout 

susceptibility map 

Initiations detected by Flow-R SFLM Holmgren 

Modified 

Liu et al. (2022) Landslide runout 

susceptibility map 

User-defined initiations with 

previos studies and D-InSAR 

technology 

SFLM Holmgren 

modified 

Putra et al. (2022) Debris flow runout 

susceptibility map 

User-defined initiations with 

sentinel images 

SFLM Holmgren 

modified 

Xu et al. (2022) Debris flow runout 

susceptibility map 

Initiations detected by Flow-R SFLM Holmgren 

Modified 

Sharma et al. (2023) Debris flow runout 

susceptibility map 

Initiations detected by Flow-R SFLM Holmgren 

Modified 
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 Flow Direction Algorithm and Simple Friction Limited Model (SFLM) 

In this part of thesis, it is delved into the flow direction algorithm and SFLM algorithm, 

crucial for the empirical Flow-R software. It is important to use the correct algorithm 

according to the environmental conditions, because not every algorithm is suitable for 

study requirements. Investigation may also require the use of different flow algorithms 

for debris flows, shallow landslides and rockfalls to represent more realist to flow. For 

instance, Holmgren (1994), Modified Holmgren (Horton, 2013), D8 (O'Callaghan and 

Mark, 1984; Jenson and Domingue, 1988), D∞ algorithm (Tarboton, 1997), Rho8 

algorithm (Fairfield and Leymarie, 1991), multiple flow direction approach (Quinn et al., 

1991), Freeman (1991) approaches are commonly used algorithms for debris flows 

(Horton et al., 2013).  

 

x parameter is incorporated the into the multiple flow direction method by Holmgren 

(1994) in his algorithm, enabling a more detailed examination to be conducted. Although 

in Equation 2.9 elements’ explanitons are also accounted for in Table 2.4, it is necessary 

to summarize them that while tanβi and tanβj represent the change in slope gradient 

between cells, ρi
fd indicates the susceptibility proportion in determined direction (Horton 

et al., 2013). x, has the highly critical role in the equation, is the variable parameter that 

controls the variable deviation in Equation 2.9. As indicated by Equation 2.9, the variable 

x may range from 1 to infinity. 

 

ρi
fd =

(tanβi)
x

∑ (tanβj)
x8

j=1

     ∀    { 
tanβ > 0

x ε [1; +∞] 
} 

 

In the Modified Holmgren algorithm proposed by Horton et al. (2013), the height of the 

central cell alters due to the change of the gradient values of the “dh” parameter. The most 

important difference between Holmgren and Modified Holmgren is the parameter dh. 

Paudel (2019) stated that the modified Holmgren algorithm can be used for both multiple 

flow directions and single flow directions. In this study, it is planned to use modified 

Holmgren (1994) flow direction algorithm. 

 

(2.9) 
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The D8 algorithm was developed for eight flow directions (Paudel, 2019). Although the 

spread data is unrealistic because the algorithm adopts straight flow, it can be useful if a 

brisk approach is desired (Horton et al., 2013). 

 

While the D∞ algorithm allows to make sense of small spreads, it has been stated that it 

is insufficient in some special conditions (Horton et al., 2013). Nevertheles, it was 

suscessfully used to estimate shallow landslide spread in the study of Kritos and Davies 

(2015). While the Rho8 algorithm is considered as a stochastic approach, it causes 

incomplete deterministic results (Erskine et al., 2006; Horton et al., 2013). It has been 

stated that very large diffusion results can be achieved with the multiple flow direction 

approach (Huggel et al., 2003; Horton et al., 2013).  

 

Since the slope direction changes frequently in the field, the function is required to 

determine the new direction according to the initial slope gradient (Paudel, 2019). Horton 

et al. (2013) named this function as the persistence function shown in Equation 2.10. 

While ρi
p
indicates the persistence flow rate in the i direction; a(i) is the angle from the 

previous flow direction (Horton et al., 2013). The "w" persistence value can be 

determined proportionally, according to Cosine and Gamma applications. 

 

ρi
p

= wa(i) 

 

By combining the direction and persistence algorithms, Equation 2.11 is obtained to 

determine the sensitivity. ρi, the sensitivity value in the i direction; ρi
fd, flow direction 

algorithm according to flow rate; ρi
p
, persistence flow rate; ρ0, represents the sensitivity 

value of the predetermined central cell (Horton et al., 2013). 

 

ρi =
ρi

fdρi
p

∑ ρj
fd8

j=1 ρj
p ρ0 

 

SFLM is characterized by the minimum angle of motion relative to the maximum possible 

propagation pattern. It should be emphasized that the minimum angle applied here is used 

(2.10) 

(2.11) 
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in many studies as "reach angle" or "fahrböschung angle" used in the literature. Horton et 

al. (2013) approach adopts a principle using energy-based flow direction algorithms. The 

debris flow is experimentally calculated starting from the predefined source cells derived 

from the DEM. In addition, while making propagation distance evaluations; flow mass is 

accepted as a unit value and energy loss is entirely due to friction (Horton et al., 2013; 

Paudel, 2019). While the flow analysis takes place at the cell level, it is checked whether 

the flow can reach other cells (Horton et al., 2013). The energy required for the flow to 

go from one cell to another must be adequate. While the equation created by considering 

the energy between the cells is expressed in Equation 2.12, the explanations of the 

elements included in the equation are shown in Table 2.4. 

 

Ekin
i = Ekin

0 + ∆Epot
i − Ef

i 

 

The angle applied here is the angle of the line connecting the source area or possible 

failure initiations to the farthest point reached by the debris flow or shallow landside 

(Figure 2.1) (Horton et al., 2013). As can be seen in Equation 2.13, a small angle of 

motion will reach a greater spread. Table 2.4 accounts for the elements of Equation 2.13. 

 

Ef
i = gΔx tanφ 

 

Considering the energy units, the unit of the gravitational acceleration (m/s2) will be the 

unit of the operation (m2/s2), considering that the horizontal displacement increment unit 

is “m”. This unit is known as the joule. In order to determine the maximum runout 

distance, minimum travel angle and maximum speed can be selected. Field observations 

about the travel angles which are obtained from past landslides allow researchers to 

prepare data in order to reach more real conditions for study area. The velocity equation 

(Equation 2.14) is constructed in order to avoid the consequences of improbable 

propagation distances caused by unrealistic amounts of energy during propagation. 

According to equation, ∆h is the height difference between the center cell and the cell in 

the i direction; V0, initial speed; Vmax, indicates the maximum speed limit (Horton et al., 

2013). 

 

(2.12) 

(2.13) 
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Vi = min {√V0
2 + 2g∆h − 2g∆x tanφ, Vmax} 

 

In addition to the SFLM, similar Perla model algorithms are also used to evaluate the 

friction loss (Horton et al., 2013). It has been stated that both models can reach the same 

spread areas with similar parameter selections (Jaboyedoff, Rudaz and Horton, 2011; 

Horton et al., 2013). The velocity reached at the end of the motion in the i direction is 

represented by Vi, together with the Perla nonlinear friction law-based equation of motion 

(Horton et al., 2013). This equation is shown in Equation 2.15. Equations 2.16 and 2.17 

show how the elements of equations in Equation 2.14 are obtained.  

 

Vi = (aiω(1 − ebi) + V0
2 + ebi)

1
2 

 

ai = g(sinβi − μcosβi) 

 

bi =
−2Li

ω
 

 

 

“ω” represents (mass/friction). While the unit of friction is Newton (kgm/s2), mass is 

expressed in kg. In this case, the unit ω is (s2/m). Friction parameter is shown with μ. 

While the parameter Li indicates the length of the segment, its unit is (m). In this situation 

the unit of the parameter shown with is m2/s2. βi is also included in the equation as the 

angle of inclination (Horton et al., 2013). Initial speed is denoted by V0, while g denotes 

gravitational acceleration (Horton et al., 2013). In the study of Polat and Erik (2020), µ 

and w were chosen as 0.02 and 200, respectively. The descriptions of the equation 

elements used in the equations are elaborated in Table 2.4.  

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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Table 2.4. Explanations of the symbols in the equations (Horton et al., 2013). 

Symbol Explanation 

𝐭𝐚𝐧𝛃𝐢 Slope gradient between cell and the cell in the i direction 

𝐭𝐚𝐧𝛃𝒋 Slope gradient between cell and the cell in the j direction 

𝛒𝐢 Susceptibility value in direction i 

𝛒𝟎 Previously determined susceptibility value of the central cell 

𝛒𝐢
𝐩
 Flow proportion in direction (i) according to the persistence 

𝛒𝐣
𝐩
 Flow proportion in direction (j) according to the persistence 

𝛒𝐢
𝐟𝐝 Susceptibility proportion in direction i 

𝛒𝐣
𝐟𝐝 Susceptibility proportion in direction j 

i Direction 

j Direction 

𝐄𝐤𝐢𝐧
𝐢  Kinetic energy of the cell in direction i 

𝐄𝐤𝐢𝐧
𝟎  Kinetic energy of the central cell 

∆𝐄𝐩𝐨𝐭
𝐢  Change in potential energy to the cell in direction i 

𝐄𝐟
𝐢 Energy lost in friction to the cell in direction  

𝐠 Acceleration because of gravity 

𝚫𝐱 Increment of horizontal displacement 

𝐭𝐚𝐧𝛗 Gradient of the energy line 

𝚫𝐡 Elevation difference in between the central cell and the cell in direction i 

ω Mass to friction 

Li Length of the segment 

𝐕𝟎 Initial velocity 

𝐕𝐦𝐚𝐱 Maximum velocity 

𝐕𝐢 End of the motion velocity 
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 Climate Change Scenarios 

In this section, the relationship between climate change scenarios and landslides will 

primarily be investigated. Gariano and Guzetti (2016) stated in the special report 

published by the Intergovernmental Panel on Climate Change (IPCC) that the change in 

heavy rainfall due to climate change will affect landslides in some regions. Stoffel, Tiranti 

and Huggel (2014) claimed that the formation and size of mass movements will also 

change along with changes in temperature and precipitation. Jakob and Owen (2021) 

pointed out that extreme precipitation events might trigger frequency of landslides 

according to IPCC (2020) climate model. Jakob and Lambert (2009) underlined that 

shallow landslides and debris flow will be affected by climate change in terms of 

occurring frequency. In fact, in the study of Jakob and Lambert (2009) despite debris flow 

frequency will increase averagely about 10% at the late century, approximately 30% 

increase of number of debris flow will also be possible in some region at the late century. 

Utilizing RCP scenarios is an important advancement to further investigate the 

relationship between climate change and landslides (Wang et al., 2024). 

 

IPCC’s Fifth Assessment Report (AR5) scenarios give an opportunity to analyse climate 

change effects in the literature. It should be remembered that RCPs represent climate 

change scenarios based on greenhouse gas emissions integrated by the IPCC (Demircan, 

2017). RCPs are RCP 2.6/3.0, RCP 4.5, RCP 6.0 and RCP 8.5. RCP 2.6 is determined as 

low, RCP 4.5 medium-low, RCP 6.0 medium-high, RCP 8.5 high (Moss et al., 2008). The 

expected future CO2 limits for each model is a very important criterion when evaluating 

model scenarios. ~1370 ppm, ~850 ppm, ~650 ppm and ~490 ppm will be CO2 

concentrations for RCP 8.5, RCP 6.0, RCP 4.5. and RCP 3/2.6 scenarios in 2100, 

respectively (Moss et al., 2008). While the worst scenario expected to happen can be 

evaluated as RCP 8.5, the more moderate RCP 4.5 scenario stands out as a viable scenario 

in studies. In this study, it is also planned to continue studies for precipitation data of RCP 

4.5 and RCP 8.5 climate scenarios.  

 

Climate scenario simulations by using climate model such as Climate Model 

Intercomparison Project (CMIP5) and the Community Climate System Model (CCSM4) 

enable to explore the variations in precipitation. RCP 4.5 and RCP 8.5 scenarios are also 
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generally preferred scenario to scrutinize the relationships between climate and landslide 

(Bernardie et al., 2021; Jemec Auflič et al., 2023; Volpe et al., 2023). The landslide 

susceptibility was also prepared by considering RCP 4.5 and RCP 8.5 rainfall scenarios 

in some studies. For instance, Park and Lee (2021), Yunus et al. (2021), Wijaya et al. 

(2021), Ageenko et al. (2022), Araújo et al. (2022), Nefros et al. (2023), Pham et al. 

(2022) and Chen et al. (2023) prepare landslide susceptibility maps in order to closely 

examine climate change impact by using RCP 4.5 and 8.5 scenarios. Random forest (RF) 

was used a supervised machine learning method to prepare the landslides susceptibility 

in the studies of Park and Lee (2021), Yunus et al. (2021), Ageenko et al. (2022) and 

Janizadeh et al. (2023). In addition, when Park and Lee (2021) and Ageenko et al. (2022) 

compared machine learning method in order to prepare the landslide susceptibility map 

including RCP scenarios, they find that RF is the best alternative supervised method in 

terms of high accuracy. Mohamed-Yusof et al. (2024) also used SVM for preparation the 

landslide susceptibility map of the by reckoning with RCP 4.5 and RCP 8.5 scenarios. 

Furthermore, Chen et al. (2023) used RCP 4.5 and 8.5 scenarios in the landslides hazard 

predictions. Kim et al. (2015) claimed that potential landslides hazards will increase if 

RCP 4.5 and 8.5 scenarios are considered. Peres and Cancelliere (2018) predicted a 

decrease in the probability of triggering future landslides using Monte Carlo simulations 

for RCP 4.5 and 8.5 scenarios because of reducing of precipitation duration and depth. 

With the inclusion of the precipitation effect of climate change scenarios in this study, an 

important step will be taken in order to make a detailed hazard assessment of shallow 

landslides. Climate change scenarios are critical in order to evaluate effects of the trends 

of varying precipitation in terms of analysing landslide runout behaviour impacts within 

the scope of this thesis.  

 

As can been seen from previous sentences, the relation of the RCP 4.5 and RCP 8.5 

precipitation scenarios and landslides occurrence are debatable topic in researchers. It 

should be dwelled on shallow landslides occurrence under future RCP 4.5 and 8.5 

precipitation scenarios trends for effective hazard analysis. In spite of searching of 

relation between RCP scenarios and landslide occurrence has been studied, it has not yet 

combined with the investigation of landslide runout behaviour. It is necessary to correlate 

RCP scenarios with precipitation data and the existing precipitation data in the region by 

downscaling in order to establish a relationship with climate change. In other words, 
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downscaling is necessary to predict mix conditions which are local climate condition and 

global climate condition. According to the literature, researchers use dynamic and 

statistical scale downscaling methods to conduct a more detailed and realistic study of the 

region they work in. Considering that both methods have advantages and limitations, the 

method to be used should be painstakingly selected according to the research content and 

scope. Statistical downscaling is generally useful downscaling methods for climate 

change studies because of their low cost (Tzabiras, Loukas, and Vasiliades, 2016). 

Tzabiras, Loukas, and Vasiliades (2016) also state that statistical downscaling considers 

the empirical quantitative relationships between the global–scale climate variable and 

local-scale climate variable. While local-scale climate variables accepted as predictands, 

global–scale climate variable accepted as predictors. Tzabiras et al. (2016) mention that 

dynamical downscaling is mainly focused on preparing comprehensive regional climate 

model. Demircan et al. (2017) evaluated the future precipitations trend for 2016-2099 by 

using a local climate model (RegCM4.3.4) depends on dynamical downscaling. The 

model outputs show that precipitation amounts will generally decline in Türkiye 

(Demircan et al., 2017). However, Gumus et al. (2023) claimed that although a decreasing 

trend in annual total precipitation for 30-year periods has been observed, an increase in 

maximum precipitation is anticipated in the Black Sea region with respect to their 

analyses.  
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3. CHARACTERIZATION OF THE STUDY AREA 

 

To provide a characterize the study area, at least six fundamental issues should be 

addressed properly: (i) Location, (ii) Geology, (iii) Seismicity, (iv) Land use and 

vegetation, (v) Climate and precipitation, and (vi) Division of sub-basins and their 

geomorphological characteristics.  

 

 Location 

Eocene flysch facies which are situated at the Western Black Sea Region between 

latitudes 41° 1'7.54"to 41°40'0.94" North, and longitudes 31°38'58.05"to 32°29'55.30" 

East in Türkiye (Figure 3.1). Indeed, this formation is located on between two cities which 

are Zonguldak and Bartın. 

 

 

Figure 3.1. Location map of the study area: The boundary of Eocene flysch facies was 

modified after Akbas et al. (2011) and Duman et al. (2005a). 
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The Eocene flysch facies has an area of about 877 km2, the terrain is generally low in the 

northeast and high in the southwest (Figure 3.2). Figure 3.2 shows that the distance 

between the study area east and west parts is approximately 103 km.  

 

 

Figure 3.2. Cross section of the Eocene flysch facies in terms of altitude profile. 

 

Major transportation roads mainly include three main type lines: the state roads, village 

roads and railway road in the study area. The state roads of D755, D010, D750 and D030 

pass through the boundaries of the working area (Figure 3.3). Karabük-Zonguldak 

Railway pass through the Hacılar village, located in the Eocene flysch facies. Railway 

can be examined from the zoomed-in image inside the red square in Figure 3.3. 
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Figure 3.3. Major transportation roads in Eocene flysch facies. 

 

Akgün et al. (2021) stated that Eocene flysch facies formation although their surrounding 

is accepted as a rugged topography, this formation has low topographic values. The 

projection coordinate system is set to: “WGS 1984 UTM Zone 36N”. Topographic 

parameters which are altitude and slope gradient were derived from Digital Elevation 

Model (SRTM DEM data, WGS 1984 UTM zone 36N) in order to collect evidence with 

respect to evaluating the study by using ArcGIS software. It is possible to say that results 

substantiate the real field conditions. The altitudes in Eocene flysch facies increase from 

north to south (Figure 3.4). In fact, altitude is high in the southwestern part with a 

maximum altitude of over 1574 m. Slope gradient is an important parameter in the onset 

of examination of study area in terms of landslide because relationships between slope 

gradient and landslide occurrence are inextricably intertwined. The slope gradient map 

was divided into five classes: 0° –7°, 7° – 12°, 12° – 18°, 18° – 26° and >26° (Figure 3.5). 
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Figure 3.4. The altitude map of the Eocene flysch facies. 

 

 

Figure 3.5. The slope gradient map of the Eocene flysch facies.  
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 Geology 

Study location was determined as according to natural geological borders. This study area 

consists of Eocene-aged clastics and carbonates (Akbaş et al., 2011). Geological map of 

the Eocene flysch facies (Akbaş et al., 2011) which was obtained from MTA Earth science 

portal is given in Figure 3.6.  

 

Figure 3.6. Geological map of Eocene flysch facies and its close surrounding (Modified 

after Akbaş et al., 2011; Duman et al., 2005a). 

Eocene flysch facies are shown as a light pink colour at the centre of the map (Figure 

3.6). Mudstone, claystone, sandstone alternation that shows flysch characteristics. The 

Eocene flysch facies are predominantly of claystone, mudstone and sandstone alternation. 

While sedimentology the upper part of the Eocene flysch facies includes Middle Eocene 

sandstone and claystone alternations (Duman et al., 2005a; Duman et al., 2005b), the 

middle part consists of fine-grained crystal-vitric tuffs (Akgun, Gorum and Nefeslioglu, 
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2021). Lytic tuff, andesitic tuff breccias and volcanoclastic sandstone and siltstones are 

observable in the lower part of the middle part (Akgun, Gorum and Nefeslioglu, 2021). 

In the lowest part of series can be defined as turbidite facies alternates with pebble, 

sandstone, and shale (Akgun, Gorum and Nefeslioglu, 2021). This unit is mentioned in 

studies as the Çaycuma Formation which was named by Tokay (1954). In this region, 

there is a higher likelihood of shallow landslides occurring in sandstone interbeds 

containing shale and mudstone (Duman et al., 1998). Görüm et al. (2019) stated that 

Eocene clastic and carbonate rocks are prone to landslide occurrence. Lithological 

properties can also affect the landslide runout behavior (Zeng et al., 2021). Coarse soils 

are more prone to inducing landslides compared to fine soils (Luino et al., 2022). 

Sandstone and shale are observable lithological unit in the Figure 3.7. Greyish-purple 

limestones are interbedded shales (Figure 3.7). 

 

Figure 3.7. A general view within the boundaries of Eocene flysch facies. 

Figure 3.8 is important in providing information about the geology surrounding Eocene 

flysch facies. As seen from the Figure 3.8a and Figure 3.8b represent the undifferentiated 

Quaternary. The landslide potential of this geological unit is low. Figure 3.8c shows non 

graded volcanics. According to the geological unit, the possible of triggering landslides 

is higher for non graded volcanics than undifferentiated Quaternary. 
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(a)  (b) 

               

 

              

 (c) 

 

     

Figure 3.8. Field photographs taken around the study area: (a,b) Undifferentiated 

Quaternary, (c) Non-graded volcanites. 
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 Seismicity of the Study Area 

Seismicity of the study area and its immediate surrounding should be evaluated in order 

to focus on sensivity of the study area with respect to seismic effect. Active faults 

examination for the study area and its vicinity is also first and critical step in order to 

examine seismicity of the study area. Devrek fault, Yığılca fault, Karabük fault, and North 

Anatolian Fault Zone (NAFZ) segments, which are Gerede, Yeniçağ and Düzce, are 

active faults that should be examined more detailed for study area (Emre et al., 2018). 

Devrek, Yığılca and Karabük faults are shown in purple color of line, whereas other faults 

are shown with red color line in Figure 3.9. While Devrek fault is located in the study 

area boundary, Yığılca fault is very close (approximately 5 km) to study area boundary. 

In addition, it is possible to detect that when compared with other faults, North Anatolian 

Fault Zone (NAFZ) segments and Karabük fault are a little farther to study area. However, 

they are also important faults for study area and should not be neglected their seismic 

effects. Figure 3.9, which clarifies the distribution of active faults location, was obtained 

from AFAD official web-page. Red rectangle represents the approximate position of the 

Eocene flysch facies.  

 

 

Figure 3.9. Active faults (Available online: https://deprem.afad.gov.tr/event-catalog. 

accessed on: 12.12.2023). 
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Devrek Fault, is a Quaternary right lateral strike-slip fault about 29 km length, its possible 

moment magnitude on fault is estimated as Mw=6.79 which is calculated from Wells and 

Coppersmith (1994) empirical approach (Emre et al., 2018).  

 

Yığılca Fault, is a Quaternary reverse fault about 42 km length (Emre et al., 2018). The 

empirical approach proposed by Wells and Coppersmith (1994) suggests the possible 

moment magnitude on fault as Mw=6.98 (Emre et al., 2018).  

 

Karabük Fault is a Quaternary reverse fault about 29 km length, possible moment 

magnitude on fault as Mw=6.80 is estimated by using Wells and Coppersmith (1994) 

empirical approach (Emre et al., 2018).  

 

NAFZ Gerede and Yeniçağ Segments are right lateral strike-slip fault segments about 31 

km and 37 km length, respectively (Emre et al., 2018). Both of them are earthquake 

ruptures (Emre et al., 2018). Wells and Coppersmith (1994) empirical approach estimates 

that both segments’ possible moment magnitude on fault is 7.69 (Emre et al., 2018). 

NAFZ Düzce Segmenti is also right lateral strike-slip fault segments about 40 km length. 

Unlike Gerede and Yeniçağ Segments, its possible moment magnitude on fault is 6.95 

according to Wells and Coppersmith (1994) empirical approach (Emre et al., 2018).  

 

Faults should also be evaluated according to maximum occurrence magnitude in order to 

prepare detailed seismic analyses. Recorded earthquake epicentres which are having a 

radius of 100 km in a circular area were investigated. The study area is very large; 

therefore, approximate centre which is determined according to study area’s start point 

and end point is chosen to evaluate within the 100 km radius area. Earthquake catalog 

data is obtained from Boğaziçi University Kandilli Observatory and Earthquake Research 

Institute Regional Earthquake-Tsunami Monitoring and Evaluation Center 

(http://www.koeri.boun.edu.tr/sismo/zeqdb/). Distribution of earthquakes epicentres 

having magnitude of 4.0 and higher than between years 1900-2023 was shown in Figure 

3.10. The circles shown as earthquake markers in the legend section on the map in Figure 

3.10; while radius sizes represent the earthquake magnitude, different colours show depth 

information. 
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Figure 3.10. Distributions of earthquakes and faults (Available online: 

http://www.koeri.boun.edu.tr/sismo/zeqdb/default.asp. Accessed on: 

12.12.2023). 

Distribution of earthquakes having magnitude of 4.0 and higher than between years 1900-

2023 was evaluated with respect to frequency histogram shown in Figure 3.11.  

Earthquake magnitudes were grouped as 4.0 ≤ xM < 4.5, 4.5 ≤ xM < 5.0, 5.0 ≤xM < 5.5, 

5.5 ≤ xM < 6.0, 6.0 ≤ xM < 6.5, 6.5 ≤ xM < 7.0 and xM ≥ 7.0 in order to determine the 

frequency trend of earthquake for the study area. Figure 3.11 shows that while the number 

of earthquake magnitudes is highest in the range of 4.0 ≤ xM < 4.5, high-risk earthquake 

magnitudes which are xM = 7.0 and above are rare for the study area.  

 

 

Figure 3.11. Frequency histogram of earthquakes magnitude in terms of xM. 
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Table 3.1 represents earthquake magnitude is 5.0 and above in the vicinity of the study 

area. In the region, there are earthquakes occurring during the instrumental period, which 

are considered moderate and high in intensity. The earthquake of 1968, which occurred 

during the instrumental period, is associated with the study area and its immediate 

surroundings. This earthquake led to the loss of 24 lives and resulted in a large number 

of injuries and material damages (İRAP Bartın, 2022).  

 

Table 3.1. Instrumental period earthquakes which were xM>=5.0 (Available online: 

http://www.koeri.boun.edu.tr/sismo/zeqdb/default.asp Accessed on: 

12.12.2023). 

Date Lat.* Long.* Depth (km)  xM  Mw Location 

1999.11.17 40.8 31.46 9      5.0  - Kizilagil- (Bolu) [North West 5.9 Km] 

1999.11.12 40.75 31.36 10      5.0  - Yesiltepe-Kaynasli (Duzce) [North West 2.0 Km] 

1999.11.12 40.75 31.45 10      5.2  - Elmalik- (Bolu) [North 2.2 Km] 

1999.11.12 40.75 31.4 10      5.2  - Dariyeribakacak-Kaynasli (Duzce) [East 1.2 Km] 

1968.09.03 41.81 32.39 5      6.5  6.0 Amasra (Bartin) [North 7.0 Km] 

1957.05.26 41.42 31.09 10      5.2  5.2 Akçakoca Açiklari-Düzce (Karadeniz) 

1953.09.07 41.09 33.01 40      6.0  6.0 Soganli-Ovacik (Karabük) [South West 1.9 Km] 

1951.08.14 41.08 33.18 40      5.2  5.2 Cerciler-Arac (Kastamonu) [South West 1.6 Km] 

1951.08.13 40.88 32.87 10      6.9  6.6 Kuzoren-Cerkes (Çankiri) [South East 2.8 Km] 

1949.05.13 40.94 32.71 20      5.3  5.3 Incebogaz-Eskipazar (Karabük) [West 0.3 Km] 

1947.12.19 40.71 32.82 10      5.2  5.2 Kisac-Cerkes (Çankiri) [South West 0.6 Km] 

1945.03.08 41.85 32.44 10      5.3  5.3 Akkonak-Amasra (Bartin) [North West 8.4 Km] 

1944.02.10 41 32.3 10      5.5  5.5 Ilyaslar-Mengen (Bolu) [North 4.1 Km] 

1944.02.02 40.74 31.44 40      5.3  5.3 Elmalik- (Bolu) [North West 1.4 Km] 

1944.02.01 41.4 32.7 10      5.5  5.5 Incecay-Safranbolu (Karabük) [North West 2.5 Km] 

1944.02.01 40.7871 31.8723 10      7.2  6.8 Ulumescit-(Bolu) 

1940.02.01 41 33 30      5.2  5.2 Erkec-Ovacik (Karabük) [North West 0.9 Km] 

1919.06.09 41.16 33.2 10      5.8  5.8 Okcular-Arac (Kastamonu) [South East 1.3 Km] 

*Latitude: Lat. and Longitude: Long. 

http://www.koeri.boun.edu.tr/sismo/zeqdb/default.asp
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When studies on landslides triggered by earthquakes are examined in the literature, it is 

observed that landslides are triggered by earthquakes of various magnitudes. For instance, 

many shallow landslides were triggered after twins 2023 Kahramanmaraş earthquakes in 

Türkiye (Mw = 7.7 Pazarcık and Mw = 7.6 Elbistan) (Cetinkaya et al., 2023; Gokceoglu, 

2023; Görüm et al., 2023; Karakas et al., 2024). Earthquake magnitudes such as Mw = 

6.8 and Mw = 7.8 (Chen et al., 2020b), Mw = 6.6 (Yunus et al., 2023), Mw = 7.1 

(Salinas‑Jasso et al., 2023), Mw = 7.2 (Havenith et al., 2022) and Mw = 7.9 (Fan et al., 

2023) led to shallow landslide occurrence in different studies. Plenty of shallow landslides 

triggered by the earthquake with a magnitude of 7.4 that occurred in Taiwan have been 

recorded (Milliyet Daily Newspaper, 2024). Martino et al. (2022) studied on shallow 

landslides which were triggered with 5.1 magnitude in their study area. This is why 

earthquakes with a magnitude of 5 or greater are shown in the Table 3.1. However, it 

should be noted that even an earthquake magnitude such as 4 has the potential to trigger 

a shallow landslide, if the saturation is high. “AFAD Earthquake Hazard Map of Türkiye 

Interactive Web Application” enables to examine Peak Ground Acceleration (PGA) 

values in the study area (Figure 3.12). The location latitude’ and longitude’ data need to 

be entered into the web application to investigate the PGA.  

 

 

Figure 3.12. The representation of finding PGA values from AFAD Earthquake Hazard 

Map of Türkiye Interactive Web Application. 
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Random 15 points were selected to investigate seismic effect of the study area with 

respect to PGA values (Table 3.2). While random points were selected, it was also 

considered such as an active fault vicinity. As can been seen from Figure 3.13, SW part 

of study area PGA values are higher because of the effects of the active faults. While 

observed maximum PGA value is 0.316, the minimum PGA value is 0.213. PGA values 

enable to predict landslide prone regions (Tanyaş and Lombardo, 2019). In the study of 

Moses (2017); despite PGA ≥ 0.3g was the threshold of the occurring of earthquake 

induced landslides, one landslide was detected where PGA ≤ 0.3g. In addition, 0.05g is 

also considered as the minimum PGA value in order to cause landslide (Tanyaş and 

Lombardo, 2019). However, it should be investigated on majorly occurring of landslide 

events occurred area by considering threshold PGA value (Tanyaş and Lombardo, 2019). 

0.15 g and 0.12 g are the thresholds PGA in the studies of Mark et al. (2017) and Tanyaş 

and Lombardo (2019), respectively. Shallow landslides occurred in regions where PGA 

exceeds 0.2 g in the study of Shao, Ma and Xu (2023). Therefore, if PGA values are 

scrutinized, it is possible to be evaluated that the study area may also be prone to 

earthquake-induced landslides. 

 

Figure 3.13. 15 randomly selected points distributions and their PGA values, which were 

obtained from AFAD Earthquake Hazard Map of Türkiye Interactive Web 

Application in Eocene flysch facies. 
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Table 3.2. 15 randomly selected points latitudes/longitude and their PGA values, which 

were obtained from AFAD Earthquake Hazard Map of Türkiye Interactive 

Web Application in Eocene flysch facies. 

Point 

Number 

Latitude Longitude PGA (g) 

1 41.018885 31.649578 0.316 

2 41.060637 31.685046 0.308 

3 41.143763 31.799420 0.278 

4 41.140144 31.931400 0.256 

5 41.223889 31.929284 0.239 

6 41.271231 31.840603 0.244 

7 41.306647 32.177211 0.216 

8 41.413776 32.025174 0.213 

9 41.406174 32.232817 0.213 

10 41.404981 32.284933 0.278 

11 41.531070 32.226452 0.217 

12 41.580017 32.133591 0.221 

13 41.498367 32.360219 0.218 

14 41.608116 32.406128 0.223 

15 41.666896 32.498657 0.224 

  

 

 Land Use and Vegetation 

The key to preparation of realistic site characterization is to the more detailed research 

about land use and vegetation. Spatial distribution of land-use changes should have been 

examined in that are influencing to interpret the occurrence of rainfall-triggered 

landslides. In the study of Asada and Minagawa (2023), grasslands and shrubs forest have 

higher probability of shallow landslides than coniferous forest, broadleaf forests and 

broadleaf secondary forests. Jiang et al. (2023) stated that broad-leaved forest, coniferous 

forest, shrub, meadow, grassland, and alpine vegetation are prone to occurring of shallow 
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landslides. While land use promises better susceptibility analyses, they are also the 

subject of many concerns because they are evaluated as dynamic factors which are easily 

affected by human activities. Corine Land Cover 2018- 100-meter GeoTiff raster file was 

downloaded in order used to examine land use of the study area. The current CLC 2018 

version is v.2020_20u1 promises information about the detail study area land use (Figure 

3.14). Information obtained from Corine Land Cover (2018) data indicate that complex 

cultivation patterns, non-irrigated arable land, broad-leaved forests, land principally 

occupied by agriculture with significant areas of natural vegetation and mixed forests are 

dominant in the study area (Figure 3.14).  

 

 

Figure 3.14. The land use map of the Eocene flysch facies (Corine Land Cover, 2018). 

 

The chart below (Figure 3.15) shows that the proportion of main land cover in Eocene 

flysch facies. The pie chart elucidates that Eocene flysch facies have been dominantly 

covered by six distinct type of land cover. Forest vegetation and agriculture land are 

observable in the study area (İRAP Bartın, 2022; İRAP Zonguldak, 2021). 
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Figure 3.15. Graphical distribution of the land cover of the Eocene flysch facies (Corine 

Land Cover, 2018). 

 

  Climate and Precipitation 

Eocene flysch facies, located in the Western Black Sea region, has been examined 

according to climate and precipitation in this part of the dissertation. Since the majority 

of the Eocene flysch facies are within the boundaries of Bartın and Zonguldak provinces, 

climate and precipitation assessments related to Bartın and Zonguldak provinces have 

been taken into account in this research.   

 

First of all, Zonguldak and Bartın are influenced by the temperate Black Sea climate 

(İRAP Bartın, 2022; İRAP Zonguldak, 2021). Zonguldak, where every season is rainy 

and mild, does not experience a dry season (İRAP Zonguldak, 2021). The summers are 

cool, and the winters are mild and rainy in Bartın (İRAP Bartın, 2022). Bartın and 

Zonguldak were also evaluated in terms of Köppen climate classification. While 

Zonguldak is chrazterized by “Cfa”, Bartın is represented by “Cfb” according to Köppen 

climate classification (Turkish State Meteorological Service, 2016). It should be 

remembered that “C” warm temperature; “f” fully humid; “a” hot summer; “b” warm 

summer (Kottek et al., 2006). Cfa is characterized that while summer is very hot, climate 

is warm in winter. Cfa also indicates that climate is also rainy for all season. Unlike Cfa, 

Cfb is charazterized that climate is warm for both winter and summer. Climate is rainy 

for all season in both characterizations.  

 

Secondly, precipitation trend was also scrutinized for both cities. Rainfall characteristic 

may give an inclue of the occurrence of landslides. Table 3.3, which was obtained from 
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Turkish Meteorological Service online portal, shows the historical precipitation and 

temperature for Zonguldak and Bartın cities. Figure 3.16 is the graphical representation 

of the information in Table 3.3 in terms of average precipitation and temperature values. 

The most rainfall is observed during the autumn and winter seasons for both cities. 

Rainfall increases from south to north within the Zonguldak province (İRAP Zonguldak, 

2021). 

 

Table 3.3. Monthly mean precipitation and temperatures for Zonguldak (1939-2022) and 

Bartın (1961-2022) (Turkish Meteorological Service, 2022). 

ZONGULDAK           

( 1939 - 2022) 
1 2 3 4 5 6 7 8 9 10 11 12 

Average 

Temperature 

(°C) 

6.2 6.3 7.5 11.2 15.4 19.6 21.9 22 18.9 15.3 11.9 8.5 

Average Max. 

Temperature 

(°C) 

9.2 9.6 10.9 14.8 18.9 23.1 25.2 25.4 22.5 18.7 15.3 11.6 

Average Min. 

Temperature 

(°C) 

3.5 3.5 4.6 8 12.2 16 18.1 18.3 15.4 12.3 8.9 5.7 

Average of 

Monthly Total 

Precipitation 

(mm) 

140.4 99.4 98.1 64.4 54.7 74.6 68.9 83.2 103.4 145.3 139.4 153.8 

BARTIN             

(1961 - 2022) 
1 2 3 4 5 6 7 8 9 10 11 12 

Average 

Temperature 

(°C) 

4 4.9 7.2 11.4 15.9 19.8 22 21.9 18 13.8 9.2 5.9 

Average Max. 

Temperature 

(°C) 

9.3 10.7 13.4 18.1 22.4 26.2 28.3 28.5 25.2 20.7 16.1 11.3 

Average Min. 

Temperature 

(°C) 

0.4 0.7 2.5 6.0 10 13.6 15.8 15.7 12.2 8.9 4.6 2.1 

Average of 

Monthly Total 

Precipitation 

(mm) 

120.9 86.6 79.0 58.6 54.5 76.0 62.2 76.1 86.3 108.3 112.6 132.0 
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Figure 3.16. Monthly mean precipitation and temperatures for Zonguldak (1939-2022) 

and Bartın (1961-2022) (Turkish Meteorological Service, 2022). 

 

Climate change may induce sudden shifts in regional weather patterns. It is necessary to 

examine the sudden shift with respect to rainfall data in order to fulfil needs of the future 

landslide’s researches. In fact, with changing climate conditions effects continuing to 

emerge across the world, extreme rains which to cause landslides disasters also increase 

number of the potential flow regions.  Loeche et al. (2022) state that if the slope gradient 

value is between 10º and 20º and the annual rainfall exceeds 800 mm, the probability of 

triggering a landslide is high for their study area where in a location close to the study 

area. There is also an assessment available in the literature for the vicinity of the region 

in terms of landslide and rainfall relationships. Taskiran, Alli and Yilmaz (2023) claimed 

that landslides may occurrence when the rainfall intensity is about less than 10 mm/h 

continues for such as at least 0.85 h for Bartin/Ulus in dry periods. In contrast, in wet 

periods, if rainfall continue 0.36 h, rainfall intensity can be much higher that 1 mm/h 

(Taskiran, Alli and Yilmaz, 2023). The analysis of the significant amount of rainfall 

observed in the last 5 years in cities Bartın and Zonguldak, as well as the rainfall data 

from other meteorological stations within the study area boundaries, has been examined 

from Table 3.4. In Table 3.4, the data up to 2022 were obtained from the Turkish State 

Meteorological Service Daily Historical Precipitation, while the rainfall data for the year 

2023 were obtained from Turkish State Meteorological Service Daily Total Precipitation 

(mm) which can be daily monitored from the online portal. The median and mean value 
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of extreme precipitations for last 5 years presented in Table 3.4 are about 87 and 93 mm, 

respectively. Table 3.4 also clarifies that researchers have been observed records extreme 

rainfalls during seasons of summer for two years in this area. The rainfall data analysis 

showed that the maximum monthly rainfall occurs in June, July, August and September 

which coincides with the landslide occurrence in this area.  

 

Table 3.4. Historical extreme precipitations observations at meteorological stations from 

recorded data (Turkish Meteorological Service). 

Date Station  Daily Precipitation (mm)  

24.06.2018 Bartın, Merkez, Bartın 81 

22.08.2019 Zonguldak, Merkez, Zonguldak 89 

08.07.2020 Zonguldak, Merkez, Zonguldak 77 

13.08.2021 Zonguldak, Merkez, Zonguldak/Beycuma 126 

13.08.2021 Zonguldak, Devrek, Devrek 76 

25.06.2022 Bartın, Merkez, Bartın 89 

27.06.2022 Bartın, Merkez, Bartın 80 

28.06.2022 Zonguldak, Devrek, Devrek/AcısuTepesi Radar Sahası 142 

28.06.2022 Zonguldak, Merkez, Zonguldak 89 

28.06.2022 Zonguldak, Gökçebey 94 

20.06.2023 Zonguldak, Çaycuma, Çaycuma 89 

09.07.2023 Zonguldak, Devrek, Devrek/AcısuTepesi Radar Sahası 85 

09.07.2023 Zonguldak, Gökçebey, Gökçebey 71 

09.07.2023 Zonguldak, Merkez, Zonguldak 75 

09.07.2023 Zonguldak, Merkez, Zonguldak/Beycuma 115 

09.07.2023 Zonguldak, Çaycuma, Çaycuma 82 

10.07.2023 Bartın, Merkez, Bartın 85 

10.07.2023 Zonguldak, Merkez, Zonguldak/Beycuma 89 

10.07.2023 Zonguldak, Çaycuma, Çaycuma 99 

10.07.2023 Zonguldak, Gökçebey 112 

10.07.2023 Zonguldak, Devrek, Devrek 94 

10.07.2023 Zonguldak, Devrek, Devrek/AcısuTepesi Radar Sahası 152 

10.07.2023 Zonguldak, Devrek, Devrek/Eğerci Beldesi 85 

04.09.2023 Zonguldak, Gökçebey 71 

04.10.2023 Zonguldak, Merkez, Zonguldak 79 

19.11.2023 Zonguldak, Merkez, Zonguldak/Beycuma 80 

19.11.2023 Zonguldak, Çaycuma, Çaycuma 76 

19.11.2023 Zonguldak, Merkez, Zonguldak 111 
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The planned start year in the climate change analyses for the future step of the study is 

chosen as 2025. The year determined for the time period of 30 years ago is 1995. 

Distributions of days with or without precipitation in the 1995-2022 period at the 

meterological stations were shown in Figure 3.17 for both cities. It has been noticed that 

the ratio of rainy days in the evaluations made for the two cities is similar according to 

the determined time period. 

 

 

Figure 3.17. Examination of precipitation days percentages for both cities in the 

timeframe of 1995-2022 (Turkish Meteorological Service Historical Data). 

 

The reason for using data from stations Zonguldak and Bartın is that these two stations 

have long-term historical data available for this area. Most of the stations shown in Table 

3.4 do not have long-term historical data. The map showing the locations of Zonguldak 

and Bartın stations, which will be used in the following analyses, is presented in Figure 

3.18.  
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Figure 3.18. Locations of the meteorological stations. 

 

CCSM4 which is obtained from NCAR provide available both monthly and annual RCP 

scenarios precipitation data which are for two stations. Data is accessible on the website 

of “https://gis.ucar.edu/inspector”. It is necessary to characterize future climatic 

disposition with respect to RCP 4.5 and 8.5 precipitations over Eocene flysch facies in 

order to determine possible failure initiations. It is obvious that future precipitation data 

is uncertain, nevertheless, it is possible that uncertainties is explained by evaluating the 

RCP scenarios median precipitation values in this study scope. Mean seasonal rainfall 

was also used for projected rainfall analysis in the study of Ferrer et al. (2022).  

 

The study periods are organized to cover a 20-year time span for following steps. The 

division of the time period covers over 19 or 20 years: from 2025 to 2044, from 2044 to 

2063, from 2063 to 2082 and from 2082 to 2100 in this study. Table 3.5 shows the median 

trend of the RCP 4.5 and 8.5 precipitations for determined time ranges in terms of both 

annual and monthly. These data are critical because they will be used in the interpolation 

of the future precipitation within the scope of this study. 
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Table 3.5. Median precipitation for determined time frame (NCAR). 

MEDIAN PRECIPITATION (mm) 

Period Scenario Time Location 

Bartın Zonguldak 

2025-2044 

 

 

4.5 

4.5 

Month 55 91 

Year 650 996 

8.5 

8.5 

Month 55 85 

Year 658 991 

2044-2063 

4.5 

4.5 

 

Month 53 88 

Year 657 980 

8.5 

8.5 

Month 51 83 

Year 620 935 

2063-2082 

4.5 

4.5 

Month 53 85 

Year 647 984 

8.5 

8.5 

Month 52 79 

Year 631 928 

2082-2100 

4.5 

4.5 

Month 54 85 

Year 642 983 

8.5 

8.5 

Month 50 75 

Year 611 906 

 

 

The selection of an appropriate interpolation technique is important in the study. This 

obtained data will used in the prediction of shallow landslides initiations. They might 

show a spatially heterogeneous distribution. Inverse Distance Weighted (IDW)  

interpolation was used to analyse general precipitation trends because IDW interpolation 

proves more effective in a heterogenous environment (Sun et al., 2019). IDW stands out 

as the preferred method when compared to MA and Kriging, thanks to its efficient 
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processing time and satisfactory precision (Maleika, 2020). The spatial distributions of 

RCP scenarios rainfalls applied in studies of Mohamed Yusof et al. (2024) and Nasidi et 

al. (2021) by using IDW. They are clear example studies by previous literature. It is 

critical to make correct choice of reference precipitation dataset with respect to 

determining whether precipitation from monthly or annual should be used. Taking into 

account necessary of  analysing daily precipitation data, using the precipitation data from 

mothly scenarios will be closer to reality compared to data obtained from annual 

precipitation in this study. Rainfall maximum maps are interpolated using IDW methods 

for the study area in this study. The study area receives a monthly median precipitations 

(mm) are shown in Figure 3.19 and Figure 3.20, which display the spatial distribution of 

RCP 4.5 and 8.5 scenarios precipitation values by using IDW method interpolation in 

terms of determined time range.  

 

Figure 3.19. RCP 4.5 projected precipitations, which were prepared in accordance with 

IDW interpolation, for specific time intervals: (a) 2025-2044, (b) 2044-2063, 

(c) 2063-2082 and (d) 2082-2100 (NCAR). 
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Figure 3.20. RCP 8.5 projected precipitations, which were prepared in accordance with 

IDW interpolation, for specific time intervals: (a) 2025-2044, (b) 2044-2063, 

(c) 2063-2082 and (d) 2082-2100 (NCAR). 

 

These analyses are important because possible heavy rainfall threshold value will also 

suggest probable shallow landslide initiations in the study area prone to landslide 

phenomena in the future step of the study. 
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 Division of Sub-basins and Their Geomorphological Characteristics 

Parameter selection in large areas are more difficult. Therefore, the study area was 

separated into three sub-basin by evaluating the watershed in the region (Figure 3.21). 

ArcGIS software with the “Flow Direction” and “Basin” tools were used for this step. 

These tools offer immense satisfaction about identifying ridge lines between basins 

(ESRİ). These ridge lines also enable to see that the flow direction changes at the 

boundaries (ESRİ). An analysis aimed at minimizing the number of basins was 

conducted, and sub-basins were identified based on the criterion of changing flow 

direction. Sub-basins are Egerci basin at the south (269 km2), Beycuma basin in the 

middle (311 km2), Ihsanoglu basin at the north (297 km2) (Komu, Nefeslioglu and 

Gokceoglu, 2024). 

 

 

Figure 3.21. (a) Division of the sub-basins in Eocene flysch facies, (b) Egerci sub-basin, 

(c) Beycuma sub-basin, and (d) Ihsanoglu sub-basin (Komu, Nefeslioglu and 

Gokceoglu, 2024). 
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Table 3.6 gives information about sub-basins in terms of geomorphological 

characteristics. 

 

Table 3.6. Descriptive statistics of the topographic parameters for the three sub-basins 

(Komu, Nefeslioglu and Gokceoglu, 2024). 

Sub-

basin 
Statistics 

A 

(m) 

SG 

(°) 

SA 

(°)  
PLC PRC CI CD TWI SLF 

CNBL 

(m) 

CND 

(m) 

VD 

(m) 
  

Egerci 

Min. 41 0 0 -0.01 -0.01 -92 0 2 0 41 -49 -3  

Max. 1,574 60 6.28 0.01 0.012 96 20 21 38 1,382 449 549  

Mean 444 15 3.25 0 0 0 0 7 5 381 64 236  

Median 425 14 3.04 0 0 0 0 6 4 369 49 229  

Std. 

Deviation 
259 8 1.91 0.002 0.002 8 1 2 3 233 60 133  

Beycuma 

Min. 13 0 0 -0.01 -0.01 
-

100 
0 3 0 13 -27 0  

Max. 658 52 6.28 0.008 0.009 100 19 20 24 444 304 277  

Mean 170 11 3.27 0 0 0 0 7 3 129 41 140  

Median 158 9 3.33 0 0 0 0 7 2 118 32 146  

Std. 

Deviation 
91 6 1.91 0.001 0.001 9 1 2 2 69 38 61  

Ihsanoglu 

Min. 4 0 0 -0.01 -0.02 -98 0 2 0 6 -39 0  

Max. 633 70 6.28 0.017 0.021 92 32 20 30 284 468 339  

Mean 121 11 3.35 0 0 0 0 7 3 79 42 117  

Median 104 10 3.43 0 0 0 0 6 2 69 32 117  

Std. 

Deviation 
71 7 1.83 0.001 0.001 10 1 2 2 43 42 51  

Abbreviations 

Altitude: A, Slope gradient: SG, Slope Aspect: SA, Plan Curvature: PLC, Profile Curvature: 

PRC, Convergence Index: CI, Closed Depression: CD, Topographic Wetness Index: TWI, Slope 

Length Factor: SLF, Channel Network Base Level: CNBL, Channel Network Distance: CND, 

Valley Depth: VD  
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4. SHALLOW LANDSLIDES IN THE STUDY AREA 

 

Eocene flysch facies are consistently influenced by landslide disasters. It is possible to 

detect that loose material is abundant in these regions. Considering the heavy rainfall in 

the area, it not surprises to claim that this formation is a severe disaster zone with respect 

to especially shallow landslides. It may be feasible to observe recurring shallow landslides 

which are caused by heavy rainfall in this region. The main reasons for the high incidence 

of landslides in 1:500,000 scale Zonguldak maps (Duman et al., 2005a) are primarily due 

to climatic characteristics, the widespread exposure of landslide-prone fragmented units 

on the surface, and rugged terrain conditions (Çan et al., 2013). Eocene flysch facies are 

located in the Zonguldak maps boundary with respect to Duman et al. (2005a). The 

landslide occurrence density map prepared by Gokce (2008) indicates that the study area 

is evaluated as having very high landslide density. Görüm (2019) also stated that the 

landslide density is high in Bartın. Akgün et al. (2021) pointed out that slide type 

landslides are generally observed in Eocene flysch formation. It was highlighted in 

previous studied that heavy rainfalls cause flow type landslides in these formation (Can 

et al., 2005; Akgün et al., 2021). Duman et al. (2005a) reported that shallow and deep 

landslides occurred in this formation. Duman et al. (2005a) also pointed out that shallow 

landslides frequently occur on low slope gradient areas lower than 10º in this formation. 

Debris flows are also observable in slide masses and drainage paths. It is important to 

detect them in a short time because wet climatic condition causes disappearance of traces 

(Duman et al., 2005a). The significance of two key research points of this chapter can be 

summarised as: (i) construct the shallow landslide inventory map and (ii) prepare the 

shallow landslide susceptibility map using LR models. 

 

 Shallow Landslide Inventory Map 

It can be noted that a landslide inventory map reveals the history of landslides and provide 

clue about possible preceded landslide areas. Landslide inventory maps are actually a 

practical way of communication to encourage researchers for making a decision about 

landslides and conveying recent information to engineers who study on landslide hazards 

or risks. In other words, inventory maps of landslides are crucial as a fundamental 

infrastructure used in susceptibility and hazard analyses.  
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The landslide inventory was completed with the data obtained from satellite images and 

field observations in many works (Kritos and Davies, 2015; Bera, Melo and Guru, 2021; 

Putra et al., 2022). Google Earth images were also used for shallow landslides inventories 

in the previous studies (Bera, Melo and Guru, 2021; Gaidzik and Ramírez-Herrera, 2021; 

Kasahara, Gonda and Huvaj, 2022; Dias, Dias and Grohmann, 2023; Licata et al., 2023; 

Thein et al., 2023) Although satellite images and Google Earth images have been 

upgraded in recent years in order to detect shallow landslides by peering into the past, it 

is necessary state that some shallow landslides may not be well documented and mostly 

go unnoticed. It is undeniable fact that some details about shallow landslides’ parts such 

as skarn and toe may not be clear from the satellite images. In this study, past occurred 

landslides spatial distributions were detected by using high-resolution Google Earth 

images, which enable to display various historical records of shallow landslides spanning 

different years, and Sentinel 2 images. In order to prepare high quality of the shallow 

landslide inventory, satellite imageries, achieve inventories (MTA), historical event 

reports (AFAD), newspaper, media archives and recent literature (Can et al. 2005; Duman 

et al., 2005a, 2005b; Duman et al., 2011; İRAP Bartın, 2022; İRAP Zonguldak, 2021) 

were also reviewed. Short field observations were also done to identify the study area in 

terms of shallow landslides. The shallow landslides that have occurred in the study area 

generally originating from the geological and geomorphological structure of the region. 

Landslides in Zonguldak province are mainly found in the Çaycuma Formation, which is 

defined by the Eocene age (İRAP Zonguldak, 2021). Landslides have occurred between 

Devrek and Çaycuma, predominantly in the southern parts of the province, with a 

northwest-southeast orientation (İRAP Zonguldak, 2021). It has been observed that the 

majority of landslides in the region occur as flow-type of landslides, especially following 

heavy rainfall events (Figure 4.1). It is observed that landslides in this area tend to occur 

as debris flows. 

 

Landslides occurring were more attributed to meteorological factors rather than seismic 

activity between 1985 and 1998 (İRAP Bartın, 2022). Figure 4.1 shows that shallow 

landslides events triggered by recorded extreme precipitation in May 1998 in the Egerci 

sub-basin. It has been postulated that landslides may venture society in terms of social 

and economic aspects of the community in Eocene flysch facies.  
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Figure 4.1. Some typical triggered shallow landslides view in the study area after May 

1998 rainfall from Google Earth image.  

 

The landslide percentages observed within geological formations and the landslide 

intensities associated with these formations were evaluated using the 1/500,000 scale 

Türkiye Landslide Inventory Maps Special Publication Series (Duman et al., 2005a). It 

can be evaluated that Eocene flysch facies are critical lithology in terms of landslides 

occurrence (Duman et al., 2005a). When the key findings about the lithology and their 

triggerence of shallow landslides was reviewed in the literature, it was inferred from 

previous studies that shallow landslides frequently occur in clay, sandstone and mudstone. 

(Roccati et al., 2019; Roccati et al., 2020; Di Napoli et al., 2021; Guo et al., 2022; Wiaja 

et al., 2022; Falconi et al., 2023; Guo et al., 2023; Wang et al., 2024). This information is 

consistent with the findings about shallow landslides and their lithology of this thesis. 

Shallow landslide occurrence tendency is high in sandstone interbeds with shale and 

mudstone in this region (Duman et al., 1998). Figure 4.2 and Figure 4.3, which were 

obtained in the field, show the tendency of prone to shallow landslide occurrence in the 

study area.   
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Figure 4.2. Some field photographs of tendency of observation of shallow landslides in 

the study area. 

 

 

Figure 4.3. Some field photographs of tendency of observation of shallow landslides in 

the study area. 
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Considering 262 shallow landslides were mapped in order to make strides on their runout 

distances. These shallow landslides are presented with respect to their sub-basins in 

Figure 4.4. 

 

 

Figure 4.4. Shallow landslides inventory distributions in sub-basins. 

The shallow landslide inventory map indicates that shallow landslides are 42.4% in Egerci 

sub-basin, 5.7% in Beycuma sub-basin and 51.9% Ihsanoglu sub-basin (Figure 4.5). More 

than half of the detected shallow landslides (~52%) were detected in Ihsanoglu sub-basin.  

 

Figure 4.5. The percentage distribution data in the entire landslide inventory with respect 

to sub-basins. 
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Investigated shallow landslides were classified based on geometric characteristics such 

as their travel angles, failure depths and observed runout distances. First, the volume and 

area relations proposed by Hovius, Stark and Allen (1997) after Jaboyedoff et al. (2020) 

and semi ellipsoid approach were utilized to decision on the failure depths. Each sub basin 

failure depths were also presented separately. Results indicate that shallow landslides 

failure depths are smaller than 5 m (Zaruba and Mencl, 1969) in Eocene flysch facies. In 

fact, the highest failure depth is observed in the Egerci sub-basin within Eocene flysch 

facies border and its maximum failure depth is 3.2 m. In order to evaluate the study area 

in terms of their geometric attributes, descriptive statistics informations are shown in 

Table 4.1 in terms of the diverged sub-basins. Descriptive statistics might aid in the 

interpretation of historical events in records. Observed median runout distances according 

to sub-basin have been taken into account in the decision of spatial resolution cell in order 

use in further model analyses. 

 

Table 4.1. Descriptive statics for the constructed landslide inventories for the sub-basins. 

 

Sub-

basin 
N Statistics 

Area 

(m2) 

Failure 

depth 

(m) 

Travel 

angle () 

Observed 

runout 

distance 

(m) 

Egerci 111 

Min. 21 0.2 1 7 

Max. 4116 3.2 49 122 

Mean 536 1.0 23 53 

Median 344 0.9 24 47 

Std. 

Deviation 
572 0.5  12 

                 

29  

Beycuma 15 

Min. 23 0.2 4 7 

Max. 1843 2.1 28 83 

Mean 376 0.9 13 36 

Median 258 0.8  13 31  

Std. 

Deviation 
438 0.5  8 20 

Ihsanoglu 136 

Min. 7 0.1 1 5 

Max. 1710  2.1  32 122 

Mean 140 0.5 11 25 

Median 65 0.4 10 17 

Std. 

Deviation 
226 0.3  7 21 
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Figure 4.6 represents the histogram of the landslide inventory in terms of A (m2), D (m), 

L (m) and TA (º) for each sub-basins. 

 

Figure 4.6. Graphical representations of sub-basins in terms of A (m2), D (m), L (m) and 

TA (˚). 
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Figure 4.7 a and Figure 4.7 b represent the trigged shallow landslides after heavy rainfall 

on November 2023. Figure 4.7 offers admittedly compelling proof that shallow landslides 

persist due to excessive rainfall in the area. The field photographs also show the calculated 

runout distances of the movement in Figure 4.7. They were measured as 4 m, 6 m, 7 m, 

10 m and 12 m (Figure 4.7). It can be also admitted that their observed runout distances 

are consistent with Table 4.1. 

 

 

Figure 4.7. Some typical triggered shallow landslides view in the study area: (a-b) after 

November 2023 rainfall from field photographs. 
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4.1.1. Limitation of Landslide Inventory 

Some situations may negatively impact the creation of the landslide inventory. Firstly, it 

is necessary to mention that prepared current landslide inventories by MTA/AFAD/ 

ARAS are not available for public. They can be examined from published existing reports 

(MTA online portal; İRAP Zonguldak, 2021; İRAP Bartın, 2022; Duman, Can and Emre, 

2011). Furthermore, MTA offers researchers to see landslides up to 2005. In fact, 

although this landslide inventory map consists of many past landslides, it does not include 

all the past landslides during the years between 2005 and up to now. In addition, it is very 

difficult to detect some old landslides for especially forest region due to rapid growing of 

the trees. If the shallow landslide initiations are at small depths, the forest grows rapidly 

and causes the tracks to disappear (Andrewwinner and Chandrasekaran, 2021; Koshimizu 

and Uchida, 2023). Lack of high quality of satellite images, or aerial photographs are also 

main restriction of the preparation of detailed landslide inventory. Besides, although some 

of them can be detected in the field, it is critical to consider that their locations may be 

inaccessible because of the forest. Human effects are also not negligible with respect to 

landslide volume or deposition area. Finally, heavy rainfalls might impair the chance of 

finding a new clue in the field from past disasters. 

 

 Shallow Landslide Susceptibility Map 

While researchers describe the number of studies about the runout analyses as rare in the 

literature, they are aware that such analyses might become more widespread day by day. 

Preparation of the landslide susceptibility map is suitable and basic way to acquire runout 

distance of shallow landslide in a runout assessment. There are many ways to prepare 

shallow landslides susceptibility maps. However, it should not be neglected that 

preparation of the landslide susceptibility mapping method changes over time due to 

rapidly improved technology such as artificial intelligence among scientific literature. 

Especially using machine learning in landslides susceptibility analyses has been 

increasingly preferred alternative in recent studies. Therefore, a Python machine learning 

with open-source codes library employed for this research during preparation of shallow 

landslides susceptibility maps. Logistic regression method also enables to study with 

strong forecast in several machine learning research, which are interested in preparation 

of shallow landslides susceptibility maps (Nefeslioglu and Gokceoglu, 2011; Kalantar et 
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al., 2018; Sevgen et al., 2019; Nhu et al., 2020; Xion et al., 2020; Crawford et al., 2021; 

Crawford et al., 2022; Dashbold, Bryson and Crawford, 2022; Nwazelibe, Unigwe and 

Egbueri, 2022; Qiu et al., 2022; Zhang et al., 2022a; Zydroń, Demczuk, and Gruchot, 

2022; Gu et al., 2023; Song et al., 2023; Liu et al., 2024). Flow type of shallow landslide 

susceptibility mapping was prepared using logistic regression in the study of Polykretis 

and Chalkias (2018), Nhu et al. (2020) and Nwazelibe, Unigwe and Egbueri (2022). Since 

study area was chosen considering natural geological boundaries, the geological units 

throughout the Eocene flysch facies are the same. The study of Nwazelibe, Unigwe and 

Egbueri (2022), which shows similarity in terms of landslides occurred in the geological 

unit which is Eocene-aged Ameki-Bende formation, was successfully utilized machine 

learning logistic regression. 

 

In carry out preparation of landslides susceptibility map, it is necessary to reckon with 

wide range of factors. First of all, The Shuttle Radar Topography Mission Digital 

Elevation Model (SRTM DEM) converted to a 25 x 25 m grid cell for following analyses: 

slope gradient and slope aspect, plan and profile curvature, convergence index, closed 

depressions, topographic wetness index (TWI), slope length factor, channel network base 

levels, channel network distance and valley depth (Table 3.3). Their coordinate systems 

are same as WGS 1984 UTM zone 36N. These parameters were obtained in SAGA GIS 

in order to evaluate the geomorphometric features of for separately each sub-basin in 

Eocene flysch facies. Land cover data which is obtained from Corine Land Cover (CLC 

2018). Sentinel-2 imageries were used in Normalized Difference Vegetation Index 

(NDVI) analyses. Band 8 is used as Near Infrared Band (NIR), while band 4 is utilized as 

Red Band (Red) of the Sentinel-2 image in Equation 4.1.  

 

NDVI = (NIR – Red) / (NIR+Red) 

 

Geology is fixed and defined as Eocene flysch facies by Akbas et al. (2011) for each sub-

basin. The prepared landslides inventory was also used in susceptibility analyses. 

Considering to rapid advances in machine learning, it will be expected to prepare more 

detailed susceptibility maps in order to be used in detailed runout analyses. It is necessary 

to remember that Table 3.3, which was shown in previous chapter, represents the 

predisposing factors of the shallow landslide susceptibility map. 

(4.1) 
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Conforti and Ietto (2021) state that slope gradient, TWI, soil texture and lithology were 

acknowledged as being the most significant predisposing factors of the shallow landslide 

susceptibility mapping.  

 

The selection of training and testing data has a significant impact on creating a successful 

shallow landslide susceptibility map (Pawluszek-Filipiak and Borkowski, 2020; Can, 

Kocaman and Gokceoglu; 2021; Ado et al., 2022). 80:20 ratio (Polykretis and Chalkias, 

2018; Karakaş et al., 2020; Xie et al., 2021a; Xie et al., 2021b; Ghasemian et al., 2022 

and Ling et al., 2022) and 70:30 ratio (Nam and Wang, 2020; Wang, Liu and Liu, 2020; 

Akinci, 2022; Zhang et al., 2022a; Zydroń, Demczuk, and Gruchot, 2022; Achu et al., 

2023; Kaya-Topaçli, Ozcan and Gokceoglu, 2024) are frequently used for training and 

test data selection in the previous studies. For instance, 80:20 ratio manifests in previous 

researches that the dataset was also split into training (80%) and testing (20%) subsets 

(Polykretis and Chalkias, 2018; Karakaş et al., 2020; Xie et al., 2021a; Xie et al., 2021b; 

Ghasemian et al., 2022 and Ling et al., 2022). Aktas and San (2019) also attempted to 

develop a landslide susceptibility map using an automatic sampling algorithm by altering 

the ratio of the training and testing. Ado et al. (2022) also tried to find the best ratio by 

changing traning test ratio in the landslide susceptibility analyses. 

 

The division of samples between training and testing sets was established at an 80:20 ratio 

in this study. The training and testing data were underwent using the 'the_train_test_split' 

and 'cross_val_score' functions from the scikit-learn, which is an open-source machine 

learning library for Python (Komu, Nefeslioglu and Gokceoglu, 2024). A a result, shallow 

landslide susceptibility maps were visualized using the ArcGIS 10.8.2 software in this 

study. They were separately crafted by using LR method for the sub-basins are given in 

Egerci (Figure 4.8), Beycuma (Figure 4.9) and Ihsanoglu (Figure 4.10). There are three 

classes in the shallow landslide susceptibility maps. (0-0.4) means that shallow landslide 

susceptibility is low (green color). Moderate (0.4-0.7) probability of shallow landslide 

susceptibility is represented with yellow color. Red color represents the high (0.7-1) 

probability of shallow landslide occurrences on the map. 
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Figure 4.8. Landslide susceptibility maps produced by using LR for Egerci sub-basin. 

 

Figure 4.9. Landslide susceptibility maps produced by using LR for Beycuma sub-basin. 
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Figure 4.10. Landslide susceptibility maps produced by using LR for Ihsanoglu sub-basin.  
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5. RUNOUT ANALYSIS OF SHALLOW LANDSLIDES 

 

The stages of the presented chapter are (i) introduce Flow-R software, (ii) demonstrate 

the measurement of runout distance of shallow landslide, (ii) perform back analyses for 

decision of peak velocity, (iii) examine the effects of changing travel angle for 

understanding of runout distance, (iv) interrogate DEM spatial resolution for the study 

area, and (v) probe of runout maps in terms of detecting shallow landslide initiations, 

evaluating propagation stage and exploring their results. 

 

 Flow-R software 

Runout distances in Eocene flysch facies have not yet been subjected to scientific scrutiny 

in terms of using the empirical modelling up to now. Therefore, an empirical model was 

utilized by employing the Flow-R 1.0.0 software (Figure 5.1) in order to analyse the 

runout distances in Eocene flysch facies. It was carried out the review and execution of 

the Flow-R software algorithms within thesis organization.  

 

 

Figure 5.1. A glimpse of the Flow-R 1.0.0 software interface (Horton et al., 2013). 
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There are many important points that need to be considered by utilizing the Flow-R. First, 

data should be imported to ASCII format to Flow-R. The conversion to ASCII format was 

conducted using the ArcGIS software in this study. In the ASCII format, “−9999” gives 

the information about no data.   

 

Second, it is necessary to arrange that prepared data set resolutions and their coordinate 

systems should be same. While the projection coordinate system was set to: ‘WGS 1984 

UTM Zone 36N’, the spatial resolution was 25 m for all sub-basin. Therefore, all data for 

sub-basins should be converted into same coordinate system and spatial resolution.  

 

Third, source area determination in software interface represents the shallow landslide 

initiations in this study. Although Flow-R enables to automatically detect possible failure 

initiations, it is possible to integrate the user defined failure initiations into Flow-R. It 

should be reminded that pre-defined failure initiations are significant for this study scope. 

 

Finally, spreading algorithm and energy calculation are critical part of the propagation 

stage. Modified Holmgren flow direction algorithm and SFLM were chosen for runout 

distance modelling. Detailed parameter selections for each algorithm are crucial for 

accurate modelling in propagation stage. While “dh” and “x” parameters are used during 

Modified Holmgren flow direction, SFLM is based on travel angle. The parameter of “x” 

provides the opportunity to test about flow direction effects in the runout analyses. dh 

accounts for DEM roughness effects (Horton et al., 2013). It is critical to decide the 

correct reach or travel angle because determination of the suitable travel angle is also 

important to detect the landslide character. Checking the travel angles on the basin, it is 

hard to decide whether they will represent the real conditions of the study area. Flow-R 

1.0.0 software interface enables to make some alterations within numerous parameters 

options immediately. 

 

The previous Flow-R studies propagation parameters differences can also be diverged, as 

tabulated in Table 5.1. Table 5.1, summarizes the state of Flow-R parameters in previous 

studies, mainly aimed at showing the main trend of parameters. Travel angle (º), x, dh 

(m) and Vmax (m/s) have been presented for each research in the Table 5.1. While these 
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data provide a general idea for frequently preferred parameters, this research adheres to 

on-site analyses. Although it will be demonstrated in the following subsequent 

subsections, it is necessary to highlight that obtained parameters align with the parameters 

commonly used in the literature.  

 

Table 5.1. Previous Flow-R studies with propogation parameters. 

Authors x dh (m) TA (º) V (m/s) 

Horton et al. (2013) 4 1 11;7 15 

Park, Lee and Woo (2013) 4 - 13 28 

Pastorello, Michelini and D’Agostino (2017) 0.7;20 1 10;11 20 

Rahman, Ahmed and Di (2017) - - 15 15 

McCoy (2019) 4 2 10 15 

Sturzenegger et al. (2019) 1 2 5 15 

Paudel (2019) 1 to 50 0.25 to 70 1 to 50 1 to 50 

Do, Yin and Guo (2020) 1 1 5 5 

Polat and Erik (2020) 6 1 - - 

Ali et al. (2021) 4 - 12 10 

Bera, Melo and Guru (2021) 4 - 5 13 

Charbel and El Hage Hassan (2021) 6 - 5 - 

Giano, Pescatore and Siervo (2021) 1 1.5 - 8 

Jiang et al. (2021) - - 9 25 

Liu et al. (2022) 4 2 13 44 

Putra et al. (2022) 50;4;20 1;4;1 2;2;5 15;36;40 

Xu et al. (2022) 4 2 11 15 

Sharma et al. (2023) 4 2 11 15 

 

 

As seen from the Table 5.1, the parameter x is generally considered as 4 in the previous 

studies. In contrast to x, it is difficult to say that there is a dominant utilized value for dh. 

The frequency of the usage of values “1” and “2” for dh is almost the same. The values 

of “15” for maximum speed and “11” for travel angle are frequently preferred in past 

studies (Table 5.1). It is note that the model parameters used in previous studies will be 

re-evaluated by comparing them with the parameters determined for this study in the 

subsequent impending sections.  
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 How to Measure of Runout Distances? 

Google Earth images and model results enable to measure and compare the runout 

distances. While Figure 5.2a is obtained from Google Earth images, Figure 5.2b is the 

representation of the modelling of landslide in the Flow-R. Figure 5.2c also represents an 

example measurement of the runout distance of shallow landslide. The shallow landslide 

runout was also measured as 190 meters in Figure 5.2a, whereas Figure 5.2c indicates 

that same landslide runout distance was calculated as 195 meters in the Flow-R model. 

Therefore, measurement data show that model results are suitable to original data. The 

maximum distance probability has been symbolised using a two interval colours, in which 

the pink colours represent those with the low probability of runout extent, whereas the 

cherry red colours are the high probability of runout extent. While low probable cells (0 

- 0.5) mean the maximum distance probability lower than 50%, cherry red colour cells 

(0.5 - 1) accounts for the maximum distance probability higher than 50%. 

 

Figure 5.2. Illustration of the runout distance measurement. 
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 Decision of Velocity Using Back Analyses 

Due to the effect of velocity on runout distances, back analysis should be scrupulously 

completed. A back-analysis was performed by considering actual landslides to predict the 

parameter velocity in this study. To obtain the more detailed information of the landslide 

maximum velocity limit in the study area, the shallow landslides that occurred in May 

1998 were used for testing of the potential exhaustive runout distances. Figure 5.3 

represents an illustration of runout distances for v = 1 m/s, v = 5 m/s, v = 10 m/s, v = 15 

m/s and v = 16 m/s. While Figure 5.3a shows the field appearance of the modeled 

landslide, the same landslide has been modeled using different velocity values to show 

and compare the extent of propagation in Figure 5.3b, 5.3c, 5.3d, 5.3e, and 5.3f. Relation 

between shallow landslide modeled runout distance in Flow-R and max velocity proved 

accurately with R2 of 0.91 (Figure 5.4). 

 

 

Figure 5.3. Illustration of runout distances by modifying velocity. 
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Figure 5.4. Cross correlations of modeled runout distance and velocity. 

 

The observed real runout distance is measured as 190 meters. When Figure 5.4. equation 

is used in order to find model v (m/s), V=15 m/s will be found ideal Vmax for analyses. 

 

Based on the observations of the residents regarding disasters such as landslides that 

occurred in May 1998 in the area, it was determined that a velocity parameter of 15 m/s 

could be considered suitable for the shallow landslides in the Eocene flysch facies. 

 

The examples used for the shallow landslide velocity parameter in the literature have also 

been examined. Literature reviews dwell on that the shallow landslide exhibits a velocity 

profile spanning from 0 m/s to 21 m/s (Marinelli et al., 2022). Velocity peak data is 

marked as approximately 19 m/s for shallow landslides in the study of Marinelli et al. 

(2022). The study of Prochaska et al. (2008) observed debris flow velocities ranging from 

5 to 15 m/s. 8.4 m/s was also detected as the maximum velocity of the shallow landslides 

in the study of Vegliante et al. (2024). Gokceoglu et al. (2005) observed the velocity of 

the rapid landslides as 6 m/s in their study area. The speed was observed as 17.5 due to 

the sandy gravel being subjected to more friction in the study of Yang et al. (2019). 
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 Decision of Travel Angle Effects on Results 

Travel angle is an important parameter of impacting on runout results. Therefore, effects 

of altering the travel angle were investigated to account for the process and the factor of 

influencing it. A smaller travel angle is associated with a more extensive runout distance. 

If the travel angle is determined as smaller than 27 degrees, rainfall-triggered landslides 

tend to demonstrates a relatively high degree of mobility (Panday and Dong, 2021). In 

this study, an evaluation was aimed to be made over selected travel angles in order to 

better understand the effect of travel angle. To illustrate, two specific travel angles, which 

are 24º (Figure 5.5a) and 11º (Figure 5.5b) are independently identified and measured the 

probable runout distances on the hazard of shallow landslides. Figure 5.5 shows that if 

travel angle increases, runout distances will reduce. It is note that while model results are 

obtaining, other parameters are same except for travel angle. Consequently, travel angle 

and runout distance are inversely proportional to each other that when the travel angle 

decrease, the runout distance increases (Zhao, Aman and Kowalski, 2021). 

 

 

Figure 5.5. Travel angle effects on runout distances. 
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 DEM Effects on Runout Distances 

Analyses results show that the resolution is also critical for runout analyses. For an 

accurate representation of the shallow landslide runout distance, the correct spatial 

resolution needs to be employed. It was decided that 25 m spatial resolution can be used 

in the analyses. At this stage of the dissertation, question mark about whether 25 m spatial 

resolution is appropriate or not will be elaborated. A sample analysis has been completed 

for a landslide identified in the study area with resolutions of 25 m and 10 m by using 

Flow-R 1.0.0 (Figure 5.6). 

 

 

Figure 5.6. Comparison of runout distance models with 10 m and 25 m DEM: (a) 10 m 

DEM (b) 25 m DEM (c) field view of shallow landslide. 

 

In this case, it is necessary to remember that the aim was to make predictions for as wide 

areas to the fullest extent possible. Analyses for the prepared landslide prepared inventory 

were applied by classifying the basin with respect to 3 classes in order to check suitability 

of 25 m spatial resolution. When prepared inventory mean and median observed runout 

distances are analysed for Eocene flysh facies, they are 45 and 31 (m). It might be also 
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grasped that mean observed runout distances values of all three sub-basins are also greater 

than or equal to 25 m (Table 4.1). Therefore, it is possible to study with 25 m resolution 

DEM for runout analyses. Nevertheless, Flow-R might not start a flow if runout results 

are less than 20 meters. Therefore, it was proved that runout results may be affected by 

resolution. Furthermore, it was intriguing that it is also possible to detect runout distance 

such as less than 20 meters, if the flow is started to observation for another landslide.  

 

The runout distance models in Figure 5.6 clearly illustrate that if DEM effects are 

analysed by using a spatial distribution of 10 m and 25 m resolution, landslide runout 

distance results will be affected as expressed by the original developer of the software 

Horton et al. (2013). Therefore, it is clear that a 10 m spatial resolution provides a more 

detailed evaluation in terms of possible runout distance in this study. However, 

determining possible shallow landslide initiations is crucial in this research as emphasized 

in earlier sections of the dissertation. Shallow landslide initiations are described as source 

area in the software interface. If source area has more cells, Flow- R may not work for 10 

m resolution. Therefore, analyses have also been conducted for randomly selected 

landslides in smaller areas. Although presented landslides were randomly selected in the 

same sub-basin, it is necessarily emphasized that that their locations are very close to each 

other. Table 5.2 and Table 5.3 compare the randomly selected landslides with respect to 

observed runout distances in the field and modelled by 10 m and 25 m spatial resolutions. 

In addition, the cross relationships between 10 m and 25 m spatial resolutions are a 

prominent part of predicting the power of the models. Therefore, Figure 5.7 and Figure 

5.8 employed to give information about the cross-corelation of observed and modelled 

runout distances for randomly selected shallow landslides at 10 m and 25 m resolutions 

in the same sub-basin. While Figure 5.7 had R2 greater than 0.77 and 0.60 for 10 m and 

25 m spatial resolutions, respectively. 0.80 and 0.71 are R-squared values on graphs at 10 

m and 25 m spatial resolutions in Figure 5.8. It has been concluded that data with a 10 m 

spatial resolution makes more successful predictions. However, it can be said that the 

results at a 25 m resolution are also successful with respect to Figure 5.7 and Figure 5.8. 
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Table 5.2. Comparison of observed and modelled runout distances for randomly selected 

shallow landslides at 10 m and 25 m resolutions in the Egerci sub-basin. 

Shallow Landslide ID  Observed runout distance (m) 10 m resolution 25 m resolution  

1 90 70 110 

7 111 104 191 

12 75 45 61 

22 70 35 50 

30 11 20 40 

175 24 23 43 

178 28 31 51 

180 23 32 85 

182 35 36 57 

183 94 113 100 

200 31 31 27 

204 49 41 45 

213 25 33 30 

223 33 36 40 

 

 

Figure 5.7. Comparison of observed and modelled runout distances for randomly selected 

shallow landslides at 10 m and 25 m resolutions in the Egerci sub-basin. 
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Table 5.3. Comparison of observed and modelled runout distances for randomly selected 

shallow landslides at 10 m and 25 m resolutions in the Ihsanoglu sub-basin. 

Shallow Landslide  Observed runout distance (m) 10 m resolution 25 m resolution  

142 136 180 175 

143 18 55 50 

144 7 50 85 

145 16 82 85 

251 31 35 46 

252 55 58 63 

225 11 33 35 

261 10 24 25 

262 9 20 25 

241 8 5 10 

246 13 15 25 

 

 

Figure 5.8. Comparison of observed and modelled runout distances for randomly selected 

shallow landslides at 10 m and 25 m resolutions in the Ihsanoglu sub-basin. 
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 Probable Landslides Runout Distance Assessment  

The movement of shallow landslide mass from its shallow landslide initiation points to 

deposition area with affected by slope geometry and amount of mass characterizes the 

propagation stage (Cuomo, 2020). First, the accurate determination of shallow landslide 

initiations will be the premise for ensuring accurate runout distance assessment for sub-

basins in this study scope. Second, parameters, which depended on exhaustive analyses 

and researches for previous shallow landslides in the sub-basins, will be set to accurately 

model of the propagation stage. Finally, presented maximum probable runout distance 

results will be a prime issue in the upcoming potential shallow landslides dangers to 

refrain from negatives in sub-basins. 

 

5.6.1. Shallow Landslides Initiations Detection  

It is not possible to neglect that if shallow landslides runout distance cannot be estimated, 

shallow landslides may increasingly start to pose a big problem. Therefore, some critical 

strategies have become applied in order to estimate the runout distance of shallow 

landslides. For instance, the preparation of susceptibility map gives the runout analyses a 

quite valuable boost in terms of deciding shallow landslides initiations. Can et al. (2005) 

and Xu et al. (2022) note that if the study area is highly susceptible to shallow landslides, 

possibility of shallow landslides initiations has high in these areas. For example, shallow 

landslides, which occurred in May 1998 because of extreme precipitation event, are 

prevalently visible in high susceptible areas in Eocene flysch facies (Can et al., 2005). 

Taking into account the information in the previous sentences, is possible to say that the 

most basic way to interaction between shallow landslides initiations and their runout 

distance is to attain competence in preparation of landslide susceptibility map to perform 

runout analyses. Thus, determination of the susceptibility threshold has more important 

role in this study in order to detect high susceptible areas. In fact, this stage can be 

acknowledged as a critical step to detect an initial point for the suitable assessment of 

shallow landslides occurrence in terms of being capable to determine a cell by taking in 

account of many parameters. Separately prepared frequency histograms of the shallow 

landslide susceptibility values for three sub-basins give opportunity to decide on threshold 

value (Figure 5.9). The black arrows indicate the susceptibility value to be considered for 

determining the critical threshold value for sub-basins in the Figure 5.9.  
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Figure 5.9. Threshold selection for initiating shallow landslides in sub-basins: (a) Egerci 

sub-basin, (b) Beycuma sub-basin, and (c) Ihsanoglu sub-basin. 
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It is wise to err on the side of caution by choosing threshold as 0.70 in terms of not neglect 

to any potential shallow landslide’s initiations. It should not be forgetten that this value 

is as an important assumption to be used in the runout modeling process. Thus, it is 

supposed that if shallow landslides susceptibility grid cells are equal or higher than 0.70, 

they are selected as shallow landslides initiations. Mapped shallow landslides are also 

considered as pre-defined shallow landslide initiations in this study. Table 5.4 gives 

information about shallow landslide initiations statistic in terms of their altitude and slope 

gradient values in three sub-basins. Statistics on the distributions of detected possible 

shallow landslides initiations at different altitudes demonstrate that if shallow landslides 

possible initiations are analysed in terms of their median altitude values, shallow 

landslides occurrences possibilities altitudes have been observed at 607 m, 250 m and 154 

m for Egerci, Beycuma and Ihsanoglu sub-basins, respectively (Table 5.4). In addition, 

when examining the median slope gradient values, the possibilities of shallow landslide 

occurrences have been observed at 23º, 15º and 13º for the Egerci, Beycuma, and 

Ihsanoglu sub-basins, respectively. 

 

Table 5.4. Shallow landslide initiations statistic in terms of their altitude and slope 

gradient values. 

Sub-

basin 

Statistics  Altitude 

(m) 

 Slope 

Gradient 

(˚) 

Egerci 
Mean 641 23 

Median 607 23 

Beycuma 
Mean 254 16 

Median 250 15 

Ihsanoglu 
Mean 164 14 

Median 154 13 

 

It is noticeable that literature reviews indicate that debris flows usually occur in areas 

characterized by a slope gradient exceeding 15° (Takahashi, 1981; Rickenmann and 

Zimmermann, 1993). 15° was also used as a threshold of debris flow scarps (Jiang et al., 

2021; Sharma et al., 2023). The slope gradient values range of (17°–38°) generally 

represent the rainfall-triggered landslides (Panday and Dong, 2021). Not only may slope 

gradient be equal to or less than 40º but also equal to or more than 15º (McCoy, 2019). 

The slope gradient is between 20.1º and 30º is detected for shallow landslides initiations 
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in the analysis of Dias, Dias and Grohmann (2023). The many of shallow landslides 

initiated on slope gradients with 20.1º –40º (Dias and Grohmann, 2024).  As the types of 

the shallow landslide’s initiations are slightly diverse in terms of their land use, it is 

possible classify them. CLC (2018) data indicate that these detected initiations are 

observed in broad-leaved forests for three sub-basins. The pie charts elucidate the 

proportion of shallow landslides initiations land cover types (Figure 5.10). The highest 

amounts of shallow landslides initiations have been observed by broad-leaved forest for 

Beycuma and Ihsanoglu sub-basins, which accounted for 55% and 62%, respectively. 

Conversely, mixed forest cover has highest proportion about 47% of shallow landslides 

initiations in Egerci sub-basin, followed by broad-leaved forest at 31%. 

 

Figure 5.10. Shallow landslide initiations distributions in terms of land use: (a) Egerci 

sub-basin, (b) Beycuma sub-basin, and (c) Ihsanoglu sub-basin. 

 

Landslide scarps are observable in coniferous forest and broad-leaved forest (Jiang et al., 

2023; Nishioka et al., 2023; Takaoka, 2023). Shallow landslides are mainly triggered in 

mixed forest and broad-leaved forest (Roccati et al., 2021). It is obvious that shallow 
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landslides initiations are profuse in broad-leaved forest for three sub-basins (Figure 5.10) 

in this study. Coniferous forests might not lessen the threat of the landslides (Zhang et al., 

2022b). Therefore, it is not surprise that shallow landslides initiations probability is about 

21% in coniferous forest (Figure 5.10a).   

 

5.6.2. Propagation 

Although parameter selections may be complicated process, selecting the accurate 

parameters and professionally interpreting their results will be a crucial in terms of future 

further investigations. Flow-R aims to increase the reliability of analyses by providing a 

wide range of the parameter selection options. Therefore, models can be painstakingly 

adjusted to better fit a specific landslide type such as shallow landslides and debris flow 

in order to represent accurately their runout distances in Eocene flysch facies’ sub-basins.  

Intending it to resemble real event conditions more closely. Uncertainty about the flow 

type of landslides whether they are debris flow or shallow landslide leads to using 

different parameters when performed to within the two configurations in this study. 

Therefore, runout distances have been computed for shallow landslides and debris flow 

parameters, separately. x, dh and TA and velocity values assigned to each sub-basin 

employed in debris flow and shallow landslides runout distance assessment is given Table 

5.5. 

 

Table 5.5. The model parameters utilized in Flow-R in this study. 

Sub-

basin 
Landslide 

Flow 

direction 

algorithm 

x 
dh 

(m) 

TA 

(°) 

Velocity 

(m/s) 

Egerci 

Debris 

flow 

Modified 

Holmgren 
4 1 24 15 

Shallow 

landslides 

Modified 

Holmgren 
25 1 24 15 

Beycuma 

Debris 

flow 

Modified 

Holmgren 
4 1 13 15 

Shallow 

landslides 

Modified 

Holmgren 
25 1 13 15 

Ihsanoglu 

Debris 

flow 

Modified 

Holmgren 
4 1 10 15 

Shallow 

landslides 

Modified 

Holmgren 
25 1 10 15 



95 

 

Horton et al. (2021) propose that x can be used as 4 for debris flow, whereas it can be 

selected as 22 to 26 for shallow landslides. In the study of Park, Lee and Woo (2013), 

McCoy (2019), Ali et al. (2021) and Jiang et al. (2021), x was utilized as 4 for debris 

flow. dh was widely preferred as 1 in several studies (Do, Yin and Guo, 2020; Giano, 

Pescatore and Siervo, 2021; Putra et al., 2022). dh can be commonly used as 1 for both 

shallow landslides and runout simulation analyses (Horton, Oppikofer and Michoud, 

2021) because its decision is not depended on landslide type. Travel angle changes 

between sub-basins. It also allows to see how to vary slope gradient in the Eocene flysch 

facies. For this study, the preferred angles are as follows: TA: 24º for Egerci sub-basin, 

TA: 13º for Beycuma sub-basin, and TA:10º for Ihsanoglu sub-basin. Frequently 

preferred travel angles in the other studies were as follows: 4° (Kritos and Davies, 2015; 

Marchesini et al., 2024), 5° (Lari et al., 2011; Sturzenegger et al., 2019; Do, Yin and Guo, 

2020), 7° (Prochaska et al., 2008; Horton et al., 2013), 9° (Jiang et al., 2021), 10° (McCoy, 

2019), 11° (Rickenmann and Zimmermann, 1993; Huggel et al., 2002; Horton et al., 2013; 

Park, Lee and Woo, 2013; Pradhan et al., 2017), 12° (Ali et al., 2021), 13° (Park, Lee and 

Woo, 2013), 13.02º (Pradhan, 2021), 22° (Perzl et al., 2017) and 30° (Marchesini et al., 

2024). The value chosen for Vmax (m/s) is 15. In addition, 5 m/s (Do, Yin and Guo, 

2020), 10 m/s (Ali et al., 2021), 15 m/s (Horton et al., 2013; McCoy, 2019; Horton et al., 

2021; McParland et al., 2021; Xu et al., 2022), 16 m/s (Nie, Lie and Xu., 2022), 20 m/s 

(Pastorello, Michelini and D’Agostino, 2017), and 25 m/s (Jiang et al., 2021) were used 

in the studies for Vmax. 

 

5.6.3. Results 

This analysis aims to estimate possible landslides runout distances based on the potential 

failure initiations that leads to propagation. Two runout models, which were fostered by 

using different parameter configuration such as shallow landslides and debris flow, were 

built with Flow-R 1.0.0 to compare their runout results. Flow-R is a distributed empirical 

modelling program offering propagation stages to analyse runout distances for both 

parameters’ configurations. Therefore, whether parameter selection with respect to 

shallow landslides and debris flow can provide difference or not in this section will be 

discussed. Despite completing runout distances assignments by using different dh and x 

parameters for both of them, the resulting runout distributions are consistent each other. 
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The distributions in runout distance results models which are prepared by debris flow 

parameters and shallow landslide parameters are generally similar. Rather than use the 

fixed determined one parameter for the landslides occurs in the study area, considering 

both parameter configurations in runout modelling gives an opinion of runout distance 

patterns based on how shallow landslides and debris flow parameters affect to runout 

distance.  

 

It should be remembered that possible failure initiations were well described in the earlier 

section. Pink colour shows the low probable cells (0-0.5), which indicate the maximum 

distance probability lower than 50%. Unlike pink cells, cherry red colour cells (0.5-1) 

denote the maximum distance probability higher than 50%. The simulated shallow 

landslide maximum probability areas cover smaller area than maximum debris flows 

probability areas.   

 

Figure 5.11 and 5.12 aim to show quick examination of spatial impact of the probability 

of the maximum runout distances in three sub-basins for both parameters configurations. 

Detailed and larger views have also been provided separately in the impending figures. 

 

Results indicate that models obtained by using both parameters configuration have the 

capacity to cover extensive distances, exhibiting max velocity at 15 m/s. Simulated runout 

distances by debris flow parameters are bigger than simulated runout distances by shallow 

landslides parameters at noticing small changes in results displayed in Figure 5.11 and 

5.12. According to both model configurations, it can be inferred from that Figure 5.11 

and 5.12 the possible damages of shallow landslides are discernibly concentrated in 

specific regions within the sub-basin.  
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Figure 5.11. Probable maximum runout distance models by using debris flow parameters: 

(a) Egerci sub-basin, (b) Beycuma sub-basin and (c) Ihsanoglu sub-basin.  

 

Figure 5.12. Probable maximum runout distance models by using shallow landslide 

parameters: (a) Egerci sub-basin, (b) Beycuma sub-basin and (c) Ihsanoglu 

sub-basin.  
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The performance of the empirical model on runout distances has been tested by 

considering the observed runout distances values. Runout models which were prepared 

by debris flow parameters and shallow landslide parameters exhibit approximately same 

performance. If runout distance models are prepared by using debris flow parameters for 

Egerci sub-basin, Beycuma sub-basin and Ihsanoglu sub-basin, coefficient of 

determination level is 0.61, 0.49 and 0.79, respectively (Figure 5.13).  

 

Nevertheless, if the runout distance model is prepared by using shallow landslide 

parameters for Egerci sub-basin, Beycuma sub-basin and Ihsanoglu sub-basin, coefficient 

of determination levels is 0.59, 0.53 and 0.70, respectively (Figure 5.13).  

 

In addition, if the assessment of runout distances is considered in terms of both model 

parameters in general view of Eocene flysch facies, both models yield similar coefficient 

of determination levels, 0.64 and 0.62. Coefficient of determination level attests to the 

similarity between both parametrization in the study.  

 

Potential runout distances of debris flows or shallow landslides from possible shallow 

landslides initiations have been investigated in Figure 5.14, 5.15, 5.16, 5.17, 5.18 and 

5.19. These figures have been prepared for a clearer examination of the sub-basins 

depicted in Figure 5.11 and Figure 5.12.  
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Figure 5.13. Cross-correlations between the runout distances observed and those 

predicted by employing the parameters of the debris flow and shallow 

landslide models: (a-b) in the Egerci sub-basin; (c-d) in the Beycuma sub-

basin; (e-f) in the Ihsanoglu sub-basin; and (g-h) in Eocene flysch facies 

(Komu, Nefeslioglu and Gokceoglu, 2024). 
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Figure 5.14. The model obtained by using debris flow parameters in Egerci sub-basin. 

 

Figure 5.15. The model obtained by using shallow landslide parameters in Egerci sub-

basin. 



101 

 

 

Figure 5.16. The model obtained by using debris flow parameters in Beycuma sub-basin. 

 

Figure 5.17.The model obtained by using shallow landslide parameters in Beycuma sub-

basin. 
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Figure 5.18.The model obtained by using debris flow parameters in Ihsanoglu sub-basin. 

 

Figure 5.19. The model obtained by using shallow landslide parameters in Ihsanoglu sub-

basin. 
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These results were critical because advanced runout models were tested with real-time 

data integration and customized parameters for predictive analysis. Obtained results have 

good estimation accuracy, meaning that runout model results can be used in developing 

future disaster management strategies such as protecting the city’s transport network (Ali 

et al., 2021; Jian et al., 2021).  

 

Figure 5.20, Figure 5.21, and Figure 5.22 provide a comparative presentation for two 

models parameter sets to depict the probable maximum distance in close detail. 

 

 

Figure 5.20. Models depicting maximum distance probabilities and detailed spatial 

distributions in the Egerci sub-basin (a-b) by using the debris flow parameters; 

(c-d) by using shallow landslide parameters (Komu, Nefeslioglu and 

Gokceoglu, 2024). 
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Figure 5.21. Models depicting maximum distance probabilities and detailed spatial 

distributions in the Beycuma sub-basin: (a-b) by using the debris flow 

parameters; (c-d) by using the shallow landslide parameters (Komu, 

Nefeslioglu and Gokceoglu, 2024). 

 

 

Nearly simultaneous events of diverse flow types in nearby areas can result in the 

amalgamation and joint propagation of multiple shallow landslide mass (Cuomo, 2020). 

The proximity of two possible shallow landslide source areas to each other may lead to 

an intense effect in the sub-basins in terms of long runout distance (Figure 5.20, Figure 

5.21 and Figure 5.22). 
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Figure 5.22. Models depicting maximum distance probabilities and detailed spatial 

distributions in the Ihsanoglu sub-basin: (a-b) obtained by using the debris 

flow parameters; (c-d) by using the shallow landslide parameters (Komu, 

Nefeslioglu and Gokceoglu, 2024). 

 

Horton et al. (2021) proposed that 8 m/s is the acceptable velocity limitation for 

mudflows. Therefore, a back analysis is critical for this study. 15 m/s was used in the 

analyses. The learning objective of the velocity effect in the analyses is to account for 

relationships between them by illustrating example probable runout distance (Figure 

5.23). The other parameters have been used as parameters used in shallow landslide 

modelling (x=25, dh=1). The maximum velocity values of 8 m/s and 15 m/s were used to 

estimate shallow landslide runout distances and compared to evaluate this individuality. 

This velocity comparison analysis can effectively provide that if velocity increases, 

runout distances will increase. Therefore, not only x parameter but also velocity 

parameter at runout distance analyses has a critical role in analyses in terms of influencing 

the runout distance results. Therefore, the determination of the maximum velocity 

limitation has an important role in the analyses. If the velocity increases, the runout 
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distance will increase linearly. The probable model results shown in Figure 5.23 accounts 

for in the case of V= 15 and 8 m/s of landslide velocity. Figure 5.23 depicts that velocity 

is obviously a key marker of runout distances analyses. 

 

 

Figure 5.23. Evaluation of the effect of the maximum velocity limitation for the shallow 

landslide runout distance determinations. 

Simulation of models graphs which give information about distribution of failure 

initiation, maximum distance probability, enable to not only visualize runout distance 

percentage distribution and but also analyse the relationships between runout distances, 

failure initiations and sub-basins with respect to percentage distributions (Figure 5.24). 

While runout distance models prepared by debris flow parameters were shown in Figure 

5.24a, 5.24c and 5.24e, runout distance models prepared by shallow landslide parameters 

were shown in Figure 5.24b, 5.24d and 5.24f. Graphs clarifies that despite of the fact that 

sub-basins are prone to shallow landslides or debris flow, the affected area of shallow 

landslides or debris flow can be accounted for having a small pie. The debris flow model’s 

runout zones occupy 17%, 30%, and 40% for Egerci, Beycuma and Ihsanoglu sub-basin 
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respectively. In contrast, the shallow landslides model’s runout zones cover 16%, 26%, 

and 32% for Egerci, Beycuma and Ihsanoglu sub-basin, respectively. 

 

 

Figure 5.24. The models obtained by using the debris flow and shallow landslide model 

parameters: (a-b) in the Egerci sub-basin, (c-d) in the Beycuma sub-basin and 

(e-f) in the Ihsanoglu sub-basin. 

 

It should be made clear that if simulated results are comprehensively examined, all three 

sub-basins will have exposed to negative effect of landslide hazard in case of sudden 

shallow failures. Modelled runout results illustrate that landslides may reach several 

residential areas, transportation networks, and temples. Figure 5.24 is very notable 

because with help of these demonstration, importance of analysing of the runout distance 

is beginning to realize so that researches can stay at high alert to identify and mitigate the 

shallow landslides or debris flow hazards. 
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6. RUNOUT ANALYSIS OF SHALLOW LANDSLIDES BY 

INCLUDING RCP SCENARIOS 

 

Prepared runout hazard maps by considering RCP scenario precipitation values are 

intended to aid engineer in understanding of the potential dangers in terms of the shallow 

landslides at the sub-basins. This research part is especially covered an attempt to give 

insight on climate change effects on landslide runout distance by evaluating RCP 

scenarios precipitation values. This chapter mainly offers sequential steps in order to 

analyse and describe future shallow landslides runout distances. Firstly, evaluation of 

RCP precipitation trends will have role in detection of possible future failure initiations. 

Secondly, initiation points will be evaluated by considering climate change scenarios and 

LR susceptibility analyses. Finally, possible shallow landslide initiations will be also used 

in detection of potential maximum runout distances by employing empirical Flow-R 1.0.0 

software. 

 

 Evaluation of the RCP Precipitation Scenarios 

The aim of this sub-chapter is to quantify the critical precipitations of RCP precipitation 

scenarios to trigger shallow landslides. It is primarily essential to perform evaluations of 

RCP precipitation and meteorological station observations in order to identify the amount 

of precipitation that may cause potentially shallow landslides. 

 

Turkish State Meteorological Service’s historical meteorological station observations 

enabled to investigate extreme rainfalls in the study area. Although many factors trigger 

to extreme rainfall, climate change leads to inescapably extreme rainfall (Ahmad Tarmizi 

et al., 2019). While anomalous changes in climate lead to frequency and intensity of 

rainfall, it is not surprise that plenty of shallow landslides are happened in hillsides 

regions due to extreme rainfalls (Ortiz-Giraldo, Bitero and Vega, 2023; Thomas et al., 

2023). In other words, heavy rainfalls in a brief time of range will induce plenty of shallow 

landslide’s events (Thomas et al., 2023). Shallow landslides and mud-debris flows 

especially triggered by extreme rainfall events (Luino et al., 2022; Bi et al., 2023). 

However, obtaining weather data that accurately reflects the precise meteorological 

conditions at landslide locations is consistently a hurdle in research focused on 
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determining rainfall thresholds for triggering landslides (Wang, Otto and Scherer, 2021). 

In the western parts of the Black Sea, the flow type of landslides is triggered by heavy 

and intense rainfall (Ocakoglu et al., 2002; Ercanoglu and Gokceoglu, 2004; Can et al., 

2005; Akgun, Gorum and Nefeslioglu, 2021). Therefore, it is also obvious that the 

intensity of precipitation that accumulated Eocene flysch facies have the capability of 

frightening in terms of occurring possible sudden fast landslides. 

 

It is possible to provide an overview about the estimation of critical quantities of 

precipitation trigger for assessing possible landslide hazards. According to European 

Commission (2021), 30 years period is the main standard reference period in order to 

calculate climate normal for the specific area. Many climate researches focus on 30 years 

period in order to evaluate the climate effects (Ruosteenoja, Jylhä and Kämäräinen, 2016; 

Anjum, Ding and Shangguan, 2019; Wang et al., 2019; Gao, Booij and Xu, 2020; Bekele, 

Haile and Rientjes, 2021; Gumus et al., 2023; Jemec Auflič et al., 2023; Volpe et al., 

2023) Nevertheless, 20 years reference period has been used in recent studies (European 

Commission, 2021; Doulabian et al., 2021; Kim, Jung and Kim, 2023). 14 years reference 

observation period was also used in the study of Andrade et al. (2021). It has been decided 

to conduct RCP precipitation analyses in periods of 20 years. Therefore, 2025-2044, 

2044-2063, 2063-2082, and 2082-2100 are specific time periods in which the study 

should be examined. In this part of the thesis, meteorological historical data and 

Community Climate System Model (CCSM4) which based on their RCP 4.5 and RCP 8.5 

precipitation values, will be compared in terms of precipitations. In fact, Figure 6.1 

represents the correlation of between the meteorological station precipitations and RCP 

precipitations in years of 1995-2022. The correlation between observed and modelled has 

been taken into consideration in the study for future step of the study. Using linear 

statistical relationships in order to investigate relationships between RCP scenarios and 

Meteorological station’ values is much easier, faster and more practicable as compare to 

other method. While it is true that extreme precipitations trigger shallow landslides, it is 

difficult to determine whether it will be the annual data or monthly data triggering them 

in the future that has a more significant impact on shallow landslides. RCP precipitation 

scenarios data like monthly can used in shallow landslides detection analyses with respect 

to informing the future precipitation trends in this study.  
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Figure 6.1. Comparison of observed and modelled RCP 4.5 and RCP 8.5 precipitations 

scenarios for both cities in between 1995-2022. 

Propagation distance for shallow landslides and flow-type landslides that can reach 

exorbitant speeds and travel long distances due to heavy rainfall (Poltnig et al., 2016). 

Table 6.1 illustrates the data from meteorological and RCP models, depicting the total 

precipitation for the month in which a landslide was triggered by excessive rainfall. When 

the meteorological data evidence is rigorously elucidated, Western part of the Black Sea 

in Türkiye has experienced increasingly extreme heavy rains in recent years. Some parts 

of areas of Eocene flysch facies experienced extreme summer rain in June 2022 and in 

August 2021. Therefore, it is necessary to warn about shallow landslides threats to Eocene 

flysch facies in Türkiye will increase because of extreme heavy rains which are caused 

by climate change. Observed values represent those extreme heavy rainfalls which were 

obtained from meteorological data at precipitation stations, trigger shallow landslide 

events. Extreme rainfall values for the month it occurred that were shown in Table 6.1 to 

clarify the climate and rainfall characteristic of study area. According to detailed and 

meticulous researches, these extreme rains inevitably caused to many shallow landslides. 

This is expected to continue well into the future. Therefore, an integrated approach to 

climate change RCP precipitations scenarios and observed meteorological value is 

essential in order to determine the critical threshold. 
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Table 6.1. Comparison of observed and modelled RCP 4.5 and RCP 8.5 precipitations 

scenarios for both cities in terms of extreme events (Turkish Meteorological 

Service). 

Year Month City Monthly Prep. (mm) RCP 4.5 Prep. (mm) RCP 8.5 Prep. (mm) 

1998 May Bartın 450 92 94 

2009 July Bartın 305 77 78 

2009 September Bartın 188 65 65 

2013 October Bartın 265 73 74 

2015 October Bartın 273 74 75 

2016 August Bartın 187 65 65 

2017 June Bartın 67 53 52 

2017 August Bartın 76 54 53 

2018 June Bartın 102.2 57 56 

2019 August Bartın 69 53 53 

2021 August Bartın 715 118 122 

2022 June Bartın 693 116 120 

1998 May Zonguldak 230 103 102 

2009 July Zonguldak 168 94 93 

2009 September Zonguldak 167.3 94 93 

2013 October Zonguldak 324 116 115 

2015 October Zonguldak 241 105 103 

2016 August Zonguldak 134 89 88 

2017 June Zonguldak 135 89 89 

2017 August Zonguldak 113 86 85 

2018 June Zonguldak 32.6 75 74 

2019 August Zonguldak 161 93 92 

2021 August Zonguldak 526 145 144 

2022 June Zonguldak 864 194 191 
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It is necessary to remember that climate model precipitations depend on the uncertainties. 

In addition, bias of downscaling problem exists in this stage. To simplify the assessment 

of RCP 4.5 and 8.5 scenarios extreme events effect, median values are used to catch best 

predictions. Table 6.2 shows the median values of the extreme precipitation events for 

both cities with respect to RCP 4.5 and 8.5 scenarios. 

 

Table 6.2. RCP 4.5 and 8.5 median precipitation values by considering extreme events 

for both cities in order to detect threshold value. 

Scenario 
 

Bartın Zonguldak  

RCP 4.5 Median 69 mm 94 mm 

RCP 8.5 Median 70 mm 93 mm 

 

It should be careful that estimation of future climate precipitation threshold is still highly 

ambiguous. Despite facing numerous challenges about the determination of future 

threshold, it could be prescribed to decide the threshold as 81 mm for both scenarios by 

using Figure 6.1 graphs. In fact, when mean values are calculated by taking into account 

both cities median RCP 4.5 and 8.5 values, they are 82 and 81 mm, respectively. 

Therefore, RCP critical threshold was chosen as 81 mm for both scenarios. It should not 

be forgotten that this value is an assumption. Nevertheless, this threshold value is logic 

when the literature is reviewed. For instance, in the study by Bainbridge et al. (2022), it 

was suggested that observational antecedent rainfall (>62 mm) is considered to be the 

critical indicator when shallow landslides occur. In the study of Volpe et al. (2023), 

maximum rainfall intensities are 3 mm/h and 2.29 mm/h for RCP 4.5 and RCP 8.5 

scenarios in 2041–2070 period, respectively. This stage of thesis emphasizes the 

significance of the combining data set, including precipitation data, to analyse the runout 

distances.  

 

 Determinations of Shallow Landslides Initiations by Considering RCP 

Precipitation Scenarios  

In this section, implemented stages of the determination of failure initiations which are 

affected by RCP precipitation scenarios will be presented. Although runout distance 
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estimation is the most important goal, possible shallow landslide initiations detections are 

equally significant for this study. It necessarily notes that detection of failure initiations 

by taking into account RCP precipitation values is not only highly ambiguous but also 

very arduous. Detection of failure initiations are built by assigning a critical threshold to 

potential failure initiations based on determined susceptible areas. They have been rolled 

to scrutiny with investigating on runout distance. Because of runout assessment 

dependency on failure initiations in this study scope, determination of shallow landslide 

initiations has led to more concern about their distributions in the future analyses by using 

RCP scenarios. It is very critical to be scrupulous when choosing a threshold 

determination of the hazard map to determine the failure initiations accurately. The 

determined shallow landslides initial points which were detected in previous section, will 

be used by combining with critical threshold RCP precipitation scenarios in order to apply 

same runout strategy to detect possible runout distances. In order words, climate 

projections of precipitation data and previous detected cells, which are equal to or more 

than 0.70 susceptible, are the main determining factor of the possible future landslides 

initiations. Each determination of the failure initiation process is repeated for all 

determined these years. Because of increasing of the frequency of the extreme rainfall 

events in Eocene flysch facies, many landslides like a flow type of landslides will still be 

triggered. It is also predicted that shallow landslide events that will be triggered by rainfall 

mainly cluster in Egerci and Beycuma sub-basins, where the observation of probability 

of extreme monthly precipitation is high.  It will be expected that some shallow landslides 

initiations are substantially diminishing. This decrement can result on considering RCP 

scenarios precipitation values. It has been clarified which determined RCP scenarios and 

periods had the greatest influence on shallow landslide runout distance in the sub-basins. 

Analyses indicate the reduction of failure initiations for future periods in the study area. 

Figure 6.2 shows figuring out possibility of decreasing number of shallow landslides 

initiations for future years. Regardless of whether landslides are type of shallow 

landslides or debris flow, will be dense for Egerci and Beycuma sub-basins in the period 

of 2025-2044 (Figure 6.2). It is increased the accuracy of the probable shallow landslide’s 

initiations by the coincidence of shallow landslide susceptibility and RCP precipitation 

threshold in this study scope. By 2100, the number of possible shallow landslide initiation 

is expected to decrease for both sub-basins. In fact, they will be almost 267 and 1411 for 

Egerci and Beycuma sub-basins, respectively.  
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Figure 6.2. Identification of shallow landslide initiations influenced by RCP 4.5 and 8.5 

scenarios, delineated within the sub-basins: (a-d) Egerci sub-basin and (e-g) 

Beycuma sub-basin (Komu, Nefeslioglu and Gokceoglu, 2024). 
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The bar charts show drop in the number of shallow landslides initiations in determined 

time range (Figure 6.3). They also enable to compare how many shallow landslides 

initiations were used for estimation of runout distances analyses in different time periods 

in Egerci and Beycuma sub-basins. It is noteworthy that RCP 4.5 (2025-2044) and RCP 

8.5 (2025-2044) exhibit significant disparities about possible shallow landslide initiations 

number. Shallow landslides initiations in Beycuma sub-basin are distinctive through 

years rather than other sub-basin in terms of its numbers. Although there is a sharp 

decrease in shallow landslide initiations in Beycuma sub-basin with considerably lower 

shallow landslides initiations from initial condition to RCP 4.5 (2025-2044), numbers of 

initial shallow landslides initiations are as close as numbers of RCP 4.5 (2025-2044) 

shallow landslides initiations in Egerci sub-basin. 

 

 

Figure 6.3. Number of possible shallow landslide initiations. 

 

This study aligns with the findings of Ageenko et al. (2022) and Beroya-Eitner et al. 

(2023) indicating a decrease in landslide susceptibility across RCP scenarios. Park et al. 

(2024) also reached that shallow landslide occurrences are projected to be less frequent 

in the period of 2040-2049. The possible shallow landslides initiations have been 

examined in more detail with respect to their altitude, slope gradient and land use. Table 

6.3 and Table 6.4 indicate the altitude and slope gradient of mean and median values of 

the probable failure initiations in terms of different periods.  
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Table 6.3. Possible shallow landslide initiations altitude mean and median values for all 

determined periods. 

Sub-

basin 

Statistics 

Altitude 

(m) 

RCP 

4.5_2025_2044  

RCP 

8.5_2025_2044 

RCP 

4.5_2063_2082 

RCP 

4.5_2082_2100 

Egerci 
Mean 656 587 577 586 

Median 621 597 594 596 

Beycuma 
Mean 309 415 - 405 

Median 306 406 - 408 

 

When reckoning with the initial analysis values, future shallow landslide initiations' 

altitudes are expected to be higher in Beycuma sub-basin (Table 6.3). On the contrary, 

the probability of shallow landslides occurring will be high even at lower altitude in 

Egerci sub-basin. Shallow landslides initiations slope gradient median values fluctuate 

between 23 to 6 or 5 degrees in different time periods in the Egerci sub-basin, while they 

remain about 16 degrees for determined time periods in the Beycuma sub-basin (Table 

6.4). 

 

Table 6.4. Possible shallow landslide initiations slope gradient mean and median values 

for all determined periods. 

Sub-

basin 

Statistics 

Slope 
Gradient 

(˚) 

RCP 

4.5_2025_2044 

RCP 

8.5_2025_2044 

RCP 

4.5_2063_2082 

RCP 

4.5_2082_2100 

Egerci 
Mean 23 9 8 10 

Median 23 6 5 6 

Beycuma 
Mean 16 17 - 16 

Median 16 16 - 16 

 

The pie graphs below show land cover of shallow landslides initiations in Egerci and 

Beycuma sub-basins as percentage (Figure 6.4 and Figure 6.5). Although initial analyses 

indicate that the frequency of potential landslide initiation points is high at broad-leaved 

forests, the probability of landslides occurring at broad-leaved forests in Beycuma sub-

basin is diminishing (Figure 6.5). Despite the fact that shallow landslide occurrence will 

decrease in broad-leaved forest for Egerci sub-basin, but it can be informed that there will 

also be a greater decrease in mixed forest and coniferous forest in the Egerci sub-basin. 



117 

 

Schwaab et al. (2020) state that the broad-leaved forest susceptibility will reduce. Yu et 

al. (2021) claimed that the broad-leaved susceptibility will decrease in 2030s and the 

2080s in accordance with RCP 8.5 scenarios. Malla, Neupane and Köhl (2023) suggested 

that coniferous forest will be changed into broad-leaved forest or vice versa in the 2041-

2060 in accord with RCP 4.5 scenarios. Nevertheless, shallow landslides initiations of 

land cover will remain unchanged for future periods in the study of Jemec Auflič et al. 

(2023). 

 

 

 

Figure 6.4. Relationships between shallow landslide initiations and land-cover Egerci 

sub-basin: (a) RCP 4.5 (2025-2044), (b) RCP 8.5 (2025-2044), RCP 4.5 

(2063-2082) and RCP 4.5 (2082-2100) (Corine Land Cover, 2018). 
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Figure 6.5. Relationships between shallow landslide initiations and land-cover for 

Beycuma sub-basin: (a) RCP 4.5 (2025-2044), (b) RCP 8.5 (2025-2044), and 

(c) RCP 4.5 (2082-2100) (Corine Land Cover, 2018). 

 

This chapter aimed to give information about how extreme precipitation in terms of 

analysing extreme RCP precipitation values. The relationships between RCP scenarios 

and possible shallow landslide initiations are presented in mapped formats, they become 

highly informative to give an insight into possible mitigations of possible future shallow 

landslides. 

 

 Assessment of Climate Change Scenarios Propagation 

In this chapter relationships between RCP scenarios and shallow landslides runout 

distance will be elucidated by considering changes in their shallow landslide’s initiations. 

This chapter also discusses how make progress in evaluating the RCP scenarios 

precipitation value in order to detect runout distances by considering the empirical model. 
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RCP precipitation effects are mainly considered in order to predict the possible runout 

distances in this part of the study. LR with ML and RCP critical threshold precipitation 

value were utilized for potential shallow landslides failure initiations. Each sub-basin was 

presented separately for the determined time frame in order to predict the possible shallow 

landslide runout distances. Multiple simulation options were tried to observe shallow 

landslides runout distances. The model results have visualized ranging from 0.5 to 1 

explain that runout probability is higher than 50%. The runout probability results with 

shown ranging from 0 to 0.5, on the other hand, can be interpreted that runout probability 

is lower than 50%.  Feasible runout distance results were visualized in Figure 6.6, Figure 

6.7, Figure 6.8, Figure 6.9, Figure 6.10, Figure 6.11 and Figure 6.12. Difficult as it may 

seem, linking between prediction of shallow landslides of runout distances and RCP 

precipitation values are actually possible with these models. They provide guidelines for 

possible landslides runout prone areas to evaluate hazards in the future. It is note that 

prepared runout maps enable to make complex estimation processes understandable to 

researchers at all levels of expertise. Additionally, the comparisons between them are 

clear using maps and graphs in terms of identifying the areas potentially threatened by 

shallow landslides. Thus, all these related data enable to optimally provided the better 

understood of the runout distances impact areas for the determined time periods. Results 

indicate that Egerci and Beycuma sub-basins runout distances will still be examined as a 

problem in the future. In contrast, the possible runout distance trend for Ihsanoglu sub-

basin varied drastically over the period. Ihsanoglu sub-basin, where multiple runout 

susceptibility zones are likely in initial analyses, will not prone to runout susceptibility of 

shallow landslides because of not detected possible shallow landslide initiations in the 

future periods. Decreasing of number of shallow landslides undoubtedly plays a crucial 

role in reducing total runout distances. The given maps illustrate the possible changes 

experienced by Egerci and Beycuma sub-basins landslides from 2025 to 2044, 2082-2100 

according to RCP 4.5 and RCP 8.5 scenarios (Figure 6.6, Figure 6.7, Figure 6.8, Figure 

6.9, Figure 6.11 and Figure 6.12). Figure 6.10 also represents the future runout distances 

for RCP 4.5: 2063-2082 scenario in Egerci sub-basin. These maps enable to portend 

possible damages in terms of shallow landslides runout distances. Runout distances are 

likely to have extensive in the sub-basin Egerci sub-basin according to future RCP 

scenarios. Plausible worst scenario (RCP 8.5) can be evaluated only time frame of 2025-

2044 in terms of probable maximum distances for both sub-basins.   
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Figure 6.6. Probable runout distances models by using the debris flow parameters for RCP 

4.5: 2025-2044: (a) Egerci sub-basin, (b) Beycuma sub-basin. 

 

Figure 6.7. Probable runout distances models by using the shallow landslide parameters 

for RCP 4.5: 2025-2044: (a) Egerci sub-basin, (b) Beycuma sub-basin.  
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Figure 6.8. Probable runout distances models by using the debris flow parameters for RCP 

8.5: 2025-2044: (a) Egerci sub-basin, (b) Beycuma sub-basin. 

 

Figure 6.9. Probable runout distances models by using the shallow landslide parameters 

for RCP 8.5: 2025-2044: (a) Egerci sub-basin, (b) Beycuma sub-basin. 
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The empirical runout analyses have been revealed that RCP 4.5: 2025-2044 is the most 

critical time frame for runout distances (Figure 6.6 and Figure 6.7). Probable shallow 

landslides initiations in the both sub-basins for RCP 8.5: 2025-2044 are smaller than RCP 

4.5: 2025-2044 and runout distances are supposed to be correspondingly smaller (Figure 

6.8 and Figure 6.9). After the time interval of 20 years to 2044, there was a dramatic shift 

in runout distances for all sub-basins. In anticipation of the RCP: 2044-2063 model results 

suggesting the absence of shallow landslides initiations, their runout distance could not 

be observed for all sub-basins. Beycuma sub-basins’ runout affected areas are not 

included in Figure 6.10 because no problem will be expected in terms of shallow landslide 

runout distance in the Beycuma sub-basin for RCP 4.5: 2063-2082 scenario. The results 

show that RCP 4.5: 2082-2100 model results present a greater number of failure 

initiations than results of RCP 4.5: 2063-2082 model in Egerci sub-basin. Therefore, their 

runout impacted areas are also smaller in the RCP 4.5: 2063-2082 models in Egerci sub-

basin.  

 

 

Figure 6.10. Probable runout distances models for RCP 4.5: 2063-2082 in Egerci sub-

basin, (a) by using the debris flow parameters; (b) by using the shallow 

landslide parameters.   
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Figure 6.11. Probable runout distances models by using the debris flow parameters for 

RCP 4.5: 2082-2100: (a) Egerci sub-basin, (b) Beycuma sub-basin. 

 

Figure 6.12. Probable runout distances models by using the shallow landslide parameters 

for RCP 4.5: 2082-2100: (a) Egerci sub-basin, (b) Beycuma sub-basin.  
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Represinting with pie charts about runout distances, possible failure initiations and 

remaning area in sub-basins is one among many scientific visualization that contribute to 

fostering of effectively comparisons. The pie charts also enable to compare the 

expenditure of runout distances of modelling of shallow landslides and debris flows 

parameters for determined time intervals in Egerci and Beycuma sub-basins. The pie 

charts primarily give information in percentage terms about the shallow landslides 

initiations and their runout distances over determined time intervals. It is obvious fact that 

in sub-basins, detecting future possible number of shallow landslide initiations have a 

great importance. Unlike Figure 6.13, in the Figure 6.14, 6.15, and 6.16, the values of 

shallow landslides initiations and runout distances have a relatively small percentage. The 

percentage of failure initiations and probable maximum distances noticeably dropped at 

the end of the given periods. Researchers have been inferred from how the relationship 

between landslides and RCP scenarios might be changed in their own study area. Lim and 

Kim (2022) also claim that landslide risk for 2050 will be not more different than 2011 

for RCP 8.5 scenarios in their study area. However, significant reductions about possible 

shallow landslides occurences are expected for 8.5 scenario in the Eocene flysch facies’ 

sub-basins. Nefros et al. (2023) revealed that period 2030–2060 is more cirtical for 

landslide occurrence in terms of RCP 4.5 and 8.5 scenarios. Janized et al. (2023) also 

claimed that the regions with very high landslide susceptibility for RCP 8.5 scenario will 

be higher in 2090 compared to the years 2030, 2050, and 2070. Although there is an 

observed increase compared to the years 2063-2082 for Egerci and Beycuma sub-basins, 

it cannot be said that the highest landslide problem for these sub-basins will occur at the 

end of the century (2082-2100). Mohamed-Yusof et al. (2024) also claimed that in 

forthcoming period of 2070–2099, although the landslide density will decrease, very high 

susceptible areas in the prepared landslide susceptibility map will increase for RCP 4.5 

and RCP 8.5 scenarios. Jemec Auflič et al. (2023) informed that shallow landslides prone 

areas will increase in 2041-2070 and 2071-2100 with respect to RCP 4.5 and RCP 8.5 

scenarios. Wijaya et al. (2022) is expected that the landslide susceptibility will increase 

in time horizons 2030s, 2050s, and 2080s for both scenarios. On the contrary, Ageenko 

et al. (2022) claimed that the landslide susceptibility will lessen for RCP 8.5 scenario in 

the period of 2071-2100. The landslide susceptibility will decrease for both RCP 4.5 and 

RCP 8.5 in the period of 2046-2065 in the study of Beroya-Eitner et al. (2023). Unlike 

this thesis results, it will be expected that the reductions of possible landslide occurrences 
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in the RCP 4.5 scenario will be greater than the reductions in the 8.5 scenario in the study 

of Beroya-Eitner et al. (2023). 

 

 

 

Figure 6.13. Pie charts of runout distances for RCP 4.5: 2025-2044.  
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Figure 6.14. Pie charts of runout distances for RCP 8.5: 2025-2044. 
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Figure 6.15. Pie charts of runout distances for RCP 4.5: 2063-2082.  
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Figure 6.16. Pie charts of runout distances for RCP 4.5: 2082-2100. 
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Models have been carried out to decide future runout distances for the determined periods 

and, although possible hazard areas vary according to specifically detected shallow 

landslides initiations, the general trend is quite definite to decrease. To compare critical 

areas over the years, it is essential to analyse notable differences across all periods.  Figure 

6.17 and Figure 6.18 enable the examination of differences over the years in terms of 

runout distances for both model parameters. These figures are important to indicate the 

most critical locations for these years in both sub-basins in terms of shallow landslides 

occurrence and their possible runout distances. The runout impacted area will decrease in 

the period of 2025-2044 due to reducing in failure initiations and their runout distances, 

which can be explained with climate change severe influences on precipitations. Figure 

6.17 shows that the Egerci sub-basin will be highly prone areas to shallow landslides 

runout distances for RCP 4.5: 2025-2044. It is also noticed that Egerci and Beycuma sub-

basin share akin trends in determined periods in terms of reducing runout area. Under 

RCP 4.5 scenarios failure initiations in 2025-2044 will present more increases than under 

RCP 8.5 scenarios in Egerci sub-basin. In Beycuma sub basin, especially RCP 4.5 

scenarios will be more different than RCP 8.5 scenarios. Shallow landslide initiations in 

RCP 4.5 scenario, which depends on RCP 4.5 precipitation values, are likely to decreases, 

downward trend is examinable from the Figure 6.18 for Beycuma sub-basin. 

Additionally, it can be inferred from the results that when an examination is conducted 

based on periods for both basins, the areas that could be potentially dangerous in terms of 

propagation distance are generally similar to each other determined periods, except for 

scenario RCP4.5: 2025-2044 (Figure 6.17 and Figure 6.18).  
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Figure 6.17. Runout models comparison in terms of diverged time period in Egerci sub-

basin: (a, c) RCP 4.5: 2025-2044, (b, d) RCP 8.5: 2025-2044, (e, g) RCP 4.5: 

2063-2082 and (f, h) RCP 4.5: 2082-2100 (Modified after Komu, Nefeslioglu 

and Gokceoglu, 2024). 
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Figure 6.18. Runout models comparison in terms of diverged time period in Beycuma 

sub-basin: (a, d) RCP 4.5: 2025-2044, (b, e) RCP 8.5: 2025-2044, and (c, f) 

RCP 4.5: 2082-2100 (Komu, Nefeslioglu and Gokceoglu, 2024). 

 

In this section of the thesis, the data from Table 6.5, Figure 6.19 and Figure 6.20 provide 

the opportunity to make numerical evaluations regarding the prepared maps in addition 

to observation-based evaluation previously made from the map figures. It is possible to 

make predictions about how the variation in runout distance areas trends by interpreting 

the distribution of shallow landslide areas since it cannot be negligible of the runout 

dependency on failure initiations. Probable runout impacted areas will decrease in sub-

basins at the climate scenarios. The evidence substantiates that decline in the failure 

initiations lead to decrease in runout areas (Table 6.5). In addition, debris flow runout 

areas (146 km2) are comparatively much higher than shallow landslides runout areas (101 

km2). It is expected for RCP 4.5: 2025-2044 that there is a small drop of approximately 1 

km in debris flow runout area in Egerci sub-basin.  
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Table 6.5. Comparisons of runout areas for both parameters models in all sub-basins. 

  
Egerci       

sub-basin 

Beycuma   

sub-basin 

Ihsanoglu 

sub-basin 

Debris 

flow 

runout 

area 

(km2) 

Initial Condition 19.7 50.7 75.8 

RCP 4.5 (2025-2044) 18.9 15.6 0 

RCP 8.5 (2025-2044) 0.52 1.3 0 

RCP 4.5 (2063-2082) 0.514 0 0 

RCP 4.5 (2082-2100) 0.52 0.756 0 

Shallow 

landslide 

runout 

area 

(km2) 

Initial Condition 16.7 35.5 48.6 

RCP 4.5 (2025-2044) 16.1 10.9 0 

RCP 8.5 (2025-2044) 0.249 0.768 0 

RCP 4.5 (2063-2082) 0.243 0 0 

RCP 4.5 (2082-2100) 0.249 0.413 0 

 

 

 

Figure 6.19 and 6.20 enabled to compare years in terms of identifying probable runout 

areas for both parameters set. The bar charts also compare the runout area of sub-basins 

in initial analyses and project future time intervals for RCP 4.5: 2025-2044, RCP 8.5: 

2025-2044, RCP 4.5: 2063-2082 and RCP 4.5: 2082-2100. The decrease in the runout 

affected areas between initial conditions and the periods of RCP 4.5: 2025-2044 could be 

discernible. In the future RCP 4.5: 2025-2044 scenarios, Beycuma’s runout area will be 

expected to moderately decrease, while Egerci’s runout areas will be anticipated to remain 

relatively same. Unlike Egerci’ and Beycuma’s runout areas, Ihsanoglu’ runout areas will 

never be observed for all future time interval for both model parameters results.  
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Figure 6.19. Graphical comparisons of debris flow runout areas for all sub-basins. 

 

 

Figure 6.20. Graphical comparisons of shallow landslide runout areas for all sub-basins. 
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Finally, this section aimed to show whether the influence of RCP precipitation scenarios 

is questionable on shallow landslides runout distances or not. How the shallow landslides 

runout distances have changed at the specific location with respect to considering the RCP 

precipitation scenarios. It is possible to expect that the study area may be extensively 

damaged by shallow landslides in the future. It is possible to mention that it is a very 

critical improvement to predict future changes in runout distances of shallow landslides 

by considering empirical methods for linking with RCP precipitation scenarios. The 

model results offer valuable advice and guidance on the level of possible runout distances 

whether this is congruent with the level of hazards. The findings of this study can be 

valuable and crucial for governmental authorities, strategists, decision-makers, scholars, 

and land-use planners within the examined region for a better future by providing 

landslide safety (Wang, Otto and Scherer, 2021). The reliability of the outcome’s hinges 

on the precision of the data and the methodology employed for data analysis (Wang, Otto 

and Scherer, 2021).  

 

The results presented in this section are prepared according to the RCP models. Therefore, 

it should be warned that if the RCP scenarios do not unfold as expected, variations may 

occur in the outcomes. 
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7. DISCUSSSION 

 

Shallow landslides have started to be considered severe natural disasters hazards in the 

present-day world. When a terrible landslide disaster event occurs, it is possible to 

observe that while residents are grappling with negative effects of shallow landslides 

challenges, researchers are trying to reap the benefits by collecting the shallow landslide 

related data in order to prepare detailed hazard map for future disasters. At this stage, it 

is pivotal for researchers to rigorously collect all data and consult residents' observations 

in order to prepare a shallow landslide inventory, as it will have an important role in the 

future studies. Runout distances of shallow landslides are also critical information for 

these researches because these key finds enable to take necessary measures. Therefore, a 

crucial perennial management plan that details how to deal with possible shallow 

landslides runout, can be effectively prepared without overlooking the details. Unless 

prepared detailed hazard maps which include runout distance, natural disaster of landslide 

may dangerous for citizens. This is a good example addressing the importance of this 

topic that while many developed countries have detailed hazard map, numbers of natural 

shallow landslides disaster victims are increasing in some countries where such hazard 

map is lacking. There are some critical points that need to be discussed for this study are 

summarized below: 

 

Determining whether the prepared inventory is suitable for the characterization of shallow 

landslides was pivotal. Therefore, the relationships between the shallow landslide area, 

volume, runout distance, and depth were empirically calculated, providing evidence that 

supports the assertion of shallow landslides based on their depth. These analyses have 

bolstered the reliability of the inventory. 

 

Determination of suitable runout distance method was necessary to achieve a correct 

shallow landslide moving. It is essential to acknowledge that the empirical method has 

given comprehensive performance with good prediction and less calculation time in this 

study. Empirical-statistical methods will continue to attract more attention and proliferate 

rapidly in the future runout distance assessments. Flow-R 1.0.0 software enabled to 
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prepare runout probability map. Thanks to Flow-R software, determination of runout 

probability significant improvements in runout analyses.  

 

It should not be neglected that focusing of determination of shallow landslide initiations, 

which is a comprehensive survey, is the first and an important step in this study in order 

to accomplish an appropriate modelling stage. In fact, possible shallow landslide initiation 

detection and estimation of the propagations of shallow landslides initiations are 

integrated steps based on the shallow landslide susceptibility in this study. Machine 

learning logistic regression method for the landslide susceptibility map preparation was 

able to improve accuracy and efficiency in identifying possible failure initiations. 

Although Flow-R software enables to automatically detect initiations, it doesn’t consider 

the effects of the rainfall, vegetation, and loose source materials (Yin, Zhou and Peng, 

2023). Failure initiations were determined by Flow-R in the study of Horton et al. (2013), 

Park, Lee and Woo (2013), Jiang et al. (2021), Xu et al. (2022), Sharma et al. (2023), 

Giano, Pescatore and Siervo (2021), Charbel and El Hage Hassan (2021) and Do et al. 

(2020). In addition, user-defined initiations gave valuable results in the study of 

Pastorello, Michelini and D’Agostino (2017), McCoy (2019), Paudel (2019), Polat and 

Erik (2020), Ali et al. (2021), Bera, Melo and Guru (2021), Putra et al. (2022), and Liu et 

al. (2022). User-defined initiations by considering flow accumulation and slope gradient 

(Pastorello, Michelini and D’Agostino, 2017), the landslide susceptibility map (Paudel, 

2019) and sentinel images (Putra et al., 2022), remote sensing and slope angle distribution 

(Ali et al., 2021) and GPS and multi-temporal satellite images (Bera, Melo and Guru, 

2021), considering the landslide susceptibility map, and previous studies and D-InSAR 

technology (Liu et al., 2022). Note that shallow landslides initiations, were associated 

with the shallow landslide susceptibility >=0.70 and past detected shallow landslides, 

were used as user-defined initiations in this study. Shallow landslides initiations detection 

results indicate that broad-leaved forests are dominantly covering the shallow landslide 

initiations for Beycuma and Ihsanoglu sub-basin. Unlike the other two sub-basin, shallow 

landslides initiations coved by mixed forests stand out in Egerci sub-basin in the initial 

analyses. Recent runout model results also show that runout distances of shallow 

landslides have had potential extensive damages on both natural and human made 

systems. Although many highways, bridge, electrical transmission lines are designed to 

withstand the shallow landslides, severe shallow landslides may damage them. In fact, 
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shallow landslides directly threaten the safety of the not only transportation roads and but 

also residents. The shallow landslide occurrence is one of serious the geological disasters 

in the study area. Therefore, it is very critical to detection of vulnerable areas in terms of 

shallow landslides hazards. It has become clear that this area will need a master disaster 

management strategy. 

 

In addition, the model results, based on the subject of climate change, which is another 

significant part of the dissertation, have been thoroughly examined in following 

statements. There has been observed many shallow landslides which are triggered 

because of extreme weather events in recent years. Therefore, it is necessary to investigate 

that whether there has been a salient increase the number of shallow landslides events or 

not. Climate researchers also warns that climate change would have wide ranging effects 

on shallow landslides. How a changing climate will affect shallow landslides runout 

distance is not only stay an important investigation question and but also briefly outlined 

by developing a practical approach in this study. On improving shallow landslides 

resilience in the face of climate change is possible by evaluating with RCP precipitation 

scenarios. Therefore, RCP precipitation scenarios were considered in this study analyses.  

Detection of potential runout distances of shallow landslides by connecting with RCP 

scenarios was particularly attractive to researcher to bring out the best that hazards will 

be estimated. It is possible to claim that the evaluation of the RCP precipitation values is 

valuable contribution to shallow landslides the future runout distance estimation in this 

study because this study offers a view about assessing climate change and shallow 

landslide runout topics together. These values were utilized together with previous 

detected probable initiations which were obtained from shallow landslides susceptibility 

analysis. RCP scenarios for climate change in Eocene flysch facies indicate a decrease in 

precipitations which will cause a decrease in shallow landslides initiations. It should be 

also noted that shallow landslides initiations depend on RCP scenarios precipitations 

changing at determined time ranges while keeping others criteria at their same values in 

this study. Therefore, the validity and suitability of the scenarios were deeply questioned. 

This part of the study reveals that in Ihsanoglu sub-basin, shallow landslides, which 

triggered by precipitation, will not occur since shallow landslides initiations will not be 

observable according to RCP precipitation scenarios in the all determined periods. The 

divergences between shallow landslides initiations which including the effects of RCP 
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4.5 and 8.5 precipitation scenarios for Egerci sub-basin and Beycuma sub-basin are clear. 

Landslide initiations decreased with time and became by far the least frequent or even 

absent event at the 2044-2063 period for sub-basins. However, when seen as a whole, it 

is apparent that possible landslide initiations will rise again after 2044-2063 timeframe in 

both sub-basins. Obtained results obviously indicate that short after a detection of failure 

initiations for possible landslide events, some areas will experience significant landslide 

runout distance, in the majority of periods, will reduce over time. Extreme precipitation 

events have become more frequently occur in Türkiye. However, it was revealed that if 

the general rainfall frequency tends to decrease, landslides frequency will also decrease. 

The proposed runout model can not only give a view of the examination of climate change 

by considering RCP scenarios precipitation values but also prove the model success by 

obtaining reasonably results in empirical methods. Therefore, obtained predictive models 

might assist in mitigating potential landslide hazards in the future. Nevertheless, there are 

some critical points that need to be separately emphasized in below:  

 

First, the cautionary runout model results highlight potential shallow landslides runout 

distances associated with RCP scenarios. Therefore, it is possible to highlight that the 

implementation of preparation of hazard maps by integrate RCP precipitation scenarios 

and shallow landslides runout distances can give opportunity the deeper analyses.  

 

Second, RCP precipitation runout models depends on the CCSM4 model data in this 

study. Unlike ensemble of models from CMIP5, CCSM4’s monthly and annual data can 

be obtained from the NCAR website. However, CMIP5 data is also used many climate 

researches (Okkan and Kirdemir, 2016; Yunus et al., 2021; Wijaya et al., 2021; Jemec 

Auflič et al., 2023). If data which composed of ensemble of models from CMIP5, is used 

for this study, it should be considered and evaluated only annual data changes because of 

data availability or limitation. For instance, data can be obtained that annual precipitation 

data of 2025-2044 compared to the reference period 1986-2005 for CCSM4 and CMIP5. 

It is possible to find them by comparing data; however, CMIP5 needs initial precipitation 

so it leads to many blunders. Even if initial conditions can be assumed, make comparisons 

based on the data from the CCSM4 model. 
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Third, when separately conducting an assessment of CCSM4 RCP 4.5 and 8.5 scenarios 

annual data for shallow landslides initiations detection, although the omission of this 

study due to heightened uncertainty, requisite investigations have been undertaken.  

 

Fourth, the longer sub-basins are exposed to precipitations, the more likely it is for them 

to become tended to occurring landslides. Therefore, it is not really surprising that 

landslides frequencies were high in the past. Comparisons of the extreme precipitation’s 

values in May 1998 and November 2023, which triggered shallow landslides in the study 

area, were an important piece of evidence supporting the information about landslides 

frequency changes trends. Wang et al. (2024) showed evidence of frequency of shallow 

landslides occurring in 2014 was higher than the frequency of shallow landslides 

occurring in 2021 for their study area. 

 

Fifth, among those three sub-basins, Ihsanoglu sub-basin were determined to have the 

highest impacted area from runout distances in the initial analyses. The sub-basin might 

not be affected by shallow landslides because possible shallow landslides initiations in 

this sub-basin could not detect to estimate probable mobility in the RCP precipitation 

scenarios. Nevertheless, Ihsanoglu sub-basin will be probably not affected the landslides 

problems in the future that it is a debatable topic because while other sub-basins will be 

affected landslide problem in the future, it is not possible. However, landslide frequency 

decrement is not surprise. 

 

Finally, the prediction of the future runout distance possibilities with RCP climate change 

scenarios is a significant distinguishing feature of this study from other studies. On the 

other hand, it is necessarily highlighted that results were the broadcasted images with 

respect to probable runout distances based on RCP climate change scenarios by using 

empirical-statistical method. RCP 4.5 and 8.5 precipitation scenarios have direct effects 

on determination of shallow landslides initiations and their runout distances. Therefore, 

if future events deviate from the envisioned scenarios, the outcomes are susceptible to 

change in terms of both failure initiations and their runout distances. 
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Consequently, it is pivotal to highlighting that runout analyses have given rise to a 

comprehensive assessment in the study. Demonstration of shallow landslide runout may 

be the easiest way to resilience of the hazards. There is growing evidence that detecting 

of landslide runout distances enable to fix the problems because well visualised runout 

views can help researchers recognize whether they should take time to take precautions 

or not because preparation of hazard management framework is more necessary than 

previously thought in the landslide’s literature. Therefore, this study vindicates that 

runout analysing is useful for future hazard management studies. This study also helps to 

acknowledge software contribution to analyses in terms of improving the excess time 

consumption at which researchers can evaluate the probability of runout distance of 

shallow landslides. Runout distances have not been ruled out in many studies. Taking into 

account the success of the analyses results, runout will be more considered in many 

researches because runout distance probability with susceptible areas enable to make 

taking decision on dangerous regions more practical. 

 

 Limitations of Study 

All assessments made within the Ph.D. thesis are based on the detailed information 

provided in the relevant sections, relying on various sources, and the databases they have 

created as a result of these sources. All limitations applicable to these data, along with 

potential deficiencies and inaccuracies within the data, may impact the assessment results 

presented in this thesis. Furthermore, variations in such as topographic and climatic 

conditions over time due to natural processes and/or human factors might lead to 

differences in the results presented within the thesis. Undetected shallow landslides are a 

significant problem. Although disappearance of traces of some shallow landslides have 

challenged, many clues shallow landslides still exist to determine the runout distance of 

shallow landslides for back analyses. Preferred runout method might be also often 

considered to be extremely advantageous but in fact, they may have complex constructed 

process that are acknowledge as their disadvantages during the studies.  

 

In addition, preparation of the susceptibility map, which have an important role in 

detection of failure initiations, was not attempted with other machine learning models 

rather than LR in this study. Although it is difficult to decide exact the best machine 
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learning approach to reliably forecast of landslide susceptibility mapping, several ML 

methods can be compared and selected optimal method (Ghasemian et al., 2022).  

 

Moreover, DEM resolution is an important factor to accurately measure runout distances 

(Charbel and El Hage Hassan, 2021). Although a low spatial resolution is prevailing and 

acceptable such as 25 m among the researches, it should be noted that a high spatial 

resolution data such as 10 m is more accurate with respect to reliable estimation of runout 

distance (Horton et al., 2013). Models are also affected by variations in DEM data in this 

study. Working with very high-resolution data has led to the observation of events on the 

computer that were not predictable. If it is possible to possess a robust computational 

computer, more reliable results may also more promptly be provided. Furthermore, due 

to computational difficulties, it has been observed that dividing the area may be more 

adventageous. Runout distance results have also been examined by dividing the area into 

5 and 7 sub-basins. Nevertheless, considering that the area does not show significantly 

different characteristics, it has been deemed appropriate to continue the research by 

dividing it into the minimum number of sub-basins. At this stage, the question of whether 

sub-basins can also be examined together has arisen by considering determined a criteria 

such as topography. However, as there was an intention to distinguish based on sub-

topographic sub-basins, the areas within the divided basins did not decrease adequately. 

This is anticipated to pose computational challenges in the study. 

 

In addition, in some small area observations in back analyses, determined failure 

initiations were not able to show propagation stage both at 10 m and 25 m spatial 

resolution in some areas. National or environmental features may stop the propagation by 

blocking and deflecting because DEM don’t show the bare Earth surface (Putra et al., 

2022).  

 

Moreover, Feranie et al. (2021) also claimed that volume might shows decreasing change, 

if the rainfall intensity increases in the area. It leads to decrease of shallow landslides 

runout distance and maximum velocity.  
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Furthermore, learning about relation between RCP precipitation and landslides runout in 

it is one of the best valuable research topics in landslides studies but there is a lot of 

uncertainties and downcaling bias in terms of RCP precipitation data. Considering the 

size of the study areas, it was not possible to use high resolution data because of the 

computation cost and time. Runout models, consist of RCP precipitation scenarios, 

assume that all other impact factors of landslides occurrence will remain unaltered. Kim, 

Yung and Kim (2023), Janizadeh et al. (2023) and Mohamed-Yusof et al. (2024) also 

discussed the same limitation in their study. They also only consider the climate change 

scenarios, while they neglect the other landslides occurrence factors changing. However, 

many factors might trigger the occurrence of shallow landslides and they might change. 

For instance, vegetation and human effects might cause change land use in the future. 

Although it was not accepted that some locations in the study area were no shallow 

landslide initiation points, they are likely to have shallow landslide initiation points. 

Roccati et al. (2021) also reached that approximately 80% of failures triggered by shallow 

landslides on slope gradients where no previous shallow landslides had been observed in 

their study area. These results warn researchers about similar type shallow landslides 

events and encourage to study on prioritize mitigation measures by considering these 

runout distance results. 



143 

 

8. CONCLUSION AND FUTURE WORK 

 

 Conclusions 

Shallow landslides with long runout distances have increasingly jeopardized not only 

human safety and but also essential systems, facilities and infrastructures. This research 

presented a statistical-empirical runout distances modelling of shallow landslides in the 

Eocene flysch facies, Türkiye. Firstly, on the basis of short field survey, Google Earth 

imagenery, satellite images and previous studies, the shallow landslide inventory map 

was prepared. Secondly, Eocene flysch facies were divided into three sub-basins. They 

are Egerci, Beycuma and Ihsanoglu. It was also ensured that whether their statistical 

descriptions of the inventories are appropriate of the data resolution of the study or not. 

Thirdly, shallow landslides susceptibility maps were separately prepared for three sub-

basins by using machine learning LR. Fourthly, shallow landslide susceptibility maps 

were utilized by determining the critical threshold so that probabilistic shallow landslide 

initiations can be detected and transformed into maps that enable to practically interpret 

their possible maximum runout distances. Some assumptions have been made to 

determine the threshold of the shallow landslide initiations from the susceptibility maps. 

0.70 was assumed as the critical susceptibility value in order to be used as shallow 

landslides initiations in propagation analyses. Moreover, RCP 4.5 and 8.5 scenarios have 

been included in the work. Cells with both shallow landslide susceptibility greater than 

or equal to 0.70 and precipitation value greater than or equal to 81 mm were determined 

as shallow landslides initiations in RCP runout models. Finally, empirical-statistical 

models of shallow landslides were constructed in order to examine runout distances of 

them by calibrating the suitable parameter sets. The Modified Holmgren flow direction 

algorithm and SFLM parameters are a crucial indicator of the mobility in this dissertation. 

Runout analyses were implemented for two parameter configurations, which are debris 

flow and shallow landslide. While dh is equal to 1 in both model configurations, x was 

used as 4 and 25 for debris flows and shallow landslides, respectively in all sub-basins. 

Travel angles are 24º, 13º and 10º for Egerci, Beycuma and Ihsanoglu, respectively. The 

results of runout analyses were interpreted for both models with RCP and models without 

RCP. Main results are summarized as follows: 
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i. The detection of initial points of shallow landslides in this research was essential 

for observation of high runout probability zones.  

ii. Although detected possible shallow landslides initiations generally tend to 

propagate, some initiations cannot be fully mobilized because of some reasons 

such as topographic obstacles.  

iii. The debris flows and shallow landslides models can obtain more failure initiations 

with more runout distances during the initial propagation stage.  

iv. The model results were tested whether the empirical runout model can correctly 

predict the observed runout distances. R-squared level of 0.64 and 0.62 were 

estimated for debris flows and shallow landslide models, respectively in Eocene 

flysch facies.  

v. Shallow landslides initiations were ample in broad-leaved forests and mixed 

forests in the initial analyses. Shallow landslides initiations are generally at slope 

gradient degrees of 23, 15 and 13 for Egerci, Beycuma and Ihsanoglu, 

respectively. Additionally, in sub-basin Beycuma and Ihsanoglu, lower elevations 

can be considered as the initial points, while in sub-basin Egerci, the probability 

of shallow landslides occurring at higher elevations is higher in the initial 

analyses. It is necessary to recall that the studies defined as initial analyses are 

critical analyses that do not include RCP scenarios. 

vi. When runout models by reckoning with RCP scenarios are analysed in terms of 

possible initiations’ altitude, slope gradient and land cover, the probability of 

shallow landslides occurring in high-altitude areas will be higher in both Egerci 

and Beycuma sub-basins. In Beycuma sub-basin, significant changes in slope 

gradient values will be not expected at the initiation points of shallow landslide, 

while in the Egerci sub-basin, a significant decrease in slope gradient values 

compare to initial analyses will be expected. Also, it is reasonable to expect that 

broad-leaved forests will show decreasing trend in terms of occurring of shallow 

landslides in the future. 

vii. Runout models were developed by considering climate change RCP scenarios. 

Climate changes will negatively affect the study areas in terms of rainfall triggered 

shallow landslides in Egerci and Beycuma sub-basins according to RCP 4.5 

scenarios, especially in the 2025-2044 time period. Both analyses with RCP 4.5 
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and 8.5 scenarios indicate that shallow landslides initiations and their runout 

distances show decreasing trend in the future. 

 

In conclusion, runout distances predictions with including RCP scenarios may offer 

insights into the future trajectory of disaster management in the study area. It is also 

believed that the results obtained from this study will contribute significantly to 

mitigation or preparedness strategies to be carried out by experts, aiming to circumvent 

the negative effects of future landslide events due to climate changes or alleviate potential 

losses them in the sub-basins by taking them into consideration. Therefore, it contributes 

to sustainable resilience of landslide hazard in this area. It will also be expected that 

researches which investigate the relationships between landslide runout distance and RCP 

scenarios, will brisk up gaining popularity among landslide researchers.  

 

 Recommendations for Further Works 

It is believed that the applied methodology in this study contributes to the development 

of methods aimed at reducing landslide-induced damages at the sub-basin scale for future 

study. Prospective improvements, which can be suggested to be made in the future in 

order to get rid of this thesis scope’s challenges and clarify the possible advancements by 

opening new horizons about this topic, are listed below: 

 

i. Using different machine learning methods will be applied for this region in order 

to reach the best accuracy of the shallow landslide susceptibility map. 

ii. If developing new climate models, which offer more detailed RCP daily forecast 

values, the threshold of RCP precipitation might be also investigated to get in-

depth research by reaching more accurate value.  

iii. PGA values in the study area show that earthquakes are the other possible reason 

for triggering shallow landslides. Therefore, this region can also be investigated 

in terms of earthquake-triggered landslide runout probability. 

iv. This study area can also be investigated on wildfire triggered shallow landslides 

runout distances by detected of forest fire risk areas.  
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