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ABSTRACT

DYNAMIC TASK ALLOCATION AND PATH PLANNING FOR
MULTI-AIRCRAFT MISSIONS

Dogan CANDEMIR

Master of Science, Computer Engineering
Supervisor: Suat OZDEMIR
January 2024, 79 pages

Military aircraft are advanced vehicles capable of performing various missions, primarily in
air-to-air and air-to-ground scenarios. Before takeoff, a mission plan is prepared by ground
crews, and pilots are expected to follow the planned route during flight. Adherence to the
mission plan is critical, especially for combat aircraft, for the mission’s success and the
pilots’ safety and health. However, due to unknown threats and dynamic environmental
changes during flight, it may only sometimes be possible to follow the pre-planned route.
Especially in missions involving multiple aircraft, a new plan must be prepared for each
aircraft. In such situations, the leader pilot in charge of the mission is expected to assign
tasks to other pilots and update the route for each aircraft accordingly. This thesis focuses on
this problem and presents a study on dynamic task assignment and route planning to be used

when the pre-prepared mission plan becomes invalid.

To tackle the challenges posed by both single and multiple aircraft missions, we have
developed a new approach called Narrowed Regions-based Bidirectional Rapidly Exploring
Random Tree (Narrowed-BiRRT). This method involves a matrix-based target assignment

process for dynamic task allocation, followed by steps for route planning for the aircraft. The
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obtained routes are then optimized using a height optimization algorithm to prevent sudden
altitude changes. This enhances the traceability of the routes generated by our developed

method, making them more likely to be followed by real aircraft.

We tested the developed methods in scenarios, beginning with single-aircraft missions and
progressively escalating threat levels in multi-aircraft situations. The algorithm showcased a
100% convergence rate in all test scenarios, highlighting its capability to generate routes in
any environment where a solution was identified. Our method was tested in a real scenario
involving two aircraft and three threats, producing an optimal route of up to 10 km for each

aircraft in a total of 1.4 seconds according to RRT, RRT* and RRT-Connect.

As a result, the methods developed in this thesis consistently produce optimal,
environmentally responsive, threat-resistant, and adaptable routes tailored to different
systems. The presented methodology offers practical solutions for single and multiple
aircraft missions, making it applicable in autonomous flight systems for military and

potentially civilian applications.

Keywords: RRT, RRT-Connect, Path Planning, Mission Planning, Task Assignment
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OZET

COK UCAKLI GOREVLER ICIN DINAMIK GOREV TAHSISI VE
ROTA PLANLAMASI

Dogan CANDEMIR

Yiiksek Lisans, Bilgisayar Miihendisligi
Damsman: Suat OZDEMIR
Ocak 2024, 79 sayfa

Askeri ucaklar hava-hava ve hava-yer basta olmak iizere genis yelpazede bir¢ok gorevi icra
edebilen gelismis ucaklardir. Havalanmadan Once yer ekipleri tarafindan bir gorev plani
hazirlanir ve pilotlardan ugus sirasinda bu planda yer alan rotay: takip etmeleri beklenir.
Gorev planina baglilik, ozellikle savas ugaklar icin, gorevin basaris1 ve pilotlarin giivenligi
ve saghigi acisindan kritiktir.  Ancak, ucgus sirasinda bilinmeyen tehditler ve dinamik
cevresel degisiklikler nedeniyle daha dnce planlanmis rotayi takip etmek her zaman miimkiin
olmayabilir. Ozellikle birden fazla ucagin yer alacagi gorevlerde her bir ucak icin yeni plan
hazirlamak gerekir. Boyle bir durumda gorevi komuta eden lider pilotun diger pilotlara gorev
atamasi ve buna gore her ugagin rotasinin giincellenmesi beklenir. Bu tez kapsaminda bu
probleme odaklanarak daha once hazirlanmig gorev planinin gegersiz oldugu durumlarda

kullanilmak iizere dinamik gorev atama ve rota planlama ¢alismasi yapilmigtir

Hem tek ugakli hem de c¢ok ucgakli gorevlerin zorluklartyla basa ¢ikmak i¢cin Daraltilmig
Bolge Tabanli Cift Yonli Hizlica Kesfeden Rastgele Agac adli yeni bir yaklagim
geligtirilmigtir. Bu yontem, dinamik gorev tahsisi i¢cin matris tabanli bir hedef atama

islemi yapildiktan sonra ugaklar icin rota planlamanin adimlarini icermektedir. Elde edilen
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rotalar daha sonra yiikseklik optimizasyon algoritmasi ile optimize edilerek ani yiikseklik
degisiklikleri engellenmigtir. Bu da gelistirdigimiz yontem ile elde edilen rotalarin gercek

ucaklar tarafindan takip edilebilirligini arttirmagtir.

Gelistirilen yontemler, tek ucakli gorevlerle baslayarak tehdit seviyeleri artacak sekilde ¢ok
ucakli senaryolarda test edilmigtir. Algoritma, tiim test senaryolarinda %100 yakinsama
oram gostererek ¢oziim bulunan her ortamda rota iiretebildigini gostermistir. iki ucakli ve
tic tehditli gercek bir senaryoda yontemimiz test edilmis ve her iki ugak icin de toplam 1.4
saniyede uzunlugu 10 km’yi bulan RRT, RRT* ve RRT-Connect algoritmalarina gore daha

optimal bir rota tirettigi goriilmiistiir.

Sonu¢ olarak, bu tezde gelistirilen yOntemler, tutarli bir gsekilde optimal, c¢evresel
etkenlere kars1 duyarli, tehditlerden etkilenmeyecek ve farkli sistemlere uyarlanabilir rotalar
tiretmektedir. Sunulan metodoloji, tek ve ¢oklu ucakh gorevlerde pratik ¢oziimler sunarak

askeri ve potansiyel olarak sivil uygulamalarda otonom ugus sistemlerde kullanilabilir.

Anahtar Kelimeler: RRT, RRT-Connect, Rota Planlama, Gorev Planlama, Gorev Atama
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1. INTRODUCTION

Fighter aircraft, often considered the epitome of military aviation, have been instrumental
in shaping the dynamics of modern warfare [1]. These highly sophisticated machines are
purposefully designed and equipped to execute various missions, including air-to-air combat,
air-to-ground strikes, and reconnaissance [2]. The standard operating procedure involves
meticulous pre-mission planning, formulating a comprehensive strategy, and a specific flight

path is determined based on mission objectives and operational requirements [2].

However, modern warfare’s fluid and dynamic nature presents formidable challenges to
the precise execution of pre-planned missions. Combat environments are characterized
by inherent uncertainty, rapidly changing conditions, and unpredictable enemy actions,
necessitating real-time adjustments to the original mission plan [3]. In this context, making
decisions on the fly and exhibiting flexibility is paramount. Commanders and pilots
must possess the agility to make in-the-moment adjustments in the field, altering targets,

reallocating resources, and adapting flight paths in response to evolving circumstances.

The limited availability of timely and accurate information further complicates the
decision-making process, as commanders must contend with processing and analyzing
incoming data, assessing situational developments, and considering factors such as enemy
movements, weather conditions, and resource availability [4]. Simultaneously, pilots are
tasked with interpreting and implementing real-time instructions while ensuring the safe
execution of operational requirements. The need for swift decision-making and adaptability
places tremendous pressure on commanders and pilots alike, requiring a delicate balance

between achieving mission objectives and managing operational constraints and risk [5].

In response to these challenges, there is a compelling need for advanced decision support
systems that facilitate dynamic mission planning in modern fighter aircraft. These systems
should be able to generate new flight paths on the fly if deviations from the initial plan

are necessary during the mission. Such adaptability ensures that missions can be executed



effectively, even in the face of unforeseen circumstances, thereby enhancing the overall

effectiveness of fighter aircraft in contemporary combat scenarios.

1.1. Scope Of The Thesis

The primary objective of this thesis is to address the challenges associated with dynamic task
assignment and route planning in multi-aircraft military missions. Multi-aircraft missions
involve complex tasks that demand high coordination among aircraft. Despite preparing a
mission plan before takeoff, unforeseen actions by hostile elements and the dynamic nature of
the combat environment necessitate the redefinition of missions and the determination of new
routes for the aircraft. This vibrant and unpredictable context underscores the importance
of developing effective strategies to adaptively allocate tasks and plan optimal flight routes

during multi-aircraft military operations.

In this thesis, we developed the Narrowed Regions-based Bidirectional Rapidly Exploring
Random Tree (Narrowed-BiRRT) algorithm, a method applicable to single and multi-aircraft
missions in 3D dynamic and changing environments. The algorithm takes parameters such as
the current positions of aircraft, target points, and identified threats in the environment, along
with the instantaneous velocities of the aircraft, which are used to determine the narrowed

regions.

We developed a target assignment method for multi-aircraft missions requiring task
distribution among the aircraft. Calculating distances between aircraft and targets and
creating a matrix, each aircraft is assigned to its nearest target. This assignment occurs at the
beginning of each sampling iteration during the route planning process, allowing our method

to facilitate real-time task sharing among aircraft in response to environmental changes.

Following generating a route for each aircraft with Narrowed-BiRRT, we apply altitude
optimization to the waypoints constituting the route. This optimization aims to ensure a
smoother increase in altitude for aircraft following the route, as abrupt changes in altitude
can increase G-forces, posing a risk to the pilot’s health. Therefore, achieving a smoother
transition in altitude is crucial for the traceability of the route.
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1.2. Contributions

* The proposed approach restricts sampling to relevant regions, regardless of the
problem domain’s size. This targeted sampling increases the likelihood of calculating
the shortest path between the starting and ending points, optimizing the search process
and offering computational advantages. Thus, it presents a promising method for path

planning in diverse applications.

* This study leads to a shorter path planning time compared to other RRT-based
algorithms. By excluding nodes from irrelevant regions within the generated tree, the
total number of nodes is reduced. As a result, fewer searches are needed to derive the

route.

* This study enables dynamic target assignment, eliminating the need for re-planning
when missions must be reassigned among aircraft. This capability reduces the overall
route planning time, offering increased flexibility in adapting to changing mission

requirements.

* This study pioneers the exploration of multi-aircraft missions centered explicitly
around combat aircraft. This work breaks new ground in the field, unlike previous
research, which did not delve into generating multiple routes using the RRT algorithm
with multiple aircraft or robots. Addressing the unique challenges and complexities
inherent in multi-aircraft missions provides valuable insights that pave the way for

future research in autonomous path planning for military applications.

* We extensively tested the recommended method across numerous scenarios, and
the results underscore the practical applicability of Narrowed-BiRRT in real-world
scenarios. The outcomes affirm that the proposed approach provides viable solutions
for practical implementation, validating its efficacy and relevance in addressing
complex challenges in various scenarios. This empirical validation contributes to the
credibility and utility of the Narrowed-BiRRT algorithm, emphasizing its potential for

effective real-world deployment.



1.3. Organization

The organization of the thesis is as follows:

* Chapter 1 presents our motivation, contributions and the scope of the thesis.

* Chapter 2 provides insights into mission planning, detailing the methods employed
in single and multi-aircraft scenarios. Distinctions between single and multi-aircraft
missions are highlighted, and the feasibility of route planning for aircraft is discussed.

The section concludes with an overview of commonly used path-planning methods.

* Chapter 3 presents a comprehensive literature review of existing route planning

studies. The studies are mainly consists of sampling-based approaches.

* Chapter 4 delves into the developed methodologies, outlining the step-by-step process
for creating a route from scratch. This section include Environment Creation, Task

Assignment, Narrowed Regions Strategy, Path Creation, and Altitude Optimization.

* Chapter 5 focuses on the experimental evaluation of the proposed methodology.
Initial assessments are conducted for single-aircraft missions, followed by an in-depth
analysis of multi-aircraft missions. We evaluated the study in completeness, efficiency,

smoothness, optimality, robustness, and adaptability.

* Chapter 6 discusses the outcomes of the study. Achievements are highlighted, and the

section addresses the study’s limitations and potential areas for improvement.



2. BACKGROUND OVERVIEW

Route planning has garnered significant attention as a research focus for various vehicles.
Although the field of robotics boasts a plethora of studies on route planning, research specific
to military aircraft remains relatively sparse. Military aircraft, being vehicles with unique
mission profiles distinct from other counterparts, require a comprehensive understanding
of their roles. So, this section initiates by delineating the characteristics of single and
multi-aircraft missions, thus providing a more precise problem definition. Subsequently,
we discuss the applicability of our developed method, considering the distinctive features of
military aircraft missions. Finally, we review existing methods in the literature, elucidating

the rationale behind the necessity for our proposed approach.

2.1. Mission Planning

Mission planning [2, 6] for aircraft involves systematically determining the optimal course
of action to achieve specific objectives within a defined operational context. This intricate
task encompasses a range of considerations, such as defining mission objectives, assessing
environmental factors, determining routes, allocating resources, and addressing potential
threats. The planning process integrates various parameters, including aircraft capabilities,
fuel efficiency, payload capacity, and mission constraints. In a military context, mission

planning for aircraft often involves:
* The coordination of multiple assets to accomplish complex objectives.
* Considering factors like airspace restrictions.
* Threat assessments.
* Strategic goals.
Precision and efficiency are paramount in mission planning, as they directly impact the

success of operations and the safety of the aircraft and its crew. Advanced technologies,
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such as route optimization algorithms and real-time data analysis, are crucial in enhancing

the effectiveness and adaptability of mission planning for modern aircraft.

Missions in military operations can be divided into single-fighter and multi-fighter missions.
Despite their differences, these two approaches are essential for military strategies and

tactics.

2.2. Single-Aircraft Missions

In single-fighter missions, a single aircraft is used to engage enemy targets, while in
multi-fighter operations, several aircraft are coordinated to achieve a common objective.
Single-fighter missions focus on individual pilot skills, situational awareness, and
adaptability. The individual aircraft operates independently, using its speed, maneuverability,
and armament to engage and neutralize enemy threats. Figure 2.1 depicts a single-aircraft
mission scenario. The terrain includes air defense systems and a tank. As part of its mission,
the aircraft must destroy the tank. The hemispherical areas covering air defense systems also
show their coverage area. If aircraft flies through these areas, it is likely to be shot down.
Therefore, the mission should be performed outside these areas. The locations the aircraft
must follow to hit the tank and the path it must take between the locations are marked with

dashed lines.

Figure 2.1 Single-aircraft mission scenario.



2.3. Multi-Aircraft Missions

Multi-aircraft missions emphasize teamwork, coordination, and synergy between multiple
aircraft. These missions are designed to utilize the combined capabilities of the aircraft,
maximize combat power, and improve survivability. Multi-aircraft missions may include
tasks such as escorting friendly aircraft, conducting complex attack maneuvers, or engaging
multiple enemy targets simultaneously. Figure 2.2 depicts a multi-aircraft mission scenario.
Unlike Figure 2.1, this scenario has two aircraft and two tanks. Each aircraft moves forward
by pursuing the determined locations towards the target assigned to it. The paths that aircraft

must follow are determined according to the threats and each other.

Figure 2.2 Multi-aircraft mission scenario.

In both scenarios, a real three-dimensional environment is considered. It was determined
that the flight paths followed by the aircraft are determined through mission planning before
aircraft takeoff. The flight paths shown in Figure 2.1 and Figure 2.2 illustrate the trajectory
that the aircraft will follow during a specific time interval within the course of their missions.
The trajectory itself consists of a sequence of waypoints and legs. Each individual point,
shown in black and blue, illustrates the specific locations that the aircraft must fly through,
representing waypoints. The dashed lines between these waypoints describe the flight path
segments that the aircraft must follow, called legs. The threats are shown as hemispheres

symbolising the coverage areas of the stationary air defence systems. Flying through these



regions not only endangers the mission, but above all the safety of the pilot. While certain
threats are assumed to be known during mission planning, others are assumed to be detected
by the aircraft’s sophisticated radar and sensor systems during mission execution. It is
assumed that the execution of the existing mission plan is dangerous in view of the new

threats, so that a new trajectory must be derived to reduce the risk of mission execution.

2.4. Applicability of Path Planning for Aircraft

The applicability of path planning for aircraft is a critical facet of modern aviation,
encompassing the strategic orchestration of trajectories to navigate through complex and
dynamic environments. As aviation technology advances, the need for efficient and
optimized path planning becomes increasingly pronounced. Path planning for aircraft
involves systematically determining a route from an initial point to a designated goal while
accounting for various constraints and environmental factors. This process is integral
to optimizing flight paths, ensuring collision-free navigation, and mitigating potential
risks, such as conflicts with other air traffic or hazardous terrain. Furthermore, path
planning contributes significantly to enhancing fuel efficiency, minimizing operational
costs, and improving overall flight safety. In both single and multi-aircraft missions, the
judicious application of path planning algorithms aids in achieving mission objectives,
responding to dynamic threats, and optimizing the allocation of resources. The ongoing
development of path planning methodologies highlights its crucial role in shaping the
trajectory of modern aviation, propelling advancements in autonomous flight, and bolstering
the operational capabilities of fighter aircraft. As technology progresses, the significance
of efficient and optimized path planning becomes increasingly pronounced in enhancing the
strategic navigation of fighter aircraft through complex and dynamic environments. This
evolution optimizes flight paths for individual fighter aircraft and contributes to the overall
effectiveness of mission planning, ensuring collision-free and secure navigation in dynamic
scenarios. The focus on fighter aircraft underscores the importance of path planning in
maximizing operational efficiency, minimizing risks, and improving the overall effectiveness

of military missions [7-10].



Figure 2.3 Aircraft Radar and Electro Optic Sensing System.

Achieving heightened situational awareness in modern aviation is made possible by
integrating advanced radar and electro-optic systems [11, 12]. These cutting-edge sensor
technologies empower aircraft to explore vast regions, comprehensively understanding
the operational environment. Radar systems enable the detection of objects over
extended distances, allowing for early threat identification and avoidance. Simultaneously,
electro-optic systems enhance visibility by utilizing visual and infrared sensors, further
expanding the spectrum of detectable elements. Furthermore, the seamless integration
of these systems with sophisticated avionics facilitates real-time data processing. This
processing capability enables the fusion of information from various sensors and supports
executing path-planning algorithms. The combination of extensive coverage, precise
detection, and swift data processing equips aircraft with unparalleled situational awareness,
enhancing their adaptability and decision-making capabilities in dynamic and challenging

operational scenarios.

In military aviation, the exchange of critical information among aircraft is orchestrated
through a sophisticated amalgamation of communication technologies. VUHF [13] radios,
serving as a fundamental component, enable secure and instantaneous voice communication,
facilitating essential coordination and ensuring real-time responsiveness during missions.
Furthermore, Data Link Systems [14], a pivotal advancement, empower aircraft to transfer
an extensive array of digital data seamlessly. Link 16 [15], a tactical data link system widely

adopted in military aviation, stands out for its ability to enhance interoperability by providing
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Figure 2.4 Data transfer between aircrafts.

a standardized platform for sharing crucial information among airborne platforms. This
sophisticated data link system enables the real-time transmission of tactical information,
including tracks, targeting data, and mission updates, fostering a networked environment
among participating aircraft. The integration of Link 16 not only enhances communication
efficiency within a formation but also contributes to a comprehensive and shared situational

awareness, ultimately bolstering the effectiveness and success of military missions.

Utilizing the specified radar and electro-optical system capabilities, the system can detect
threats in the environment and take appropriate actions. Furthermore, in multi-aircraft
missions, sharing data obtained by the sensors of each aircraft enhances situational
awareness. All acquired data is centralized on the commanding aircraft, processed using
advanced avionic equipment, and used to formulate new mission plans. This enables the
mission commander to promptly assign tasks to other pilots and transmit new flight routes,

facilitating the seamless execution of the mission under challenging combat conditions.

10



2.5. Methods

Several path planning methods have been developed for various fields of application.
grid-based and sampling-based algorithms are commonly used algorithms. Among the
grid-based path planning algorithms, A*, Dijkstra, and D* Lite algorithms are widely used
[16]. However, it is common to use sampling-based methods in dynamic and unknown
environments. Probabilistic Roadmap (PRM) [17] and Rapidly-exploring Random Trees

(RRT) [18] are the most common sampling-based algorithms.

2.5.1. Grid-Based Methods

Grid-based path planning constitutes a prominent methodology in robotics and autonomous
systems, offering a structured framework for navigating complex environments. This
approach discretizes the environment into a grid of cells, each representing a distinct region
within the space. This division facilitates the representation of obstacles and free spaces
in a binary manner, simplifying the computational complexity of path-planning algorithms.
The process involves generating a grid map that characterizes the traversability of each cell,
distinguishing between areas occupied by obstacles and those accessible for movement. The
inherent simplicity of grid-based representations allows for integrating various path-planning
algorithms, making it a versatile and widely employed technique. Notably, grid-based path
planning shares an affinity with the cell decomposition method, wherein the environment is
decomposed into simpler geometric shapes, such as polygons or cells. This decomposition

aids in the identification of feasible paths and the navigation of intricate terrains.

VoronoiDiagrams: Voronoi diagrams [19] are geometric structures that partition a space
into cells based on proximity to a set of seed points. In a Voronoi diagram, each cell
encompasses the region closer to a specific seed point than any other set point. This
partitioning creates polygons, called Voronoi cells, where each cell represents the area
associated with a particular seed point. Voronoi diagrams find applications in various fields,

including computational geometry and path planning. In the context of cell decomposition,

11



Voronoi diagrams provide a means to divide an environment into distinct regions, simplifying
the representation of spatial relationships. In grid-based path planning, the Voronoi diagram
can be employed to create a graph representing the connectivity between regions, aiding in
efficient pathfinding. The boundaries of Voronoi cells can serve as guides for defining regions
of influence and navigation pathways, contributing to the overall efficiency and effectiveness

of grid-based path-planning algorithms.

Figure 2.5 Example of Voronoi Diagram [16].

DijkstraAlgorithm: Dijkstra’s Algorithm, a fundamental method in graph theory and
pathfinding, is widely employed in network and spatial analysis. It efficiently determines

the shortest paths between nodes in a graph with non-negative edge weights.

Let GG be the graph, V' be the set of vertices, and E be the set of edges. Each edge (u,v)
has a non-negative weight w(u, v). The Algorithm maintains two sets: .S (the set of vertices
whose shortest distance from the source is known) and () (the set of vertices whose shortest

distance is yet to be determined).

Initially, the distance from the source vertex s to itself is 0, and it is set to infinity for all other
vertices. The Algorithm repeatedly selects the vertex u from () with the minimum distance,
explores its neighbors, and updates their distances if a shorter path is found. This process

continues until all vertices are in S.

A x Algorithm: The A* [20] algorithm is a pathfinding algorithm that efficiently searches a
graph to find the optimal path from a starting node to a goal node. A* incorporates a heuristic
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Figure 2.6 Example of Dijkstra [16].

function, which estimates the cost from the current node to the goal. The algorithm uses both
the known cost from the start node and the estimated cost to the goal to prioritize nodes for
exploration. Unlike uninformed search algorithms like depth-first [21] and breadth-first [22]
search, A* introduces an informed approach by considering the heuristic information. The
heuristic guides the search toward nodes likely to lead to the goal, based on the available
local information. The algorithm dynamically evaluates nodes, considering both the cost
from the start and the heuristic estimate. A* guarantees optimality because the heuristic is
admissible, meaning it never overestimates the actual cost to reach the goal. An admissible
heuristic ensures that A* explores nodes in a manner that minimizes the total estimated cost,

leading to the discovery of the shortest path.

GOAL

Figure 2.7 Example of A* [16].
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In practical terms, A* is particularly useful for problems involving graphs where the cost
of moving between nodes can vary and where an efficient and optimal path is desired. The
algorithm efficiently balances exploration and exploitation, making it a versatile and widely

used tool in pathfinding applications.

2.5.2. Sampling-Based Methods

Sampling-based algorithms represent a category of path-planning methods that operate on
the principle of random sampling within the configuration space of a robot or vehicle.
These algorithms are particularly effective for solving single-query path planning problems,
where the objective is to find a collision-free path between a start and goal configuration.
The core idea involves generating a set of random samples in the configuration space,
checking their feasibility, and connecting them to construct a roadmap or tree structure
that represents possible paths. Several well-known sampling-based algorithms include
Probabilistic Roadmaps (PRM) [23], Expansive Space Trees (EST) [24, 25], Rapidly
Exploring Random Trees (RRT) [26], RRT* [27], RRT-Connect [28] and Sampling-Based
Roadmap of Trees (SRT) [29].

ProbabilisticRoadmaps(PRM): PRM, introduced by Kavraki [23], has proven to be a
pioneering approach in sampling-based methods for robotic motion planning. PRM takes
advantage of the cost-effectiveness of checking if a robot configuration is in a collision-free
space, focusing on arrangements within this free space. The algorithm employs coarse
sampling to generate roadmap nodes and fine sampling to establish edges representing
collision-free paths between these nodes. Subsequently, planning queries are addressed by
connecting user-defined initial and goal configurations to the roadmap, utilizing it to solve
path-planning problems efficiently. Initially relying on uniform random distribution for node
sampling, known as basic PRM, subsequent studies revealed the versatility of other sampling
schemes, including importance sampling and deterministic methods like quasirandom
sampling and grid-based sampling. PRM was initially designed as a multiple-query planner,

but modifications enable its use for single queries, where the roadmap construction is done
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incrementally and stopped upon answering the query. While PRM ensures probabilistic
completeness and demonstrates effectiveness across diverse problems, it may not always

be the fastest option for single-query scenarios.

Figure 2.8 An example of how to solve a query with PRM [16].

ExpansiveSpaceTrees(EST): EST algorithm is a sampling-based method employed in
motion planning for robotic systems. Introduced as an alternative to the PRM, EST focuses
on generating a tree structure within the configuration space, specifically in regions deemed
more likely to contribute to feasible paths. Unlike PRM, which relies on a roadmap of
discrete configurations, EST constructs a tree incrementally by selecting nodes based on their
expected contribution to free space exploration. EST originated as an efficient single-query
planner designed to quickly traverse the space between the initial configuration ¢;,;; and the
goal configuration ggoa. The developers initially did not use the acronym EST, adopting it
later, inspired by the concept of expansive” space from the algorithm’s theoretical analysis.
Primarily tailored for kinodynamic problems, EST is adept at constructing a single tree for
such problems. Recent planners have also leveraged or incorporated EST-based principles.
The algorithm has been demonstrated to be probabilistically complete. The construction of
trees involves selecting a configuration ¢ from the tree, sampling a random configuration g;,nq
in its neighborhood, and attempting a connection using a local planner. If successful, gung
becomes a vertex in the tree, and the connection (¢, ¢rnq) is added as an edge. This process
repeats until a predetermined number of configurations are added to the tree, ensuring an

effective exploration of the configuration space.
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Figure 2.9 Adding a new configuration to an EST [16].

RapidlyExploringRandomTrees(RRT'): RRT algorithm is a powerful and widely-used
motion planning technique suitable for high-dimensional configuration spaces. Initially
proposed as a single-query algorithm, RRT incrementally grows a tree rooted at the
initial configuration by repeatedly extending its branches towards randomly sampled
configurations. The algorithm’s key strength lies in its ability to rapidly explore vast

configuration spaces, efficiently finding feasible paths in complex environments.

® Grand

Figure 2.10 Adding a new configuration to an RRT [16].

RRT* extends the capabilities of RRT by incorporating a cost-to-come function during
the tree expansion, enhancing the optimality of the generated paths. This modification
enables RRT* to produce solutions that are feasible and near-optimal with respect to a given
cost metric. The addition of cost-awareness makes RRT* well-suited for scenarios where
optimizing the path based on specific criteria, such as minimizing travel time or energy

consumption, is crucial.

RRT-Connect is a variant of RRT designed for multi-query scenarios and is particularly
effective in solving problems requiring the connection of two configurations in a

high-dimensional space. By growing two trees simultaneously—one from the initial

16



configuration and the other from the goal—RRT-Connect efficiently explores the
configuration space and rapidly connects the two trees when a feasible path is found. This
characteristic makes RRT-Connect advantageous for scenarios involving frequent start and

goal configuration changes, demonstrating its versatility in dynamic environments.

Grand

Figure 2.11 Merging two RRTs [16].

Dynamic step size selection in the RRT algorithm involves adjusting the step size based
on the distance between the nearest node, ¢,,..-, and the randomly sampled configuration,
Grand- This adaptive strategy, driven by the chosen distance function, optimizes exploration
efficiency by employing larger step sizes for distant, collision-free configurations and smaller
ones for closer configurations. The sensitivity of RRT to the distance function underscores
its crucial role in guiding both the step size and sampling process, requiring a careful balance
between exploration depth and the number of added nodes, particularly in high-dimensional

scenarios.

Sampling — BasedRoadmapofTrees(SRT): The SRT planner is a strategic integration
of sampling-based methods tailored for both multiple-query planning, exemplified by PRM,
and single-query planning, represented by tree planners like EST and RRT. SRT optimally
combines these techniques, leveraging the local sampling schemes of tree planners to
construct a PRM-like roadmap efficiently. SRT can be viewed as a hybrid planner capable
of answering multiple queries by utilizing the preconstructed roadmap. It also functions as
a single-query planner for challenging problems where its construction and query-solving
costs surpass those of dedicated single-query planners. The roadmap construction involves
sampling tree roots uniformly in the free configuration space (() ) and growing the trees
with a sampling-based tree planner. Subsequently, edges between trees are added based on
local path connections and random tree neighbors, forming an undirected graph that captures
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the connectivity of ()f.... SRT’s versatility is underscored by its adaptability to various
sampling-based tree planners beyond RRT and EST, offering flexibility in achieving efficient

roadmap construction and query-solving.

Grand

Figure 2.12 An example of a roadmap for a point robot in a two-dimensional workspace [16].

Grid-based methods can provide fast results in a known environment. If the positions to
be included in the flight path are known, heuristic algorithms such as A* and Dijkstra can
be applied. Alternatively, a graph can be constructed using the Voronoi diagram, and path
planning can be performed using heuristic algorithms. However, in a dynamic environment,
pre-determined waypoints may end up in threat zones. Moreover, when a new graph is
generated using the Voronoi diagram, positions the aircraft cannot pass through may be
produced. Sampling-Based methods generate waypoints in configurations where aircraft can
fly through. However, as the problem domain grows, the area to be sampled also increases.
Sampling in regions where the aircraft is unlikely to pass through can increase the path
planning time. Therefore, there is a need to propose an improved method considering the

size of the problem domain.
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3. RELATED WORK

Sampling-based techniques, notably including PRMs, RRTs, and RRT-Connect, have
garnered significant attention in path planning due to their adaptability and efficacy in
navigating intricate configuration spaces. PRMs intelligently sample the space to construct
a roadmap, facilitating efficient path identification, while RRTs rapidly explore the domain
to create feasible trajectories. RRT-Connect further refines this approach by establishing
connections between trees, enhancing path optimization. So, following related works is
systematically classified into three principal categories, delineated by their focal exploration

of PRM, RRT, and RRT-Connect algorithms.

3.1. PRM Studies

Following PRM-based studies, showcasing innovations in sampling, collision checking,
and optimization for enhanced path planning outcomes. Amato et al. [30] undertook
a comprehensive analysis, focusing on PRM-based methods, to evaluate diverse distance
metrics and local planners within cluttered three-dimensional workspaces. They introduced

b

a novel local planning strategy, termed “rotate-at-s,” which surpasses the conventional
straight-line approach in configuration space, particularly excelling in crowded settings.
Shifting attention to sampling strategies, Boor et al. [31] introduced the Gaussian sampler
for PRMs, significantly enhancing coverage within intricate sections of the free configuration
space. Despite its effectiveness, this study did not delve into the specifics of the Gaussian
strategy’s implementation. Lazy PRM [32], emerged as a solution to reduce collision
checks during planning, expediting execution. This strategy initiates with an assumption
of collision-free nodes and edges, navigating the pre-existing roadmap for a shortest path.
Nodes and edges along the path undergo collision assessment, leading to pruning if obstacles
are encountered, ultimately iterating until a collision-free path is identified. In a pursuit
to optimize path planning in high-dimensional spaces, Branicky et al. [33] advocated
for the use of quasi-random sampling techniques, introducing both classical PRM with

quasi-random sampling and quasi-random Lazy-PRM variants. These techniques offer a
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more uniform distribution of points compared to traditional random sampling, aiding path
planning in complex spaces. The comparison study conducted by [34] delved into various
aspects of PRMs, encompassing collision checking, sampling techniques, and node addition
methodologies. However, the dimensionality of the environment under scrutiny remains
undisclosed. Moving towards deterministic approaches, LaValle’s et al. investigation
[35] highlighted deterministic PRM variants’ superior performance compared to traditional
PRMs, and identified certain grid search variants as comparable alternatives. Real-time UAV
path planning in intricate 3D environments was proposed by [36], incorporating modified
PRMs and free voxel utilization for roadmap node distribution, coupled with an A* algorithm
to ensure feasible paths. Narrow passages gained attention in the work by Cao et al. [37],
where an enhanced PRM strategy was introduced. This method strategically sampled dense
obstacle areas, yielding improved adaptability in narrow passages. Lastly, Xu et al. [38]
introduced a dynamic exploration planner (DEP) leveraging incremental sampling and PRM.
This planner, guided by the Euclidean Signed Distance Function (ESDF) map, facilitates safe
exploration in unknown environments by generating alternative paths to circumvent dynamic

obstacles.

3.2. RRT Studies

The subsequent studies showcased herein are firmly grounded in the RRT framework,
collectively contributing to the advancement and diversification of this paradigm within
the realm of motion planning. Karaman et al. [39] introduced an anytime algorithm
based on RRT* that bridges initial feasibility and optimality through committed trajectories
and branch-and-bound tree adaptation for real-time implementation. Gammell’s et al.
[40] Informed RRT* enhances convergence rates and solution quality by sampling within
a hyperspheroid region, demonstrating reduced state dimension dependence. Moreover,
Salzman’s et al. [41] LBT-RRT achieves near-optimal paths through an approximation
factor, mitigating computational costs of the local planner. Noreen’s et al. [42] survey
emphasizes the need for robust and automated heuristics parameters, especially in sampling

strategy-based solutions. Xinyu’s et al. [43] Potential Function-based RRT*-connect
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leverages bidirectional artificial potential fields to efficiently address narrow channels.
Meanwhile, Wang’s et al. [44] Kinematic Constrained Bi-directional RRT* integrates
kinematic constraints and efficient branch pruning for rapid path discovery for differential
drive mobile robots. Lastly, Liao’s et al. [45] F-RRT* algorithm expedites convergence,
though contingent on the triangular inequality. These studies collectively underscore the
evolving landscape of RRT-based techniques, catalyzing advancements in optimal path

planning and real-time implementations.

3.3. RRT-Connect Studies

The RRT-Connect algorithm and its various derivatives have been widely studied and
improved in the context of path planning for autonomous systems, with applications ranging
from UAVs to mobile robots. Several novel approaches have been proposed, aiming to
enhance planning efficiency, reduce flight costs, and improve convergence towards optimal
solutions. In this regard, Zhang et al. [46] introduced an innovative algorithm that combines
the artificial potential field method with RRT-Connect, effectively guiding the random tree
towards the goal for UAVs. However, while RRT-Connect has primarily been used for
mobile robots, Kang et al. [47] addressed this limitation by proposing a new RRT-Connect
based method that ensures quicker planning and shorter path lengths, bringing it closer
to optimality. In response to this, Chen et al. [48] presented IRRT-Connect, which
introduces a third node in the configuration space and utilizes a guidance method to bias
the algorithm towards the target point during tree expansion. Additionally, Klemm et al.
[49] introduced RRT*-Connect, which combines the advantages of RRT-Connect and RRT*
to address single-query path planning problems. However, it acknowledged that further
improvements can be made to the connect step in future work. Mashayekhi et al. [50]
proposed the Informed RRT*-Connect, an informed version of RRT*-Connect that employs
direct sampling to evaluate only the states capable of potentially providing better solutions
than the current solution, applicable in both 2D and 3D environments. This method confines
the search within an ellipsoidal subset, resulting in improved solutions with fewer iterations

compared to the standard RRT*-Connect. For local path planning of autonomous vehicles in
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dynamic obstacle avoidance scenarios, Zhang et al. [51] introduced the Bi-RRT algorithm.
This approach takes into consideration the driver’s driving habits and employs a target bias
method to facilitate the growth of the random tree in a biased direction. This enables
more effective and quicker convergence of the initial state and the goal state. Furthermore,
Lau et al. [52] developed Smooth RRT-Connect, which expands along a curve while
adhering to velocity and acceleration limits, instead of using straight-line trajectories for a
two-dimensional environment. The proposed algorithm demonstrates superior performance
in terms of computation time and algorithm reliability when compared to standard RRT

solutions.

Many existing studies primarily focus on sampling the entire configuration space within
a 2D environment. However, a notable limitation among these studies is the omission
of the vehicle’s speed, a crucial factor in real-time path planning scenarios. Also,
many studies consider all configuration space to create a feasible path. Moreover, the
specific context of path planning for fighter aircraft remains a significant research gap,
and no one considers target assignment for multi-vehicle path planning. To address these
issues, this study proposes a novel approach that shifts the emphasis from an exhaustive
exploration of the entire configuration space to a more tailored strategy. By incorporating
vehicle-specific characteristics and constraining the sampling process to a smaller feasible
area that accommodates the aircraft’s maneuverability, this approach aims to enhance the

effectiveness of path planning for fighter aircraft.
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4. PROPOSED METHOD

In this section, the proposed methodology developed within the scope of the thesis will be
elucidated. This study begins by elucidating how to construct the problem environment and
specifying its constituent elements. Next, it will expound on a method used to assign tasks
among multiple aircraft in the context of multi-aircraft missions. After completing the task
assignments, it will explain the sampling strategy developed for route planning, paving the
way for the subsequent step of crafting routes for each aircraft. Finally, it will present an
optimization method to facilitate aircraft movements, concluding with the comprehensive

methodological framework proposed in this study.

4.1. Environment Creation

In route planning for aircraft, given a 3D environment £, we are concerned with finding a
collision-free path combined with waypoints and legs. Some notations definitions used in

our solution is given in Table 4.1.

Firstly, creating a rectangular environment is necessary. We express the minimum and

maximum values that the rectangle can take on the x and y axes as follows:

- (Timt(w) ;Tgoaz(:ﬂ) _ 0) (0
N (Tm(a:) ; Tyoal () C) )
o — <Tinit(@/) ;quaz(y) B C) 3)
y = (ﬂmt(y) ;Tgoaz(y) N C) @

After specifying the values that each corner point can take on the z and y axes, we calculate

the minimum and maximum values to be taken along the z-axis as follows:
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Table 4.1 Notations and Descriptions

Notation

Description

E

E' defines rectangular prism environment that includes all
objects. Iy, Es, E5, and E, denotes the corner points of £

EJV'(x7 Y, Z)

Shows the corners of the environment E with following
labels

Ey (ZE miny Ymax Zt()p)

Lmazs Ymazs Ztop)

LTmaz ytop7 Ztop)

Lmins Ymin, Ztop)

Eg(

Eg(
(

S(xminv Ymazx Zbottom)
(
(

IS

6\ Lmazs Ymaz; Zbottom)

SSRGS

7\ Tmax;s Ytops Zbottom)
ES (mmina Ymin, Zbottom)

Zm’t(x7 ya Z)

T, denotes current location of aircraft in coordinate system

init

with X, Y, and Z axis

I:/oaz(aja Y, Z)

T... denotes destination point in coordinate system with X,
Y, and Z axis

\|T,... —T,.]||, euclidean distance between Tiyi; and 7y

IT...(z) — T,.(2)||, altitude difference between T} and
Tgoa. If difference equal to 0, a custom value can be taken
as H

Minimum altitude value of £. It must be O to take ground
as reference.

Maximum altitude value of E/

T; denotes the ¢. threat in E

W, denotes the 7. waypoint on X, Y, and Z axis

Zbottom =0

Emt(z) + Tgoal (Z)

H
7 +

Ztop =

(&)
(6)

We express the rectangular prism environment £ as follows, with variables z, ¢, and 2 in the

coordinate planes.
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Figure 4.1 Environment E

Once we define the environment, characterizing the threats within it becomes essential. We
delineate these threats along the X, Y, and Z axes, describing them using the concept of
coverage areas. Each threat is associated with a coverage area denoted by R and can be

mathematically expressed as follows:

Threati = (Xla }/;7 Zia R’L) (8)

Here, X;, Y; and Z; represent the spatial coordinates of the threat in E, and R; signifies
its coverage area, extending in X, Y and Z directions. If we conceptualize threat regions
as hemispheres, we can mathematically articulate a threat region within the environment.
Consider a threat region 7; represented by its center (X;,Y;, Z;), where X; and Y; denote
the spatial coordinates, and Z; signifies the altitude along the vertical axis. The radius of the
hemisphere is denoted by R?;, reflecting the extent of the threat’s coverage. Consequently, we

can mathematically express the threat region 7; as:

T (x = X))+ (y =Y’ + (2 = Z)) < R; ©)



In this equation, (x,y, z) represents any point within the environment. The inequality
condition enforces that all points (z,y,2) falling within a distance R; from the center

(X:,Y;, Z;) encompass all points within the threat region 7;.

When considering F as a real environment, we denote the ground as the zero point on the
Z-axis. Since each threat is placed on the ground, their Z-axis values are zero. Consequently,
we can express the volumetric area V' covered by a threat within £ using the hemisphere

formula.

(10)

With the inclusion of threats, we have created a problem environment E. Figure 4.2
illustrates F' resulting from mathematical calculations. Here, the blue dot represents the
aircraft’s current position, while the red dot marks the intended target. Transparent yellow
hemispheres in £ represent the threats and their coverage areas. In £, we must strategically
plan a path from the blue to the red dot, avoiding threat zones marked by these yellow

hemispheres.

Figure 4.2 Sample Environment
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4.2. Task Assignment

Assigning one or more tasks to each aircraft is imperative in multi-aircraft missions. Within
the scope of this thesis, we developed and employed a method to allocate a specific task to
each aircraft. Initially, we calculate the distance of each aircraft to all threats individually.
We present the results of these calculations, based on three aircraft and three mission points,
in Table 4.2. This approach ensures the systematic assignment of tasks to each aircraft,

establishing a foundation for effective mission planning and execution in complex scenarios.

Table 4.2 Distances between Aircraft and Targets (in meters).

Target-1 Target-II Target-11I

AC-1 30 40 50
AC-II 45 25 80
AC-III 35 40 45

In the subsequent step, we assign aircraft to each threat, commencing with the closest aircraft
to the initial threat. For instance, starting with Target-I, we pair the aircraft most relative to
Target-I, denoted as AC-I, with Target-I and remove it from the table. Consequently, we
update Table 4.2, resulting in the derivation of Table 4.3.

Table 4.3 Distances between Aircraft and Targets after one iteration(in meters).

Target-1 Target-II Target-111

AC-1 N/A N/A N/A
AC-1I N/A 25 80
AC-1II N/A 40 45

In Table 4.3, we initiate the assignment process from Target-II. Disregarding AC-I, which
has already been assigned to Target-I, we focus solely on comparing AC-II and AC-III.
Proceeding in this manner, we assign Target-1I to AC-II. Finally, with Target-III and AC-III
remaining, we assign AC-III to Target-III. These assignments result in the acquisition of

Figure 4.3.

After completing the task assignments, we conduct a sampling process and add a new node
to the tree created for each aircraft. In the trees generated for each aircraft from the target
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Figure 4.3 Target assignment for each aircraft.

nodes, we add new nodes by advancing toward the nearest nodes by the step size. Figure
4.4 depicts the sampling for each aircraft, with the addition of new nodes. Subsequently, we
expand the target trees sequentially, starting from Target-I, by advancing towards the nearest

nodes of the aircraft.
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Figure 4.4 One iteration for aircraft-target pair after assignment.

After completing these steps, we finish one iteration of route planning. As we reassign tasks
in each iteration, we also generate route segments for aircraft to reach other mission points.
Furthermore, as each target tree extends toward all aircraft, the likelihood of finding the

optimal route for an aircraft increases.

The Target Assignment Algorithm, AssignTargetsToAC's, takes two separate arrays
representing aircraft and threat positions as input and returns an array indicating the
assignment of each target to an aircraft. The algorithm initiates by assigning values to

N and K, representing the number of targets and aircraft, respectively, assuming that
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these quantities are equal within the scope of this thesis. Following this, a K x N
matrix is created, where each row corresponds to an aircraft, and each column signifies a
target, storing the distances between aircraft and threats. Through an iterative process, the
algorithm sequentially assigns each threat to the nearest aircraft, completing the assignment
of all threats to aircraft. After extending all T'ree;,; trees in each iteration, we call
AssignTargetsToAC's again, facilitating task assignments among aircraft. So, dynamic
task reassignment becomes possible if an aircraft’s orientation shifts from one threat to
another in subsequent iterations. This dynamic feature enables task reassignment without
creating a new tree from scratch, allowing the system to adapt to various threats with
the existing configuration. So, the algorithm provides flexibility in target assignments,
accommodates changes in aircraft direction, and efficiently adapts to evolving threat

scenarios.

4.3. Narrowed Regions Strategy

To establish a viable route between the initial position 7;,,;; and the desired destination 7,,
we must undertake sampling within the environment £. Sampling involves systematically
selecting points within the spatial domain of F, thereby capturing a representative subset of
the available configuration space. Unlike previous sampling-based techniques that typically
encompass the entire environment, our approach introduces a novel strategy. In this method,
we dynamically adjust the sampling environment’s dimensions relative to the aircraft’s
current speed. The formula x = vt plays a significant role, with = representing the
radius of a sphere centered precisely at the aircraft’s current position. Here, the aircraft’s
speed is denoted by v, and t is taken as a fixed value of 1 second. By utilizing this
formula, we introduce a dynamic and adaptive sampling approach wherein the resulting
sphere encapsulates the aircraft’s immediate surroundings at a given time. By doing so, we
consider the real-time velocity and trajectory of the aircraft, effectively tailoring the sampling
process to the specific needs and capabilities of the flying system. This adaptive approach
optimizes the utilization of computational resources and accelerates the planning process, as

the sampling focuses primarily on areas relevant to the aircraft’s immediate vicinity.
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Algorithm 1: AssignTargetsToACs(AC||, Target]])

Input: AC[], Target[]
Output: targetToAC[]
N <+ Length of Target[]
K < Length of AC[]
targetToAC[] + @
distances[][] <~ @ // K x N matrix
fori =070 N do

for ) =010 K do

| distances|i][j] <— norm(AC[j] — Target|i]);

for: =01 N do

minDistance <— N/A;

targetldr < 0;

acldr + —1;

for j =010 K do

minDist <— min(distances[j]); // Minimum distance of AC j
idx < index of ;

if minDistance > then
L minDistance <;

targetldr <;
acldx < 7;

Set all distances of ac/dx in distances to N/A;  // Exclude this aircraft
Set all distances of targetldz in distances to N/A; // Exclude this target
| targetT'oAC[acldx] < targetldx;

return targetToAC),

Figure 4.5 Sample Environment with sampling area around 7;,,;; and T}j,q;
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In Figure 4.5, we can observe an example illustration of a sampling area. The depicted
scenario features a transparent 3D sphere visually representing the concept of a sampling
area. This sphere encapsulates a specific part of the environment, highlighting the designated
space for careful analysis and strategic planning. Through this illustrative example, Figure
4.5 demonstrates the pivotal role of adaptive sampling in path planning, emphasizing its
ability to focus computational effort on critical areas and ultimately improve the precision
and efficiency of navigational pathfinding. Considering a fixed, larger region along the =,
y, and z axes instead of our narrowed region approach, we would significantly expand our
sampling region. Accounting for the aircraft’s current position would lead to sampling at
points that are either impractical or impossible to reach. We have observed that the expansion
of the sampling region impedes the identification of optimal routes in test scenarios. The
Narrowed Region technique facilitates the swift generation of a shorter and more efficient
route, contrasting with considering the entire area, which could complicate the task by

generating a longer route over an extended period.

Drawing inspiration from RRT-Connect principles, the approach establishes two distinct
trees rooted in the initial point 7}, and the goal point 7., respectively. The iterative
process involves selecting the closest nodes from each tree stepwise. These chosen nodes
play a pivotal role in shaping the growth of their respective trees, forming a bridge between
the starting and target points. We systematically apply a predefined sampling strategy to
the chosen nodes to optimize the search process. The algorithm converges towards an
optimal trajectory by iteratively identifying the closest nodes and using the tailored sampling

approach respect to traditional RRT approaches.
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Figure 4.6 Sampling in E.
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Figure 4.6 illustrates a representative sampling scenario, depicting two distinct trees

stemming from the initial configuration, denoted as 7;,,;;, and the goal configuration, denoted

as Tyoq. The nodes designated as Nses: signify the most relative nodes within their

corresponding trees. Notably, we establish a sampling region based on the spatial vicinity

of these closest nodes. Within this delineated sampling region, we generate N,..,,4or, in the

search space of both most relative nodes. Upon traversing from Nyjpsest 10 Nygndom Over the

distance of the specified step size, we attain the resultant node /V,,,,, signifying a progressive

advancement within the trajectory space.

Nclosest = ($017 Yel, ch)
Nrandom = (xranda Yrand Zrand)
Nnew - (xn€W7 Ynew Znew)

step is the step size

d is the distance between N josest a0d Niandom

Distance d between Njpsest and Nandom:

d= \/(xrand - xcl)Q + (yrand - ycl)2 + (Zrand - zcl)Q

New point Ny

step
Tnew = Tl + Fst ' ("I;rand - LUcl)
step
= Yot + -
Ynew Yel dist (yrand ycl)
step
Znew = Zel ﬁ ’ (Zrand - ch)
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Figure 4.6 illustrates the obtained T'ree;n;; and Treey,, through successive sampling
iterations. Both trees are within one step of each other, indicating the completion of the
sampling process. After connecting 7T'ree;,;; and T'ree,, from their nearest nodes, we create
a graph in region £ that extends between Tj,;; and T,,. Subsequently, path planning can be

facilitated using algorithms such as A*, Dijkstra, or other search methods.

Figure 4.7 T'ree;n;: and T'reey,q reaches after sampling processes.

4.4. Path Creation

This section formally defines our dynamic path-planning approach for both single-aircraft
and multi-aircraft missions in complex 3D environments. At first, we use our method for
single-aircraft missions. Our method aims to improve path planning for fighter aircraft
missions by creating two trees, rooted at the start and goal positions (Ti and Tgear). It
employs a narrowed sampling strategy guided by the nearest nodes in both trees, focusing
exploration on restricted regions. This iterative process generates a connecting tree between
the start and goal points. By combining bidirectional RRT with narrowed sampling, the
algorithm effectively explores regions near the current node, enhancing path planning in
constrained aircraft movement scenarios. The optimal trajectory is determined using the
A* algorithm. Simulation results across diverse scenarios consistently demonstrate the
algorithm’s ability to generate smooth and adaptable paths, promising improved mission

planning and execution for fighter aircraft in dynamic environments.
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Algorithm 2: Narrowed-BiRRT

Data: Initial Configuration Tiy;(, v, 2), Goal Configuration Tyou (2, y, ), Threats
Threats, Step Size M

Result: Trajectory

Treepn < 9;

Treegon < I,

Trajectory < &;

E < CreateEnvironment(Zipit, Zgoa )

Set T, as root of T'ree;y;

Set Tyoar as root of T'reegor;

nodeiy, < Nearest(Treeinii, Tyoal );

nodegoy < Nearest(Treegou, Tinit);

flag < init;

while dist(node;,;;, nodegoq;) > N do

if flag == init then

Sinit < GetSamplingRegion(nodeiy;);

nodeng <— Sample( Sy, Threats);

Take AStep(T'reeini, nodeang, M, Threats);

nodey; <— Nearest(1'reeiyi, n0degon );

TakeAStep(T'reegou, nodeii, M, Threats);

nodegoa <— Nearest(1'reegoal, n0deinit);

flag < goal;

else

Seoal <— GetSamplingRegion(nodego, );
nodeang < Sample(Sgea, Threats);
TakeAStep(T'reegoa, n0derana, M, Threats);
nodegoa <— Nearest(1'reegor, n0deini);
TakeAStep(T'reeini, nodegoa, M, Threats);
nodeiyie < Nearest(T'reeiyi, n0degoa );

flag « init;

Tree < Treeipni U Treegor;
Trajectory < A_star(Tinic, Tyoa, TTee);
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Sample: The “sampling” algorithm is designed to perform a random sampling within a
narrowed area, denoted S, based on the given initial state and the all threat information
contained in Threats. This process generates a random configuration by successively
calculating the x, y and z coordinates, resulting in the creation of node,,g. Then, the
algorithm evaluates the proximity of node,,q to each threat by measuring their respective
distances. To ensure safety, the algorithm compares these distances with the detection
radius of each threat. If node,,,q falls within the coverage area of a threat, a new random
configuration is calculated and the comparison process is repeated. This iterative process
continues until a configuration is found that falls outside the coverage areas of all threats.
It is worth noting that empirical experiments have consistently shown that this sampling
method successfully prevents the algorithm from entering an infinite loop, which underlines

its efficiency and reliability in practical applications.

Algorithm 3: Sample(S, Threats)

NOderand <— 9
1sCollisionOccured < true;
while isCollisionOccured do
x < S(z)+ (S(x) — S(R)) - randomuymber;
y < S(y)+ (S(y) — S(R)) - randompymber;
24 S(z) 4+ (S(z) — S(R)) - randomuumer;
nodeng < (2,9, 2);
1sCollisionOccured < false;
for each threat threat in T hreats do

if norm(threat(x,y, z) - node,umq) < threat(R) then

1sCollisionOccured <+ true;
L break;

return node,,q;

TakeAStep: The algorithm works in the context of a tree structure, starting from 7;,,;; or
Tyoa1, and considers a defined node within the environment I, together with the inputs M
and T'hreats. The main function of this algorithm is to add a new node to the given tree. The
process starts by identifying the node,cqres; configuration within the tree. Then the algorithm
calculates the distance between node,qqres; and the input node. If the distance is less than M

and the path between node,,.q,cs: and node,,.,, does not intersect any threat zones, node,,,, s
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determined and added to the tree. Conversely, the calculated distance is greater than M, the
algorithm continues by advancing node;,cqrest by the distance M in the direction of the input
node, which leads to the derivation of node,.,,. Again, node,., is only included in the tree

if the path between node,cqrest and node,,.,, is free of threatening areas.

Algorithm 4: Take AStep(tree, node, M, Threats)

nodepeaest <— Nearest(tree, node);

nodegey < Nearest(tree, node);

if norm(node,eares: — node) > 0 then

if norm(node,cures; — node) < M then

nodeney < node;

if leg nodeearess — node,,,, not intersected by any threat in Threats then
|_ add node,ey to tree;

else
N0dehew — node — nodegey;

nodene, < Nearest(tree, node) + (M) -M;

norm(nodenew)
if leg nodeearess — node,,,, not intersected by any threat in Threats then
|_ add node,e, to tree;

return tree;

The same algorithm, with minor modifications, can be adapted for use in multi-aircraft
missions. No alterations are required for the Sample and T'ake AStep algorithms. The only
necessary adjustments pertain to the sequence and structure of these algorithms, tailored to

the context of multi-aircraft operations.

In the context of multi-aircraft missions utilizing the Narrowed Regions-based Bidirectional
RRT (Narrowed-BiRRT) algorithm, the process commences by defining the environment
variable F. Subsequently, we establish aircraft-to-target assignments. Following this
assignment, we execute a loop until each aircraft reaches its target. The steps within this

loop unfold as follows:

* Initially, for T'ree;,;;, we create a sampling area S, considering each aircraft’s current

speed. Then, we apply the TakeAStep algorithm to both T'ree;,;; and Treegoq for
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Algorithm 5: Narrowed — BiRRT — MultiAircraft

Inputs: Tiyic[], Tyou], Threats, Speeds, Step Size M
Output: Trajectories|]

Treepl] + 2

Treegp ]+ @:

E < CreateEnvironment(Tinit[], Tgoul[]) 5

targetsToAC Arr[] - AssignTargetsToACs(Tiill, Teoul]) 5
firstiterationFlag < True;

K < Number of ACs ;

N < Size of targetsToOACATrr ;

nearestStartNode < O :

nearestGoalNode < 9 ;

isACReachToTarget[K] + {0}

while 0 € isAC ReachToT arget do

fori = 1t N do

if firstlterationFlag is equal to True then

goalNodencarest +— Treegp[targetsToAC Arr(i]] ;
init N odencarest <— T'reeini[i] ;

acld < i;

f isACReachToTarget[acId] is not equal to True then
init N odencres, 900l N odeneares + Nearest(Trceiny[acTd], nodegy [trgetD]) ;
Sgoal < GetSamplingRegion(init N odencarest, speeds[acId]) ;
nodegng <— Sample(Sjy;, Threats) ;
TakeAStep(T' reejy [acld], nodegng, M, Threats) ;
TakeAStep(T'ree oy [targetld], nodegng, M, Threats) ;

for i = 110 N do
acld < i;
targetld « i;
if isACReachToTarget[acI d) is not equal to True then
for each T'ree;,i do
init N odencarest, goal N odencarest <— Nearest(T'reeiy [acld], nodegyy [targetD]) ;
TakeASlep(Treeg‘,M [targetld], init N odencarest; M, Threats) ;

for . = 1t0o N do

acld <+ 1i;

targetld < targetsTOACArr[z] ;

init N odencarest, goal N odencarest <— Nearest(T'reej [acld], nodege [targetID]) ;
Tinit[acId] < initNodenearest 5

Tgoul[“"'I d] < goalNode, yreq ;

targetsToAC Arr[] < AssignTargetsTOACS(Tipit[], Tgoul []) :

for : = 1 to size of isAC ReachT oTarget do

acld < i;

targetld < targetsToAC Arr[i] ;

if isACReachToTarget[acI d) is not equal to True then
init N odepearests goal N odenearest +— Nearest(T'reej[acld], nodegoal[t«m‘getID]) ;
if norm(initNodeypeqrest — goalNodepegrest) < M then

isACReachToTarget[acld] < True;

firstlterationFlag < False;

each pair of assigned aircraft and targets, propelling both trees towards each other by

the specified step size.

» After completing the first step for all aircraft-target pairs, in the second step, each
T'reegoq progresses towards the nearest nodes of all T'ree;y,;; structures, moving by the

step size.

* Up to this point, we complete an iteration for all Tree;n;; and Treeg,, structures.

Subsequently, if the assigned aircraft and target pairs are sufficiently close, we merge
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Treemni: and T'reegoq, shaping a tree from the aircraft’s current position towards the

target.

» After completing all the steps, considering the existing assignments, we identify the
closest nodes between T'ree;,;; and Treeg,q,. We then update the Tj;:[] and Tpou]
lists accordingly. Following this, we rerun the target assignment algorithm to update

the assignments.

The Narrowed-BiRRT algorithm presents a versatile solution applicable to single and
multi-aircraft missions. In single-aircraft scenarios, the algorithm efficiently navigates the
vehicle through a dynamic environment, adapting its trajectory to avoid potential threats. In
multi-aircraft missions, the algorithm further extends its utility by facilitating concurrent
operations of multiple aircraft. Through an iterative process involving environment
definition, aircraft-to-target assignments, and coordinated movement, the algorithm adeptly
orchestrates the trajectories of multiple aircraft, addressing complex mission objectives.
The adaptive nature of the algorithm allows it to seamlessly transition between single and

multi-aircraft applications, demonstrating its effectiveness in diverse mission scenarios.

4.5. Altitude Optimization

In the realm of trajectory optimization for fighter aircraft, ensuring optimal mission execution
and aircraft performance relies heavily on the nuanced consideration of altitude dynamics.
Fighter jets require agile and adaptive altitude management strategies that align with the
dynamic requirements of combat scenarios. Deliberate focus is warranted, as instantaneous
changes in pitch angles are often unsuitable, emphasizing the need to achieve smooth and
controlled altitude ascents and descents. Therefore, this section introduces the development
of an altitude optimization algorithm. We designated waypoints for each aircraft and
established a route, devising a method to optimize the altitudes of each waypoint while

keeping the = and y coordinates of each waypoint constant in the route.
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In the context of optimizing the trajectory for aircraft traversing from current position to
point destination position, particular attention is directed towards achieving a smooth and
controlled altitude transition. The optimization process focuses on minimizing the altitude
difference between current and destination positions, thereby facilitating a seamless altitude
change as the aircraft approaches its destination. This strategic approach seeks to mitigate
abrupt variations in altitude and pitch angles, ensuring a more harmonious and efficient flight

profile.

Figure 4.8 illustrates a position/altitude graph, where the horizontal axis represents the
aircraft’s position in the x and y coordinates, and the vertical axis depicts altitude information
at each position. According to the graph, the aircraft currently maintains an altitude of 2000 ft
at its present position, while the destination point is situated at an altitude of 5000 ft, resulting
in an altitude difference of 3000 ft. The altitude optimization developed aims to sequentially
adjust the altitude of each waypoint sequentially, forming the route to correspond to this
altitude difference. This optimization process strives to align the altitude of each waypoint
within the specified range, ensuring a smooth transition from the aircraft’s current position

to the destination point.

Altitude (m
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Figure 4.8 Aircraft position - altitude graph.

For instance, considering Figure 4.9, where it is assumed that there are no obstacles in
the environment, the sequential passage through waypoints Wy, W,, and Ws is required
to travel from the current position to the destination position. While following the route,

the altitude is adjusted smoothly by setting the height value corresponding to each waypoint
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as its z-axis value, as depicted in the figure. This approach ensures a gradual increase in
altitude, enhancing the smoothness of the trajectory as the aircraft traverses through each

waypoint from the current position to the destination.
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Figure 4.9 Waypoints in aircraft position - altitude graph.

Figure 4.10 illustrates the method utilized in the presence of an environmental threat. In
this scenario, as the altitude of the threat surpasses that of 1/,, we increase the altitude
of W5 to exceed that of the threat. Subsequently, we delineate a height curve from the
current position to I, and calculate the value for W;’s z-axis. Following this, we draw a
height curve from W, to the destination position, computing the altitudes of the subsequent
waypoints. Continuously optimizing for altitude involves adjusting the start and end points

as the number of threats increases.
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Figure 4.10 Optimized altitudes in aircraft position - altitude graph.
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This approach outlines how altitude optimization is accomplished through Algorithms 4
and 5. As mentioned earlier, we identify waypoints to establish the route for each aircraft.
Following this, we invoke the OptimizeAltitude algorithm to determine optimized altitudes
and waypoints, defining each aircraft’s trajectory. The algorithm takes waypoints, the initial
node, and the goal node as inputs and produces waypoints along with optimized altitudes as

its output.

waypoint;

goalNode

DB\NOdB Nec™

arc10C%®

g
startNode <ot o

Figure 4.11 Altitude optimization.

The Get Altitude function is the initial point of invocation for each waypoint, with specified
parameters. It creates a vector from the starting point to the target point, calculating the
distance of the waypoint to this vector. This process involves determining the projection
of the waypoint onto the vector. The altitude value for the resulting new position is
then calculated by normalizing the altitude difference between the starting and ending
points, utilizing it as a parameter to ascertain the waypoint’s altitude. Figure 4.11
illustrates the operational dynamics of this method. A vector is formed from startNode
to goal N ode, and subsequently, we calculated the distances from the node to start/Node and
startT'oGoalV ector to find stepThroughGoal N ode. Progressing linearly from start Node
towards goal N ode by the length of stepT'hroughGoal N ode determines the point where the
waypoint aligns. Lastly, we return the altitude value of this point, thereby establishing the

altitude for smooth route tracking.

After calculating the optimized altitude, we check whether the route intersects with any

potential threats. If an intersection with a threat zone is detected, we increase the altitude
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Algorithm 6: Get Altitude(startNode, goal N ode, node)

Set calcAltitude to 0;

distToStartNode « ||startNode — node||;
startToGoal Vector <— goalNode — startNode;

distToVector < GetDistanceTo Vector(Waypoints|[i], startToGoal Vector);
stepThroughGoalNode < V/distToStartNode? — distToVector?;

startToGoal Vector .
||startToGoal Vector|| °

displacementVector <— normalizedDirection x stepThroughGoalNode;
finalPosition < startNode + displacementVector;

Set calcAltitude to altitude of finalPosition;

return calcAltitude;

normalizedDirection <

of the relevant waypoint by a predetermined amount to prevent the route from intersecting
with the threat. In this case, we need to re-optimize the altitude of the route segment up
to the relevant waypoint. Failure to do so would require the aircraft to make an abrupt
pitch adjustment. Instead, we set the last optimized waypoint as the new target point and

recommence the optimization process from the starting point up to this designated waypoint.

Algorithm 7: Optimize Altitude(W aypoints, Threats, start Node, goal N ode)

Inputs: Waypoints, Threats, startNode, goalNode

Outputs: Optimized_Waypoints

Set collisionOccured to False;

for i = 1 to size of Waypoints do

calcAltitude <+— GetAltitude(startNode, goalNode, Waypoints[i]);

Set altitude of Waypoints[i] to calcAltitude;

while isCollisionOccured(Waypoints[i-1], Waypoints[i], Threats) do
Increase altitude of Waypoints[i] by 5 m;
Set collisionOccured to True;

if collisionOccured = True then

Set startNode < Waypoints[0];

Set goalNode < Waypoints[i];

for j =2t0ido
node < Waypoints[j];
calcAltitude <— GetAltitude(startNode, goalNode, node);
Set altitude of node to calcAltitude;

Set startNode <— Waypoints[i];
Set goalNode <— last Waypoint;
Set collisionOccured to False;

return Optimized_Waypoints;
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In conclusion, altitude optimization is a critical aspect of aircraft navigation that ensures
efficiency and safety. Through the application of Algorithms 1 and 2, waypoints are
meticulously defined, and the OptimizeAltitude algorithm is invoked to determine the
optimal altitudes for each point along the route. The process involves calculating distances
and projections and normalizing altitude differences to achieve a smooth and optimized
trajectory. Furthermore, the system incorporates threat detection mechanisms, dynamically
adjusting waypoint altitudes to mitigate potential risks. The iterative nature of altitude
optimization, with its continuous monitoring and adjustment, underscores its significance

in enhancing the overall performance and safety of aircraft navigation systems.
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5. EXPERIMENTAL RESULTS

In this section, we meticulously evaluate the methodologies proposed in the thesis within
the confines of the created environment F, characterized by the z, y, and 2 axes. We
analyze the time taken for path planning and assess route distances for each scenario.
Our rigorous evaluation begins with a focused examination of single-aircraft missions,
specifically delving into the intricacies of Algorithm 2. In this particular context, we
deliberately exclude considerations for altitude optimization. Following this, we extend our
exploration to encompass scenarios involving multi-aircraft missions, seamlessly integrating
the application of Algorithm 2. Altitude optimization becomes a pivotal component during

this phase, factored into the evaluation alongside all algorithms.

To execute these evaluations, we craft simulations to assess the efficacy of the proposed
approaches, implementing and visualizing algorithms tailored for single-aircraft missions
using Matlab. Furthermore, to ensure computational robustness, we conduct tests on a
computer with an 11th Gen Intel Core i5 12 CPU running at 2.75GHz, utilizing C++.
Notably, evaluations for multi-aircraft missions are carried out exclusively using Matlab,

maintaining consistency and coherence in our assessment approach.

5.1. Single-Aircraft Path Planning

In Figure 5.1, a trajectory generated without any threats is depicted using the constructed
Treeimm and Treegoq. The generation time for the route is 17 ms. Despite a significant
difference in altitude between 7;,,;; and T, the generated route exhibits a smooth increase
in altitude. Figure 5.1(b) illustrates the path generated in the = and y axes, revealing minimal

deviations between the starting and target points.

The results shown in Figure 5.2 are obtained upon introducing a threat into the environment.
Examining both (a) and (b) visuals, it is evident that significant deviations are avoided.
However, since altitude optimization is not applied in this scenario, 7'ree;,;; abruptly
increases its altitude when approaching the intersection point with the threat. Executing

44



(a) No threat(3D) (b) No threat(2D)

Figure 5.1 Single Aircraft path planning in no-threat environment

(a) One threat(3D) (b) One threat(2D)

Figure 5.2 Single Aircraft path planning in one-threat environment

such a maneuver is challenging for an aircraft. Nevertheless, Section 5.2 demonstrates that

this issue is addressed by implementing altitude optimization.

As the number of environmental threats increases, the generated routes in Figures 5.3 and
5.4 exhibit no deviations. Naturally, as the threat count rises, the execution time also
increases. Table 5.1 illustrates how the time spent on route generation increases as the
threat scenarios are examined sequentially. However, this duration may vary based on the
specific scenario. In environments with a high density of threats, the algorithm’s runtime

will inevitably increase.

It is crucial to highlight that the algorithm’s promptness in producing results in threat-free
areas aligns with expectations, given the absence of collisions. Conversely, the increased
execution time with growing environmental threats is permissible due to the additional
complexities involved. Moreover, variations in execution time across repeated executions of

the same scenario affirm that the algorithm’s outcomes are adaptable to specific conditions
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(a) Two threat(3D)

(b) Two threat(2D)

Figure 5.3 Single Aircraft path planning in two-threat environment

(a) Three threat(3D)

(b) Three threat(2D)

Figure 5.4 Single Aircraft path planning in three-threat environment

Table 5.1 Experimental Results

Tinit Tsoal Threat 1 Threat 2 Threat 3 Execution Time
(10, 20, 15) (275, 80, 50) - - - 17 ms
(10, 20, 15) (275,80, 50) (90, 50, 0, 50) - - 34 ms
(10, 20, 15) (275, 80,50) (160,0,0,60) (140,95, 0, 60) - 53 ms
(10, 20, 15) (275, 80,50) (160,0,0,60) (140,95,0,60) (210,45,0,60) 58 ms

rather than predetermined.

In essence, the Narrowed-BiRRT demonstrates its ability to

generate routes that evade detection by adversary elements when deployed in real aircraft.

A meticulous examination of the results indicates that redundant sampling is effectively

circumvented, supporting the assumption that the developed method provides the most

efficient route in a dynamically changing warfare environment, accounting for current

threats.

In Figure 5.5, we showcase results obtained from scenarios employing and not employing

the Narrowed Regions method using the same setting. The Narrowed — BiRRT —

MultiAircraft algorithm is applied, and altitude optimization is incorporated into the
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(a) Enabled narrowed regions (b) Disabled narrowed regions

Figure 5.5 Single-Aircraft Path Planning Comparison

generated routes. Upon close examination, it is evident that the route in Figure 5.5(a) is
shorter, measuring 377.102 m, compared to the route in Figure 5.5(b), which spans 826.864
m. Interestingly, despite the longer route in (b), the computation time is observed to be
shorter than that in (a). A detailed analysis reveals that scenario (a) involves more samplings.
Conversely, in scenario (b), fewer samplings and their locations farther from the current
position result in longer route legs. This implies that more samplings extend the algorithm’s
route generation time. However, when the same scenario is tested in an environment with
fewer and less dense threats, the Narrowed Regions method produces shorter and smoother

routes more rapidly.

5.2. Multi-Aircraft Path Planning

Multi-aircraft path planning has been evaluated using three scenarios involving two aircraft
and two mission points. Table 5.2 provides information on the current positions of the
aircraft, their target points, the locations of each threat, and the coverage area. Additionally,
the last column presents the time taken to generate the route for each scenario, considering

the provided scenario inputs.

In Figure 5.6, we executed the scenario with only Threat I present in the environment,
resulting in the generation of paths shown in (a) and (b). While Figure 5.6(a) illustrates the
two-dimensional representation of the path using the x and y axes, Figure 5.6(b) provides
a three-dimensional view. Compared to the single-aircraft path planning scenario, the path
has slightly more deviation. So T'reey,, nodes take steps towards the assigned aircraft and
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(a) One Threat(2D) (b) One Threat(3D)

Figure 5.6 Multi-Aircraft Path Planning with One Threat

(a) Two Threat(2D) (b) Two Threat(3D)

Figure 5.7 Multi-Aircraft Path Planning with Two Threat

other aircraft, leading to deviations in T'reegq,. In Scenario I, we generated both paths in a
total of 15.4 ms, with the respective lengths of the aircraft paths being 263.32 m and 225.89
m. Results highlight that the multi-aircraft algorithm can plan routes in a faster time than the

single-aircraft algorithm.

In Figure 5.7, we tested Scenario II. Analyzing the two-dimensional representation reveals
that the generated paths for both aircraft strive to find the optimal route by navigating close to
the edges of the threats. Figure 5.7(b) provides a three-dimensional representation, showing
a smooth increase in altitude. In this scenario, we calculated the generated paths for both

aircraft to be 282.61 m and 270.02 m, respectively, and this process occurred in 26.5 ms.

In Figure 5.8, we conducted Scenario III testing. This scenario reveals that as the
concentration of threats increases in a specific area, the route planning time also increases.
Specifically, the algorithm generated 277.82 m and 250.13 m paths for each aircraft,

respectively, in 46.1 ms. In this scenario, the increase in threat density corresponds to the
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(a) Three Threat(2D) (b) Three Threat(3D)

Figure 5.8 Multi-Aircraft Path Planning with Three Threat

rise in the number of samples, and we can understand that the escalation in route planning

time is primarily attributed to this factor.

Table 5.2 Scenarios for multi-aircraft path planning

Scenario Tinie] Tyoul] Threat I Threat IT Threat ITI Execution Time (ms)
Scenario I | (0 040), (200 0 30) | (0200 35), (200 200 35) | (100, 100, 0, 80) - - 154
Scenario IT | (0 0 40), (200 0 30) | (0 200 35), (200 200 35) - (0, 100, 0, 70) | (230, 100, 0, 75) 26.5
Scenario IIT | (0 0 40), (200 0 30) | (0 200 35), (200 200 35) | (100, 100, 0, 80) | (0, 100, 0, 70) | (230, 100, 0, 75) 46.1

In conclusion, Figure 5.9 illustrates the results obtained when employing the narrowed region
method and when omitting it. Figure 5.9(a) shows results identical to those in Scenario 11,
generated in 142.4 ms. Although the duration exhibited slight variability due to temporary
sampling congestion at the second aircraft’s current position, it did not induce alterations
in the route lengths of both aircraft. In Figure 5.9(b), route planning was conducted in a
larger static sampling area, resulting in a significant increase in route lengths compared to
(a). Naturally, the route planning time also increased, and the routes were obtained in 187.3

ms.

Upon examining the results of multi-aircraft path planning, it is evident that this method
excels in mission scenarios with a high density of threats. =~ When employing the
Narrowed-BiRRT method, we observed an increased number of samplings. Although
this slightly extended the route planning duration for some scenarios, utilizing our
developed method proves advantageous due to generating shorter and more optimal routes.

Notably, in multi-aircraft missions without threats, the Narrowed-BiRRT exhibits suboptimal
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(a) Enabled narrowed regions (b) Disabled narrowed regions

Figure 5.9 Multi-Aircraft Path Planning Comparison

performance. In Figure 5.1, when we tested a scenario with no threats for two aircraft, we
observed non-linear paths generated, attributed to the extension of T'ree, trees towards all
T'ree;n;; nodes. In the multi-aircraft scenario, this phenomenon manifested because it is not
achievable in a single-aircraft scenario. Using Scenario III, we initially conducted separate
route planning for both aircraft and, subsequently, individually performed single-aircraft
route planning for each aircraft. In the multi-aircraft test, results were obtained in a total
of 130 ms, producing routes of 259 m for AC-I and 288 m for AC-II. Route planning
was initially performed for AC-I, followed by AC-II, with consistent threats. For AC-I,
a route of 297 m was generated in 80 ms, while for AC-II, a 252 m route was produced
in 72 ms. Evaluating these results, it is evident that the Narrowed-BiRRT demonstrates
shorter planning times overall in multi-aircraft scenarios compared to single-aircraft route
planning. The route length for AC-I in the multi-aircraft scenario is shorter than in the
single-aircraft scenario, whereas the opposite holds for AC-II. This observation suggests that
the Narrowed-BiRRT may generate more optimal routes for some aircraft and longer but still
safe routes for others, depending on the specific scenario. Finally, throughout all scenarios,
the extension of T'ree;,;; and Treey,, was conducted with a maximum step size of 15 m.
This value should vary based on the average speed of the aircraft. In a simulated scenario
with constant speeds of 450 and 400 knots for the aircraft, we adjusted the step size to 100
m. The step size may vary according to the aircraft’s instantaneous speed and maneuvering

capabilities and should be adjusted accordingly in a realistic scenario.
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5.3. Evaluations

In the context of the thesis, we applied the presented methods to single and multi-aircraft
missions and shared the results. In the following section, we evaluate the outcomes by

considering various parameters.

5.3.1. Completeness

Aircraft systems must adhere to stringent standards such as RTCA DO-178B and DO-178C
and require certification [53-56]. The present method shall demonstrate operability in
any environment where a solution is possible. Evaluating the results in Sections 5.1 and
5.2 reveals that the method successfully identifies a solution when one is feasible. When
Scenario III is executed 100 times without interruption consecutively, the Narrowed-BiRRT
consistently generates routes for AC-I and AC-II on each iteration. Across the 100 attempts,
an average of 81 ms is observed for AC-I, with an average route length of 298 m, while
AC-II demonstrates an average route length of 264 m over the same 100 iterations. However,
dynamic combat environments may necessitate navigating through regions with changing
threats. In such scenarios, conducting a risk assessment enables the selection of routes
through less perilous threat zones. As our method lacks a risk assessment, the generated
routes consistently avoid threat zones. In essence, our method succeeds when capable of

producing a collision-free route.

5.3.2. Efficiency

Combat environments, being dynamic, require quick decision-making. In missions with
multiple aircraft, the mission commander needs to manage operations and command other
pilots. Swift decision-making is crucial, as sudden threats invalidate the previous mission
plan. Therefore, our developed method should rapidly provide a solution. When tested in an
environment with a sufficiently large space and aircraft-threat distances exceeding 5 km, we
observed that our approach generates routes in less than 1 second. However, this time will
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vary depending on the number of aircraft and threats. As the number of aircraft increases,

generating all routes will require more time.

5.3.3. Smoothness

Combat aircraft, characterized by their high speeds and remarkable maneuverability,
can execute sharp maneuvers at elevated angles, but running perfect 90-degree turns is
impractical. Therefore, the generated routes must be conducive to the aircraft’s capabilities.
Our proposed approach addressed instantaneous altitude changes by incorporating altitude
optimization. However, optimization may be necessary for movements along the = and y
axes. In some scenarios, we encountered situations where the turn angle between two legs
in the generated routes exceeded 90 degrees in 2D. While following mission plans, aircraft
may sometimes need to pass directly over waypoints and, at other times, slightly closer to
create a wider arc. The recommended method suggests that, on occasion, aircraft may need

to pass slightly more relative to waypoints for better adherence to the planned route.

5.3.4. Optimality

In path planning studies, we can obtain different routes, emphasizing either route length
or planning time depending on the nature of the study. For military aircraft, executing the
mission within the planned timeframe is crucial. Hence, we must find the shortest, safest
route to the mission point. The results of single and multi-aircraft path planning studies
reveal that the proposed methods generate nearly the fastest routes for each aircraft. When
testing Narrowed-BiRRT with Scenario III, we observed that the generated route for AC-I
was, on average, within 29 meters of the nearest threat, and at points closest to the threat,
the distance between the path and the threat dropped to 1.6 meters. We also noted that,
for AC-II, the generated route’s average proximity to the nearest threat was approximately
25 meters, and the distance to the closest waypoint to the threat decreased to 1.2 meters.

Notably, sampling, particularly in narrowed regions, proves effective. Analyzing Figure 5.5
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and Figure 5.9 demonstrates that the use of the narrowed regions technique leads to shorter

routes according to traditional RRT, RRT* and RRT-Connect.

5.3.5. Robustness

Robustness is crucial for completing a mission in military aircraft, emphasizing the
importance of keeping mission plans secret and remaining unpredictable to enemy elements.
Our developed method demonstrates the ability to generate different routes for the same
scenario with each execution. When Narrowed-BiRRT was tested with Scenario III, the
generation of routes of varying lengths, accompanied by a different number of waypoints
in each test result, highlights the robustness of our method. It is essential to note
that Narrowed-BiRRT consistently maintains robust performance, persistently producing
complete, optimal, efficient, and smooth routes. This showcases the applicability of our

developed method to critical systems.

5.3.6. Adaptability

Combat environments, which feature multiple elements, are dynamic and undergo
continuous variability. Military systems necessitate solutions capable of adapting to different
environmental conditions and constraints. We tested our developed method with various
scenarios. The same algorithm showcased its capability to generate optimal safe routes in
single and multi-aircraft missions rapidly. Furthermore, the method succeeded when we
altered the number of aircraft, targets, and environmental threats. This underscores the

adaptability of our developed method to diverse conditions.
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6. CONCLUSION

In this thesis, we have delved into the intricate domain of dynamic mission assignment
and route planning, addressing the unique challenges posed by single and multiple aircraft
scenarios. The initial emphasis was placed on the critical role of mission planning
for combat aircraft, highlighting the necessity for adaptive strategies that can promptly
formulate new mission plans and routes in response to evolving threats during flight.
Our comprehensive literature review scrutinized various path-planning methodologies,
elucidating the prevalence of grid-based and sampling-based approaches. Notably, our
focus leaned towards sampling-based techniques, discerning their heightened relevance and
applicability within the scope of our study. Evaluating analogous works in the literature

allowed us to glean insights into their methodologies, strengths, and limitations.

The core of our contribution lies in introducing the Narrowed-BiRRT method, a dynamic
algorithm designed to cater to single and multi-aircraft missions. We meticulously
defined the mathematical representation of the problem environment, incorporating the
dynamic elements of multiple aircraft, their current positions, target locations, and identified
threats. Our dynamic target assignment method, integral to the route planning process,
was expounded upon, showcasing its pivotal role in simultaneously generating routes
for each aircraft and constructing a real-time environment roadmap. Noteworthy is the
adaptability embedded within our methodology, enabling swift task reassignment among

aircraft leveraging the existing roadmap.

After task assignment, we elucidated our Narrowed Regions-based sampling method, a
sophisticated technique that optimizes the RRT algorithm’s sampling step. By judiciously
considering the instantaneous speed of each aircraft, this method facilitates the generation
of optimal, collision-free paths by confining the exploration to a narrower space, thereby

significantly accelerating the planning process.

Recognizing that combat aircraft must adhere to feasible routes that account for their inherent

operational constraints, we introduced our altitude optimization method. This feature ensures
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that the generated routes facilitate smooth trajectory tracking by preventing abrupt changes in

altitude, a crucial factor in enhancing the overall robustness and viability of the flight plans.

The culmination of our efforts involved rigorous testing across diverse scenarios.
Initial assessments centered on single-aircraft mission scenarios, where the algorithm’s
performance was systematically evaluated under increasing threat scenarios. Subsequent
examinations involving two aircraft, two targets, and varying threat levels demonstrated the
algorithm’s prowess, with execution times measured at 15.4, 26.5, and 46.1 milliseconds,
respectively. The algorithm exhibited a consistent convergence rate of 100% across all tested
scenarios, underscoring its reliability. Further scrutiny of the generated routes revealed not

only their consistency but also their optimality.

Our methodology demonstrated its practical utility in a real-world scenario involving two
aircraft and three threats by achieving an average route generation time of 1.4 seconds.
The resulting routes exhibited average lengths of 6622.37 meters and 4420.39 meters for
the respective aircraft, further attesting to the adaptability and efficiency of our proposed

approach.

In conclusion, our meticulously developed methods have consistently proven their mettle,
yielding routes that are complete, more efficient and optimal, smooth, robust, and adaptable
to evolving scenarios. The methodology presented is a compelling solution applicable to
real-life challenges in single- and multi-aircraft missions. As we navigate the complexities
of modern aviation, the insights gained from this research contribute to the burgeoning field
of autonomous flight and pave the way for innovative advancements in combat mission

planning.
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