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ABSTRACT 

 

DEVELOPMENT OF A FUSION METHODOLOGY FOR FLOOD MAPPING 

USING SAR AND OPTICAL SATELLITE DATA  

 

 

Beste TAVUS 

 

 

Doctor of Philosophy, Department of Geomatics Engineering 

Supervisor: Prof. Dr. Sultan KOCAMAN GÖKÇEOĞLU 

September 2023, 101 pages  

 

In this thesis, a feature-level data fusion methodology was developed using the random 

forest (RF) approach, which is one of the frequently utilized machine learning methods 

for natural hazard assessments. For this purpose, Sentinel-1 SAR and Sentinel-2 optical 

data provided regularly and free of charge by the European Space Agency were used. For 

the development and performance analysis of the method, two study areas/flood cases 

with different topographical characteristics and data availability conditions were 

analyzed. The first case is a dam failure in Uzbekistan-Sardoba, for which pre- and post-

event Sentinel-1  and Sentinel-2  and external reference data (PlanetScope) are available. 

Since the flood disaster in this region was not caused by precipitation, it is independent 

of the cloud effect that obstructs the Sentinel-2 data after the event. In addition, the well-

known synthetic aperture radar (SAR) distortions that disturb the Sentinel-1 data could 

be omitted thanks to the flat topography of the area. For this reason, the method proposed 

in the thesis was primarily developed in Sardoba and the results were evaluated by 

applying it to another area, the Türkiye-Ordu May 2018 floods. The Ordu flood case was 

caused by precipitation, and unlike the first study area, the region has rugged topography. 

When the results obtained were validated with external data, it was observed that 



 

 

 

ii 

especially flood and flooded vegetation classes could be determined with high accuracy. 

In the thesis, flood mapping strategies to be undertaken based on data availability 

scenarios are discussed in detail.  

 

 

Keywords: Flood extent mapping, satellite remote sensing, optical images, Synthetic 

Aperture Radar, data fusion, random forest classification. 
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ÖZET 

 

 

SAR VE OPTİK UYDU VERİLERİ KULLANILARAK TAŞKIN 

HARİTALAMASI İÇİN FÜZYON YÖNTEMİ GELİŞTİRİLMESİ 

 

Beste TAVUS 

 

 

Doktora, Geomatik Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Sultan KOCAMAN GÖKÇEOĞLU 

Eylül 2023, 101 sayfa 

 

 

Bu tezde, doğal afet değerlendirmelerinde sıklıkla kullanılan ve makine öğrenmesi 

yöntemlerinden biri olan rastgele orman (RO) yaklaşımı kullanılarak özellik düzeyinde 

veri birleştirme/füzyon metodolojisi geliştirilmiştir. Bu amaçla Avrupa Uzay Ajansı 

tarafından düzenli ve ücretsiz olarak sağlanan Sentinel-1 SAR ve Sentinel-2 optik verileri 

kullanılmıştır. Yöntemin geliştirilmesi ve performans analizi için, farklı topografik 

özelliklere ve veri erişim koşullarına sahip iki çalışma alanı/taşkın sahası analiz 

edilmiştir. İlk saha, olay öncesi ve sonrası Sentinel-1 ve Sentinel-2 ile harici referans 

verilerinin (PlanetScope) mevcut olduğu Özbekistan-Sardoba'daki bir baraj yıkılmasıdır. 

Bu bölgedeki sel felaketi yağıştan kaynaklanmadığı için olay sonrasında Sentinel-2 

verilerini kıstlayan bulut etkisinden bağımsızdır. Aynı zamanda bölgenin düz 

topoğrafyaya sahip olması sentetik açıklıklı radar (SAR) bozulmalarından kaynaklanan 

olumsuz etkilerin en aza indirgenmesini sağlamıştır. Bu nedenle, tezde önerilen yöntem 

öncelikle Sardoba'da geliştirilmiş ve sonuçlar, diğer bir alan olan Türkiye-Ordu Mayıs 

2018 taşkınlarına uygulanarak değerlendirilmiştir. Ordu sel vakası yağıştan kaynaklanmış 

olup, ilk çalışma alanının aksine bölge engebeli bir topoğrafyaya sahiptir.  Elde edilen 
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sonuçlar harici verilerle doğrulandığında, özellikle taşkın ve sular altında kalan bitki 

sınıflarının yüksek doğrulukla belirlenebildiği görülmüştür. Tezde, veri 

erişim/kullanılabilirlik senaryolarına dayalı olarak yapılacak taşkın haritalama stratejileri 

detaylı olarak ele alınmıştır. Elde edilen bulgular literatürle karşılaştırılmış ve mevcut 

zorluklar ve gelecek çalışmalar ortaya konmuştur. Tezin çıktıları, taşkın tehlikesi 

değerlendirmeleri, tehlikelere duyarlı şehir ve kırsal planlama ve felaket önleme 

faaliyetleri için önemlidir. 

 

 

Anahtar Kelimeler: Taşkın alanı haritalaması, uydu uzaktan algılama, optik görüntüler, 

Sentetik Açıklıklı Radar, veri füzyonu, rastgele orman sınıflandırması. 
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1. INTRODUCTION 

 

 

This chapter provides thesis motivation and describes problems addressed here, with a 

discussion of the occurrence and impact of floods. The objectives and outline of the thesis 

are also presented in the following sub-headings.  

 

1.1. Problem Sattement/Motivation 

 

Floods can be described as overflows of water bodies from their usual boundaries or water 

accumulations in lands which are usually inundated [1]. According to the 

Intergovernmental Panel on Climate Change (IPCC), types of floods can be listed as river 

(fluvial), pluvial, flash, urban, coastal, sewer and glacial lakes. Various socio-economic 

and environmental elements influence the harm sourced from them, such as availability 

and quality of urban infrastructure, underplanned urban expansion without sufficient 

analysis of ecological and climatic parameters. The results can be disastrous with 

extensive loss of lives and biodiversity, natural resources and man-made assets, etc. [2, 

3]. Flood events yield to approximately 40% of socio-economic and environment-related 

losses sourced from natural disasters [4]. As the magnitude and types of damages are 

related to the location, extent and the inundation level of flooding, the mapping and 

monitoring of flood hazards are essential to assess their true impact and prepare proper 

disaster risk management and rehabilitation efforts [5]. Flood dynamics are often difficult 

to assess with traditional techniques, due to both data limitations and rapid movement of 

water bodies, which are also often inaccessible [6]. 

 

Remote sensing technologies and Earth Observation (EO) data provide the necessary 

tools and data for the temporary monitoring and assessment of floods affecting large 

areas. The EO data collected from satellite platforms, both with and without regular 

coverage scheme, are indispensable in flood hazard assessments as they enable essential 
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information in inaccessible areas. Regarding the satellite EO data, two main sensing 

technologies, active with microwave sensors and passive via optical cameras can be listed 

as enablers for information provision [7]. One of the sensor categories that can serve this 

purpose is optical sensors that have been used since the early 1970s. Optical sensors are 

frequently used due to availability with diverse ground sampling distances (GSDs) and 

acquisition scheme [8]. The other category is based on radar sensors operating at longer 

bandwidths and thus have the possibility to operate in cloudy weather conditions. In 

addition, they can penetrate vegetation to some extent. The fact that the radar sensors are 

not affected by clouds thanks to this ability is one of the most important advantages 

considering the nature of the flood event. In addition, thanks to its penetration feature, it 

can supply information about a certain degree below the surface, so it can provide more 

information about floods that occur in urban, vegetated or forested areas than optical 

sensors that can only detect the top of surface.  The Interferometric Synthetic Aperture 

Radar (InSAR) and Polarimetric Synthetic Aperture Radar (PolSAR) techniques offer 

well-known advantages such as the determination of the altered or stable areas with the 

coherency data it provides, thus surface deformations and scattering mechanism caused 

by flooding. In summary, various characteristics of Synthetic Aperture Radar (SAR) data 

products enables identification of several surface properties and enriches our knowledge 

on Earth. However, unlike optical imagery, SAR data contains phase data but less 

intensity information in visible spectrum, which makes it less interpretable by human 

vision. In addition, SAR data require expertise for processing and the interpretation of the 

results when compared to optical data. 

 

On the other hand, complementary usage of optical and SAR data has a great potential to 

produce essential features such as color, brightness, texture, shape, surface roughness and 

smoothness, and water content, etc., to detect flooding in areas with different 

constructions and topography. Considering the availability of diverse satellite sensors 

with varying radiometric, spatial, temporal and spectral resolutions and data quality, 

fusion of heterogeneous information for flood mapping is still an active research area. As 

the data fusion techniques depend not only source data but also the application in order 

to meet the quality (e.g., accuracy, reliability, temporal availability, etc.), novel 

approaches are still needed for fusing optical and radar products for flood mapping and 
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monitoring to synthetize the advantages of both sensors. Thus, this thesis focused on the 

development and validation of a feature-level data fusion methodology for flood extent 

mapping using optical and radar data, in particular by using the Sentinel-1 SAR [9] and 

Sentinel-2 optical [10] satellites of the European Space Agency (ESA) due to their regular 

global coverage and free data distribution policy. 

 

1.2. Thesis Objectives 

 

Considering the emerging SAR satellites and processing methods, this thesis aimed at 

developing an approach for the integrated use of satellite optical and radar datasets based 

on diverse features produced from both. Considering the processing and interpretation 

difficulties of SAR data and well-known advantages of spectral indices obtained from 

optical imagery, this thesis relates with the following objectives: 

• Investigating optimal feature types to increase the success of SAR and optical data 

fusion for flood mapping under various topographical (flat, hilly) and land cover 

conditions using machine learning (ML) methods; 

• Analyzing the accuracy potential of SAR and optical data for flood extent 

mapping under different data availability scenarios, and propose a strategy, 

especially for cases where the optical data (i.e., Sentinel-2 imagery) is not 

available to represent flooding; 

• And, proposing a methodology for ML classification to identify flood extent 

divided into two classes as flooded areas and flooded vegetation. 

 

For this purpose, existing spectral indices and textural feature extraction methodologies 

were evaluated. In addition, considering the advancements in the ML methods, the 

performance of Random Forest (RF), which is a decision-tree based supervised 

classification technique widely used in environmental problems has been evaluated by 

using different features for regional flood extent mapping. The accuracy was assessed 

based on three different approaches, such as internal accuracy based on prediction metrics  

(e.g. overall accuracy (OA), producer's accuracy (PA), user's accuracy (UA), and Kappa 
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index value (K)), external accuracy using independent reference data, and qualitative 

assessment with visual inspection.  

 

1.3. Contrubutions 

 

The main contributions of this thesis can be listed as following: 

• A flood extent mapping methodology based on the classification of flooded areas 

and flooded vegetation using the random forest method is proposed. Several 

processing strategies with corresponding feature sets are provided depending on 

the availability of post-event optical imagery. 

• As a major outcome, the necessity of using pre-event Sentinel-2 bands and 

features derived from them has been proven in cases where post-event Sentinel-2 

data cannot be used as an input for classification. 

• Additionally, flood extent mapping based on ML classification should not be 

binary and it is recommended to use related land use land cover (LULC) classes 

including flooded vegetation for obtaining high accuracy. 

• The proposed methodology has high accuracy potential and is applicable to 

different sites under flat, and hilly topographical and land cover conditions for 

mapping the floods and to assess the damages in agricultural areas. 

• Regarding the second and third objective of the thesis, the optimal feature types 

proposed in the methodology significantly improved the flood observations, 

especially the flood and flooded vegetation classes. The feature types involve 

textural features obtained from gray level co-occurrence matrix (GLCM) 

variables and spectral indices produced for vegetation and water. 

 

1.4. Thesis Outline 

 

In the following chapters, the aforementioned objectives are tackled. Initially, Chapter 2 

provides an extensive but non-exhaustive overview of existing SAR-based flood mapping 

approaches and elaborates on differences and similarities. In Chapter 3, the proposed 
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methodological workflow, data pre-processing, feature extraction and analysis, decision-

making and validation methods are explained in detail. In Chapter 4, the application of 

the methodology described in the previous chapter to several flood events, some of which 

include flooded vegetation and an urban area and a dam flood, are given. In Chapter 5, 

the results of the method applied to three different sites are given and compared in detail 

in terms of extracted features, utilization of the techniques, and temporal resolution and 

data quality aspects. Finally, Chapter 6 summarizes the main conclusions of this thesis 

and suggests potential future research topics that could contribute to increasing the impact 

of SAR-based flood observations even further.  
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2. BACKGROUND ON FLOOD INUNDATION MAPPING USING 

REMOTE SENSING TECHNIQUES 

 

 

In this chapter an extensive review of existing flood inundation mapping approaches with 

remote sensing techniques is presented. The studies in the literature using optical and/or 

radar sensors can be categorized by various basic perspectives such as resolution and 

wavelength, approaches or methods, land cover components, and flood type. In this 

context, the literature is mainly explained under the sub-chapters of optical sensors, radar 

sensors and fusion of optical and radar sensors, emphasizing the types of (resolution and 

wavelength) optical and radar sensors, respectively. In addition, floods in urban and 

vegetated areas have been taken into account, as land characteristics are as important as 

sensor types in the analysis of flood disaster. Most recent studies utilize the use of multi-

source data and methods complementarily, rather than a single data and method. For this 

reason, the main differences of the existing approaches examined from this point of view 

are discussed. 

 

At the end of this chapter, the main gaps and problems that need to be investigated have 

been identified based on the literature, and a conclusion has been reached about the gaps 

that this Ph.D. thesis aimed to fulfill. 

 

 

2.1. Studies utilizing Optical Sensors 

Satellite-based remote sensing is an invaluable tool that supplies broad view about 

location, extent, severity and susceptibility of floods on any terrain type since the early 

1970s [11]. Thanks to these features and being more cost-effective than ground surveys, 

it has become one of the types of sensors used in flood inundation mapping and also 

contributes to flood crisis management and post-disaster damage assessments [11]. In this 

context, optical sensors, the most important advantage of which is spectral information 

and interpretability compared to SAR sensors, makes a significant contribution to the 
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determination of low reflective water areas in the near-infrared (NIR) part of the spectrum 

[12]. Among these sensors, the most frequently preferred ones for flood inundation 

mapping are given in Table 2.1 by categorizing them according to the geometric 

resolutions utilized. In the following subsections, literature on flood inundation mapping 

from optical sensors with diverse spatial resolutions and on different platforms including 

the remotely ploted aircraft systems (RPAS) has been presented in detail.  

 

Table 2.1.  Optical sensors and specifications.  

Sensor 

group 
Sensors 

Spatial 

resolution (m) 
Agency Operation 

Coarse-

resolution 

NOAA/AVHRR 1 NASA 1978-today 

MODIS 250-1000 NASA 1999-today 

Suomi NPP-VIIRS 375-750 NASA 2012-today 

MERIS 300 ESA 2002-2012 

Sentinel-3 OLCI 300 ESA 2016-today 

Medium-

high 

resolution 

Landsat 15-80 NASA,USGS 1972-today 

SPOT 2.5-20 CNES 1986-today 

Aster 15-90 NASA 1999-today 

Sentinel-2 MSI 10-60 ESA 2015-today 

Very 

high-

resolution 

IKONOS-2 1-4 GeoEye 1999-today 

Quickbird 0.61-2.24 Digital Globe 2001-today 

WorldView-3, 4 0.31-2.40 Maxar 2007-today 

RapidEye 5 DLR 2008- today 

ZY-3 2.1-5.8 CRESDA 2012-today 

GF-1/GF-2 1-16 CRESDA 2013-today 

 

2.1.1. Coarse-resolution satellite sensors (> 250 m) 

 

Although the coarse-resolution satellite sensors usually have the mission to monitor the 

atmosphere and ocean, they have also been used to detect large-scale flooding events due 

to their high temporal resolution and wide coverage [8]. The first research in this context 

used visible bands and some index from VHRR (Very High Resolution Radiometer) and 

AVHRR (Advanced VHRR) optical data at 1 km spatial resolution [8]. Many studies have 

been carried out to analyze the ability of National Oceanic and Atmospheric 

Administration/The Advanced Very-High-Resolution Radiometer (NOAA/AVHRR) to 

studying very large river floods [13, 14], using color composites for visual analysis [15].  
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It has been highlighted that the sensor suffers from extensive cloud distribution, 

especially during flood events [15-17].  

 

The globally available and free Moderate Resolution Imaging Spectroradiometer 

(MODIS) data, which was operational in 2000 and available from the National 

Aeronautics and Space Administration (NASA), has been broadly operative in many 

areas such as LULC change detection and atmosphere monitoring. At the same time, the 

capacity of MODIS data in processes such as flood extent detection, disaster response 

and damage assessment was investigated by many studies [18-20]. Due to their low 

spatial resolution, which ranges from 250 m to 1 km, they are not optimal for detecting 

flooded area on a fine scale. In spite of the resolution limitations, many studies that use 

the MODIS data for flood inundation mapping or prevent research [21, 22]. Additionally, 

a large archive of floods extracted from MODIS was provided by Near Real-Time Global 

Flood Mapping Project by NASA and the Dartmouth Flood Observatory throughout the 

world [20, 23]. 

 

Another sensor in this scope is the Visible Infrared Imaging Radiometer Suite onboard 

Suomi National Polar-orbiting Partnership (Suomi NPP-VIIRS), which has 22 bands and 

was released in 2011. With the potential to generate near real-time (NRT) information 

thanks to its high temporal resolution, this sensor is used for the flood inundation mapping 

In addition, ESA has been effective in land and ocean monitoring such as MEdium 

Resolution Imaging Spectrometer (MERIS) and Ocean and Land Color Instrument 

(OLCI) on board Sentinel-3, which was operated in 2016, and supplies 21 spectral bands 

at 300 m spatial resolution. This sensor, which is mostly used in the literature for the 

analyzing of water dynamics, is increasingly being used for flood activities thanks to its 

high revisit time and area coverage [24-26]. 

 

2.1.2. Medium-resolution satellite sensors (> 10 m) 

 

With its optical sensors, which started in 1972 with Landsat-1 Multispectral Scanner 

(MSS) and upgraded to Thematic Mapper (TM) on Landsat-4 and Landsat-5, to Enhanced 
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Thematic Mapper Plus (ETM+) on Landsat-7, and finally to Operational Land Imager 

(OLI) on Landsat-8. Landsat have been providing data for over 45 years, has a successful 

history in the medium-resolution sensors group. While most of the pioneering studies in 

flood mapping with Landsat-1 has been performed in Arizona, Virginia and along the 

Mississippi River [27-29], Landsat data continues to increasingly contribute to flood 

activities with the OLI sensor becoming operational in 2013 [30-32]. 

 

Although Systeme Probatoire d'Observation dela Tarre (SPOT) has a higher spatial 

resolution than Landsat data, its application has been limited owing to its not being free 

of charge, and therefore there are few studies using SPOT for analyzing flood activities 

[33, 34]. Sentinel-2, the most preferred sensor within this group, provides global coverage 

of the Earth's surface every 12 days with one satellite and every 6 days with two satellites 

with spatial resolutions ranging from 10 to 60 m. The use of Sentinel-2 data, which 

potential has been investigated in many flood inundation mapping studies [35-38], has 

been increasing, especially thanks to its complementary advantageous with Sentinel-1 

SAR data.  

 

2.1.3. Very high-resolution satellite sensors (< 2 m) 

 

Significant progress has been made in improving the spatial resolution of sensors over 

the past decade, and most of the new sensors, such as IKONOS (Sharma et al., 2022), 

Worldview, RapidEye, Worldview-2, Quickbird [39], ZY-3 [40], and GF-1/2, can supply 

data at meter or sub-meter level spatial resolution. At this resolution level, even small 

water bodies can be successfully detected, but such sensors have some limitations such 

as small scene coverage, shadow effect in especially urban and roughness areas and low 

temporal resolution [41]. 

 

Despite these limitations, studies aiming at flood analysis, monitoring and management 

from high resolution data are abundant. A comprehensive analysis of these studies was 

carried out by Munawar et al. [42] and it was summarized that the sensors in this category 



 

10 

generally produce high-accuracy results, but they have disadvantages in time-series 

analyses due to their low temporal resolution.  

 

In recent years, the increase in nanosatellites with very high spatial resolution has 

eliminated the temporal resolution limitation of high-resolution data, and this has greatly 

contributed to disaster activities. For example, the potential for flood mapping of CubeSat 

data from a constellation of small satellites, which provides global data with high spatial 

and temporal resolution, has been explored in many studies [43, 44]. 

 

2.1.3. Very high-resolution satellite sensors (< 2 m) 

 

Nowadays, Remotely Piloted Aircraft Systems (RPAS) (also known as unmanned aerial 

vehicles - UAV) have great potential in scientific applications, from agriculture and 

environmental science (e.g., wildlife, water, air, forest) to oceanography, archeology, and 

natural disaster-related studies [45]. In the case of flood disasters, it is clear that the 

RPASs are one of the technology-oriented platforms that can support many such 

activities, especially detection, and response. RPASs thanks to providing highly detailed 

images that optical and radar sensors cannot provide for a variety of reasons are 

specifically often used in flood analysis in urban areas [46]. 

 

Popescu et al. [47] proposed a methodology including texture measurements for the 

analysis of flooded areas from RPAS images. Afterwards, Gebrehiwot et al. [48] 

investigated the potential of CNN approaches to extract urban flooded areas from UAV 

imagery. In the study, it was stated that CNN-based classifiers are very useful for flood 

segmentation with a Kappa index of 0.9. Karamuz et al. [49] proposed a procedure for 

updating hydrodynamic model boundaries with RPAS data. In the study, it was 

emphasized that the proposed approach is very effective for updating and validating flood 

risk maps on-line.  In the recently published bibliometric review by Iqbal et al.  [50], it 

was emphasized that especially the RPAS technology provides advantages in critical 

activities such as flood inundation and surface water mapping, and damage assessment. 
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In summary, the experimental results of the studies reviewed showed that the use of 

RPASs in flood analysis produced promising results, despite the availability of sufficient 

RPAS data to apply various methods. While drones were predominantly preferred for 

data collection in previous research on flood analysis and mapping, in recent years, drones 

equipped with high-resolution multi-spectral (MD), LiDAR, and radar sensors have been 

used. It should be noted that UAV data, which is particularly advantageous in dense urban 

flooding, has some difficulties in areas where the terrain is covered by high vegetation or 

shadows.  

 

2.2. Studies utilizing Microwave Sensors 

 

In addition to optical imaging, the microwave sensors as an alternative satellite-based 

remote sensing data type provide an invaluable tool that has been used in flooding 

activities since the early 1977s and has been increasingly used today [11]. In this context, 

SAR sensors, which are least affected by weather conditions (day & night-time) and can 

provide continuous data about the roughness and surface characteristics of the mediums 

compared to optical sensors, are advantageous in flood mapping thanks to these 

specifications [51-53]. SAR sensors with different information levels and resolutions and 

named P, L, S, C, X, Ku, K and Ka according to wavelengths in the range of 100 - 0.6 

cm, have been preferred especially in areas with different requirements and features such 

as urban floods, flooded vegetation, and river floods. Accordingly, in the following 

subsections, the literature on the most commonly used X, C and L sensors in flood 

mapping is presented in detail. 

 

Table 2.2 summarizes the state-of-the-art literature since the early 2000s, mainly aimed 

at producing flood inundation maps using SAR data. Especially, for each research in the 

Table, specific features of the landscape analyzed, data used, methods or approaches, and 

validation processes have been listed, along with the key results. In addition, it must be 

stated not every study provided quantitative results. 
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Table 2.2. Most frequently used radar sensors and their specifications for flood activities. 

Band Sensors Agency Operation Polarization 

X 

TerraSAR-X/ 

TanDEM-X 
DLR 

2007-today 

2010-today 
quad 

COSMO- 

Skymed-1/4 
ASI/MiD 2007-today quad 

RISAT-1 ISRO 2012-today quad 

Kompsat-5 KARI 2013-today dual 

PAZ CDTI 2013-today quad 

C 

ERS-1/2 ESA 
1991-2000 

/1995-2011 
VV 

Radarsat-1 CSA 1995-today HH 

SRTM NASA/DoD, DLR, ASI 2000-today 
C(HH+VV) 

X(VV) 

Envisat-1 ASAR ESA 2002-2012 dual 

Radarsat -2 CSA 2007-today quad 

Sentinel-1A/1B ESA 2014-today dual 

L 

Seasat NASA/JPL 1979 HH 

JERS-1 JAXA 1992-1998 HH 

ALOS/PALSAR JAXA 2006-2011 quad 

ALOS-2 JAXA 2013-today quad 

 

 

2.2.1. X-band Satellite Sensors  

The X-band, which is called high-resolution SAR, which varies in the wavelength range 

of 2.4 – 3.75 cm of the electromagnetic spectrum, is often preferred in studies such as 

urban monitoring, agriculture, ice and snow investigation. X-band sensors have a shorter 

range than the X-& C-bands and do not have sufficient coherency in flooded areas and 

flooded vegetation. Thus, they are disadvantageous compared to other sensors in terms 

of penetrating vegetation [54]. 

 

When it comes to flooding, the most used X-band sensors are TerraSAR-X and COSMO-

SkyMed satellites operated by German and Italian institutions/companies, respectively. 

One of the first studies under this title conducted by Martinis et al. [55] combines 

thresholding and segmentation and presents an automatic near real-time (NRT) flood 

identification approach. Experimental results on urban and agricultural areas with 3 m 

resolution TerraSAR-X datasets, together with the optional integration of digital elevation 

model (DEM), demonstrate the high classification accuracy of the proposed approach. A 

subsequent study led by Mason et al. [56] recommended to use digital surface model 
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(DSM) in urban areas for the elimination of layover and shadow effects with the same 

datasets. The same TerraSAR-X dataset was then used in a subsequent series of case 

studies [57-59].  

 

These studies have highlighted that areas with various structures and heights of buildings, 

green or vegetated lands, and different street topologies have different SAR signal 

characteristics, and studies have focused on investigating the backscattering 

characteristics of different urban structures. Research works conducted in this context 

have generally produced promising results using SAR intensity data as well as coherency, 

InSAR and PolSAR information [60-66]. 

 

2.2.2. C-band Satellite Sensors 

 

The C-band varies in the wavelength range of 3.75 – 7.5 cm of the electromagnetic 

spectrum and is often preferred in studies such as global mapping and monitoring (i.e. 

land, ice, and ocean) and multi-temporal analysis. C-band sensors, which have a longer 

range than the X-bands, supply more sufficient coherency and penetration capacity. 

Among these group, Sentinel-1 is the most preferred sensor and has a C-Band SAR 

instrument with a wavelength of around 5.7 cm and four observation modes [10]. 

 

One of the first studies under this title was conducted by Twele et al. [67] proposed a 

combination of automatic tile-based thresholding and fuzzy-logic for improving the 

results by eliminating potential water-like pixels. Study results indicated that the thematic 

accuracy of vertical transmit-vertical receive (VV) polarization is slightly higher than 

vertical transmit-horizontal receive (VH) polarization. It was emphasized that the 

robustness of the processor for various wind levels and other environmental factors still 

needs to be confirmed. Martinis [68] proposed an approach in arid areas, where accurate 

SAR-based water mapping is usually not possible. Using statistical metrics from the 

Sentinel-1 time-series to eliminate water-like pixels with could be mixed with sand 

surfaces, the study highlights that the algorithm can significantly improve the 

classification accuracy of the Sentinel-1 flood processing chain. In addition, Martinis [69] 

proposed a method called Sentinel-1 time-series-based Sand Exclusion Layer (SEL) for 
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near real-time flood extent mapping. The study emphasized that the best results require 

longer time series interval to generate the SEL in the 60-100% frequency range. 

 

Amitrano et al. [70] proposed a framework based on GLCM features combined with 

intensity data in a fuzzy classification and a change detection applied to Sentinel-1 

Ground Range Detected (GRD) product. Results emphasized that the fuzzy classification 

applied using Haralick et al. [71] textural features specifically homogeneity and contrast 

gave good performance. While texture features that provide additional information vary 

depending on the study area and the data used in terms of parameter and feature selection, 

the method using the change index requires further validation. Li et al. [72] have proposed 

a reference selection procedure with high similarity with multi-temporal images and low 

similarity with flood image. Although these methods provide a better reference than the 

manual selection, they are constrained in time and computationally. Tavus et al. [73] 

proposed an approach that includes urban flood mapping using only Sentinel-1 data. The 

method, which basically includes change detection and thresholding, recommends the use 

of one post-event acquisition and at least two acquisitions representing pre-event 

conditions. 

 

2.2.3. L-band Satellite Sensors 

 

The L-band, which is called medium-resolution SAR varies in the wavelength range of 

15 – 30 cm of the electromagnetic spectrum and is often preferred in studies such as 

geophysical monitoring, biomass and vegetation mapping. L-band sensors, which have a 

longer range than the X-& C-bands, achieve greater penetration into a medium such as 

forest, soil and ice. Such sensors are preferred in the analysis of forested or vegetated 

floods, as they allow greater interaction between the radar signal and large branches and 

tree trunks in a forest. 

 

Among this category, the Japanese Earth Resources Satellite (JERS) and the Advanced 

Land Observation Satellite (ALOS) from JAXA are the most preferred ones. In this 

context, studies that started in the Amazon [74-76] and Congo basin [77] continue with 

successful applications today. The most important handicap of L-band SAR sensors, 

which have been evaluated in many studies for purposes such as urban flooding, flood 
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depth estimation in agricultural lands, mapping flooded vegetation with polarimetric 

information, has limited access to data due to the lack of open source policy [78-82]. 

 

2.3 Studies utilizing both Optical and Radar Data 

 

Three combinations of optical and SAR data have been usually preferred in the literature, 

which is applied to pre-&post flood events, respectively. The combinations can be listed 

as optical and optical, SAR and optical, and SAR and SAR sensors. The combination of 

SAR and optical is more favorable considering the requirement for timely assessment of 

floods that rapidly change their dynamics. Recently, various approaches have been used 

in the literature for flood mapping using multi-temporal and multi-source data [83]. 

However, as noted in the previous sections, the complementary nature of SAR and optical 

data has brought this concept to the fore and made it a preferred research topic [84]. 

 

Martinis et al. [85] proposed a two-phase methodology that included flood services from 

MODIS Flood Service (MFS) and TerraSAR-X Flood Service (TFS) and the presentation 

of information via a web-based user interface. The study is important in that it is one of 

the first studies that includes the fusion of optical and high-resolution SAR data and 

serving via a web portal. Tong et al. [84] presented a methodology for flood monitoring 

that combined both Landsat 8 and COSMO-SkyMed data. The proposed method is based 

on the change between before and after flood event based on Landsat-8 data by using 

SVM and the COSMO-SkyMed data by using active contour model, respectively. In the 

study, it was stated that the highest overall accuracy (OA) was obtained from Landsat-8 

data with 97%, with a difference of 3% compared to SAR data. DeVries et al. [86] 

proposed a fully automated and real-time flood inundation mapping approach using 

Sentinel-1 time-series and Landsat data on the Google Earth Engine (GEE) platform. The 

approach has been applied to different areas and has been validated using external 

reference sources such as Planet and Copernicus Emergency Mapping Service (EMS) 

with at least 95% OA. Benoudjit and Guida [87] used the TerraSAR-X, Sentinel-1&2 

dataset with a supervised classifier for automated delineation of flood extent, but it was 

stated that the classifier failed in relatively small water areas compared to the study area. 
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Optical and SAR data fusion approaches for flood mapping in the literature usually 

preferred Sentinel-1&2 data as they are be freely available and can count global data at 

regular intervals. These advantages of the data in question make it very attractive to 

explore their potential with the development of data processing algorithms. Most of the 

studies in this scope have used indices such as Normalized Difference Vegetation Index 

(NDVI) and Normalized Difference Water Index (NDWI) from optical imagery as a 

complement to SAR data. For example, Sunar et al. [88] proposed a methodology in 

which NDWI time series generated from optical data such as Landsat-8, Sentinel-2 (S2), 

and Sentinel-1 (S1) are evaluated based on thresholds. The results, which were compared 

with different data sources such as meteorological and river bed flow, showed that there 

are two major reasons for flood events in the research area and the damage rates they can 

cause are different. In Bioresita et al. [89], a decision-level fusion approach were used to 

combine multi-temporal NDWI indices produced from S1 & S2. In the study comparing 

single-date and multi-temporal analysis, it was stated that the decision-level fusion of S1 

& S2 provided better results for permanent water and has a high potential for flood 

mapping. 

 

Huang and Jin [90] proposed a flood detection approach that analyzes LULC data 

generated from S1 & S2 with a pixel-based change assessment and thresholding method 

and achieved an OA of 81%. However, there were some limitations such as the 

determination of LULC types representing the entire study area from the S1 data and the 

necessity for pre-information about the backscatter distributions of the relative surfaces 

in dry and wet conditions. In addition, it has been reported that activities such as 

agricultural irrigation, which require pre-information and processing, cause false alarms 

in the results. Manakos et al. [91] proposed a pixel-based random forest (RF) classifier 

trained with samples generated from S1-based features and S2 flood map classes. In 

conclusion, it was emphasized that the increase of the considered S2 maps enabled the 

prediction of S1 flood maps with higher accuracy. Slagter et al. [92] used multi-level RF 

classifier for fusing S1&S2 for flood inundation segmentation. The results showed that 

although using S1&S2 together led to considerably higher accuracies, relatively poor for 

classifications in high-vegetated wetlands, as sub-canopy flooding.  

 

Singha et al. [93] analyzed the multi-temporal flood patterns and paddy lands that could 

be damaged by flooding in Bangladesh from Sentinel-1&2 by using change detection and 
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thresholding approaches SAR images in the GEE platform. Hakdaoui et al. [94] presented 

an approach that includes Sentinel-1 for the detection of the water extent and soil 

roughness, and S2 and Landsat-8 data for analyzing the soil moisture after the flood. The 

results of the study which that based on the change of spectral features and Support Vector 

Machine (SVM) classifier showed the importance of combinations of different sensors 

and approaches outperforming flood-affected wetland areas monitoring. Hakdaoui and 

Emran [95] proposed an approach aiming at the flood extent delineation caused by heavy 

rainfall on the Sakia El Hamra dam failure case in Southern Morocco. The results from 

the study, based on the change analysis of spectral indices and segmentation from S1&S2 

and Landsat-8, demonstrate the importance of complementary multi-sensor images for 

flood inundation mapping. 

 

Tripathi et al. [96] used S1&S2, MODIS imagery and precipitation data for Near Real 

Time (NRT) flood inundation mapping. Land/water data produced separately from S1 

and MODIS images were compared with precipitation data and LU/LC produced from 

S2, and agricultural areas under flood were analyzed. However, no accuracy assessment 

was made in the study. The study by Sherpa et al. [97] used S2, Landsat-8 and MODIS 

data for the validation of probabilistic flood maps produced from S1 data using a pixel-

based Bayesian approach, emphasizing the usability of the approach for rapid flood 

response purposes. Lal et al. [98] investigated a correlation between spatio-temporal 

pattern of satellite-based precipitation and a S1-based flood inundation map by using 

thresholding and an RF approach. The results of the study revealed the necessity of 

increasing ecological stability and resistance to flood hazards for some regions. 

 

Konapala et al. [11] used a deep Convolutional Neural Network (CNN) known as U-Net 

to evaluate the potential of various bands of S1&S2 images and different combinations 

of water indices. Datasets containing only S1 bands and height information with S1 

achieved an F1 score of 0.62 and 0.73, respectively. Among all combinations, the Hue, 

Saturation, Value (HSV) transformation of the S2 provided a median F1 score of 0.9, 

thanks to the superior contrast discrimination capabilities. In their study, Bai et al. [99] 

introduced a deep learning (DL) method for mapping permanent and flood water using 

S1&S2 data on the Sen1Floods11 benchmark dataset, achieving an OA value of 92.8%. 

Gašparović and Klobučar [100] implemented an object-based approach that combined 
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Sentinel-1&2 data for forest flood detection, achieving an OA value of 95% by 

incorporating various GLCM and vegetation features. 

 

In support of operationalizing flood segmentation on a global scale using U-Net deep 

learning algorithm, Muszynski et al. [101] proposed semantic flood segmentation, 

making the approach largely immune to geographic differences around the world. Results 

show the segmentation model with a level of 95% F1 score for both non-water and water 

classes, and 53% F1 score for water class, respectively on unseen flood events. Jenifer et 

al. [102] presented an AgriFloodNet (dual patch CNN model), learning the permanent 

water and flood classes from S1&S2 , for the detection of flood-affected agricultural 

areas. The proposed model provided 96.88% and 91.11% OA, respectively, from the 

SEN12-FLOOD benchmark data. 

 

2.4. Studies utilizing Machine Learning Methods for Flood Mapping 

 

SAR and optical-based flood mapping studies consist of several different approaches such 

as thresholding (global, split-based, fuzzy and multi-temporal), image segmentation, 

change detection, supervised and/or unsupervised learning methods.  

 

2.4.1. Thresholding 

 

The most basic and simple technique for rapid flood inundation mapping is image 

thresholding [52, 103]. Although the main difficulty in the thresholding method is user-

dependence of the parameters, there are also some limitations in flood mapping from SAR 

data [55]. These are atmospheric disturbances [104], double-bounce effect due to 

underwater vegetation or building [105], dry and smooth bare soil or shadow with a 

backscatter water-like surfaces and soil moisture content [53, 106, 107]. Furthermore, 

selection of threshold values rely on both the flood size and the reparability between the 

flood and non-flood pixels. Thresholding can cause errors, especially when rough water 

surface due to wind is occurs, and when flooded area is small relative to the working area. 
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Thresholding methods, which are basically based on the solution of the problems 

mentioned, can be evaluated in four groups as global, split-based, fuzzy and multi-

temporal thresholding. Global thresholding, which is an efficient and probably the 

simplest approach to image binarization, is based on class-variance in a mono image. One 

of the most well-known of these algorithms is the Otsu thresholding method introduced 

by Otsu [108], which works by minimizing the interclass variance, and based on 

bimodalities of the distribution of pixel values. In various studies in the literature, the 

Otsu algorithm has been used with complementary methods for SAR-based flood 

mapping [109-112]. In addition, algorithms such as Kittler & Illingworth (KI) and 

Minimum Cost Entropy based on threshold optimization problems are frequently used in 

this context [55, 67, 113, 114]. 

 

In order to overcome the aforementioned disadvantages of global thresholding methods, 

split-based approaches have been introduced that determines a representative area for 

selection of optimal threshold firstly. Martinis et al. [55] introduced segmenting the SAR 

image into tiles by using bimodal local histograms. In the study, tiles having a bimodal 

histogram, including water and non-water classes, were applied for KI threshold 

selection. Chini et al. [115] also proposed a similar adopted tiling approach to identify 

bimodal areas in an image. In their study, it was emphasized that the separability between 

flooded and non-flooded areas is clearer when the coefficient is higher than 2.  

 

For similar purposes, namely to improve the contrast between flood and non-flood pixels, 

Schlaffer et al. [116] introduced an approach that masks areas that are not likely to be 

inundated. A threshold value (10 m) determined by using the Height Above Nearest 

Drainage (HAND) index was applied to mask areas with a high probability of flooding, 

but it was stated that it should be selected according to the topography of the region. 

Similarly, using the HAND index for post-processing, Twele et al. [67] suggested a value 

of 15 m as the global threshold, while Clement et al. [117] and Bioresita et al.  [89] also 

suggested a threshold value of 20 m, adding some slope restrictions. 

 

In the literature, fuzzy logic approaches firstly introduced by Zadeh [118] have been 

frequently preferred to investigate floods in vegetated or forested areas, unlike the two 

methods mentioned above. Pulvirenti et al. [119] evaluated different datasets such as 

DEM and land cover map in addition to SAR data with a fuzzy logic approach and 
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suggested an approach for detecting flooding in vegetation, forest and urban areas. On 

account of the threshold values being calculated from only a few flood events, even if the 

problems that may occur when the preconditions of the models are not satisfactory can 

be eliminated by manual intervention this situation can cause a lack of automation in the 

process. Amitrano et al. [70] proposed two methods aiming to identify floods from the 

archive of Sentinel-1 SAR images with automatic fuzzy classification based on textural 

features and change index. While textural features provide additional information, they 

vary depending on the study area and the data used in terms of parameter and feature 

selection. Thus, the method using the change index requires further validation. Dasgupta 

et al. [120] applied a similar approach, which includes texture optimization and neuro-

fuzzy classification to a single COSMO-SkyMed data and it was stated that the proposed 

approach has the potential to improve operational SAR-based flood mapping. In addition, 

Grimaldi et al. [121] proposed a method that includes evaluating the thresholds 

representing wet and dry vegetation, calculated using probability binning, with a fuzzy 

logic approach.  

 

One of the main approaches in determining the optimum threshold value is based on the 

analysis of variation of statistical information generated from multi-temporal SAR data. 

Cian et al. [122] proposed the methodology consisting of change detection analysis of 

multi-time statistics. In addition, as a result of the study using the Normalized Difference 

Flood Index, a constant threshold of the index is determined to detect the flooded areas. 

 

2.4.2. Change detection 

 

Despite change detection techniques can overcome some limitations of thresholding 

methods and significantly improve the results, they have some additional limitations [57]. 

In these techniques, the selection of a reference data acquired from the same acquisition 

geometry is crucial to avoid changes due to geometric effects and the risk of 

underestimating the size of the event [123]. Another important issue in the reference 

selection is the seasonal effects, which can significantly change the backscatter and can 

be perceived as a change, especially in areas with vegetation [124]. It is possible to 

distinguish the flood backscatter areas from others with the reference images selected 

considering these considerations.  
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The most practical approach to reference image selection is to select the first available 

non-flood image that satisfies the required conditions [123]. However, with the increase 

in SAR archive data, different approaches have been developed based on the statistical 

analysis of image time series. Schlaffer et al.  [116] have been analyzed backscatter 

characteristics under flood and non-flood conditions with harmonic analysis of a multi-

temporal ENVISAT ASAR. Li et al. [72] have proposed a reference selection procedures 

with high similarity with multi-temporal images and low similarity with flood image. 

Though these methods provide a better reference than manual selection, they are time 

consuming and have high computational costs. 

 

2.4.3. Supervised & unsupervised learning 

 

Supervised classification methods require a dataset including labeled flooded areas and 

their corresponding pixels in SAR and optical data. A number of studies applied 

supervised and unsupervised learning methods to tackle flood extent mapping problems 

with SAR. One of the first studies in this category was performed by Pulvirenti et al. 

[119]. They introduced a semi-automatic fuzzy logic classifier, which used thresholds for 

classifying pixels automatically or using labeled data. Although the method proved to be 

quite accurate, it was emphasized that automatic classification needs a scattering model 

and causes modeling uncertainty. Skakun [125] used a self-organizing map (SOM) for 

segmentation and classification of SAR data. The approach applied to three different SAR 

sensors such as ERS-2/SAR, ENVISAT/ASAR and RADARSAT-1, yielded 85%, 98% 

and 96% OA, respectively, using independent test datasets. 

 

Notti et al. [126] presented a semi-automatic and manual approach by using a multi-

sensor (S1&S2, Landsat-8, MODIS, and Proba-V) for flood inundation mapping. 

Supervised classification techniques such as maximum likelihood and spectral angle 

methods have been performed on different configurations of mentioned datasets. Results 

showed that the availability and the combination of S1&S2 and Landsat-8 data together 

with ancillary data (DEM and geomorphological) was essential to flood mapping.  

 

Tanim et al. [127] proposed to flood inundation mapping approach using different 

supervised and unsupervised ML models, such as RF, SVM, and Maximum Likelihood 
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Classifier (MLC).  F1-score from the RF, SVM, MLC, and CD models show 0.67, 0.85, 

0.79 and 0.85. Wang et al. (2022) utilized a CNN model called MultiSenCNN for LULC 

classification and flood inundation mapping using optical, panchromatic and SAR 

datasets. The results showed that the OA of the combination of optical and  SAR data is 

slightly higher than the optical and   panchromatic data, highlighting that the flood result 

covering mostly crop and urban land is produced with a Kappa of 0.94. 

 

In summary, supervised classification techniques are frequently preferred for binary or 

multivariate classification challenges. These methods, such as the K-Nearest Neighbor 

Classifier, the RF classifier [128], SVM [129], and ANN classifier [130-132] have been 

used to SAR and optical images for flood inundation mapping. The prediction 

performances depend on the characteristics of the site and input feature.  
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3. METHODOLOGY 

 

 

In this chapter, the methodology proposed in the thesis is explained. The chapter begin 

with a description of the overview of proposed workflow, continue with explanations of 

the data pre-processing required prior to the analysis of Sentinel-1&2 data, feature 

extraction and selection, modeling, mapping and validation. 

 

3.1. Satellite Sensors  

 

In this section, characteristics of three sensors, i.e., Sentinel-1, Sentinel-2 and 

PlanetScope, from which data were utilized here are explained briefly. 

 

3.1.1. Sentinel-1 Sensor Characteristics 

 

The main purpose of Sentinel missions is to improve Global Environment and Security 

Monitoring (GMES) services by continuously monitoring the environment and to collect 

data similar to that of the European Remote Sensing satellite (ERS), Environmental 

Satellite (Envisat), and SPOT/Landsat, with improved capabilities [133]. Each Sentinel 

mission consists of a constellation of two satellites, denoted as A and B. Sentinel-1A was 

launched on 3 April 2014 and Sentinel-1B on 25 April 2016. However, Sentinel-1B data 

has not been available since January 10, 2022, due to an anomaly that resulted in a loss 

of data transmission [9]. For this reason, the Sentinel-1A satellite has the potential to map 

global land masses using the Interferometric Wide (IW) swath mode every 12 days 

through a single pass, be it ascending or descending. 

 

Sentinel-1 satellites are equipped with a C-Band SAR instrument payload, operating at a 

wavelength of nearly 5.7 cm. These satellites operate in four different observation modes, 
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namely Stripmap (SM), IW Area (standard mode), Extra Wide (EW), and Wave, 

depending on the satellite's position and the scope of the observation. The sensors offer 

four distinct combinations of vertical (V) and horizontal (H) polarization (i.e., VV, HH, 

VV + VH, and HH + HV) data. In this section, characteristics of the sensors used in this 

thesis are briefly explained. 

 

3.1.2. Sentinel-2 Sensor Characteristics 

 

Sentinel-2 satellites are equipped with optical instruments comprising 13 multi-spectral 

bands, capturing images at spatial resolutions ranging from 10 m to 60 m across the 

wavelengths from 443 nm to 2190 nm. [133]. In the Sentinel-2 satellites, the visible and 

NIR bands have a GSD of 10 m. The vegetation red edge and short-wave infrared (SWIR) 

bands have a 20 m, while the coastal aerosol, water vapor, and cirrus bands have a GSD 

of 60 m [10]. The temporal resolution of Sentinel-2 constellation are 5 days, and each 

satellite has a revisit frequency of 10 days. 

 

3.1.3. PlanetScope Sensor Characteristics 

 

The PlanetScope satellite constellation, which is operated by Planet Labs Inc., acquire 

images with a ground sampling distance (GSD) of 3.7 m [134]. This satellite has the 

capability to collect images of the entire land surface of the Earth every day, with a daily 

collection capacity of 200 million km²/day). PlanetScope imagery products are available 

in 3 levels: Basic Scenes (Level 1B), Ortho Scenes (Level 3B), and Ortho Tile (Level 

3A). The Level 3B products have three visible RGB and one near-infrared band and are 

processed orthorectified, scaled Top of Atmosphere Radiance image products suitable for 

analytic and visual applications [134]. PlanetScope orthoimages exhibit an approximate 

spatial resolution of 3 meters and demonstrate positional accuracy with root mean square 

error (RMSE) values better than 10 meters [134]. 
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3.2. Overview of the Proposed Workflow 

 

In this thesis, the proposed method is based on the analysis of S1 & S2 data acquired 

before and after a hazard event as shown in Figure 3.1. The methodology was developed 

by using the Sardoba dam failure case, which is the first study area for which pre- & post-

event S1 & S2 data are available, and then applied to the Ordu flood case, which was 

previously mapped with a preliminary version of it [135]. Since Sentinel-1 data is 

presumably not affected by weather conditions, the main limitation remains in the 

temporal resolution, i.e. finding suitable data that corresponds to flood event time. 

Specifically concerning the flood hazard, the fact that Sentinel-2 data is affected by 

weather conditions is the most important limitation of many flood mapping cases. In this 

context, the proposed methodology considers data availability, which is one of the major 

limitations, and analyzes auxiliary features for flood extent mapping with S1 & S2 data.  

 

The methodology applied here consists of three main stages as (a) data pre-processing, 

(b) feature extraction and selection, and (c) modelling, mapping and validation, as 

illustrated in Figure 3.1. In the first stage, a number of methods were applied to correct 

S1 & S2 data radiometrically and geometrically. For feature extraction, GLCM texture 

measurements first presented by Haralick et al. [71] were applied to pre- & post-event S1 

& S2 band data. In addition, spectral indices such as NDVI and modified NDWI 

(MNDWI) were produced from pre- & post-event optical (S2) images. For selecting 

optimal features, Principle Component Analysis (PCA) was applied to the GLCM textural 

features for reducing dimensions. After the PCA, instead of GLCM variables, their 

principle components (GLCM PCs) were integrated as supplementary data to the original 

S1 VV and VH bands and S2 RGB, NIR and SWIR bands. At this stage, the features were 

organized into different data stacks to investigate the effects of both data availability 

scenarios and impact of different features on the prediction performances. In each data 

stack, which consists of different data combinations, the training data delineation strategy 

is different as the data availability scenario is also different. This aspect is further 

explained in the following sections. At the last stage, the RF method (Breiman [136]) was 

applied to learn from the data created in the previous stage. The classification results were 
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validated by using pixels within test polygons delineated on external reference data (such 

as PlanetScope). 

 

Figure 3.1. Overall methodological workflow. 
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3.3. Data Pre-processing 

 

Pre-processing of satellite image products is essential for the data to represent real value 

and can be utilized in multi-temporal or multi-sensor analyses. A pre-processing chain 

applied for the processing and interpretation of Sentinel-1 SAR and Sentinel-2 optical 

data SAR is given in Figure 3.2. As shown in the figure, Level-1 IW mode and Sentinel-

1 GRD pre-processing steps consist of radiometric calibration, terrain correction, speckle 

filtering, shadow and layover masking. Radiometric calibration of SAR data provides the 

opportunity to be compared with different datasets obtained by another or the same 

sensor, by converting pixel values into physically meaningful measurements [137]. Thus, 

pre- & post-event S1 GRD images were calibrated to represent radar backscatter and σ0 

bands were generated. 

 

SAR data typically have geometric distortions, such as shadow, layover and 

foreshortening, caused by topographic variations and the side-looking viewing angle of 

the satellite sensor. For the elimination of such distortions, the pre- & post-event Sentinel-

1 data have been terrain-corrected and orthorectified using the Range Doppler Terrain 

Correction algorithm. SRTM-1Sec has been used as the DEM with a bilinear interpolation 

resampling. In addition, the 2-pass method proposed by Schreier [138] have been applied 

to orthorectified image to eliminate the shadow effect considering the fact that no 

information is obtained from back slopes. At this stage, if it is necessary to mosaic images 

taken from different tracks, the backscatter coefficients are converted from the dB scale 

to the original linear scale and it is important to normalize them according to the incidence 

angles. For this purpose, different backscatter normalization techniques can be used such 

as angular-based radiometric slope correction. 

 

One of the most important problems preventing the interpretation of SAR images is 

speckle noise caused by the random effects of multiple backscattering mechanisms that 

may occur in each resolution cell [139]. Filters such as Boxcar, Mean, Median, Lee, Lee 

Sigma and Gamma-MAP have been developed in SAR images to reduce noise caused by 

the nature of the data acquisition methods. In this context, Lee and Lee Sigma filters have 

been used frequently in the literature to eliminate speckle noise and have come to the fore 
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in flood analysis [73, 140, 141]. In Tavus et al. [73], for determining the optimal kernel 

size, VV and VH pre- & post-event Sentinel-1 data were applied Lee sigma filter with a 

(3 x 3), (5 x 5), (7 x 7) and (9 x 9) filters, respectively. The effect of kernel sizes on 

homogeneous surfaces such as lake surfaces was analyzed and it was stated that the 7 x 7 

kernel size performed better than the other three filters. In this thesis, a (7 x 7) kernel size 

Lee Sigma filter was applied for speckle filtering, based on the relevant literature and the 

analysis results by Tavus et al. [73]. 

 

 

Figure 3.2. Pre-processing of the Sentinel-1&2 data. 

 



 

29 

Sentinel-2 involves 13 spectral bands as Blue (B2), Green (B3), Red (B4), and NIR (B8) 

at a spatial resolution of 10 m, Vegetation Red Edge (B5, B6, B7, B8A) and SWIR (B11, 

B12) of 20 m and Coastal Aerosol (B1), Water Vapour (B9), and SWIR (B10) of 60 m. 

In this thesis, B2, B3, B4, B8 and B11 bands of Sentinel-2 have been used. Since the 

SWIR band has a spatial resolution of 20 m, it was upsampled at 10 m for the use together 

with the other bands. The data to be analyzed in flood events generally need to be 

eliminated from cloud and cloud shadow areas. For this reason, cloud and cloud shadow 

pixels mask out the data by using medium and high probability cloud and cloud shadow 

masks freely available from Sentinel-2.  

 

Pre-processed pre- & post-event Sentinel-2 data have been used to generate of training 

dataset, which is given as a final step in Figure 3.2. In order to determine the training data 

required for the classification, in case of post-event and usable Sentinel-2 data, LULC 

classes and training data in the study area were manually delineated from this data. In 

particular, training data of flood and flooded vegetation classes were produced from pre-

processed post-flood Sentinel-2 data, while permanent water, urban, forest and vegetation 

classes were produced using pre-processed pre-event Sentinel-2 data.  

 

3.4. Feature Extraction and Analysis 

 

The importance of using auxiliary features in order to improve the classification accuracy 

of primary remote sensing data has been emphasized in many studies conducted for 

different purposes [142, 143]. This concept is basically based on the assumption that 

information that can be produced based on the relations of the object or surface of interest 

to environmental factors such as topography, geology, climate, soil, water and moisture 
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can be included as descriptive features [144]. Many studies have demonstrated the 

potential of using such auxiliary features to investigate land surface changes caused by 

flood events [66, 132, 145-147]. In this thesis, NDVI, MNDWI and GLCM measurements 

were used as auxiliary features for improving the mapping accuracy. The methods are 

briefly explained in the following. 

 

3.4.1. GLCM Features 

 

The GLCM [71] is one of the commonly  preferred for measuring of the second-order 

texture and based on the estimation of the probability density function, P (i, j | d, θ). 

GLCM measures the statistical spatial relation of c pixel co-occurrence in a pre-defined 

window and directions (θ = 0°, 45°, 90° and 135°) and pixel distances (d) [37].   

 

In this thesis, the GLCM measurements were applied to primary pre- & post-event 

Sentinel-1 (VV and VH) and Sentinel-2 mosaics for separating the flood and other land 

cover types. The GLCM measurements consist of the contrast, dissimilarity, 

homogeneity, angular second moment, maximum probability, energy, entropy, mean, 

variance and correlation, respectively. Textural measurements formulated in Equations 

3.1-3.10 were applied to the Sentinel-1&2 datasets in all directions and with a 64-level 

probabilistic quantizer with a kernel size of (9 x 9), considering the computational 

requirements, although Amitrano et al. [70] and Senthilnath et al. [148] suggested the size 

of (7 x 7).  
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𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑
𝑃𝑖,𝑗

1 + (𝑖 − 𝑗)2

𝑁−1

𝑖,𝑗=0

 (3.1) 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ 𝑃𝑖,𝑗 (𝑖 − 𝑗)2 

𝑁−1

𝑖,𝑗=0

 (3.2) 

𝐷𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = ∑  𝑃𝑖,𝑗 │𝑖 − 𝑗│ 

𝑁−1

𝑖,𝑗=0

 (3.3) 

𝐴𝑛𝑔𝑢𝑙𝑎𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 𝑀𝑜𝑚𝑒𝑛𝑡 = ∑  {𝜌(𝑖, 𝑗)}2
𝑁−1

𝑖,𝑗=0

 (3.4) 

𝐸𝑛𝑒𝑟𝑔𝑦 =   √𝐴𝑆𝑀 (3.5) 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑚𝑎𝑥  𝑃𝑖,𝑗 (3.6) 

𝐸𝑛𝑡𝑟𝑜𝑝𝑖 = ∑   𝑃𝑖,𝑗  (−𝑙𝑛 𝑃𝑖,𝑗)

𝑁−1

𝑖,𝑗=0

 (3.7) 

𝐺𝐿𝐶𝑀 𝑀𝑒𝑎𝑛 (µ𝑖) = ∑  𝑖 (𝑃𝑖𝑗),      

𝑁−1

𝑖,𝑗=0

µ𝑗 = ∑  𝑗 (𝑃𝑖𝑗)

𝑁−1

𝑖,𝑗=0

 (3.8) 

𝐺𝐿𝐶𝑀 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝜎𝑖,𝑗
2 ) = ∑ 𝑃𝑖,𝑗(𝑖, 𝑗 − µ𝑖,𝑗)

2
𝑁−1

𝑖,𝑗=0

 (3.9) 

𝐺𝐿𝐶𝑀 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑   𝑃𝑖,𝑗  

[
 
 
 
(𝑖 − µ𝑖)(𝑗 − µ𝑖)

√(𝜎𝑖
2)(𝜎𝑗

2)
]
 
 
 𝑁−1

𝑖,𝑗=0

     

 

(3.10) 

 

 

where, Pi,j  is the probability of values i and j occurring in adjacent pixels. i and j are the 

labels of the columns and rows (respectively) of the GLCM. µ and σ indicate the mean 

and standard deviation, respectively. 
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Figure 3.3. GLCM texture feature generation and selection. 
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3.4.2 Spectral Indices  

 

The Sentinel-2 images provide valuable information about vegetation, urban, water and 

various other land cover classes. Spectral indices series such as NDVI [149], NDWI [150] 

(McFeeters, 1996), and many more are often preferred in the most common land 

monitoring applications. These indices provide information about the impacts of flood 

events on soil or ground even after the water has been absorbed [126, 151, 152]. The 

NDVI and MDNWI described in Equations (3.11-3.12) were obtained from the pre- & 

post-event Sentinel-2 data (Figure 3.4).  

 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝐸𝐷)/(𝑁𝐼𝑅 + 𝑅𝐸𝐷) (3.11) 

𝑀𝑁𝐷𝑊𝐼 = ( 𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅)/(𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅) (3.12) 

 

 

Figure 3.4. Spectral feature generation. 
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3.4.3. Principal Component Analysis 

 

The PCA has been used in a number of flood mapping studies to improve visual 

interpretation or to generate input for the classification process [153]. In addition, as the 

coverage of dense multi-temporal and multi-source data increases, the potential for flood 

detection will increase even in areas with vertical targets such as dense vegetation and 

urban areas [154-158]. 

 

The purpose of PCA in this study is to optimize textural information and highlight 

uncorrelated information rather than preserving common information between auxiliary 

features. As shown in Figure 3.3, PCA have been applied to pre- & post-event Sentinel-

1&2 GLCM features. As a result of the PCA, the principal components (PCs) that contain 

at least 98% information of the overall data have been used as auxiliary features together 

with the original Sentinel-1&2 bands. 

 

3.4.4. Feature Selection 

 

Considering the poor availability of Sentinel-2 data during or after a flood event due to 

clouds, various data availability scenarios for flood map production were investigated in 

detail in this thesis. Since post-event Sentinel-2 data suffered from clouds in Ordu, the 

investigations were carried out in Sardoba only. A number of feature stacks were created 

for this purpose as shown in Table 3.1 Stack 1 (Sentinel-1 only) and Stack 2 (Sentinel-2 

only) were created in order to compare the performances of single sensor data for flood 

mapping. Accordingly, Stack 1 includes pre- & post-event flood S1 bands (VV and VH) 

and GLCM PCs, while Stack 2 includes pre- & post-event flood S2 bands (RGB, NIR, 
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SWIR), NDVI, MNDWI and GLCM PCs. On the other hand, Stack 3 was created for the 

analysis of scenarios where post-event S2 data cannot be used as input in classification. 

Therefore, Stack 3 was created for considering that pre-event Sentinel-2 data is usually 

available to contribute to Sentinel-1. Stack 4, on the other hand, represents a data group 

in which pre- & post-event S1 & S2 data are usable, which is generally not the case in 

flood events. Finally, Stack 5 was created for evaluating contributions of GLCM PCs in 

Stack 4 by removing them from this feature group. 

 

Table 3.1. Data stacks and their components. 

Features/Stacks Stack 1 Stack 2 Stack 3 Stack 4 Stack 5 

S
en

ti
n

el
-2

 P
re

 

Bands  ✓ ✓ ✓ ✓ 

NDVI  ✓ ✓ ✓ ✓ 

MNDWI  ✓ ✓ ✓ ✓ 

GLCM PCs  ✓ ✓ ✓  

P
o
st

 

Bands  ✓  ✓ ✓ 

NDVI  ✓  ✓ ✓ 

MNDWI  ✓  ✓ ✓ 

GLCM PCs  ✓  ✓  

S
en

ti
n

el
-1

 

P
re

 Bands ✓  ✓ ✓ ✓ 

GLCM PCs ✓  ✓ ✓  

P
o
s

t 

Bands ✓  ✓ ✓ ✓ 

GLCM PCs ✓  ✓ ✓  

 

 

3.5. Random Forest Classification 

 

Supervised and unsupervised ML approaches have been commonly used for flood 

inundation mapping with satellite imagery [62, 159]. Recently, the algorithms based on 

machine learning (SVM, decision tree (DT) and RF) and deep learning (deep NN, CNN 

and recurrent NN) have a high potential and great accuracy in many research activities 

[160, 161]. The ML including deep learning-based algorithms are frequently preferred 
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for accurate analysis of pre- & post-flood data, especially in flood inundation mapping 

studies [162]. 

 

The RF is a supervised ML approach that makes output (i.e. predictions) by combining 

results from decision trees (DT), {h (x, Ɵi), i = 1,…,}, where x is the input vector and Ɵi 

indicate the random vectors. This approach, proposed by Breiman [136], gives a vector 

(x) as input to each of the decision trees to classify and then final decision according to 

voting process assign to labels. In this way, RF can correctly classify dataset based on 

majority voting in each decision trees and process large datasets. The RF classification 

requires two model parameters defined by the user, the number of trees (T) and features 

(M). Although this study did not test the effect of the values assigned to these parameters, 

previous studies recommended that to obtain high accuracy, T can be set to 500 and M 

should be the square root of the number of features [163-165]. In this thesis, no parameter 

optimization was made for RF, but based on both literature review and heuristic analysis 

after manual investigation, the T parameter was used as 300. The ten-fold cross-validation 

results yielded mean OA and RMSE values of 92% and 0.23 based on random 

initializations for Stack 1 (Figure 3.5).  

 

Figure 3.5. Boxplot of the 10-fold cross-validation results. 

 

RF have been used in many remote sensing applications and compared other ensemble 

methods [166, 167]. Ham et al. [166] used RF for hyperspectral with a limited sample set 

and Gislason et al. [167] used RF for classification of multi-source data. Waske and van 

der Linden [168] used RF and SVM classifiers to classify multisensor imagery and stated 
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that RF performed better. In these studies, it has been noted that RF outperforms a single 

decision tree and is faster in terms of computation time compared to other ensemble 

methods [169, 170]. The selection of RF in this thesis was primarily due to its ability to 

outperform most classifiers, minimum parameter requirement, stability together with 

small sample sizes and few variables, and the high accuracy it consistently achieves in 

comparison to other classifiers, as demonstrated by Phiri et al. [171]. 

 

3.6. Validation 

 

In this thesis, a set of measures calculated from the error matrix and given in Equations 

3.13- 3.17 have been employed for assessing the results. The error matrices show the 

predicted and actual labels of the samples and the confusion between the classes together 

with true and false predictions. To analyze the error matrices, measures such as producer's 

accuracy (PA), user's accuracy (UA), overall accuracy (OA) [172]were used together with 

Kappa coefficient (K) [173]. 

 

𝑂𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 (𝑃𝐴) =
𝑋𝑖𝑖 

𝑋+𝑖 
 (3.13) 

𝐶𝑜𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 (𝑈𝐴) =
𝑋𝑖𝑖 

𝑋𝑖+ 
 (3.14) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 𝑥 
(𝑃𝐴 𝑥 𝑈𝐴)

(𝑃𝐴 + 𝑈𝐴)
 (3.15) 

𝑂𝐴 =   
∑ 𝑋𝑖𝑖 

𝑟
𝑖=1

𝑁
 (3.16) 

𝐾 =   
𝑁 ∑ 𝑋𝑖𝑖 − ∑ (𝑋𝑖+  𝑋+𝑖) 

𝑟
𝑖=1

𝑟
𝑖=1

𝑁2 − ∑ (𝑋𝑖+  𝑋+𝑖)                  
𝑟
𝑖=1

  
(3.17) 

 

 

where, r is number of rows; Xii is the number of observations in i, i (row, column) ; Xi+ 

and X+i are total of observations in i, i  (row, column), respectively. N is the total number 

of observations. 



 

38 

Even though the supervised classification approaches are able to successfully detect water 

bodies and flooded areas, ground truth is required for the training, classification and 

validation stages [174]. This requirement is often the greatest deficiency in flood mapping 

procedures. In this concept, train, test and validation data can often be obtained by using 

higher-quality data or by conducting field visits. Second operation is much more complex 

and often not feasible in cases including areas with high water dynamics or flood event 

cases.  

 

To validate the classification results, the PlanetScope image mosaics were used as a 

reference data in Sardoba study area. Unfortunately, no such reference was available for 

Ordu floods. The PlanetScope satellite constellation, operated by Planet Labs Inc., 

acquire the images with a GSD of 3.7 meters [134]. The reference dataset was created 

through manual delineation using PlanetScope data obtained on May 10, 2020, through 

the Planet Explorer platform (www.planet.com). Figure 3.6 shows representative 

identified LULC classes on both the PlanetScope and post-event Sentinel-2 RGB data. 

The number of references (pixels) for Stack 1, Stack 2 & 4, and Stack 3 was 442,530, 

546,052 and 450,680, respectively. 

 

 

Figure 3.6. Examples from PlanetScope post-event (10/05/2020) image parts (left) and 

locations of training polygons depicted on post-event S2 RGB image (right) [128]. 

http://www.planet.com/
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4. THE FLOOD EVENTS 

 

 

The methodology proposed in the thesis is applied to two different flood events with 

different characteristics in terms of data availability, topographical and land cover 

conditions. In this section, the flood events, study area and data characteristics of the test 

areas are explained. 

 

4.1. Sardoba Dam Failure  

 

In this section, Sardoba study area and event and data characteristics are explained. The 

site was selected as it is a relatively flat region and the flooding was due to a dam failure.  

 

4.1.1. Sardoba Study Area and Event Characteristics 

 

The construction of the Sardoba Dam was completed between 2010 and 2017 on the Syr 

Darya River, one of Uzbekistan's two major rivers [175]. The dam reservoir holds 

particular importance, primarily concerning the country's irrigation and energy needs. 

With a capacity of approximately 922 million m3, it efficiently provides water for 

irrigating agricultural lands in the Sirdaryo and Jizzakh regions [176]. The agricultural 

products cultivated in the region are 80% cotton, 15% melon-watermelon, 4% corn and 

1% alfalfa (Maktaaral.gov.kz, 2020). The dam, which provides water for irrigation of 

croplands in Sirdaryo and Jizzakh regions, has a capacity of approximately 922 million 

m3 [176]. Heavy rains in some parts of Uzbekistan on April 27-29, 2020, caused partial 

collapse of the Sardoba dam in the province of Sirdarya. On May 1, 2020, the region was 

flooded due to a failure on the wall of the dam. A dam failure on May 1, 2020, led to 

extensive flooding in the region, with floodwaters encroaching into Kazakhstan's borders, 

resulting in significant damage across more than 20 small settlements and fertile 

agricultural lands. [175]. The flooding especially affected the Sardoba and Jizzack 
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districts of Uzbekistan and Maktaaral district of Kazakhistan province and caused great 

damage to the economy of the region. 

 

The study site location covering an area of approximately 2430 km2 and the 

corresponding land cover (LC) and elevation maps are shown in Figure 4.1. According 

to the WorldCover 2021-v2 product provided by ESA, the study area mainly consists of 

73% cropland [177]. This is followed by 14% grassland, 6% built-up area, 4% bare/sparse 

vegetation, and 3% permanent water bodies, respectively. As shown in Figure 4.1.(b), 

there are many villages consisting of houses with three or less floors around the dam built 

for irrigation of croplands in the region. In Figure 4.1.(c), according to the Global 30 Arc-

Second Elevation (GTOPO30) elevation values in the study area have a smooth 

decreasing change from south to north between 260-360 m [178]. In this way, the SAR 

data used in the study are not affected by the distortions caused by the the image 

acquisition geometry.  

 

 

Figure 4.1. The study area location (a), the LULC map 

obtained from the WorldCover 2021-v2 (b) and DEM from GTOPO-30 (c) .   
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4.1.2. Sardoba Data Characteristics 

 

In Sardoba site, S1 GRD and S2 MSI L2A datasets are provided by the ESA Copernicus 

Programme. Also, PlanetScope data representing the flood conditions have been used as 

an external reference source for the validation of the results. Table 4.1 summarizes the 

data acquisition dates (dd.mm.yyyy), the surface state (pre- or post-event), flight direction 

and orbit number together with dataset ID such as DS1. The Sentinel-2 data were 

14.04.2020 (pre-event) and 04.05.2020 (post-event). Likewise, the pre-event Sentinel-1A 

is 29.04.2020, while the post-event Sentinel-1A data is 05.05.2020. Overviews of the pre- 

& post-event satellite images from S2 in true color combination and the VV and VH 

polarization data of S1 are given in Figure 4.2. 

 

Table 4.1. Basic specifications of the datasets used in the Sardoba study area. 

 ID 
Acquisition 

Date 
Condition 

Flight 

Direction/Orbit 

Number 

Sentinel-1 

DS1 29.04.2020 Pre-event ASC/71 

DS2 

DS3 
05.05.2020 Post-event DSC/151 

Sentinel-2 
DS4 24.04.2020 Pre-event 

DSC/34 
DS5 04.05.2020 Post-event 

PlanetScope 

orthoimage 
 10.05.2020 Post-event  

DS1: S1A_IW_GRDH_1SDV_20200429T132316_20200429T132341_032343_03BE56_0401 

DS2:S1A_IW_GRDH_1SDV_20200505T013021_20200505T013046_032423_03C11E_EDA3 

DS3: S1A_IW_GRDH_1SDV_20200505T012956_20200505T013021_032423_03C11E_7886 

DS4: S2B_MSIL2A_20200424T061629_N0214_R034_T42TVK_20200424T095418 

DS5: S2B_MSIL2A_20200504T061629_N0214_R034_T42TVK_20200504T095816 
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Figure 4.2. Pre- & post-event satellite images of the study site obtained from Sentinel-2 

in true color combination and the VV and VH polarization data of Sentinel-1. 

 

4.2. Ordu 2018 Flood 

 

In this section, Ordu study area and event and data characteristics have been explained. 

The site was selected as floods occur frequently in the region, which has rugged 

topography and dense vegetation. 

 

4.2.1. Ordu 2018 Study Area and Event Characteristics 

 

The study areas investigated here are the flood disasters that occurred in some districts of 

Ordu and Samsun provinces located in the Black Sea Region, in the north of Türkiye. 

Unye, Ikizce and Caybası districts in Ordu Province and Terme and Carsamba districts in 

Samsun Province were the most affected by the disaster. The study area has a Black Sea 

climate and there is precipitation in almost all months of the year. Based on analysis 

between 1950 and 2011, landslides (80%) constitute the most prevalent natural hazard in 

the area, followed by floods (9%) and rockfall (8%) [179]. 

 

On August 8, 2018 in the late afternoon, flooding occurred in the area and damaged 

houses, agricultural areas, and infrastructure. In the area, about 80 mm of precipitation 
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fell per square meter and caused flooding of streams and rivers. There have been 

numerous landslides triggered by flooding and a total of 8 bridges were destroyed, 

including the Cevizdere Bridge in Unye Town (TRT News, 2018). Further details about 

the event can be found in Tavus et al. [135] and Kocaman et al. [179]. 

 

The study area covers an area of approximately 1985 km2 and the corresponding LULC 

and elevation maps are given in Figure 4.3. According to the WorldCover 2021-v2 

product provided by ESA, the study area mainly consists of 82% trees classes. This is 

followed by 7% cropland, 6% grassland, 3% permanent water bodies, 1% built-up area 

and 1% herbaceous wetland, respectively (Figure 4.3 (b)). The climate and precipitation 

yields the area to be suitable for agriculture. Especially in Ordu province, there are 

hazelnut trees on the hill slopes. The other agricultural products of the region are corn, 

potatoes, beans, soy, wheat and barley, but some citrus fruits and tea are also cultivated. 

The elevation values of the study area, which consists of approximately 85% hilly regions, 

vary between 1 m and 1200 m (Figure 4.3 (c)). In the centre of the districts which shown 

with towns in the Figure 4.3 (c), mean elevation value are nearly 25 m, 10 m, 12 m, 140 

m and 500m for Carşamba, Terme, Unye, Ikızce and Caybaşı regions, respectively.  

 

 

Figure 4.3. The study area location (a), the LULC map 

obtained from the WorldCover 2021-v2 (b) and DEM from EU-DEM (c).  
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4.2.2. Ordu Data Characteristics 

 

In this study area, Sentinel-1 GRD and Sentinel-2 MSI L2A datasets were available. Table 

4.2 summarizes the data acquisition dates (dd.mm.yyyy), the ground conditions at the 

time of the data acquisition (pre- or post-event), flight direction and orbit number together 

with data-sets ID such as DS1. The selected Sentinel-1 and Sentinel-2 data accurately 

represented the pre- & post-flood conditions in terms of time and resolution. The Sentinel-

2 data were 16.05.2018 (pre-event) and 09.08.2018 (post-event).  Likewise, the pre-event 

Sentinel-1A is 18.08.2018, while the post-event Sentinel-1A data is 10.08.2018. 

Overviews of the pre- & post-event satellite images of the some part of the Carsamba 

town obtained from Sentinel-2 in true color combination and the VV and VH polarization 

data of Sentinel-1 are given in Figure 4.4. 

 

Table 4.2. Basic specifications of the datasets used in the Ordu study area. 

 ID 
Acquisition 

Date 
Condition 

Flight 

Direction/Orbit 

Number 

Sentinel-1 

DS1 

DS2 
18/05/2018 Pre-event 

DSC/94 
DS3 

DS4 
10/08/2018 Post-event 

Sentinel-2 

DS5 16/05/2018 Pre-event 

DSC/121 DS6 

DS7 
09/08/2018 Post-event 

DS1: S1B_IW_GRDH_1SDV_20180518T034024_20180518T034049_010970_014159_08A7 

DS2: S1B_IW_GRDH_1SDV_20180518T034049_20180518T034114_010970_014159_B477 

DS3: S1B_IW_GRDH_1SDV_20180810T034029_20180810T034054_012195_016770_7612 

DS4: S1B_IW_GRDH_1SDV_20180810T034054_20180810T034119_012195_016770_841C 

DS5: S2A_MSIL2A_20180516T081611_N0207_R121_T37TCF_20180516T102815 

DS6: S2B_MSIL2A_20180809T081559_N0208_R121_T37TCF_20180809T112729 

DS7: S2B_MSIL2A_20180809T081559_N0208_R121_T37TCF_20180809T132329 
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Figure 4.4. A part of pre- & post-event Sentinel-2 images of the study site and the VV 

and VH polarization data of Sentinel-1. 

 

 

 



 

46 
 

5. RESULTS 

 

 

In this chapter, the quantitative and qualitative results of two flood events occurred in two 

different regions, one with rugged topography (Ordu site) and the other one in plains 

(Sardoba Site), are presented. 

 

5.1. Results from Sardoba Dam Failure 

 

This section presents the flood mapping results for the Sardoba dam failure occured on 

May 1st, 2020 in detail. The feature maps produced for Sardoba are given in the next sub-

heading. Section 5.1.2 presents the flood maps obtained with different feature sets and 

the validation results in terms of confusion matrices between the identified classes, 

overall accuracy, user’s and producer’s accuracy, the Kappa value, and the F-1 score. 

 

5.1.1 Feature Maps Produced for Sardoba Site (GLCM, Indices and PCA)  

 

Texture measurements explained in Chapter 3.4.1 have been applied to the pre- & post-

event S1 and S2 data. As a result of applying ten GLCM measurements to pre- & post-

event VV and VH bands of Sentinel-1 data, a total of 40 textural features were produced. 

Table 5.1 presents overviews of selected textural features obtained from pre- & post-event  

Sentinel-1 VV and VH data. Additionally, pixel value ranges ranging from white to black 

are given for the homogeneity, entropy and correlation features that can best be 

interpreted visually. The PCA was applied individually to the pre- & post-event VV and 

VH datasets, each containing 10 textural features. Table 5.2 presents overviews of PCs 

together with their information percentages. With PCA, PC1 (99%) from the pre-event 

VV dataset, PC1 and PC2 (87% and 13%) from the pre-event VH, PC1 (98%) from the 

post-event VV, and PC1 and PC2 from the post-event VH data were computed (Table 

5.2).  
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Table 5.1. Overviews of selected textural features produced from S1 for Sardoba. 

Inputs 
Sentinel-1 VV Sentinel-1 VH 
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Table 5.2. Overviews of GLCM PCs derived from the S1 and their information 

percentages for Sardoba. 

Inputs 
Sentinel-1 VV Sentinel-1 VH 

PC1 PC2 PC1 PC2 

P
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t 

 
99% 

 
1% 

 
87% 

 
13% 
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98% 

 
2% 

 
91% 

 
9% 
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For the feature extraction of Sentinel-2 dataset, GLCM features and spectral indices that 

include NDVI and MNDWI have been produced. Table 5.3 represent the NDVI and 

MNDWI produced from pre- & post-event Sentinel-2 data. In the NDVI images,  flooded 

areas can be recognized well. The MNDWI results help to separate permanent waters and 

flooded areas. 

 

Table 5.3. Overviews of spectral indices produced from S2 datasets for Sardoba.  

Inputs 
Sentinel-2 

NDVI MNDVI 
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The texture measurements have been applied also to the to pre- & post-event red (B2), 

gren (B3), blue (B4), NIR (B8) and SWIR (B11) of Sentinel-2 data. Thus, a total of 100 

GLCM features have been produced. Table 5.4 shows the overviews of selected textural 

features applied to the pre- & post-event B2, B3, B4, B8 and B11 data of Sentinel-2. In 

addition, homogeneity, entropy and correlation features are given, with pixel values 

ranging from white to black (0.00 - 1.00), (-0.00 - 9.5) and (0.00 - 1.0), respectively. 

Likewise, for the S1 dataset, PCA was applied separately to pre- & post-event VV and 

VH bands, each containing 10 texture features. According to PCA, the pre-event S2 

dataset yielded PC1, PC2, and PC3 accounting for 57%, 37%, and 6% of the information, 

respectively, while the post-event S2 dataset generated PC1, PC2, and PC3 components 

accounting for 70%, 24%, and 6% of the information (Table 5.5). 
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Table 5.4. Overviews of the textural features produced from S2 over Sardoba. 
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Table 5.5. Overviews the GLCM PCs derived from S2 and their information percentages 

over Sardoba. 

Inputs 
Sentinel-2 

PC1 PC2 PC3 
P

re
-e

v
en

t 

 

57% 

 

37% 

 

6% 

P
o
st

-e
v
en

t 

 

70% 

 

24% 

 

6% 

 

5.1.2. Flood Maps and Validation Results  

 

The flood maps produced from Stack 1- 4 are presented in Figure 5.1. (a)- (d). The Stack 

1 and Stack 2 were created to analyse the performances of single sensor data for flood 

mapping. While Stack 3 refers to the situation where post-event S2 data cannot be used, 

it includes pre-event S2, pre-&post event S1 and their respective feature maps. Stack 4 

consists of both pre- & post-event S1 and S2 data and their features. In addition, Stack 5 

was produced, the details of which are explained later and the classification result is given 

in Figure 5.2, in order to analyze the contribution of GLCM feature components to the 

prediction performance. As shown in Figure 5.1 (a), when only S1 data are used, five 

LULC classes (FL, PW, V1, V2, Ur) could be defined, while the availability of the pre- 

& post-event S2 data allows for the definition of further LULC classes (additionally FV 

and BL. Additionally,  Stack 3 allows for the definition of six distinct LULC classes, 

whereas Stack 4 enables the definition of seven classes (Figure 5.1 (c)). In the event that 

post-event S2 data is not available (Stack 3), except for the FV class, the other six classes 

were determined (Figure 5.1(c)). 
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Figure 5.1. The RF classification results for; (a) Stack 1 (S1 only), (b) Stack 2 (S2 

only), (c) Stack 3 (S1 and pre-event S2) and (d) Stack 4 (S1 and S2). 
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Figure 5.2. The RF classification result for Stack 5 (without GLCM PCs). 

 

Figure 5.3. Zoomed-in views of Stack 1-5 classification results for sub-areas A and B, 

denoted by the black rectangles in Figure 5.2. 
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For analyzing contributions of the GLCM PCs to the prediction performance, they were 

removed from Stack 4 and thus Stack 5 was obtained. Figure 5.2 shows the classification 

result produced from Stack 5, which consists of pre- & post-event S1 and S2 bands (B2, 

B3, B4, B8, B11), NDVI and MNDWI. In addition, for detailed visual analysis, views of 

Stack 1-5 classification results for sub-areas A and B, denoted by the black rectangles in 

Figure 5.2 are given in Figure 5.3. The flood maps produced from Stack 4 and Stack 5 

exhibit differences in specifically the FV class based on the visual inspection. Here, 

omission of the GLCM features caused FV pixels to be generally labeled as FL, but also 

confused with the Ur and V2 classes. In other words, in the absence of texture 

information, the FV class could not be learned and classified by the model and the 

relevant FV pixels were usually assigned to the classes they belonged to the pre-flood 

conditions. Consequently, although distinctions were noted in the FL, Ur, and V1 classes, 

no substantial change was evident in the PW and V2 classes. On the other hand, the use 

of GLCM data, especially for the Ur class, largely eliminated the noisy-pattern found as 

a result of not using it. 

 

The classification results given in Figure 5.1 include the above-mentioned different 

LULC classes, as well as many differences when compared visually. As can be seen in 

Figure 5.1 (a), Stack 1, which consists of only S1 and its features, could not determine 

the FV and BL classes, and the classes showed a noisy pattern. Especially pixels 

belonging to F1, V1 and V2 classes are labeled as Ur class. In addition, in this scenario 

where S2 data is not used, the PW class within the dam could not be determined to 

represent the post-flood situation, unlike other classification results. As a result of the 

classification of S1, pre-event S2 and Stack 3, which is given in Figure 5.1 (c), the FV 

class could not be determined and some agricultural parcels located in the flood area were 

incorrectly labeled as PW. In addition, confusion was observed between BL and V1 

classes. On the other hand, the misclassification in the Ur class found as a result of Stack 

1 has been greatly reduced here. In addition, unlike other classification results, 

misclassified PW pixels in the north and north east of the study area were not seen in this 

scenario. 

 

According to the Stack 2 classification result given in Figure 5.1 (b), it was observed that 

the mixing between the Ur and FL classes found as a result of the Stack 1 classification 

result was greatly reduced. However, according to the Stack 1 classification result, it was 
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seen that the confusion between Ur and V1, V2 classes continues to decrease. On the 

other hand, it was observed that V1 and V2 classes could be determined better. As a result 

of Stack 3 (S1 and pre-event S2) classification result, the problem of misclassification of 

the BL class is eliminated in this scenario (Stack 2), where only optical data is used. 

According to the Stack 4 classification result given in Figure 5.1 (d), BL, Fl, FV, V1 

classes are best classified according to other results. The problems mentioned above for 

the Ur class have been greatly reduced in this dataset and as a result of Stack 3, where the 

Ur class has the highest F1-score, the a noisy pattern seen for this class has decreased. 

 

Table 5.6 represents confusion (error) matrix elements for Permanent Water (PW), 

Flooded Area (Fl), Flooded Vegetation (FV), Urban (Ur), Bare Land (BL), Vegetation-1 

(V1), and Vegetation-2 (V2) classes together with PA and UA and F-1 score values. In 

addition, the OA and K values for each classification result available in the tables, while 

the rows represent the numbers of actual (PlanetScope), while the columns correspond to 

the predicted class samples. The values were acquired by comparing them with the 

reference dataset established in PlanetScope image mosaics. The reference dataset for 

classes except that the PW class was created by manually delineating using PlanetScope 

data obtained on May 10, 2020 via the Planet Explorer platform. The reference dataset 

for the PW class, on the other hand, was manually delineated from PlanetScope data 

obtained on April 16, 2020, representing non-flooding conditions. As a result of this, the 

number of reference samples (pixels) for Stack 1, Stack 2, 4 & 5, and Stack 3 was 442,530, 

546,052 and 450,680, respectively. Also, detailed information about the reference data 

generation is given in section 3.6. 

 

Table 5.6 includes the confusion matrix procuced from classification of  Stack 1, which 

includes only pre- & post-event S1 data and derived features. According to confusion 

matrix produced from Stack 1, OA and Kappa values were 71% and 0.62. The F1-score 

for the Fl, PW, Ur, V1 and V2 classes were 0.89, 0.72, 0.41, 0.73, 0.56, respectively. 

Despite the high UA (90%) and PA (88%) values observed in the flooded area, there 

exists significant confusion between the flooded areas and the permanent water classes. 

The PW class is also confused with the urban and vegetation 1 classes. Additionally, the 

PA of urban areas was very low (27%) compared to the UA  (88%), indicating that this 

class was overestimated in this dataset. While the PA values are strong performance for 

the vegetation classes,  the UA values demonstrate lower accuracy. Even though Sentinel-
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1 is not affected by cloud cover and is suitable for use in flood-triggering weather 

conditions, it was unable to distinguish inundated vegetation and bare lands when used 

as the sole sensor. Difficulty in visual interpretation of existing LULC classes found in 

Sentinel-1 data brings with it the need for additional information about the plots. 

 

According to the confusion matrix produced from Stack 2, the OA and Kappa values, 

which were superior than the results of Stack 1, were 79% and 0.75 (Table 5.6). The F1-

score for the BL, Fl, FV, PW, Ur, V1 and V2 classes were 0.63, 0.75, 0.83, 0.88, 0.61, 

0.87 and 0.86, respectively. In addition to the higher performance result, the use of post-

event Sentinel-2 data enabled the determination of BL and FV classes. Besides, the F1-

score of the vegetation 2 (V2) obtain the highest values in Stack 2. In this dataset, FV was 

predicted with 94% PA, while flooded areas (FL) had a lower PA (69%) compared to 

Stack 1 (88%). The PA values of the Fl (69%) and FV (94%) classes indicate that the 

optical data has the capability to separate the flooded vegetation areas. When the F1-

scores of the classes were compared, although there was a decrease in the FL class, a high 

increase was observed in the other classes.  

 

In the Stack 3 (pre- & post-event S1 and pre-event S2 data), six LULC classes could be 

defined as FV was not visible in the post-event S1 data. According to the confusion matrix 

produced from Stack 3, the OA and Kappa values, which were superior than the results 

of Stack 1 and 2, were 82% and 0.76 (Table 5.6). The F1-score values for the BL, Fl, PW, 

Ur, V1 and V2 classes were 0.32, 0.81, 0.90, 0.88, 0.86 and 0.78, respectively. According 

to the F1-scores produced from Stack 2 (only Sentinel-2 data), the F1 values of the Fl, 

PW and Ur classes have increased, and the F1 values of the BL and V2 classes have 

decreased. No change was observed for the V1 class. In addition, the F1-score of the PW 

and Ur obtain the highest values in Stack 3. The PA of PW is 81% because it is mostly 

confused with the FL class. Hence, it is advisable to use pre-event Sentinel-2 data together 

with the Sentinel-1 data to precise identification of the non-flood classes. In this scenario, 

the F1 score of the BL class with the lowest classification accuracy is 0.32 as it is often 

confused with the V1 and FL class. Conversely, while the Sentinel-2 could visually 

identify the bare land class, it proved challenging to classify accurately. Further 

improvements may be required to improve the prediction of this class. 
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Table 5.6. Confusion matrix produced from the classification of Stack 1 - 5, along with 

the accuracy metrics. 
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UA 

(%) 
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 1
 

Bare Land NA NA NA NA NA NA NA  

Flood NA 108171 NA 10007 936 11 779 90 

Flooded Veg. NA 9512 NA NA NA NA NA  

Perm. Water NA 167 NA 48244 15304 2490 222 64 

Urban NA 4376 NA 0 32400 4153 276 88 

Vegetation-1 NA 393 NA 0 52085 103645 1881 64 

Vegetation-2 NA 108171 NA 0 20676 6794 20008 42 

PA (%)  88  83 27 86 86  

F1-score  0.89  0.72 0.41 0.73 0.56  

Overall Accuracy: 68%  Kappa (K): 0.60 

  

S
ta

c
k

 2
 

Bare Land 15587 8976 53 0 689 0 2 62 

Flood 659 78347 6734 46 8056 1034 242 82 

Flooded Veg. 8 12410 104535 21072 0 0 16 75 

Perm. Water 0 0 0 75878 0 0 0 100 

Urban 7730 11702 95 83 45916 680 2542 67 

Vegetation-1 499 3043 0 0 23743 90602 2 78 

Vegetation-2 7 0 0 0 4100 0 20964 84 

PA (%) 64 69 94 78 56 98 88  

F1-score 0.63 0.75 0.83 0.88 0.61 0.87 0.86  

Overall Accuracy: 79%  Kappa (K): 0.75  

   

S
ta

c
k

 3
 

Bare Land 8532 16489 NA 0 10 185 4 38 

Flood 1946 11086 NA 17969 949 265 5963 81 

Flooded Veg. NA NA NA NA NA NA NA  

Perm. Water 0 0 NA 75767 0 0 0 100 

Urban 3913 673 NA 85 60350 2683 1185 88 

Vegetation-1 9215 9392 NA 2 8474 90476 268 77 

Vegetation-2 4122 0 NA 0 229 0 20674 83 

PA (%) 31 81  81 86 97 74  

F1-score 0.32 0.81  0.90 0.88 0.86 0.78  

 Overall Accuracy: 82%  Kappa (K): 0.76  
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Bare Land 11131 2916 1478 0 6497 623 2662 44 

Flood 502 88754 2325 58 846 2300 333 93 

Flooded Veg. 386 10053 107663 19808 2 0 129 78 

Perm. Water 0 0 0 75841 0 0 37 100 

Urban 802 8045 27 91 53554 4722 1507 78 

Vegetation-1 239 1902 0 0 4617 111129 2 94 

Vegetation-2 29 0 0 0 4217 0 20825 83 

PA (%)  85 79 96 79 77 94 82  

F1-score 0.58 0.85 0.86 0.88 0.77 0.94 0.82  

 Overall Accuracy: 86%  Kappa (K): 0.83 

 

S
ta

c
k

 5
 

Bare Land 10048 2965 0 0 12157 123 14 40 

Flood 157 78404 1 2 8525 7378 651 82 

Flooded Veg. 2 101018 23238 13591 152 0 40 17 

Perm. Water 0 92 0 75611 175 0 0 99 

Urban 403 2701 0 73 61186 1429 2956 89 

Vegetation-1 63 395 0 0 15934 101467 30 86 

Vegetation-2 13 0 0 0 4196 0 20862 83 

PA (%)  94 42 99 85 60 92 85  

F1-score 0.56 0.29 0.56 0.91 0.71 0.88 0.84  

Overall Accuracy: 68%  Kappa (K): 0.60 

 

 

The confusion matrix in Table 5.6, generated from the classification of Stack 4 which 

represents a scenario where all data is available, resulted in an OA of 86% and a Kappa 

value of 0.83. These values indicate a slightly superior performance for this stack 

compared to the results obtained from Stack 3. Here, since post-event Sentinel-2 data is 

available, just like in Stack 2, a total of seven classes were defined. The F1-score for the 

BL, Fl, FV, PW, Ur, V1 and V2 classes were 0.58, 0.85, 0.86, 0.88, 0.77, 0.94 and 0.82 

respectively. Here, according to the comparison of the results produced from Stacks 1, 2, 

and 3, it becomes evident that the overall results are improved. In addition, the F1-score 

of the BL, Fl, FV, V1  obtain the highest values in Stack 4. 
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According to the confusion matrix produced from the Stack 4 and 5, 86% OA and 83% 

K values in Stack 4 reduce to 68% OA and 60% K values in Stack 5, respectively (Table 

5.6). The F1-score for the BL, Fl, FV, PW, Ur, V1 and V2 classes were 0.56, 0.29, 0.56, 

0.91, 0.71, 0.88 and 0.84 respectively. As evident from both the classification results and 

the error matrices, the use of GLCM data yields a significantly improvement in 

classification accuracy, effectively decreasing the confusing between FV and FL classes. 

In cases where GLCM  is not used, over 75% of FV class pixels were misclassified as 

FL, whereas no such confusion between FV and other classes. To elaborate, the absence 

of textural features led to the labeling of flood regions as urban and vegetated areas. It is 

clear that the radar data exhibits a different backscatter characteristic for inundated 

vegetation when contrasted with other classes. This finding highlights the difference in 

texture characteristics of the flooded vegetation, especially compared to the flood, water 

or other cropland in the region. 

 

Using GLCM Principal Components (PCs) has notably elevated the PA of urban areas 

from 60% to 77%. However, there was a decrease in UA from 89% to 78%,  because Ur 

class pixels were labeled as FL. Hence, it can be asserted that the textural information 

causes complexity in the process of learning of  Ur and FL classes. Furthermore, 

comparing both sets of results revealed that the PA of the PW class, classified using 

GLCM, has increased from 79% to 85%. In Stack-1 and Stack-2, the PA values for the 

the PW class were at 79% and 85%, respectively. This outcome suggests that textural 

information might contribute to the mixing between PW and FL classes. 

 

Feature importance (FI) was applied to analyze the effectiveness of S1 (VV and VH) and 

S2 (blue-B, green-G, red-R, NIR and SWIR) bands on the prediction performance. While 

calculating the feature importance score, each feature was perturbed 3 times and the 

average of the percentage of correct predictions was taken. The importance score given 

in Table 5.7 is the original % of correct prediction. According to FI scores of pre- & post-

event S2 bands, the most effective band is post-event SWIR, followed by post-event B2, 

B11 and B4. In addition, power set evaluation indicated that % 99.8 OA can be obtained 

from S2 bands including post-event B11, post-event B2, post-event B3, pre-event B11, 

pre-event B2 and pre-event B4.  According to power set evaluation indicated that % 99.92 

OA can be obtained from S2 bands including pre-event B2 GLCM mean, post-event B3 



 

59 
 

GLCM max, B4 GLCM mean, B3 GLCM homogeneity, B8 GLCM correlation and B4 

GLCM variance. In addition, the FI result of pre- & post-event VV and VH data, the most 

effective Sentinel-1 bands are post-event VV and pre-event VH as shown in Table 5.7. 

 

Table 5.7. Testing feature importance score of S1 and S2. 

  Score Accuracy Precision 
S

en
ti

n
el

 2
 b

a
n

d
s Post-event B11 0.4044 0.1156 0.3874 

Pre-event B2 0.1563 0.0446 0.0959 

Pre-event B11 0.0892 0.0255 0.0808 

Pre-event B4 0.0818 0.0234 0.0535 

Post-event B3 0.0087 0.0025 0.0082 

S
en

ti
n

el
 1

 

b
a
n

d
s 

Post-event VV 0.6999 0.2000 0.3323 

Pre-event VH 0.6500 0.1857 0.3793 

Post-event VH 0.4355 0.1244 0.2603 

Pre-event VV 0.2134 0.0610 0.1364 

 

 

5.2. Results from Ordu Site 

 

This section presents the flood mapping results for the Ordu floods (2018) in detail. The 

feature maps, the flood maps obtained with different feature sets, and the validation 

results in terms of confusion matrices between the identified classes, overall accuracy, 

user’s and producer’s accuracy, the Kappa value, and the F-1 score are presented in the 

following. Visual assessments based on an orthophoto acquired after the event for the 

Ordu flood were also carried out as can be seen in section 5.2.2.  

 

5.2.1. Feature Maps Produced for Ordu Site (GLCM, Indices and PCA)   

 

Texture measurements and PCA have been also applied to pre- & post-event S1 and pre-

event S2 data in the Ordu study area. Post-event S2 data is not used any process except 

the training dataset delineation because of high cloud percentage. A selection of textural 

features produced as a result of applying 10 GLCM measurements to the pre- & post-
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event S1 data is given in Table 5.8. The PCA was individually applied to pre- &post-

event VV and VH datasets, each containing 10 texture features. The PCs and information 

percentages obtained as a result of PCA are given in Table 5.9.  

 

Table 5.8. Overviews of selected textural features produced from S1 over Ordu site. 

Inputs 

GLCM Measurements 

Contrast 
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Table 5.9. Overviews of GLCM PCs derived from the S1 and their information 

percentages over Ordu site. 

Inputs 
Sentinel-1 VV Sentinel-1 VH 

PC1 PC2 PC1 PC2 
P

re
-e

v
en

t 

 
95% 

 
5% 

 
82% 

 
18% 

P
o
st

-e
v
en

t 

 
96% 

 
4% 

 
87% 

 
13% 

 

For the feature extraction of pre-event S2 dataset, GLCM features and spectral indices 

that include NDVI and MNDWI were produced. Table 5.10 represent NDVI and MNDWI 

produced from pre-event S2 data. A selection of 50 textural features produced as a result 

of applying 10 GLCM measurements to the pre-event S2 bands are given in Table 5.11. 

As a result of applying PCA to these 50 texture features, the PC1, PC2 and PC3 (53%, 

38% and 9% information, respectively) given in Table 5.12 were obtained. 

 

Table 5.10. Overviews of spectral indices derived from S2 datasets over Ordu.  

Inputs 
Sentinel-2 

NDVI MNDVI 

P
re

-e
v
en

t 

(-
1
.0

0
 –

 1
.0

0
) 
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Table 5.11. Overviews of the textural features produced from S2 datasets in Ordu. 

Inputs 
Sentinel-2 

Red (B2) Green (B3) Blue (B4) NIR (B8) SWIR (B11) 

 

C
o
n
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a
st

 
(0

.0
0
 –
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.0

) 

     

P
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E
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o
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.0

0
) 
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0
 –

 1
.0

) 

     

 

 

Table 5.12. Overviews of the PCs derived from S2 GLCM features and their 

information percentages over Ordu site. 

Inputs 
Sentinel-2 

PC1 PC2 PC3 

P
re

-e
v
en

t 

 

53% 

 

38% 

 

9% 

 

5.2.2. Flood Maps and Validation Results 

 

To evaluate the contribution of the GLCM PCs on class prediction, original S1 and S2 

data, NDVI, MNDWI and produced GLCM PCs were stacked with different 

combinations. For this purpose, while the bands in Stack 1 were pre-event S2, NDVI and 

MNDWI, pre- & post-event S1, Stack 2 was obtained by adding S1 GLCM PCs and S2 
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GLCM PCs to Stack 1. For the classification process, the outputs of which are given in 

Figure 5.4, a total of 65,281 training samples manually delineated from pre- & post-event 

S2 were used were used with the same parameters (tree size of 300) as a previous study 

site. The RF parameters were previously tested by Tavus et al. [180] and found suitable. 

Prior investigations conducted by Tavus et al. [73, 128, 135] have indicated that opting 

for a comprehensive land use/land cover (LU/LC) classification, in contrast to a binary 

classification approach for flooded areas, enhances the accuracy and reliability of flood 

extent maps. Hence, the pre- and post-event S2 images were used to identify the following 

six classes: flooded area (FL), flooded vegetation (FV), permanent water (PW), crop 

(CR), urban area (UR) and forest (FR). 

 

 

 
 

Figure 5.4. The RF classification results obtained from (a) Stack 1, (b) Stack 2. 
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The flood maps produced from Stack 1 and 2 features and their detailed views of sub-

areas are presented in Figure 5.4 (a) and (b). As a result of the visual evaluation of the 

flood map given in Figure 5.4 (a), it was observed that all classes, especially the CR, FR, 

UR and FL areas, exhibit a noisy pattern. In the scenario where GLCM data is used, it is 

possible to say that the noisy structure in these classes has been greatly improved (Figure 

5.4 (b)). In addition, as a result of visual inspections, no significant change was observed 

in the PW class within all classes. In addition, as seen in Figure 5.4 (b), it is noteworthy 

that the mixing between FV and FL class is reduced by the use of GLCM features.  

 

The problem of labeling the FV class as FL in Figure 5.4 (a) according to Carsamba and 

Terme sub-areas was greatly reduced by the use of GLCM texture features (Figure 5.4 

(b)). On the other hand, the Unye and Terme sub-areas were inspected in detailed views, 

and it was observed that the floods in the urban areas were better determined with Stack 

1. The use of texture information has led to the fact that flood pixels occurring in urban 

areas were largely labeled as urban pixels. Also, while using the GLCM data (Stack 2) 

gives better results in detecting the urban pixels  (Unye and Terme) in a rather open area, 

non-using the GLCM data (Stack) is more effective in detecting the urban pixels (Ikizce 

and Caybası) in the dense forest area. 

 

Table 5.13 represents confusion (error) matrices between the related classes and their PA 

and UA and F-1 score values separately for each class. In addition, the OA and K values 

for each classification result are given in the tables. The overall accuracies (OA) achieved 

from the Stacks 1 and 2 were 92% (without GLCM) and 97% (with S1&S2 GLCM), 

respectively. The OA values show that the integration of GLCM PCs produced from S1 

and S2 provided the best prediction performances for all classes. According to the 

confusion matrix produced from Stack 1 and 2, 92% OA and 87% K values in Stack 1 

increase to 97% OA and 95% K values in Stack 2, respectively (Table 5.13). In Stack 2, 

F1-score for the cropland, flood, flooded vegetation, forest, permanent water and urban 

area classes were 0.98, 0.97, 0.92, 0.96, 0.97 and 0.93 respectively. The improvement in 

F1-score occurred for cropland and flooded vegetation classes, increasing by 0.1 and 0.08, 

respectively. 
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Table 5.13. Confusion matrix produced from the classification of Stack 1 and 2, along 

with the accuracy metrics over Ordu site. 
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UA 

(%) 

S
ta

c
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 1
 

Cropland 5180 14 0 4 0 0 99 

Flood 221 24316 66 35 9 276 97 

Flooded Veg. 496 1251 8528 662 0 470 74 

Forest 421 93 3 5763 0 0 91 

Perm. Water 0 1174 166 0 10442 19 55 

Urban 185 121 4 0 0 5562 94 

PA (%) 80 90 97 89 99 87  

F1-score 0.88 0.93 0.84 0.90 0.93 0.91  

 Overall Accuracy: 92%  Kappa (K): 0.87 

 

S
ta

c
k

 2
 

Cropland 8559 3 0 0 0 0 99 

Flood 32 20406 57 1 7 347 97 

Flooded Veg. 111 464 10565 338 28 400 88 

Forest 100 0 0 5980 0 0 98 

Perm. Water 0 149 280 0 10962 10 96 

Urban 0 103 0 0 0 6379 98 

PA (%) 97 96 96 94 99 89  

F1-score 0.98 0.97 0.92 0.96 0.97 0.93  

 Overall Accuracy: 97%  Kappa (K): 0.95 

 

 

External reference source is not available for producing of accuracy metrics in this study 

area. For this reason, the orthophoto produced by Kocaman et al [181] and media 

photographs were used for visual comparison. Aerial photogrammetric datasets acquired 

on 17 August 2018 (9 days after the flood) by the General Directorate of Mapping 

(GDM), Türkiye. In Figure 5.5, the some overviews of flood map produced from Stack 2 

are presented together with the 30 cm resolution orthophoto produced from aerial images. 

Additionally, photographs representing flood in urban and rural areas along with the 

corresponding of flood map produced from Stack 2 and orthophoto are given in Figure 

5.6. In the figures, the blue points represent the corresponding flood areas in the 

classification result and in the orthophoto.  
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Figure 5.5. Flood map obtained from Stack 2 and 30 cm resolution orthophoto acquired 

on 17 August 2018. Blue dots illustrate conjugate points between the flood maps and 

orthophotos. 

 

 

Figure 5.6. Flood map obtained from Stack 2, 30 cm resolution orthophoto acquired on 

17 August 2018 and ground photos. Blue dots illustrate conjugate points between the 

flood maps, orthophotos and media photographs.  
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6. DISCUSSION 

 

 

In this section, the results produced from the thesis are discussed from the perspectives 

such as the use of radar and optical data, data availability, the use of textural features and 

the effect of topography. 

 

The aim of this thesis was to develop an approach for the integrated use of satellite optical 

and radar datasets based on the diverse features produced from both, and to contribute to 

the literature and future studies with conclusions and recommendations. For this purpose, 

the ability of Sentinel-1 and Sentinel-2 (S1 and S2) to generate flood maps was 

investigated based on two case studies. The first of these is a dam failure case, in which 

pre- & post-event S1 and S2 data and external reference data (PlanetScope) are available. 

Since the area is rather flat and the flood disaster was caused by dam failure, the post-

event S2 data was cloud-free and the S1 data was not distorted due to topography. The 

Ordu flood case represents a more common situation in flood disasters, heavy 

precipitation and rugged topography unlike Sardoba event. 

 

The data sets used in this thesis are S2 and S1 have been increasingly used in the literature 

thanks to the regular global coverage and free distribution, as also stated by Zoka et al. 

[83] and [84]. The results obtained were evaluated qualitatively based entirely on visual 

comparison with external reference data (PlanetScope). In addition, quantitative analyzes 

were performed on a class basis using a set of measures described in section 3.6 and also 

calculated from PlanetScope data. 

 

 

6.1. On the use of radar and optical data and features 

 

Studies on the determination of permanent water and especially large-spread flooded 

areas from SAR data indicate the success of the SAR data when suitable field conditions 
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are provided. This primarily occurs because the backscatter from open waters is 

considerably lower when compared to the backscatter from the adjacent land surface 

areas. Among the satellites equipped with SAR sensors, the S1 stands out as the most 

popular choice due to its cost-free access, relatively frequent revisit schedules, and a 

multi-year data archive that extends back to 2014 [182]. Sentinel-1 is equipped with radar 

sensors that can "see" through clouds and operate day and night, making it especially 

useful during periods of heavy cloud cover or darkness. It measures the backscatter of 

radar signals, which can effectively differentiate between open water and flooded land 

areas due to the distinct reflective properties of water. This ability makes Sentinel-1 a 

valuable tool for detecting flood extents even in challenging weather conditions. A wide 

variety of methods have already been published in the literature for flood extent mapping 

from S1 sensor, including various approaches as described in Section 3.4. The main of 

these methods are change detection based approaches [116, 117], thresholding methods 

[55, 67, 89], bayesian [183, 184] and machine learning methods [24, 125, 127]. The 

methods evaluated in this context have proven their success. 

 

Nonetheless, in the presence of windy conditions and/or vegetation cover, the water 

surface becomes turbulent, causing an increase in backscatter, which decreases the 

contrast between flooded and non-flooded areas [185]. In such circumstances, the 

detection of flooded areas becomes more challenging. Furthermore, although there are 

reviews [54, 113, 182] and evaluations of these flood and inundation mapping methods 

using S1 sensors,  direct investigation of the performance of S1 sensor is constrained. 

Here, in order to investigate the effect of radar and optical data on the prediction 

performance, the results of Stack 1, which includes only S1 data and derived features, and 

Stack 2, which includes only S2 bands and features, were analyzed. According to 

confusion matrix produced from Stack 1, OA and Kappa values were 71% and 0.62. 

Tupas et al. [186] mapped floods by using S1 images only, and the results based on  

change detection were compared with the S2 data, resulting in a peak OA of 83%. The 

studies conducted by Shahabi et al. [187] , which aimed to map the same flood event with 

Sentinel-1 data, obtained OA values of 78% and 91%, respectively. Nevertheless, it is 

important to highlight that the analyses discussed in this context only involve the two 

classes: flood and non-flood. Additionally, these methodologies have predominantly been 

employed in cases of river basin flooding, which may not be as applicable to areas 
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characterized by intricate flood dynamics and different LULC  categories. Also, despite 

S1 being cloud-independent and can therefore be used in flood-triggering weather 

conditions, it was not possible to identify flooded vegetation and bare land areas from this 

sensor alone. Difficulty in visual interpretation of existing LULC classes found in S1 data 

brings with it the need for additional information about the plots. 

 

On the other hand, S2 carries an optical sensor that captures high-resolution images of 

the Earth's surface. The images provide detailed information about land cover, including 

vegetation, urban areas, and water bodies. While optical imagery can be affected by cloud 

cover, it offers the advantage of finer spatial resolution and can help identify subtle 

changes in landscape features caused by flooding. S2, which is used as optical data in this 

thesis, is the optical data preferred in many global or regional natural disasters such as 

flood [37], drought [188] and earthquake [189] in the literature. Thanks to the high 

resolution of S2 data, providing detailed analysis opportunities at fine scale, and the 

information provided by visible and near infrared bands, its potential has been 

investigated in many flood mapping studies [35-38]. S2 data was used for training dataset 

production in some of these studies, validation source in others, and for both purposes in 

most of these studies. One of the most important advantages of S2 data within the scope 

of flood mapping is that it enables the production of spectral indexes that provide 

information such as vegetation, water, and moisture used in many studies [37, 164]. For 

example; for the same area, flood maps with 64% and 74% OA, respectively, were 

produced in the studies carried out by Caballero et al.  [37] and Phiri et al. [164], using 

the spectral indices produced from the S2 data together with the RF method. In this thesis, 

the OA and Kappa values were found to be 79% and 0.75%, which were superior to the 

results of the flood map produced only in S2 and its features, only in S1 and its features. 

Here, the OA and Kappa values were found to be 79% and 0.75%, which were superior 

to the results of the flood map produced only in S2 and its features, only in S1 and its 

features. When the results are compared with the results of Caballero et al.  [37] and Phiri 

et al. [164] studies including Built-up, vegetation and flood classes, it was seen that the 

approximate OA value is achieved with basically the same classification method (RF). It 

should be noted here that as an advantage of the method proposed in the thesis, the 

inclusion of all LULC classes present in the pre- & post-event S2 data in the classification 

process will positively improve the result. At the same time, as explained in Section 5.2, 
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S2 data allows visual interpretation of flooded vegetation and bare land classes, unlike S1 

data, which is seen as one of the important advantages of S2 data over S1 data. 

 

By integrating data from both S1 and S2, flood mapping efforts benefit from the strengths 

of each satellite. S1 radar data can reliably detect the presence of water, even when clouds 

obstruct the view. S2 optical imagery can provide context by showing changes in land 

features associated with flooding, and it can supplement flood maps with additional 

information about the surrounding environment. To leverage the complementary nature 

of these two datasets effectively, researchers and scientists employ advanced techniques 

that fuse the radar and optical data. This fusion enhances the accuracy of flood extent 

delineation and can also provide insights into flood dynamics, such as water flow 

direction and velocity. The combination of S1 and S2 satellite data has emerged as a 

powerful approach for enhancing flood mapping efforts. These two satellites offer 

complementary information that collectively improves the accuracy and reliability of 

flood detection and mapping.  Complementary use of S2 and S1 data mentioned above 

has a great potential to produce essential features the use color, brightness, texture, shape, 

surface roughness and smoothness etc. to detect flooding in areas with different 

constructions and topography. In conclusion, the combined use of S1 and S2 data has 

proven to be a valuable strategy for flood mapping. By capitalizing on their individual 

strengths, these satellites contribute to a more comprehensive understanding of flood 

events, enabling better preparedness, response, and recovery efforts in flood-prone 

regions. 

 

Literature studies using both optical  (S2) and radar data (S1) are given in detail in Section 

2.3. Within the scope of this thesis, by using the above-mentioned S1 and S2 data and the 

spectral and texture features produced from them together, a flood map containing 7 

classes, including flooded area, permanent water, flooded vegetation, urban area, bare 

land and two types of vegetation, was obtained with 86% OA. This result is higher than 

the scenarios where only S1 and only S2 data are used, as supported by different methods 

in the literature. In addition, the results of this scenario were reported by Huang and Jin 

[90], Manakos et al. [91], Lal et al. [98], Slagter et al. [92], Singha et al. [93], Hakdaoui 

and Emran [95], and Konapala et al. [11], it was seen that the classification success rate 
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was carried forward. The common result of these studies showed that although using 

S1&S2 together led to considerably higher accuracies, relatively poor for classifications 

in high-vegetated wetlands, as sub-canopy flooding. 

 

6.2. Data availability  

 

One of the focal points of this thesis revolves around addressing the challenge of 

inadequate S2 data accessibility during and following flood occurrences, primarily due to 

cloud cover interference. At the same time, as stated in the study by Huang and Chin [90], 

the S1 data has some limitations, such as the requirement to have prior information of the 

backscatter distributions of the relevant surfaces in dry and wet conditions. In addition to 

the aforementioned limitations, the inability to determine LULC classes representing the 

whole study area from only S1 data both in this thesis and in the literature revealed that 

there is a need for a detailed analysis of this subject. For this reason, this thesis takes into 

a comprehensive analysis of diverse data availability scenarios essential for generating 

accurate flood maps. This research phase involves the in-depth analysis of features in 

different data stacks, allowing for an investigation into the influences of data availability 

scenarios and their impacts on various classes of prediction efficacy. In other words, of 

notable significance is the issue of flood hazard assessment, where in the susceptibility 

of S2 data to meteorological conditions emerges as a significant constraint in numerous 

flood mapping efforts. Contextually, the methodology proposed in this study addresses 

the crucial limitation of data availability and conducts an in-depth analysis of features 

using the combined potential of S1 and S2 data sources for flood mapping.  

 

Here, the datasets analyzed in above-mentioned scope are Stack 3 and Stack 4, as there is 

no problem that prevents the use of the data to a large extent if Sentinel-1 is present before 

and after the event. Stack 3 represents the analysis of scenarios where post-event Sentinel-

2 data cannot be used as input in classification. Therefore, Stack 3 was created to consider 

that pre-event Sentinel-2 data is usually available to contribute to S1. Stack 4, on the other 

hand, represents a data group in which pre- & post-event S1&2 data are usable, which is 

generally not the case in flood events (detailed information in the Chapter 3.4.4).  
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According to the confusion matrix produced from Stack 3, the OA and Kappa values, 

which were superior than the results of Stack 1 and 2, were 82% and 0.76. Also, the 

scenario where all data is available is represented by Stack 4. Based on the confusion 

matrix derived from Stack 4, the OA and Kappa values were calculated to be 86% and 

0.83, respectively. According to this result, it is possible to say that Stack 3 produces 

results with slightly less accuracy than Stack 4. Considering the kappa values explained 

in detail in Section 5.1.2 and produced on a class basis, it is advisable to use pre-event S2 

data together with the pre- & post-event S1 data to accurate determination of the non-

flood classes. In addition, the fact that PW and Ur classes have the highest kappa values 

in this scenario supports this argument. Also, according to research conducted by 

Tarpanelli et al. [185] in recent year, showed that nearly 58 % of flood hazards in Europe 

are potentially observable by S1 and just 28 % by S2 because of the cloudy conditions. 

In this thesis, it is clear that the performance of the use of pre-event S2 data together with 

the pre- & post-event S1 will contribute to the mapping of flood disasters by increasing 

these percentages. As a matter of fact, this scenario was applied to the Ordu study area, 

where the post-event S2 data could not be used because of the dense cloud content, and a 

classification result with 99% OA was obtained. However, it should be noted that the 

accuracy value calculated here should be validated with an external reference source. 

 

Another aspect in evaluating different data scenarios is that the strategy for delineating 

the training data varies with each data stack. That is, as detailed in Section 5.2, it can be 

seen in Figure 5.1(c) that six other LULC classes (Fl, PW , V1, V2, Ur, and BL) can be 

defined apart from the flooded vegetation class with Stack 3 . Here, since the post-event 

Sentinel-2 data was not available and the flooded vegetation was not visible in the post-

event Sentinel-1 data, this class (FV) could not be defined. If post-event S2 data is 

available, all LULC classes available in the study area are defined. As a result of this, it 

is possible to say that its performance on the determination of the FV class, which 

represents the flooded agricultural areas, is insufficient according to the visual inspection 

result made on the post-event S1 data. Considering all this analysis, the combination of 

pre- & post-event S1 and pre-event S2 data is recommended both to increase the number 

of LULCs that can be detected and to provide a higher classification result, even if there 

is no post-event S2 instead of using only S1 or S2 data. 
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6.3. On the use of textural features and effect of topography 

 

There are very few studies in the literature investigating the potential of GLCM texture 

features on flood mapping. These studies focused on the contribution of texture 

information to the assessment of floods in dense vegetated or forested and urban areas. 

For example, It is stated that GLCM features produced from COSMO-Skymed SAR data 

by Dasgupta et al. [190] increased the overall accuracy of flood mapping from 93% to 

95%. Similarly, Senthilnath et al. [148] stated that the accuracy assessment result with 

mean shift segmentation for flood mapping is quite promising compared to GLCM. 

Amitrano et al. [70] evaluated the S1 GLCM features and reported that the homogeneity 

and contrast features performed well. In addition to the success of GLCM, the common 

result of these studies using different data is that the GLCM features that give the best 

results vary according to the data and topographical characteristics. At the same time, 

optimizing parameters such as the window size required for calculating GLCM texture 

fetures is also application dependent for the same reasons. 

 

For this reason, in this thesis, 10 GLCM features were calculated from the data that varied 

according to the scenarios, and the number of features was optimized by applying PCA. 

When we look at the outcomes and compare them to the initial findings of Tavus et al. 

[180], using the RF method and without considering the GLCM and PCA analysis, there 

is a notable improvement. Furthermore, the method suggested here shows improved 

classification for urban and bare land. Based on the confusion matrix generated from 

Stacks 4 and 5 with and without GLCM feature components given in Section 5.2.1, the 

86% OA and 83% K values in Stack 4 decrease to 68% OA and 60% K values in Stack 

5, respectively. As evident from both the classification results and the error matrices, the 

utilization of of GLCM data yields a considerably improvement in classification 

accuracy, effectively decreasing the confusing between FV and FL classes. In cases where 

GLCM  is not used, over 75% of FV class pixels were misclassified as FL, whereas no 

such confusion between FV and other classes. To elaborate, the absence of textural 

features led to the labeling of flood regions as urban and vegetated areas. It is clear that 

the radar data exhibits a different scattering mechanism for inundated vegetation when 

contrasted with other classes. This finding emphasizes the difference in texture 
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characteristics of the flooded vegetation, specifically in contrast to the flood, water, or 

other cropland in the area. 

 

The impact of GLCM feature components was assessed when the proposed method to the 

Ordu case area, as detailed in Section 4.2, which has distinctly different topographical 

characteristics. The results demonstrated a substantial improvement in overall 

classification accuracy (99% with GLCM and 93% without GLCM). It is apparent that 

flooded vegetation displays a distinct radar data scattering pattern in contrast to other 

classes. This finding highlights the contrast in textural characteristics of flooded 

vegetation when compared to floods, bodies of water, or other agricultural areas within 

the region. Consequently, the use of GLCM data plays an important role in significantly 

enhancing classification accuracy, particularly by preventing confusion between the FV 

and FL classes.  
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7. CONCLUSION AND FUTURE WORK 

 

 

This chapter involves the main outcomes and the limitations as conclusions. In the second 

part, remaining challenges are identified and recommendations for future studies are also 

given. 

 

7.1. Conclusions 

 

Floods are the most common and costly type of natural hazard according to criteria such 

as frequency, distribution, area of impact, unpredictability, power, and duration.  

Considering the direct or indirect destructive effects on the socio-economic, environment 

and human life, it is of great importance to deep understand the dynamics of floods. 

Because the magnitude and types of damages depend on flood location, extent, and 

inundation level, flood mapping and monitoring are crucial for accurate impact 

assessment and effective disaster risk management. For this purposes, traditional methods 

face frequently challenges in evaluating flood dynamics because of the data limitations 

caused by floods nature and the rapid movement of water bodies. In this scope, remote 

sensing technologies and EO data collected from satellite platforms provide the necessary 

tools and data for the monitoring and assessment of floods. The most frequently used 

pairs of sensors that can serve this purpose are optical and radar sensors, the advantages 

and disadvantages of which are given in detail in Section 2.3. 

 

Integration of  SAR and optical data has a great potential to produce essential features 

such as color, brightness, texture, shape, surface roughness and smoothness, water 

content, etc., to detect flooding in areas with different constructions and topography. On 

the other hand, as technology advances and data accessibility improves, the fusion of 

heterogeneous information from optical and radar data is still an active research area to 

synthesize the advantages of both sensors in the scope of flood mapping and monitoring. 

Among these sensors, the most preferred ones are S1 SAR and S2 optical satellites, due 

to their regular global coverage and free data distribution policy. 
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This thesis developed of a feature-level data fusion methodology for flood extent mapping 

using optical and radar data, in particular by using the S1 SAR and S2 satellites of ESA. 

The proposed method was developed in the case of the Sardoba dam flood, which flooded 

some regions of Uzbekistan and Kazakhstan and caused serious disasters on human lives, 

settlements and croplands. The event chosen here is ideal for developing a fusion method, 

as it is not affected by SAR distortions due to its topographical characteristic, there is no 

cloud problem in optical thanks to the absence of precipitation, and moreover, 

PlanetScope external data is available for the validation process. In addition, since the 

large part of the area is cropland, it also allowed detailed analysis of the flooded (or 

inundated) vegetation. A data-driven LULC classification approach with the RF method 

is presented with different auxiliary features comparatively for different Sentinel-2 and 

Sentinel-1 data availability scenarios. As auxiliary features, the use of GLCM features 

and water and vegetation indices, which were rarely analyzed until now and produced 

from SAR and optical data, with PCA were investigated in detail. The method and 

scenario type proposed here is applied to a second area, namely Ordu flood event, which 

has a very rough topography and is caused by precipitation, unlike the Sardoba event, and 

its results are analyzed. 

 

According to the results, although single SAR intensity is the most preferred data for the 

detection of permanent water bodies (PW) in the literature, this class has the highest kappa 

value (0.90) in the scenario containing pre- & post-event S1 and pre-event S2 data in the 

thesis. Although the number of approaches related to flooded vegetation (FV) is more 

limited compared to the PW class, the change in backscatter mechanisms between multi-

temporal SAR intensity stands out as the main indicator of this class. At the same time, 

approaches to FV determination, which are highly dependent on the characteristics both 

area and data used, tend to be supervised rather than automated. As a result of this thesis, 

it has been seen that it is not possible to determine the FV class with the supervised 

approaches from only S1 data, especially if there is no prior-information about the area, 

which is common in flood disasters. According to the classification results, it is 

recommended to use S1  and S2  data together for this class, which can be determined by 

the contribution of GLCM principle components by 60% (kappa values are 0.56 and 0.86 

with and without GLCM PCs, respectively). These findings illustrate the potential of the 

use of S1  and S2 , for FV according to only S1 or S2 together with the importance of the 
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proposed auxillary features. It was not possible to determine the floods that occurred 

under the dense forest areas analyzed in the second study case (Ordu), since no difference 

could be observed between flooded and non-flooded conditions in both S1  and S2  data. 

On the other hand, the successful determination of the forest class in the classification 

results shows that the S1 and S2  sensors are insufficient in the analysis of floods 

occurring in forest areas in this thesis. On the other hand, according to a visual comparison 

of classification results, the use of GLCM PCs contributed to the successful determination 

of forest class and changes caused by flooding in the river basin. However, the results 

show that the S1 and S2  sensors together with the proposed approach are insufficient in 

the analysis of floods occurring in the forested areas. 

 

Although studies investigating urban floods are rare in the literature, it is possible to say 

that the methods used SAR intensity together with InSAR coherence, defined as the 

complex correlation between the phases of the returned signals, have come to the fore in 

recent years. As can be seen in both study areas applied within the scope of the thesis, 

since flood disasters spread over large areas, there are also settlements within the impact 

areas. The type that is specified as urban flood in the literature could not be determined 

with the proposed method and the sensors used in this thesis, just like the floods that occur 

in forest areas. Besides InSAR coherence, polarimetric parameters, which provide insight 

into the backscattering mechanisms and are calculated by decomposition methods, can 

improve the detection of both urban and flooded pixels (in vegetated and forested areas). 

In addition, it is clear that the flood types mentioned so far that cannot be determined well 

enough because of the sensor limitations will make progress thanks to L-band missions 

with open data policies such as NISAR and the ROSE-L mission, which are planned to 

be operational in the future. 

 

As a significant finding, the necessity of using pre-event S2 bands and features derived 

from them has been proven in cases where post-event S2 data cannot be used as an input 

for classification. While the presence of stable water in the floodplain enables the 

detection of flood extents a few days after the flood peak, it's important to note that in 

most cases, the average duration of a flood event spans approximately 2.5 to 3.5 days 

[185]. In the same study, it was stated that about 58% of the floods in Europe could 
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potentially be observed by S1, and only 28% could be observed by S2 because of cloudy 

conditions. This finding, produced as a result of the thesis, will undoubtedly contribute to 

the mapping of the 58% flood observed by S1 and more flood disasters can be analyzed 

by using the pre-event S2 data.  

 

The performance of flood detection varies in regions with different characteristics such 

as topography and land use land cover (LULC) types. Consequently, each of these 

features has significant importance in the context of flood mapping. According to this, 

flood extent mapping based on ML classification should not be binary (flood and non-

flood) and it is recommended to use related LULC classes including flooded vegetation 

for obtaining high accuracy. Furthermore, the suggested methodology demonstrates a 

high potential for accuracy and applicability across various sites under flat and hilly 

topographical terrain as well as different land cover conditions, making it effective for 

mapping floods and assessing damages.  

 

Additionally, the optimal feature types proposed in the methodology improved in all 

LULC types evaluated except the permanent water class. The feature types involve 

textural features obtained from gray level co-occurrence matrix (GLCM) variables and 

spectral indices produced for vegetation and water. The major advantage of using these 

features is that they significantly improve flood observations, specifically, flood and 

flooded vegetation classes, which are critical in most studies. Finally, the proposed 

methodology exhibits a notable potential for accuracy and can be effectively employed 

in various locations to map floods and assess damages, with a particular emphasis on 

cropland areas. In this context, in countries such as Türkiye where precise crop pattern 

information is not available, it is considered that it will be beneficial for the studies 

conducted by some institutions (e.g. AFAD) to determine the supports to be given to 

agricultural land owners after the flood. 

 

Also from another point of view, when the results are compared with Tavus et al. [180], 

with the RF method without GLCM and PCA analysis, it is possible to say that observe 

a significant improvement in the scenario, which includes all the data.  The proposed 

method in this thesis demonstrates better performance for urban areas and bare land. In 
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contrast, Tavus et al. [180] achieved a 99% overall accuracy (OA) based on test data that 

had been split from training data. Here, OA values ranging from 68% to 86% for all five 

scenarios are a clear indication that external reference should be preferred for validation. 

 

In this thesis, a series of accuracy metrics were produced, such as OA and kappa 

coefficient for accuracy evaluation, and PA, UA and F1-score for class-based accuracy. 

As discussed in the previous sections, although the OA and kappa values of the different 

scenarios were high, visual inspection of the classification results revealed class-based 

underachievement. For example, the OA and kappa values greatly overestimates the 

accuracy of the flooded and flooded vegetation classes (e.g. in the Stack 5 result). A 

similar situation applies to the bare land class in the Sardoba study area, which is much 

smaller than other LULC classes. However, no such limitation was encountered in the 

PA, UA and F1-score produced for each class. Therefore, besides PA (recall or 

sensitivity) and UA (precision or specificity)  values, the F1-score, which provides the 

balance between these two values, maybe a better metric if there is a homogeneous and 

uneven LULC distribution in the study area. In addition, especially in studies carried out 

for emergency relief and damage assessment, it would be more appropriate to perform an 

accuracy assessment for classes such as settlements and agricultural areas. 

 

7.2. Future Work 

 

Based on the results of the in-depth literature search and the proposed flood mapping 

methodology conducted within the scope of this Ph.D. thesis, the key findings, including 

various challenges and potential future improvements, are listed below. 

 

1. Primarily, it was emphasized that it is critical to evaluate the available data and 

various features of these data in the most appropriate way, especially for flood 

disaster analysis, where there are many restrictions on the use of data for various 

reasons. The enhancement of data availability and technologies over time is an 

indication that this issue will continue to exist by preserving its importance. In the 

near future, SAR missions such as NISAR and ROSE-L, which have improved 

temporal and spatial resolution, as well as wavelengths and polarizations, are 
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expected to be operational with open data policies. On the other hand, while the 

complementary use of Sentinel-1 and Sentinel-2 are sufficient to detect flooded 

vegetation, as previously discussed in this thesis, they are insufficient to detect 

floods in forest and urban areas. In addition, urban floods, many of which are 

caused by sudden and dense precipitation, are increasing as a result of climate 

change. In this context, in the study of  Tavus et al. [73] an urban flood (in Ankara) 

was analyzed with Sentinel-1 data, and similar to the literature, it was found to be 

insufficient. As a result, it is clear that the new SAR missions with higher spatial 

and temporal resolution and longer wavelengths will allow for in-depth analysis 

of forest and urban floods. In addition, the improvement in temporal resolution 

will contribute to the increase in the number of floods that can be analyzed and to 

the investigation of the hydraulic processes and flood characteristics. 

 

2. Considering the potential of the proposed method to be beneficial in determining 

the support to be given to cropland owners after the hazard, need to precisely 

determine the crop pattern. In the literature, there are pioneering studies on 

different crops based on SAR and optical data. If the method proposed in the thesis 

is developed/combined with crop pattern analysis, it is inevitable to obtain fast, 

up-to-date and reliable data after the disaster. 

 

3. One of the most important challenges encountered within the scope of the thesis 

is the lack of validation data used for the accuracy assessment. This challenge, 

which is frequently mentioned in literature studies, is an important problem that 

should be dealt with for the analysis of flood disasters that can occur anywhere in 

the world and at any time. As a matter of fact, since there is no external reference 

data in one of the study areas (Ordu) in the thesis, it could not be analyzed 

quantitatively. Of course, the improvements in the number and characteristics of 

the new sensors mentioned in the first matter will help to solve this problem. 

However, considering that the reference data to be used for validation should have 

better characteristics than the input data used to produce the results, these 

improvements are likely to be insufficient. Therefore, in future studies, post-flood 

indicators such as soil moisture should be investigated in detail and validation 

strategies should be developed. On the other hand, as in many areas, future flood 

mapping is expected to increasingly include social media content and crowd-
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sourced data alongside EO data [191-193]. However, although the reliability and 

quality of these data, which have just begun to be researched, remain uncertain, 

the potential of flood disasters should be investigated by integrating them into 

both analysis and validation strategies. 

 

4. In conjunction with the growing availability of data, there have been notable 

developments in supervised machine learning (ML) algorithms, particularly in the 

deep learning (DL) methods and Convolutional Neural Networks (CNNs). In this 

context, many attempts using high spatial resolution data such as Planet Scope 

and WorldView-2 or UAVs have resulted in high accuracy [48, 194, 195]. At the 

same time, the existence of publicly available datasets such as Sen1Floods11 

proposed by Bonafilia et al. [196] which was produced to train and test DL flood 

algorithms from Sentinel-1 data, supports this researchs. As a state-of-the-art in 

this context, Rambour et al.[197] introduced a dataset called SEN12-FLOOD, 

which features Sentinel-1 and Sentinel-2 data for flood mapping. They reported 

an accuracy of 75% using Sentinel-1, while the combination of Sentinel-1 and 

Sentinel-2 yielded an impressive OA of 90%. 

 

While the potential of these datasets for the development of ML algorithms is 

undoubted, all of the datasets in question are designed for the analysis of flood 

and non-flood classes. In this context, Tavus et al. [198] proposed a multi-class 

segmentation including the flood, flooded vegetation and non-flood using 

Sentinel-1 SAR data and DEM as inputs. In future studies, it is planned to both 

expand the dataset and modify the CNN architecture to use features from S1 and 

S2 sensors to improve overall results. It is also considered that the inclusion of 

different surface models in the dataset will contribute to water depth analysis 

studies. 
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