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ABSTRACT 

 

DETERMINATION OF SENSITIVITY OF HYSPLIT BACK TRAJECTORIES FOR 

INPUT DATA COMMONLY USED IN TURKEY 

 

 

FİRDEVS DOĞRUSEVER 

 

 

Master of Science, Department of Environmental Engineering  

Supervisor: Dr. Derya Deniz Genç Tokgöz 

September 2023, 105 pages 

 

The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (web-version) 

was used to simulate hourly 96-hr back trajectories arriving at a rural site in the Eastern 

Mediterranean, at altitude of 1500 m from the surface, for each day between 2010 and 2013 years. 

Two meteorological data archives (NCEP/NCAR Reanalysis and GDAS1) and vertical velocity 

methods (isentropic and model vertical velocity) were used as model inputs as these are the most 

widely used input variables. The sensitivity of trajectories to model inputs was measured by the 

absolute horizontal transport deviation (AHTD), the absolute vertical transport deviation (AVTD) 

and the relative horizontal transport deviation (RHTD) statistics. Both the meteorological archive 

and vertical transport method significantly influenced the trajectories. Trajectories simulated by 

NCEP/NCAR Reanalysis archive were less sensitive to the vertical transport method than 

trajectories simulated by the GDAS1 archive. Cluster Analysis by SPSS (k-means technique) was 

applied for each back trajectory data set to classify them into similar groups (clusters). Based on 

their speed, back trajectories in each data set were classified into five clusters. To examine the 

dependence of potential source directions of pollutants (i.e. cluster centroids) to the HYSPLIT 
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model inputs, differences of sulfate concentrations were discussed. The results indicated that there 

were discrepancies in the interpretation of the source-receptor relationship when different inputs 

were used to run the HYSPLIT model. 

 

Keywords: Back trajectory, Clustering, HYSPLIT, GDAS1, NCEP/NCAR Reanalysis, Air 

quality modelling 
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ÖZET 

 

TÜRKİYE'DE YAYGIN OLARAK KULLANILAN HYSPLIT MODEL GİRDİLERİNİN 

GERİ YÖRÜNGELER ÜZERİNDEKİ HASSASİYETİNİN BELİRLENMESİ 

 

 

FİRDEVS DOĞRUSEVER 

 

 

Yüksek Lisans, Çevre Mühendisliği Bölümü 

Tez Danışmanı: Dr. Derya Deniz Genç Tokgöz 

Eylül 2023, 105 sayfa 

 

HYSPLIT modeli web sürümü, 2010 ile 2013 yılları arasında her gün için Doğu Akdeniz'de 

yüzeyden 1500 m yükseklikteki kırsal bir bölgeye varan 96 saatlik geri yörüngeleri saatlik olarak 

simüle etmek için kullanıldı. En yaygın kullanılan girdi değişkenleri olmaları nedeniyle model 

girdileri olarak iki meteorolojik veri arşivi (NCEP/NCAR Reanaliz ve GDAS1) ve dikey hız 

yöntemleri (izentropik ve model dikey hız) kullanılmıştır. Yörüngelerin model girdilerine 

duyarlılığı, mutlak yatay aktarım sapması (AHTD), mutlak dikey aktarım sapması (AVTD) ve 

bağıl yatay aktarım sapması (RHTD) istatistikleriyle ölçüldü. Hem meteorolojik arşiv hem de 

dikey taşıma yöntemi yörüngeleri önemli ölçüde etkiledi. NCEP/NCAR Reanaliz arşivi tarafından 

simüle edilen yörüngeler, dikey taşıma yöntemine karşı GDAS1 arşivi tarafından simüle edilen 

yörüngelere göre daha az duyarlı bulunmuştur. Her bir geri yörünge veri seti için bunları benzer 

gruplara (kümelere) sınıflandırmak üzere SPSS ile Küme Analizi (k-ortalamalar tekniği) 

uygulandı. Hızlarına bağlı olarak, her veri setindeki geri yörüngeler 5 kümeye ayrıldı. Kirleticilerin 

potansiyel kaynak yönlerinin (yani küme merkezlerinin) HYSPLIT modeli girdilerine 

bağımlılığını incelemek için sülfat konsantrasyonlarındaki farklılıklar tartışıldı. Sonuçlar, 

HYSPLIT modelini çalıştırmak için farklı girdiler kullanıldığında kaynak-alıcı ilişkisinin 

yorumlanmasında farklılıklar olduğunu göstermiştir. 
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Hava Kalitesi Modellemesi 
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1. INTRODUCTION 

The negative effects of air pollution on human health (Chen et al., 2013) and ecosystems (Compton 

et al., 2011; Cooter et al., 2013) have led to tighter standards for ambient air quality (REVIHAAP 

Project, 2013). Identifying pollutants and their sources is essential to develop effective mitigation 

strategies. For a particular pollutant, if the pollutant concentration is above the limit values of air 

quality standards, some control measures must be taken by the authorities to improve the air 

quality.  These control measures can be determined if the sources of this particular pollutant are 

known. The relation between the pollutant emission and resulting concentrations are complex 

(Fenger, 2002). An air pollutant is emitted into the atmosphere and then it is dispersed and diluted 

(i.e. mostly due to the meteorological conditions, especially wind speed, wind direction, 

turbulence, and atmospheric stability) (Lyons & Scott, 1990) and undergo some physical and 

chemical reactions (Mayer, 1999). Furthermore, as the atmosphere is the primary pathway for air 

pollutants, both local and distant sources may contribute to the observed pollutant concentrations. 

Depending on the synoptic scale meteorological conditions, an air pollutant that is emitted into the 

troposphere can travel long distances (i.e. 100 km to 1000 km from the source) and during this 

travel it can undergo gradual mixing with the background and eventually arrives the receptor site 

and contributes the pollutant concentration in the receptor site. This is called “Long Range 

Transport of Pollutants (LRT)”. In the literature, depending on the time (i.e. a few days to a few 

weeks) or horizontal scale (i.e. 100 km to 1000 km) of pollutant transport, different names such as 

continental, transboundary or regional transport can be used to refer long range transport of 

pollutants. European Environment Agency defines the LRT as the atmospheric transport of air 

pollutants within a moving air mass for a distance greater than 100 kilometers (European 

Environment Agency, 2017). Actually, long range transport of air pollutants is first recognized in 

1960s with the acidification of lakes in UK and Scandinavia (Mylona, 1996). There were no 

emission sources that may cause acidification problem in the remote areas of the UK and 

Scandinavia. However, sulfur dioxide emissions transported from continental Europe caused 

acidification problem in these countries. As a result, the first multilateral agreement namely 

“Convention on Long-range Transboundary Air Pollution (CLRTAP)” was established in 1979 to 

address transboundary air pollution problem. At present, 51 Parties (i.e. countries) ratified the 

CLRTAP convention and a regional framework has been created to reduce transboundary air 
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pollution and better understand the air pollution science (U.S.A Department of State-Office of 

Environmental Quality, n.d.) by adopting emission reduction targets for specific pollutants  (i.e. 

sulfur dioxide (SO2), nitrogen oxides (NOx), ammonia (NH3), volatile organic compounds 

(VOCs), ozone (O3), persistent organic pollutants (POPs), and heavy metals). All Parties have to 

achieve these targets to combat the resulting transboundary air pollution. 

 

Previous LRT (long-range transport) studies in Turkey were mostly conducted in the Eastern 

Mediterranean region of Turkey (Al-Momani et al., 1997; G. Dogan et al., 2010; G. Güllü et al., 

2004, 2005; G. H. Güllü et al., 1998, 2000; Günaydin & Tuncel, 2003; Im et al., 2012; Koçak et 

al., 2004, 2009a, 2012; Koçak, Kubilay, et al., 2007; Koçak, Mihalopoulos, et al., 2007b, 2007a; 

Kubilay et al., 2000, 2005; Öztürk et al., 2012; Sciare et al., 2003, 2005; Theodosi et al., 2010; 

Türküm et al., 2008). In these studies, eastern Turkey and the eastern and central regions of 

northern Africa are identified as the main source regions for crustal elements,  and the countries 

surrounding the Mediterranean, the Balkan countries and the former USSR countries are identified 

as the main source regions for anthropogenic pollutants. 

 

To establish the influence of long range transported pollutants at a receptor site, air mass back 

trajectories must be examined. Air masses have the potential to carry both natural and human-

made pollutants as they travel. Establishing the history of air masses across time is necessary to 

determine the influence of local sources of pollution. Trajectory is the path that air masses travel 

as they move through the atmosphere. Trajectories are often used to understand how pollutants 

disperse over time and distance, and to identify potential sources of pollution.  

 

In order to simulate air masses, back trajectory calculations are commonly used. By tracing the 

paths of air masses leading up to their arrival at the receptor site, back trajectory analysis provides 

a simulation of their movement. Several models (HYSPLIT, FLEXPART, LAGRANTO, NAME, 

STILT, TRAJ3D, METEX) can simulate back trajectories (Bowman et al., 2013). The Hybrid 

Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) (Draxler et al., 1998; Stein et 

al., 2015) has been widely utilized by air quality researchers to identify the main emission sources 

influencing the particular site (i.e. receptor site) through statistical analyses (i.e. trajectory 
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statistics) and to interpret episode events such as dust transport from desert or emissions from 

forest fires (Vitali et al., 2017).  

 

The HYSPLIT model requires meteorological data (archive) as input data and various parameters, 

including a vertical transport velocity method, arrival time, arrival height, and time length. Back 

trajectories may differ depending on the model inputs (Gebhart et al., 2005; Harris et al., 2005; Su 

et al., 2015).Therefore, all the input variables used for trajectory simulation shall be reported. 

Those studies indicated that trajectories also vary depending on the receptor sites' geographical 

properties. It is well known that for a particular region (or receptor site), different model inputs 

shall be used to simulate back trajectories to determine the sensitivity of trajectories to input 

variables. However, sensitivity analyses are rarely conducted. Errors up to 100% can also occur in 

critical flow scenarios, according to Stohl (1998). 

 

In Figure 1 and Figure 2, 96 h (i.e. 4 days back) back trajectories generated for 8 August 2010 

using different input data (i.e. different meteorological archieve and vertical transport method) are 

presented as an example to illustrate how trajectories can vary when different model inputs are 

used. In Figure 1, the back trajectory is simulated using the NCEP/NCAR Reanalysis 

meteorological archieve and isentropic vertical method.  According to Figure 1, air masses 

originated from Libya and Egypt and then travelled through the Mediterranean Sea before 

intercepting the receptor site (arrival site). In Figure 2, GDAS1 meteorological archieve and model 

vertical velocity (three dimensional (3-D)) is used as input data to simulate the back trajectory. 

According to Figure 2, air masses originated from the Agean Sea and then transported to the 

receptor site.  Although these two back trajectories are simulated for the same day, they indicated 

totally different source regions for the air masses.  

 

Quantifying the differences in the HYSPLIT trajectories produced by different model inputs is 

therefore crucial; however, such an examination has not been conducted in Turkey. Actually, 

different model inputs have been used in the back trajectory studies conducted over Turkey.  

NCEP/NCAR Reanalysis archive and GDAS1 archieve are the most commonly used 

meteorological archives, while isentropic method and model vertical velocity are the most 

commonly used vertical transport methods in the studies conducted over Turkey.  Hence, this study 
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is designed to assess the sensitivities of HYSPLIT back trajectories simulated with the most widely 

used input variables for a particular receptor site in Turkey.  

 

 

Figure 1. 96-hr back trajectory generated by HYSPLIT Model using NCEP/NCAR Reanalysis 

archive and isentropic vertical method 
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Figure 2. 96-hr back trajectory generated by HYSPLIT Model using GDAS1 archive and model 

vertical velocity 

 

 

1.1. Purpose and Scope of the Study 

The primary goals of this study are to compute the differences between HYSPLIT back trajectories 

simulated with the most common meteorological archives and vertical velocity methods by 

conducting sensitivity analysis; to compare the most dominant patterns of back trajectories 

generated from these common input variables by using cluster analysis; and last but not least, to 

examine whether the differences in the predominant patterns impact the interpretation of the 

source-receptor relations. It's crucial to note that this study refrains from declaring one 

meteorological archive or vertical velocity method as superior to the other.  Actually, this study is 

designed to inform the HYSPLIT users in Turkey to consider that some differences could arise 

when back trajectories are simulated with different inputs and to highlight the importance of 

reporting input variables that were used for running the HYSPLIT model. 
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1.2. Structure of the Thesis 

 

In Chapter 1, the problem is defined. The primary goals and scope of the study are listed. 

 

In Chapter 2, the literature review provides background information on back trajectories, model 

inputs, cluster analysis, and sensitivity analysis. 

 

In Chapter 3, the materials and methods of this thesis were described. The study region and the 

input data utilized were explained. 

 

In Chapter 4, four different back trajectory data sets were compared with sensitivity analysis. The 

variation of sensitivity parameters with respect to time and season were explained.  One of the 

trajectory statistics methods, namely Cluster Analysis were applied to the back trajectory data sets. 

The variation of transport pattern and the variation in the interpretation of the source-receptor 

relationship with respect to the different trajectory data sets were discussed. 

 

Chapter 5 contains the conclusion of this thesis and recommendations for future studies. 
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2. LITERATURE REVIEW 

 

Air pollution has been a significant concern for human health and the environment for many 

decades, prompting a considerable amount of research on the topic. Identifying sources of 

pollution has become crucial to determine policies and strategies to prevent the impact of pollution. 

The trajectory is a set of vectors that shows the possible routes of air parcels forward or backward 

in the atmosphere in latitude, longitude, and altitude. The trajectory followed by an air parcel in 

the backward direction is called the back trajectory, and the trajectory followed in the forward 

direction is called the forward trajectory. Both trajectory types have particular usage in air 

pollution studies. The forward trajectory actually simulates the potential path of air masses using 

the forecast meteorological data i.e. where the air pollutant which is emitted from the source can 

go at a given time and place (Figure 3a).  Forward trajectories can be used to forecast the transport 

of forest fires, nuclear or chemical pollutants (Stein et al., 2015). Back trajectories also known as 

backward trajectories uses archived meteorological data and simulates where the air masses come 

from before arriving the receptor site (Figure 3b). In general, back trajectories are combined with 

the air pollution measurement at a particular site and the air mass history is tracked by means of 

trajectory statistics so that source-receptor relation can be established. Therefore, back trajectories 

are an important tool in air pollution research, providing valuable information about the sources 

and transport of pollutants. 
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Figure 3. (a) Forward trajectory and (b) Back trajectory 

 

Forward and back trajectories can be calculated by using HYSPLIT trajectory model. There are 

two versions of the HYSPLIT model, a web version, and a PC version.  

 

Hybrid-Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model (Draxler et al., 1998) 

developed by the National Oceanic and Atmospheric Administration’s (NOAA) Air Resources 

Laboratory (ARL). The HYSPLIT model is utilized to examine the atmospheric transport, 

dispersion, and accumulation of pollutants and hazardous substances on the surface of the Earth. 

HYSPLIT uses include monitoring and predicting the release of radioactive material, volcanic ash, 

forest fire smoke, and pollutants from emission sources. 

 

The computation method of the model combines elements of the Eulerian and Lagrangian 

approaches. In the Lagrangian approach, when the air parcels move from their starting positions, 

a moving reference frame is utilized while the Eulerian approach utilizes a stationary three-

dimensional grid. The model utilized the Lagrangian approach to compute the trajectories, 

(a) (b) 
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advection, and diffusion while using the Eulerian approach to calculate pollutant concentrations 

(NOAA, 2011). 

 

2.1. Input Variables 

Executing the HYSPLIT trajectory model requires access to a substantial meteorological database, 

typically at a medium to global scale. Meteorological data is obtained by combining 

meteorological models and meteorological measurements. The HYSPLIT trajectory model 

provides users with various options for meteorological archives, enabling them to select the most 

suitable data set for their specific needs. Table 1 shows the meteorological archives that are 

available within the HYSPLIT trajectory model. 

 

Table 1. HYSPLIT Meteorological Archives (NOAA, 2023) 

Data set 

Horizontal 

Resolution Full-grid 

dimensions 

Temporal 

resolution 

(hrs) 

Vertical Period 

of each 

file 

Availability 
(km- 

approx.) 
Levels 

G
lo

b
al

 

GFS - 0.25o 27 1440 x 721 3 56 1 day 
Jun 2019 -> 

present 

GDAS - 0.5o 55 720 x 361 3 56 1 day 
Sep 2007 -> 

Jun 2019 

GDAS - 1o 111 360 x 181 3 24 1 week 
Dec 2004 -> 

present 

Global 

Reanalysis - 

2.5o 

278 144 x 73 6 18 1 month 
1948 -> 

present 

 

 

As seen in Table 1, there are four meteorology archives available globally in HYSPLIT. GFS 0.25 

is an archive of combined short-term NCEP Global Forecast System (GFS) model output having 

a quarter-degree latitude-longitude grid on native model levels (NOAA, 2019a). The GFS archive 

is available from 2019 to the present. GDAS 0.5 daily archive files include global 3-D gridded 

meteorological model output.  The output file includes 3-hourly data, at a half-degree latitude by 
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half-degree longitude resolution, on hybrid sigma-pressure surfaces (NOAA, 2012). GDAS 0.5 

archive is available between 2007-2019. The Reanalysis archive has a horizontal resolution of 

about 2.5 degrees latitude. The Reanalysis archive is available for the globe, from 1948 to the 

present (NOAA, 2019b). GDAS1 has 1 degrees latitude by 1 degrees longitude spatial resolution 

(NOAA, 2019). The GDAS1 archive is available from 2004 to the present. 

 

Using different meteorological archives affects the resulting back trajectory. Su et al. (2015) 

calculated 72-hr back trajectories four times a day (02 UTC, 08 UTC, 14 UTC and 20 UTC) for 

the year of 2011 at 500 m arrival height by using HYSPLIT in the Northern Hong Kong. In this 

study, two meteorological data sets were compared (GDAS1 and GDAS0.5). There are some 

differences between GDAS1 and GDAS0.5 in terms of horizontal resolution and vertical velocity 

field, despite the fact that they assimilate the same observations. In the study, vertical velocities 

with the observations and the performance in obtaining PM contributions from various directions 

were compared. As a result, GDAS1 archive concluded more proper in back trajectory analysis for 

that region. They also evaluated the seasonal variations of trajectories and found that differences 

in trajectories are greater during winter and less during summer. 

 

Harris et al. (2005) compared two different meteorological data (ERA-40 and NCEP/NCAR 

Reanalysis). Trajectories was compared in this study. Study have been conducted to three 

geographically diverse sites. Deviation statistics have been calculated. These are the absolute 

horizontal transport deviation (AHTD), the absolute vertical transport deviation (AVTD), and the 

relative horizontal transport deviation (RHTD). Deviation statistics results revealed that the 

sensitivity to the meteorological archive was 30–40%. 

 

Kahl et al. (1989) examined Arctic trajectory types. They concluded that at times trajectories were 

more sensitive to different meteorological archives than they were to variations in vertical transport 

method. 

 

In HYSPLIT model, not only meteorological archives but also the vertical velocity methods, 

arrival hour, arrival height, total run time are required as input variables. In the following 
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paragraphs, studies conducting using different vertical velocity methods, and other input variables 

are presented.  

 

In HYSPLIT trajectory analysis, users can select the vertical velocity method for calculating back 

trajectories. The speed of air moving either upward or downward is known as vertical velocity. 

Understanding the large-scale dynamics of the atmosphere, such as regions of upward and 

downward motion, can be aided by knowing the vertical velocity (ECMWF, 2023). As vertical 

velocity method, HYSPLIT desktop version offers nine options. These are model vertical velocity, 

isobaric, isentropic, constant density, isosigma, from divergence, remap MSL (Mean Sea Level) 

to AGL (above ground level), average data, and damped magnitude option (NOAA, 2007). 

HYSPLIT web version offers only three of them, model vertical velocity, isobaric and isentropic.  

 

Generally, the meteorological archive includes the vertical motion field in most situations. These 

data fields can be used directly in trajectory calculations as the vertical velocity method. However, 

the HYSPLIT model offers other velocity methods that may be required for special situations by 

assuming the pollutant is transported on another surface. This is achieved by calculating the 

velocity (Wη) needed to keep a parcel on the chosen η surface, taking into account the surface's 

local rate of change and slope (NOAA, 2007). 

 

Wη =  (− ∂η/ ∂t −  u ∂η/ ∂x −  v ∂η/ ∂y) / (∂η/ ∂z)                (Equation 1) 

 

Where Wη = velocity (Wη) required to maintain a parcel on the selected η surface 

   η = surface can be either isobaric (p), isosigma (σ), isopycnic (ρ), or isentropic (θ). 

   x,y,z = locations of the trajectories 

 

Using different vertical velocity methods as well as different meteorological archives also affects 

the resulting back trajectory. Harris et al. (2005) compared the isentropic and model vertical 

velocityMetin girmek için buraya tıklayın veya dokunun., two different meteorological data were 

used (ERA-40 and NCEP/NCAR Reanalysis) to compare isentropic and model vertical velocity 
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tropospheric trajectories. Deviation statistics have been calculated. These are AHTD, AVTD, and 

RHTD. At all three locations, model vertical velocity trajectories reached greater altitudes and 

wind speeds compared to isentropic trajectories. Additionally, 3-D trajectory deviations exceeded 

isentropic trajectory deviations due to uncertainties in the vertical wind fields and greater wind 

speeds in three-dimensional trajectories. Deviation statistics results revealed that the sensitivity to 

the vertical transport method was 18–34%, the sensitivity to the meteorological archive was 30–

40%, and the sensitivity to combined two-way discrepancies in vertical transport method and the 

meteorological archive was 39–47%. 

 

Martin et al. (1990) compared isentropic trajectories and three-dimensional (3-D) trajectories. It 

was concluded that although isentropic trajectories better symbolize vertical motion, the model is 

suited to intensive applications in pollution investigations. 

 

Three-dimensional and isentropic trajectories are computed by Stohl & Seibert (1998). Isentropic 

trajectories are found to be more affected by dynamical discrepancies between meteorological 

fields, while 3-D trajectories are determined to be the most accurate ones. 

 

According to Draxler (1996), isentropic and kinematic trajectories are often similar to one another 

(90%), but they can diverge significantly when they enter baroclinic parts of the troposphere. 

 

The distances between the sources and destination regions and the routes that the air mass takes 

affect how long back trajectories are. Unless the trajectories are examined as part of a tracer study, 

the level of accuracy for any single trajectory is typically unknown (Markou & Kassomenos, 

2010). 

 

In addition, total trajectory run time can also be determined by the user. In the previous, back 

trajectory cluster analysis has been widely employed to interpretation of pollution (Abdalmogith 

& Harrison, 2005; Borge et al., 2007a; Cabello et al., 2008) and precipitation composition (Dorling 

et al., 1992a, 1992b). Most of these studies employ back trajectories with timescales between 3 

and 5 days. This represents a compromise between having enough time to characterize the long-

range transport and the individual back trajectories' deteriorating accuracy the further back they 
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are in time (Stohl, 1998). As total run time increases, uncertainty increases. Cabello et al. (2008) 

observed that differences between trajectories have grown linearly for a minimum up to 48-hr and 

have shown faster growth after 72-hr.  Furthermore, when selecting the total run time, sufficient 

time must be given if secondary pollutants and their sources are to be investigated (Baker, 2010).  

 

Another input variable influencing the back trajectories is arrival height. Saunders et al. (2013) 

examined the sensitivity of back trajectories using four different arrival heights (i.e. 500 m, 1000 

m, 1500 m, and 2000 m AGL) and found that back trajectory calculations are affected by the choice 

of the arrival height.  

 

Gebhart et al. (2005) discovered directional biases in trajectories began at different elevations from 

the studied region. In the study, it was seen that trajectories began at higher elevations was in 

tendency to move faster and back farther than those that began at lower elevations. Cabello et al. 

(2008) found that the number of clusters of each clustering scenario varies for the trajectories 

reaching 1500 and 3000 m. 

 

2.2 Application of Back Trajectories 

Back trajectories are the most commonly calculated type of air trajectories. Trajectories are used 

in cyclones (Gozzo et al., 2013), and synoptic meteorology studies (Hondula et al., 2010), 

atmospheric moisture (Knippertz & Wernli, 2010), clouds (Feingold et al., 2003), and precipitation 

studies (Tošić & Unkašević, 2013); in air chemistry applications such as common air pollutants 

(Asaf et al., 2008), ozone (MacDonald et al., 2011), trace gases studies (Ferrarese et al., 2002), to 

transport of hazardous substances such as radionuclide transport (Srinivas et al., 2012), 

insecticides/pesticides/persistent organic pollutants (POPs) (Qin et al., 2012), toxic metal studies 

(Cheng et al., 2013); to determine sources and transport of aerosols such as particulate matter 

studies (Mahapatra et al., 2013), forest fire (Chan et al., 2006), and biomass burning studies (Ortiz-

Amezcua et al., 2014,Pérez, Artuso et al. 2015). 

 

Zhao et al. (2020) investigated the features and distribution of extensive air pollution episodes 

during the COVID-19 pandemic in the studied region using back trajectory analysis and cluster 
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analysis.  The 72-hr back trajectories were calculated by using HYSPLIT, at 50, 100, and 500 m 

AGL using GDAS1 meteorological archive. For each of the three cities, a total of 432 trajectories 

were obtained. The trajectories were then classified into four groups. During the first pollution 

episode in the studied region, the back trajectories have resulted from the local emission sources. 

Mitigation strategies were determined for the studied region. HYSPLIT, PSCF and CWT models 

was used to study the source distribution and transport paths. The study aimed to gain insights into 

the transport paths and source distribution of air pollutants during this period marked by significant 

changes in human activities and emission patterns. 

 

Ma et al. (2019) examined the transport paths and sources of atmospheric pollution in the city of 

Shenyang by using back trajectories. The study utilizes the HYSPLIT model to analyze the 

movement of pollutants and gain insights into their origins and dispersion patterns within the 

region. 

 

Sturman & Zawar-Reza (2002) were employed back trajectories in atmospheric modeling 

techniques to identify and define fresh air zones within urban areas. By analyzing the backward 

movement of air masses, the study aimed to delineate regions within cities that experience 

relatively cleaner and less polluted air. This approach provided valuable insights into the spatial 

distribution of air quality and informed urban planning and policy decisions aimed at preserving 

and enhancing air quality in densely populated areas. The integration of back trajectories and 

atmospheric modeling demonstrated its potential in promoting healthier and more sustainable 

urban environments. 

 

Generally, back trajectories are used in air pollution studies to identify the source regions of 

pollutants and to understand the transport of air masses. Back trajectories are calculated by tracking 

the movement of air masses in reverse from a receptor site (where the air pollution is being 

measured) to the potential source regions. This information can be used to inform policies and 

regulations aimed at reducing emissions in those areas. 
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2.2.1. Literature Review in Turkey 

The HYSPLIT model has been extensively utilized in studies conducted in Turkey. Forty-three 

studies using HYSPLIT in Turkey were examined, and information on model inputs is given in 

Table 2. Among these studies, the NCEP/NCAR Reanalysis archive was employed in five of them; 

GDAS (Global Data Assimilation System) was used in nineteen; WRF-ARW was used in one; and 

the FNL (Final) archive was utilized in two studies. The isentropic method was chosen as the 

preferred approach in five studies, while the model vertical velocity method was selected in eleven 

studies. However, the meteorology archive used in sixteen studies was not explicitly specified; and 

in twenty-seven studies, the vertical velocity method was not specified.  

 

When considering the data presented in Table 2, which examines the studies conducted in Turkey, 

it becomes evident that the most commonly used meteorology archives are GDAS and 

NCEP/NCAR Reanalysis. Additionally, the preferred vertical velocity methods are the model 

vertical velocity and the isentropic method. 

 

As observed in Table 2, it is noteworthy that sixteen of the forty-three studies examined did not 

provide any information regarding the meteorology archive utilized. Similarly, in more than half 

of the studies, there was no mention of the vertical velocity method employed. Since differences 

due to model inputs affect the back trajectories, information on which inputs were used in the 

studies should be provided. Otherwise, it is not possible to compare the results with other studies 

or to continue the study for a specific region. 

 

The absence of information about both the meteorology archive and the vertical velocity method 

raises questions regarding the potential effects these factors may have on the outputs and 

conclusions of the studies. 
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Table 2. Studies conducted in Turkey using HYSPLIT back trajectories 

 

Study Subject Period Trj. Days Location 
Met. 

Archive 

Vertical 

Velocity 

Method 

Arrival 

Height 

(Dinçer et 

al., 2003) 
SO2 2000 24-hr Izmir − − − 

(İm et al., 

2006) 

O3, NOx, 

VOC 

2001-

2003 
2-days Istanbul FNL 

Model 

Vertical 

Velocity 

500 m 

(Im et al., 

2008) 

O3, NOx, 

VOC 

2001-

2005 
24-hr Istanbul 

FNL and 

GDAS 

Model 

Vertical 

velocity 

− 

(Alp & 

Hanedar, 

2009) 

O3 
2001-

2004 
− İstanbul − − 

100 m, 

500 m, 

1000 m, 

1500 m 

(Koçak et 

al., 2009b) 
PM10 

2001-

2002 
3-days 

Erdemli, 

Mersin 
− − 

1000 m, 

2000 m, 

3000 m, 

4000 m 

(Öztürk, 

2009) 
PM10 

1993-

2001 
5-days Antalya 

Reanalysi

s 
Isentropic 

100 m, 

500 m, 

1500 m 

(Karaca et 

al., 2009) 
PM10 2009 3-days Istanbul − − 1500 m 

(Genç 

Tokgöz & 

Tuncel, 

2008, 

2011) 

Particulate 

matter 
2008 5-days Istanbul − − 

500 m, 

1000 m, 

1500 m 

(Uygur et 

al., 2010) 

Rain-

water 

samples 

2007-

2008 
5-days Istanbul GDAS 

Model 

vertical 

velocity 

1500 m 

(Genç 

Tokgöz & 

Tuncel, 

2008, 

2011) 

Particulate 

matter 

2006-

2007 
5-days 

Northwest 

of Turkey 

Reanalysi

s 
Isentropic 

100 m, 

500 m, 

1500 m 
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Table 2 cont. Studies conducted in Turkey using HYSPLIT back trajectories 

Study Subject Period 
Trj. 

Days 
Location 

Met. 

Archive 

Vertical 

Velocity 

Method 

Arrival 

Height 

(Zemmer 

et al., 

2012) 

Ragweed 

polen 
2007 5-days Istanbul GDAS 

Model 

Vertical 

velocity 

100 m 

(Papayann

is et al., 

2012) 

Volcanic 

ash 
2010 

7 to 13-

days 

Istanbul, 

Athens 
GDAS − − 

(Ozdemir 

et al., 

2012) 

Particulate 

matter 
2009 96-hr Istanbul GDAS0.5 

Model 

Vertical 

velocity 

− 

(Im et al., 

2013) 
O3 

2007-

2009 
3-days Istanbul − − 1000 m 

(Uygur & 

Saral, 

2013) 

Particulate 

matter 

2007-

2008 
2-days Istanbul − − 500 m, 

(Kuzu et 

al., 2013) 

Particulate 

matter 

2009-

2010 
− Istanbul GDAS 

Model 

Vertical 

velocity 

500 m 

(Oğuz & 

Dündar, 

2014) 

Dust 

transport 
2013 2-days 

South of 

Turkey 
GDAS1 

Model 

vertical 

velocity 

10 m, 50 

m, 1500 m 

(Toros et 

al., 2014) 
PM10 2019 72-hr Istanbul GDAS 

Model 

Vertical 

velocity 

− 

(Ağaç, 

2016) 
PM10 

2012-

2014 
3-days Istanbul − − 1500 m 

(Sari et 

al., 2016) 
Ozone 

2013-

2014 
72-hr 

Biga 

Peninsula 
GDAS0.5 − 500 m 

(Ünal, 

2016) 

Dust 

transport 
2015 3-days Diyarbakir − − 

100 m, 

500 m, 

1500 m 
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Table 2 cont. Studies conducted in Turkey using HYSPLIT back trajectories 

Study Subject Period 
Trj. 

Days 
Location 

Met. 

Archive 

Vertical 

Velocity 

Method 

Arrival 

Height 

(Topuz & 

Karabulut, 

2017) 

Dust 

transport 
2015 3-days Antakya Reanalysis 

Model 

vertical 

velocity 

500 m, 

1500 m, 

3000 m 

(Anil et 

al., 2017) 

Rain-

water 

samples 

2009 5-days Istanbul GDAS 

Model 

vertical 

velocity 

1500 m 

(Balcılar, 

2018) 

Particulate 

matter 

2011-

2012 
5-days 

Eastern 

Black Sea 
Reanalysis Isentropic 

100 m, 

500 m, 

1500 m 

(Kasparog

lu et al., 

2018) 

O3, NO, 

NO2 

2013-

2016 
3-days Istanbul GDAS0.5 − 500 m 

(Alan et 

al., 2019) 

Ragweed 

polen 

2015-

2016 
2-days Zonguldak GDAS − 50 m 

(Özdemir, 

2019) 
PM10 2012 48-hr 

Central 

Mediterra

nean 

GDAS1 − 

10 m, 

1500 m, 

3000 m 

(Celenk, 

2019) 

Ragweed 

polen 
2014 2-days Bursa GDAS1 − 500 m 

(Baltaci et 

al., 2020) 
PM10 

2007-

2017 
72-hr Istanbul GDAS1 − − 

(Dörter et 

al., 2020) 

Rainwater 

sample 
2013 − 

Bolu, 

Black Sea 

Region 

− − − 

(Mutlu, 

2020) 
PM10 2016 72-hr Balikesir GDAS1 

Model 

Vertical 

velocity 

500 m 

(Rastgeldi 

Dogan & 

Yalcin, 

2020) 

PM10 − − Sanliurfa − − − 
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Table 2 cont. Studies conducted in Turkey using HYSPLIT back trajectories 

 

Study Subject Period Trj. Days Location 
Met. 

Archive 

Vertical 

Velocity 

Method 

Arrival 

Height 

(Sari et 

al., 2020) 
Ozone 

2013-

2015 
72-hr 

Biga 

Peninsula 

WRF-

ARW 
− 500 m 

(T. R. 

Dogan et 

al., 2021) 

Particulate 

matter 
2019 − 

Southeast

ern 

Anatolia 

− − 

500 m, 

1000 m, 

1500 m, 

2000 m, 

2500 m 

(Çapraz & 

Deniz, 

2021) 

Particulate 

matter 
2015 − Istanbul − − − 

(Baltaci et 

al., 2022) 
PM10 

2007-

2017 
72-hr Canakkale GDAS1 − 1000 m 

(Baltaci & 

Ezber, 

2022) 

PM10 
2014-

2019 
72-hr 

Southeast

ern 

Anatolia 

GDAS1 − − 

(Oruc, 

2022) 
PM10 

2019-

2020 
72-hr Kırklareli GDAS1 − 1500 m 

(Dogan 

Rastgeldi 

& 

Atbinici, 

2022) 

PM10, SO2 
2010-

2020 
− 

Southeast

ern 

Anatolia 

− − 

500 m, 

1000 m, 

1500 m 

(Yavuz et 

al., 2022) 

Particulate 

matter 
2019 96-hr Istanbul − − 

250 m, 

500 m, 

1000 m 

(Eşsiz & 

Acar, 

2023) 

Snowstor

m 
2004 2-days Canakkale 

Reanalysi

s 
Isentropic − 

(Kilic & 

Kilic, 

2023) 

Rainfall 

samples 
2021 72-hr Antalya − − 

100 m, 

1000 m, 

1500 m 

(Kilic & 

Pamukogl

u, 2023) 

Rain 

samples 
2020 72-hr Antalya − Isentropic 

100 m, 

1000 m, 

1500 m 
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2.3. Trajectory Statistics 

Back trajectory statistics are employed to display the direction and sources of air pollution at a 

receptor location. In this field, it is common to apply trajectory statistical methods like clustering 

(Harris & Kahl, 1990), potential source contribution function (PSCF) (Ashbaugh et al., 1985), and 

concentration weighted trajectory (CWT) (Seibert et al., 1994). The conditional probability that an 

air mass with a pollutant concentration above a threshold level will reach at a receptor area 

following its passage across a particular geographic area is called PSCF. The PSCF model 

combines chemical data with meteorological data by analyzing chemical concentrations and air 

trajectories to provide an indication of the regions where pollutants are emitted (Ashbaugh et al., 

1985). Previous studies have been widely employed PSCF to locate potential sources (G. Dogan 

et al., 2010; Genç Tokgöz, 2013; G. Güllü et al., 2005; Karaca et al., 2008; Uygur et al., 2010). In 

CWT, the concentration values at the receptor location conferred to the corresponding back 

trajectories. Each grid cell's residency time is weighted according to its mean/logarithmic mean 

concentration that is computed (Zhou et al., 2004). In this study, among the trajectory statistics, 

Cluster analysis will be used to relate the atmospheric transport pathway and pollution sources 

with the receptor. Therefore, cluster analysis is discussed in detail. 

 

2.3.1. Cluster Analysis 

Cluster analysis is a common technique used in back trajectory analysis. This method is used to 

analyze the sources of air pollution and the transport of pollutants. It is based on the assumption 

that similar back trajectories are likely to originate from the same source and travel through similar 

pathways.  With clustering analysis, back trajectories are categorized according to the similarities 

in transport velocity and directions. Each category created is called a cluster. While each cluster is 

similar in itself in terms of speed, direction, curvature and length, there are differences with other 

clusters. The method of analysis involves combining trajectories that are close to one another and 

using the mean trajectory to represent those groups called clusters. Trajectory differences within a 

cluster are decreased, whereas differences between clusters are increased. Cluster analysis is 

especially used to investigate the relationship between pollutant concentrations and back 

trajectories (Harris & Kahl, 1990).  
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Piñero-García et al. (2015) performed cluster analysis of back trajectories to investigate the 

transportation of radioactive aerosols in the southeastern region of Spain. The results revealed 

distinct clusters representing different pathways and dispersion patterns of the aerosols, providing 

valuable insights into their transport and potential impact on the study area. 

 

Markou & Kassomenos (2010) used 4-days back trajectories clustered at 750m, 1500m, and 300m 

AMSL (above mean sea level) for 5-year period. Three clusters were chosen with respect to their 

lengths as SSM (Short-Slow-Moving), MM (Medium-Moving), LFM (Long-Fast Moving). 

Cluster analysis was applied again. The findings indicate that the number of back trajectories in 

the SSM category reduced with height raises, while LFM category increased.  

 

In order to study the effects of air back-trajectories on aerosol optical characteristics in Hornsund, 

Poland, Rozwadowska et al. (2010) categorized the back trajectories into clusters based on the 

resembling velocity and direction of advection. 

 

Baker (2010) performed cluster analysis on four-day back trajectories for the years 1998- 2001 to 

understand pollution meteorology affecting Birmingham, UK. K-means cluster analysis technique 

was used in this study. 

 

Cabello et al. (2008) studied back trajectory differences and sensitivity to the meteorological 

archive. Seven years of back trajectories arriving in Southeast Spain at 300, 1500 and 500m are 

studied. Two different meteorological archives were used (NCEP/NCAR Reanalysis and FNL). 

Trajectory differences have grown linearly for a minimum up to 48-hr and have shown faster 

growth after 72-hr. K-means cluster analysis was applied. It was found that the number of clusters 

of every clustering scenario varies for the trajectories reaching 1500 and 3000 m. Mostly, the input 

meteorological data has a greater impact on trajectory membership to the detected flows than does 

the initial cluster centroid choice. 
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It can be said that cluster analysis is a subjective method, that is, it varies according to the choices 

made by the user. These are choice of trajectory technique, choice of distance, and choice of 

optimum cluster number. 

 

2.3.2. Clustering Techniques 

Cluster analysis consists of two types that are hierarchical and non-hierarchical (Borge et al., 

2007a; Kassomenos et al., 2010a; Sirois & Bottenheim, 1995). Hierarchical technique builds a 

hierarchical nested clustering tree by determining how similar various types of data points are to 

one another. The lowest layer of a cluster tree is made up of the initial data points for various 

clusters, while the highest layer is the root node of a cluster. A cluster tree can be made using either 

top-down splitting or bottom-up merging. The merging technique gathers the two most similar 

points into a single cluster by measuring similarity. The cluster performs another calculation using 

new points. Up until all the data is gathered into a single cluster, this process is repeated. The 

merging algorithm calculates the distance between clusters to identify similarity. As the distance 

reduces, the degree of similarity raises. To form a cluster tree, the two closest points or clusters 

are combined (Cui, Song, & Zhong, 2021). Ward's method is a frequently used method among 

hierarchical clustering methods. By combining clusters with similar variances, Ward's method 

creates homogeneous clusters. It is assumed that the variables have a multivariate normal 

distribution and that clusters have a tendency to be distinct and of comparable size (Shannon, 

2007). 

 

A non-hierarchical clustering technique is one where data points are directly assigned to distinct 

clusters without being grouped according to hierarchical categories. Using non-hierarchical 

clustering methods, data points are grouped according to their similarities or distance measures in 

order to optimize a clustering criterion. Among the nonhierarchical clustering algorithms are k-

means clustering, Fuzzy C-means clustering, Gaussian Mixture Model (GMM), and Self-

Organizing Maps (SOM). 

 

The k-means clustering algorithm has been widely used among clustering algorithms because of 

its simplicity and efficiency (Hartigan & Wong, 1979).  In a comprehensive review of literature 
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covering the period from 1980 to 2019, the clustering methods employed in air pollution studies 

were analyzed (Govender & Sivakumar, 2020). The findings of this study revealed that the k-

means technique was utilized in 70% of the conducted studies aimed at identifying pollutant 

sources and analyzing the routes of air trajectories. Based on the studies reviewed, it is evident that 

the k-means clustering technique has a wide range of uses for back trajectories. The K-means 

approach was first developed as an iterative categorization process utilizing a predefined number 

of sample trajectories, or "seeds" (Dorling et al., 1992b). In order to be used, this approach 

necessitates seeding with initial values for the clusters' centers, which requires foreknowledge of 

the number of clusters, k. It has been demonstrated that these initial seed values play a significant 

role in determining how data are ultimately assigned to clusters. In other words, the initial seed 

selection for the value of cluster centers has a significant impact on k-means clustering (Peña et 

al., 1999).  

 

In fuzzy C-means clustering technique, a cluster is given a point based on the distance between 

the data point and the cluster center (Menze et al., 2015). The further a data point is from a cluster 

center, the lower its membership value becomes. The membership summation for every data point 

should equal one (Baid et al., 2016).  

 

In GMM, every cluster is regarded as a mean- and variance-containing generative model. To find 

the variance and mean of probability distributions, mixture models are employed (Baid et al., 

2016).  

 

SOM is a type of self-organizing neural network recommended by Kohonen (1990). The network 

involves an input and output layer. The input layer's number of neurons is determined by the input 

network's input layer's vector's dimensions (Tawadrou & Katsabani, 2005). Each output neuron in 

the clustering analysis corresponds to a single cluster. The same cluster is formed when various 

signals activate the same excitatory neuron  (Cui, Song, & Zhong, 2021).  

 

Generally, different cluster analysis techniques have been utilized to categorize back trajectories 

based on meteorological conditions and identify common atmospheric circulation patterns. 
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Cui et al. (2021) compared clustering techniques, namely, k-means, hierarchical, and SOM. 

Authors concluded that, K-means and SOM are superior to the hierarchical and HYSPLIT models. 

Similar to other hierarchical clustering methods, the HYSPLIT clustering method utilizes a 

bottom-up combining approach. However, diversely specific data pretreatment techniques are 

utilized. 

 

The long-range transport and regional sources of PM2.5 in Beijing between 2005 to 2010 were 

investigated by L. Wang et al. (2015). TrajStat program which employs Ward's method based on 

a hierarchical clustering algorithm was used to perform cluster analysis in this study. It is 

concluded that long-distance transport comprised one-third of the annual PM2.5 contribution. 

 

Kassomenos et al. (2010) used 5-days model vertical velocity back trajectories used to compare 

different clustering algorithms (k-means, hierarchical, and SOM) for 4-years time period. Model 

vertical velocity back trajectories of air masses arrived at receptor site at 12.00 UTC, in three 

various elevations. HYSPLIT was used to simulate back trajectories. The findings suggest that 

although all three clustering techniques demonstrate a dependence on arrival height, the extent of 

this correlation varies significantly among them. The results indicated that fast-moving trajectories 

had the strongest correlation with arrival height in hierarchical clustering, with SOM showing a 

lower level of dependence in comparison. The analysis revealed that k-means exhibited the lowest 

level of dependence on arrival height among the considered clustering techniques.  

 

Karaca & Camci (2010) examined 5-day back trajectories in Istanbul for episodic events in 2008. 

Self-Organizing-Maps (SOM) technique was used for clustering analysis. Eight cluster groups 

were obtained. These data were analyzed and interpreted together with the measured PM10 data. 

Using an artificial neural network structure, SOM is used to represent input data in a lower-

dimensional manner. 

 

Borge et al. (2007) used 4-days model vertical velocity back trajectories for 3 years time period. 

A two-stage clustering algorithm was used to examine the back trajectories that reached three 

different locations. The study's objective was to examine the transport patterns of PM10 in an urban 

environment. Two-stage atmospheric clustering included non-hierarchical k-means. As a result of 
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the second stage of the analysis, specific trajectory clusters originated from North Africa for 

Madrid and Athens. 
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3. MATERIAL AND METHODS 

In this chapter, the methodology of the study was described. The study region and the input data 

utilized were explained. 

 

3.1. Study Area and Data Description 

In this study, the NCEP/NCAR Reanalysis and GDAS1 meteorology archives were utilized. These 

archives were chosen due to their widespread usage and relevance within the context of studies 

conducted in Turkey. Additionally, model vertical velocity and isentropic methods were used since 

these are the most commonly used vertical velocity methods in Turkey. Therefore, it is aimed to 

calculate the back trajectories using these two different archives and 2 different vertical velocity 

methods and to numerically show the differences between the back trajectories. For this purpose, 

it was necessary to select a receptor site to simulate back trajectories. In the location selection, the 

Mediterranean region, which is the region where LRT studies are most studied, was chosen. Figure 

4 presents a visual representation of the study area under examination. 

 

 

Figure 4. The study area (Google Earth, 2023) 

 

96-hr back trajectories were calculated one time a day (12 UTC) from January 1 2010 to December 

31 2013, using HYSPLIT-web version. The starting location for the trajectories is in the Eastern 

Mediterranean (360 58’ 12” N and 300 26’ 2” E) at an elevation of 1500 m AGL.  
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The reason for choosing the period between 2010 and 2013 is that we have the chemical 

composition of PM measured in that range and at that point. 1500 m AGL was chosen due to the 

decrease in the potential effects of topographic changes on lower arrival heights, and commonly 

used in long-distance transport. 12 UTC selection was due to the particulate matter sampling is 

often conducted daily in many long-distance transport studies. By selecting 96-hr back trajectories, 

it was aimed to compare them with studies in the literature.  

 

As stated above, the most used archives are Reanalysis and GDAS meteorology archives. 

Therefore, in this study, the effects of different inputs on trajectories were determined by using 

these meteorological archives. The details of meteorological archives used in this study are 

explained in the following paragraphs.   

 

The production purpose of reanalysis to create new atmospheric analyses based on previously 

collected data (ARL - Global Reanalysis Data Archive, 2023). Reanalysis meteorology archive has 

a resolution of T62 (209 km). Six-hour interval results are provided. More than 80 variables are 

involved, such as the geopotential height, temperature, relative humidity, u-wind, v-wind and w-

wind components, etc. in multiple different coordinate systems, such as 17 pressure level stack on 

2.5 by 2.5 degree grids, 28 sigma level stack on 192 by 94 Gaussian grids, and 11 isentropic level 

stack on 2.5 by 2.5 degree grid. Radiative heating, convective heating, and precipitation rate 

variables are also provided (NCEP/NCAR Global Reanalysis Products, 1948-Continuing - Dataset 

- DASH Search - Production, 2023). Most of the Reanalysis output is in GRIB-1 which is a WMO 

standard. (Reanalysis Data Sources, 2007). The detailed information of the NCEP/NCAR Global 

Reanalysis Data Archive is presented in APPENDIX A. 

 

Key strengths of Reanalysis meteorology archive are that it is a globally available data set, the 

long-termed reanalysis utilized rawinsonde data, and used in numerous studies therefore it serves 

as a guide for many calculations. The Reanalysis meteorology archive has several drawbacks, 

including being a model that is outdated, having low temporal and spatial moisture variability 

across the oceans, and performing relatively poorly in the Southern Hemisphere (Kalnay et al., 

1996; Kistler et al., 2001). 
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The NCEP model output is utilized for air quality transport and dispersion modeling at NOAA's 

Air Resources Laboratory. The GDAS is one of NCEP's operational systems. Global Data 

Assimilation System, (ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1/). The GDAS archive is a 

latitude/longitude global grid with a resolution of 1 degree (NOAA - Air Resources Laboratory -, 

2019) GDAS archive include main fields such as the u-wind, v-wind, and w-wind components, 

temperature, and humidity. W-wind is the vertical velocity wind field. Four times a day, at 00, 06, 

12, and 18 UTC, the GDAS is executed. The analysis time and the 3, 6, and 9-hour forecasts are 

included in the model output. Through NCEP post-processing of the GDAS, the data is 

transformed from sigma levels to required pressure levels and from the spectral coefficient form 

to 1-degree latitude-longitude (360 by 181) grids. GRIB format is used for model output (ARL - 

Global Reanalysis Data Archive, 2023). The detailed information of the GDAS1 data set is 

presented in APPENDIX B. 

 

There are differences between meteorology archives. These differences arise from spatial and 

temporal resolution and data coverage. The NCEP/NCAR Reanalysis has a coarser spatial 

resolution, 2.5 degrees latitude by 2.5 degrees longitude (≈ 278 km), GDAS has a higher spatial 

resolution, 1 degrees latitude by 1 degrees longitude (≈ 111 km). In addition, while a reanalysis 

archive data includes one month, GDAS1 data includes one week. Reanalysis archive is available 

from 1948 to present, when GDAS1 archive is available from December 2004 to present. Besides, 

the atmosphere is a continuous, three-dimensional, time-varying field. The atmosphere is not 

accurately represented by gridded meteorological fields. A single trajectory is impacted by 

variations in the horizontal grid, vertical levels, time intervals, and vertical velocity. 

 

As mentioned earlier, the most used vertical velocity methods are isentropic and model vertical 

velocity. The trajectory model has several options that control the computation. According to 

HYSPLIT, for the majority of applications, it is necessary to leave some of them at their default 

values. To illustrate, calculations should utilize the vertical motion field (model vertical velocity) 

that is included in the data file except modeling the flow along constant pressure (isobaric) or 

constant theta (isentropic) surfaces is required (HYSPLIT Trajectory Model Configuration, 2007). 

 

ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1/
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Model vertical velocity option utilized the vertical velocity field in the meteorological data file. In 

this method, the trajectory moves with the vertical velocity wind fields (Draxler, 1996).  

 

Potential temperature is utilized in the isentropic assumption to limit the vertical motion of 

trajectories (Stohl, 1998). Conservation of potential temperature, as assumed for isentropic 

trajectories, is fulfilled only for adiabatic and inviscid motions (Stohl & Wotawa, 1995). An 

idealized thermodynamic process that is adiabatic and reversible is called an isentropic process in 

thermodynamics. Heat or matter are not transferred (Horlock, 1967). The presumption of 

isentropic flow is no heat is added to or removed from the flow. Since it is assumed that the flow 

is thermodynamically reversible, all viscous and other irreversible effects are disregarded (One-

Dimensional Isentropic Flow, 2006). The US National Meteorological Center (NMC) gridded 

analyses' three-dimensional wind field is "collapsed" into two dimensions by vertically 

interpolating the winds to isentropes, or surfaces with constant potential temperature. 

 

The slope of the isentropes thus implies dry adiabatic vertical motion. The main advantage of this 

model is that it can take vertical shears into account as the isentrope samples winds at various 

heights. However, its main disadvantage is that in the presence of significant gradients in static 

stability, such as fronts, isentropic surfaces become undefinable. Because of this issue, isentropic 

trajectories frequently finish before they are supposed to, providing an inadequate representation 

of atmospheric transport (Kahl et al., 1989). 

 

The trajectory is kept on a constant pressure surface when using the isobaric option. In constant 

density option, trajectories remain on surfaces with constant density. In isosigma option, there is 

no vertical motion, and the trajectory maintains its internal sigma. In “from divergence” option, 

by vertically integrating the velocity divergence, the vertical motion is calculated (NOAA Air 

Resources Laboratory, 2007).  

 

In total, 1461 back trajectories were simulated for each trajectory data set, representing the air 

mass transport patterns over the specified study period. The description of the trajectory data set 

generated in this study can be found in Table 3, providing information about the simulated 

trajectories. Note that numbers (i.e. 1 and 2) refers to meteorological archive and the letters (i.e. a 
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and b) refers to vertical motion method. The NCEP/NCAR Reanalysis archive represented by the 

number 1, GDAS1 archive represented by 2; the model vertical velocity method presented by the 

letter a, and isentropic method represented by the letter b. 

 

Table 3. Trajectory data set simulated in this study 

Symbol of 

data 

Data Description Total number 

of back 

trajectories 
Meteorology Archive Vertical Velocity Method 

1a NCEP/NCAR Reanalysis Isentropic 1461 

1b NCEP/NCAR Reanalysis Model vertical velocity 1461 

2a GDAS1 Isentropic 1461 

2b GDAS1 Model vertical velocity 1461 

 

The 1a-1b comparison was used to determine the Reanalysis archive's sensitivity to the velocity 

method. To identify the sensitivity of the GDAS1 archive to the velocity method, 2a-2b 

comparison was used. Using 1a-2a and 1b2b comparisons, sensitivity to the meteorological 

archives was determined. Lastly, 1a-2b and 1b-2a comparisons were utilized to identify the 

sensitivity to both meteorological archive and velocity methods. Descriptions of the comparisons 

are included in Table 4. 

 

Table 4. Descriptions of the comparisons 

Comparison Description 

1a-1b Sensitivity of the Reanalysis archive to the velocity method 

2a-2b Sensitivity of the GDAS1 archive to the velocity method 

1a-2a 
Sensitivity to meteorology archive 

1b-2b 

1a-2b 
Sensitivity to both meteorology archive and velocity method 

1b-2a 
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3.2. Methodology 

The methods employed in this investigation are presented based on the background data provided. 

Initially, various model inputs were used to calculate back trajectories. The back trajectories were 

subjected to a sensitivity analysis. Then, cluster analysis was applied to back trajectories. 

Sensitivity analysis was performed to cluster centers with different datasets.  Seasonal variation 

was also examined. In addition, pollution data and the results of cluster analysis were combined. 

Statistical tests were applied to the combined pollution data. The methodology of this study is 

given in Figure 5. 

 



32 

 

 

Figure 5. Methodology of the study 
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3.2.1. Sensitivity Analysis 

In this study, sensitivity analysis was applied to the back trajectories. Previous research has utilized 

slightly different statistical metrics of trajectory sensitivity than the ones presented here (Harris et 

al., 2005; Rolph & Draxler, 1990; Stohl & Wotawa, 1995).  

To evaluate the impact of the model inputs, sensitivity analyses were conducted on the trajectories. 

The focus of these analyses was to assess the differences resulting from variations in the model 

inputs. In order to determine these differences, the absolute horizontal transport deviation (AHTD), 

the absolute vertical transport deviation (AVTD), and the relative horizontal transport deviation 

(RHTD) were calculated. These parameters were calculated using the following equations (Stohl 

& Wotawa, 1995): 

 

AHTD(t) =
1

N
∑ {[Xn(t) − xn(t)]2 + [Yn(t) − yn(t)]2}1 2⁄      N

n=1     (Equation 2) 

AVTD(t) =
1

N
∑ |Zn(t) − zn(t)|   N

n=1        (Equation 3) 

 

RHTD(t) =
1

N
∑

{[Xn(t) − xn(t)]2 + [Yn(t) − yn(t)]2}1 2⁄

ALn(t)
     

N

n=1

 

 

ALn(t) =
1

2
∑〈{[Xn(ti) − Xn(ti−1)]2 + [Yn(ti) − Yn(ti−1)]2}1 2⁄

t

ti=2

+ {[xn(ti) − xn(ti−1)]2 + [yn(ti) − yn(ti−1)]2}1 2⁄ 〉  

 

In this equations, N is the total number of back trajectories, X,Y,Z is the location of the first set of 

back trajectories; x,y,z is the location of the second set of back trajectories; ALn(t) represents the 

average length of the two back trajectories compared (Stohl & Wotawa, 1995).  In this study, 1461 

(Equation 4) 

(Equation 5) 
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back trajectories were simulated for each data set, therefore the N value given in Equations 1,2 

and 3 was taken as 1461. 

 

The formula given in Equation 2 (also in Equations 4 and 5) is actually the Euclidean length. 

Considering that the Earth is spherical, it would be incorrect to calculate the distance between two 

locations directly by the Euclidean length. When the studies on back trajectory analyses were 

examined, it was seen that the distance calculated in Equation 2 were replaced by the distance 

calculated by the Haversine formula (Cabello et al., 2008; Markou & Kassomenos, 2010). The 

Haversine formula is utilized to compute the shortest distance between two points with known 

latitude and longitude values on the earth's geolocation. The Haversine formula introduces a small 

error of approximately 0.3% assuming the Earth is a perfect sphere, making it a suitable choice for 

distance calculations in trajectory analyses. Therefore, the distance between two locations in 

Equations 2, 4 and 5 were calculated using the Haversine formula in Equation 6: 

 

a =  sin²((φB –  φA)/2)  +  cos φA ∗  cos φB ∗  sin²((λB –  λA)/2) 

c =  2 ∗  atan2( √a, √(1 − a) ) 

d =  R ⋅  c            (Equation 6) 

 

In this equation, “φ” and “λ” represent latitude and longitude (in radians), respectively. “B” 

represents the second position and A represents the first position. “R” represents the mean radius 

of the earth (6371 km taken). “d” is the distance (also called as the Great Circle Distance (in km)) 

(Stohl & Wotawa, 1995).  

 

These parameters allow researchers to quantify the influence of different meteorological data sets 

and vertical velocity methods on the simulated trajectories. These formulas were applied to all the 

trajectory data sets (in Table 4) using MATLAB with a script that I created. The script that used 

to calculate sensitivity analysis parameters is in APPENDIX C. 
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3.2.2. Cluster Analysis 

Different techniques are used in cluster analysis, the most used among these techniques is the k-

means technique. Therefore, in this study, cluster analysis was performed with the k-means 

technique. 

 

For cluster analysis, the non-hierarchical k-means technique was performed by using IBM SPSS 

Statics 23 (IBM, 2023). Different methods are used to cluster trajectories. To select the optimum 

number of clusters, the percent change in total-root-mean-square-deviation (TRMSD) between 

clusters is evaluated (Dorling et al., 1992b). Besides, total spatial variance (TSV) technique is used 

to cluster trajectories.(Draxler et al., 1998; Stein et al., 2015). In this study, TRMSD is used.  The 

threshold is taken as 5% change in TRMSD (Dorling et al., 1992b).  

 

When performing k-means cluster analysis, it is necessary to select seeds.  A seed is basically a 

starting cluster centroid. Seeds are either determined based on foreknowledge or selected at 

random. The robust solution method was applied in order to identify stable centroid positions by 

Kassomenos et al. (2010). From a randomly selected data set (GDAS1-Isentropic) among four data 

sets, the first 50 trajectories were randomly selected and used as seeds. To ensure the stability and 

consistency of the results, cluster analysis was performed multiple times with varying numbers of 

seeds. The number of seeds was progressively decreased from 50 to 40, 30, 20, and finally 10. The 

purpose of this approach was to observe if the results would remain unchanged even with a reduced 

number of seeds. The impact of seed selection on the outcome of the cluster analysis was 

monitored. The robust solution includes determining the point at which further reduction in the 

number of seeds would no longer affect the results significantly. Once a stage where the choice of 

seeds no longer influenced the outcomes was reached, it was decided that the cluster analysis 

results obtained with 50 seeds would be used for further analysis and interpretation. Figure 6 shows 

the results of k-means analysis applied to a data set selected as an example (GDAS1-model vertical 

velocity), with different number of seeds. As seen in Figure 6, no difference was observed in the 

optimum number of clusters as the number of seeds decreased. This result is the same for other 

data sets. By conducting this seed selection analysis, the robustness and reliability of k-means 

cluster analysis results were ensured. Only latitude and longitude were used in the cluster analysis, 

but not height. 
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Figure 6. K-means cluster analysis GDAS1-Model vertical velocity TRMSD results (a) 50 seeds, 

(b) 40 seeds, (c) 30 seeds, (d) 20 seeds 

 

3.2.2.1. Similarity Algorithm 

Clustering analysis was applied utilizing the k-means technique on the back trajectories calculated 

with different data sets. The similarity algorithm was utilized to determine the similarities of 

clusters. The similarity index was used to check how similar, that is, the same, the back trajectories 

represented by the cluster centers were in each data set.  

Similarity algorithm (SA) is a statistical tool used to quantify the degree of similarity between two 

variables or data sets. The similarity between the two cluster is calculated with Equation 7, where 
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“𝑛𝑖
′" represents the number of identical trajectories in corresponding clusters (Cui, Song, Zhong, 

et al., 2021). 

 

𝑆𝐴 =
∑ 𝑛𝑖

′K
𝑖=1

𝑛
× 100% 

 

3.2.2.2. Pollution Data  

In order to understand how the back trajectories obtained with different inputs affect the source-

receptor relationship, it is necessary to combine the trajectories with pollution data. Back 

trajectories are generally used to identify sources of long-distance transported pollutants (Borge et 

al., 2007a; Cabello et al., 2008; Cape et al., 2000; Sirois & Bottenheim, 1995; Y. Q. Wang et al., 

2004). Therefore, in this study, a secondary pollutant, namely sulfate (SO4
-2), is chosen to relate 

the atmospheric transport pathways (i.e. clusters) and source regions. In the receptor site, daily 

particulate matter (PM) samples were collected between 2010 and 2013 years using a Gent-PM10 

stacked filter unit (SFU), which collects coarse (10 µm>d>2.5 µm, PM10–2.5) and fine (PM2.5) 

fractions separately. Sulfate concentration in all collected samples were analyzed by Dionex DX-

120 Model Ion Chromatography (IC). The details of the PM sampling and analysis can be found 

in Genç Tokgöz (2023).  In this study, sulfate concentration in PM10 i.e. sum of the fine and coarse 

fraction, is used to investigate the influence of back trajectories generated with different input 

variables on the interpretation of source-receptor relations. 

 

3.2.2.3. Statistical Tests 

The Kruskal-Wallis test and median test are used in this study.  

 

 

 

(Equation 7) 
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3.2.2.3.1. Median Test 

 

In this study, the Median test was used to test whether there is a seasonal (summer-winter) 

difference between comparisons consisting of different data sets. The median test investigates the 

equality of the medians on a given variable between two or more populations.  

 

3.2.2.3.2. Kruskal-Wallis Test 

In this study, the Kruskal-Wallis test was employed to the combined pollution data. The 

application of the Kruskal-Wallis test in this context aimed to assess test whether there was a 

difference between medians of clusters of back trajectories simulated with different model inputs. 

 

The null hypothesis of the Kruskal-Wallis test assumes that the medians of all the groups, 

represented by the cluster centers, are equal. This implies that there are no systematic differences 

among the groups in terms of their central tendency. The alternative hypothesis, on the other hand, 

posits that at least one group's population median is different from the population median of at 

least one other group. By setting up these null and alternative hypotheses, the Kruskal-Wallis test 

allows for a statistical examination of whether there are meaningful differences in the medians of 

the groups. 
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4. RESULTS AND DISCUSSION 

In this chapter, our different back trajectory data sets were compared with sensitivity analysis. The 

variation of sensitivity parameters with respect to time and season were explained.  One of the 

trajectory statistics methods, namely Cluster Analysis were applied to the back trajectory data sets. 

The variation of transport pattern and the variation in the interpretation of the source-receptor 

relationship with respect to the different trajectory data sets were discussed. 

 

4.1.Trajectory Comparison 

Sensitivity analysis was conducted to quantify the differences between trajectories when different 

meteorology archives and vertical velocity methods were used to run the HYSPLIT model. As 

discussed in Chapter 3 (Methods), the most common meteorological archives are NCEP/NCAR 

Reanalysis (denoted by 1) and GDAS1(denoted by 2) while the most common vertical velocity 

methods are isentropic (denoted by a) and model vertical velocity method (denoted by b).  

 

Back trajectories simulated by 1a, 1b, 2a, and 2b data sets (Figure 7) were compared with each 

other by means of the sensitivity parameters:  RHTD, AHTD, and AVTD.  These differences were 

quantified for first 24-hr (i.e. 24-hr back trajectories), second 24-hr (48-hr back trajectories, third 

24-hr (72-hr back trajectories), and fourth 24-hr (96-hr back trajectories) to examine the time 

evolution of the differences, and the results are presented in Table 5 to Table 8.  
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Figure 7. Back trajectories in each data set (1) 1a, (2) 1b, (3) 2a, (4) 2b 

 

To investigate the effects of long-range transport of pollutants usually 3 to 5 days back trajectories 

are used (Abdalmogith & Harrison, 2005; Cabello et al., 2008; Moody et al., 1995; Sirois & 

Bottenheim, 1995; Y. Q. Wang et al., 2004). In the literature, the sensitivities of trajectories are 

generally reported up to 96-hr (4 days). Therefore, in this study the results of sensitivity analysis 

of 96-hr back trajectories will be discussed in more detail to provide comparison with the literature.  

 

The results of the sensitivity analysis which is conducted at 96-hr is presented in Table 5. The 

sensitivity of trajectories to meteorological input (i.e. meteorological archive data set) for 

isentropic and model vertical velocity trajectories are 38% and 40%, respectively (comparison 1a-

2a and 1b-2b).   Harris et al. (2005) reported similar magnitudes (35% for isentropic and 40% for 

model vertical velocity trajectories) using NCEP/NCAR Reanalysis and ERA-40 data sets. Table 

5 shows horizontal (AHTD), and vertical (AVTD) differences are greater in model vertical 

velocity trajectories than in isentropic trajectories. The relative increase in RHTD, AHTD, and 

AVTD statistics of model vertical velocity trajectories to isentropic trajectories are 7%, 25%, and 

34%, respectively. Higher magnitudes of sensitivity statistics in model vertical velocity trajectories 

(1) (2) 

(3) (4) 
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indicate that although both isentropic and model vertical velocity trajectories are sensitive to the 

meteorological input, model vertical velocity trajectories are more sensitive, particularly in the 

vertical component of the trajectory.  

 

The differences between trajectories concerning the vertical motion method are examined by 

comparing isentropic and model vertical velocity trajectories using NCEP/NCAR Reanalysis and 

GDAS1 data sets (comparison 1a-1b and 2a-2b). When NCEP/NCAR Reanalysis data is used, the 

differences between isentropic and model vertical velocity trajectories are less (RHTD value of 

25%) than those generated with GDAS1 archive (RHTD value of 45%). The lowest horizontal 

deviation (AHTD value of 652 km) is calculated between isentropic and model vertical velocity 

trajectories when NCEP/NCAR Reanalysis archive is used. Harris et al. (2005) compared 

isentropic and model vertical velocity trajectories using NCEP/NCAR Reanalysis archive and 

reported similar values for all sensitivity statistics (29% (25% in current study), 705 km (652 km 

in current study), 1384 m (1262 m in current study) for RHTD, AHTD, and AVTD, respectively). 

When the GDAS1 archive is used, the horizontal and vertical deviations between isentropic and 

model vertical velocity trajectories become greater. The relative increase in all sensitivity statistics 

of isentropic versus model vertical velocity trajectories with GDAS1 to isentropic versus model 

vertical velocity trajectories with NCEP/NCAR Reanalysis is significantly high (79%, 93%, and 

65% for RHTD, AHTD, and AVTD, respectively). This significant increase in sensitivity statistics 

indicates that trajectories simulated by the GDAS1 archive are significantly sensitive to the vertical 

motion method. It is not wrong to state that trajectories are robust concerning the vertical motion 

method when NCEP/NCAR Reanalysis archive is used. 

 

Trajectories generated with different meteorological archives and vertical motion methods are also 

compared to determine sensitivity to both meteorological archives and vertical transport methods 

(1a-2b,1b-2a). All sensitivity statistics are high (42-45%, 1067-1240 km, 1558-1933 m for RHTD, 

AHTD, and AVTD, respectively) when both meteorological and vertical motion methods differ. 

The sensitivity statistics of GDAS1 to vertical transport method (2a-2b comparison) are higher 

than the 1b-2a comparison, indicating that differences in the meteorological archive and vertical 

transport method did not merge directly. Some differences cancel out because the summation of 
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the differences in comparisons 1a-2a,1b-2b and 1a-1b, 2a-2b resulted in bigger values than 1a-2b 

and 1b-2a. 

 

Table 5. Back trajectory Comparison at 96-hr results 

Comparison Description 
RHTD, 

% 

AHTD, 

km 

AVTD, 

m 

1a-1b 
Sensitivity of the NCEP/NCAR Reanalysis 

archive to the velocity method 
24.8 652 1262 

2a-2b 
Sensitivity of the GDAS1 archive to the 

velocity method 
44.5 1258 2077 

1a-2a 
Sensitivity to meteorology archive 

37.8 940 1221 

1b-2b 40.4 1171 1632 

1a-2b Sensitivity to both meteorology archive and 

velocity method 

44.7 1240 1933 

1b-2a 41.8 1067 1558 

 

Table 6. Back trajectory Comparison at 72-hr Results 

Comparison Description 
RHTD, 

% 

AHTD, 

km 

AVTD, 

m 

1a-1b 
Sensitivity of the NCEP/NCAR Reanalysis 

archive to the velocity method 
17.3 390 969 

2a-2b 
Sensitivity of the GDAS archive to the velocity 

method 
33.6 844 1797 

1a-2a 
Sensitivity to meteorology archive 

29.9 639 1017 

1b-2b 30.4 780 1418 

1a-2b Sensitivity to both meteorology archive and 

velocity method 

32.9 830 1671 

1b-2a 31.1 701 1279 

 

Table 7. Back trajectory Comparison at 48-hr Results 

Comparison Description 
RHTD, 

% 

AHTD, 

km 

AVTD, 

m 

1a-1b 
Sensitivity of the NCEP/NCAR Reanalysis 

archive to the velocity method 
10.3 209 728 

2a-2b 
Sensitivity of the GDAS archive to the velocity 

method 
21.2 480 1449 

1a-2a 
Sensitivity to meteorology archive 

22.5 403 778 

1b-2b 21.7 452 1134 

1a-2b Sensitivity to both meteorology archive and 

velocity method 

22.9 481 1314 

1b-2a 22 418 952 
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Table 8. Back trajectory Comparison at 24-hr Results 

Comparison Description 
RHTD, 

% 

AHTD, 

km 

AVTD, 

m 

1a-1b 
Sensitivity of the NCEP/NCAR Reanalysis 

archive to the velocity method 
3.9 76 477 

2a-2b 
Sensitivity of the GDAS archive to the velocity 

method 
10.4 193 1091 

1a-2a 
Sensitivity to meteorology archive 

12.9 199 556 

1b-2b 12.5 206 846 

1a-2b Sensitivity to both meteorology archive and 

velocity method 

13.13 224 970 

1b-2a 12.8 197 667 

 

Figure 8 and Figure 9 illustrates the distribution of sensitivity statistics for a time period of up to 

96-hr, represented as box and whisker plots. The points above the box whisker plot are outliers. 

The bottom line of the box whisker plot (Q0) means it is the dataset's minimum data point, omitting 

outliers. The upper line of the box whisker plot (Maximum (Q4) means it is the highest data point 

in the data set, omitting outliers. The median (Q2) is the medium value in the data set. The line 

inside the boxes represents the median. The first quartile is shown as the box's top line (Q1), the 

bottom of the data set. The box’s bottom line (Q3) is the median of the upper half of the data set.  

 

Consistent with the earlier findings, the horizontal deviations observed in the 1a-1b comparison 

exhibit a smaller range and are generally less pronounced. This suggests that the variations in 

horizontal positions between the trajectories in this comparison are relatively minor. However, 

when considering the distribution of vertical deviations, it becomes evident that all comparisons, 

except for 1a-1b and 1a-2a, exhibit a broader range. The notably lower vertical distribution 

observed in the 1a-1b and 1a-2a comparisons indicates that isentropic trajectories and trajectories 

simulated using the NCEP/NCAR Reanalysis archive are less prone to vertical deviation, 

indicating less sensitivity to the vertical motion method. The lower sensitivity of isentropic 

trajectories to the meteorological archive can be ascribed to the assumption to calculate the vertical 

position of the air mass. Isentropic trajectories are determined based on the assumption that an air 

mass is limited to an isentropic surface, meaning it follows a constant potential temperature. 

However, this assumption is only valid in dry adiabatic conditions; therefore, there will be 

uncertainties in the actual atmospheric conditions due to moisture (Stohl & Wotawa, 1995). By 



44 

 

employing this assumption, isentropic trajectory simulations effectively constrain the amount of 

noise or variability in the vertical velocity, resulting in lower sensitivity statistics for vertical 

positions.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 8. Distributions of trajectories up to 96-hr: (a) RHTD, (b) AHTD 
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The average elevation and length of 96-hr back trajectories are also calculated for each data set 

and presented in Table 9. The vertical position of trajectories is nearly similar in isentropic 

trajectories (1a and 2a). Model vertical velocity trajectories reach greater elevations compared to 

isentropic trajectories. The difference is quite noticeable for model vertical velocity trajectories 

simulated with GDAS1 than NCEP/NCAR Reanalysis archive (Figure 10). The higher temporal 

and vertical resolution of the GDAS1 archive compared to the NCEP/NCAR Reanalysis archive 

may better represent the vertical position of the air parcel in model vertical velocity trajectories 

(NOAA, 2023). The NCEP/NCAR Reanalysis archive's lower resolution might restrict the air 

parcel's vertical position. Consistent with the vertical position, model vertical velocity trajectories 

simulated by the GDAS1 archive travelled the longest distance (2952 km) among the average 

distance travelled by each data set given in Table 9. When a trajectory attains high elevation, it 

means there are high wind speeds. When high wind speeds accompany an air parcel, it travels 

faster both in the horizontal and vertical direction and will travel long distances.  

Figure 9. Distributions of trajectories up to 96-hr: (c) AVTD 

 

(c) 
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Table 9. Average Trajectory Elevation and Length (mean values) 

Data set 

Elevation (m) Length (km) 

Isentropic 

(a) 

Model Vertical 

Velocity (b) 

Isentropic 

(a) 

Model Vertical 

Velocity (b) 

NCEP/NCAR Reanalysis (1) 2290 2264 2710 2637 

GDAS1(2) 2238 2551 2632 2952 

 

 

 

 

 

4.1.1. Time Evolution of Sensitivity Parameters 

Sensitivity statistics were calculated hourly from time zero to 96-hr back in time, and results are 

presented in Figure 11, Figure 12, and Figure 13. It is well known that the uncertainty of a 

trajectory increases as it travels back in time. Consistent with this statement, all deviation statistics 

(i.e., RHTD, AHTD, and AVTD) for each comparison are found to increase with the total travel 

time, i.e. 96-hr back trajectories are more sensitive than preceding 72-hr, 48-hr, and 24-hr back 

trajectories (Figure 11, Figure 12, and Figure 13). The lowest horizontal deviation parameters 

Figure 10. Average trajectory elevations 
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(RHTD and AHTD values) are calculated for 1a-1b comparison and confirm our previous 

statement of the robustness of trajectories generated with the NCEP/NCAR Reanalysis archive. 

Time variation of vertical deviation statistics (i.e. AVTD) is immediate and large for the first 6 h, 

and then continues to increase but at a slower rate. The lowest vertical deviations are calculated 

for 1a-1b and 1a-2a comparisons.  

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

Figure 11. Time Evaluation of Sensitivity Parameters: (a) RHTD 
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(c) 

Figure 13. Time Evaluation of Sensitivity Parameters: (c) AVTD 

Figure 12.Time Evaluation of Sensitivity Parameters: (b) AHTD 

(b) 

(c) 
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4.1.2. Seasonal Variation of Sensitivity Parameters 

The seasonal variations of sensitivity parameters are also examined considering the colder months 

with high precipitation represents the winter season (from November to April) and hotter and dryer 

months represents the summer season (from May to October). The seasonality of sensitivity 

parameters up to 96-hr were tested by the Median test at 95% confidence levels for each 

comparison and the results are reported in Table 10.  In general, all sensitivity parameters showed 

statistically significant difference between seasons, except the RHTD parameter for comparison 

2a-2b and 1b-2a, AHTD parameter of 1b-2b and 1a-2b comparison, and the AVTD parameter of 

1b-2a comparisons.  

 

Table 10. Statistical summary of the seasonal variations of the sensitivity parameters 

Sensitivity Parameters Comparison 
Winter Summer 

Median Test 
Mean Median Mean Median 

 

 

RHTD (%) 

1a-1b 11.6 10.6 9.5 9.2 Reject 

2a-2b 21.5 20.6 21.3 20.9 Retain 

1b-2b 19.6 19.2 22.3 22.3 Reject 

1a-2a 19.1 19.5 21.4 22.5 Reject 

1a-2b 21.2 20.4 23.4 23.3 Reject 

1b-2a 20.8 20.5 21.8 22.2 Retain 

 

 

AHTD (km) 

1a-1b 310 263 184 152 Reject 

2a-2b 590 532 474 422 Reject 

1b-2b 532 478 475 425 Retain 

1a-2a 463 430 393 366 Reject 

1a-2b 577 513 495 442 Retain 

1b-2a 513 459 401 358 Reject 

 

 

AVTD (m) 

1a-1b 777 759 629 643 Reject 

2a-2b 590 532 474 422 Reject 

1b-2b 925 900 1236 1298 Reject 

1a-2a 729 713 769 806 Reject 

1a-2b 1141 1156 1355 1426 Reject 

1b-2a 935 923 912 929 Retain 

* The significance level is 0.05 
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4.2. Cluster Analysis 

In this study, k-means clustering analysis was applied to 1a, 1b, 2a, and 2b data sets. Sensitivity 

analysis was performed on the cluster centers determined as a result of k-means analysis. The 

similarity index of cluster centers was calculated. Finally, statistical tests were carried out on the 

cluster center data combined with the pollution data. 

 

4.2.1. K-means Cluster Analysis 

Based on the TRMSD outcomes of the clustering analysis conducted on all the data sets, it was 

found that when the cluster number is decreased from 4 to 3, the TRMSD value increases 

significantly. K-means cluster analysis 50-seed TRMSD results were presented in Figure 14. 

Therefore, the optimal number of clusters that could be chosen as a common solution was 4.  

However, as presented in Figure 15, Figure 16, Figure 17, and Figure 18, the direction of cluster 

centers did not match with each other when optimum cluster number is 4. The directions of the 

cluster centers of data set 1a are different from other data sets. It is crucial that the directions of 

the cluster centers must be matched in the analyses to be made. Consequently, it was decided to 

consider the optimum number of clusters as 5 instead. 
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Figure 14. K-means cluster analysis 50-Seed TRMSD results (a) 1a, (b) 1b, (c) 2a, (d) 2b 
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Figure 15. 1a data set when optimum number of cluster is 4 

 

 

Figure 16. 1b data set when optimum number of cluster is 4 

 

1a 

1b 
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Figure 17. 2a data set when optimum number of cluster is 4 

 

 

Figure 18. 2b data set when optimum number of cluster is 4 

2a 

2b 



54 

 

To compare the cluster centroids in each data set, optimum number of clusters are selected as 5 in 

this study The resulting cluster centroids (cluster means) are presented in Figure 19, Figure 20, 

Figure 21, and Figure 22. As presented from Figure 19 to Figure 22, Cluster 1 represents the air 

movements from Northeast (NE). The air mass movements from Northeast can be classified as 

slow moving (NE-slow) as in 1b and 2a data sets, and moderately moving (NE-mod) as in 1a and 

2b data sets.  

 

Slow air movements from Southwest (SW-slow) are represented by Cluster 2, while moderate air 

flows from the Southwest (SW-mod) are represented by Cluster 3.    

 

The fastest air movements are from Northwest (NW-long) and classified in Cluster 4. Finally, 

Cluster 5 represents the moderate flow air masses from Northwest (NW-mod).  

 

The cluster centroids obtained by k-means technique generated quite similar circulation pattern for 

each data set (Figure 19, Figure 20, Figure 21, Figure 22). There are some differences in curvature 

and length of the cluster centroids, however we can conclude that even different input variables 

were used to simulate back trajectories, the resulting centroids are quite similar. 

 

 

Figure 19. 1a data set when optimum number of cluster is 5 

1a 
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Figure 20. 1b data set when optimum number of cluster is 5 

 

 

Figure 21. 2a data set when optimum number of cluster is 5 

 

1b 

2a 
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Figure 22. 2b data set when optimum number of cluster is 5 

 

4.2.2. Sensitivity of Cluster Analysis to the HYSPLIT Model Inputs 

The sensitivity analysis is applied to cluster centroids to determine the differences in transport 

patterns when trajectories are generated from different meteorological archives and vertical 

velocity methods. The results are presented in Table 11. Note that only horizontal deviation 

statistics (i.e. RHTD and AHTD) were presented in Table 11 because the pressure or height of 

trajectories were not used in k-means cluster analysis.  

2b 



57 

 

Table 11. Sensitivity analysis of cluster centroids 

96h Description 

RHTD, % AHTD, km 

Cluster ID Cluster ID 

1 2 3 4 5 1 2 3 4 5 

1a-1b 

Sensitivity of the 

NCEP/NCAR Reanalysis 

archive to the velocity 

method 

37 12 23 24 33 356 227 773 1249 1084 

2a-2b 

Sensitivity of the GDAS 

archive to the velocity 

method 

38 36 9.8 8.6 10 456 627 263 450 638 

1a-2a 
Sensitivity to meteorology 

archive 

23 6.2 18 10 4 230 111 581 502 252 

1b-2b 45 27 12 12 26 532 476 321 671 835 

1a-2b 
Sensitivity to both 

meteorology archive and 

velocity method 

20 38 24 16 17 246 631 756 920 633 

1b-2a 19 16 7.5 17 15 174 301 210 786 873 

 

Considering the sensitivity analysis results for Cluster 1, slow and moderate air movements from 

the Northeast (NE-slow, NE-mod), the results 1a-2a and 1b-2b are remarkable. 1b-2b comparison 

was higher than all other comparisons. Based on the difference between 1a-2a and 1b-2b 

comparisons, it can be said that the model vertical velocity method for Cluster 1 is more influenced 

by the meteorological archive than the isentropic velocity method. Therefore, for Cluster 1, the 

model vertical velocity method is quite sensitive to the meteorological archive.  

 

For Cluster 2, slow-moving air masses from Southwest (SW-slow), show that comparison 1a-2a 

has the lowest values. This shows that parameter a, that is, the isentropic velocity method, is the 

least affected parameter from the meteorology archive. This implies that the model vertical 

velocity method is more sensitive to the meteorological archive than the isentropic velocity 

method. When the results of 1a-1b and 2a-2b comparisons are examined, it is seen that the GDAS1 

meteorology archive is more sensitive to the vertical velocity method than the NCEP/NCAR 
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Reanalysis meteorology archive. In addition, comparison 1a-2b has the highest values. Compared 

to the 1b-2a comparison, it is seen that the 1a-2b combination has the results most affected by the 

model inputs. 

 

When analyzing the results for Cluster 3, moderate air flows from the Southwest (SW-mod), the 

highest RHTD values are calculated for 1a-1b and 1a-2b comparisons. This indicates that 

NCEP/NCAR Reanalysis archive is more sensitive to the vertical velocity method. Longer 

trajectories from SW are represented in Cluster 3 when NCEP/NCAR Reanalysis archive is used 

with isentropic velocity method (1a). Actually, this statement can be corroborated with the average 

length of the trajectories (Table 9). The average length of back trajectories generated from 1a and 

1b datasets are calculated as 2710 and 2637 km, respectively. 

 

When Table 11 is analyzed for Cluster 4, the fastest air movements from Northwest (NW-long), a 

significant difference is seen between the results 1a-1b and 2a-2b. The sensitivity values between 

these two comparisons vary significantly (i.e. 8.6% to 24%). Specifically, the comparison with the 

highest sensitivity value is 1a-1b, indicating a strong sensitivity of the NCEP/NCAR Reanalysis 

meteorology archive to the vertical velocity method within this cluster. On the other hand, the 2a-

2b comparison has the lowest sensitivity, suggesting a relatively lower sensitivity of the GDAS1 

meteorology archive to the vertical velocity method. It appears that the two meteorology archives 

differ substantially when considering vertical velocity. The NCEP/NCAR Reanalysis meteorology 

archive demonstrates a higher sensitivity, indicating that changes or uncertainties in the vertical 

velocity have a more pronounced impact on trajectories derived from 1a-1b data set within Cluster 

4. 

 

The highest deviation statistics for Cluster 5, the moderate flow air masses from Northwest (NW-

mod), belong to the comparison 1a-1b (RHTD value of 33%), similar to the results of Cluster 4.  

In other words, the NCEP/NCAR Reanalysis meteorology archive is highly sensitive to the vertical 

velocity method. This finding suggests that variations in the vertical velocity had a significant 

impact on the resulting trajectories for Cluster 5 when NCEP/NCAR Reanalysis archive is used. 

In contrast, the lowest results were noted in the 1a-2a comparison. When comparing the 1a-2a and 

1b-2b comparisons, it becomes apparent that the isentropic velocity method is less affected by the 
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meteorology archive compared to the model vertical velocity method. In other words, changes in 

the meteorological input had a relatively smaller influence on trajectories generated using the 

isentropic velocity method, as indicated by the lower sensitivity values in the mentioned 

comparisons.  

 

The percentage of trajectories corresponding to each cluster center is shown in the Figure 19, 

Figure 20, Figure 21, and Figure 22, and also presented in Table 12 for each trajectory dataset. It 

is obvious that the percentage of trajectories in each cluster shows variation for each dataset. For 

example, the percentage of back trajectories classified in Cluster 1 (NE) are 44% for 1a dataset 

and 26% for 2b dataset. 

 

Table 12. The percentage of back trajectories in each cluster center 

Data set 

Cluster ID 

1 2 3 4 5 

NE SW-slow SW-mod NW-fast NW-mod 

1a 44.2 25.3 12 4.7 13.8 

1b 32.4 21.1 17 9.6 19.8 

2a 46.6 22.7 12.6 5.8 12.3 

2b 26 27 18.2 9.2 19.6 

 

As Southwest-slow (Cluster 2) and Southwest-mod (Cluster 3) corresponds to the Southwest 

direction, the sum of these two clusters is accepted as Southwest (SW), and the sum of NW–fast 

(Cluster 4) and NW-mod (Cluster 5) are accepted as NW and the resulting percentages are 

presented in Table xx.    

 

Table 13. The percentage of back trajectories in the main transport directions 

Data set NE SW NW 

1a 44.2 37.3 18.5 

1b 32.4 38.1 29.4 

2a 46.6 35.3 18.1 

2b 26 45.2 28.8 
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It’s clearly seen from Table 13 that if the model vertical velocity method is selected, the 

percentages of NE air flows are decreased (i.e, 44% to 32% for the NCEP/NCAR Reanalysis 

archive and from 47% to 26% for the GDAS1 archive). The decrease in percentages is 27% and 

44% for the NCEP/NCAR Reanalysis and GDAS1 archive, respectively.  

 

Contrary, trajectories from the NW increases when the model vertical velocity method is chosen. 

The increase in the percentages of trajectories is 59% for both meteorological archives. For the 

trajectories from the SW, the change in the velocity method did not influence the percentages of 

trajectories for the NCEP/NCAR Reanalysis archive. However, GDAS1 archive showed 28% 

increase (from 35% to 45%) in SW trajectories when model vertical velocity is chosen.  

 

For the isentropic trajectories, meteorological archive selection did not influence the percentages 

of trajectories (i.e. 5% increase in NE, 5% decrease in SW, and 2% decrease in NW trajectories). 

However, model vertical velocity method changed the percentages of trajectories in NE and SW 

directions (i.e. 20% decrease in NE, 19% increase in SW) when GDAS1 archive is used.  

 

As a result, we may say that back trajectories simulated with GDAS1 archive and model vertical 

velocity (2b dataset) are more likely classified into westerly direction (i.e. SW and NW).  

 

To examine whether a trajectory arriving in our receptor site is classified in the same cluster when 

trajectories are simulated with different datasets, percentages of the same trajectories in each 

cluster is calculated using the similarity index and presented in Table 14. There is no definite 

threshold value for the similarity index value. Kassomenos et al. (2010a) used 70% and Cui, Song, 

& Zhong (2021) used 85% as the threshold value for similarity index. 

 

According to the Table 14 in most instances, the clusters were unable to maintain a high level of 

similarity. The highest similarity index results (64-83%) belong to Cluster 1 which is slow-moving 

and moderately moving air movements originating from Northeast. The high similarity index value 

in Cluster 1 indicates that the back trajectories have a significant degree of similarity in terms of 

their paths and locations. This suggests that the air masses followed similar paths and experienced 

similar atmospheric conditions even different input datasets are used.  
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The lowest similarity index values (24-63%) are calculated for Cluster 5 which represents the 

moderate flow air masses from Northwest (NW-mod). The lowest similarity index of Cluster 5 

suggests that the back trajectories have divergent paths and locations. This indicates less 

consistency among the trajectories, suggesting that the air masses followed distinct paths and 

experienced different atmospheric conditions when different input datasets are used. It may 

indicate the influence of atmospheric disturbances, or local-scale factors that resulted in the 

divergence of the trajectories. 

 

For all clusters, the highest similarity index values are calculated for 1a-2a comparison (63-83%). 

Therefore, it can be concluded that clusters generated from isentropic back trajectories are less 

sensitive to the meteorological archive. 

 

Table 14. Similarity Index Results  

Similarity % 
Cluster ID 

1 2 3 4 5 

1a-1b 79 72 62 55 40 

2a-2b 64 45 56 51 47 

1a-2a 83 63 65 63 63 

1b-2b 66 53 59 61 52 

1a-2b 66 50 52 54 48 

1b-2a 72 54 60 51 24 

 

 

4.2.3. The Influence of Cluster Analysis on The Interpretation of The Pollution Data 

In order to investigate the influence of back trajectories generated with different input variables on 

the interpretation of source-receptor relations, pollution data is used. Sulfate, a secondary 

pollutant, is selected as pollutant because its long-range transport is most probable.  The statistical 

summary of sulfate data is presented in Table 15. 
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Table 15. Descriptive statistics of SO4
-2 data 

Count 460 

Average* 3603 

Std* 2249 

Median* 2989 

Min* 51.5 

Max* 17567 

* Concentrations are reported in ng m-3. 

 

The Kruskal-Wallis test was performed to specify whether the median sulfate concentration 

between clusters per data set differs significantly (Table 16). Sulfate concentrations in each cluster 

center per data set are presented in Figure 23 as a box-whisker plot.  

 

Among the four data set, significant differences in sulfate median concentrations are reported only 

for clusters generated from GDAS1 trajectories (both isentropic (2a) and model vertical (2b)).  If 

a researcher used Reanalysis archive, he/she would conclude that there were no significant 

differences in sulfate concentration between clusters for both 1a and 1b data sets. However, if the 

researcher used GDAS1 archive, then the interpretation of the pollution data would be different.  

Considering the 2a data set (GDAS1-isentropic), the highest sulfate concentrations are due to short 

air flows from Northeast (Cluster 1) and the lowest concentrations are observed with the fastest 

air movements from Northwest (Cluster 4). If 2b data set (GDAS1-model vertical) were used, then 

the highest concentrations would be reported for moderate flow air masses from Northwest 

(Cluster 5) and the lowest concentrations would be reported for the moderate air flows from the 

Southwest (Cluster 3).  

 

The differences observed in the source-receptor interpretation of pollution data indicates that 

GDAS1 trajectories are sensitive to the vertical motion method and the source regions may differ 

depending on the vertical motion method. 
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Table 16. Median concentrations of SO4
-2 (ng m-3) and K-W test result 

SO4
-2 (ng m-3) 

Cluster ID 
K-W Test 

1 2 3 4 5 

1a 3420 2540 2646 2617 3058 Retained 

1b 3226 2485 2649 2718 3445 Retained 

2a 3625 2511 2658 1967 2858 Rejected 

2b 3285 2993 2521 2529 3392 Rejected 

 

 

Figure 23. Sulfate concentrations in each cluster center per data set 
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5. CONCLUSION 
 

This study conducts a sensitivity analysis for a rural area in the Mediterranean part of Turkey to 

identify differences between HYSPLIT back trajectories generated by the most frequently used 

meteorological archive (NCEP/NCAR Reanalysis and GDAS1) and vertical motion methods 

(isentropic and model vertical velocity).  

 

For this particular receptor site, back trajectories are found to be sensitive to the meteorological 

archive (38-40%), vertical motion method (25-44%), and both meteorological archive and vertical 

motion method (42-45%). The trajectory uncertainties (either isentropic or model vertical velocity) 

are within the typical range (around 20% of distance travelled) when NCEP/NCAR Reanalysis 

archive is used. In contrast, the deviations become larger than the typical trajectory error with the 

GDAS1 archive. Air quality researchers working in this particular receptor site might need to 

inspect either isentropic or model vertical velocity trajectories when NCEP/NCAR Reanalysis 

archive is used. However, inspecting both isentropic and model vertical velocity trajectories with 

the GDAS1 archive is strongly recommended.  

 

The back trajectories simulated with the most frequently used meteorological archive 

(NCEP/NCAR Reanalysis and GDAS1) and vertical motion methods (isentropic and model 

vertical velocity) are classified into five cluster centers using the k-means cluster technique. The 

percentage of trajectories in each cluster center showed variation for each dataset, however, the 

resulting centroids showed quite similar circulation pattern. The air movements from Northeast 

(NE) were represented by Cluster 1. Slow air movements from Southwest (SW-slow) were 

represented by Cluster 2. Moderate air flows from the Southwest (SW-mod) were represented by 

Cluster 3. The fastest air movements from Northwest (NW-long) were represented by Cluster 4.  

Moderate flow air masses from Northwest (NW-mod) were represented by Cluster 5.  

 

The sensitivity of cluster centers to the input data were also investigated. The model vertical 

velocity method for Cluster 1 was found to be more influenced by the meteorological archive than 

the isentropic velocity method. For Cluster 2, GDAS1 meteorology archive was found to be more 
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sensitive to the vertical velocity method.  The NCEP/NCAR Reanalysis meteorology archive was 

found to be more sensitive to the vertical velocity method for Cluster 3, Cluster 4 and Cluster 5.  

 

Cluster Analysis results also showed that back trajectories simulated with GDAS1 archive and 

model vertical velocity (2b dataset) were more likely classified into westerly direction (i.e. SW 

and NW). In general, clusters generated from isentropic back trajectories were less sensitive to the 

meteorological archives, hence indicated the highest similarity index values (63-83%).  

 

Secondary air pollutant, sulfate, was used to track the potential source direction of pollution 

affecting the receptor site. Cluster centers generated from the NCEP/NCAR Reanalysis archive 

(1a and 1b dataset) did not show significant differences in sulfate concentration, however, 

significant differences in sulfate concentration were found when GDAS1 archive used (2a and 2b 

dataset). The cluster centers highlighted as the potential source direction of sulfate were different 

for 2a (GDAS1-isentropic) and 2b (GDAS-model vertical velocity) datasets, most probably due to 

large deviations in horizontal and vertical profiles of GDAS1 trajectories, hence causing 

discrepancies in the source-receptor interpretation.  

 

As a result, in this particular receptor site, to simulate the back trajectories HYSPLIT model is 

recommended to run using the GDAS1 archive with both isentropic and model vertical velocity as 

the source regions were found to be different depending on the vertical motion method.  

 

In general, it is known that back trajectory uncertainties are somewhat specific to location because 

of the influence of meteorology and topography. In each location or region different 

meteorological and geographical regimes exist, therefore, HYSPLIT model is recommended to 

run with different data inputs for more reliable simulations of atmospheric transport. Utilizing 

different meteorology archives provides a broader perspective on atmospheric conditions. 

Different meteorological models have varying strengths and weaknesses, so combining their 

outputs can lead to a more nuanced understanding of the complex atmospheric processes that 

HYSPLIT aims to simulate.  
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The NCEP/NCAR Reanalysis archive has the longest meteorological archive covering the globe 

and most of the previous studies were conducted using the NCEP/NCAR Reanalysis archive. 

However, the NCEP/NCAR Reanalysis archive has low resolution, and may not interpret the 

trajectory path accurately. When available, the meteorological archives having high resolution (i.e. 

horizontal, vertical, time) should be preferred because uncertainties (i.e. interpolation and its 

associate errors) are minimized in the dense meteorological archives.   

 

Another important criterion for choosing the meteorological archive should be the existence of 

vertical velocity field.  If available in the meteorological archive, vertical velocity from the 

meteorological archive should be used to run the HYSPLIT model. The vertical velocity calculated 

from the isentropic and/or isobaric vertical velocity methods (i.e. approaches) may not represent 

the vertical motion of the air masses therefore these two vertical velocity methods should be 

preferred only if there are specific reasons. Excessive reliance on the vertical velocity calculated 

from assumptions (for example isentropic and isobaric back trajectories) may result in 

misinterpretation of the source-receptor relations and should be avoided. Of course, needless to 

say that, whenever possible multiple inputs should be used to drive the HYSPLIT model to get 

confidence about the air parcel pathways. 

 

5.1. Recommendations for Future Research 

The following can be recommended for future studies within the scope of the results obtained 

from this study.  

 

• Back trajectories also differ depending on the arrival height and these differences can be 

examined with sensitivity analysis. 

 

• It is recommended to conduct studies on the effect of synoptic-scale meteorological 

parameters (pressure, wind, etc.) on the back trajectories generated from different 

meteorological archive and vertical velocity method. The synoptic situations when back 

trajectories agree with each other and the synoptic situations when back trajectories differ 

from each other should be determined.  
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•  Sensitivity analysis should be conducted using the other trajectory analysis methods such 

as the Potential Source Contribution Function (PSCF) so that the differences in source 

regions can be examined quantitatively.  

 

• Episodic events such as Saharan dust intrusions can be examined to identify which model 

inputs are more appropriate to simulate the back trajectories and to define the synoptic 

meteorological conditions causing such episodic events.  

 

• Back trajectories generated using different arrival time can also be investigated to 

determine the influence of arrival time.   

 

• The sensitivity due to clustering technique could also be investigated.  
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APPENDICES 

 

APPENDIX A 

 

NCEP/NCAR GLOBAL REANALYSIS DATA SET DETAILS 

 

Pressure Level Data  

2.5 degree latitude-longitude global grid  

144x73 points from 90N-90S, 0E-357.5E  

1/1/1948 - present with output every 6 hours  

Levels (hPa): 1000,925,850,700,600,500,400,300,250,200, 150,100,70,50,30,20,10  

Surface or near the surface (.995 sigma level) winds and temperature  

Precipitation 

 

Model Type: LAT-LON  

Vert Coord: 2  

Numb X pt: 144  

Numb Y pt: 73  

Numb Levels: 18  

Sfc Variables: 5 PRSS T02M U10M V10M TPP6  

Upper Levels: 6 HGTS TEMP UWND VWND WWND RELH 

 

Sigma Level Data (CONUS extract for the DATEM archive, not available) 

The spectral coefficients on 28 model sigma surfaces were processed to obtain required fields 4 

per day on a global Gaussian grid of 1.875 degree resolution. A regional sub-grid covering the 

continental US and Canada was extracted. 

Current USA spatial domain: 21.9N 127.5W to 60.0N 52.5W  

Output every 6 hours 

Levels: .995,.982,.964,.943,.916,.884,.846,.801,.751,.694,.633, 

.568,.502,.436,.372,.312,.258,.210,.168,.133,.103,.078, .058,.042,.029,.018,.010,.003 
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MODEL TYPE: MERCATOR  

VERT COORD: 1  

POLE LAT: 21.904  

POLE LON: -127.5  

REF LAT: 21.904  

REF LON: -127.5  

REF GRID: 136.5  

ORIENTATION: 0.  

CONE ANGLE: 0.  

SYNC X: 1.  

SYNC Y: 1.  

SYNC LAT: 21.904  

SYNC LON: -127.5  

NUMB X: 57 

NUMB Y: 41  

NUMB LEVELS: 29  

SFC VARIABLES: 01 PRSS  

UPPER LEVELS: 05 TEMP SPHU UWND VWND WWND (ARL - Global Reanalysis Data 

Archive, 2023) 
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APPENDIX B 

 

GDAS1 DATA SET DETAILS 

 

Table 17. Meteorological Fields contained in the GDAS Archive. For accumulation/average 

fields, 6-h acc/avg at 00, 06, 12, 18 UTC (NOAA, 2019a) 

Field Units Label Data Order 

Pressure at surface hPa PRSS S1 

Pressure reduced to mean sea level hPa MSLP S2 

Accumulated precipitation (6 h accumulation) m TPP6 S3 

u-component of momentum flux (3- or 6-h average) N/m2 UMOF S4 

v-component of momentum flux (3- or 6-h average) N/m2 VMOF S5 

Sensible heat net flux at surface (3- or 6-h average) W/m2 SHTF S6 

Downward short wave radiation flux (3- or 6-h average) W/m2 DSWF S7 

Relative Humidity at 2m AGL % RH2M S8 

U-component of wind at 10 m AGL m/s U10M S9 

V-component of wind at 10 m AGL m/s V10M S10 

Temperature at 2m AGL K TO2M S11 

Total cloud cover (3- or 6-h average) % TCLD S12 

Geopotential height gpm* SHGT S13 

Convective available potential energy J/Kg CAPE S14 

Convective inhibition J/kg CINH S15 

Standard lifted index K LISD S16 

Best 4-layer lifted index K LIB4 S17 

Planetary boundary layer height m PBLH S18 

Temperature at surface K TMPS S19 

Accumulated convective precipitation (6 h accumulation) m CPP6** S20 

Volumetric soil moisture content frac. SOLM S21 

Categorial snow (yes=1, no=0) (3- or 6-h average)   CSNO S22 

Categorial ice (yes=1, no=0) (3- or 6-h average)   CICE S23 

Categorial freezing rain (yes=1, no=0) (3- or 6-h average)   CFZR S24 

Categorial rain (yes=1, no=0) (3- or 6-h average)   CRAI S25 

Latent heat net flux at surface (3- or 6-h average) W/m2 LHTF S26 

Low cloud cover (3- or 6-h average) % LCLD S27 

Middle cloud cover (3- or 6-h average) % MCLD S28 

High cloud cover (3- or 6-h average) % HCLD S29 

Geopotential height gpm* HGTS U1 
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Temperature K TEMP U2 

U-component of wind with respect to grid m/s UWND U3 

V-component of wind with respect to grid m/s VWND U4 

Pressure vertical velocity hPa/s WWND U5 

Relative humidity % RELH U6 
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APPENDIX C 

 

SENSITIVITY ANALYSIS SCRIPT 

 

% Two data set will be compared 

% set 1 and set2 are inputs 

 

% set1 and set 2 includes lat in degree, lon in degree 

% and height in meters 

 

% t=0,1,2,.....96 hour therefore i=1:97 

% n=1:1461; 1461 daily back trajectories in each data 

%set 

 

% Create separate matrix  for lat in radians, lon in 

%radians and height in meters 

 

% set A and set B contain the data sets used. By 

%changing them to reise, revert, gdasise, gdasvert; 6 

%comparisons can be made by using 4 data sets 

 

setA=transpose(reise); 

 

 

Lat_set1=setA(1:97,:)*pi()/180;% latitutes matrix in 

radians 

Lon_set1=setA(98:194,:)*pi()/180;% longititutes matrix 

in radians 

Height_set1=setA(195:291,:);% height matrix in meters 

 

setB=transpose(gdasvert); 

 

 

Lat_set2=setB(1:97,:)*pi()/180;% latitutes matrix in 

radians; 

Lon_set2=setB(98:194,:)*pi()/180;% longititutes matrix 

in radians 

Height_set2=setB(195:291,:);% height matrix in meters 

 

%HAVERSINE FORMULA 

% d is equal to Great Circle Distance in km  

% R : earth radius (6371 km) 

% AHTD is equal to sum of d divided by total number of 

%trajectories 
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% actaully AHTD is equal to average d at each time 

interval 

earth_radius= 6371; % in km 

 

delta_phi= Lat_set2-Lat_set1;% difference btwn 

latitudes in radians 

delta_lambda= Lon_set2-Lon_set1;% difference btwn 

longitudes in radian 

 

a=sin(delta_phi/2).*sin(delta_phi/2)+cos(Lat_set1).*cos

(Lat_set2).*sin(delta_lambda/2).*sin(delta_lambda/2); 

c=2.*atan2(sqrt(a),sqrt(1-a)); 

d=earth_radius*c; % in km 

 

for i=1:97 

AHTD (i,:)= mean (d(i,:)); 

end 

 

%average lenght of two trajectories that has been 

%compared can be calculated as below 

 

% average lenght for set 1: 

for k=1:1461 

    for i=2:97 

    delta_phi_set1(i,k)=Lat_set1(i,k)-Lat_set1(i-1,k);% 

difference btwn latitudes of individual trajectories at 

time i and i-1 in radian 

delta_lambda_set1(i,k)= Lon_set1(i,k)-Lon_set1(i-1,k);% 

difference btwn longitudes of individual trajectories 

at time i and i-1 in radian 

    

a1(i,k)=sin(delta_phi_set1(i,k)/2).*sin(delta_phi_set1(

i,k)/2)+cos(Lat_set1(i,k)).*cos(Lat_set1(i-

1,k)).*sin(delta_lambda_set1(i,k)/2).*sin(delta_lambda_

set1(i,k)/2); 

 

end 

end 

 

for k=1:1461 

    for i=2:97 

 

    sqrt_a1(i,k)=real(sqrt(a1(i,k))); 

    c1(i,k)=2.*atan2(sqrt_a1(i,k),sqrt(1-a1(i,k))); 



 

86 
 

    d1(i,k)=earth_radius*c1(i,k);% t=0,1,2,3.....96 if 

t=72 is needed, it means d1(73,:) 

end 

end 

 

% average lenght for set 2: 

for k=1:1461 

   for i=2:97 

    delta_phi_set2(i,k)=Lat_set2(i,k)-Lat_set2(i-1,k);% 

difference btwn latitudes of individual trajectories at 

time i and i-1 in radian 

delta_lambda_set2(i,k)= Lon_set2(i,k)-Lon_set2(i-1,k);% 

difference btwn longitudes of individual trajectories 

at time i and i-1 in radian 

    

a2(i,k)=sin(delta_phi_set2(i,k)/2).*sin(delta_phi_set2(

i,k)/2)+cos(Lat_set2(i,k)).*cos(Lat_set2(i-

1,k)).*sin(delta_lambda_set2(i,k)/2).*sin(delta_lambda_

set2(i,k)/2); 

 

 

end 

end 

for k=1:1461 

  for  i=2:97 

 

    sqrt_a2(i,k)=real(sqrt(a2(i,k))); 

    c2(i,k)=2.*atan2(sqrt_a2(i,k),sqrt(1-a2(i,k))); 

    d2(i,k)=earth_radius*c2(i,k);% t=0,1,2,3.....96 if 

t=72 is needed, it means d1(73,:) 

end 

end 

 

L_1b2a=(d1+d2)/2;% AVERAGE LENGHT 

 

% Relative horizontal transport deviation can be 

%calculated: 

 

for i=1:97 

    for k=1:1461 

dummy1(i,k) = (d(i,k)./L(i,k)); 

    end 

end 

 

for i=1:97 
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RHTD (i,:)= mean (dummy1(i,:)); 

end 

 

 % ABSOLUTE VERTICAL TRANSPORT DEVIATION can be 

%calculated: 

 

dummy2=abs(Height_set2(:,:)-Height_set1(:,:)); 

for i=1:97 

AVTD (i,:)= mean (dummy2(i,:));% in meters 

end 

 

% 96 hour results 

t1=97  

t2=73  

t3=49 

t4=25 

RHTD_96h=RHTD(t1) 

AHTD_96h=AHTD(t1) 

AVTD_96h=AVTD(t1) 

% 72 hour results 

RHTD_72h=RHTD(t2) 

AHTD_72h=AHTD(t2) 

AVTD_72h=AVTD(t2) 

%48 hour results 

RHTD_48h=RHTD(t3) 

AHTD_48h=AHTD(t3) 

AVTD_48h=AVTD(t3) 

%24 hour results 

RHTD_24h=RHTD(t4) 

AHTD_24h=AHTD(t4) 

AVTD_24h=AVTD(t4) 
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APPENDIX D 

 

VISUALIZATION SCRIPT OF ALL TRAJECTORIES 

 

 

% x and y are the coordinates of the starting point   

% (station) 

  

% lat and lon are files containing the coordinates of the 

% all trajectories. This scripts includes reise (1a) data 

% set visualization. 

 

% Since it is 1461 days of trajectory data, i increases 

%from 1 to 1461. 

 

f1=figure 

geoshow('landareas.shp', 'FaceColor', [0.5 1.0 0.5]); 

y=36.9700; 

x=30.4338; 

line(x,y,'marker','square','markersize',4,'color','y') 

hold on 

lat=reise_all_lat; 

lon=reise_all_lon; 

  

for i = 1:1461 

plot(lon{i,:},lat{i,:},'LineWidth', 0.5) 

hold on; 

end 
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APPENDIX E 

 

CLUSTER VISUALIZATION SCRIPT 

 

 

% x and y are the coordinates of the starting point         

% (station) 

  

% lat1 and lon1 are files containing the coordinates of 

% the all trajectories. This scripts includes reise (1a) 

% data set visualization. 

 

% Since it is 5 cluster center data, i increases from 1 

% to 5. 

 

 

f1=figure 

geoshow('landareas.shp', 'FaceColor', [0.5 1.0 0.5]); 

y=36.9700; 

x=30.4338; 

line(x,y,'marker','square','markersize',4,'color','r') 

text(x,y,' Station','vertical','top'); 

hold on 

lat1=lat_reise5; 

lon1=lon_reise5; 

  

for i = 1:5 

plot(lon1{i,:},lat1{i,:}, 'k-', 'LineWidth', 1.5) 

hold on; 

end 
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APPENDIX F 
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1. Determination of Sensitivity of Back Trajectories by Using Reanalysis and GDAS 

Meteorology Archive 

Doğrusever F., Genç Tokgöz D. D. 

1st International Conference on Applied Engineering and Natural Sciences, Konya, Turkey, 1 - 

03 November 2021, pp.475.  

 

Determination of Sensitivity of Back Trajectories by Using 

Reanalysis and GDAS Meteorology Archive 

Firdevs Doğrusever*, D. Deniz G. Tokgöz2 

1Department of Environmental Engineering/Hacettepe University, Turkey 

ORCID ID 0000-0002-5501-9804 
2Department of Environmental Engineering/Hacettepe University, Turkey 

ORCID ID 0000-0001-7904-2497 
*(firdevs.dogrusever@hacettepe.edu.tr) 

 

Abstract – Determination of back trajectories is carried out by using the HYSPLIT model, which 

is widely used by air quality researchers to locate the source of a pollutant. There are several 

meteorology archives and vertical velocity methods that the model offers to its users.  

Previous researches have shown that two different meteorology archives, GDAS (Global Data 

Assimilation System) and Reanalysis, and two different vertical velocity methods, model vertical 

velocity and isentropic are mostly used in the studies performed in Turkey. It is not certain that 

which meteorology archive or vertical velocity method gives better results. Back trajectories 

calculated for the same region can be quite different due to the model inputs. Even the fact that 

some studies do not even need to give any information about the model inputs reveals the necessity 

of doing a study on this subject. Therefore, the differences in the model inputs should be analyzed 

and it is necessary to highlight the difference.  
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To date, no study has been conducted in Turkey. The most important contribution of the study is 

numerically presenting the results of two different model inputs for the first time in the 

Mediterranean Region which is the most studied region in Turkey.  

In this study, to identify the effects of different model inputs on results, HYSPLIT back trajectories 

have been visualized by using MATLAB, cluster analyses were performed by using SPSS, and 

then clusters were visualized by using MATLAB. 

Consequently, the study focused on a non-consensus practice that which meteorology archive and 

vertical velocity methods should be used among practitioners. In this way, researchers can reach a 

consensus if it is determined that the model inputs have a significant effect on the results. 

 
Keywords – Back trajectory; Clustering; HYSPLIT; GDAS; Reanalysis; Air quality modeling 
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2. Sensitivity of HYSPLIT Back Trajectory Clustering to Meteorological Inputs 

GENÇ TOKGÖZ D. D., Doğrusever F. 

10th International Symposium on Atmospheric Sciences (ATMOS22), İstanbul, Turkey, 18 

October 2022.  

 

Sensitivity of HYSPLIT Back Trajectory Clustering to Meteorological Inputs 

D. Deniz Genç Tokgöz1, Firdevs Doğrusever2  

1Hacettepe University Faculty of Engineering, Department of Environmental Engineering, 

Ankara, Turkey 

denizgenctokgoz@hacettepe.edu.tr; firdevs.dogrusever@hacettepe.edu.tr 

 

ABSTRACT 

In this study, 96-hr back trajectories for a rural area, located on the Eastern Mediterranean coast 

of Turkey, were simulated by the HYSPLIT model (web-version). Two different meteorological 

archives (Reanalysis and GDAS1) and two different vertical transport velocity options (isentropic 

and model vertical velocity) were chosen for the simulation of daily back trajectories between 

2010 and 2013 years. These model inputs were selected as they are the most common input 

variables. Cluster Analysis by SPSS (k-means technique) was applied for each back trajectory data 

set to classify them into similar groups (clusters). Based on their speed, back trajectories in each 

data set were classified into 3 clusters as fast moving, mean, and slow-moving air mass 

movements. Clusters in each data set were compared with the corresponding Cluster in the other 

data set. Generated clusters were not significantly different although they indicated higher 

sensitivity to the vertical velocity method than the meteorological archive. 

Keywords: Cluster Analysis, k-means technique, sensitivity analysis, SPSS, MATLAB. 
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1. INTRODUCTION 

Due to adverse impact of air pollution on human health (WHO 2013), ecosystem (Bytnerowicz, 

Omasa, and Paoletti 2007), and materials (Watt et al. 2009), ambient air quality standards have 

been getting stricter. In order to develop effective abatement strategies, it is essential to identify 

the pollutants and their sources.  

Air masses may travel over the different geographical locations (e.g., sea, deserts, forests, etc) and 

pollution sources (i.e. cities, industrial facilities, etc) before arriving the receptor site, hence they 

can be loaded with natural and anthropogenic pollutants (Perez et al., 2017). To determine the 

contribution of local pollution, the history of air masses need to be investigated. Back trajectory 

calculations are the common tool for simulation of air masses. A back trajectory simulates the 

paths of air masses before intercepting the receptor site. Although there are large numbers of 

software programs that can be used to simulate back trajectories, the Hybrid Single-Particle 

Lagrangian Integrated Trajectory (HYSPLIT) model is widely used. HYSPLIT model requires 

meteorological data as input data and variety of parameters such as vertical transport velocity 

model, arriving time, arrival height and etc. The sensitivity to meteorological input data set 

(archives) has been computed (Su et al., 2015; Harris et al., 2005) and found to have significant 

influence (20-40%). Those studies also indicate that trajectories vary depending on the 

geographical properties of the receptor sites. Therefore, it is suggested to use different 

meteorological archives and input parameters to investigate the sensitivity of trajectories to input 

variables for each receptor site.    

Typically, a back trajectory has an error of 20% of the distance travelled (Stohl, 1998). In air 

pollution studies, large number of trajectories over a long period of time are used in statistical 

analysis to increase the accuracy of the trajectory analysis.  

Cluster Analysis (CA) is a multivariate statistical technique that is used to determine the 

atmospheric transport pattern and to examine the influence of different atmospheric transport 

pattern on observed chemical composition at the receptor. Many researchers have used CA to 

examine the relation between synoptic scale transport patterns and atmospheric pollution (Dorling 

et al., 1992; Cape et al., 2000, Borge et al., 2007, Cabello et al., 2008; Markou and Kassomenos, 

2010). The criterion used in CA is to split a large trajectory data set into a number of groups based 

on trajectory transport speed and direction, simultaneously (Abdalmogith and Harrison, 2005, 
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Brankov et al., 1998). The produced groups in CA are called clusters. Members of each cluster 

have similar trajectory length and curvature, while distinct clusters represent different synoptic 

regimes. When coupled with aerosol chemical composition, CA can be a good tool to examine the 

effect of synoptic scale atmospheric patterns on observed chemical composition; hence will aid to 

establish source-receptor relationship. The uncertainty in individual trajectory is high and 

increases with the total travel distance (Stohl and Koffi, 1998). In CA large sets of trajectories are 

used, therefore the accuracy of trajectory analysis is improved. 

In this study, for a receptor site located in the Eastern Mediterranean Turkey, back trajectories are 

simulated using the input data which are most widely used. Simulated back trajectories are 

classified by CA and then generated clusters are compared to determine the sensitivities to the 

most widely used input variables.  

 

2. MATERIAL AND METHOD 

In this study, four-days back trajectories (96 h), extending four days back in time and arriving at a 

rural site in the Eastern Mediterranean (360 58’ 12” N and 300 26’ 2” E) at 12:00 UTC (Coordinate 

Universal Time), at altitudes 1500 m from the surface were simulated for each day in the years 

2010, 2011, 2012 and 2013. Trajectory arrival height may have different effects on trajectories 

(Cabello et al., 2008; Yang et al.,2017). The long-range transport studies in the Eastern 

Mediterranean region usually chooses 1500 m arrival height as the most representative transport 

layer (Dayan et al., 2017). In this study only 1500 m arrival height back trajectories were simulated 

as the objective is to determine the sensitivity of meteorological input data and vertical transport 

method on the trajectories.  

Two different meteorological data achieves (Reanalysis and GDAS1) and two different vertical 

velocity models (isentropic and model vertical )) were used as model input. These input variables 

are chosen as these are the most widely used input variables. For each trajectory data set 1461 

daily back trajectories (365 days/year * 4 years + 1 day for leap year =1461 daily back trajectories) 

were simulated. The details of trajectory data set simulated in this study is given in Table 1. 
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Table 1. Trajectory data set (96 h) simulated in this study 

Symbol of 

data 

Data Description 
Total number of back 

trajectories Meteorology Archive 
Vertical Velocity 

Method 

1a 
Reanalysis meteorology 

archive 
Isentropic 1461 

1b 
Reanalysis meteorology 

archive 

Model vertical 

velocity 
1461 

2a 
GDAS1 meteorology 

archive 
Isentropic 1461 

2b 
GDAS1 meteorology 

archive 

Model vertical 

velocity 
1461 

 

Non-hierarchical k-means technique in IBM SPSS Statics 23 was used for cluster analysis of these 

data sets.  

Sensitivity analysis was performed for the generated clusters to determine the differences caused 

by the model inputs. For sensitivity analysis, the absolute horizontal transport deviation (AHTD), 

the absolute vertical transport deviation (AVTD) and the relative horizontal transport deviation 

(RHTD) were calculated using the below equations: 

 

𝐴𝐻𝑇𝐷(𝑡) =
1

𝑁
∑ {[𝑋𝑛(𝑡) − 𝑥𝑛(𝑡)]2 + [𝑌𝑛(𝑡) − 𝑦𝑛(𝑡)]2}1 2⁄      𝑁

𝑛=1       (1) 

𝐴𝑉𝑇𝐷(𝑡) =
1

𝑁
∑ |𝑍𝑛(𝑡) − 𝑧𝑛(𝑡)|     𝑁

𝑛=1        (2) 

𝑅𝐻𝑇𝐷(𝑡) =
1

𝑁
∑

{[𝑋𝑛(𝑡)−𝑥𝑛(𝑡)]2+[𝑌𝑛(𝑡)−𝑦𝑛(𝑡)]2}
1 2⁄

𝐴𝐿𝑛(𝑡)
     𝑁

𝑛=1      (3) 

𝐴𝐿𝑛(𝑡) =
1

2
∑ 〈

{[𝑋𝑛(𝑡𝑖) − 𝑋𝑛(𝑡𝑖−1)]2 + [𝑌𝑛(𝑡𝑖) − 𝑌𝑛(𝑡𝑖−1)]2}1 2⁄ +

{[𝑥𝑛(𝑡𝑖) − 𝑥𝑛(𝑡𝑖−1)]2 + [𝑦𝑛(𝑡𝑖) − 𝑦𝑛(𝑡𝑖−1)]2}1 2⁄
〉𝑡

𝑡𝑖=2                              (4) 

 

In this equations, N is the total number of back trajectories, X,Y,Z is the location of the first set of 

back trajectories; x,y,z is the location of the second set of back trajectories; ALn(t) represents the 

average length of the two back trajectories compared.  In this study, cluster centroids were 

compared, therefore the N value given in Equations 1,2 and 3 was taken as 1.  
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The formula given in Equation 1 (also in Equations 3 and 4) is actually the Euclidean length. 

Considering that the Earth is spherical, it would be incorrect to calculate the distance between two 

locations directly by the Euclidean length. When the studies on back trajectory analyses were 

examined, it was seen that the distance calculated in Equation 1 were replaced by the distance 

calculated by the Haversine formula (Markou and Kassomenos, 2010; Cabello at al., 2008). The 

Haversine formula is used to calculate the shortest distance between two points with known 

latitude and longitude values on the earth's geolocation. The Haversine formula assumes that the 

earth is a perfect sphere and the shortest distance between two points is calculated with 0.3% error. 

Therefore, the distance between two locations in Equations 1, 3 and 4 were calculated using the 

Haversine formula given below: 

 

𝑎 =  𝑠𝑖𝑛²((𝜑𝐵 –  𝜑𝐴)/2)  +  𝑐𝑜𝑠 𝜑𝐴 ∗  𝑐𝑜𝑠 𝜑𝐵 ∗  𝑠𝑖𝑛²((𝜆𝐵 –  𝜆𝐴)/2) 

𝑐 =  2 ∗  𝑎𝑡𝑎𝑛2( √𝑎, √(1 − 𝑎) ) 

𝑑 =  𝑅 ⋅  𝑐           (5) 

 

In this equation, φ and λ represent latitude and longitude (in radians), respectively. B represents 

the second position and A represents the first position. R represents the mean radius of the earth 

(6371 km taken). d is the distance (also called as the Great Circle Distance (in km)). 

 

3. RESULTS 

There is no definitively accepted method to determine the optimum number of clusters in cluster 

analysis. In general, depending on the decrease in the number of clusters, that is, when the number 

of clusters is reduced from the number of k clusters to the number of k-1 clusters, the percentage 

change in the total root mean square deviation (TRMSD) (5% change is considered significant) is 

used as the criterion (Dorling et al., 1992).  

In this study, the optimum number of clusters is found to be different for each data set. It is not 

possible to match the clusters in one data set with the clusters in the other data set when the number 
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of clusters is different. In order to compare the cluster in each data set with the corresponding 

cluster in the other data set, the optimum cluster number was selected as 3 (Figure 1).  

Generated Cluster in each data set were compared with the corresponding Cluster in the other data 

set. Comparisons were designed to determine the sensitivity to the vertical transport velocity (1a-

1b, 2a-2b), meteorological archive (1a-2a,1b-2b), and both meteorological archive and vertical 

transport velocity (1a-2b,1b-2a). The sensitivity parameters: absolute horizontal transport 

deviation (AHTD), absolute vertical transport deviation (AVTD) and the relative horizontal 

transport deviation (RHTD) were calculated for each comparison. Table 2-4 presents AHTD, 

RHTD and AVTD statistics (median values) calculated for Cluster 1 (C1), Cluster 2 (C2), and 

Cluster 3 (C3), respectively. 

 

Table 2. C1-Comparison of fast-moving air movements 

Comparison Description 
RHTD, 

% 

AHTD, 

km 

AVTD, 

m 

1a-1b 
Sensitivity of the Reanalysis archive to the 

velocity method 

16.7 575 297 

2a-2b 
Sensitivity of the GDAS1 archive to the velocity 

method 

15.1 571 272 

1a-2a 
Sensitivity to meteorology archive 

1.8 65 519 

1b-2b 6.7 195 900 

1a-2b Sensitivity to both meteorology archive and 

velocity method 

14.9 518 599 

1b-2a 17.4 653 17 

 

Table 3. C2-Comparison of mean moving air movements. 

Comparison Description 
RHTD, 

% 

AHTD, 

km 

AVTD, 

m 

1a-1b 
Sensitivity of the Reanalysis archive to the 

velocity method 

7 114 113 

2a-2b 
Sensitivity of the GDAS1 archive to the velocity 

method 

12.2 236 89 

1a-2a 
Sensitivity to meteorology archive 

1.7 28 87 

1b-2b 13.4 244 137 

1a-2b Sensitivity to both meteorology archive and 

velocity method 

11 207 34 

1b-2a 5.4 92 157 
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Table 4. C3-Comparison of slow moving air movements 

Comparison Description 
RHTD, 

% 

AHTD, 

km 

AVTD, 

m 

1a-1b 
Sensitivity of the Reanalysis archive to the 

velocity method 

24.1 237 108 

2a-2b 
Sensitivity of the GDAS1 archive to the velocity 

method 

14.6 125 340 

1a-2a 
Sensitivity to meteorology archive 

4.9 35 95 

1b-2b 15.5 179 452 

1a-2b Sensitivity to both meteorology archive and 

velocity method 

12.8 115 431 

1b-2a 27.8 266 106 
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Figure 1. Variation of clusters with respect to data set (a) C1-Fast moving, (b) C2-Mean moving, 

(c) C3-slow moving (1a: Reanalysis meteorology archive with isentropic velocity method, 1b: 

Reanalysis meteorology archive with model vertical velocity method, 2a: GDAS1 meteorology 

archive with isentropic velocity method, 2b: GDAS1 meteorology archive with model vertical 

velocity method)  

 

4. DISCUSSION 

Figure  clearly shows that back trajectories were classified according to their transport speed and 

direction. Cluster 1 (C1) represents air movements with the highest velocity and named as “fast 

moving air movements”. Cluster 3 (C3) represents slow air movements and named as “slow 

moving air movements”. Air movements that are faster than Cluster 3 but slower than Cluster 1 

are defined as Cluster 2 (C2) and called as “mean moving air movements”. 

The elevation of the clusters presented in Figure 2 also confirms the above classification with 

respect to trajectory speeds. Trajectories move faster at high elevations but their speed decreases   
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as they lose elevation. The elevation of C1, C2, and C3 was between 1500-6220 m, 1498-3092 m, 

and 677 -1750 m, respectively.   

 

 

Figure 2. Average elevation of clusters (a) C1-Fast moving, (b) C2-Mean moving, (c) C3-

Slow moving (1a: Reanalysis meteorology archive with isentropic velocity method, 1b: 

Reanalysis meteorology archive with model vertical velocity method, 2a: GDAS1 

meteorology archive with isentropic velocity method, 2b: GDAS1 meteorology archive with 

model vertical velocity method) 

 

 

Among the statistics reported in Tables 2-4, AVTD were found to be less informative for 

comparison of clusters. Therefore, AHTD and RHTD values were considered when evaluating the 

sensitivity of clusters to the meteorological archive and vertical velocity method. 
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AHTD and RHTD parameters indicated that clusters are more sensitive to vertical transport 

method. Clusters generated from model vertical velocity back trajectories were found to be slightly 

different than those obtained by isentropic back trajectories (Figure 1). These differences were 

calculated as 15-17% for C1 (Fast moving air movements), 7-12% for C2 (Mean moving air 

movements) and 15-24% for C3 (Slow moving air movements). The sensitivity to meteorological 

archive was calculated between 2% and 15.5%.  The difference due to meteorological archive for 

C1, C2 and C3 were 2-7%, 2-13% and 5-16%, respectively. 

The sensitivities of clusters (C1, C2, and C3) generated from isentropic back trajectories (1a and 

2a data sets) were calculated between 2-5%. Clusters generated from model vertical velocity back 

trajectories (1b and 2b) indicated 7-16% sensitivity to meteorological archive. The sensitivities of 

clusters from model vertical velocity back trajectories were nearly three times higher than those 

generated from isentropic back trajectories. This indicates that clusters generated from model 

vertical velocity back trajectories are more sensitive to meteorological archive.  

The sensitivity of meteorological archive to vertical velocity method was calculated by comparing 

1a-1b, and 2a-2b data sets. Reanalysis meteorological archive’s sensitivity to vertical velocity 

model is calculated between 7 and 24%. Medium moving trajectories, represented by C2, indicated 

lowest sensitivity to vertical velocity model while Fast moving (C1) and slow moving trajectories 

(C3) indicated higher sensitivities (17 and 24%, respectively). Sensitivity of GDAS1 archive to 

velocity method is nearly constant in all clusters (12-15%).  

C1 (Table 2) showed the highest sensitivity to vertical transport method (15-17%) and lowest 

sensitivity to the meteorological archive (2-7%). When evaluating the sensitivity to both 

meteorological archive and vertical transport velocity together, similar values close to the 

sensitivity of the vertical velocity method were found. This shows that vertical velocity method 

has a dominant effect on fast moving air movements.  

C2 (Table 3) has the highest sensitivity to GDAS1 meteorological archive (13%) when model 

vertical velocity method is used. Isentropic trajectories generated quite similar clusters (1a-2a) 

with 2% RHTD value. This indicates that medium moving trajectories are not sensitive to 

meteorological archive when isentropic velocity model is chosen. Although the difference is not 

significant, the sensitivity of GDAS1 meteorological archive to vertical velocity model is high 

(12%).  
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C3 (Table 4), representing the slow moving air movements, showed the highest sensitivity to 

model vertical velocity method when Reanalysis archive is used (28%). The sensitivity of GDAS1 

and Reanalysis archive to velocity method is 15 and 24%, respectively. Isentropic trajectories 

generated quite similar clusters (5%) while clusters from model vertical velocity trajectories were 

a bit different (15%).  

Sensitivity of each data set to generated clusters were also calculated for preceding 24, 48, and 72-

hr back trajectories (not presented here). Sensitivities were found to increase with the total travel 

time i.e. 96-hr back trajectories were more sensitive than preceding back trajectories.   

In summary, the results of cluster analysis of back trajectories, simulated using Reanalysis and 

GDAS1 meteorological archives and isentropic and model vertical velocity methods, indicated 

that clusters are not significantly different (Figure 1). Although the length and curvature of clusters 

may show variation, direction of clusters are quite similar with the corresponding clusters.  
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Abstract 

The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model (web-version) 

was used to simulate hourly 96-hr back trajectories arriving at a rural site in the Eastern 

Mediterranean, at altitudes 1500 m from the surface, for each day between 2010 and 2013 years. 

Two meteorological data archives (NCEP/NCAR Reanalysis and GDAS1) and vertical velocity 

methods (isentropic and model vertical velocity) were used as model inputs as these are the most 

widely used input variables. The sensitivity of trajectories to model inputs was measured by the 

absolute horizontal transport deviation (AHTD), the absolute vertical transport deviation (AVTD) 

and the relative horizontal transport deviation (RHTD) statistics. Both the meteorological archive 

and vertical transport method significantly influenced the trajectories. Trajectories simulated by 

NCEP/NCAR Reanalysis archive were less sensitive to the vertical transport method than 

trajectories simulated by the GDAS1 archive. Back trajectories simulated for the same region 

could be very different from each other due to differences in model inputs. Since trajectory 

uncertainties could be specific to location, multiple inputs must be used to simulate trajectories to 

examine the air mass pathway. 
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