TESTING AND COMPARISON OF DIFFERENT CONTROL METHODS ON A GIMBAL SYSTEM

FARKLI DENETİM YÖNTEMLERİNİN BİR GİMBAL SİSTEMİ ÜZERİNDE SINANMASI VE KARŞILAŞTIRILMASI

MUHARREM MANDACI

DR. ŞÖLEN KUMBAY YILDIZ
Tez Danışmanı

Hacettepe Üniversitesi
Lisansüstü Eğitim - Öğretim ve Sınav Yönetmeliği’nin Elektrik ve Elektronik Mühendisliği Anabilim Dalı İçin Öngörüdüğü Yüksek Lisans Tezi
olarak hazırlanmıştır.

Ekim 2023
ÖZET

FARKLI DENETİM YÖNTEMLERİNİN BİR GİMBAL SİSTEMİ ÜZERİNDE SINANMASI VE KARŞILAŞTIRILMASI

Muharrem MANDACI
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü
Danışman: Dr. Şölen KUMBAY YILDIZ
Eylül 2023, 86 sayfa

Bu tez çalışmasında Oransal-Tümlevsel (OTüm) denetim, Özayarlamalı OTüm denetim, Tümlev Etkili Doğrusal KareSEL Denetim (TE-DKD) ve Giriş Çıkış Modeline Dayalı Rôle ile Kayan Kipli Denetim (GÇ-RKKD) yapıları kullanılmaktadır. Tezin ikinci bölümünde kullanılan denetim yapıları anlatılmaktadır. Bir sonraki bölümde bu denetim yapılarının benzetim ortamında farklı aktarım işlevlerine uygulanması sonucu elde edilen sonuçlar incelenmektedir. Dördüncü bölümde gerçek bir gimbal sistemi üzerinde denetim yapılarının uygulanması ile elde edilen sonuçlar verilmektedir.

Anahtar Kelimeler: Uyarlamalı Denetim, Gürbüz Denetim, Oransal-Tümlevsel (OTüm) Denetim, Doğrusal Karesel Denetim (DKD), Kayan Kipli Denetim, Gimbal Denetim
Gimbal systems are systems that carry the payload on them and direct them to a specific location. Controllers designed for gimbal systems are required to be robust for environmental disturbances and model parameter changes. For this purpose, many different control structures are used in gimbal systems in order to keep the control performance at the desired level.

In this thesis, Proportional-Integral (PI) control, Self-Tuning PI control, Integral Action Linear Quadratic Control (LQR) and Input-Output Model Based Relay Sliding Mode Control (IO-RSMC) are used. In the first part of the thesis, the control structures that used are explained. In the next section, the results obtained as a result of applying these control structures to different transfer functions in the simulation environment are examined. In the fourth chapter, the results obtained by applying the control structures on a real gimbal system are given.

Keywords: Adaptive Control, Robust Control, Proportional-Integral (PI) Control, Linear Quadratic Regulator (LQR) Control, Sliding Mode Control, Gimbal Control
TEŞEKKÜR

Bu zorlu tez çalışmanınız boyunca bilgisini ve desteğini esirgemeyen, bana bu çalışmada yol gösteren tez danışmanım Sayın Dr. Şölen KUMBAY YILDIZ’a değerli katkıları ve ilgisinden dolayı teşekkürlerimi sunarım.

Şirket imkanlarını, gimbal sistemini ve test düzeneklerini kullanma konusunda verdiği destekten dolayı ASEL SAN A.Ş.’ye teşekkürlerimi sunarım.

İlk günden bu yana yüksek lisans eğitimin ve tez çalışmanınuzu boyunca sevgi ve desteği ile yanında olan eşim Berna’ya ve varlığıyla hayatını güzelleştiren kızım Güneş’e yürekten teşekkür ederim.
İÇİNDEKİLER

<table>
<thead>
<tr>
<th>Sayfa</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÖZET</td>
</tr>
<tr>
<td>ABSTRACT</td>
</tr>
<tr>
<td>TEŞEKKÜR</td>
</tr>
<tr>
<td>İÇİNDEKİLER</td>
</tr>
<tr>
<td>TABLOLAR</td>
</tr>
<tr>
<td>ŞEKİLLER</td>
</tr>
<tr>
<td>KISALTMALAR</td>
</tr>
</tbody>
</table>

1. **GİRİŞ** | 1 |

2. **YÖNTEMLER** | 7 |

2.1. Model Uyumlama ile OTüm Denetleyici | 7 |

2.2. Özayarlamalı OTüüm Denetim Yapısı | 9 |

2.2.1. Sürekli Zaman Özyinelemeli En Küçük Kareler Yöntemi (SZÖEKK) | 9 |

2.2.2. Özayarlamalı OTüüm Denetleyici ile Model Uyumlama | 11 |

2.3. Tümlev Etkili Doğrusal Karesel Denetim (TE-DKD) | 12 |

2.4. Giriş Çıkış Modeline Dayalı Röle ile Kayan Kipli Denetim (GÇ-RKKD) | 15 |

3. **BENZETİM ÇALIŞMALARI** | 19 |

3.1. Birinci Derece Kararlı Sistem Modeli | 19 |

3.1.1. OTüüm Denetleyici Benzetim Sonuçları | 20 |

3.1.2. Özayarlamalı OTüüm Denetleyici Benzetim Sonuçları | 21 |

3.1.3. TE-DKD Benzetim Sonuçları | 22 |

3.1.4. GÇ-RKKD Benzetim Sonuçları | 23 |

3.2. Birinci Derece Kararsız Sistem Modeli | 28 |

3.2.1. OTüüm Denetleyici Benzetim Sonuçları | 29 |

3.2.2. Özayarlamalı OTüüm Denetleyici Benzetim Sonuçları | 29 |

3.2.3. TE-DKD Benzetim Sonuçları | 30 |

3.2.4. GÇ-RKKD Benzetim Sonuçları | 31 |

3.3. Pozisyon Denetimi Benzetim Sonuçları | 37 |
3.3.1. İç Döngü: Özyaralı OTüm Denetim ... 39
3.3.2. İç Döngü: GÇ-RKKD ... 40
4. UYGULAMA .. 46
 4.1. Uygulamada Kullanılan Sistem ... 47
 4.2. İki Eksen Gimbal Sisteminin Matematiksel Modeli 48
 4.3. Hız Denetimi Uygulama Sonuçları ... 52
 4.3.1. OTüm Denetleyici ile Elde Edilen Sonuçlar 54
 4.3.2. Özyaralı OTüm denetleyici ile Elde Edilen Sonuçlar 55
 4.3.3. TE-DKD ile Elde Edilen Sonuçlar .. 56
 4.3.4. GÇ-RKKD ile Elde Edilen Sonuçlar 56
 4.4. Pozisyon Denetimi Uygulama Sonuçları 62
 4.4.1. İç Döngü: Özyaralı OTüm Denetim 63
 4.4.2. İç Döngü: GÇ-RKKD ... 64
5. SONUÇ .. 69
 KAYNAKLAR .. 71
 EKLER .. 76
TABLOLAR

Tablo 3.1 $G_1(s)$ ile Yapılan Benzetimlerde Kullanılan Parametreler 20
Tablo 3.2 $G_1(s)$ için OTüm Denetleyici Parametreleri 20
Tablo 3.3 $G_1(s)$ için Özayarlamalı OTüm Denetleyici Parametreleri 21
Tablo 3.4 $G_2(s)$ için Kullanılan Parametreler 28
Tablo 3.5 $G_2(s)$ için OTüm Denetleyici Parametreleri 29
Tablo 3.6 $G_2(s)$ için Özayarlamalı OTüm Denetleyici Parametreleri 30
Tablo 3.7 Ardışık Denetim Hız Denetleyicileri için Kullanılan Başarım Kriterleri 37
Tablo 3.8 Ardışık Denetim için SZÖEKK Yöntemi Parametreleri 39
Tablo 4.1 Uygulama - Başarım Ölçütleri Tablosu 53
Tablo 4.2 Uygulama - OTüm Denetleyici Parametreleri 54
Tablo 4.3 Uygulama - SZÖEKK Yöntemi Parametreleri 55
Tablo 4.4 Uygulama Ardışık Denetim Hız Denetleyicileri için Kullanılan Başarım Kriterleri ... 62
Tablo 4.5 Uygulama - Ardışık Denetim için SZÖEKK Yöntemi Parametreleri ... 63
<table>
<thead>
<tr>
<th>ŞEKİL</th>
<th>SAYFA</th>
<th>AÇIKLAMASI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Şekil 1.1</td>
<td>Tek Eksen Gimbal Yapısı</td>
<td>1</td>
</tr>
<tr>
<td>Şekil 2.1</td>
<td>OTÜm denetleyici</td>
<td>7</td>
</tr>
<tr>
<td>Şekil 2.2</td>
<td>Özayarlamalı En Küçük Kareler Yöntemi ile Özayarlamalı OTÜm Denetim Yapısı</td>
<td>11</td>
</tr>
<tr>
<td>Şekil 2.3</td>
<td>Tümlev Etkili Doğrusal KareSEL Denetim Yapısı</td>
<td>15</td>
</tr>
<tr>
<td>Şekil 2.4</td>
<td>Giriş Çıkış Modeline Dayalı Röle ile Kayan Kipli Denetim Yapısı</td>
<td>16</td>
</tr>
<tr>
<td>Şekil 2.5</td>
<td>Giriş Çıkış Modeline Dayalı Röle ile Kayan Kipli Genişletilmiş Denetim Yapısı</td>
<td>18</td>
</tr>
<tr>
<td>Şekil 3.1</td>
<td>$G_1(s)$ için OTÜm Denetleyici ile Benzetim Sonuçları</td>
<td>24</td>
</tr>
<tr>
<td>Şekil 3.2</td>
<td>$G_1(s)$ için Özayarlamalı OTÜm Denetleyici ile Benzetim Sonuçları</td>
<td>25</td>
</tr>
<tr>
<td>Şekil 3.3</td>
<td>$G_1(s)$ için TE-DKD ile Benzetim Sonuçları</td>
<td>26</td>
</tr>
<tr>
<td>Şekil 3.4</td>
<td>$G_1(s)$ için GÇ-RKKD ile Benzetim Sonuçları</td>
<td>27</td>
</tr>
<tr>
<td>Şekil 3.5</td>
<td>$G_2(s)$ için Bozucu Girişleri Öbek Çizeneği</td>
<td>28</td>
</tr>
<tr>
<td>Şekil 3.6</td>
<td>$G_2(s)$ için OTÜm Denetleyici ile Benzetim Sonuçları</td>
<td>33</td>
</tr>
<tr>
<td>Şekil 3.7</td>
<td>$G_2(s)$ için Özayarlamalı OTÜm Denetleyici ile Benzetim Sonuçları</td>
<td>34</td>
</tr>
<tr>
<td>Şekil 3.8</td>
<td>$G_2(s)$ için TE-DKD ile Benzetim Sonuçları</td>
<td>35</td>
</tr>
<tr>
<td>Şekil 3.9</td>
<td>$G_2(s)$ için GÇ-RKKD ile Benzetim Sonuçları</td>
<td>36</td>
</tr>
<tr>
<td>Şekil 3.10</td>
<td>Ardışık Denetim Öbek Çizeneği</td>
<td>38</td>
</tr>
<tr>
<td>Şekil 3.11</td>
<td>Pozisyon Denetimi (İç Döngü: Özayarlamalı OTÜm)</td>
<td>42</td>
</tr>
<tr>
<td>Şekil 3.12</td>
<td>$G_3(s)$ için Özayarlamalı OTÜm Hız Denetimi</td>
<td>43</td>
</tr>
<tr>
<td>Şekil 3.13</td>
<td>Pozisyon Denetimi (İç Döngü: GÇ-RKKD)</td>
<td>44</td>
</tr>
<tr>
<td>Şekil 3.14</td>
<td>$G_3(s)$ için GÇ-RKKD Hız Denetimi</td>
<td>45</td>
</tr>
<tr>
<td>Şekil 4.1</td>
<td>Örnek Gimbal Sistemi - CATS</td>
<td>48</td>
</tr>
<tr>
<td>Şekil 4.2</td>
<td>Kullanılan Temsili Düzenek</td>
<td>48</td>
</tr>
<tr>
<td>Şekil 4.3</td>
<td>Motor Akımı Denetleyici Yapısı</td>
<td>49</td>
</tr>
<tr>
<td>Şekil 4.4</td>
<td>Motor Akım Denetleyicisi İndirgenmiş Yapısı</td>
<td>50</td>
</tr>
</tbody>
</table>
Sekil 4.5 Gimbal Matematiksel Model ... 51
Sekil 4.6 İki Farklı Sıcaklıkta OTüm denetleyicisinin Sonuçlarının Karşılaştırılması ... 58
Sekil 4.7 İki Farklı Sıcaklıkta Özayarlamalı OTüm denetleyicisinin Sonuçlarının Karşılaştırılması ... 59
Sekil 4.8 İki Farklı Sıcaklıkta TE-DKD Yönteminin Sonuçlarının Karşılaştırılması ... 60
Sekil 4.9 İki Farklı Sıcaklıkta GÇ-RKKD Yönteminin Sonuçlarının Karşılaştırılması ... 61
Sekil 4.10 Uygulama - Ardışık Denetim Öbek Çizeneği ... 62
Sekil 4.11 $G_s(s)$ için Pozisyon Denetimi (İç Döngü: Özayarlamalı OTüm) ... 65
Sekil 4.12 $G_s(s)$ için Özayarlamalı OTüm Hız Denetimi ... 66
Sekil 4.13 $G_s(s)$ için Pozisyon Denetimi (İç Döngü: GÇ-RKKD) ... 67
Sekil 4.14 $G_s(s)$ için GÇ-RKKD Hız Denetimi ... 68
SİMGELE, KISALTMALAR

Simgeler

<table>
<thead>
<tr>
<th>Y</th>
<th>: sistem çıktı</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>: sistem girişi</td>
</tr>
<tr>
<td>y_d</td>
<td>: dayanak model çıktı</td>
</tr>
<tr>
<td>y_i</td>
<td>: istenen sistem cevabı çıktı</td>
</tr>
<tr>
<td>D</td>
<td>: dayanak girişi</td>
</tr>
<tr>
<td>E</td>
<td>: hata sinyali</td>
</tr>
<tr>
<td>R</td>
<td>: röle genliği</td>
</tr>
<tr>
<td>V</td>
<td>: genişletilmiş KKD yapısında röle çıktı</td>
</tr>
<tr>
<td>E, F</td>
<td>: genişletilmiş KKD yapısında kullanılan düzgeç çokterimlileri</td>
</tr>
<tr>
<td>A, B</td>
<td>: sistem modeli parametreleri veya kestirilen sistem model parametreleri</td>
</tr>
<tr>
<td>K_p, K_i</td>
<td>: OTüm denetleyici parametreleri</td>
</tr>
<tr>
<td>K_p, K_d</td>
<td>: OTür denetleyici parametreleri</td>
</tr>
<tr>
<td>M</td>
<td>: OTüm denetleyici ek serbestlik parametresi</td>
</tr>
<tr>
<td>ζ</td>
<td>: sönüm oranı</td>
</tr>
<tr>
<td>ω_n</td>
<td>: doğal frekans</td>
</tr>
<tr>
<td>β</td>
<td>: unutma çarpazı</td>
</tr>
</tbody>
</table>
Kısaltmalar

OTT : Oransal - Tümlevsel - Türevsel
OTüm : Oransal - Tümlevsel
OTür : Oransal - Türevsel
SZÖEKK : Sürekli Zaman Özyinelemeli En Küçük Kareler
TE-DKD : Tümlev Etkili Doğrusal Karesel Denetim
GÇ-RKKD : Giriş Çıkış Modeline Dayalı Rôle İle Kayan Kipli Denetim
1. GİRİŞ

Ataletsel kararlaştırılmış platformlar (Inertially Stabilized Platform - ISP), çeşitli görüntüleme algılayıcıları (kızlötesi kamera, radar, teleskop vb.), anten veya silah gibi faydali yükleri yönlendirmek ve kararlaştırılmak için kullanılan sistemlerdir. Bu platformlar çeşitli kara, deniz, hava ve uzay araçları üzerine monte edilerek kullanılabilirdiği gibi, yere sabitlenmiş şekilde de kullanılmaktadır. Üzerlerinde taşıdıkları faydalı yükleri istenen bakış hattına yönlendirecek gözetleme, hedef takibi, nişan alma, anten açısı ayarlama gibi birçok farklı görevi yerine getirmektedir[1].

Şekil 1.1 Tek Eksen Gimbal Yapısı
Gimbal, üzerinde faydalı yükü istenen baksı hattına konumlandırılmalıdır. Ayrıca baksı hattını istenen konuma götürdükten sonra, baksı hattını tüm dış bozucuların etkisi altında istenen noktada yüksek hassasiyet ile tutabilmesi gerekmektedir. Bu iki görevi bir arada yerine getirebilmek amacıyla gimbal denetim yapılsa, yüksek bant genişliğe sahip bir iç hız denetim döngüsünde ve iç döngüye göre daha düşük bant genişliğe sahip bir dış konum denetim döngüsünde sahip olacak şekilde yapılandırılacaktır. Bu sayede iç döngü yüksek frekanslı bozucu etkileri ortadan kaldırırken, dış döngü baksı hattının istenen konuma yönlendirilmesini sağlamaktadır.

Gimbal üzerinde etkene etki eden açısal hızları ve ivmeleri ölçülen bir ivme ölçer yer almaktadır. İdeal bir gimbal sistemi göz önüne alındığında, bu algılayıcının ölçüdüğü hız sıfırlayacak tork kuvveti Eşitlik 1 ile hesaplanarak motorlar tarafından eksene uygulanır ve baksı hattı üzerindeki hareketin ve titreşimın belirli bir hassasiyet altında sıfırlanması amaçlanır [2]. Bu eşitlikte yer alan τ torku, J dönme ekseninin eylemsizliğini ve α açısal ivmeyi ifade etmektedir.

$$\tau = J\alpha$$

Bu eşitlik simetrik, homojen kütleli ve tek eksen bir gimbal için geçerlidir. Ancak gerçek bir gimbal çoğu zaman birden fazla eksene sahiptir ve simetrik, homojen bir kütleye sahip olmaz. Bu nedenle eksen torkları üzerinde diğer eksenlerdeki dönüşümlerden kaynaklı kuvvetler ve kütle kaçaçıklarının etkisi eklenir.

Eşitlik 2 ile verilen eylemsizlik matrisi kullanılarak,

$$I = \begin{bmatrix} I_{xx} & I_{xy} & I_{xz} \\ I_{yx} & I_{yy} & I_{yz} \\ I_{zx} & I_{zy} & I_{zz} \end{bmatrix}$$

2
bir kütle üzerine üç eksende etkilen tork kuvvetleri Eşitlik 3, 4 ve 5 kullanılarak bulunabilir.
Bu eşitliklerde yer alan ω terimleri kütlenin ilgili eksendeki açısal dönüş hızını, I terimleri ise eylemsizlik matrisinin ilgili eksenlere karşılık gelen kısımlarını ifade etmektedir.

\[
\begin{align*}
\tau_x &= \alpha_x I_{xx} + \omega_y \omega_z (I_{zz} - I_{yy}) - (\omega_y^2 - \omega_z^2) I_{yz} - (\omega_x \omega_y + \dot{\omega}_z) I_{xz} + (\omega_x \omega_z + \dot{\omega}_y) I_{xy} \\
\tau_y &= \alpha_y I_{yy} + \omega_x \omega_z (I_{xx} - I_{zz}) - (\omega_x^2 - \omega_z^2) I_{xz} - (\omega_z \omega_y + \dot{\omega}_x) I_{xy} + (\omega_x \omega_y + \dot{\omega}_z) I_{yz} \\
\tau_z &= \alpha_z I_{zz} + \omega_x \omega_y (I_{xx} - I_{yy}) - (\omega_x^2 - \omega_y^2) I_{xy} - (\omega_x \omega_z + \dot{\omega}_y) I_{yz} + (\omega_x \omega_z + \dot{\omega}_x) I_{xz}
\end{align*}
\]

Sistem parametrelerindeki değişimlerden dolayı denetim başarılarda meydana gelen kötülükleri en az indirgemek için kullanılan bir diğer denetim yapısı gürbüz denetimdir. Bu yöntemle kayan kipli denetim (KKD), doğrusal karesel denetim (DKD) , \(H_{\infty} \) denetim örnek olarak verilebilir. KKD sistem durumlarının belirlenen bir yüzey üzerinde tutulmaya çalıştığı denetim yapısıdır [10]. Bu denetleyici türü parametre belirsizlikleri ve değişimlerine karşı gürbüzdür. Kayan kipli denetim, model dayanaklı sistemlerde ve/veya Röleli sistemlerde de kullanlabilmektedir. Röle tarafından üretilen denetim sinyali ile sistem durumları kayma yüzeyi üzerinde tutulabilmektedir ve sistem dinamiği kayma yüzeyi...
ile belirlenmektedir. Doğrusal Karesel Denetim bir eniyi denetim yöntemidir. Sistem durumlarından ve denetim sinyalinden oluşan bir maliyet işlevini enküçülen K kazanç matrisinin bulunması amaçlanmaktadır [11, 12].

Gürbüz denetim yöntemlerinin yanı sıra uyarlamalı denetim yöntemleri de gimbal sistemleri için kullanılmaktadır. Mekanik dengesizlik ve parametre belirsizliklerinin dikkate alındığı

2. YÖNTEMLER

Bu çalışma kapsamında 4 farklı denetim yöntemi hem benzetim ortamındaki sistemlere hem de gerçek bir gimbal sistemine uygulanmaktadır. Bu bölümde, bu çalışmada kullanılacak denetleyiciler anlatılmaktadır.

2.1. Model Uyumla ile OTÜm Denetleyici

Bir sistemin OTÜm denetleyici [29] kullanılarak denetlendiği yapının öbek çizeneği Şekil 2.1’de gösterilmektedir. Bu şekilde K_p, K_i ve m denetleyici parametreleridir ve $G(s)$ model aktarım işlevidir. Ayrıca d dayanak girişini, u denetim sinyalini, y sistem çıkışını ve son olarak e dayanak giriş ile sistem çıkış arasındaki hata işaretini ifade etmektedir.

\[
\begin{align*}
 &d \\
 &\rightarrow e \\
 &\quad \downarrow mK_p \\
 &\quad \downarrow \quad \downarrow K_i \\
 &\quad \downarrow \quad \downarrow s \\
 &\quad \downarrow \quad \downarrow G(s) \\
 &\quad \downarrow \quad \downarrow K_p \\
 &\quad \downarrow \quad \downarrow y
\end{align*}
\]

Şekil 2.1 OTÜm denetleyici

Eşitlik 6 ile bu OTÜm denetleyici için denetim yasası verilmektedir. Eşitlik 6 ile gösterildiği gibi, bu bölümde anlatılan OTÜm denetleyicide oransal denetim hataya değil $(md - y)$'ye etki etmektedir. Dayanak ağırlıklandırılma adı verilen bu yaklaşım, denetleyiciye bir serbestlik derecesi daha eklemektedir [30].

\[
u = K_p(md - y) + K_i \frac{1}{s}(d - y) \quad (6)
\]

$G(s)$, Eşitlik 7 ile gösterilen birinci derece bir aktarım işlevi olarak seçildiği zaman yukarıda verilen öbek çizeneğinin kapalı dönü aktarım işlevi, Eşitlik 8’de gösterildiği gibi 2. derece
bir aktarım işlevi \((T(s))\) olarak bulunmaktadır. Sistem modeli parametreleri sabit olduğu için \(K_p, K_i\) ve \(m\) parametrelerinin seçimi ile kapalı döngü aktarım işlevi, dolayısıyla kapalı döngü sistem cevabı belirlenebilmektedir.

\[
G(s) = \frac{b}{s + a}
\]

\[
T(s) = \frac{K_p b m s + K_i b}{s^2 + (K_p b + a)s + K_i b}
\]

\(K_p\) ve \(K_i\) ile kutupların yeri [31] ayarlandktan sonra, \(m\) parametresi yardımcı ile kapalı döngü sıfırının yeri de ayarlanabilmektedir. Bu sayede OTÜm denetleyicisinin parametreleri model uyumlama yöntemi ile belirlenebilmektedir. İlk olarak başarırm ölçütlerini sağlayan ve genel yapısı, \(\zeta\) sönüm oranı ve \(\omega_n\) doğal sıfırm olmak üzere, Eşitlik 9 ile verilen \(T_d(s)\) kapalı döngü aktarım işlevi belirlenir. Ardından bu iki kapalı döngü aktarım işlevini birbirine eşitleyec ek \(K_p, K_i\) ve \(m\) parametleri hesaplanır.

\[
T_d(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}
\]

Eşitlik 9'da verilen kapalı döngü aktarım işlevinin payı incelendiğinde bir sabitlen oluştugu, dolayısıyla taktarım işlevinin bir sıfıra sahip olmadığını görülmektedir. OTÜm denetleyicisinde \(m\) parametresi 0 (sıfır) olarak seçildiğiinde kapalı döngü aktarım işlevinin sahip olduğu sıfır ortadan kalkmaktadır ve aktarım işlevlerinin pay kısımları eşitlenebilmektedir.

OTÜm denetleyicisinde model uyumlama Eşitlik 10'da gösterildiği gibi yapılmaktadır [32].

\[
\frac{K_i b}{s^2 + (K_p b + a)s + K_i b} = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}
\]
Eşitlik 10 kullanılarak denetleyici parametreleri \(K_p \) ve \(K_i \), sistem aktarım islevi parametreleri \(a, b \) cinsinden ve istenen sistem cevabını veren aktarım islevi parametreleri \(\zeta \) ve \(\omega_n \) cinsinden Eşitlik 11’de gösterildiği gibi hesaplanmaktadır.

\[
K_p = \frac{2\zeta\omega_n - a}{b} \quad K_i = \frac{\omega_n^2}{b} \tag{11}
\]

Eşitlik 10 ve Eşitlik 11’de verilen denklemler kullanılarak herhangi bir birinci derece sistem için, kapalı döngü aktarım islevini, başka bir kapalı döngü aktarım işlevine eşitleyecek denetleyici parametreleri bulunabilmektedir.

2.2. Özayarlama OTÜm Denetim Yapısı

Sistem parametrelerindeki değişiklikleri bir kestirim algoritması yardımcılı ile algılayan ve bu değişime göre kendi parametrelerini güncelleyen denetim yapılara özayarlama denetim yapıları denilmektedir [31]. Yaygın olarak kullanılan parametre kestirim algoritmalarından biri özyinelemeli en küçük kareler yöntemidir (Recursive Least Squares, RLS). Bu bölümde sürekli zaman en küçük kareler yöntemi anlatılmaktadır.

2.2.1. Sürekli Zaman Özyinelemeli En Küçük Kareler Yöntemi (SZÖEKK)

Bu bölümde SZÖEKK yöntemi kullanılarak sürekli zamanda bir aktarım işlevinin parametrelerinin nasıl kestirildiği [33] anlatılmaktadır.

Sistem modeli Eşitlik 12 ile gösterildiği gibidir. Bu modelde \(Y(s) \) sistem çıktı, \(U(s) \) sistem girişi ifade etmektedir. Ayrıca \(E(s) \) sistemi etkileyen gürültü, bozucu, modelleme hatası gibi belirsizleri ifade eden bir terimdir. Eşitlikte yer alan \(A(s) \) ve \(B(s) \) çokterimlileri Eşitlik 13 ve 14 ile gösterilmektedir.

\[
A(s)Y(s) = B(s)U(s) + E(s) \tag{12}
\]
Sistem modeli, giriş ve çıkışın bir $C(s)$ çökenmesi ile sızgelenmesiyle Eşitlik 15 ile gösterildiği gibi ifade edilir. Tasarımcı tarafından seçilen monik $C(s)$ çökenmesinin derecesi $A(s)$'ni derecesine eşittir.

\[Y(s) = B(s) \frac{U(s)}{C(s)} + \left[C(s) - A(s) \right] \frac{Y(s)}{C(s)} + \frac{E(s)}{C(s)} \]

Eşitlik 15, parametreler bakımından doğrusal biçimde düzenleniginde Eşitlik 16 elde edilmektedir.

\[y(t) = \varphi^T(t) \theta + \epsilon(t) \]

\(\theta \) parametre vektörü Eşitlik 17 ile gösterilmektedir.

\[\theta = \begin{bmatrix} b_m & b_{m-1} & \ldots & b_0 & c_{n-1} - a_{n-1} & \ldots & c_0 - a_0 \end{bmatrix}^T \]

Eşitlikte 15’te yer alan $\varphi^T(t)$ veri vektörünü ve $\epsilon(t)$ hata terimini ifade etmektedir. $\varphi^T(t)$ vektörünün Laplace dönüşümü Eşitlik 18 ile gösterilmektedir.

\[\varphi^T(s) = \frac{1}{C(s)} \begin{bmatrix} s^m & s^{m-1} & \ldots & 1 \end{bmatrix} U(s) \begin{bmatrix} s^{n-1} & s^{n-2} & \ldots & 1 \end{bmatrix} Y(s) \]

Parametre vektörünü kestirme için kullanılan kestirici Eşitlik 19 ve 20 ile verilmektedir [34]. Eşitliklerde yer alan $S(t)$ bilgi matrisi, β sayısı unutma çarpanıdır.
\[
\hat{\theta}(t + T) = \hat{\theta}(t) + S^{-1}(t + T) \int_t^{t+T} e^{-\beta(t+T-\tau)} \varphi(\tau)[y(\tau) - \varphi(\tau)\hat{\theta}(\tau)]d\tau \tag{19}
\]

\[
S(t + T) = e^{-\beta T} S(t) + \int_t^{t+T} e^{-\beta(t+T-\tau)} \varphi(\tau)\varphi^T(\tau) d\tau \tag{20}
\]

Bilgi matrisinin ilk değeri

\[
S_0 = \alpha I
\tag{21}
\]

şeklinde seçilmektedir. \(\alpha\) değeri sıfıra yakın küçük bir sayıdır. \(I\) ise uygun boyutlu birim matristir.

2.2.2. Özyinelemeli
OTüm Denetleyici ile Model Uyumlama

Şekil 2.2 ile özyinelemeli en küçük kareler yöntemi kullanılarak denetleyici parametrelerinin kestirildiği ve sistemin denetlendiği yapının öbek çizeneği gösterilmiştir. Bu şekilde yer alan \(u\) denetim sinyali, \(y\) sistem çıktısıdır. Ayrıca \(d\) dayanak girişini ve \(e\) hata sinyalini ifade etmektedir.

Şekil 2.2 Özyinelemeli En Küçük Kareler Yöntemi ile Özyaralama OTüm Denetim Yapısı
Önceki bölümde sürekli zamanlı özyinelemeli en küçük kareler yöntemi kullanılarak bir aktarım işlevinin parametrelerinin nasıl kestirildiği anlatılmaktadır. Şekil 2.2 ile gösterilen yapıda, özyinelemeli en küçük kareler yöntemi çevrimiçi olarak \(G(s)\) aktarım işlevinin parametre kestirimi için modelin giriş \((u)\) ve çıkış \((y)\) sinyallerini kullanmaktadır. Ardından kestirilen model parametreleri ve daha önceden beliririlen dayanak aktarım islevi parametreleri kullanılarak, OTüm denetim parametreleri her örnekleme zamanında yeniden hesaplanmaktadır. Bu parametreleri hesaplarken Eşitlik 11 ile verilen denklemler kullanılmaktadır. Hesaplanan yeni denetim parametreleri ile OTüm netleyici yapısı her örnekleme anında güncellenmektedir [35]. Bu yapı sayesinde model parametrelerindeki değişiklikler uyaranlı olarak tespit edilerek denetim başarımının sabit tutulması amaçlanmaktadır.

2.3. Tümlev Etkili Doğrusal Karesel Denetim (TE-DKD)

Tek girişli tek çıkışlı açık döngü bir sistemin durum uzayı gösterimi \(A\) durum uzayı matrisi, \(B\) giriş matrisi, \(C\) çıkış matrisi ve \(D\) ileri besleme matrisi olmak üzere Eşitlik 22 ve 23 ile gösterilmektedir.

\[
\dot{x} = Ax + Bu \quad (22)
\]
\[
y = Cx + Du \quad (23)
\]
Bu eşitliklerde x dinamik sistem durum değişkenlerini, y çıktısı sinyalini ve u denetim sinyalini ifade etmektedir. Denetim yasası, K kazanç matrisi olmak üzere Eşitlik 24 ile gösterilen yapıda seçildiği zaman,

$$u = -Kx$$ \hspace{1cm} (24)$$
dinamik sistemin kapalı döngü durum uzayı modeli Eşitlik 25 ile gösterilen biçimine gelmektedir.

$$\dot{x} = (A - BK)x$$ \hspace{1cm} (25)$$

Bu eşitlik incelendiğinde K matrisinin sistem dinamiklerini doğrudan etkilediği görülmektedir. Bu nedenle doğru K matrisinin seçimi ile sistem dinamikleri, dolayısıyla sistem kapalı döngü cevabı, belirlenen bir başarım ölçütünü sağlayacak şekilde belirlenebilir. Eşitlik 26, DKD için kullanılan maliyet işlevidir.

$$J = \int_0^\infty (x^TQx + u^TRu)\,dt$$ \hspace{1cm} (26)$$

Bu eşitlikte yer alan bakışını pozitif yarı tanımlı Q matrisi ve bakışını pozitif tanımlı R matrisi başarım ağırlık matrisleridir. Q ağırlık matrisi sistem durumlarının değişimini ayarlarken, R ağırlık matrisi denetim sinyalinin büyüklüğünü ayarlamaktadır. Yani kötü dayanak takibi başarımı Q matrisi ile cezalandırılırken; yüksek denetim sinyali R matrisi ile cezalandırılmaktadır. Maliyet işlevinin en küçük yapan K kazanç matrisi Eşitlik 27 ile gösterilmektedir [36].

$$K = R^{-1}B^TP$$ \hspace{1cm} (27)$$

P matrisi Eşitlik 28 ile verilen cebirsel matris Riccati denklemi çözülecek bulunmaktadır.
\[A^T P + PA - PBR^{-1}B^T P + Q = 0 \] (28)

DKD kullanıldığında oluşan kalıcı durum hatasını ortadan kaldırmak için tümlev etkisi eklenmektedir. Eklenen tümlev terimi sonrası oluşan yeni durum uzayı modeli Eşitlik 29 ve 30 ile gösterildiği gibi dir.

\[
\begin{bmatrix}
\dot{x} \\
e
\end{bmatrix} = \begin{bmatrix}
A & 0 \\
-C & 0
\end{bmatrix} \begin{bmatrix}
x \\
e
\end{bmatrix} + \begin{bmatrix}
B \\
0
\end{bmatrix} u + \begin{bmatrix}
0 \\
I
\end{bmatrix} d
\] (29)

\[
y = \begin{bmatrix}
C & 0
\end{bmatrix} \begin{bmatrix}
x \\
e
\end{bmatrix} + \begin{bmatrix}
D \\
0
\end{bmatrix} u
\] (30)

Yukarıda verilen genişletilmiş sistem modeli göz önüne alınarak genişletilmiş maliyet işlevi matrisleri \(\tilde{Q} \) ve \(\tilde{R} \), Eşitlik 31 ve 32 ile gösterildiği gibi seçilmektedir. Eşitlikte yer alan \(Q_I \) değeri hatanın tümlevine verilen ağırlık çarpanını ifade etmektedir.

\[
\tilde{Q} = \begin{bmatrix}
Q & 0 \\
0 & Q_I
\end{bmatrix}
\] (31)

\[
\tilde{R} = R
\] (32)

Genişletilmiş durum uzayı modeli parametreleri ve genişletilmiş ağırlık matrisleri 27 ve 28’de yerine konularak \(\tilde{K} \) matrisi hesaplanmaktadır. \(\tilde{K} \) matrisi Eşitlik 33 ile, \(\tilde{K} \) matrisi kullanılarak elde edilen denetim yasası \(\bar{u} \)’nun denklemi Eşitlik 34 ile verilmektedir.

\[
\tilde{K} = [K \ K_i]
\] (33)
\[u(t) = -Kx(t) - Ki \int_0^t (d - y(t))dt \] (34)

TE-DKD ile elde edilen denetim sisteminin genel yapısı Şekil 2.3 ile gösterilmektedir.

Şekil 2.4 ile gösterilen yapıda \(G(s) \) sistem aktarım işlevini ve \(M(s) \) dayanak modelin aktarım işlevini ifade etmektedir. Ayrıca \(d \) dayanak girişi, \(e \) röle girişi, \(u \) denetim sinyalini, \(y \) çıkış sinyalini ve son olarak \(\phi \) model aktarım işlevinin tersi ile süzgeçlenmiş çıkış sinyalini göstermektedir.
Denetim sinyali, r röle genliği olmak üzere Eşitlik 35 ile gösterilmektedir.

$$u = r \text{sign}(e_r) = \begin{cases} r , & e_r \geq 0 \\ -r , & e_r < 0 \end{cases}$$ (35)

Bu sistemde kayan kipin oluşması için gerek koşul Eşitlik 36 ile verilmiştir.

$$e_r(t)e_r(t) < 0$$ (36)

Sistemde hata pozitifken hatanın değişimi negatif, hata negatif iken hatanın değişimi pozitif ise kayan kipin oluştuğu söylenebilir. Böylece hata sinyali eşik değeri olarak belirlenen 0 (sıfır) değerini her geçtiğinde, tekrardan bu değere dönebilmektedir (Eşitlik 36). Bu koşul sağlandığı durumda sistem kayma yüzeyi olarak tanımlanan $e_r(t) = 0$ noktasına döner ve sistem kayma evresine geçer. Eşitlik 37, sistemin kayma evresindeyken kapalı döngü çıkışı göstermektedir.
Eşitlik 37, sistem kayan kipte çalışırken kapalı döngü sistem cevabının, yalnızca dayanak model aktarım işlevi \(M(s) \) tarafından belirlendiğini göstermektedir. Dayanak model aktarım işlevinin durgun durum kazancının 1 olması durumunda kalıcı durum hatası oluşmamaktadır. Bu nedenle \(M(0) = 1 \) olacak şekilde bir aktarım işlevi seçilmesi gerekmektedir. Ayrıca Eşitlik 36 ile verilen eşitsizliğin sağlanması için, yani kayan kipin oluşabilmesi için Eşitlik 38 ile verilen koşulun sağlanması, yani döngü aktarım işlevinin görel derecesinin 1 olması gerekmektedir [38]. \(\rho \) görel derecayı, yani bir aktarım işlevinin kutup sayısı ile sıfır sayısı arasındaki farkı ifade etmektedir.

\[
\rho(M^{-1}(s)G(s)) = 1
\]

Eşitlik 35 incelendiğinde röle çıkışının eşiğe bağlı olarak anlık değişimler yaptığı görülmektedir. Özellikle hata sıfır etrafında bu değişimlerin sık meydana gelmesi, sisteme uygulanan denetim sinyalinin sık değişmesine neden olmaktadır. Bu da fiziksel olarak sisteme zarar verebilecek ve çatırdama olarak adlandırılan bir etkiye neden olmaktadır. Ayrıca sistem modeli ve seçilen dayanak aktarım işlevi Eşitlik 38 ile verilen koşulu sağlamayabilir. Bu iki duruma karşı röle elemanının önüne ve arkasına sızgeçler yerleştirilerek hem görel derece koşulunun sağlamalı hem de röle çıkışının yumuşatılması sağlanabilmektedir. Şekil 2.5, \(E(s) \) ve \(F(s) \) sızgeçlerinin eklendiği genişletilmiş yapının öbek çizeneğidir.
Şekil 2.5 Giriş Çıkış Modeline Dayalı Rôle ile Kayan Kipli Genişletilmiş Denetim Yapısı

Genişletilmiş yapida kayan kipin oluşması için gerekli derece koşulu Eşitlik 39 ile verilmektedir.

\[\rho(\rho(E(s)M^{-1}(s)G(s)F(s)) = 1 \] \hspace{1cm} (39)

Ayrıca bu süzgeçler sayesinde rôle genliği sistemin kullanabildiği en büyük denetim sinyalinden yüksek olabilmektedir. Kapalı döngü sistem çıktıının sabit bir dayanak sinyalini takip etmesi istendiğinde, rôle genliğinin büyüklüğü Eşitlik 40 ile verilen şartı sağlayacak şekilde seçilmedir, aksi takdirde \(e_r(t) \) sıfıra ulaşamaz ve kayan kip elde edilemez.

\[|r| > \frac{|d|}{|G(0)|} \] \hspace{1cm} (40)
3. BENZETİM ÇALIŞMALARI

Bu bölümde Bölüm 2’de verilen denetleyiciler farklı sistemler üzerinde benzetim ortamında uygulanmaktadır. İlk bölümde denetleyiciler birinci derece kararlı bir sistem modeline uygulanmaktadır ve benzetim sırasında model parametreleri değiştirilerek denetleyicilerin başarımı incelenmektedir. İkinci bölümde ise birinci derece kararsız bir sistem modeli üzerinde uygulanmaktadır ve benzetim sırasında sistem girişine ve çıkışına basamak tipi bozucular verilerek denetleyicilerin bozucu bastırma başarılari incelenmektedir. Son olarak üçüncü bölümde bu hız denetleyicileri üzerine bir konum döngüsü eklenerek arıtırık denetim yapıları oluşturulmakta ve benzetim ortamında test edilmektedir. Her bölümde elde edilen sonuçların grafipleri verilmekte ve yorumlanmaktadır.

Benzetim aşamasında sistem çıkışı üzerinde, benzetimin daha gercceğe yakın olabilmesi açısından beyaz gürültü eklenmektedir. Eklenen beyaz gürültünün ortalama 0 ve standart sapması 0.022’dir.

3.1. Birinci Derece Kararlı Sistem Modeli

Bu bölümde Bölüm 2’de anlatılan denetleyiciler, birinci derece kararlı sistem modeli üzerinde benzetim ortamında uygulanmaktadır. Benzetimin süresi 2.5 saniye ve örnekleme zamanı 500 mikrosaniyedir. Benzetimin t=1 saniyesinde model parametreleri değiştirilerek, denetleyicilerin model parametre değişimine karşı başarımı incelenmektedir.

Bu bölümde kullanılacak sistem modeli Eşitlik 41 ile gösterilmektedir. Benzetimin t = 1s anda a parametresi 2.85’ten 4.85’e yükelirken, b parametresi 33’ten 13.2 değerine düşmektedir.

\[
G_1(s) = \frac{b}{s + a} = \frac{33}{s + 2.85}
\] (41)
Tablo 3.1 ile bu bölümde kullanılan parametreler verilmektedir. Tabloda durulma süresi ve aşma başarım ölçütü değerleri ile birlikte bu başarım ölçütlerini sağlayacak şekilde seçilen istenen kapalı döngü aktarım işlevi parametrelerinin değerleri \((\omega_n, \zeta)\) gösterilmektedir. Son olarak \(G_1(s)\) sistem modeli parametreleri \(a\) ve \(b\) tabloda yer almaktadır.

Tablo 3.1 ile Yapılan Benzetimlerde Kullanılan Parametreler

<table>
<thead>
<tr>
<th>(\omega_n)</th>
<th>(\zeta)</th>
<th>(b)</th>
<th>(a)</th>
<th>(t_d)</th>
<th>En Büyük Aşma</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 rad/s</td>
<td>1</td>
<td>33</td>
<td>2.85</td>
<td>0.15 s</td>
<td>%0</td>
</tr>
</tbody>
</table>

Bu bölümde yer alan şekillerde birinci grafik dayanak girişini \((d)\), istenen sistem çıktısını \((y_i)\) ve sistem çıktısını \((y)\) göstermektedir. İkinci grafik denetim sinyalini \((u)\) ve üçüncü grafik hatayı \((e_y)\) göstermektedir.

3.1.1. OTüüm Denetleyici Benzetim Sonuçları

Tablo 3.2 \(G_1(s)\) için OTüüm Denetleyici Parametreleri

<table>
<thead>
<tr>
<th>(K_p)</th>
<th>(K_i)</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.34</td>
<td>48.48</td>
<td>0</td>
</tr>
</tbody>
</table>

20
3.1.2. Özayarlamalı OTüm Denetleyici Benzetim Sonuçları

Şekil 3.2 ile SZÖEKK parametre kestirim yöntemini kullanan Özayarlamalı OTüm denetleyici sonuçları gösterilmektedir. Önceki grafiklere ek olarak şekilde yer alan dördüncü (d) ve beşinci (e) grafikte kestirilen sistem modeli parametreleri (\(\hat{a} \) ve \(\hat{b} \)) yer almaktadır. Denetleyici parametreleri, Tablo 3.1 ile verilen \(\zeta, \omega_n \) değerleri ve SZÖEKK yöntemi ile kestirilen model parametreleri \(\hat{a} \) ve \(\hat{b} \) kullanılarak, Eşitlik 11 ile hesaplanmaktadır. Tablo 3.3 ile denetleyici için kullanılan diğer parametreler verilmektedir. Bu bölümdetabloda yer alan iki farklı unutma carpanı (\(\beta_1 \) ve \(\beta_2 \)) kullanılarak benzetimler yapılmaktadır. Bu sayede unutma carpanının etkisi de incelenmektedir.

<table>
<thead>
<tr>
<th>(m)</th>
<th>(\alpha)</th>
<th>(\beta_1)</th>
<th>(\beta_2)</th>
<th>(\theta_0)</th>
<th>(C(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(10^{-7})</td>
<td>0</td>
<td>7</td>
<td>([0, 0])</td>
<td>(s + 10)</td>
</tr>
</tbody>
</table>

Benzetim sonucunda elde edilen cevap incelemiştir, aşma miktarının sistem parametre değişiminin öncesinde ve sonrasında %0 olduğu görülmektedir. Benzer şekilde durulma süreleri de 150 milsaniye olarak ölçülmektedir. \(t=1s \) anında parametre değişimi meydana gelen sonraki ilk dayanak giriş değişiminde denetleyici daha yavaş bir cevap üretmektedir. \(\beta_2 \) değerini kullanan SZÖEKK parametre kestirimini \(t=1.3s \) anında sistem parametrelerine yakınsadıktan sonra, sistem cevabının istenen çıkışa yakınsadığı görülmektedir. Özayarlamalı OTüm denetleyicinin başarım ölçütlerini sağladığı görülmektedir.

Şekil 3.2-d ve Şekil 3.2-e incelemiştir, \(\beta_1 \) değeri ile yapılan kestirimin ilk dayanak giriş değişiminde \(\beta_2 \) ile yapılan kestirim ile benzer sonuç verdiği görülmektedir. \(\beta_1 = 0 \) olduğu için eski değerler hiçbir zaman unutulmamaktadır. Bu da zaman ilerledikçe parametre kestiriminin eski değerlerin etkisinde kalmasına neden olmaktadır. Bu nedenle \(t=1s \) zamanından sonraki dayanak giriş değişimlerinde \(\beta_2 \) değerini kullanan kestirim gerçek değerlere daha hızlı yakınsamaktadır. SZÖEKK yönteminde unutma çarpanının değişiminin doğrudan parametre yakınsama hızını etkilediği görülmektedir.

21
Şekil 3.2-a ve 3.2-b incelendiğinde sistem cevabı çıkışının parametre değişimi sonrasında zamanla istenen çıktıya yakınsadığı ve denetim sinyalinin de zamanla büyüdüğü görülmektedir. Şekil 3.2-d ve 3.2-e’de görülüğü üzere kestirim algoritması zamanla değişen sistem modeli parametrelerine yakınsamaktadır.

3.1.3. TE-DKD Benzetim Sonuçları

Şekil 3.3 ile benzetim ortamında TE-DKD yapısının uygulanması sonucu elde edilen sonuçlar gösterilmektedir. Tablo 3.1 ile gösterilen başarı ölçütlerini dikkate alınarak TE-DKD yönteminin parametreleri hesaplanmaktadır. TE-DKD yöntemi parametrelerini belirleyecek \tilde{Q} ve \tilde{R} matrisleri Eşitlik 42 ve 43 ile gösterilmektedir.

\[
\tilde{Q} = \begin{bmatrix}
1 & 0 \\
0 & 1500
\end{bmatrix}
\]
\[\text{(42)}\]

\[
\tilde{R} = 0.01
\]
\[\text{(43)}\]

Eşitlik 44, Eşitlik 27 ve 28 kullanılarak elde edilen kazanç matrisidir.

\[
\tilde{K} = \begin{bmatrix}
11.02 & -387.3
\end{bmatrix}
\]
\[\text{(44)}\]

Şekil 3.3-a incelendiğinde model parametre değişimi meydana geldiğinde TE-DKD yönteminin cevabının parametre değişiminden önceki cevaba benzer olduğu görülmektedir. Parametre değişimi öncesi ve sonrasında aşma miktarı %0 ve durulma süresi 140 milisaniyedir. Şekil 3.3-b’de görüldüğü üzere denetim sinyali büyüklüğü artmaktadır. Tablo 3.1’de yer alan başarı ölçütlerini parametre değişimi öncesi ve sonrasında da benzer cevaplar üretmek sağlamaktadır. Bu benzetim sonucunda TE-DKD yönteminin benzetim çalışmalarında parametre değişimi karşısında oldukça yüksek başarı sergilediği söylenebilir.
3.1.4. GÇ-RKKD Benzetim Sonuçları

Benzetim ortamında GÇ-RKKD yönteminin uygulanması sonucu elde edilen sonuçlar Şekil 3.4 ile gösterilmektedir. Şekilde yer alan dördüncü grafik dayanak sinyali ve sistem çıkışı arasındaki hata grafiğini gösterirken, beşinci grafik röle girişindeki hata sinyalini göstermektedir. GÇ-RKKD için birinci ve ikinci derece dayanak akırmak işlemlerini kullanılmaktadır. $M_1(s)$ Eşitlik 45 ile veriliren, $M_2(s)$ Eşitlik 46 ile verilmektedir. $M_1(s)$ ve $M_2(s)$, Tablo 3.1 ile verilen başarım ölçüleri göz önüne alınarak seçilen akırmak işlemleridir.

$$M_1(s) = \frac{1600}{s^2 + 80s + 1600}$$ \hspace{1cm} (45)

$$M_2(s) = \frac{40}{s + 40}$$ \hspace{1cm} (46)

GÇ-RKKD yönteminde kullanılan rölenin genliği 30 birimdir. Göreli derece şartını sağlamak ve röle çıkışını yumuşatmak amacıyla röle çıkışına sızgeç eklenmektedir. $M_1(s)$ için seçilen sızgeç $F_1(s)$, Eşitlik 47 ile gösterilmektedir. $M_2(s)$ için seçilen sızgeç $F_2(s)$, Eşitlik 48 ile verilmektedir.

$$F_1(s) = \frac{(25)^2}{(s + 25)^2}$$ \hspace{1cm} (47)

$$F_2(s) = \frac{25}{s + 25}$$ \hspace{1cm} (48)

Şekil 3.4-a incelendiğinde GÇ-RKKD yönteminin asıl bir cevap verdiği görülmektedir. Model parametre değişimidenden sonra da sistem cevabı asılsızdır ve durulma süresi $M_1(s)$ için 150 milisaniye olarak ölçülenken, $M_2(s)$ için 140 milisaniye olarak ölçülmektedir. Durulma süresi ve aşama başarım ölçütünü sağladığı görülmektedir. Şekil 3.4-b incelendiğinde parametre değişimi sonrası denetim sinyali büyüklüğü artmaktadır. $M_2(s)$
dayanak aktarım işlevinin seçtiği benzetim çalışmasında Şekil 3.4-e ile verilen röle giriş sinyalinin çok daha düşük olduğu görülmektedir.

Şekil 3.1 $G_1(s)$ için OTüm Denetleyici ile Benzetim Sonuçları
Şekil 3.2 $G_1(s)$ için Özayıralamalı OTüm Denetleyici ile Benzetim Sonuçları
Şekil 3.3 $G_1(s)$ için TE-DKD ile Benzetim Sonuçları
Şekil 3.4 $G_1(s)$ için GC-RKKD ile Benzetim Sonuçları
3.2. Birinci Derece Kararsız Sistem Modeli

Bu bölümde Bölüm 2’de anlatılan denetleyiciler, Eşitlik 49 ile gösterilen birinci derece kararsız sistem modeline benzetim ortamında uygulanacaktır. Benzetim süresi 2.25 saniye ve örnekleme zamanı 500 mikrosaniyedir. Benzetim sırasında t=0.85s anında sistem girisine 1 birimlik basamak tipi bozucu \(d_1 \) uygulanmakta ve t=1.25s anında uygulanan bozucu kaldırılmaktadır. Ardından t=1.6s zamanında sistem çıkışına 0.3 birimlik basamak tipi bozucu \(d_2 \) uygulanmaktadır. Bozucuların \(d_1 \) ve \(d_2 \) sisteme uygulandığı noktalar Şekil 3.5 ile gösterilmektedir. Bu sayede denetleyicilerin basırm ölçümlerini sağlayıp sağlanmadıklarına ek olarak bozucu bastırma basırm ölçümleri da incelenmektedir.

Şekil 3.5 \(G_2(s) \) için Bozucu Girişleri Öbek Çizeneği

\[
G_2(s) = \frac{b}{s + a} = \frac{33}{s - 15}
\]
(49)

Tablo 3.4 ile bu bölümde kullanılan parametreler verilmektedir. Tabloda durulma süresi ve aşma başarım ölçümleri değerleri ile birlikte bu başarım ölçümlerini sağlayacak şekilde seçilen istenen kapalı döngü akıtımlı işlevi parametrelerinin değerleri \(\omega_n \) ve \(\zeta \) gösterilmektedir. Son olarak \(G_2(s) \) sistem modeli parametreleri tabloda yer almaktadır.

Tablo 3.4 \(G_2(s) \) için Kullanılan Parametreler

<table>
<thead>
<tr>
<th>(\omega_n)</th>
<th>(\zeta)</th>
<th>b</th>
<th>a</th>
<th>(t_d)</th>
<th>% Büyük Aşma</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 rad/s</td>
<td>1</td>
<td>33</td>
<td>-15</td>
<td>0.15 s</td>
<td>%0</td>
</tr>
</tbody>
</table>
Bu bölümdeki şekillerde birinci grafik dayanak girişini (d), istenen sistem çıktısını (y_i) ve sistem çıktısını (y) içermektedir. İkinci grafik denetim sinyalini (u) ve üçüncü grafik hatayı (e_y) göstermektedir.

3.2.1. OTüüm Denetleyici Benzetim Sonuçları

Benzetim için kullanılan denetleyici parametreleri Tablo 3.5 ile verilmektedir. Şekil 3.6 ile verilen sonuçlar incelendiğinde OTüüm denetleyicisinin așmasız bir şekilde istenen dayanak noktasına 150 milisaniyede ulaştığı görülmektedir. Sistem girişine bozucu uygulandığında OTüüm denetleyicinin bozucuyu bastırma süresi 100 milisaniyedir. Sistem çıkısına bozucu uygulandığında 60 milisaniyede bastırılmaktadır. Şekil 3.6-a incelendiğinde sistem çıkısına etkiyen anlık bozucu kaynaklı sistem cevabının yavaşladığı görülmektedir.

Bozucu bastırma anında üretilen denetim girdisinin büyüklüğünün değişimi Şekil 3.6-b'de görülmektedir. Şekil 3.6-c ile hata grafiği verilmektedir. Grafikler incelendiğinde çıkışa uygulanan bozucunun girişe uygulanan bozucuya göre daha çabuk bastırıldığını görülmektedir.

Tablo 3.5 $G_2(s)$ için OTüüm Denetleyici Parametreleri

<table>
<thead>
<tr>
<th>K_p</th>
<th>K_i</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.87</td>
<td>48.48</td>
<td>0</td>
</tr>
</tbody>
</table>

3.2.2. Özayarlamalı OTüüm Denetleyici Benzetim Sonuçları

Şekil 3.7 ile SZÖEKK parametre kestirim yöntemi kullanan Özayarlamalı OTüüm denetleyici sonuçları gösterilmektedir. Önceki grafiklere ek olarak şekilde yer alan dördüncü (d) ve beşinci (e) grafiklerde kestirilen sistem modeli parametreleri (\hat{a} ve \hat{b}) yer almaktadır. Tablo 3.6 ile SZÖEKK yönteminin kullandığı parametreler verilmektedir. İki farklı unutma çarpanı için benzetim tekrarlanarak grafiklerde gösterilmektedir.

Benzetim sonucunda Özayarlamalı OTüüm denetleyici 150 milisaniye durulma süresine sahip %0 așmalı cevap üretmektedir. Sistem çıkısa uygulanan bozucuyu 40 milisaniyede bastırılmaktadır. Giriş uygulanan bozucu incelendiğinde bastırma süresi 90 milisaniyedir.
Tablo 3.6 $G_2(s)$ için Özayarlamalı OTüm Denetleyici Parametreleri

<table>
<thead>
<tr>
<th>m</th>
<th>α</th>
<th>β_1</th>
<th>β_2</th>
<th>θ_0</th>
<th>C(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10^{-7}</td>
<td>4</td>
<td>20</td>
<td>[0 0]</td>
<td>$s + 10$</td>
</tr>
</tbody>
</table>

Bozucu bastırma anında üretilen denetim girdisinin büyüklüğünün değişimi Şekil 3.7-b’de görülmektedir. Şekil 3.7-c ile hata grafiği verilmektedir. Şekil 3.7-d ve 3.7-e’de çıkış sinyaline eklenen bozucu sonrasında model parametrelerini değiştiği ve kestirim yönteminin yeni parametrelerine yakınsadığı anlaşılmaktadır.

Şekil 3.7-d ve Şekil 3.7-e incelendiğinde ilk saniyelerde dayanak sinyali değişiminde SZÖEKK yönteminin başlangıç parametreleri aynı olduğu için β_1 ve β_2 için benzer parametre yakınsaması gösterdiği görülmektedir. Ancak daha sonrası dayanak sinyali değişimlerinde β_2 için yapılan benzetimde parametre kestiriminin, β_1 ile yapılan benzetime göre daha hızlı olduğu görülmektedir. β_1 unutma çarpanı daha büyük bir değer olduğu için geçmiş değerlere daha çok önem vermektedir, bu nedenle kestirim yöntemine yeni gelen verilerin etkisi daha az olmaktadır. Şekil incelendiğinde hem dayanak sinyali değişimlerinde hem de sistem çıkışına uygulanan bozucu sonrası kestirimin yakınsama hızının β_1 için daha düşük olduğu görülmektedir.

3.2.3. TE-DKD Benzetim Sonuçları

Sistem modeline benzetim ortamında TE-DKD yönteminin uygulanması sonucu elde edilen sonuçlar Şekil 3.8 ile gösterilmiştir. Tablo 3.4 ile gösterilen başarım ölçütleri dikkate alınarak TE-DKD parametreleri hesaplanmaktadır. TE-DKD parametrelerini belirleyecek Q ve R matrisleri Eşitlik 50 ve 51 ile gösterilmektedir.

$$\tilde{Q} = \begin{bmatrix} 1 & 0 \\ 0 & 900 \end{bmatrix}$$ (50)

$$\tilde{R} = 0.01$$ (51)
Eşitlik 52, Eşitlik 27 ve 28 kullanılarak elde edilen \bar{K} kazaç matrisidir.

$$\bar{K} = \begin{bmatrix} 11.33 & -300.0 \end{bmatrix}$$ (52)

Şekil 3.8 incelediğinde TE-DKD yönteminin aşmasız bir cevap verdiği görülmektedir. Durulma süresi 135 milisaniyedir. Benzetim sırasında giriş basamağın tipi bozucu uygulandığında bozucu barişma süresi 45 milisaniye iken, sistem çıktı uygulanan bozucunun barişma süresi 10 milisaniyedir.

Şekil 3.8-b incelediğinde denetleyicinin çıktı uygulanan bozucu için anlık yüksek denetim sinyali ürettiği görülmektedir.

3.2.4. **GÇ-RKKD Benzetim Sonuçları**

Şekil 3.9 ile verilen grafihte GÇ-RKKD yönteminin birinci derece kararsız bir sistem modeli üzerinde uygulanması ile elde edilen sonuçlar ve bozucu barişma başarımı gösterilmektedir. Şekilde yer alan dördüncü grafik dayanak girisi ve sistem çıktısı arasındaki hata grafiğini gösterirken, beşinci grafik rol girisindeki hata sinyalini göstermektedir. GÇ-RKKD yönteminde dayanak aktarım işlevi, Eşitlik 53 ile gösterilen ikincisi derece bir aktarım levıdır.

$$M(s) = \frac{1600}{s^2 + 80s + 1600}$$ (53)

GÇ-RKKD yönteminde kullanılan rolün genliği 30 birim olarak seçilmiştir. Rol sonrasına konulan süzgeç $F(s)$ ise Eşitlik 54 ile gösterilmiştir.

$$F(s) = \frac{(25)^2}{(s + 25)^2}$$ (54)

Şekil 3.6 $G_2(s)$ için OTüm Denetleyici ile Benzetim Sonuçları
Şekil 3.7 $G_2(s)$ için Özayarlamalı OTüm Denetleyici ile Benzitim Sonuçları
Şekil 3.8 $G_2(s)$ için TE-DKD ile Benzetim Sonuçları
Şekil 3.9 $G_2(s)$ için GÇ-RKKD ile Benzetim Sonuçları
3.3. Pozisyon Denetimi Benzetim Sonuçları

Bu bölümde sistem modeli Eşitlik 55 ile verilen birinci derece bir aktarım işlevinin konum denetimi, benzetim ortamında ardışık denetim ile gerçeklenecektir. Dış döngüde konum denetleyicisi olarak OTür (Oransal-Türevsel) denetim kullanılmaktadır. İç döngüde ise Bölüm 2’de anlatılan denetleyicilerden seçilen Özayarlamalı OTüm Denetleyici ve GÇ-RKKD yapısı kullanılmaktadır. RKKD yapısının seçilmesinin nedeni denetim yönteminin bilindiği kadarıyla daha önce bir gimbal sistemi üzerinde denendiği bir akademik çalışmanın bulunmamasıdır. Bir gürbüz bir uyarlamalı denetim yöntemi denenmesi amacıyla RKKD yapısı ile birlikte tercih edilen bir diğer denetleyici Özayarlamalı OTüm denetleyicidir. Benzetim 2.5s sürmektedir ve örnekleme zamanı 500 mikrosaniyedir. \(t=1.25s \) anında \(a \) parametresi 2.85’ten 5.7’ye yükselerken, \(b \) parametresi 33’ten 16.5 değerine düşmektedir.

\[
G_3(s) = \frac{b}{s + a} = \frac{33}{s + 2.85} \tag{55}
\]

İç döngüde yer alan hız denetleyicilerinin tasarımı için kullanılan başarım ölçütleri Tablo 3.7 ile verilmektedir. Tabloda durulma süresi ve aşma başarım ölçütü değerleri ile birlikte bu başarım ölçütlerini sağlayacak şekilde seçilen istenen kapalı döngü aktarım işlevi parametrelerinin değerleri (\(\omega_n \) ve \(\zeta \)) gösterilmektedir.

<table>
<thead>
<tr>
<th>(\omega_n)</th>
<th>(\zeta)</th>
<th>(t_d)</th>
<th>En Büyük Aşma</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 rad/s</td>
<td>1</td>
<td>0.15 s</td>
<td>%0</td>
</tr>
</tbody>
</table>

Şekil 3.10 ile bu bölümde kullanılan ardışık denetim yapısı gösteren öbek çizeneği gösterilmektedir.

\[G_p(s) = \frac{t}{s^3 + ks^2 + ts} = \frac{1600}{s^3 + 80s^2 + 1600s} \] \hspace{1cm} (56)

Pozisyon denetimi için seçilen denetleyici OTür denetimdir ve Eşitlik 57 ile gösterilmektedir.

\[C(s) = K_p + K_ds \] \hspace{1cm} (57)

Eşitlik 56 ve 57 ile oluşturulan denetim yapısının kapalı döngü aktarım işlevi Eşitlik 58 ile gösterilmektedir.

\[T_p(s) = \frac{K_ds + K_p}{s^3 + ks^2 + (K_dt + t)s + K_p} \] \hspace{1cm} (58)

Denetleyici parametrelerinin seçimi için istenen sistem cevabını veren bir 3. derece karakteristik denklem seçilmektedir ve seçilen denklem Eşitlik 59 ile verilmektedir.
\[\Delta_i(s) = (s^2 + 2\zeta\omega_n s + \omega_n^2)(s + \gamma \omega_n) \] \hspace{1cm} (59)

Kapalı döngü aktarım işlevinin kutuplarını istenen cevabı veren karakteristik denkleme eşitleyerek denetleyici parametreleri bulunabilmektedir. Parametrelere bağlı olarak denetleyici parametrelerinin nasıl hesaplanabileceği Eşitlik 60 ile gösterilmektedir.

\[
\gamma = \frac{k}{w_n} \quad K_d = \frac{(2\zeta\gamma + 1)\omega_n^2 - t}{t} \quad K_p = \frac{\gamma \omega_n^3}{t}
\] \hspace{1cm} (60)

Eşitlik 58 ile verilen aktarım işlevinin parametreleri \(\omega_n = 14 \) ve \(\zeta = 0.9 \) olarak seçilmektedir. Eşitlik 60 ile verilen eşitlikler kullanılarak konum denetleyici parametreleri \(K_p = 7.45 \) ve \(K_d = 0.035 \) olarak hesaplanmaktadır.

Bu bölümde verilen şekillerde yer alan birinci grafikte dayanak giriş \((d) \) ve sistem çıktısı \((y) \) yer almaktadır. İkinci grafikte denetim sinyali \((u_d) \) ve üçüncü grafikte dayanak giriş ve sistem çıktısı arasındaki hata \((e_d) \) gösterilmektedir.

3.3.1. İç Döngü: Özayarlamalı OTüm Denetim

Bu bölümde iç döngüde Özayarlamalı OTüm Denetleyicinin kullanıldığı konum denetiminin sonuçları incelenmektedir. Tablo 3.8 içerisinde parametre kestirimi için kullanılan SZÖEKK yönteminin parametreleri yer almaktadır.

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\theta_0)</th>
<th>(C(s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-9}</td>
<td>7</td>
<td>[0 0]</td>
<td>(s + 10)</td>
</tr>
</tbody>
</table>

Şekil 3.11 ile konum döngüsü sonuçları verilmektedir. Şekil 3.12 ile Özayarlamalı OTüm hız denetleyicisinin sonuçları gösterilmektedir. Şekilde dördüncü ve beşinci grafiekte SZÖEKK yönteminin kestirdiği model parametrelerinin \((\hat{a} \text{ ve } \hat{b}) \) zamanına bağlı grafiği yer almaktadır.

t=1.25s anında model parametrelerinin değişiminin etkisi Şekil 3.11’de görülmektedir. Model parametrelerinde meydana gelen değişimin konum denetiminin başarımı üzerinde az bir etkisi olduğu görülmektedir. Şekil 3.12 incelendiği parametre değişimi sonrası 2.2 saniyede yeni model parametrelerine SZÖEKK yöntemi yakınsamaktadır.

3.3.2. İç Döngü: GÇ-RKKD

Eşitlik 61 ile dayanak aktarımlı işlevi $M(s)$ gösterilmektedir.

$$M(s) = \frac{1600}{s^2 + 80s + 1600} \quad (61)$$

Eşitlik 39 ile verilen gøreli derece şartını sağlamak için röle çıkışına Eşitlik 62 ile gösterilen ikinci derece süzgeç eklenmektedir.

$$F(s) = \frac{(25)^2}{(s + 25)^2} \quad (62)$$

Şekil 3.13 incelendiğinde, Özayaramalı OTüM denetleyiciden farklı olarak ilk dayanak noktası değişiminde de konum denetiminin aşımsız cevap verdiği görülmektedir. $t=1.25$
saniye anımdan meydana gelen model parametre değişimi sonrası sistem cevabında anlık bir değişimi meydana gelse de, devam eden zamanda konum denetiminin başarımı korunmaktadır.

Her iki hız denetleyicisinin de kullanıldığı konum döngülerinde elde edilen sistem cevabı benzerdir. Parametre değişimi öncesi ve sonrasında konum döngüsünün başarımı korunmaktadır. İç döngüde yer alan hız denetleyicileri incelendiğinde, GÇ-RKKD yapısının Uyarlamalı OTüm denetleyicisinden daha düşük denetim sinyali komutu ürettiği görülmektedir. Ancak parametre değişimi esnasında sistem çıkışında meydana gelen anlık bozulma daha fazla olmaktadır. Ayrıca GÇ-RKKD yapısı herhangi bir parametre yakınsamasını beklemeden yeni model parametrelerine uygun cevap üretbilmektedir. Uyarlamalı OTüm denetleyicisinin grafiği incelendiğinde, kestirim yönteminin değişen parametrelerre yakınsamasının 0.6 saniye sürdüğü görülmektedir. Uyarlamalı OTüm denetleyicisinin başarımı parametreler yakınsadıkça iyileşmektedir.
Şekil 3.11 Pozisyon Denetimi (İç Döngü: Özayarlamalı OTūm)
Şekil 3.12 $G_3(s)$ için Özayarlamalı OTüm Hız Denetimi
Şekil 3.13 Pozisyon Denetimi (İç Döngü: GÇ-RKKD)
Şekil 3.14 \(G_3(s) \) için GÇ-RKKD Hız Denetimi
4. UYGULAMA

Bu bölümde Bölüm 2 ve Bölüm 3’te anlatılan yöntemlerin iki eksen bir gimbal sisteminin bir eksenine uygulanması ile elde edilen sonuçlara yer verilmiştir. Bu bölüm kapsamında ilk olarak denetleyiciler gimbal ekseninin hız denetimi için kullanılmaktadır. Ardından ardışık denetim ile konum denetimi yapılmaktadır. Ardışık denetimin iç döngüsünde Bölüm 2’de anlatılan denetleyiciler arasından seçilen iki adet denetleyici kullanılmaktadır.

Askери platformların üzerine takım sistemlerin olması tüm hava koşullarında ve sıcaklıklarda çalışması istenmektedir. Özellikle hava platformlarının, hava sıcaklığının $-40^\circ C$ seviyelerine kadar düştüğü yüksek irtifalarda bulunduğu bilinmektedir. Bu nedenle bu tip askerî platformların üzerinde yer alan sistemlerin bu düşük sıcaklık koşulları altında çalışabilmesi istenmektedir.

Bu çalışmada yöntemler sisteme uygulanırken sistem ilk önce oda sıcaklığında, ardından $-40^\circ C$ sıcaklığında olan bir ortamda bulundurulmuştur. Böylece sistem modelindeki değişimlere yöntemlerin nasıl tepki verdikleri incelenmiştir.

Bu bölümde ilk olarak uygulamada kullanılan sistem tanıtılmaktadır ve doğrusal matematiksel modeli elde edilmektedir. Ardından uygulama sonuçlarına yer verilmektedir.
4.1. Uygulamada Kullanılan Sistem

Gimbal sistemleri askeri platformlar üzerine takılan, bir kullanıcı yardımcıyla veya otonom şekilde üzerinde taşıdığı faydalı yükü istenen hedeflere belirli bir hassasiyet ile yönlendirebilen sistemlerdir. Bu faydalı yük kamera, teleskop, radar, lazer veya ateşli bir silah olabilir [39]. Üzerinde kamera yer alan ve gözetleme, hedef takip ve hedef işaretleme gibi işlevleri yerine getiren gimbal sistemlerine elektro-optik gimbal sistemleri denilmektedir. Elektro-optik gimbal sistemlerinin denetleyicilerinden beklenen temel görev platformdan ve çevreden gelen bozucu etkilerden en az etkilenerek görüntü üzerindeki bozulmaları enkleştirmek ve gimbalin hedefe bakma, hedef takip etme işlevini aksatmadan yerine getirebilmesini sağlamaktır [40].

Kullanılan gimbal sistemi iki eksen, her eksenin hareketini sağlayan birer motor, her eksenin konumunu ölçen birer açıölçer algılayıcı, eksenlerin açısal dönüş hızlarını algılayan bir dönüşölçer algılayıcı ve işlevini yerine getirmesinin sağlayan faydalı yükten oluşmaktadır.
Bu uygulamada kullanılan iki eksen gimbal sistemine benzeyen örnek bir sistemin görseli [41] Şekil 4.1 ile gösterilmiştir.

![Örnek Gimbal Sistemi - CATS](image)

Şekil 4.1 Örnek Gimbal Sistemi - CATS

![Kullanılan Temsili Düzenek](image)

Şekil 4.2 Kullanılan Temsili Düzenek

4.2. İki Eksen Gimbal Sisteminin Matematiksel Modeli

İki eksen gimbal sistemlerinde her iki eksen bir adet motor ve motorun döndürdüğü bir küteden meydana gelmektedir. Motora uygulanan akım tork üretmektedir ve bu tork,
motorun bağlı olduğu kütleyi hareket ettirmektedir.

Motora uygulanan akım, \(V_g \) değeri ile belirlenmektedir. Motor gerilimi ve akımı arasındaki aktarım işlevi Eşitlik 63 ile gösterilmektedir.

\[
\frac{i(s)}{V_g(s)} = \frac{1}{Ls + R}
\]

(63)

Motor akımı ile motorun ürettiği tork değeri arasındaki ilişkiyi belirleyen katsayiya motor tork katsayısı denir. Motor tork katsayısı \(K_t \) ile gösterilmektedir ve bu parametre kullanılarak motor torku hesabı Eşitlik 64'de gösterildiği gibi yapılmaktadır.

\[
\tau_t = K_t i
\]

(64)

Bu eşitlikte \(\tau_t \) motorun ürettiği torku, \(i \) motora uygulanan akım değerini ve \(K_t \) motor tork katsayısını ifade etmektedir. \(K_t \) parametresi bir motor için sabit olduğundan motor akımı denetlenerek motorun istene tork değerini üretmesi sağlanabilir. Motor akım denetleyici yapısının öbek çizeneği Şekil 4.3 ile gösterilmektedir.

Şekil 4.3 ile gösterilen öbek çizeneğinde, \(i_d \) dayanak akım değerini, \(G_C(s) \) akım denetleyicisini ifade etmektedir.

\[
\begin{align*}
\text{Şekil 4.3 Motor Akımı Denetleyici Yapısı}
\end{align*}
\]

\[
\begin{align*}
\text{Şekil 4.3 ile gösterilen öbek çizeneğinde, } i_d \text{ dayanak akım değerini, } G_C(s) \text{ akım denetleyicisini ifade etmektedir.}
\end{align*}
\]

Motor akım denetleyicisi \(G_C(s) \) sıfır kutup götürmesi yöntemini [31] temel alacak şekilde seçilmektedir ve Eşitlik 65 ile gösterilmektedir. Bu eşitlikte yer alan \(\omega_c \), motora akım denetleyicisi uygulandıktan sonra kapalı döngü aktarım işlevinin bant genişliğini ifade

\[G_c(s) = \frac{\omega_c L_s + R}{s} \] \hspace{1cm} (65)

\[Z(s) = \frac{\omega_c L_s + R}{s} \frac{1}{L_s + R} = \frac{\omega_c}{s} \] \hspace{1cm} (66)

\[T_{akm}(s) = \frac{Z(s)}{1 + Z(s)} = \frac{\omega_c}{s + \omega_c} \] \hspace{1cm} (67)

Hem mekanik tasarım sonucu ortaya çıkan mekanik rezonans frekansı hem de kullanılan algılayıcıların gürgüntü seviyeleri nedeniyle gimbal sistemlerinin hız döngüsü bant genişliği genellikle 100 Hz'den daha fazla olamamaktadır. Bu sınır göz önüne alındığında akım döngüsü bant genişliğini ifade eden \(\omega_c \) değeri 1 kHz olarak seçilmişdir. Hem mekanik tasarım sonucu ortaya çıkan mekanik rezonans frekansı hem de kullanılan algılayıcıların gürgüntü seviyeleri nedeniyle gimbal sistemlerinin hız döngüsü bant genişliği genellikle 100 Hz'den daha fazla olamamaktadır. Bu sınır göz önüne alındığında akım döngüsü bant genişliğini ifade eden \(\omega_c \) değeri 1 kHz olarak seçilmişdir. Bu nedenle \(T_{akm}(s) \approx 1 \) olarak kabul edilmiştir. Bu sayede motor modeli basitleştirilerek, Şekil 4.4 ile gösterilen yapıya indirgenmiştir.

![Şekil 4.4 Motor Akım Denetleyicisi İndirgenmiş Yapı](image)

Şekil 4.4 ile verilen öbek çizeneği, motor akım döngüsünün bant genişliğinin çok yüksek seçilmesinden dolayı akım denetleyicisinin yaklaşık 1 olarak kabul edildiğini ve \(i_d \) ile \(i \) arasındaki dinamiklerin ihmal edilebileceğini göstermektedir.

Şekil 4.4 ile verilen öbek çizeneği, motor akım döngüsünün bant genişliğinin çok yüksek seçilmesinden dolayı akım denetleyicisinin yaklaşık 1 olarak kabul edildiğini ve \(i_d \) ile \(i \) arasındaki dinamiklerin ihmal edilebileceğini göstermektedir.

Motorun ürettiği tork, bağlı olduğu kütleyi ataletiyle ilişkili olarak döndürmektedir. Motor torku ile atalet değeri \(J \) arasındaki ilişki, Eşitlik 68'de gösterilmiştir.
\[
\frac{\tau_t}{J} = \alpha = \dot{\omega}
\] \hspace{1cm} (68)

Bu eşitlikte \(\tau_t \) motorun ürettiği torku, \(J \) motora bağlı kütlenin atalet değerini, \(\alpha \) kütlenin açısal ivmesini ve \(\omega \) değeri kütlenin açısal hızını ifade etmektedir.

\[
\tau_s = B\omega
\] \hspace{1cm} (69)

Bu eşitlikte \(B \) hızla bağlı sürtünme katsayısını, \(\omega \) eksenin açısal dönüş hızını ve \(T_s \) açısal hız bağlı olarak oluşan sürtünme kuvvetini ifade etmektedir.

Bu noktaya kadar anlatılan tüm matematiksel modeller ve varsayımlar bir araya getirildiğinde gimbal sisteminin bir ekseninin basitleştirilmiş matematiksel modeli Şekil 4.5'te gösterildiği gibi elde edilmiştir.

Şekil 4.5 Gimbal Matematiksel Model
Şekil 4.5 ile verilen öbek çizeneğinde yer alan α açısal ivmeyi ifade ederken, τ_s sürünme kuvvetini ifade etmektedir. Bu öbek çizeneği ile ifade edilen sistemin kapalı döngü aktarım islevi, Eşitlik 70 ile verilmiştir.

$$\frac{W(s)}{I(s)} = \frac{K_t}{Js + B}$$ \hspace{1cm} (70)

Eşitlik 70 incelendiğinde gimbal modelinin, birinci derece aktarım islevi ile ifade edilebildiği görülmektedir. Bu modelde yer alan K_t parametresi kullanılan motorun teknik dokümanında yer alan motor tork sabitini, J ve B parametreleri ise sistemin mekanik tasarımını sonucunda ortaya çıkan atalev ve sürünme katsayılarnı ifade etmektedir. Bölüm 2’de anlatılan denetleyicilerin hesaplamalarının daha kolay yapılabilmesi amacıyla aktarım islevi, Eşitlik 71 ve 72 ile ifade edilen parametreler kullanılarak Eşitlik 73 ile gösterilen biçimde ifade edilecektir.

$$b = \frac{K_t}{J}$$ \hspace{1cm} (71)

$$a = \frac{B}{J}$$ \hspace{1cm} (72)

$$G_s(s) = \frac{b}{s + a}$$ \hspace{1cm} (73)

4.3. Hız Denetimi Uygulama Sonuçları

Bu kısımda Bölüm 2’de anlatılan denetleyicilerin, bir gimbal ekseninde hız denetiminde uygulanması ile elde edilen sonuçlar gösterilmektedir. İlk olarak gimbal sistemi oda sıcaklığında iken tüm denetim yapıları uygulanmaktadır ve sonuçları incelenmektedir. Ardından gimbal sistemi özellikle hava platformlarının maruz kaldığı en düşük sıcaklıklardan biri olarak kabul edilen $-40^\circ C$’lik bir ortama konulmaktadır.

Gimbal sistemi üzerinde yapılan bu çalışmada örnekleme aralığı dönülcğer algılarcısının frekansı göz önüne alınarak 0.0005 saniye (2 kHz) olarak belirlenmiştir. Tabloda 4.1 ile verilen doğal frekans ω_n ve dönüş oranı ζ değerleri istenen cevabin kapalı döngü aktarm işlevinin parametreleri ve uygulamada kullanılan sistem modelinin b ve a parametrelerini göstermektedir. Ayrıca denetleyicilerin üretebileceğini en büyük akım değeri limiti de tabloda yer almaktadır. Denetleyiciler belirlenen üst limitten daha yüksek akım komutu üretikleri zaman, yazılım içerisinde akım değeri limitlenmektedir.

Tablo 4.1 Uygulama - Başarım Ölçütleri Tablosu

<table>
<thead>
<tr>
<th>ω_n</th>
<th>ζ</th>
<th>t_d</th>
<th>En Büyüktür Asma</th>
<th>b</th>
<th>a</th>
<th>Akım Limiti</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 rad/s</td>
<td>0.9</td>
<td>0.12 s</td>
<td>$<<%1$</td>
<td>36</td>
<td>5.7</td>
<td>8 A</td>
</tr>
</tbody>
</table>

Bu bölümde yer alan şekillerde birinci grafik dayanak sinyalini (d), istenen sistem cevabını (y_i) ve farklı çalışma sıcaklıklarındaki sistem cevaplarını (y_1 ve y_2) içermektedir. İkinci grafik denetim sinyallerini (u_1 ve u_2) ve üçüncü grafik hataları (e_{y1} ve e_{y2}) göstermektedir.
4.3.1. OTüm Denetleyici ile Elde Edilen Sonuçlar

Bu bölümde OTüm denetleyicisinin uygulama sonuçları verilmektedir. Denetleyici parametreleri Tablo 4.1 verilen başarım ölçüleri göz önüne alınarak Bölüm 2.2'de anlatılan yöntem ile hesaplanmaktadır. Denetleyici parametreleri Tablo 4.2 ile verilmektedir. OTüm denetleyicisinde yer alan m katsayısı model uyumlama yapabilmek amacıyla 0 (sıfır) olarak seçilmektedir.

<table>
<thead>
<tr>
<th>K_p</th>
<th>K_i</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.84</td>
<td>44.44</td>
<td>0</td>
</tr>
</tbody>
</table>

Elde edilen denetleyici iki farklı sıcaklık koşulu altında sisteme uygulanmaktadır ve elde edilen sonuçlar Şekil 4.6 ile gösterilmiştir.

OTüm denetleyicisinin parametreleri model uygulama yöntemi ile belirlendiği için, oda sıcaklığında sistem cevabı, istenen kapalı döngü akıların çevrilen çevabını çok benzer olmaktadır. Şekil 4.6-a incelendiğinde sistem çıkışının oda sıcaklığında asma yapmadığı ve soğuk ortamda ise %10 asma yaptığı görülmektedir. Oda sıcaklığında sistem cevabının durulma zamanı 90 milisaniye olarak ölçülürken, soğuk ortamda bu süre 200 milisaniye olarak ölçülmüştür. Sistem cevabı oda sıcaklığında her iki başarım ölçütünü de sağlamırken, soğuk koşul altında 110 milisaniyelik durulma süresi ölçütünü ve asma ölçütünü sağlamamıştır.

Şekil 4.6-b incelendiğinde, her iki sıcaklık koşulunda da OTüm denetleyicinin ürettiği akım miktarının dayanak noktası değişimi anında yükseldiği ancak en büyük akım seviyesine ulaşmadığı görülmektedir. Soğuk ortamda denetleyicinin ürettiği akım komutu artan sürünmeden kaynaklı olarak, beklendiği üzere daha büyültür. OTüm denetleyici soğukta başarım ölçütlerini sağlayamamaktadır.
4.3.2. Özayırlamalı OTüm denetleyici ile Elde Edilen Sonuçlar

Bu bölümde Özayırlamalı OTüm denetleyicinin gimbal sistemine uygulanması sonucu elde edilen sonuçlar gösterilmektedir. Bölüm 2.3.3'te anlatılan yöntem kullanılarak denetleyici parametreleri hesaplanmaktadır. SZÖEKK algoritması kullanılarak sistem modeli parametreleri α ve β sürekli olarak kestirilmektedir. Kestirim sonucu elde edilen α ve β parametrelerine göre denetleyici parametreleri \(K_p \) ve \(K_i \), Tablo 4.1'de verilen başarı ölçütlerini sağlayacak şekilde hesaplanmaktadır.

Tablo 4.3 Uygulama - SZÖEKK Yöntemi Parametreleri

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>(\theta_0)</th>
<th>C(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-4}</td>
<td>4</td>
<td>[0 0]</td>
<td>(s + 10)</td>
</tr>
</tbody>
</table>

Şekil 4.7 ile iki farklı sıcaklık koşulu altında uygulanan SZÖEKK OTüm denetleyicisinin sonuçları ve parametre değişimleri birlikte verilmektedir. Öncesi grafiklere ek olarak dördüncü (d) ve beşinci (e) grafiklerde kestirilen sistem modeli parametreleri (\(\hat{\alpha} \) ve \(\hat{\beta} \)) yer almaktadır.

Şekil 4.7-a incelendiğinde, model uyumlama yapılmaması dolayısıyla, her iki koşulda da sistem cevabının istenen kapalı döngü aktarım işlevinin cevabı ile çok benzer olduğu ve așımsız bir cevap verdiği görülmektedir. Oda sıcaklığında yapılan testte durulma süresi 110 milisaniye olarak elde edilmektedir. \(-40^\circ C\) sıcaklığında yapılan testte ilk bir kaç saniyede denetleyici istenen kapalı döngü aktarım işlevinin cevabından daha yavaş bir cevap vermektedir, ancak parametre kestirimı yakınsadıkça sistem cevabı hızlanmaktadır. Şekil 4.7-e incelendiğinde parametre kestirimı boyunca hatanın nasıl azaldığı görülmektedir. Parametre kestirimleri yakınsadıktan sonra soğuk koşullarda elde edilen durulma süresi 110 milisaniye olmaktadır.

Şekil 4.7-c ve 4.7-d ile verilen grafikler incelendiğinde model parametrelerin iki sıcaklık koşulunda da nasıl yeni parametrelerle yakınsadığı görülmektedir.

Şekil 4.7-b'de yer alan grafikte denetleyicinin ürettiği akım değerleri görülmektedir. Akım değerleri incelendiğinde soğuk koşullarda elde denetleyicinin ürettiği akım miktarı artmaktadır.
4.3.3. TE-DKD ile Elde Edilen Sonuçlar

Bu bölümde TE-DKD yapısının gimbal sistemine uygulanması sonucu elde edilen sonuçlar incelenmektedir. Kullanılan denetleyicinin detayları Bölüm 2.4’te anlatılmıştır. TE-DKD yapısı parametreleri, Tablo 4.1 ile gösterilen başarım ölçüleri dikkate alınarak hesaplanmaktadır. Bu ölçüleri sağlayacak TE-DKD yapısısinin parametrelerini belirleyecek \tilde{Q} ve \tilde{R} matrisleri Eşitlik 74 ve 75 ile gösterilmektedir.

\[
\tilde{Q} = \begin{bmatrix} 1 & 0 \\ 0 & 1500 \end{bmatrix} \quad (74)
\]

\[
\tilde{R} = 0.01 \quad (75)
\]

Eniyileme sonucu ortaya çıkan \tilde{K} kazanç matrisi Eşitlik 76 ile gösterilmektedir.

\[
\tilde{K} = \begin{bmatrix} 10.87 & -387.29 \end{bmatrix} \quad (76)
\]

İki farklı sıcaklık koşulu altında bu denetleyici uygulanarak elde edilen denetleyici sonuçları Şekil 4.8 ile verilmektedir. TE-DKD yapısı oda sıcaklığında %32 aşına ve 90 milisaniye durulma süresi başarımına sahiptir. Aynı denetleyici soğuk ortamda %0 aşına ve 110 milisaniye durulma süresi başarımına sahiptir. Her iki sıcaklık koşulu altında da istenilen durulma süresi başarım ölçüttünü sağladığı görülmektedir. Soğuk ortamda yapılan testlerde TE-DKD yapısı, OTüm denetleyiciden daha düşük durulma süresi sağlayarak durulma süresi başarım ölçüttünü de sağlamaktadır.

4.3.4. GÇ-RKKD ile Elde Edilen Sonuçlar

GÇ-RKKD yönteminin gimbal eksenine uygulanması sonucu elde edilen sonuçlar bu bölümde incelenmektedir. Kullanılan denetleyicinin detayları Bölüm 2.5’te anlatılmaktadır.
GÇ-RKKD yönteminde dayanak aktarım işlevi olarak kullanılmak üzere Eşitlik 77 ile gösterilen ikinci derece bir aktarım işlevi seçilmektedir. Bölüm 2.5’te anlatılan gereki derece koşulunun sağlanması için \(M(s) \)’ın ikinci derece bir aktarım işlevi olması gerekmektedir. Bu nedenle bu denetleyici için kullanılabilecek dayanak aktarım işlevi \(M(s) \), Tablo 4.1 ile verilen başarım ölçütlerini sağlayacak şekilde ikinci derece aktarım işlevi olarak belirlenmektedir.

\[
M(s) = \frac{1600}{s^2 + 72s + 1600} \tag{77}
\]

GÇ-RKKD yönteminde kullanılan roljenin genliği en yüksek akım miktarının 2 katı olarak şeklinde 16A’dır. Hem rolce çıkışındaki çatırdamayı engellemek amacıyla hem de gereki derece koşulunu sağlamak amacıyla roljenin sonrasında konulan süzgeç ise Eşitlik 78 ile gösterilmektedir.

\[
F(s) = \frac{(25)^2}{(s + 25)^2} \tag{78}
\]

Şekil 4.9 ile iki farklı sıcaklık koşulu altında uygulanan GÇ-RKKD yapısının sonuçları gösterilmektedir. Şekilde yer alana son grafik diğer grafiklerden farklı olarak rolce çıkış sinyali grafiğidir.

Şekil 4.9-a incelendiğinde GÇ-RKKD yapısının sıcaklık değişimi nedeniyle meydana gelen model parametrelerindeki değişime karşı sistem cevabı dayanak aktarım işlevi sistem cevabına yakın tutmayı başarabildiği görülmektedir. Her iki sıcaklık koşulu altında da aşma miktarı %0 olarak ölçülmektedir. Oda sıcaklığında durulma süresi 100 milisaniye iken soğuk ortamda durulma süresi 110 milisaniyedir.

Şekil 4.9-b ile verilen akım miktarları ve Şekil 4.9-a ile gösterilen sistem cevapları incelendiğinde, Özayarlama OTüüm denetleyicisi ile GÇ-RKKD yapısı benzer başarına sahip olduğu görülmektedir. Ancak Özayarlama OTüüm denetleyicisinin bu sistem cevabını verebilmesi için model parametrelerinin değişimini kestirmesi ve denetleyici parametrelerini
buna göre güncellenmesi gerekmektedir. GÇ-RKKD yapısı herhangi bir kestirim yapmadığı için model parametre değişimi altında anlık olarak istenen cevabı verebilimktedir.

Şekil 4.6 İkî Farklı Sıcaklıkta OTüm denetleyicisinin Sonuçlarının Karşılaştırılması
Şekil 4.7 İki Farklı Sıcaklıkta Özayarlamalı OTÜm denetleyicisinin Sonuçlarının Karşılaştırılması
Şekil 4.8 İki Farklı Sıcaklıkta TE-DKD Yönteminin Sonuçlarının Karşılaştırılması
Şekil 4.9 İki Farklı Sıcaklıkta GC-RKKD Yönteminin Sonuçlarının Karşılaştırılması

4.4. Pozisyon Denetimi Uygulama Sonuçları

Bu bölümde bir gimbal sistemi üzerinde ardışık konum denetimi hem sıcak hem de soğuk çevre koşulu altında uygulanmaktadır ve sonuçları incelenmektedir. Dış döngüde konum denetleyicisi olarak OTür (Oransal-Türevsel) denetim kullanılmaktadır. Denetleyici parametreleri Eşitlik 60 kullanılarak hesaplanmaktadır. İç döngüde ise Bölüm 2’de anlatılan denetleyicilerden seçilen Özayarlama OTüm Denetleyici ve GÇ-RKKD yapısı kullanılmaktadır. Örnekleme zamani 500 mikrosaniyedir.

İç döngüde yer alan hız denetleyicilerinin tasarımı için kullanılan başarı ölçütleri Tablo 4.4 ile verilmektedir. Tabloda durulma süresi ve aşma başarı ölçütü değerleri ile birlikte bu başarı ölçütlerini sağlayacak şekilde seçilen istenen kapalı döngü aktarım islevi parametrelerinin değerleri \(\omega_n\) ve \(\zeta\) gösterilmektedir.

Tablo 4.4 Uygulama Ardıçtk Denetim Hız Denetleyicileri için Kullanılan Başarı Kriterleri

<table>
<thead>
<tr>
<th>(\omega_n)</th>
<th>(\zeta)</th>
<th>(t_d)</th>
<th>En Büyükt Asma</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 rad/s</td>
<td>0.9</td>
<td>0.12 s</td>
<td><<%1</td>
</tr>
</tbody>
</table>

Şekil 4.10 ile bu bölümde kullanılan ardışık denetim yapısını gösteren öbek çizeneği gösterilmektedir.

Şekil 4.10 Uygulama - Ardıçtk Denetim Öbek Çizeneği

Pozisyon döngüsü denetleyici parametrelerin seçim yöntemi Bölüm 3‘te anlatılmaktadır. Eşitlik 58 ile verilen aktarm işlevinin parametreleri \(\omega_n = 14\) ve \(\zeta = 0.9\) olarak seçilmektedir. Eşitlik 60 ile verilen eşitlikler kullanılarak konum denetleyici parametreleri \(K_p = 6.328\) ve \(K_d = -0.1\) olarak hesaplanmaktadır.
Bu bölümde verilen şekillerde yer alan birincı grafikte dayanak giriş
(d) ve sistem çıkışı (y) yer almaktadır. İkincı grafikte denetim sinyali (u) ve üçüncü grafikte dayanak giriş ve sistem
çıkışı arasındaki hata (e_y) gösterilmektedir.

4.4.1. İç Döngü: Özayarlamalı OTüm Denetim

Bu bölümde iç döngüde Özayarlamalı OTüm Denetleyicinin kullanıldığı ardıçık konum
denetiminin sonuçları incelemektedir. Tablo 4.5 içerisinde parametre kestirimi için
kullanılan SZÖEKK yönteminin parametreleri yer almaktadır.

<table>
<thead>
<tr>
<th>α</th>
<th>β</th>
<th>C(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-7}</td>
<td>4</td>
<td>[0 0]</td>
</tr>
</tbody>
</table>

Şekil 4.11 ile konum döngüsü sonuçları, Şekil 4.12 ile Özayarlamalı OTüm hız
denetleyicisinin sonuçları gösterilmektedir. Şekilde dördüncü ve beşinci grafiğe SZÖEKK
yönteminin kestirdiği model parametreleri (a ve b) verilmektedir.

Şekil 4.11 incelediğinde tüm dayanak noktalarına aşımsız yerleştirilmiş görülmektedir. Şekil
4.12-d ve 4.12-e incelediğinde SZÖEKK yönteminin parametre kestirimi, ilk dayanak
sinyali değişimi ile birlikte hızlıca yakınsamaktadır.

Şekil 4.12-b’de görüldüğü üzere soğuk ortamda artan sürünme kaynaklı olarak Özayarlamalı
OTüm denetleyicisinin ürettiği denetim sinyalinin büyümektedir. Şekil 4.11 ve Şekil 4.12
incelediğinde model parametrelerinde meydana gelen değişimin konum ve hız denetimi
başarımı üzerinden az bir etkisi olduğu görülmektedir. Şekil 3.12-a ve 4.12-b incelediği
SZÖEKK yönteminin soğuk ortam altında farklı sistem parametrelerine yakışmadığı
görülmektedir.
4.4.2. İç Döngü: GÇ-RKKD

Bu bölümde iç döngüsünde GÇ-RKKD yönteminin yer aldığı adırmız konum döngüsünün gimbal sistemine sıcak ve soğuk ortamda uygulanması sonucu elde edilen veriler gösterilmektedir. 4.13 ile konum döngüsü sonuçları gösterilmektedir. Şekil 4.14 ile GÇ-RKKD denetleyicisinin sonuçları gösterilmektedir. Şekilde yer alan üçüncü grafiğe röle giriş gösterilmektedir. Dördüncü grafik dayanak sinyali ve sistem çıktı arasındaki hatanın grafiğidir. Son olarak beşinci grafiğe röle giriş yer almaktadır.

Eşitlik 79 ile dayanak aktarımlı islevi \(M(s) \) gösterilmektedir.

\[
M(s) = \frac{1600}{s^2 + 72s + 1600} \tag{79}
\]

Eşitlik 39 ile verilen gerekli derece şartını sağlamak için röle çıktına Eşitlik 80 ile gösterilen ikinci derece süzgeç eklenmektedir.

\[
F(s) = \frac{(25)^2}{(s + 25)^2} \tag{80}
\]

Şekil 4.11 $G_s(s)$ için Pozisyon Denetimi (İç Döngü: Özayılamalı OTüm)
Şekil 4.12 $G_s(s)$ için Özayarlamalı OTüm Hız Denetimi
Şekil 4.13 $G_s(s)$ için Pozisyon Denetimi (İç Döngü: GÇ-RKKD)
Şekil 4.14 \(G_s(s) \) için GC-RKKD Hız Denetimi
5. SONUÇ

Bu çalışmada uyarlamalı denetim yöntemi olarak SZÖEKK parametre kestirim yöntemi kullanılan Özayarlamalı OTüm denetleyici kullanılmaktadır. Hem benzetim ortamında hem de uygulamadan elde edilen sonuçlar inceleındığından, sistem parametrelerinde bir değişim meydana geldiğinde, EKK yönteminin değişen model parametrelerini kestirdiği ve OTüm

[27] A. Battistel, T. Oliveira, and V. H. P. Rodrigues, Adaptive Control of an Unbalanced Two-Axis Gimbal for Application to Inertially Stabilized Platforms,

Ek 1 : İngilizce Türkçe Terimler Sözlüğü

adaptive : uyarlamalı
amplitude : genlik
bandwidth : bant genişliği
block diagram : öbek çizeneği
cascade : ardışık
chattering : çatırدامa
closed-loop : kapalı döngü
continuous-time : sürekli zaman
controller : denetleyici
cost function : maliyet işlevi
damping ratio : sonum oranı
disturbance : bozucu
disturbance rejection : bozucu bastırma
encoder : açı ölçer
estimation : kestirme
estimator : kestirici
feedback : geribesleme
feedforward : ileri besleme
filter : süzgeç
forgetting factor : unutma çarpanı
friction : sürünme
function : işlev
fuzzy logic : bulanık mantık
gyro : ivme ölçer
<table>
<thead>
<tr>
<th>English Term</th>
<th>Turkish Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>information matrix</td>
<td>bilgi matrisi</td>
</tr>
<tr>
<td>inertia</td>
<td>atalet</td>
</tr>
<tr>
<td>inertially stabilized platform</td>
<td>ataletsel kararlılaştırılmış platform</td>
</tr>
<tr>
<td>inner loop</td>
<td>iç döngü</td>
</tr>
<tr>
<td>input</td>
<td>giriş</td>
</tr>
<tr>
<td>integral action</td>
<td>tümlev etkili</td>
</tr>
<tr>
<td>least square</td>
<td>en küçük kareler</td>
</tr>
<tr>
<td>linear</td>
<td>doğrusal</td>
</tr>
<tr>
<td>LQR</td>
<td>DKD</td>
</tr>
<tr>
<td>model matching</td>
<td>kutup uyumlama</td>
</tr>
<tr>
<td>natural frequency</td>
<td>doğal frekans</td>
</tr>
<tr>
<td>noise</td>
<td>gürültü</td>
</tr>
<tr>
<td>observer</td>
<td>gözleyici</td>
</tr>
<tr>
<td>open loop</td>
<td>açık döngü</td>
</tr>
<tr>
<td>optimal</td>
<td>eniyi</td>
</tr>
<tr>
<td>optimization</td>
<td>eniyileme</td>
</tr>
<tr>
<td>order</td>
<td>derece</td>
</tr>
<tr>
<td>outer loop</td>
<td>dış döngü</td>
</tr>
<tr>
<td>output</td>
<td>çıkışı</td>
</tr>
<tr>
<td>overshoot</td>
<td>asma</td>
</tr>
<tr>
<td>pole</td>
<td>kutup</td>
</tr>
<tr>
<td>PID</td>
<td>OTT</td>
</tr>
<tr>
<td>PI</td>
<td>OTüm</td>
</tr>
<tr>
<td>PD</td>
<td>OTür</td>
</tr>
<tr>
<td>performance</td>
<td>başarım</td>
</tr>
<tr>
<td>performance criteria</td>
<td>başarım ölçütü</td>
</tr>
<tr>
<td>polynomial</td>
<td>çokterimli</td>
</tr>
<tr>
<td>position control</td>
<td>konum denetimi</td>
</tr>
<tr>
<td>English</td>
<td>Turkish</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>positive semi-definite</td>
<td>yarı kesin artı</td>
</tr>
<tr>
<td>recursive</td>
<td>özyineleme</td>
</tr>
<tr>
<td>referance</td>
<td>dayanak</td>
</tr>
<tr>
<td>relative degree</td>
<td>göreli derece</td>
</tr>
<tr>
<td>relay</td>
<td>röle</td>
</tr>
<tr>
<td>response</td>
<td>cevap</td>
</tr>
<tr>
<td>robust</td>
<td>gürbüz</td>
</tr>
<tr>
<td>sampling period</td>
<td>örneklemeye aralığı</td>
</tr>
<tr>
<td>settling-time</td>
<td>durulma zamanı</td>
</tr>
<tr>
<td>scaler</td>
<td>sayılı</td>
</tr>
<tr>
<td>self-tuning</td>
<td>özayarlamalı</td>
</tr>
<tr>
<td>sensor</td>
<td>algılayıcı</td>
</tr>
<tr>
<td>setpoint</td>
<td>istenilen çıkış</td>
</tr>
<tr>
<td>signal</td>
<td>sinyal</td>
</tr>
<tr>
<td>simulation</td>
<td>benzetim</td>
</tr>
<tr>
<td>sliding mode control</td>
<td>kayan kipli denetim</td>
</tr>
<tr>
<td>speed control</td>
<td>hız denetimi</td>
</tr>
<tr>
<td>stable</td>
<td>kararlı</td>
</tr>
<tr>
<td>state-space</td>
<td>durum uzayı</td>
</tr>
<tr>
<td>steady-state</td>
<td>kalıcı durum</td>
</tr>
<tr>
<td>step</td>
<td>basamak</td>
</tr>
<tr>
<td>threshold</td>
<td>eşik değeri</td>
</tr>
<tr>
<td>torque</td>
<td>tork</td>
</tr>
<tr>
<td>transfer function</td>
<td>aktarım işlevi</td>
</tr>
<tr>
<td>unbalance</td>
<td>dengesizlik</td>
</tr>
<tr>
<td>unstable</td>
<td>kararsız</td>
</tr>
<tr>
<td>zero</td>
<td>sıfır</td>
</tr>
</tbody>
</table>
Ek 2 : Tezden Türetilmiş Yayınlar

• Tezden türetilmiş olan "Bir Gimbal Sisteminin Özayarlamalı 2 Serbestlik Dereceli OTüm Denetimi" başlıklı bildiri, 14-16 Eylül 2023 tarihlerinde İstanbul Teknik Üniversitesi’nde gerçekleştirilen Otomatik Kontrol Ulusal Toplantısı 2023’de sunulmuştur.
Bir Gimbal Sisteminin Özayarlamalı 2 Serbestlik Dereceli OTÜm Denetimi
Self-Tuning 2 Degree-of-Freedom PI Control of a Gimbal System

Muharrem Mandacı1,2,a, Şölen Kumbay Yıldız1,b

1Elektrik ve Elektronik Mühendisliği Bölümü
Hacettepe Üniversitesi, Ankara

2Kontrol Sistemleri Tasarım Müdürlüğü
ASELSAN A.Ş., Ankara

ammandaci@aselsan.com.tr
bsolen@ee.hacettepe.edu.tr

Özetçe
Bu çalışmada, 2 Serbestlik Derecesine Sahip (2 SD) Oransal-Tümlevsel (OTÜm) denetleyici ve Özayarlamalı 2 SD OTÜm denetleyici tasarımını açıklanmaktadır. Her iki denetleyiciin performans model parametre değişiklikleri altında bir benzetim ortamında test edilerek karşılaştırılmıştır. Ayrıca, denetleyiciler gerçek bir gimbal sisteminde hem oda sıcaklığında hem de soğuk çalışma ortamında uygulanarak sonuçları İrdelenmiştir. Özayarlamalı 2 SD OTÜm denetleyicide, parametre değişimi altında 2 DoF OTÜm denetleyicisinde gözlenen performans düşüşünü önlemek için sistem parametrelerini kesitlemek üzere Kesikli Zaman Özyinelemeli En Küçük Kareler (KZÖEKK) yöntemi kullanılmıştır.

Abstract
This study presents an explanation of the design of two types of controllers: the 2 Degree-of-Freedom (2 DoF) PI controller and the Self-Tuning 2 DoF PI controller. A comparison of the performance of both controllers is conducted under model parameter changes using a simulation environment. Furthermore, the controllers are tested on a real gimbal system in both room temperature and a cold environment, and the results are compared. The Self-Tuning 2 DoF PI controller utilizes the Discrete-Time Recursive Least Squares (DTRL5) method to estimate the parameters of the gimbal system to prevent the performance degradation observed in the 2 DoF PI controller under parameter variations.

1. Giriş

Bu çalışma kapsamında bir gimbal sisteminin model parametre değişimi altında hız döngüsünün başarımı İrdeleniktir. Denetleyici olarak 2 SD OTÜm ve Özayarlamalı 2 SD OTÜm denetim yazıları kullanılmaktadır. Özyinelemeli ön zararlı model parametrelerinin özelliklerini gösterilmektedir. Bu çalışma kapsamında bir gimbal sisteminin model parametre değişimi altında hız döngüsünün başarımı İrdeleniktir. Denetleyici olarak 2 SD OTÜm ve Özayarlamalı 2 SD OTÜm denetim yazıları kullanılmaktadır. Özyinelemeli ön zararlı model parametrelerinin özelliklerini gösterilmektedir.
2. Denetleyiciler

Bu bölümde hem benzetimde hem de gerçek sistem üzerinde uygulanan denetleyiciler anlatılmaktadır.

2.1. 2 SD OTÜm

2 SD OTÜm denetleyicisi [9] öbek çizeniği Şekil 1 ile gösterilmiştir. Şekil 1’de d’dayanık girişini, e hata sinyalini, u denetim sinyalini ifade ederken, y sistemin çıkışını ifade etmektedir. \(K_p, K_i \) ve \(m \) parametreleri, 2 SD OTÜm denetleyicisinin parametreleridir ve \(T_s \) örnekleme zamanını göstermektedir. Son olarak \(G(z) \) ayrık zaman sistem modelidir.

\[
G(z) = \frac{b}{z + a}
\]

\[
T(z) = \frac{K_p mbz - K_p mb + K_i T_s b}{z^2 + z(a - 1 + K_p b) - a - K_p b + K_i T_s b}
\]

Denetleyici parametreleri seçilen kapalı döngü aktarmış iki, belirlenen bir hedef aktarmış iksını sağlayarak formülle verilmektedir. \(T_d(z) \) eşitlenilmektedir. \(T_d(z) \) (Eşitlik 4), istenen sistem çevabi parametreleri doğal frekans \(\omega_n \) ve sönüm oranı \(\zeta \) kullanılarak elde edilen \(T_d(s) \) (Eşitlik 3) aktarmış iksi, ayrıntı sağlandığı için formül verilmektedir. Belirlenen aktarmış iksi ile model uyumu Eşitlik 5 ile gösterilmiştir [10].

\[
T_d(s) = \frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}
\]

\[
T_d(z) = \frac{z + c}{z^2 + tz + p}
\]

\[
\frac{K_p mbz - K_p mb + K_i T_s b}{z^2 + z(a - 1 + K_p b) - a - K_p b + K_i T_s b} = \frac{z + c}{z^2 + tz + p}
\]

Denetleyici parametreleri \(T_d(z) \) ve \(G(z) \) parametreleri cinsinden Eşitlik 6 ile gösterilmiştir gibi hesaplanmaktadır.

\[
K_p = \frac{t - a + 1}{b} \quad K_i = \frac{p + a + K_p b}{T_s b} \quad m = \frac{K_i T_s}{K_p(c + 1)}
\]

2.2. Özyarımlılı 2 SD OTÜm

Bir kestirim yöntemi yardımı ile model parametrelerini sürekli olarak kestiren ve bu kestirim yeni model parametrelerine göre denetleyicinin kendisini güncellediği denetim yapılarına özayeramlılı denetim yapıları denilmektedir. En yaygın kullanılan parametre kestirim yöntemlerinden biri özünelemeli en küçük kareler yöntemidir (Recessive Least Squares, RLS).

2.2.1. Kesikli Zaman Özünelemeli En Küçük Kareler (KÖZEEK) Metodu ile Parametre Kestirimi

Bir sistem modeli, \(y(t) \) sistem çırak, \(u(t) \) sistem girişi ve \(q \) denge kabul edilmektedir. \(y(t) \) sistemin girişi olarak seçilmiştir. Belirlenen sistem sinyallerini içeren veri vektörünü, \(\theta \) parametre vektörünü ifade etmektedir.

\[
y(t) = -a_1 y(t - 1) - ... - a_n y(t - n) + b_1 u(t + m - n - 1) + ... + b_m u(t - n)
\]

Bu fark denklemi doğrusal parametre formunda yazılıldığında Eşitlik 11 elde edilmektedir.

\[
y(t) = \varphi^T(t) \theta
\]

\[
\theta = [a_1 \ldots a_n b_1 \ldots b_m]
\]

\[
\varphi^T(t) = [-y(t-1) \ldots y(t-n) u(t+m-n-1) \ldots u(t-n)]
\]

\[
J = \sum_{k=1}^{l}(y(k) - \hat{y}(k))^2
\]
Maliyet işlevinin en küçük yapıcı vektörüne öznielemeli olarak hesaplamak için, Eşitlik 16, 17, 18 ve 19 ile verilen KZÖEKK yöntemi kullanmaktadır.

\[
\hat{\theta}(t+1) = \hat{\theta}(t) + K(t+1)e(t+1) \\
e(t+1) = y(t+1) - \varphi^T(t+1)\hat{\theta}(t) \\
K(t+1) = P(t)\varphi(t+1) \\
P(t+1) = \frac{1}{\lambda} \left[P(t) - K(t+1)\varphi^T(t+1)P(t) \right]
\]

\[P(0) = \alpha I\]

\[\theta(0) = 0\]

Eğer model parametreleri hakkında bir bilgi yoksa vektörü \(\theta^n\) nn ilk değeri Eşitlik 21 ile gösterildiği gibi seçilmektedir.

1000-100 000 arası bir sayıdır. Eğer sistem modeli hakkında bilgi yoksa verilen \(\alpha I\) ile hesaplanır. Eğer model parametreleri hakkında bir bilgi mevcut ise, bu parametre değerleri \(\theta(0)\) değeri olarak atanır.

2.2.2. Denetleyici Parametre Güncelleme

Şekil 2 ile öznielemeli en küçük kaleer yöntemi kullanılan denetleyici parametrelerinin kestirildiği, parametreleri güncel lenen denetleyici ile denetimin yapıldığı yapan öbek çizeneği gösterilmıştır. Her örneklemeye zamanında kestirilen \(\hat{a}\) ve \(\hat{b}\) parametreleri kullanılan güncel denetleyici parametreleri Eşitlik 6 ile hesaplanmaktadır. Bu şekilde yer alan \(u\) denetim sinyali, \(y\) sistem çıkıştır. Ayrıca \(d\) dayanak girişi ve \(e\) hata sinyalini ifade etmektedir.

Şekil 2: Öznielemeli En Küçük Kaleer Yöntemi ile Özayarlamalı OTüm Denetim Yapısı

3. Benzetim Sonuçları

\[G_a(z) = \frac{b}{z + a} = \frac{0.009081}{z - 0.9959}\]

Benzetimin \(t=0.7s\) anaında a parametre -0.9959'dan -0.9897'ye ve b parametresi 0.009081'den 0.009958 değerine yükselmiştir.

Tablo 1 ile benzetim için kullanılan başarı kriteri değerleri verilmektedir. Tabloda duruma sürekli ve aşma başarım ölçüleri ile birlikte bu başarım ölçütlerini sağlayacak şekilde seçilen istenen kapalı döngüaktarımlı işlevi parametrelerinin değerleri \((\omega_n\) ve \(\zeta\) gösterilmektedir.

Tablo 1: \(G_a(z)\) için Kullanılan Parametreler

<table>
<thead>
<tr>
<th>(\omega_n)</th>
<th>(\zeta)</th>
<th>(t_d)</th>
<th>En Büyük Aşma</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 rad/s</td>
<td>1</td>
<td>0.15 sn</td>
<td>%0</td>
</tr>
</tbody>
</table>

3.1. 2 SD OTüm Sonuçları

Şekil 3 ile 2 SD OTüm denetleyicisinin sonuçları gösterilmektedir. Benzetim modeli \(G_a(z)\) ve Tablo 1 ile verilen değerler kullanarak Eşitlik 6 ile hesaplanan denetleyici parametreleri Tablo 2 ile verilmektedir. 2 SD OTüm denetleyicisinin model parametre değişimi öncesi ve sonrasında ürettiği her iki cevap da aşmasıdır. Model parametre değişimi öncesinde istenen çıkış ile sistem çıktısının benzer olduğu görülmektedir ancak parametre değişiminden sonra sistem çıkışları yavaşlamaktadır. 2 SD OTüm denetleyicisinin model parametre değiştirilmişte sonraki geçici tepkisi dayanmak modelden farklıdır. Bu nedenle denetim başarısının korunamadığı görülmektedir.

Tablo 2: \(G_b(z)\) için 2 SD OTüm Denetleyici Parametreleri

<table>
<thead>
<tr>
<th>(K_p)</th>
<th>(K_i)</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.90</td>
<td>86.35</td>
<td>(\approx 0)</td>
</tr>
</tbody>
</table>

3.2. Özayarlamalı 2 SD OTüm Sonuçları

Şekil 4 ile KZÖEKK parametre kestiriminin kullanılması Özayarlamalı 2 SD OTüm denetleyicisi sonuçları gösterilmektedir. Tablo 1 ile verilen değerler ve KZÖEKK ile kestirilen model parametreleri \((\hat{a}, \hat{b})\) kullanarak her örneklemeye zamanında denetleyici parametreleri Eşitlik 6 kullanılarak güncellenmektedir. Tablo 3 ile KZÖEKK yönteminin parametreleri verilmektedir. Tabloda yer alan \(i\) farklı unutma çarparı için benzetim tekrarlanmakta ve sonuçları birlikte verilmektedir.

Tablo 3: \(G_b(z)\) için KZÖEKK yöntemi parametreleri

<table>
<thead>
<tr>
<th>(\theta_0)</th>
<th>(\alpha)</th>
<th>(\lambda_1)</th>
<th>(\lambda_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0 0]</td>
<td>10000</td>
<td>1</td>
<td>0.996</td>
</tr>
</tbody>
</table>

Model parametre değişimi öncesinde sistem cevabının istenen sistem cevabına benzediği görülmektedir. Model parametre değişimi meydana geldikten sonra ilk dayanak girişi değerinden sistem cevabının yavaşladığı, ancak zamanla kestirimin yeniden model parametreleri kestirmesi sonucunda cevabın hızlandıgı görülmektedir. Kestirilen model parametreleri, yeni model parametrelerine yeterince yakınsadıktan sonra,
sistem cevabının model parametre değişimi öncesindeki cevaba benzer olduğu görülmektedir. Özayarlamalı 2 SD OTüm denetleyicinin model parametre değişiminine karşı denetim başarımını koruduğu görülmektedir.

Şekil 4-d ve Şekil 4-e grafikleri incelendiğinde unutma faktörünün etkisi görülmektedir. \(\lambda_1 = 1 \) için yapılan benzetimde KZÖEKK eski değerleri unutmadığı için parametre yakınsaması oldukça yavaş olmaktadır. \(\lambda_2 = 0.996 \) değeri için yapılan benzetimde, KZÖEKK yönteminin veri hafifliği 0.12 saniyedir. Bu nedenle eski verileri unutmayı sağlayacak, böylece değişen model parametrelerine daha hızlı yakınsamaktadır. Unutma çarpanının doğru seçimi KZÖEKK yönteminin parametre yakınsamasını, dolayısıyla model parametre değişimini altında sistem cevabının hizmet vermesine de etkilemektedir.

4. Uygulama

Bu bölümde denetleyicilerin bir gimbal sisteminin bir eksenine uygulanması ile elde edilen sonuçlara yer verilmektedir.

4.1. Kullanılan Sistem Modeli

Bu bölümde kullanılan sistem modeli Şekil 5 ile gösterilen bir gimbal ekseninin basitleştirilmiş modelidir. Model giriş akım \(I(s) \) ve model çıkışı açısal hız \(W(s) \) olmak üzere sistem modelinin aktarımı \(E \) eşitlik 23 ile gösterilmektedir. \(K_t \) parametresi kullanılan motorun teknik dokümanında yer alan motor tork sabitini, \(J \) ve \(B \) parametreleri ise sistem mekanik tasarım sonucundan ortaya çıkan dönümsüz momenti değerine ve sürümme katsayısını ifade etmektedir.

\[
G_s(s) = \frac{I(s)}{W(s)} = \frac{K_t}{Js + B_v} \tag{23}
\]

\(K_t \) ve \(J \) parametreleri, \(B_v \) ise sistemden bağımsızdır. \(K_t \) motorun tork sabitini, \(J \) ve \(B_v \) ise sistem mekanik tasarım sonucundan ortaya çıkan dönümsüz momenti ve sürümme katsayısını ifade etmektedir.

\[
G_s(s) = \frac{b}{z + a} \tag{24}
\]

\(b \) ve \(a \) polinomunun katsayılardır. \(b \) ve \(a \) polinomunun katsayılardır. \(b \) ve \(a \) polinomunun katsayılardır. \(b \) ve \(a \) polinomunun katsayılardır. \(b \) ve \(a \) polinomunun katsayılardır. \(b \) ve \(a \) polinomunun katsayılardır.

\[
G_s(z) = \frac{0.01797}{z - 0.9972} \tag{25}
\]

4.2. Uygulama Sonuçları

Gimbal oda sıcaklığındayken denetleyiciler sisteme uygulanmış sonuçları kaydedilmiştir. Ardından gimbal, özellikle hava platformlarının maruz kaldığı en düşük sıcaklıklardan biri olarak kabul edilen \(-40^\circ C\) lik düşük sıcaklık kabinine konarak sistem üzerinde sıcaklık değiştirilecek şekilde durağan duruma geçene kadar
beklenmiştir ve sonra denetleyiciler sisteme uygulanarak sonuçlar kaydedilmiştir. Ortamın soğuması sonucu sistemdeki motor, rulman, rulman yağı gibi elemanlardan gelen sürünme miktar artacağı için model parametreleri değişmektedir. Bu sayede soğuk ortam kaynaklı parametre değişimine karşı denetleyicilerin başarısı incelenmektedir.

Tabloda 4 ile verilen ω_n ve ζ değerleri istenen cevabın kapalı döngü aktivasyonunu parameterlerini göstermektedir. Ayrıca denetleyicilerin üretilebileceği en büyük akım değeri limiti de tabloda yer almaktadır. Denetim sinyali bu değerin üzerinde hesaplanrsa denetleyici içerisinde sınırlandırılmaktadır.

<table>
<thead>
<tr>
<th>ω_n</th>
<th>ζ</th>
<th>t_d</th>
<th>En Büyük Asma</th>
<th>Akım Limiti</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 rad/s</td>
<td>0.9</td>
<td>0.12 sn</td>
<td><< %1</td>
<td>8</td>
</tr>
</tbody>
</table>

4.2.1. 2 SD OTüm

Denetleyici parametreleri Tablo 5 ile verilmektedir.

<table>
<thead>
<tr>
<th>K_p</th>
<th>K_i</th>
<th>m</th>
<th>T_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.84</td>
<td>66.7</td>
<td>≈0</td>
<td>500µs</td>
</tr>
</tbody>
</table>

Model uyumlama yöntemi kullanıldığı için, oda sıcaklığında sistem cevabı, istenen kapalı döngü aktivasyonunun cevabı ile çok benzer olmaktadır. Sekil 6-a incelendiğinde denetleyicinin oda sıcaklığında %0 asma yapmadığı ve soğuk ortamda %10 asma yaptığı görülmektedir. Oda sıcaklığında denetleyicinin durumuzun 102 milisaniye olarak ölçülümaktadır. Sekil 6-b incelendiğinde soğuk ortamda denetim sinyalinin belirlenekte artışı göstermektedir, buna rağmen soğuk ortamda durumuz 170 milisaniye olarak ölçülümektedir. Denetleyici oda sıcaklığında her iki başarım ölçütünü de sağlarken, soğuk koşul altında 120 milisaniyelik durumla süresi ölçütünü ve asma ölçütünü sağlayamamaktır.

4.2.2. Özyaralama 2 SD OTüm

Şekil 7 ile iki farklı sıcaklık koşulu altında uygulanan KZÖEKK 2 SD OTüm denetleyicinin sonuçları ve parametre değiştirilmesi birlikte verilmektedir. Önceki grafiklerde ek olarak şekilde yer alan dördüncü (d) ve beşinci (e) grafiklerde kestirilen sistem modeli parametreleri (\hat{a} ve \hat{b}) yer almaktadır. Tablo 6 ile uygulamada KZÖEKK yöntemi için kullanılan parametreler verilmektedir.

<table>
<thead>
<tr>
<th>θ_0</th>
<th>α</th>
<th>λ</th>
</tr>
</thead>
<tbody>
<tr>
<td>[-0.998 0.015]</td>
<td>100000</td>
<td>0.998</td>
</tr>
</tbody>
</table>

Şekil 7-a incelendiğinde, Model uyumlama yapılmasından dolayı, her iki koşulda da sistem cevabının istenen kapalı döngü aktarım aktivasyonunun cevabı ile çok benzer olduğu görülmektedir. Bu nedenle Özyaralama 2 SD OTüm denetleyicisi her iki koşulda da beklediğimiz üzere aşAMSIZ bir cevaba sahiptir. Oda sıcaklığında yapılan testte durumla süresi 120 milisaniye olarak elde edilmiş. $-40°C$ sıcaklığında yapılan testte ilk bir kaç saniyede denetleyicinin istenen kapalı döngü aktarım aktivasyonunun cevabından daha yavaş bir cevap verdiğini, ancak parametré kestirimi dışında değişen model parametrelerine yakınlaştırılmış sistem cevabının hizlandığı görülmektedir.

Şekil 7-c ve 7-d ile verilen grafikler incelendiğinde model parametrelerinin iki sıcaklık koşulu altında yaklaşık 2 saniyede yakınlaştırıldığı görülmektedir.

5. Sonuçlar

2 SD OTüm denetleyicisinde denetleyici parametrelerinin hesaplanmasında sistem modeli parametreleri kullanılmaktadır. Hem benzetim hem uygulama sonuçları incelendiğinde model
parametreleri yeterince iyi bilindiği durumda istenen sistem çıkışı verdiği görülmektedir. Ancak model parametrelerinde değişiklik meydana geldiğinde, denetleyicinin başarımı düşmektedir. Ancak model parametrelerinde meydana gelen değişimlere karşı denetim başarımı koruyamamaktadır.

Özyinelemeli 2 SD OTüm denetleyici ise model parametrelerindeki değişimi KZÖEEK yöntemi ile kestirerek, denetleyici parametrelerini her örneklemeye zamanında güncellemektedir. Bu sayede model parametrelerinde bir değişim meydana geldiğinde 2 SD OTüm denetim yapısında farklı olarak başarılı denetim sağlanmaktadır.

Özyinelemeli 2 SD OTüm denetleyici ise model parametrelerindeki değişim KZÖEEK yöntemi ile kestirerek, denetleyici parametrelerini her örneklemeye zamanında güncellemektedir. Bu sayede model parametrelerinde bir değişim meydana geldiğinde 2 SD OTüm denetim yapısında farklı olarak başarılı denetim sağlanmaktadır. Çalışma sonucunda model parametrelerinde değişiklik meydana gelmesi olası sistemlerde Özyinelemeli 2 SD OTüm denetleyicinin daha başarılı sonuçlar verdiği görülmektedir.

Yapılan çalışma sonucunda Özyinelemeli 2 SD OTüm denetleyici yöntemi için unutma çarpanının etkisi görülmektedir. λ = 1 seçilen durum, yani yöntemin eski verileri kullanmadığı durum için parametre küçükme sapının oldukça yavaş olduğu, λ değerinin düşürülmesi sonucunda yavas hıza karşı kullanımı artırıldığı görülmektedir. Özyinelemeli 2 SD OTüm denetleyici kullanılarak sistem uygun bir unutma çarpanının seçilmesi denetim başarımını doğrudan etkilemektedir.

Gelecekte yapılacak çalışmalarla bu denetim yöntemleriinin başarımığin ve çıkış bozucu etkileri altında incelenebilir. Sinürozoidal, ramp gibi farklı dayanak sinyalleri kullanılarak denetleyicilerin başarlarını karşılaştırabilir. Son olarak farklı denetim yöntemleri de denenerek bu çalışmada elde edilen sonuçlar ile kıyaslanabilir.

6. Kaynakça

