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ABSTRACT 

Öztürk, E. Specifying the Boundaries of Gray Zone in Diagnostic Tests with 

Information Criteria, Hacettepe University Graduate School Health Scıences, 

Department of Biostatistics Doctor of Philosophy Thesis, Ankara, 2023. The 

decision-making process in medicine is a crucial subject due to the classification of 

subjects as healthy or diseased. Mostly, it concludes with binary outcomes, such as 

whether the person has a condition or not. The various information from subjects is 

taken, such as the complaints, family history, symptoms, or laboratory tests (known 

as diagnostic tests) to rule-in or rule-out the disease. Due to their advantages such as 

being cost-effective or rapid, even if some diagnostic tests cannot perfectly 

discriminate subjects they are commonly used in clinics. One method for assessing 

quantitative diagnostic tests to diagnose subjects is to specify an optimal cut-off 

point. Yet, this may cause issues on quantitative diagnostic tests with a single cut-off 

value as the distributions of diseased and healthy subjects overlap. Forcing the 

subjects in this overlapped area one of the classes causes the false negative or false 

positive rates. To deal with this issue, there are some approaches called a gray zone 

or middle inconclusive area in which subjects are classified diseased, non-diseased, 

and neither diseased nor non-diseased. In this thesis, we aim to propose a new 

solution to find the boundaries of the gray zone based on the information theory 

approach. We intend to compare and evaluate the performance of this proposed 

solution against existing methods (“grey zone” and “uncertain interval” approaches). 

The proposed algorithm was based on joint entropy. In the simulation scenarios, we 

considered effect size, sample size, the homogeneity of variance and prevalence of 

the disease. To compare the results of the proposed methods with existing 

algorithms, the length of the gray zone was examined under the condition of fixed 

area under the receiver operating curve in out of the gray zone. In simulations, the 

suggested approach mostly produced the lowest gray zone length with equal 

variances. In some simulation scenarios, it outperformed for unequal variances. 

However, it has the benefit that the suggested algorithm has no previous knowledge. 

Keywords: Diagnostic tests, medical decision, gray zone, information criteria 
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ÖZET 

Öztürk, E. Tanı Testlerinde Gri Alan Sınırlarının Bilgi İçeriği Yaklaşımı İle 

Belirlenmesi, Hacettepe Üniversitesi Sağlık Bilimleri Enstitüsü Biyoistatistik 

Programı Doktora Tezi, Ankara, 2023. Tıpta karar verme, bireylerin sağlıklı veya 

hastalıklı olarak sınıflandırılması nedeniyle çok önemli bir konudur. Çoğunlukla, 

bireyin bir rahatsızlığı olup olmadığı gibi ikili sonuçlarla sonuçlanır. Hastalık tanısı 

koymak ya da dışlamak için bireylerden şikayetleri, aile öyküsü, semptomları veya 

laboratuvar testleri (tanı testleri) gibi çeşitli bilgiler alınır. Maliyet-etkinliği ya da hızlı 

olması gibi avantajları nedeniyle bazı tanı testleri bireyleri mükemmel olarak 

sınıflamasa da kliniklerde yaygın olarak kullanılmaktadır. Sıralı ve sürekli sayısal yanı 

testlerini değerlendirmenin bir yöntemi, optimal bir kesim noktası belirlemektir.  

Ancak, hasta ve sağlıklı bireylerin dağılımları örtüşmesi durumunda tek kesim 

noktasını ele alarak ikili sınıflandırmak bazı sorunlara neden olabilir. Bireyleri bu 

örtüşen alanda sınıflardan birine zorlamak yanlış negatif veya yanlış pozitife neden 

olur. Bu durumu ele almak için literatürde, bireylerin hastalıklı, sağlıklı ve hasta ya da 

sağlıklı değil olarak sınıflandırıldığı gri bölge veya orta sonuçsuz alan adı verilen bazı 

yaklaşımlar vardır. Bu tezde, bilgi teorisi yaklaşımına dayalı olarak gri bölgenin 

sınırlarını bulmak için yeni bir algoritma önermeyi amaçlıyoruz. Ayrıca önerilen bu 

algoritmayı literatürde mevcut yaklaşımlarla (“gri bölge” ve “belirsiz aralık” 

yaklaşımları) karşılaştırmayı ve değerlendirmeyi hedefliyoruz. Önerilen algoritma 

birleşik entropiye dayanıyordu. Simülasyon senaryolarında, etki büyüklüğü, örneklem 

büyüklüğü, varyansın homojenliği ve hastalık prevalansı faktörlerini dikkate aldık. 

Önerilen yöntemlerin sonuçlarını mevcut algoritmalarla karşılaştırmak için gri 

bölgenin uzunluğu, gri bölge dışında sabit bir alıcının işlem karakteristiği eğrisi altında 

incelendi. Simülasyonlarda, önerilen yaklaşım eşit varyans için çoğunlukla en düşük 

gri bölge uzunluğunu üretti. Bazı simülasyon senaryolarında, eşit olmayan varyans 

için daha iyi sonuçlar elde etti. Bununla birlikte, önerilen algoritmanın bir ön bilgiye 

ihtiyacı olmaması avantaj sağlamaktadır.  

 

Anahtar Kelimeler: Tanı testleri, tıpta karar verme, gri bölge, bilgi kriteri 
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1. INTRODUCTION 

The majority of decision-making process in medicine concludes with a binary 

status, such as whether the individual should receive treatment or not, or whether 

they have a condition. Deciding on this binary status is even more difficult and 

complex with various information such as patients' complaints, family history, and 

the occurrence of different symptoms. Based on this information, some diseases 

should have been ruled out or ruled in. However, the information that is based on 

the knowledge of the patient doesn't significantly reduce uncertainty about the 

decision. To deal with this issue, laboratory tests, also known as diagnostic tests, are 

developed. Therefore, the uncertainty for decision-making in the clinic will decrease 

by combining the results of diagnostic tests with the information obtained from the 

patient. Physician will ask for the right diagnostic test based on the patient's 

symptoms and complaints in order to diagnose the disease.  

Some of the diagnostic tests are referred to as the reference standard (or gold 

standard) tests. Optimally, it is expected that the reference standard test gives 100% 

correctness for the subjects whether they have the disease or not. Even though, some 

of the diagnostic tests might not discriminate subjects perfectly, they are widely used 

in clinics as they might be cost-effective, easy to apply, and rapid for diagnosis (1).   

The types of variables in diagnostic tests might be nominal, ordinal, or 

quantitative. The distributions of the two groups which consisted of diseased and 

non-diseased subjects for ordinal and quantitative diagnostic tests overlapped since 

they are not gold standard tests. Thus, one of the approaches for statistical disease 

detection for ordinal and quantitative (continuous) diagnostic tests for a binary 

response is specifying an optimal cut-off point through several methods such as 

Youden's J statistic or cost-benefit method. By using this cut-off point, one can 

discriminate subjects whether they are diseased or not. However, this optimal value 

might not separate subjects such as classifying some diseased subjects as non-

diseased or vice versa. Therefore, the decision about the status of the disease is 

uncertain on the overlapped range of distributions of diseased and non-diseased 
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groups. The issue is represented in Figure 1.1. Suppose the blue and red shaded areas 

represent the non-diseased and diseased subjects, respectively. From Figure 1.1., it 

might be seen the overlapped area of two distributions. The optimal cut-off point was 

pointed in Figure 1.1.  as “C”. The decision about this overlapped area, even if the 

optimal cut-off point “C” is determined, will be uncertain. This overlapped area is not 

sufficient to discriminate whether the disease is absent or present. 

 

Figure 1.1. The Illustration of the Problem. 

In order to deal with this uncertainty in this overlapped area, there exist 

different approaches in the literature. One of the approaches is based on specifying 

the boundaries of the middle inconclusive area, also known as the gray zone, is 

discussed. Moreover, there exist different methods to determine the boundaries of 

the gray zone such as by using likelihood ratios (2) or balancing true positive to false 

negative and true negatives to false positives within uncertain area (3).   

This research mainly is concerned with constructing the boundaries of the 

gray zone for quantitative diagnostic tests. The main objectives of this thesis are:  

 To propose a method for constructing the boundaries of the gray zone for 

quantitative diagnostic tests based on information theory 
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 To compare the performance of existing methods with the proposed ones.  

The organization of this thesis is as follows:  

 Chapter 1: The introduction and aims of this thesis were explained. 

  Chapter 2: The approaches about the uncertain area were briefly 

reviewed.  

 Chapter 3: The material and method were explained in detail.  

 Chapter 4: The results were presented.  

 Chapter 5: The discussion of the results was given. 

 Chapter 6: The final remarks and future studies were given.  
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2. LITERATURE REVIEW 

The binary status decision (diseased or non-diseased) in medicine might not 

be sufficient. Especially, in the overlapped area of the distributions of diseased and 

non-diseased subjects, forcing the subject as diseased or non-diseased might cause a 

false decision. To overcome this issue, there are different approaches in the 

literature.  

One of the approach to deal with the binary status decision is related to fuzzy 

function and Receiver Operating Characteristics (ROC). The main aims of ROC analysis 

are finding the cut-off value to discriminate between healthy and diseased subjects 

and showing the test performances with respect to optimal cut-off point. The fuzzy 

functions concern the degree of membership. For instance, the subject may involve 

in either a diseased or non-diseased class. Therefore, this subject has partial 

membership and is between two classes. Campbell et al. (4) extend the ROC analysis 

to multi-labeled membership using a fuzzy algorithm called fuzzy ROC. Evangelista et 

al. (5) developed the fuzzy ROC for unsupervised learning-based nonparametric 

ensemble techniques. ROC analysis with the binary response is commonly used for 

evaluating diagnostic tests. The classic ROC methodology and the fuzzy sets theory 

are combined with a new approach known as a fuzzy-rule-based system. They 

implemented this algorithm to predict the pathological level of prostate cancer (6). 

The fuzzy ROC algorithm for visualizing the bounds of the fuzzy ROC and for 

examining the performance of the gray area are identified (7).  

Another solution for the binary status decision is constructing a gray zone 

which indicates classifying subjects as diseased, non-diseased, and neither diseased 

nor non-diseased. The background and the approaches of the middle inconclusive 

area are presented in subsection 2.1 in details.  

2.1. The Background of Gray Zone 

There are several methods for handling the gray zone. Feinstein (8) has 

desired to highlight how only two zones specified by binary models—the person is 
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either classed as having a disease or not—  are inadequate for making medical 

decisions. As a result, it was determined that creating three zones including an 

inconclusive zone was not unusual for clinical and statistical techniques.  Moreover, 

the author has figured out the inconclusive area for diagnosing myocardial infarction 

with creatinine kinase by using the likelihood ratios and Bayesian approach (8). A new 

solution to get sensitivity and specificity that is written as chance-corrected 

sensitivity and specificity was proposed for the matrix with dimension 3x2 to take the 

middle zone into account (9). Simel et al. (10) present that likelihood ratios give a 

general methodology for binary, ordinal, and continuous diagnostic tests. Moreover, 

they highlight that for likelihood ratios, additional information about a patient might 

be used via logistic regression. 

One of the earliest approaches to observe the intermediate region, the "two-

graph receiver operating characteristic" (TG-ROC), was defined (11). It is a graphic 

that shows sensitivity and specificity plotted against the thresholds. This method 

reveals the two thresholds with pre-selected sensitivity and specificity (95% or 90%). 

Therefore, it guarantees that sensitivity and specificity are at least 95% or 90% (the 

other values of sensitivity and specificity may be observed graphically) outside of the 

intermediate region. 

By using likelihood ratios, Coste and Pouchot (2) outline the boundaries of the 

"grey zone"1 (GZ) in their investigation study. They also showed that using the pre-

test probabilities to obtain post-test probabilities and likelihood ratios. Thus, they 

applied the tuberculin skin test to decide the starting antituberculous therapy in HIV-

seropositive patients and the reticulocyte hemoglobin content test to diagnose iron 

deficiency in children. Coste et al. (12) showed the application of the gray zone to 

diagnose heart failure in acute dyspneic patients by using brain natriuretic peptide. 

The details of this approach are presented in Material and Methods. 

                                                             
1 The term "grey zone" was adopted for Coste and Pouchot's technique (2) to avoid misunderstanding 
between it and "gray zone".  As a result, the phrase "gray zone" which refers to the middle inconclusive 
area was used as general term. 
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An alternative approach in order to find out the inconclusive area is proposed 

by Landsheer (3) and is known as the "uncertain interval" (UI) approach. The two 

decision thresholds are used by the author to investigate this uncertain area and to 

present an alternative trichotomization strategy. Basically, this methodology is based 

on finding the boundaries of the gray zone while balancing true positive to false 

negative and true negative to false positive at the same time in the overlapping area 

of the distributions of diseased and non-diseased subjects. In this study, the predicted 

probabilities of risk of prostate cancer in the data (13) were obtained and the 

uncertain interval was specified based on these probabilities. The details of this 

approach are also presented in Material and Methods. 

Another clinical application of gray zone was presented (14) to find out the 

uncertainty for the no-reflow phenomenon by using systemic inflammation index in 

patients with ST-elevation myocardial infarction admitted for primary percutaneous 

coronary intervention (PCI).  

2.2. The Background of Information Criteria 

The information theory is presented by Shannon (15) for communication 

purposes, such as data transmission rate and optimal data compression. Information 

theory is also one of the approaches for evaluating the performance of diagnostic 

tests. However, unlike other methods, the information provided by the diagnostic 

test is obtained from entropy (1). Surprisal, entropy, relative entropy, known as 

Kullback–Leibler divergence, and mutual information are common terms that are 

placed in the information theory. Benish (16) used relative entropy, which is the 

measure of the distance between two distributions, as a measure of diagnostic 

accuracy. Channel capacity in the diagnostic tests is a statement about the sensitivity 

and specificity of the diagnostic tests (17). It represents the maximum value of the 

mutual information and is used to evaluate the performance of the diagnostic tests. 

For the evaluation and comparison of diagnostic tests, information theory approach 

is beneficial for the researchers (18). 
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3. MATERIAL AND METHODS 

The details of the "grey zone" approach (2), the "uncertain interval" approach 

(3), and the proposed algorithm by using information statistics were presented in this 

section. The simulation scenarios, including the data generation process and the 

properties of the real data set, were given in this section. 

3.1. The Evaluation of Diagnostic Tests  

In this section, some of the features and performance measures used in the 

evaluation of diagnostic tests are explained.  

For the binary outcome of diagnostic tests, the results of diagnostic tests are 

presented in Table 3.1. Suppose D and Y represent the true disease status and the 

diagnostic test results, respectively.  

D=1, for the diseased subjects
D = 

D=0, for the non-diseased subjects 
 

    and 

Y=1, for the positive test result
Y = 

Y=0, for the negative test result
 

Table 3.1. The Cross Table of the disease status and diagnostic test. 

 D=0 D=1 

Y=0 True negative False negative 

Y=1 False positive True positive 

 

In order to evaluate the diagnostic tests, four decisions are appeared. True 

negative (TN) represents the negative test result among non-diseased subjects, while 

true positive (TP) represents the positive test result among diseased ones. The 
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negative test result among the diseased subjects and the positive test result among 

the non-diseased subjects are false negative (FN) and false positive (FP), respectively. 

The common performance measures for the diagnostic tests are accuracy, 

sensitivity, specificity, positive predictive value (PPV), negative predictive value 

(NPV), positive likelihood ratio, LR(+), and negative likelihood ratio, LR(-) (19).  

Accuracy is the correct classification of subjects among all subjects in the data 

set.   

   
TP TN

Accuracy
TP TN FP FN

 (3.1.) 

Sensitivity is the proportion of positive test results among the diseased 

subjects. 

   ( 1 | 1)  
TP

Sensitivity P Y D
TP FN

 (3.2.) 

Specificity is the proportion of the negative test results among the non-

diseased subjects.    

   ( 0 | 0)  
TN

Specificity P Y D
TN FP

 (3.3.) 

Positive predictive value and negative predictive value are predictive values 

related to how accurately the test result reflects the true disease status. Positive 

predictive value is the proportion of diseased subjects among the positive test results.  

   ( 1 | 1)   
TP

PPV P D Y
TP FP

 (3.4.) 

The negative predictive value is the proportion of non-diseased subjects 

among the negative test results.  
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   ( 0 | 0)   
TN

NPV P D Y
TN FN

 (3.5.) 

 Another approach to describe the performance of the diagnostic test is to use 

likelihood ratios, which are the ratios of the likelihood of the observed test result in 

populations with and without disease. 

 
( 1 | 1)

( )  
( 1 | 0) 1 -

P Y D Sensitivity
LR

P Y D Specificity
 (3.6.) 

  

 
( 0 | 1) 1 -

(-)  
( 0 | 0)

P Y D Sensitivity
LR

P Y D Specificity
 (3.7.) 

The likelihood ratios can also be used for calculating post-test odds by using 

pre-test odds.  

 -       ( 1)  -  ( )post test odds for positive test result Y pre test odds LR  (3.8.) 

  

 -       ( 0)  -  (-)post test odds for negative test result Y pre test odds LR  (3.9.) 

While accuracy, sensitivity, specificity, PPV, and NPV are probabilities, LR(+) 

and LR(-) are likelihood ratios whose scale is between 0 to ∞. LR(+) >1 suggests that 

a positive test is more likely to occur in a subject who is diseased than in a subject 

who is not diseased, while; LR(-)≤1 suggests that a negative test is more likely to occur 

in a non-diseased subject than in a diseased subject. 

In addition to above-mentioned performance measures, information theory 

is used to evaluate diagnostic test performance. Some basic definitions of the terms 

belonging to information theory are explained in this subsection. The surprisal 

function, u, measures how unlikely an event is to occur (18). Assume that d1, d2 ,…,dk 

and pi are the mutually exclusive true diagnoses of the diseases and the probability 

of the true diagnosis of the di.  

 log ;i a iu p  (3.10.) 
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where i is the interested disease. In Equation 3.10, the base of the logarithm (a) 

can be chosen arbitrarily since it can be changed by multiplying by a constant. 

However, most of the time, it is specified as two, which provides measurements in 

units of bits (binary digits). It can be written as in Equation 3.11.  

  

 2log ;i iu p  (3.11.) 

where i is the event. The entropy which is represented as H(D) is the expected 

value of the surprisal. H gives a measurement of a diagnostic' degree of uncertainty 

(16). 

 2
1

( ) log
k

i i
i

H D p p  (3.12.) 

The joint entropy is the entropy of the joint probability distribution (20). Let  

d1, d2 ,…,dk and y1, y2 ,…,ym are the mutually exclusive true diagnosis of the diseases 

and the diagnosis of disease based on test results. Moreover, p(di,yj) shows the joint 

probability of the d and y.  

 2
1 1

( , ) ( , ) log ( , )
m k

i j i j
j i

H D Y p d y p d y  (3.13.) 

3.2. The Gray Zone Approaches 

3.2.1. The Grey Zone Approach1 

The boundaries of the middle inconclusive area are defined by using positive 

LR(+) and LR(-) - in grey zone approach (2). The algorithm of this approach is finding 

the boundaries of the gray zone based on pre-selected LR(+) and LR(-) values.  Based 

on the post-test probabilities or sensitivity and specificity of the outside of the gray 

                                                             
1 The name "grey zone" was used to Coste and Pouchot's technique to avoid misunderstanding 
between it and "gray zone" (2). As a result, the phrase "gray zone"—which refers to the uncertain 
area—was established. 
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zone may be determined and LR(+) and LR(-) are calculated using Equations 3.6., 3.7., 

3.8., and 3.9. The algorithm for the grey zone approach is based on pre-selected 

sensitivity and specificity of the outside of the gray zone:  

Step 1: Specify the sensitivity and specificity of the diagnostic test out of the 

gray zone. 

Step 2: Calculate the LR(+) and LR(-) with respect to Equations 3.6 and 3.7. 

Step 3: Find the LR(+) and LR(-) for cut-off values which is the sorted diagnostic 

test values from lowest to highest. 

Step 4: Find the closest values in Step 2. 

The algorithm for the grey zone approach based on the post-test odds for the 

outside of the gray zone: 

Step 1: Give the pre-test probability to calculate the pre-test odds. If there is 

no information for pre-test probabilities, the prevalence of the diseases may be 

considered as pre-test probability.  

Step 2: Provide the post-test probabilities to calculate post-test odds. 

Step 3: Calculate the LR(+) and LR(-) with respect to Equations 3.8. and 3.9.  

Step 4: Find the LR(+) and LR(-) for cut-off values which is the sorted diagnostic 

test values from lowest to highest. 

Step 5: Find the closest values in Step 3. 

3.2.2. Uncertain Interval Approach  

The inconclusive area has been identified by using a different method (3). By 

utilizing the two decision thresholds based on previously chosen levels of sensitivity 

and specificity in this middle inconclusive area, this strategy relies on a different 

trichotomization mechanism. The algorithm of this approach is basically based on the 
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balancing true negative to false positive rates and true positive to false negative rates 

in the gray zone which is illustrated in Figure 3.1. 

 

Figure 3.1. The Visualization of Uncertain Interval Approach. 

The steps of the uncertain interval approach as follows:  

Step 1: Find the intersection of two distributions by Youden’s J statistic or 

kernel density estimation (In this study, for the uncertain interval algorithm, the 

intersection was specified with kernel density estimation since it was stated that 

kernel estimation is slightly more useful than Youden’s J index (3).  

Step 2: Based on the pre-selected values of sensitivity and specificity in the 

gray zone, specify the ratio of true negative to false positive and true positive to false 

negative. 

Step 3: By using sequential least squares programming optimizer (SLSQP) 

which is nonlinearly constrained gradient-based optimization find the areas 

simultaneously around the intersection with the true negative balanced by false 

positive and the true positive balanced by false negative. 
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3.2.3. Proposed Algorithm of Uncertain Boundaries with Joint Entropy  

The proposed algorithm is based on joint entropy. The proposed algorithm 

was named a “Joint Entropy based algorithm for Uncertain Boundaries” and 

shortened to “JE-UB”. The algorithm was constructed as follows:  

Step 1: Find the initial values for the lower and upper boundaires of the gray 

zone that is based on the overlapped area of diseased and non-diseased distributions: 

 c01 : the minimum value of the overlapped area 

 c02 : the maximum value of the overlapped area 

 

Figure 3.2. The First Step of the JE-UB Algorithm.  

Step 2: Find the intersection point of two distributions whether maximizing 

the Youden’s J statistic based on kernel smoothing or the Euclidean distance of 

observations1 in c01 and c02 : C 

The Youden’s J statistic based on kernel smoothed densities was chosen for 

determining the intersection point since, in different scenarios under different 

                                                             
1 In order to differentiate which method was used for finding the cut-off point in Step 2, using Kernel 
Smoothing for Youden’s J statistic and the Euclidean Distance of observations are shortened and 
added to “JE-UB-KB” and “JE-UB-ED”, respectively. 
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distributions, the Youden’s J statistic based on kernel smoothed densities showed 

good properties (21).  

The Euclidean distances from one observation to another were calculated. 

The summation of these distances was taken, and the overall distance measure in 

each observation was constructed. The point where this sum was at its minimum was 

accepted as the intersection. Suppose p and q are the two points in the Euclidian n 

space; the formulation for this distance (d) is (22):  

 2

1

( , ) ( )
n

i i
i

d p q q p  (3.14.) 

 

Figure 3.3. The Second Step of the JE-UB Algorithm. 

Step 3: Find the point between c01 and C which gives the maximum value of 

joint entropy: cL 

Step 4: Find the point between c02 and C which gives the maximum value of 

joint entropy: cU 
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Figure 3.4. The General Framework of JE-UB Algorithm. 

3.3. The Simulation Studies 

In order to compare the JE-UB algorithm with the existing algorithms, a 

comprehensive simulation study was conducted by using the R language 

environment. Suppose that YC and YD are the distributions of diagnostic tests of the 

non-diseased group and diseased group, respectively. The factors which are 

considered for the simulation scenarios are sample size (n which is the total sample 

sizes of YC and YD), the prevalence of the disease, P(D), and the ratio of variances (the 

ratio of variances of a diseased group to non-diseased group). Thus, in order to reveal 

how much the distributions are close to each other or how much the distributions 

are overlapped, the effect size (d) of YC and YD was used. The results of simulation 

scenarios, which consist of all possible combinations, are evaluated:  

1. Sample size (n): 50, 100, and 200 

2. Prevalence of the disease (P(D)): 0.2, 0.5, and 0.8 

3. The ratio of the variances: 1 (equal variances) and 3 (unequal variances) 

(23) 

4. Effect size (d): 0.5 (medium), 0.8 (large), and 1.2 (large) (24) 

For all the combinations of total of 54 scenarios, the distribution of YC was 

distributed as a normal distribution with 0 mean and 1 standard deviation. In addition 

to those scenarios, for the prevalence of the disease is 0.8 and the ratio of variances 
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3, in order to prevent the underrepresentation of the distribution of YC, the 

prevalence of the disease is 0.8 and the ratio of variances 1/3 is also considered. 

Therefore, total of 63 scenarios were evaluated. Each simulation scenario was 

repeated 1000 times. 

One of the difficult issues for the comparisons of the gray zone is if the length 

of the gray zone (the difference between upper and lower boundaries of the gray 

zone) increases, then the out-of-the-performance measures (such as accuracy, 

sensitivity, and specificity) will increase or vice versa. Therefore, the question has 

arisen, whether the narrower length of the gray zone is important or the out of the 

gray zone is important. For this issue, in simulation studies, the area under receiver 

operating characteristics curve (AUROC) out of the gray zone was fixed with a 1% 

interval, and the gray zone's narrowest length was chosen as the best algorithm.  

For each effect size considered in the simulation study, the AUROC values 

were chosen differently. For effect sizes equal to 0.5, 0.8, and 1.2, the AUROC was 

specified as 0.69, 0.77, and 0.85 with 1% intervals based on the relationship between 

effect size and AUROC (25). The AUROC values are approximately, 0.64, 0.72, and 0.8. 

Therefore, the AUROC was fixed higher than 5% of those values with a 1% interval. 

For the performance measures, the boundaries and the length of the gray zone, the 

percentage of subjects that are in gray zone, the AUROC, accuracy, sensitivity, and 

specificity of the outside the gray zone were evaluated which is illustrated in Table 

3.2.  

Table 3.2. The Values for AUROC with Effect Sizes. 

Effect Size Interval of AUROC 

d=0.5  68 % to 70 % 

d=0.8 76 % to 78 % 

d=1.2 84 % to 86 % 
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For the uncertain interval algorithm, the optimum boundaries were searched 

between 0.51 to 0.65 of sensitivity and specificity in the gray zone. For the multiple 

boundaries in the interval of AUROC, the boundaries of the gray zone were chosen 

based on the minimum length of the gray zone.  For the grey zone algorithm, the 

optimum boundaries were started to search for the sensitivity and specificity optimal 

cut-off point based on Youden’s J index to the value of sensitivity and specificity of 

the out of the gray zone 1. Then the likelihood ratios were calculated based on 

Equations 3.6 and 3.7. For multiple boundaries, the same structure of uncertain 

intervals is followed. For the JE-UB algorithm, for the multiple boundaries, the 

boundaries were selected with respect to the maximum joint entropy.  

All analysis was conducted on R environment (26). The distributions of YC and 

YD were generated with “stats” package (26) in R. Thus, the “UncertainInterval” 

package (27) was used for the grey zone and uncertain interval approaches. The 

performance measures were obtained by using the “caret” package (28).  

3.4. The Real Data Set 

To reveal the application of the real data set, the one of the versions of the 

Pima Indian Data Set was used.  The National Institute of Diabetes and Digestive and 

Kidney Diseases is the original source of this data set (29). The main objective of this 

data set is to predict whether a patient has diabetes or not. All patients at this facility 

are Pima Indian women who are at least 21 years old. The data set in this thesis is 

obtained from “MASS” package (30) in R which is the small part of this larger data 

set. The variables of the data set are: number of pregnancy, age, diastolic blood 

pressure, triceps skin fold thickness, body mass index, diabetes pedigree function, 

glucose and class (a patient has the diabetes or not). For this study, we consider 

glucose, and class variables to find the boundaries of the gray zone.  
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4. RESULTS 

The results of both simulation studies and real data sets are presented in this 

section.  

4.1. The Simulation Results  

The mean values of the boundaries and length of the gray zone, the 

percentage of the subject who is classified as gray zone and the percentage of 

diseased and non-diseased groups, the AUROC, accuracy, sensitivity, and specificity 

of the out of the gray zone of the 1000 replications were given in Tables 4.1., 4.2., 

4.3., and 4.4. For Figures 4.1., 4.2., and 4.3.1, the y-axis shows the length of the gray 

zone while in the x-axis, the methods were placed. Thus, the sample sizes are 

represented with the lines while the prevalence of the disease were split in grids. For 

Figures 4.4.,4.5., and 4.6., the same structure is followed except for the prevalence 

of the disease was fixed as 0.8 so there is no grid. All Figures were generated by using 

the “ggplot2” package (31) in R.  

                                                             
1 For Tables 4.1., 4.2., 4.3., and 4.4., and Figures 4.1., 4.2., 4.3., 4.4., 4.5., and 4.6., the uncertain 
interval, grey zone, joint entropy based algorithm for uncertain boundaries with kernel smoothed 
densities for Youden’s j index, and joint entropy based algorithm for uncertain boundaries with the 
Euclidean distance of observations were represented as "UI", "GZ", "JE-UB-KB" and "JE-UB-ED". For 
Tables 4.1., 4.2., 4.3., and 4.4., LL and UL shows the lower and upper limit of the gray zone, 
respectively.  
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Table 4.1. The Simulation Results for d=0.5. 

P(D) 
The Ratio 

of 
Variances 

n Methods 
Boundaries Proportion of Gray Zone Out of in the Gray Zone 

LL-UL Length  Total % Diseased % Control % AUROC Accuracy Sensitivity Specificity 

P(D)=0.2 

Equal 
Variances 

50 

UI -0.451 - 0.821 1.272 41.972 19.913 80.087 0.681 0.637 0.757 0.606 

GZ -0.264 - 1.036 1.300 41.772 21.196 78.804 0.687 0.711 0.666 0.707 

JE-UB-KB -0.173 - 0.864 1.038 37.376 20.853 79.147 0.689 0.700 0.673 0.705 

JE-UB-ED -0.222 - 0.604 0.827 31.366 20.831 79.169 0.687 0.652 0.748 0.627 

100 

UI -0.500 - 0.984 1.484 47.389 20.279 79.721 0.680 0.657 0.721 0.639 

GZ -0.439 - 1.102 1.540 49.064 20.392 79.608 0.685 0.701 0.670 0.700 

JE-UB-KB -0.265 - 0.833 1.098 38.665 20.618 79.382 0.686 0.678 0.699 0.672 

JE-UB-ED -0.305 - 0.653 0.957 34.672 20.726 79.274 0.684 0.643 0.751 0.617 

200 

UI -0.655 - 1.146 1.801 56.222 20.065 79.935 0.678 0.665 0.704 0.652 

GZ -0.641 - 1.295 1.936 60.153 20.321 79.679 0.685 0.708 0.662 0.709 

JE-UB-KB -0.406 - 0.897 1.304 44.485 20.327 79.673 0.683 0.667 0.710 0.656 

JE-UB-ED -0.435 - 0.819 1.254 43.111 20.421 79.579 0.682 0.649 0.737 0.627 

Unequal 
Variances 

50 

UI 0.430 - 1.600 1.170 26.926 21.726 78.274 0.680 0.813 0.465 0.895 

GZ 0.107 - 1.510 1.403 35.610 19.770 80.230 0.686 0.788 0.544 0.829 

JE-UB-KB -0.231 - 1.074 1.304 40.780 15.562 84.438 0.690 0.716 0.647 0.732 

JE-UB-ED -0.175 - 0.740 0.915 31.226 16.204 83.796 0.687 0.678 0.700 0.674 

100 

UI 0.591 - 1.650 1.059 22.539 20.573 79.427 0.675 0.828 0.423 0.927 

GZ 0.146 - 1.692 1.546 36.512 19.402 80.598 0.683 0.812 0.497 0.870 

JE-UB-KB -0.306 - 1.172 1.478 43.177 14.802 85.198 0.688 0.720 0.627 0.748 

JE-UB-ED -0.185 - 0.890 1.075 33.798 15.386 84.614 0.684 0.693 0.657 0.711 

200 

UI 0.580 - 1.723 1.143 23.723 20.328 79.672 0.670 0.832 0.401 0.939 

GZ 0.149 - 1.705 1.556 36.112 19.470 80.530 0.681 0.815 0.485 0.877 

JE-UB-KB -0.250 - 1.234 1.484 43.128 14.913 85.087 0.685 0.731 0.592 0.779 

JE-UB-ED -0.181 - 1.065 1.246 37.514 15.396 84.604 0.682 0.715 0.610 0.753 

 



20 
 

Table 4.1. (Continued). The Simulation Results for d=0.5. 

P(D)=0.5 

Equal 
Variances 

50 

UI -0.468 - 0.904 1.373 44.498 49.930 50.070 0.678 0.680 0.702 0.654 

GZ -0.439 - 0.922 1.361 45.642 49.634 50.366 0.686 0.693 0.693 0.679 

JE-UB-KB -0.252 - 0.777 1.029 38.220 49.492 50.508 0.688 0.686 0.683 0.692 

JE-UB-ED -0.201 - 0.737 0.937 35.582 49.424 50.576 0.686 0.684 0.680 0.692 

100 

UI -0.575 - 1.069 1.645 52.351 49.997 50.003 0.677 0.680 0.682 0.672 

GZ -0.550 - 1.103 1.653 53.985 50.075 49.925 0.685 0.692 0.672 0.698 

JE-UB-KB -0.323 - 0.848 1.172 41.338 50.075 49.925 0.684 0.683 0.681 0.688 

JE-UB-ED -0.293 - 0.829 1.122 39.952 50.058 49.942 0.684 0.682 0.677 0.690 

200 

UI -0.698 - 1.205 1.902 59.641 49.971 50.029 0.678 0.683 0.677 0.680 

GZ -0.748 - 1.251 1.999 62.799 49.914 50.086 0.684 0.695 0.684 0.684 

JE-UB-KB -0.458 - 0.956 1.414 48.174 49.894 50.106 0.682 0.682 0.683 0.682 

JE-UB-ED -0.452 - 0.952 1.404 47.891 49.903 50.097 0.682 0.682 0.682 0.682 

Unequal 
Variances 

50 

UI 0.508 - 1.731 1.223 27.182 49.570 50.430 0.670 0.669 0.396 0.943 

GZ 0.066 - 1.496 1.429 35.656 47.280 52.720 0.684 0.686 0.508 0.861 

JE-UB-KB -0.319 - 1.145 1.464 40.718 42.340 57.660 0.687 0.683 0.614 0.761 

JE-UB-ED -0.173 - 1.050 1.223 35.346 42.030 57.970 0.686 0.678 0.600 0.772 

100 

UI 0.543 - 1.728 1.185 25.686 49.350 50.650 0.671 0.670 0.389 0.952 

GZ 0.205 - 1.612 1.407 32.944 48.540 51.460 0.682 0.684 0.466 0.898 

JE-UB-KB -0.225 - 1.205 1.430 38.104 41.423 58.577 0.685 0.674 0.580 0.790 

JE-UB-ED -0.081 - 1.104 1.185 32.803 42.088 57.912 0.683 0.670 0.569 0.796 

200 

UI 0.561 - 1.715 1.154 24.795 49.752 50.248 0.671 0.670 0.392 0.949 

GZ 0.242 - 1.586 1.343 31.512 48.409 51.591 0.681 0.683 0.466 0.896 

JE-UB-KB -0.110 - 1.211 1.322 34.998 41.429 58.571 0.683 0.670 0.560 0.806 

JE-UB-ED -0.056 - 1.132 1.188 32.163 41.817 58.183 0.681 0.668 0.562 0.800 
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Table 4.1. (Continued). The Simulation Results for d=0.5. 

P(D)=0.8 

Equal 
Variances 

50 

UI -0.372 - 0.872 1.244 40.414 79.532 20.468 0.679 0.661 0.648 0.710 

GZ -0.441 - 0.675 1.116 37.870 78.579 21.421 0.687 0.713 0.721 0.653 

JE-UB-KB -0.346 - 0.719 1.065 38.648 78.985 21.015 0.689 0.699 0.703 0.676 

JE-UB-ED -0.062 - 0.765 0.827 32.002 78.664 21.336 0.687 0.646 0.619 0.755 

100 

UI -0.528 - 0.994 1.522 48.209 79.776 20.224 0.676 0.667 0.658 0.695 

GZ -0.589 - 0.943 1.531 49.382 79.685 20.315 0.686 0.702 0.704 0.669 

JE-UB-KB -0.323 - 0.822 1.145 40.291 79.494 20.506 0.686 0.673 0.664 0.709 

JE-UB-ED -0.160 - 0.864 1.024 36.769 79.243 20.757 0.684 0.639 0.610 0.758 

200 

UI -0.528 - 0.994 1.522 24.105 79.776 20.224 0.676 0.667 0.658 0.695 

GZ -0.589 - 0.943 1.531 24.691 79.685 20.315 0.686 0.702 0.704 0.669 

JE-UB-KB -0.323 - 0.822 1.145 20.146 79.494 20.506 0.686 0.673 0.664 0.709 

JE-UB-ED -0.160 - 0.864 1.024 18.385 79.243 20.757 0.684 0.639 0.610 0.758 

Unequal 
Variances 

50 

UI 0.361 - 1.745 1.384 31.224 80.195 19.805 0.676 0.518 0.412 0.941 

GZ -0.166 - 1.124 1.290 30.396 76.747 23.253 0.685 0.635 0.597 0.774 

JE-UB-KB -0.366 - 0.959 1.325 32.756 74.954 25.046 0.688 0.667 0.652 0.724 

JE-UB-ED -0.031 - 1.040 1.071 27.430 74.896 25.104 0.687 0.623 0.584 0.789 

100 

UI 0.506 - 1.737 1.231 26.847 80.020 19.980 0.674 0.503 0.388 0.960 

GZ 0.114 - 1.391 1.277 29.190 78.434 21.566 0.684 0.577 0.504 0.864 

JE-UB-KB -0.198 - 1.100 1.298 31.120 73.429 26.571 0.686 0.625 0.589 0.782 

JE-UB-ED 0.077 - 1.100 1.024 25.346 73.538 26.462 0.684 0.592 0.542 0.826 

200 

UI 0.542 - 1.727 1.185 25.724 79.774 20.226 0.674 0.500 0.385 0.962 

GZ 0.263 - 1.514 1.251 28.180 79.354 20.646 0.682 0.551 0.463 0.902 

JE-UB-KB -0.061 - 1.166 1.227 28.941 73.497 26.503 0.683 0.601 0.555 0.812 

JE-UB-ED 0.135 - 1.137 1.002 24.322 73.686 26.314 0.682 0.581 0.526 0.838 
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Figure 4.1. The Simulation Results for d=0.5. 
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For the effect size 0.5, the results of simulation scenarios were presented in 

Table 4.1. and Figure 4.1. With respect to similar performances out of the gray zone 

of the four methods,  

 For the equal variances, the proposed algorithm which is Joint Entropy 

based algorithm for Uncertain Boundaries with both Kernel Smoothed 

densities for Youden’s J statistic (JE-UB-KB) and Euclidian Distance (JE-UB-

ED) gives the smallest length of the gray zone for sample sizes 50, 100, and 

200 and prevalence of the disease 0.2, 0.5 and 0.8.  

 For the unequal variances, for the prevalence of the disease 0.2 for the 

sample size 50, the JE-UB-ED algorithm gives the minimum length of the 

gray zone while for the sample sizes 100 and 200, the uncertain interval 

algorithm gives the minimum length of the gray zone. 

 For the unequal variances, for the prevalence of the disease 0.5 for the 

sample sizes 50 and 100, the JE-UB-ED algorithm and uncertain interval 

gives the minimum length of the gray zone while for the sample size 200, 

the uncertain interval algorithm gives the minimum length of the gray 

zone. 

 For the unequal variances, for the prevalence of the disease 0.8 for all 

sample sizes the JE-UB-ED algorithm and uncertain interval gives the 

minimum length of the gray zone. 
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Table 4.2. The Simulation Results for d=0.8. 

P(D) 
The Ratio 

of 
Variances 

n Methods 
Boundaries Proportion of Gray Zone Out of in the Gray Zone 

LL-UL Length Total % Diseased % Control % AUROC Accuracy Sensitivity Specificity 

P(D)=0.2 

Equal 
Variances 

50 

UI -0.123 - 1.005 1.127 37.064 19.998 80.002 0.762 0.752 0.780 0.744 

GZ -0.091 - 1.140 1.231 39.282 20.467 79.533 0.766 0.784 0.747 0.785 

JE-UB-KB -0.054 - 1.007 1.061 36.966 20.035 79.965 0.768 0.772 0.761 0.775 

JE-UB-ED -0.119 - 0.802 0.922 33.688 19.473 80.527 0.765 0.736 0.816 0.715 

100 

UI -0.292 - 1.130 1.423 45.915 20.216 79.784 0.761 0.750 0.780 0.742 

GZ -0.323 - 1.225 1.548 49.166 20.256 79.744 0.767 0.772 0.765 0.768 

JE-UB-KB -0.200 - 1.000 1.200 41.319 20.141 79.859 0.765 0.749 0.792 0.739 

JE-UB-ED -0.251 - 0.893 1.143 39.863 20.237 79.763 0.764 0.726 0.825 0.702 

200 

UI -0.450 - 1.264 1.713 54.306 20.125 79.875 0.762 0.755 0.775 0.749 

GZ -0.485 - 1.355 1.839 57.257 20.275 79.725 0.766 0.774 0.762 0.770 

JE-UB-KB -0.333 - 1.051 1.383 46.770 20.096 79.904 0.763 0.738 0.804 0.722 

JE-UB-ED -0.352 - 1.014 1.367 46.381 20.170 79.830 0.762 0.729 0.817 0.707 

Unequal 
Variances 

50 

UI 0.522 - 1.585 1.063 24.984 20.157 79.843 0.747 0.850 0.577 0.918 

GZ 0.033 - 1.560 1.527 39.522 17.929 82.071 0.766 0.831 0.669 0.863 

JE-UB-KB -0.183 - 1.199 1.382 42.094 15.508 84.492 0.768 0.781 0.745 0.791 

JE-UB-ED -0.155 - 1.025 1.180 37.976 15.915 84.085 0.766 0.760 0.772 0.761 

100 

UI 0.557 - 1.657 1.100 24.427 20.404 79.596 0.744 0.859 0.553 0.935 

GZ -0.005 - 1.671 1.676 41.411 17.877 82.123 0.764 0.840 0.654 0.875 

JE-UB-KB -0.227 - 1.227 1.454 42.772 14.872 85.128 0.766 0.779 0.738 0.793 

JE-UB-ED -0.205 - 1.119 1.324 39.995 15.429 84.571 0.764 0.765 0.754 0.773 

200 

UI 0.512 - 1.748 1.237 26.696 20.153 79.847 0.737 0.861 0.529 0.944 

GZ -0.170 - 1.673 1.843 45.969 17.110 82.890 0.761 0.832 0.668 0.855 

JE-UB-KB -0.252 - 1.336 1.588 45.321 15.069 84.931 0.763 0.787 0.710 0.816 

JE-UB-ED -0.246 - 1.301 1.547 44.445 15.251 84.749 0.762 0.782 0.716 0.808 



25 
 

 

Table 4.2. (Continued). The Simulation Results for d=0.8. 

P(D)=0.5 

Equal 
Variances 

50 

UI -0.291 - 1.052 1.343 44.356 50.023 49.977 0.757 0.757 0.767 0.746 

GZ -0.305 - 1.139 1.444 47.946 50.065 49.935 0.767 0.771 0.761 0.772 

JE-UB-KB -0.168 - 1.012 1.180 42.050 49.389 50.611 0.767 0.765 0.756 0.777 

JE-UB-ED -0.145 - 0.992 1.137 40.982 49.470 50.530 0.766 0.765 0.756 0.777 

100 

UI -0.384 - 1.190 1.574 50.618 49.949 50.051 0.760 0.761 0.761 0.760 

GZ -0.432 - 1.248 1.681 53.960 49.855 50.145 0.766 0.771 0.763 0.769 

JE-UB-KB -0.243 - 1.066 1.309 44.559 49.815 50.185 0.764 0.764 0.760 0.769 

JE-UB-ED -0.233 - 1.062 1.295 44.189 49.847 50.153 0.764 0.764 0.758 0.770 

200 

UI -0.505 - 1.308 1.813 57.469 49.946 50.054 0.762 0.765 0.763 0.762 

GZ -0.591 - 1.379 1.970 61.257 49.772 50.228 0.766 0.775 0.769 0.763 

JE-UB-KB -0.323 - 1.137 1.461 49.084 49.997 50.003 0.762 0.763 0.759 0.766 

JE-UB-ED -0.322 - 1.137 1.460 49.063 49.991 50.009 0.762 0.763 0.758 0.766 

Unequal 
Variances 

50 

UI 0.455 - 1.694 1.239 29.036 49.814 50.186 0.742 0.742 0.539 0.945 

GZ -0.075 - 1.544 1.619 40.412 45.615 54.385 0.764 0.763 0.657 0.870 

JE-UB-KB -0.206 - 1.267 1.473 40.306 42.420 57.580 0.766 0.761 0.713 0.819 

JE-UB-ED -0.125 - 1.249 1.373 38.284 42.566 57.434 0.765 0.759 0.701 0.829 

100 

UI 0.481 - 1.740 1.259 28.165 49.988 50.012 0.744 0.744 0.531 0.957 

GZ 0.002 - 1.614 1.612 38.589 45.536 54.464 0.762 0.762 0.634 0.891 

JE-UB-KB -0.126 - 1.284 1.409 37.450 41.100 58.900 0.763 0.754 0.686 0.840 

JE-UB-ED -0.074 - 1.277 1.351 36.225 41.300 58.700 0.763 0.752 0.679 0.847 

200 

UI 0.452 - 1.793 1.342 29.532 50.108 49.892 0.740 0.740 0.522 0.958 

GZ -0.067 - 1.624 1.690 40.480 44.995 55.005 0.760 0.760 0.638 0.883 

JE-UB-KB -0.115 - 1.371 1.485 38.539 41.607 58.393 0.761 0.749 0.667 0.856 

JE-UB-ED -0.111 - 1.365 1.476 38.363 41.644 58.356 0.761 0.749 0.667 0.855 
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Table 4.2. (Continued). The Simulation Results for d=0.8. 

P(D)=0.8 

Equal 
Variances 

50 

UI -0.217 - 0.892 1.109 36.122 79.841 20.159 0.761 0.760 0.759 0.762 

GZ -0.278 - 0.853 1.131 37.118 78.878 21.122 0.767 0.781 0.786 0.747 

JE-UB-KB -0.190 - 0.879 1.070 37.696 79.398 20.602 0.768 0.769 0.769 0.767 

JE-UB-ED 0.021 - 0.939 0.918 34.428 80.028 19.972 0.766 0.734 0.712 0.819 

100 

UI -0.334 - 1.083 1.417 45.801 79.721 20.279 0.760 0.752 0.747 0.774 

GZ -0.390 - 1.126 1.516 48.723 79.765 20.235 0.766 0.767 0.763 0.770 

JE-UB-KB -0.186 - 1.023 1.208 41.775 79.636 20.364 0.766 0.746 0.733 0.800 

JE-UB-ED -0.074 - 1.073 1.146 40.318 79.684 20.316 0.764 0.722 0.693 0.834 

200 

UI -0.461 - 1.246 1.708 54.139 79.935 20.065 0.762 0.758 0.753 0.770 

GZ -0.511 - 1.287 1.799 56.805 79.851 20.149 0.766 0.767 0.760 0.772 

JE-UB-KB -0.242 - 1.145 1.387 46.595 79.917 20.083 0.763 0.737 0.719 0.807 

JE-UB-ED -0.208 - 1.169 1.376 46.417 79.929 20.071 0.762 0.728 0.705 0.819 

Unequal 
Variances 

50 

UI 0.299 - 1.695 1.395 32.384 81.052 18.948 0.759 0.651 0.576 0.941 

GZ -0.099 - 1.126 1.224 28.776 75.904 24.096 0.765 0.738 0.718 0.811 

JE-UB-KB -0.233 - 1.100 1.333 32.008 75.781 24.219 0.768 0.754 0.745 0.790 

JE-UB-ED 0.048 - 1.222 1.174 29.430 77.757 22.243 0.765 0.721 0.692 0.837 

100 

UI 0.392 - 1.731 1.338 30.258 79.847 20.153 0.750 0.621 0.536 0.964 

GZ -0.019 - 1.430 1.449 33.005 76.737 23.263 0.765 0.694 0.649 0.880 

JE-UB-KB -0.118 - 1.261 1.379 32.473 74.240 25.760 0.766 0.712 0.682 0.849 

JE-UB-ED 0.106 - 1.357 1.251 29.933 74.663 25.337 0.763 0.681 0.634 0.893 

200 

UI 0.431 - 1.768 1.337 29.685 79.752 20.248 0.744 0.609 0.520 0.967 

GZ -0.030 - 1.569 1.599 35.412 76.906 23.094 0.761 0.681 0.629 0.893 

JE-UB-KB -0.006 - 1.393 1.399 32.363 74.289 25.711 0.763 0.682 0.640 0.885 

JE-UB-ED 0.092 - 1.440 1.348 31.309 74.475 25.525 0.762 0.668 0.618 0.905 
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Figure 4.2. The Simulation Results for d=0.8. 
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The results of the simulation for an effect size equal to 0.8 were given in Table 

4.2. and Figure 4.2. According to these results,  

 The same results with effect size 0.5 and equal variances were obtained. 

The the JE-UB algorithms give the minimum length of the gray zone.  

 For unequal variances with all sample sizes of the prevalence of disease 0.2 

and 0.5, the uncertain interval algorithm has the minimum length of the 

gray zone. It was followed with the the JE-UB-ED algorithm.  

 For the prevalence of the disease 0.8 with unequal variances, for sample 

sizes 50 and 100, the JE-UB-ED algorithm shows the minimum length of the 

gray zone, on the other hand; for sample size 200, the uncertain interval 

algorithm reveals the minimum length of gray zone.  
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Table 4.3. The Simulation Results for d=1.2. 

P(D) 
The Ratio 

of 
Variances 

n Methods 
Boundaries Proportion of Gray Zone Out of in the Gray Zone 

LL-UL Length Total % Diseased % Control % AUROC Accuracy Sensitivity Specificity 

P(D)=0.2 

Equal 
Variances 

50 

UI 0.113 - 1.252 1.139 35.180 18.897 81.103 0.842 0.850 0.829 0.855 

GZ 0.066 - 1.398 1.333 38.922 19.804 80.196 0.845 0.870 0.814 0.875 

JE-UB-KB 0.051 - 1.285 1.234 39.120 18.062 81.938 0.847 0.859 0.827 0.866 

JE-UB-ED 0.006 - 1.213 1.206 39.248 17.040 82.960 0.846 0.851 0.839 0.853 

100 

UI -0.041 - 1.287 1.328 41.146 20.143 79.857 0.840 0.835 0.850 0.831 

GZ -0.101 - 1.394 1.495 45.242 20.490 79.510 0.845 0.851 0.840 0.851 

JE-UB-KB -0.079 - 1.220 1.299 41.980 19.414 80.586 0.845 0.831 0.869 0.821 

JE-UB-ED -0.109 - 1.152 1.262 41.352 19.208 80.792 0.843 0.819 0.885 0.801 

200 

UI -0.153 - 1.369 1.522 46.445 20.256 79.744 0.840 0.836 0.847 0.833 

GZ -0.273 - 1.477 1.750 52.401 20.136 79.864 0.846 0.846 0.852 0.840 

JE-UB-KB -0.167 - 1.218 1.385 44.419 19.407 80.593 0.842 0.817 0.886 0.798 

JE-UB-ED -0.179 - 1.193 1.372 44.199 19.373 80.627 0.842 0.812 0.894 0.790 

Unequal 
Variances 

50 

UI 0.629 - 1.666 1.037 22.958 20.507 79.493 0.826 0.897 0.708 0.945 

GZ 0.169 - 1.700 1.531 37.670 17.329 82.671 0.848 0.889 0.784 0.912 

JE-UB-KB -0.036 - 1.394 1.430 40.770 14.422 85.578 0.847 0.857 0.830 0.865 

JE-UB-ED -0.042 - 1.289 1.331 39.496 14.270 85.730 0.846 0.847 0.843 0.849 

100 

UI 0.610 - 1.741 1.131 23.817 20.842 79.158 0.819 0.898 0.689 0.949 

GZ 0.004 - 1.723 1.719 42.146 16.312 83.688 0.845 0.882 0.789 0.901 

JE-UB-KB -0.146 - 1.381 1.527 43.219 14.114 85.886 0.845 0.844 0.843 0.846 

JE-UB-ED -0.151 - 1.329 1.480 42.429 14.266 85.734 0.844 0.837 0.853 0.834 

200 

UI 0.552 - 1.836 1.284 26.341 20.937 79.063 0.816 0.901 0.675 0.956 

GZ -0.141 - 1.736 1.877 46.908 15.561 84.439 0.843 0.876 0.797 0.890 

JE-UB-KB -0.171 - 1.444 1.615 44.707 14.258 85.742 0.842 0.847 0.830 0.854 

JE-UB-ED -0.177 - 1.431 1.608 44.632 14.308 85.692 0.842 0.844 0.833 0.851 
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Table 4.3. (Continued). The Simulation Results for d=1.2. 

P(D)=0.5 

Equal 
Variances 

50 

UI -0.049 - 1.235 1.284 40.832 49.868 50.132 0.839 0.838 0.841 0.836 

GZ -0.095 - 1.316 1.410 44.192 49.679 50.321 0.846 0.848 0.840 0.852 

JE-UB-KB -0.039 - 1.242 1.281 42.074 48.847 51.153 0.847 0.847 0.839 0.855 

JE-UB-ED -0.024 - 1.230 1.254 41.508 48.767 51.233 0.847 0.846 0.839 0.855 

100 

UI -0.117 - 1.314 1.431 44.343 49.888 50.112 0.840 0.841 0.841 0.839 

GZ -0.192 - 1.416 1.609 49.003 50.062 49.938 0.846 0.850 0.842 0.851 

JE-UB-KB -0.047 - 1.283 1.330 42.527 49.754 50.246 0.844 0.844 0.835 0.853 

JE-UB-ED -0.042 - 1.280 1.321 42.366 49.804 50.196 0.844 0.843 0.835 0.853 

200 

UI -0.191 - 1.403 1.593 48.787 50.154 49.846 0.840 0.841 0.839 0.841 

GZ -0.296 - 1.531 1.827 54.453 50.265 49.735 0.846 0.852 0.840 0.851 

JE-UB-KB -0.107 - 1.321 1.428 45.109 49.965 50.035 0.842 0.842 0.840 0.844 

JE-UB-ED -0.107 - 1.322 1.429 45.121 49.962 50.038 0.842 0.842 0.840 0.844 

Unequal 
Variances 

50 

UI 0.536 - 1.752 1.216 27.424 51.072 48.928 0.825 0.826 0.690 0.959 

GZ 0.004 - 1.615 1.611 38.254 43.378 56.622 0.846 0.845 0.791 0.900 

JE-UB-KB -0.072 - 1.423 1.495 38.212 40.725 59.275 0.847 0.844 0.816 0.877 

JE-UB-ED -0.016 - 1.442 1.458 37.300 41.029 58.971 0.846 0.842 0.806 0.886 

100 

UI 0.536 - 1.813 1.277 27.390 51.008 48.992 0.822 0.823 0.679 0.966 

GZ 0.001 - 1.707 1.706 39.157 43.303 56.697 0.845 0.843 0.775 0.914 

JE-UB-KB -0.039 - 1.480 1.519 37.513 39.866 60.134 0.843 0.836 0.793 0.893 

JE-UB-ED -0.014 - 1.489 1.503 37.100 40.035 59.965 0.843 0.835 0.789 0.897 

200 

UI 0.485 - 1.903 1.418 29.663 51.023 48.977 0.818 0.819 0.666 0.969 

GZ -0.126 - 1.751 1.877 42.995 42.464 57.536 0.844 0.842 0.780 0.907 

JE-UB-KB -0.041 - 1.559 1.601 38.496 40.694 59.306 0.841 0.833 0.781 0.901 

JE-UB-ED -0.039 - 1.561 1.599 38.462 40.704 59.296 0.841 0.833 0.780 0.902 
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Table 4.3. (Continued). The Simulation Results for d=1.2. 

P(D)=0.8 

Equal 
Variances 

50 

UI -0.054 - 1.090 1.144 35.052 80.480 19.520 0.841 0.852 0.859 0.824 

GZ -0.102 - 1.081 1.183 36.148 79.717 20.283 0.846 0.862 0.869 0.823 

JE-UB-KB -0.057 - 1.117 1.174 37.434 80.526 19.474 0.847 0.859 0.865 0.829 

JE-UB-ED 0.004 - 1.194 1.190 39.018 82.265 17.735 0.845 0.851 0.853 0.838 

100 

UI -0.096 - 1.241 1.337 41.017 79.704 20.296 0.841 0.836 0.834 0.848 

GZ -0.146 - 1.305 1.451 44.308 79.645 20.355 0.846 0.842 0.837 0.856 

JE-UB-KB -0.019 - 1.275 1.294 41.617 80.160 19.840 0.846 0.830 0.818 0.874 

JE-UB-ED 0.049 - 1.317 1.268 41.529 80.529 19.471 0.844 0.817 0.798 0.890 

200 

UI -0.163 - 1.359 1.522 46.584 79.840 20.160 0.840 0.836 0.832 0.847 

GZ -0.249 - 1.494 1.743 52.374 80.054 19.946 0.846 0.841 0.831 0.861 

JE-UB-KB -0.018 - 1.392 1.411 45.200 80.633 19.367 0.843 0.816 0.796 0.889 

JE-UB-ED 0.007 - 1.409 1.401 45.115 80.747 19.253 0.842 0.811 0.788 0.896 

Unequal 
Variances 

50 

UI 0.306 - 1.819 1.513 33.302 81.923 18.077 0.839 0.778 0.734 0.944 

GZ -0.105 - 1.335 1.440 30.206 76.190 23.810 0.846 0.847 0.844 0.848 

JE-UB-KB -0.196 - 1.359 1.555 32.926 77.173 22.827 0.846 0.858 0.863 0.830 

JE-UB-ED -0.190 - 1.612 1.802 38.154 80.783 19.217 0.845 0.855 0.858 0.833 

100 

UI 0.438 - 1.841 1.403 30.370 80.405 19.595 0.829 0.743 0.685 0.974 

GZ -0.013 - 1.519 1.531 32.366 74.350 25.650 0.844 0.808 0.786 0.903 

JE-UB-KB -0.043 - 1.476 1.518 32.688 74.183 25.817 0.845 0.813 0.795 0.895 

JE-UB-ED 0.021 - 1.593 1.572 33.891 75.601 24.399 0.842 0.803 0.779 0.906 

200 

UI 0.471 - 1.868 1.398 29.779 80.160 19.840 0.823 0.731 0.669 0.977 

GZ -0.034 - 1.673 1.708 35.544 74.665 25.335 0.843 0.797 0.770 0.917 

JE-UB-KB 0.085 - 1.658 1.573 33.574 74.771 25.229 0.843 0.783 0.751 0.935 

JE-UB-ED 0.148 - 1.703 1.555 33.419 75.307 24.693 0.841 0.775 0.738 0.945 
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Figure 4.3. The Simulation Results for d=1.2. 
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For effect size 1.2, the results of the simulation study were represented in 

Table 4.3. and Figure 4.3.  

 For equal variances, the minimum length of the gray zone is obtained from 

the the JE-UB-ED algorithm except for the prevalence of disease 0.2 and 0.8 

with sample size 50. In this scenario, the minimum length is recorded for 

an uncertain interval algorithm. 

 For unequal variances, for all the cases, the minimum length of the gray 

zone is found for the uncertain interval algorithm.  

In all 54 scenarios, a similar pattern is found for unequal variances for the 

prevalence 0.2 and 0.5. However, for the prevalence of 0.8, this pattern was not 

observed. One of the reasons is when the prevalence is 0.8 and the variance of the 

diseased group is 3 times higher than the non-diseased group, there exists an 

underrepresentation of the non-diseased group. To research this issue, the additional 

9 scenarios including the prevalence is 0.8, and the variance of the non-diseased 

group is 3 times higher than the diseased group with all sample sizes and effect sizes. 

The results are shown in Tables 4.4. and Figures 4.4., 4.5., and 4.6.  
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Table 4.4. The Simulation Results for P(D) = 0.8 and Var(YC)=3 x Var(YD). 

d n Methods 
Boundaries Proportion of Gray Zone Out of in the Gray Zone 

LL-UL Length Total % Diseased % Control % AUROC Accuracy Sensitivity Specificity 

0.5 

50 

UI -0.848 - 0.144 0.992 22.406 78.675 21.325 0.680 0.820 0.910 0.449 

GZ -0.925 - 0.368 1.293 31.048 77.892 22.108 0.686 0.812 0.883 0.489 

JE-UB-KB -0.352 - 0.981 1.333 41.590 84.501 15.499 0.690 0.715 0.731 0.649 

JE-UB-ED -0.011 - 0.901 0.912 31.418 84.143 15.857 0.687 0.674 0.670 0.703 

100 

UI -0.950 - 0.101 1.051 22.129 79.574 20.426 0.672 0.829 0.932 0.412 

GZ -0.945 - 0.419 1.363 32.688 79.720 20.280 0.681 0.812 0.891 0.471 

JE-UB-KB -0.472 - 1.049 1.521 44.816 85.050 14.950 0.688 0.720 0.752 0.625 

JE-UB-ED -0.232 - 0.930 1.161 36.105 84.717 15.283 0.684 0.697 0.719 0.649 

200 

UI -0.997 - 0.118 1.115 23.252 79.681 20.319 0.668 0.832 0.940 0.396 

GZ -0.895 - 0.413 1.308 32.055 80.326 19.674 0.679 0.810 0.891 0.466 

JE-UB-KB -0.519 - 0.966 1.486 43.088 84.830 15.170 0.686 0.732 0.783 0.589 

JE-UB-ED -0.376 - 0.924 1.300 39.043 84.599 15.401 0.682 0.716 0.757 0.607 

0.8 

50 

UI -0.446 - 0.561 1.007 23.048 79.365 20.635 0.748 0.853 0.923 0.574 

GZ -0.459 - 1.003 1.461 37.194 80.631 19.369 0.767 0.835 0.877 0.656 

JE-UB-KB -0.051 - 1.308 1.359 41.328 84.262 15.738 0.768 0.779 0.787 0.750 

JE-UB-ED 0.168 - 1.296 1.128 36.610 83.977 16.023 0.766 0.751 0.744 0.788 

100 

UI -0.558 - 0.598 1.155 25.106 79.766 20.234 0.742 0.860 0.939 0.545 

GZ -0.475 - 1.105 1.579 40.413 82.206 17.794 0.762 0.832 0.876 0.648 

JE-UB-KB -0.123 - 1.401 1.524 44.616 84.678 15.322 0.766 0.779 0.794 0.738 

JE-UB-ED -0.028 - 1.381 1.409 42.248 84.423 15.577 0.764 0.767 0.777 0.752 

200 

UI -0.614 - 0.625 1.239 26.641 79.642 20.358 0.737 0.862 0.944 0.531 

GZ -0.463 - 1.185 1.648 42.915 82.794 17.206 0.759 0.826 0.865 0.654 

JE-UB-KB -0.189 - 1.385 1.574 45.293 84.845 15.155 0.763 0.786 0.814 0.713 

JE-UB-ED -0.158 - 1.385 1.542 44.715 84.746 15.254 0.762 0.781 0.807 0.718 
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Table 4.4. (Continued). The Simulation Results for P(D) = 0.8 and Var(YC)=3 x Var(YD). 

1.2 

50 

UI 0.022 - 1.076 1.053 23.144 79.036 20.964 0.823 0.897 0.946 0.701 

GZ 0.072 - 1.586 1.514 38.168 82.525 17.475 0.846 0.878 0.899 0.793 

JE-UB-KB 0.323 - 1.734 1.411 40.596 84.442 15.558 0.848 0.855 0.862 0.834 

JE-UB-ED 0.410 - 1.757 1.346 39.956 84.998 15.002 0.846 0.847 0.848 0.844 

100 

UI -0.052 - 1.100 1.152 23.815 79.022 20.978 0.818 0.898 0.950 0.685 

GZ 0.015 - 1.721 1.706 42.806 83.713 16.287 0.843 0.875 0.894 0.793 

JE-UB-KB 0.314 - 1.870 1.555 43.991 85.392 14.608 0.845 0.843 0.843 0.848 

JE-UB-ED 0.364 - 1.874 1.510 43.225 85.314 14.686 0.844 0.837 0.833 0.855 

200 

UI -0.142 - 1.160 1.302 26.583 79.071 20.929 0.816 0.902 0.957 0.674 

GZ 0.004 - 1.843 1.839 46.853 84.427 15.573 0.843 0.872 0.886 0.800 

JE-UB-KB 0.250 - 1.874 1.624 44.784 85.609 14.391 0.843 0.848 0.856 0.829 

JE-UB-ED 0.259 - 1.878 1.619 44.744 85.595 14.405 0.842 0.846 0.854 0.830 
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Figure 4.4. The Simulation Results for P(D) = 0.8, Var(YC)=3 x Var(YD) and d=0.5.     
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Figure 4.5. The Simulation Results for P(D) = 0.8, Var(YC)=3 x Var(YD) and d=0.8. 
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Figure 4.6. The Simulation Results for P(D) = 0.8, Var(YC)=3 x Var(YD) and d=1.2. 
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According to the results in Table 4.4. and Figures 4.4., 4.5., and 4.6.:  

 Similar patterns of unequal variances for the prevalence of 0.2 and 0.8 are 

obtained. In order to show this pattern more clearly, in the Appendices (A. 

Figure 1.1., A. Figure 1.2., A. Figure 1.3.), these results are plotted with 

effect sizes 0.2 and 0.5.  

 In most of the results in Table 4.4., Figures 4.4., 4.5., and 4.6., the uncertain 

interval has the minimum length of the gray zone. For the smallest sample 

size in scenarios with effect size 0.5, the JE-UB-ED algorithm gives the 

minimum length of the gray zone.  

4.2. The Results of the Real Data Set 

A total of 532 complete data were used. The glucose variable was used to 

construct the boundaries of the gray zone. A total of 33.721% of subjects are in the 

diabetic group. The mean and standard deviation of each group with effect size is 

given in Table 4.5. Thus, the histograms of the two groups are plotted in Figure 4.8. 

The ROC curve was plotted in Figure 4.9.  

Table 4.5. The Summary Statistics of the Glucose. 

 Diabetic Group (n1=177) Non-diabetic Group (n2=355) Effect Size 

Glucose 143.199±31.265 110.017±24.287 1.183 

 

The effect size is large in Table 4.5. The AUROC is 0.794 in Figure 4.9.   
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Figure 4.8. The Histograms of Diabetic and Non-Diabetic Groups. 

 

Figure 4.9. The ROC Curve of Glucose Variable. 
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Table 4.6. The Results of Real Data Set. 

Methods 
Boundaries Proportion of Gray Zone Out of in the Gray Zone 

LL-UL Length Total % Diseased % Control % Accuracy Sensitivity Specificity 

UI 109 - 148 39 38.910 34.783 65.217 0.834 0.743 0.882 

GZ 101 - 144 43 47.368 29.762 70.238 0.829 0.843 0.829 

JE-UB-KB 113 - 129 16 19.925 30.189 69.811 0.761 0.738 0.772 

JE-UB-ED 113 - 122 9 10.150 25.926 74.074 0.716 0.767 0.689 

 

The pre-selected values of LR (+) and LR (-) are 5 and 0.22 are calculated based 

on PPV=0.7 and NPV=0.9 for the grey zone approach. Thus for the pre-selected values 

of sensitivity and specificity in the gray zone 0.55 (default value). The main reason 

that we fixed the performance measure out of the gray zone is illustrated in Table 

4.6. In the real data set, since the pre-selected values are used, for different pre-

selected values different boundaries will appear.  

The effect size is approximately 1.2 and the ratio of variance is approximately 

1.657. The real data set results were renewed based on the fixed value of AUROC in 

the out-of-gray zone of 0.85. The results were presented in Table 4.7. and Figure 4.10. 

Table 4.7. The Results of Data Set Based on Simulation Scenario. 

Methods 

Boundaries Proportion of Gray Zone Out of in the Gray Zone 

LL-UL Length Total % Diseased % Control % AUROC Accuracy Sensitivity Specificity 

UI 104 - 166 62 54.135 36.458 63.542 0.841 0.889 0.722 0.959 

GZ 96 - 150 54 59.399 28.481 71.519 0.840 0.833 0.874 0.806 

JE-UB-KB 100 - 146 46 51.504 28.472 71.528 0.843 0.837 0.863 0.822 

JE-UB-ED 100 - 146 46 51.504 28.472 71.528 0.843 0.837 0.863 0.822 
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Figure 4.10. The Boundaries and Length of Gray Zone Approaches. 

The minimum length of the gray zone is obtained for the JE-UB. Although the 

uncertain interval approach had the largest length of the gray zone, the total 

percentage of subjects who are in the gray zone is less than in the grey zone 

algorithm. The reason is that the number of subjects in 96 to 150 is more than 104 to 

166. Thus, the specificity out of the gray zone is high in uncertain intervals but the 

sensitivity is low. For the JE-UB algorithms and the grey zone approach, the 

performance measures out of the gray zone are more balanced. 
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5. DISCUSSION 

In statistical decision-making, diagnostic tests have an important role. There 

are a variety of diagnostic procedures that can offer information for medical decision-

making (32). To rule out or rule in certain diseases by using diagnostic tests, which 

produce ordinal or quantitative results is specifying optimal cut-off points to 

discriminate subjects. To reach this aim, there exist several strategies based on some 

performance measures such as choosing optimal cut-off point based on maximizing 

sensitivity, specificity, the test statistics such that maximally selected chi-square 

statistic or minimum p-value and parametric approaches or parametric modeling by 

means of polynomials of covariates gives approximately solution (33). With respect 

to this cut-off value, no perfect discrimination can be made unless the test is the gold 

standard, thus yielding false positives and false negatives. Therefore, the middle 

inconclusive area (gray zone) in the overlapped area of diseased and non-diseased 

distributions is offered. The benefits of the gray zone approach are that false 

decisions decrease for patients in the gray zone, and true decisions increase outside 

of the gray zone (34). 

There are different approaches to finding the boundaries of the gray zone. In 

this study, we take the grey zone (2) and uncertain interval (3) approaches into 

account. The grey zone method is based on pre-test probabilities while the uncertain 

interval approach is based on balancing TP to FN and TN to FP in the gray zone by 

using the SLSQP optimization. The simulation results for TG-ROC and uncertain 

interval approaches were given (3). In this study, we excluded TG-ROC since it is 

offered for the pre-selected values of sensitivity and specificity of 0.95 or 0.90. As a 

result, it ensures that sensitivity and specificity are a minimum of 95% or 90% outside 

of the intermediate region (other sensitivity and specificity values may be shown 

graphically). This algorithm has strict restrictions. Moreover, Landsheer (3) reported 

that the gray zone in TG-ROC does not clearly explain and outside of the gray zone 

does not meet expectations. Also, The TG-ROC simulation findings reveal that 
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improving decision-making may not always come from choosing just the most 

discriminative scores and excluding intermediate levels. 

When evaluating and comparing diagnostic tests, information statistics are 

useful (18). Our main aim is to propose an algorithm to find the borders of the gray 

zone by using the information theory. We also desire to highlight and show the 

application of the information theory to the decision-making process. The second aim 

of this study is to compare the proposed algorithm with the grey zone and uncertain 

interval algorithms with a simulation study. In addition to the simulation study, we 

also showed the application of these approaches on the real data set which is taken 

from the Pima Indian Data Set (29). We explained the results of the real data set in 

detail. 

Both methods for the grey zone and uncertain interval approaches were used 

in the studies (14, 34). However, these studies did not compare the performance 

comparisons of the algorithms with a simulation study. The TG-ROC and uncertain 

interval comparisons were given by simulation study (3). The simulation scenarios are 

based on Somaza’s (35) study which is the separation coefficient (the mean 

differences of two distributions divided by the standard deviation of the distribution 

of non-diseased groups) and asymmetry coefficient (the ratio of the standard 

deviations of two distributions). On the other hand, in this thesis, we used the effect 

size to standardize how much the distributions are overlapped. The medium and 

large effect sizes (0.5, 0.8, and 1.2) were considered, yielding the AUROC of the 

diagnostic test 0.64, 0.72, and 0.80. Therefore, we considered the discriminative 

ability of the tests as poor to fair (36). Yet, we also deal with the equality of the 

variances. Landsheer (3) regarded sample size and prevalence as a total of 1000 and 

0.5, 0.2, and 0.1, respectively. However, we take in our study different sample sizes 

of 50,100, and 200, with the prevalence of the disease as 0.2, 0.5, and 0.8. We also 

desire to research the disease with high prevalence. 

The major difficulty in the comparisons of the three approach is when the 

length of the gray zone increases, the performance of out of the gray zone increases. 
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For comparing these three methods, the AUROC out of the gray zone was fixed 

differently under different scenarios. The minimum length of the gray zone was 

accepted as the best algorithm.  

In the light of the simulation results, we have found that:  

 For equal variances, the proposed algorithms (JE-UB-KB and JE-UB-ED) 

gives the minimum length of the gray zone in most of the scenarios.  

 For unequal variances and effect size 0.5, the length of the gray zone for 

the uncertain interval and the JE-UB-ED algorithms is narrower compared 

to the grey zone and the JE-UB-KB algorithms.  

 For unequal variances, and the effect sizes 0.8 and 1.2, in some cases the 

uncertain interval gives the best results and for some cases, the JE-UB-ED 

algorithm gives the best results. 

 In most of the scenarios, when the sample size increases, the length of the 

grey zone also increases. The sample size is a significant part of this study, 

as Landsheer (3) mentioned that how a larger sample size is needed for an 

uncertain interval approach is not clear. We accept total sample sizes of 50, 

100, and 200 as small, medium, and large, respectively.  

 For equal variances, similar patterns are observed among algorithms with 

respect to different effect sizes, sample sizes, and prevalence. 

 For unequal variances, while similar patterns are shown for the algorithms 

for the prevalence of 0.2 and 0.5, similar patterns are not observed for the 

prevalence of 0.8. The reason is that when the prevalence is 0.8 and the 

variance of YD is three times that of YC, the representation of the non-

diseased group is low. To show this idea, the prevalence of 0.8 and the 

variance ratio of YD to YC of 1/3 are also investigated. Then a similar pattern 

with a prevalence of 0.2 and 0.8 is found. 
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For the final remark, in this study, we propose an algorithm to find the 

boundaries of the gray zone based on joint entropy without prior knowledge. The 

performance of the proposed algorithm was as good as or better compared to the 

other algorithms for the poor to fair discriminative ability of the diagnostic tests. 
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6. CONCLUSION 

The main aim of this study is to propose a new algorithm to find the 

boundaries of the gray zone based on the information statistics for quantitative 

diagnostic tests. Moreover, we also compared the proposed algorithm (JE-UB) with 

existing algorithms through a compressive simulation study.  

In general, for simulation scenarios with equal variances, the JE-UB algorithm 

gives the minimum length of the gray zone while for unequal variances, in some cases 

the JE-UB algorithm gives better results for other cases the uncertain interval 

algorithm gives better results. As a result, the JE-UB algorithm is superior in some 

scenarios. For the rest of the scenarios, it is in the second place. We can conclude 

that the JE-UB algorithm is as good as or better compared to existing algorithms. 

Besides, the main advantage of the algorithm we propose is that there is no prior 

information to run the algorithm, unlike others.  

As a final remark, the main contribution of constructing a gray zone can be 

summarized such that discriminates subjects into the diseased, non-diseased, and 

gray zone (neither diseased nor non-diseased) groups. This might provide clinicians 

to lead other biomarkers, tests, or medical imaging or to take precautions for the 

subjects in the gray zone. 

For future studies:  

 For all the simulation scenarios, the distributions were generated from 

normal distributions. The skewed distributions should be also examined in 

future studies. Yet, the cases in which skewed distributions are 

transformed into normal distributions might also be observed.  

 For determining how distributions are close to each other, the effect size 

was used in this study. For this aim, the overlap coefficient (OVL) that gives 

the similarity of two distributions in the overlapped area (37) may also be 

used in future studies.  
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 In this study, a diagnostic test and class variables are only used. It is also 

significant to specify the boundaries of a gray zone for subgroups such as 

gender or age categories. Thus, creating a gray zone could provide 

clinicians with the tools to construct a decision-making algorithm. To rule 

in or rule out the disease for the patients in the gray zone, for instance, 

they may use more biomarkers or more advanced tests.  

 Additional to those issues, the R package and RShiny web application will 

be developed and they will be publicly available to researchers.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

7. REFERENCES 

1. Karaagaoglu E, Karakaya J, Kılıçkap M. Tani Testlerinin Değerlendirilmesinde 
İstatistiksel Yöntemler. 1st ed. Ankara: Detay Yayincilik; 2016. 

2. Coste J, Pouchot J. A grey zone for quantitative diagnostic and screening tests. 
International Journal of Epidemiology. 2003; 32(2):304–13.  

3. Landsheer JA. Interval of Uncertainty: An Alternative Approach for the 
Determination of Decision Thresholds, with an Illustrative Application for the 
Prediction of Prostate Cancer. Hurst R, editor. PLOS ONE. 2013; 
11(11):e0166007. 

4. Campbell G, Levy D, Bailey JJ. Bootstrap comparison of fuzzy ROC curves for 
ECG-LVH algorithms using data from the Framingham heart study. Journal of 
Electrocardiology. 1990;23:132–7. 

5. Evangelista PE, Embrechts MJ, Bonissone P, Szymanski BK. Fuzzy ROC curves for 
unsupervised nonparametric ensemble techniques. Proceeding of 2005 IEEE 
International Joint Conference on Neural Networks; 2005 Jul 31 – August 4, 
Montreal, QC, Canada. p. 3040-3045).  

6. Castanho MJ, Barros LC, Yamakami A, Vendite LL. Fuzzy receiver operating 
characteristic curve: an option to evaluate diagnostic tests. IEEE Transactions 
on Information Technology in Biomedicine. 2007; 11(3):244-50. 

7. Parmigiani G. Receiver operating characteristic curves with an indeterminacy 
zone. Pattern recognition letters. 2020; 136:94-100.  

8. Feinstein AR. The inadequacy of binary models for the clinical reality of three-
zone diagnostic decisions. Journal of Clinical Epidemiology. 1990; 43(1):109–13. 

9. Jamart J. Chance-corrected sensitivity and specificity for three-zone diagnostic 
tests. Journal of Clinical Epidemiology. 1992; 45(9):1035–8. 

10. Simel DL, Samsa GP, Matchar DB. Likelihood ratios for continuous test results—
making the clinicians’ job easier or harder? Journal of Clinical Epidemiology. 
1993; 46(1):85–93. 

11. Greiner M, Sohr D, Göbel P. A modified ROC analysis for the selection of cut-off 
values and the definition of intermediate results of serodiagnostic tests. Journal 
of immunological methods. 1995; 185(1):123-32. 

12. Coste J, Jourdain P, Pouchot J. A Gray Zone Assigned to Inconclusive Results of 
Quantitative Diagnostic Tests: Application to the Use of Brain Natriuretic 
Peptide for Diagnosis of Heart Failure in Acute Dyspneic Patients. Clinical 
Chemistry. 2006; 52(12):2229–35. 

13. Hosmer DW, Lemeshow S. Applied logistic regression. 1st ed. New York Toronto: 
Wiley; 2000. 

14. Öztürk E, Esenboğa K, Kurtul A, Kılıçkap M, Karaagaoglu E, Karakaya J. 
Measurement of Uncertainty in Prediction of No-Reflow Phenomenon after 



50 
 

Primary Percutaneous Coronary Intervention Using Systemic Immune 
Inflammation Index: The Gray Zone Approach. Diagnostics. 2023; 13(4):709–
720. 

15. Shannon CE, Weaver W. The Mathematical Theory of Communication. The Bell 
System Technical Journal. 1948; 27(3), 379-423.  

16. Benish WA. Relative Entropy as a Measure of Diagnostic Information. Medical 
Decision Making. 1999; 19(2):202–6. 

17. Benish WA. The channel capacity of a diagnostic test as a function of test 
sensitivity and test specificity. Statistical Methods in Medical Research. 2012; 
24(6):1044–52. 

18. Benish WA. A Review of the Application of Information Theory to Clinical 
Diagnostic Testing. Entropy. 2020; 22(1):97. 

19. Pepe MS. The statistical evaluation of medical tests for classification and 
prediction. Oxford University Press; 2003.  

20. Learned-Miller, E. G. Entropy and mutual information [Internet]. 2003 [cited: 
03.04.2023]. Available from: 
https://people.cs.umass.edu/~elm/Teaching/Docs/mutInf.pdf 

21. Fluss R, Faraggi D, Reiser B. Estimation of the Youden Index and its associated 
cutoff point. Biometrical Journal. 2005; 47(4):458–72.  

22. Adams RA, Essex, C. Calculus: A Complete Course.7th ed. Pearson Canada; 2010.  

23. Alpar R. Uygulamalı istatistik ve geçerlik-güvenirlik: spor, sağlık ve eğitim 
bilimlerinden örneklerle. 7th ed. Detay Yayıncılık; 2010. 

24. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed.  
Routledge New York; 1988.  

25. Salgado JF. Transforming the Area under the Normal Curve (AUC) into Cohen’s 
d, Pearson’s r pb, Odds-Ratio, and Natural Log Odds-Ratio: Two Conversion 
Tables. The European Journal of Psychology Applied to Legal Context. 2018; 
10(1):35–47. 

26. R Core Team (2021). R: A language and environment for statistical computing. 
R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-
project.org/. 

27. Landsheer H. UncertainInterval: Uncertain Interval Methods for Three-Way 
Cut-Point Determination in Test Results; 2021, R package version 0.7.0. 

28. Kuhn M. caret: Classification and Regression Training; 2022, R package version 
6.0-91.  

29. Smith JW, Everhart JE, Dickson WC, Knowler WC, Johannes RS. Using the ADAP 
learning algorithm to forecast the onset of diabetes mellitus. Greenes RA, 
editor, Proceedings of the Symposium on Computer Applications in Medical 

https://www.r-project.org/
https://www.r-project.org/


51 
 

Care; 1988 Nov. 6-9; Washington, USA.  Los Alamitos, CA: IEEE Computer 
Society Press; 1988. p. 261-265 

30. Venables WN, Ripley BD. Modern applied statistics with S-Plus. Springer New 
York; 2002. 

31. Wickham H, Sievert C, Springer. ggplot2: Elegant Graphics for Data Analysis. 
Springer; 2016. 

32. Kattan MW. Encyclopedia of Medical Decision Making. Thousand Oaks Sage 
Publications; 2009. 

33. Mi G, Li W, Nguyen TS. Characterize and Dichotomize a Continuous Biomarker. 
Fang L, Su C, editors Statistical Methods in Biomarker and Early Clinical 
Development. , South San Francisco, CA, USA, Springer; 2019.  

34. Landsheer JA. The Clinical Relevance of Methods for Handling Inconclusive 
Medical Test Results: Quantification of Uncertainty in Medical Decision-Making 
and Screening. Diagnostics. 2018; 8(2).  

35. Somaza, E. Classifying Binormal Diagnostic Tests Using Separation – Asymmetry 
Diagrams with Constant-performance Curves. Medical Decision Making. 1994; 
14: 157-168.  

36. Li F, He H. Assessing the Accuracy of Diagnostic Tests. Shanghai Arch Psychiatry. 
2018 ;30(3):207-212. 

37. Franco-Pereira AM, Nakas CT, Reiser B, Carmen Pardo M. Inference on the 
overlap coefficient: The binormal approach and alternatives. Statistical 
methods in medical research. 2021; 30(12):2672-84. 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 
 

8. APPENDICES 

Appendix 1: The Simulation Results for P(D) = 0.8 and Var(YC)=3 x Var(YD) 

with Other Scenarios  

 

A. Figure 1.1. The Simulation Results for d=0.5, for P(D) =0.2 and 0.5 

Var(YD)=3 x Var(YC), for P(D) = 0.8, Var(YC)=3 x Var(YD). 
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A. Figure 1.2. The Simulation Results for d=0.8, for P(D) =0.2 and 0.5 

Var(YD)=3 x Var(YC), for P(D) = 0.8, Var(YC)=3 x Var(YD). 
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A. Figure 1.3. The Simulation Results for d=1.2, for P(D) =0.2 and 0.5 Var(YD)=3 

x Var(YC), for P(D) = 0.8, Var(YC)=3 x Var(YD). 
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Appendix 2: The Originality Report of Thesis Study 
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