T.C. REPUBLIC OF TURKEY HACETTEPE UNIVERSITY GRADUATE SCHOOL HEALTH SCIENCES

SPECIFYING THE BOUNDARIES OF GRAY ZONE IN DIAGNOSTIC TESTS WITH INFORMATION CRITERIA

Ebru ÖZTÜRK

Program of Biostatistics DOCTOR OF PHILOSOPHY THESIS

ANKARA

2023

T.C. REPUBLIC OF TURKEY HACETTEPE UNIVERSITY GRADUATE SCHOOL HEALTH SCIENCES

SPECIFYING THE BOUNDARIES OF GRAY ZONE IN DIAGNOSTIC TESTS WITH INFORMATION CRITERIA

Ebru ÖZTÜRK

Program of Biostatistics DOCTOR OF PHILOSOPHY THESIS

ADVISOR OF THE THESIS

Assoc. Prof. Dr. Jale KARAKAYA KARABULUT

ANKARA 2023

SPECIFYING THE BOUNDARIES OF GRAY ZONE IN DIAGNOSTIC TESTS WITH INFORMATION CRITERIA

Ebru ÖZTÜRK

Supervisor: Assoc. Prof. Dr. Jale KARAKAYA KARABULUT

This thesis study has been approved and accepted as a PhD dissertation in "Biostatistics Program" by the assessment committee, whose members are listed below, on July 26, 2023.

Chairman of the Committee :	Prof. Dr. Mehtap AKÇİL OK
	Başkent University
Member :	Assoc. Prof. Dr. Osman DAĞ
	Hacettepe University
Member :	Assist. Prof. Dr. Sevilay KARAHAN
	Hacettepe University
Member :	Assist. Prof. Dr. Dinçer GÖKSÜLÜK
	Erciyes University
Member :	Assist. Prof. Dr. Ayhan PARMAKSIZ
	Istanbul Health & Technology University

This dissertation has been approved by the above committee in conformity to the related issues of Hacettepe University Graduate Education and Examination Regulation.

Prof. Müge YEMİŞCİ ÖZKAN, MD, PhD Director

YAYIMLAMA VE FİKRİ MÜLKİYET HAKLARI BEYANI

Enstitü tarafından onaylanan lisansüstü tezimin/raporumun tamamını veya herhangi bir kısmını, basılı (kağıt) ve elektronik formatta arşivleme ve aşağıda verilen koşullarla kullanıma açma iznini Hacettepe Üniversitesine verdiğimi bildiririm. Bu izinle Üniversiteye verilen kullanım hakları dışındaki tüm fikri mülkiyet haklarım bende kalacak, tezimin tamamının ya da bir bölümünün gelecekteki çalışmalarda (makale, kitap, lisans ve patent vb.) kullanım hakları bana ait olacaktır.

Tezin kendi orijinal çalışmam olduğunu, başkalarının haklarını ihlal etmediğimi ve tezimin tek yetkili sahibi olduğumu beyan ve taahhüt ederim. Tezimde yer alan telif hakkı bulunan ve sahiplerinden yazılı izin alınarak kullanılması zorunlu metinlerin yazılı izin alınarak kullandığımı ve istenildiğinde suretlerini Üniversiteye teslim etmeyi taahhüt ederim.

Yükseköğretim Kurulu tarafından yayınlanan *"Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge"* kapsamında tezim aşağıda belirtilen koşullar haricince YÖK Ulusal Tez Merkezi / H.Ü. Kütüphaneleri Açık Erişim Sisteminde erişime açılır.

- Enstitü / Fakülte yönetim kurulu kararı ile tezimin erişime açılması mezuniyet tarihimden itibaren 2 yıl ertelenmiştir. ⁽¹⁾
- Enstitü / Fakülte yönetim kurulunun gerekçeli kararı ile tezimin erişime açılması mezuniyet tarihimden itibaren ... ay ertelenmiştir.⁽²⁾
- Tezimle ilgili gizlilik kararı verilmiştir. (3)

i

08/08/2023

Ebru ÖZTÜRK

ⁱ "Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge"

⁽¹⁾ Madde 6. 1. Lisansüstü tezle ilgili patent başvurusu yapılması veya patent alma sürecinin devam etmesi durumunda, tez **danışmanının** önerisi ve **enstitü anabilim dalının** uygun görüşü üzerine **enstitü** veya **fakülte yönetim kurulu** iki yıl süre ile tezin erişime açılmasının ertelenmesine karar verebilir.

⁽²⁾ Madde 6. 2. Yeni teknik, materyal ve metotların kullanıldığı, henüz makaleye dönüşmemiş veya patent gibi yöntemlerle korunmamış ve internetten paylaşılması durumunda 3. şahıslara veya kurumlara haksız kazanç imkanı oluşturabilecek bilgi ve bulguları içeren tezler hakkında tez danışmanının önerisi ve enstitü anabilim dalının uygun görüşü üzerine enstitü veya fakülte yönetim kurulunun gerekçeli kararı ile altı ayı aşmamak üzere tezin erişime açılması engellenebilir.

⁽³⁾ Madde 7. 1. Ulusal çıkarları veya güvenliği ilgilendiren, emniyet, istihbarat, savunma ve güvenlik, sağlık vb. konulara ilişkin lisansüstü tezlerle ilgili gizlilik kararı, **tezin yapıldığı kurum** tarafından verilir *. Kurum ve kuruluşlarla yapılan işbirliği protokolü çerçevesinde hazırlanan lisansüstü tezlere ilişkin gizlilik kararı ise, **ilgili kurum ve kuruluşun önerisi** ile **enstitü** veya **fakültenin** uygun görüşü üzerine **üniversite yönetim kurulu** tarafından verilir. Gizlilik kararı verilen tezler Yükseköğretim Kuruluna bildirilir.

Madde 7.2. Gizlilik kararı verilen tezler gizlilik süresince enstitü veya fakülte tarafından gizlilik kuralları çerçevesinde muhafaza edilir, gizlilik kararının kaldırılması halinde Tez Otomasyon Sistemine yüklenir * Tez **danışmanının** önerisi ve **enstitü anabilim dalının** uygun görüşü üzerine **enstitü** veya **fakülte yönetim kurulu tarafından karar verilir.**

ETHICAL DECLARATION

In this thesis study, I declare that all the information and documents have been obtained in the base of the academic rules and all audio-visual and written information and results have been presented according to the rules of scientific ethics. I did not do any distortion in data set. In case of using other works, related studies have been fully cited in accordance with the scientific standards. I also declare that my thesis study is original except cited references. It was produced by myself in consultation with supervisor (Title, Name SURNAME) and written according to the rules of thesis writing of Hacettepe University Institute of Health Sciences.

Ebru ÖZTÜRK

ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude to my advisor Assoc. Prof. Dr. Jale Karakaya Karabulut for her endless support, guidance, motivation, and patience during the thesis study. Without her guidance and feedback, this study would not have been completed.

I also would like to thank my former advisor Prof. Dr. Ergun Karaağaoğlu and the thesis committee members Assoc. Prof. Dr. Osman Dağ and Assist. Prof. Dr. Dinçer Göksülük for their contribution to this study.

I would like to present my grateful thanks to my examining committee members: Prof. Dr. Mehtap Akçil Ok, Assist. Prof. Dr. Sevilay Karahan and Assist. Prof. Dr. Ayhan Parmaksız for their valuable time to review my study and suggestions.

I would also like to thank my dear friends and colleagues Merve Kaşıkcı and Hanife Avcı for their nice friendship and kind support. I'm also thankful to Assist. Prof. Dr. Duygu Aydın Haklı and Dr. Merve Başol for their kind friendship, unconditional support and wise advice. Moreover, I would thank all members of the Hacettepe University Department of Biostatistics.

My special thanks go to my dear friends Büşra Karakaya, Merve Acıelma, and Şeyma Gürkan for their warm friendship, support, and inspiration.

I would like to represent my deepest thanks to my dear family, Hacer Öztürk, İsmail Öztürk, Burcu Öztürk Şahin, Hatice Öztürk Ferah, Arif Ferah, and Çağlar Şahin for their support and patience. I'm grateful to my little nieces Defne Ferah and Pelin Ferah for their inspirational souls and for making my life more enjoyable and colorful.

ABSTRACT

Öztürk, E. Specifying the Boundaries of Gray Zone in Diagnostic Tests with Information Criteria, Hacettepe University Graduate School Health Sciences, Department of Biostatistics Doctor of Philosophy Thesis, Ankara, 2023. The decision-making process in medicine is a crucial subject due to the classification of subjects as healthy or diseased. Mostly, it concludes with binary outcomes, such as whether the person has a condition or not. The various information from subjects is taken, such as the complaints, family history, symptoms, or laboratory tests (known as diagnostic tests) to rule-in or rule-out the disease. Due to their advantages such as being cost-effective or rapid, even if some diagnostic tests cannot perfectly discriminate subjects they are commonly used in clinics. One method for assessing quantitative diagnostic tests to diagnose subjects is to specify an optimal cut-off point. Yet, this may cause issues on quantitative diagnostic tests with a single cut-off value as the distributions of diseased and healthy subjects overlap. Forcing the subjects in this overlapped area one of the classes causes the false negative or false positive rates. To deal with this issue, there are some approaches called a gray zone or middle inconclusive area in which subjects are classified diseased, non-diseased, and neither diseased nor non-diseased. In this thesis, we aim to propose a new solution to find the boundaries of the gray zone based on the information theory approach. We intend to compare and evaluate the performance of this proposed solution against existing methods ("grey zone" and "uncertain interval" approaches). The proposed algorithm was based on joint entropy. In the simulation scenarios, we considered effect size, sample size, the homogeneity of variance and prevalence of the disease. To compare the results of the proposed methods with existing algorithms, the length of the gray zone was examined under the condition of fixed area under the receiver operating curve in out of the gray zone. In simulations, the suggested approach mostly produced the lowest gray zone length with equal variances. In some simulation scenarios, it outperformed for unequal variances. However, it has the benefit that the suggested algorithm has no previous knowledge. **Keywords:** Diagnostic tests, medical decision, gray zone, information criteria

Öztürk, E. Tanı Testlerinde Gri Alan Sınırlarının Bilgi İçeriği Yaklaşımı İle Belirlenmesi, Hacettepe Üniversitesi Sağlık Bilimleri Enstitüsü Biyoistatistik Programı Doktora Tezi, Ankara, 2023. Tıpta karar verme, bireylerin sağlıklı veya hastalıklı olarak sınıflandırılması nedeniyle çok önemli bir konudur. Çoğunlukla, bireyin bir rahatsızlığı olup olmadığı gibi ikili sonuçlarla sonuçlanır. Hastalık tanısı koymak ya da dışlamak için bireylerden şikayetleri, aile öyküsü, semptomları veya laboratuvar testleri (tanı testleri) gibi çeşitli bilgiler alınır. Maliyet-etkinliği ya da hızlı olması gibi avantajları nedeniyle bazı tanı testleri bireyleri mükemmel olarak sınıflamasa da kliniklerde yaygın olarak kullanılmaktadır. Sıralı ve sürekli sayısal yanı testlerini değerlendirmenin bir yöntemi, optimal bir kesim noktası belirlemektir. Ancak, hasta ve sağlıklı bireylerin dağılımları örtüşmesi durumunda tek kesim noktasını ele alarak ikili sınıflandırmak bazı sorunlara neden olabilir. Bireyleri bu örtüşen alanda sınıflardan birine zorlamak yanlış negatif veya yanlış pozitife neden olur. Bu durumu ele almak için literatürde, bireylerin hastalıklı, sağlıklı ve hasta ya da sağlıklı değil olarak sınıflandırıldığı gri bölge veya orta sonuçsuz alan adı verilen bazı yaklaşımlar vardır. Bu tezde, bilgi teorisi yaklaşımına dayalı olarak gri bölgenin sınırlarını bulmak için yeni bir algoritma önermeyi amaçlıyoruz. Ayrıca önerilen bu algoritmayı literatürde mevcut yaklaşımlarla ("gri bölge" ve "belirsiz aralık" yaklaşımları) karşılaştırmayı ve değerlendirmeyi hedefliyoruz. Önerilen algoritma birleşik entropiye dayanıyordu. Simülaşyon senaryolarında, etki büyüklüğü, örneklem büyüklüğü, varyansın homojenliği ve hastalık prevalansı faktörlerini dikkate aldık. Önerilen yöntemlerin sonuçlarını mevcut algoritmalarla karşılaştırmak için gri bölgenin uzunluğu, gri bölge dışında sabit bir alıcının işlem karakteristiği eğrisi altında incelendi. Simülasyonlarda, önerilen yaklaşım eşit varyans için çoğunlukla en düşük gri bölge uzunluğunu üretti. Bazı simülasyon senaryolarında, eşit olmayan varyans için daha iyi sonuçlar elde etti. Bununla birlikte, önerilen algoritmanın bir ön bilgiye ihtiyacı olmaması avantaj sağlamaktadır.

Anahtar Kelimeler: Tanı testleri, tıpta karar verme, gri bölge, bilgi kriteri

TABLE OF CONTENT

APPROVAL PAGE	iii
YAYIMLAMA VE FİKRİ MÜLKİYET HAKLARI BEYANI	iv
ETHICAL DECLARATION	v
ACKNOWLEDGMENTS	vi
ABSTRACT	vii
ÖZET	viii
TABLE OF CONTENT	ix
LIST OF ABBREVIATIONS	х
LIST OF FIGURES	xi
LIST OF TABLES	xii
1. INTRODUCTION	1
2. LITERATURE REVIEW	4
2.1. The Background of Gray Zone	4
2.2. The Background of Information Criteria	6
3. MATERIAL AND METHODS	7
3.1. The Evaluation of Diagnostic Tests	7
3.2. The Gray Zone Approaches	10
3.2.1. The Grey Zone Approach	10
3.2.2. Uncertain Interval Approach	11
3.2.3. Proposed Algorithm of Uncertain Boundaries with Joint Entropy	13
3.3. The Simulation Studies	15
3.4. The Real Data Set	17
4. RESULTS	18
4.1. The Simulation Results	18
4.2. The Results of the Real Data Set	39
5. DISCUSSION	43
6. CONCLUSION	47
7. REFERENCES	
8. APPENDICES	
Appendix 1: The Simulation Results for P(D) = 0.8 and Var(YC)=3 x Var(YD) with	h

Other Scenarios

Appendix 2: The Originality Report of Thesis Study

9. CURRICULUM VITAE

LIST OF ABBREVIATIONS

AUROC	Area Under Receiver Operating Characteristics Curve
FN	False Negative
FP	False Positive
GZ	Grey Zone
JE-UB	Joint Entropy based Algorithm for Uncertain Boundaries
JE-UB-ED	Joint Entropy based Algorithm for Uncertain Boundaries with
	Euclidean Distance
JE-UB-KB	Joint Entropy based Algorithm for Uncertain Boundaries with
	Kernel Based Youden's J Index
u	Lower Limit
LR(-)	Negative Likelihood Ratio
LR(+)	Positive Likelihood Ratio
NPV	Negative Predictive Value
OVL	Overlap Coefficient
P(D)	Prevalence of Disease
PPV	Positive Predictive Value
ROC	Receiver Operating Characteristics
SLSQP	Sequential Least Squares Programming Optimizer
TG-ROC	Two-Graph Receiver Operating Characteristics
TN	True Negative
ТР	True Positive
UI	Uncertain Interval
UL	Upper Limit

LIST OF FIGURES

Figure	Page
1.1. The Illustration of the Problem.	2
3.1. The Visualization of Uncertain Interval Approach.	12
3.2. The First Step of the JE-UB Algorithm.	13
3.3. The Second Step of the JE-UB Algorithm.	14
3.4. The General Framework of JE-UB Algorithm.	15
4.1. The Simulation Results for d=0.5.	22
4.2. The Simulation Results for d=0.8.	27
4.3. The Simulation Results for d=1.2.	32
4.4. The Simulation Results for P(D) = 0.8, Var(YC)=3 x Var(YD) and d=0.5.	36
4.5. The Simulation Results for P(D) = 0.8, Var(YC)=3 x Var(YD) and d=0.8.	37
4.6. The Simulation Results for P(D) = 0.8, Var(YC)=3 x Var(YD) and d=1.2.	38
4.8. The Histograms of Diabetic and Non-Diabetic Groups.	40
4.9. The ROC Curve of Glucose Variable.	40
4.10. The Boundaries and Length of Gray Zone Approaches.	42

LIST OF TABLES

Table	Page
3.1. The Cross Table of the disease status and diagnostic test.	7
3.2. The Values for AUROC with Effect Sizes.	16
4.1. The Simulation Results for d=0.5.	19
4.2. The Simulation Results for d=0.8.	24
4.3. The Simulation Results for d=1.2.	29
4.4. The Simulation Results for P(D) = 0.8 and Var(YC)=3 x Var(YD).	34
4.5. The Summary Statistics of the Glucose.	39
4.6. The Results of Real Data Set.	41
4.7. The Results of Data Set Based on Simulation Scenario.	41

1. INTRODUCTION

The majority of decision-making process in medicine concludes with a binary status, such as whether the individual should receive treatment or not, or whether they have a condition. Deciding on this binary status is even more difficult and complex with various information such as patients' complaints, family history, and the occurrence of different symptoms. Based on this information, some diseases should have been ruled out or ruled in. However, the information that is based on the knowledge of the patient doesn't significantly reduce uncertainty about the decision. To deal with this issue, laboratory tests, also known as diagnostic tests, are developed. Therefore, the uncertainty for decision-making in the clinic will decrease by combining the results of diagnostic tests with the information obtained from the patient. Physician will ask for the right diagnostic test based on the patient's symptoms and complaints in order to diagnose the disease.

Some of the diagnostic tests are referred to as the reference standard (or gold standard) tests. Optimally, it is expected that the reference standard test gives 100% correctness for the subjects whether they have the disease or not. Even though, some of the diagnostic tests might not discriminate subjects perfectly, they are widely used in clinics as they might be cost-effective, easy to apply, and rapid for diagnosis (1).

The types of variables in diagnostic tests might be nominal, ordinal, or quantitative. The distributions of the two groups which consisted of diseased and non-diseased subjects for ordinal and quantitative diagnostic tests overlapped since they are not gold standard tests. Thus, one of the approaches for statistical disease detection for ordinal and quantitative (continuous) diagnostic tests for a binary response is specifying an optimal cut-off point through several methods such as Youden's J statistic or cost-benefit method. By using this cut-off point, one can discriminate subjects whether they are diseased or not. However, this optimal value might not separate subjects such as classifying some diseased subjects as nondiseased or vice versa. Therefore, the decision about the status of the disease is uncertain on the overlapped range of distributions of diseased and non-diseased groups. The issue is represented in Figure 1.1. Suppose the blue and red shaded areas represent the non-diseased and diseased subjects, respectively. From Figure 1.1., it might be seen the overlapped area of two distributions. The optimal cut-off point was pointed in Figure 1.1. as "C". The decision about this overlapped area, even if the optimal cut-off point "C" is determined, will be uncertain. This overlapped area is not sufficient to discriminate whether the disease is absent or present.

Figure 1.1. The Illustration of the Problem.

In order to deal with this uncertainty in this overlapped area, there exist different approaches in the literature. One of the approaches is based on specifying the boundaries of the middle inconclusive area, also known as the gray zone, is discussed. Moreover, there exist different methods to determine the boundaries of the gray zone such as by using likelihood ratios (2) or balancing true positive to false negative and true negatives to false positives within uncertain area (3).

This research mainly is concerned with constructing the boundaries of the gray zone for quantitative diagnostic tests. The main objectives of this thesis are:

• To propose a method for constructing the boundaries of the gray zone for quantitative diagnostic tests based on information theory

• To compare the performance of existing methods with the proposed ones.

The organization of this thesis is as follows:

- Chapter 1: The introduction and aims of this thesis were explained.
- Chapter 2: The approaches about the uncertain area were briefly reviewed.
- Chapter 3: The material and method were explained in detail.
- Chapter 4: The results were presented.
- Chapter 5: The discussion of the results was given.
- Chapter 6: The final remarks and future studies were given.

2. LITERATURE REVIEW

The binary status decision (diseased or non-diseased) in medicine might not be sufficient. Especially, in the overlapped area of the distributions of diseased and non-diseased subjects, forcing the subject as diseased or non-diseased might cause a false decision. To overcome this issue, there are different approaches in the literature.

One of the approach to deal with the binary status decision is related to fuzzy function and Receiver Operating Characteristics (ROC). The main aims of ROC analysis are finding the cut-off value to discriminate between healthy and diseased subjects and showing the test performances with respect to optimal cut-off point. The fuzzy functions concern the degree of membership. For instance, the subject may involve in either a diseased or non-diseased class. Therefore, this subject has partial membership and is between two classes. Campbell et al. (4) extend the ROC analysis to multi-labeled membership using a fuzzy algorithm called fuzzy ROC. Evangelista et al. (5) developed the fuzzy ROC for unsupervised learning-based nonparametric ensemble techniques. ROC analysis with the binary response is commonly used for evaluating diagnostic tests. The classic ROC methodology and the fuzzy sets theory are combined with a new approach known as a fuzzy-rule-based system. They implemented this algorithm to predict the pathological level of prostate cancer (6). The fuzzy ROC algorithm for visualizing the bounds of the fuzzy ROC and for examining the performance of the gray area are identified (7).

Another solution for the binary status decision is constructing a gray zone which indicates classifying subjects as diseased, non-diseased, and neither diseased nor non-diseased. The background and the approaches of the middle inconclusive area are presented in subsection 2.1 in details.

2.1. The Background of Gray Zone

There are several methods for handling the gray zone. Feinstein (8) has desired to highlight how only two zones specified by binary models—the person is

either classed as having a disease or not— are inadequate for making medical decisions. As a result, it was determined that creating three zones including an inconclusive zone was not unusual for clinical and statistical techniques. Moreover, the author has figured out the inconclusive area for diagnosing myocardial infarction with creatinine kinase by using the likelihood ratios and Bayesian approach (8). A new solution to get sensitivity and specificity that is written as chance-corrected sensitivity and specificity was proposed for the matrix with dimension 3x2 to take the middle zone into account (9). Simel et al. (10) present that likelihood ratios give a general methodology for binary, ordinal, and continuous diagnostic tests. Moreover, they highlight that for likelihood ratios, additional information about a patient might be used via logistic regression.

One of the earliest approaches to observe the intermediate region, the "twograph receiver operating characteristic" (TG-ROC), was defined (11). It is a graphic that shows sensitivity and specificity plotted against the thresholds. This method reveals the two thresholds with pre-selected sensitivity and specificity (95% or 90%). Therefore, it guarantees that sensitivity and specificity are at least 95% or 90% (the other values of sensitivity and specificity may be observed graphically) outside of the intermediate region.

By using likelihood ratios, Coste and Pouchot (2) outline the boundaries of the "grey zone"¹ (GZ) in their investigation study. They also showed that using the pretest probabilities to obtain post-test probabilities and likelihood ratios. Thus, they applied the tuberculin skin test to decide the starting antituberculous therapy in HIVseropositive patients and the reticulocyte hemoglobin content test to diagnose iron deficiency in children. Coste et al. (12) showed the application of the gray zone to diagnose heart failure in acute dyspneic patients by using brain natriuretic peptide. The details of this approach are presented in Material and Methods.

¹ The term "grey zone" was adopted for Coste and Pouchot's technique (2) to avoid misunderstanding between it and "gray zone". As a result, the phrase "gray zone" which refers to the middle inconclusive area was used as general term.

An alternative approach in order to find out the inconclusive area is proposed by Landsheer (3) and is known as the "uncertain interval" (UI) approach. The two decision thresholds are used by the author to investigate this uncertain area and to present an alternative trichotomization strategy. Basically, this methodology is based on finding the boundaries of the gray zone while balancing true positive to false negative and true negative to false positive at the same time in the overlapping area of the distributions of diseased and non-diseased subjects. In this study, the predicted probabilities of risk of prostate cancer in the data (13) were obtained and the uncertain interval was specified based on these probabilities. The details of this approach are also presented in Material and Methods.

Another clinical application of gray zone was presented (14) to find out the uncertainty for the no-reflow phenomenon by using systemic inflammation index in patients with ST-elevation myocardial infarction admitted for primary percutaneous coronary intervention (PCI).

2.2. The Background of Information Criteria

The information theory is presented by Shannon (15) for communication purposes, such as data transmission rate and optimal data compression. Information theory is also one of the approaches for evaluating the performance of diagnostic tests. However, unlike other methods, the information provided by the diagnostic test is obtained from entropy (1). Surprisal, entropy, relative entropy, known as Kullback–Leibler divergence, and mutual information are common terms that are placed in the information theory. Benish (16) used relative entropy, which is the measure of the distance between two distributions, as a measure of diagnostic accuracy. Channel capacity in the diagnostic tests is a statement about the sensitivity and specificity of the diagnostic tests (17). It represents the maximum value of the mutual information and is used to evaluate the performance of the diagnostic tests. For the evaluation and comparison of diagnostic tests, information theory approach is beneficial for the researchers (18).

3. MATERIAL AND METHODS

The details of the "grey zone" approach (2), the "uncertain interval" approach (3), and the proposed algorithm by using information statistics were presented in this section. The simulation scenarios, including the data generation process and the properties of the real data set, were given in this section.

3.1. The Evaluation of Diagnostic Tests

In this section, some of the features and performance measures used in the evaluation of diagnostic tests are explained.

For the binary outcome of diagnostic tests, the results of diagnostic tests are presented in Table 3.1. Suppose D and Y represent the true disease status and the diagnostic test results, respectively.

$$D = \begin{cases} D=1, \text{ for the diseased subjects} \\ D=0, \text{ for the non-diseased subjects} \end{cases}$$

and $Y = \begin{cases} Y=1, \text{ for the positive test result} \\ Y=0, \text{ for the negative test result} \end{cases}$

Table 3.1. The Cross Table of the disease status and diagnostic test.
 D=0

Y=0	True negative	False negative
Y=1	False positive	True positive

D=1

In order to evaluate the diagnostic tests, four decisions are appeared. True negative (TN) represents the negative test result among non-diseased subjects, while true positive (TP) represents the positive test result among diseased ones. The

negative test result among the diseased subjects and the positive test result among the non-diseased subjects are false negative (FN) and false positive (FP), respectively.

The common performance measures for the diagnostic tests are accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio, LR(+), and negative likelihood ratio, LR(-) (19).

Accuracy is the correct classification of subjects among all subjects in the data set.

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
(3.1.)

Sensitivity is the proportion of positive test results among the diseased subjects.

Sensitivity =
$$P(Y=1 \mid D=1) = \frac{TP}{TP+FN}$$
 (3.2.)

Specificity is the proportion of the negative test results among the nondiseased subjects.

Specificity =
$$P(Y = 0 | D = 0) = \frac{TN}{TN + FP}$$
 (3.3.)

Positive predictive value and negative predictive value are predictive values related to how accurately the test result reflects the true disease status. Positive predictive value is the proportion of diseased subjects among the positive test results.

$$PPV = P(D=1 | Y=1) = \frac{TP}{TP+FP}$$
 (3.4.)

The negative predictive value is the proportion of non-diseased subjects among the negative test results.

$$NPV = P(D=0 | Y=0) = \frac{TN}{TN+FN}$$
(3.5.)

Another approach to describe the performance of the diagnostic test is to use likelihood ratios, which are the ratios of the likelihood of the observed test result in populations with and without disease.

$$LR(+) = \frac{P(Y=1 \mid D=1)}{P(Y=1 \mid D=0)} = \frac{Sensitivity}{1 - Specificity}$$
(3.6.)

$$LR(-) = \frac{P(Y=0 \mid D=1)}{P(Y=0 \mid D=0)} = \frac{1 - Sensitivity}{Specificity}$$
(3.7.)

The likelihood ratios can also be used for calculating post-test odds by using pre-test odds.

post -test odds for positive test result
$$(Y = 1) = pre$$
-test odds $\times LR(+)$ (3.8.)

post -test odds for negative test result (Y = 0) = pre-test odds $\times LR(-)$ (3.9.)

While accuracy, sensitivity, specificity, PPV, and NPV are probabilities, LR(+) and LR(-) are likelihood ratios whose scale is between 0 to ∞ . LR(+) >1 suggests that a positive test is more likely to occur in a subject who is diseased than in a subject who is not diseased, while; LR(-)≤1 suggests that a negative test is more likely to occur in a non-diseased subject than in a diseased subject.

In addition to above-mentioned performance measures, information theory is used to evaluate diagnostic test performance. Some basic definitions of the terms belonging to information theory are explained in this subsection. The surprisal function, u, measures how unlikely an event is to occur (18). Assume that $d_1, d_2, ..., d_k$ and p_i are the mutually exclusive true diagnoses of the diseases and the probability of the true diagnosis of the d_i .

$$u_i = -\log_a p_i;$$
 (3.10.)

where i is the interested disease. In Equation 3.10, the base of the logarithm (a) can be chosen arbitrarily since it can be changed by multiplying by a constant. However, most of the time, it is specified as two, which provides measurements in units of bits (binary digits). It can be written as in Equation 3.11.

$$u_i = -\log_2 p_i;$$
 (3.11.)

where i is the event. The entropy which is represented as H(D) is the expected value of the surprisal. H gives a measurement of a diagnostic' degree of uncertainty (16).

$$H(D) = -\sum_{i=1}^{k} p_i \times \log_2 p_i$$
 (3.12.)

The joint entropy is the entropy of the joint probability distribution (20). Let d_1 , d_2 ,..., d_k and y_1 , y_2 ,..., y_m are the mutually exclusive true diagnosis of the diseases and the diagnosis of disease based on test results. Moreover, $p(d_i, y_j)$ shows the joint probability of the d and y.

$$H(D,Y) = -\sum_{j=1}^{m} \sum_{i=1}^{k} p(d_i, y_j) \times \log_2 p(d_i, y_j)$$
(3.13.)

3.2. The Gray Zone Approaches

3.2.1. The Grey Zone Approach¹

The boundaries of the middle inconclusive area are defined by using positive LR(+) and LR(-) - in grey zone approach (2). The algorithm of this approach is finding the boundaries of the gray zone based on pre-selected LR(+) and LR(-) values. Based on the post-test probabilities or sensitivity and specificity of the outside of the gray

¹ The name "grey zone" was used to Coste and Pouchot's technique to avoid misunderstanding between it and "gray zone" (2). As a result, the phrase "gray zone"—which refers to the uncertain area—was established.

zone may be determined and LR(+) and LR(-) are calculated using Equations 3.6., 3.7., 3.8., and 3.9. The algorithm for the grey zone approach is based on pre-selected sensitivity and specificity of the outside of the gray zone:

Step 1: Specify the sensitivity and specificity of the diagnostic test out of the gray zone.

Step 2: Calculate the LR(+) and LR(-) with respect to Equations 3.6 and 3.7.

Step 3: Find the LR(+) and LR(-) for cut-off values which is the sorted diagnostic test values from lowest to highest.

Step 4: Find the closest values in Step 2.

The algorithm for the grey zone approach based on the post-test odds for the outside of the gray zone:

Step 1: Give the pre-test probability to calculate the pre-test odds. If there is no information for pre-test probabilities, the prevalence of the diseases may be considered as pre-test probability.

Step 2: Provide the post-test probabilities to calculate post-test odds.

Step 3: Calculate the LR(+) and LR(-) with respect to Equations 3.8. and 3.9.

Step 4: Find the LR(+) and LR(-) for cut-off values which is the sorted diagnostic test values from lowest to highest.

Step 5: Find the closest values in Step 3.

3.2.2. Uncertain Interval Approach

The inconclusive area has been identified by using a different method (3). By utilizing the two decision thresholds based on previously chosen levels of sensitivity and specificity in this middle inconclusive area, this strategy relies on a different trichotomization mechanism. The algorithm of this approach is basically based on the balancing true negative to false positive rates and true positive to false negative rates in the gray zone which is illustrated in Figure 3.1.

Figure 3.1. The Visualization of Uncertain Interval Approach.

The steps of the uncertain interval approach as follows:

Step 1: Find the intersection of two distributions by Youden's J statistic or kernel density estimation (In this study, for the uncertain interval algorithm, the intersection was specified with kernel density estimation since it was stated that kernel estimation is slightly more useful than Youden's J index (3).

Step 2: Based on the pre-selected values of sensitivity and specificity in the gray zone, specify the ratio of true negative to false positive and true positive to false negative.

Step 3: By using sequential least squares programming optimizer (SLSQP) which is nonlinearly constrained gradient-based optimization find the areas simultaneously around the intersection with the true negative balanced by false positive and the true positive balanced by false negative.

3.2.3. Proposed Algorithm of Uncertain Boundaries with Joint Entropy

The proposed algorithm is based on joint entropy. The proposed algorithm was named a "Joint Entropy based algorithm for Uncertain Boundaries" and shortened to "JE-UB". The algorithm was constructed as follows:

Step 1: Find the initial values for the lower and upper boundaires of the gray zone that is based on the overlapped area of diseased and non-diseased distributions:

• c₀₁: the minimum value of the overlapped area

• c₀₂ : the maximum value of the overlapped area

Figure 3.2. The First Step of the JE-UB Algorithm.

Step 2: Find the intersection point of two distributions whether maximizing the Youden's J statistic based on kernel smoothing or the Euclidean distance of observations¹ in c_{01} and c_{02} : C

The Youden's J statistic based on kernel smoothed densities was chosen for determining the intersection point since, in different scenarios under different

¹ In order to differentiate which method was used for finding the cut-off point in Step 2, using Kernel Smoothing for Youden's J statistic and the Euclidean Distance of observations are shortened and added to "JE-UB-KB" and "JE-UB-ED", respectively.

distributions, the Youden's J statistic based on kernel smoothed densities showed good properties (21).

The Euclidean distances from one observation to another were calculated. The summation of these distances was taken, and the overall distance measure in each observation was constructed. The point where this sum was at its minimum was accepted as the intersection. Suppose p and q are the two points in the Euclidian n space; the formulation for this distance (d) is (22):

Figure 3.3. The Second Step of the JE-UB Algorithm.

Step 3: Find the point between c_{01} and C which gives the maximum value of joint entropy: c_L

Step 4: Find the point between c_{02} and C which gives the maximum value of joint entropy: $c_{\rm U}$

3.3. The Simulation Studies

In order to compare the JE-UB algorithm with the existing algorithms, a comprehensive simulation study was conducted by using the R language environment. Suppose that Y_C and Y_D are the distributions of diagnostic tests of the non-diseased group and diseased group, respectively. The factors which are considered for the simulation scenarios are sample size (n which is the total sample sizes of Y_C and Y_D), the prevalence of the disease, P(D), and the ratio of variances (the ratio of variances of a diseased group to non-diseased group). Thus, in order to reveal how much the distributions are close to each other or how much the distributions are overlapped, the effect size (d) of Y_C and Y_D was used. The results of simulation scenarios, which consist of all possible combinations, are evaluated:

- 1. Sample size (n): 50, 100, and 200
- 2. Prevalence of the disease (P(D)): 0.2, 0.5, and 0.8
- The ratio of the variances: 1 (equal variances) and 3 (unequal variances)
 (23)
- 4. Effect size (d): 0.5 (medium), 0.8 (large), and 1.2 (large) (24)

For all the combinations of total of 54 scenarios, the distribution of Y_c was distributed as a normal distribution with 0 mean and 1 standard deviation. In addition to those scenarios, for the prevalence of the disease is 0.8 and the ratio of variances

3, in order to prevent the underrepresentation of the distribution of Y_c , the prevalence of the disease is 0.8 and the ratio of variances 1/3 is also considered. Therefore, total of 63 scenarios were evaluated. Each simulation scenario was repeated 1000 times.

One of the difficult issues for the comparisons of the gray zone is if the length of the gray zone (the difference between upper and lower boundaries of the gray zone) increases, then the out-of-the-performance measures (such as accuracy, sensitivity, and specificity) will increase or vice versa. Therefore, the question has arisen, whether the narrower length of the gray zone is important or the out of the gray zone is important. For this issue, in simulation studies, the area under receiver operating characteristics curve (AUROC) out of the gray zone was fixed with a 1% interval, and the gray zone's narrowest length was chosen as the best algorithm.

For each effect size considered in the simulation study, the AUROC values were chosen differently. For effect sizes equal to 0.5, 0.8, and 1.2, the AUROC was specified as 0.69, 0.77, and 0.85 with 1% intervals based on the relationship between effect size and AUROC (25). The AUROC values are approximately, 0.64, 0.72, and 0.8. Therefore, the AUROC was fixed higher than 5% of those values with a 1% interval. For the performance measures, the boundaries and the length of the gray zone, the percentage of subjects that are in gray zone, the AUROC, accuracy, sensitivity, and specificity of the outside the gray zone were evaluated which is illustrated in Table 3.2.

Effect Size	Interval of AUROC
d=0.5	68 % to 70 %
d=0.8	76 % to 78 %
d=1.2	84 % to 86 %

	Table 3.2.	The Value	s for AUROC	with Ef	fect Sizes.
--	------------	-----------	-------------	---------	-------------

For the uncertain interval algorithm, the optimum boundaries were searched between 0.51 to 0.65 of sensitivity and specificity in the gray zone. For the multiple boundaries in the interval of AUROC, the boundaries of the gray zone were chosen based on the minimum length of the gray zone. For the grey zone algorithm, the optimum boundaries were started to search for the sensitivity and specificity optimal cut-off point based on Youden's J index to the value of sensitivity and specificity of the out of the gray zone 1. Then the likelihood ratios were calculated based on Equations 3.6 and 3.7. For multiple boundaries, the same structure of uncertain intervals is followed. For the JE-UB algorithm, for the multiple boundaries, the boundaries were selected with respect to the maximum joint entropy.

All analysis was conducted on R environment (26). The distributions of Y_c and Y_D were generated with "stats" package (26) in R. Thus, the "UncertainInterval" package (27) was used for the grey zone and uncertain interval approaches. The performance measures were obtained by using the "caret" package (28).

3.4. The Real Data Set

To reveal the application of the real data set, the one of the versions of the Pima Indian Data Set was used. The National Institute of Diabetes and Digestive and Kidney Diseases is the original source of this data set (29). The main objective of this data set is to predict whether a patient has diabetes or not. All patients at this facility are Pima Indian women who are at least 21 years old. The data set in this thesis is obtained from "MASS" package (30) in R which is the small part of this larger data set. The variables of the data set are: number of pregnancy, age, diastolic blood pressure, triceps skin fold thickness, body mass index, diabetes pedigree function, glucose and class (a patient has the diabetes or not). For this study, we consider glucose, and class variables to find the boundaries of the gray zone.

4. RESULTS

The results of both simulation studies and real data sets are presented in this section.

4.1. The Simulation Results

The mean values of the boundaries and length of the gray zone, the percentage of the subject who is classified as gray zone and the percentage of diseased and non-diseased groups, the AUROC, accuracy, sensitivity, and specificity of the out of the gray zone of the 1000 replications were given in Tables 4.1., 4.2., 4.3., and 4.4. For Figures 4.1., 4.2., and 4.3.¹, the y-axis shows the length of the gray zone while in the x-axis, the methods were placed. Thus, the sample sizes are represented with the lines while the prevalence of the disease were split in grids. For Figures 4.4.,4.5., and 4.6., the same structure is followed except for the prevalence of the disease was fixed as 0.8 so there is no grid. All Figures were generated by using the "ggplot2" package (31) in R.

¹ For Tables 4.1., 4.2., 4.3., and 4.4., and Figures 4.1., 4.2., 4.3., 4.4., 4.5., and 4.6., the uncertain interval, grey zone, joint entropy based algorithm for uncertain boundaries with kernel smoothed densities for Youden's j index, and joint entropy based algorithm for uncertain boundaries with the Euclidean distance of observations were represented as "UI", "GZ", "JE-UB-KB" and "JE-UB-ED". For Tables 4.1., 4.2., 4.3., and 4.4., LL and UL shows the lower and upper limit of the gray zone, respectively.

- / - \	The Ratio			Boundarie	Boundaries Proportion of Gray Zone					Out of in the Gray Zone			
P(D)	of Variances	n	Methods	LL-UL	Length	Total %	Diseased %	Control %	AUROC	Accuracy	Sensitivity	Specificity	
			UI	-0.451 - 0.821	1.272	41.972	19.913	80.087	0.681	0.637	0.757	0.606	
		50	GZ	-0.264 - 1.036	1.300	41.772	21.196	78.804	0.687	0.711	0.666	0.707	
		50	JE-UB-KB	-0.173 - 0.864	1.038	37.376	20.853	79.147	0.689	0.700	0.673	0.705	
			JE-UB-ED	-0.222 - 0.604	0.827	31.366	20.831	79.169	0.687	0.652	0.748	0.627	
			UI	-0.500 - 0.984	1.484	47.389	20.279	79.721	0.680	0.657	0.721	0.639	
	Equal	100	GZ	-0.439 - 1.102	1.540	49.064	20.392	79.608	0.685	0.701	0.670	0.700	
	Variances	100	JE-UB-KB	-0.265 - 0.833	1.098	38.665	20.618	79.382	0.686	0.678	0.699	0.672	
			JE-UB-ED	-0.305 - 0.653	0.957	34.672	20.726	79.274	0.684	0.643	0.751	0.617	
		200	UI	-0.655 - 1.146	1.801	56.222	20.065	79.935	0.678	0.665	0.704	0.652	
			GZ	-0.641 - 1.295	1.936	60.153	20.321	79.679	0.685	0.708	0.662	0.709	
			JE-UB-KB	-0.406 - 0.897	1.304	44.485	20.327	79.673	0.683	0.667	0.710	0.656	
D(D)-0.2			JE-UB-ED	-0.435 - 0.819	1.254	43.111	20.421	79.579	0.682	0.649	0.737	0.627	
P(D)=0.2		50	UI	0.430 - 1.600	1.170	26.926	21.726	78.274	0.680	0.813	0.465	0.895	
			GZ	0.107 - 1.510	1.403	35.610	19.770	80.230	0.686	0.788	0.544	0.829	
			JE-UB-KB	-0.231 - 1.074	1.304	40.780	15.562	84.438	0.690	0.716	0.647	0.732	
			JE-UB-ED	-0.175 - 0.740	0.915	31.226	16.204	83.796	0.687	0.678	0.700	0.674	
			UI	0.591 - 1.650	1.059	22.539	20.573	79.427	0.675	0.828	0.423	0.927	
	Unequal	100	GZ	0.146 - 1.692	1.546	36.512	19.402	80.598	0.683	0.812	0.497	0.870	
	Variances	100	JE-UB-KB	-0.306 - 1.172	1.478	43.177	14.802	85.198	0.688	0.720	0.627	0.748	
			JE-UB-ED	-0.185 - 0.890	1.075	33.798	15.386	84.614	0.684	0.693	0.657	0.711	
			UI	0.580 - 1.723	1.143	23.723	20.328	79.672	0.670	0.832	0.401	0.939	
		200	GZ	0.149 - 1.705	1.556	36.112	19.470	80.530	0.681	0.815	0.485	0.877	
		200	JE-UB-KB	-0.250 - 1.234	1.484	43.128	14.913	85.087	0.685	0.731	0.592	0.779	
				JE-UB-ED	-0.181 - 1.065	1.246	37.514	15.396	84.604	0.682	0.715	0.610	0.753

 Table 4.1. The Simulation Results for d=0.5.

		50	UI	-0.468 - 0.904	1.373	44.498	49.930	50.070	0.678	0.680	0.702	0.654
			GZ	-0.439 - 0.922	1.361	45.642	49.634	50.366	0.686	0.693	0.693	0.679
		50	JE-UB-KB	-0.252 - 0.777	1.029	38.220	49.492	50.508	0.688	0.686	0.683	0.692
			JE-UB-ED	-0.201 - 0.737	0.937	35.582	49.424	50.576	0.686	0.684	0.680	0.692
			UI	-0.575 - 1.069	1.645	52.351	49.997	50.003	0.677	0.680	0.682	0.672
	Equal	100	GZ	-0.550 - 1.103	1.653	53.985	50.075	49.925	0.685	0.692	0.672	0.698
	Variances	100	JE-UB-KB	-0.323 - 0.848	1.172	41.338	50.075	49.925	0.684	0.683	0.681	0.688
			JE-UB-ED	-0.293 - 0.829	1.122	39.952	50.058	49.942	0.684	0.682	0.677	0.690
			UI	-0.698 - 1.205	1.902	59.641	49.971	50.029	0.678	0.683	0.677	0.680
		200	GZ	-0.748 - 1.251	1.999	62.799	49.914	50.086	0.684	0.695	0.684	0.684
			JE-UB-KB	-0.458 - 0.956	1.414	48.174	49.894	50.106	0.682	0.682	0.683	0.682
			JE-UB-ED	-0.452 - 0.952	1.404	47.891	49.903	50.097	0.682	0.682	0.682	0.682
P(D)=0.5		50	UI	0.508 - 1.731	1.223	27.182	49.570	50.430	0.670	0.669	0.396	0.943
			GZ	0.066 - 1.496	1.429	35.656	47.280	52.720	0.684	0.686	0.508	0.861
			JE-UB-KB	-0.319 - 1.145	1.464	40.718	42.340	57.660	0.687	0.683	0.614	0.761
			JE-UB-ED	-0.173 - 1.050	1.223	35.346	42.030	57.970	0.686	0.678	0.600	0.772
			UI	0.543 - 1.728	1.185	25.686	49.350	50.650	0.671	0.670	0.389	0.952
	Unequal	s 100	GZ	0.205 - 1.612	1.407	32.944	48.540	51.460	0.682	0.684	0.466	0.898
	Variances		JE-UB-KB	-0.225 - 1.205	1.430	38.104	41.423	58.577	0.685	0.674	0.580	0.790
			JE-UB-ED	-0.081 - 1.104	1.185	32.803	42.088	57.912	0.683	0.670	0.569	0.796
		200	UI	0.561 - 1.715	1.154	24.795	49.752	50.248	0.671	0.670	0.392	0.949
			GZ	0.242 - 1.586	1.343	31.512	48.409	51.591	0.681	0.683	0.466	0.896
			JE-UB-KB	-0.110 - 1.211	1.322	34.998	41.429	58.571	0.683	0.670	0.560	0.806
			JE-UB-ED	-0.056 - 1.132	1.188	32.163	41.817	58.183	0.681	0.668	0.562	0.800

 Table 4.1. (Continued). The Simulation Results for d=0.5.

			UI	-0.372 - 0.872	1.244	40.414	79.532	20.468	0.679	0.661	0.648	0.710
		50	GZ	-0.441 - 0.675	1.116	37.870	78.579	21.421	0.687	0.713	0.721	0.653
		50	JE-UB-KB	-0.346 - 0.719	1.065	38.648	78.985	21.015	0.689	0.699	0.703	0.676
			JE-UB-ED	-0.062 - 0.765	0.827	32.002	78.664	21.336	0.687	0.646	0.619	0.755
			UI	-0.528 - 0.994	1.522	48.209	79.776	20.224	0.676	0.667	0.658	0.695
	Equal	100	GZ	-0.589 - 0.943	1.531	49.382	79.685	20.315	0.686	0.702	0.704	0.669
	Variances	100	JE-UB-KB	-0.323 - 0.822	1.145	40.291	79.494	20.506	0.686	0.673	0.664	0.709
			JE-UB-ED	-0.160 - 0.864	1.024	36.769	79.243	20.757	0.684	0.639	0.610	0.758
			UI	-0.528 - 0.994	1.522	24.105	79.776	20.224	0.676	0.667	0.658	0.695
		200	GZ	-0.589 - 0.943	1.531	24.691	79.685	20.315	0.686	0.702	0.704	0.669
			JE-UB-KB	-0.323 - 0.822	1.145	20.146	79.494	20.506	0.686	0.673	0.664	0.709
D(D)-0 8			JE-UB-ED	-0.160 - 0.864	1.024	18.385	79.243	20.757	0.684	0.639	0.610	0.758
P(D)=0.8		equal 100	UI	0.361 - 1.745	1.384	31.224	80.195	19.805	0.676	0.518	0.412	0.941
			GZ	-0.166 - 1.124	1.290	30.396	76.747	23.253	0.685	0.635	0.597	0.774
			JE-UB-KB	-0.366 - 0.959	1.325	32.756	74.954	25.046	0.688	0.667	0.652	0.724
			JE-UB-ED	-0.031 - 1.040	1.071	27.430	74.896	25.104	0.687	0.623	0.584	0.789
			UI	0.506 - 1.737	1.231	26.847	80.020	19.980	0.674	0.503	0.388	0.960
	Unequal		GZ	0.114 - 1.391	1.277	29.190	78.434	21.566	0.684	0.577	0.504	0.864
	Variances	100	JE-UB-KB	-0.198 - 1.100	1.298	31.120	73.429	26.571	0.686	0.625	0.589	0.782
			JE-UB-ED	0.077 - 1.100	1.024	25.346	73.538	26.462	0.684	0.592	0.542	0.826
		200	UI	0.542 - 1.727	1.185	25.724	79.774	20.226	0.674	0.500	0.385	0.962
			GZ	0.263 - 1.514	1.251	28.180	79.354	20.646	0.682	0.551	0.463	0.902
			JE-UB-KB	-0.061 - 1.166	1.227	28.941	73.497	26.503	0.683	0.601	0.555	0.812
			JE-UB-ED	0.135 - 1.137	1.002	24.322	73.686	26.314	0.682	0.581	0.526	0.838

 Table 4.1. (Continued). The Simulation Results for d=0.5.

Figure 4.1. The Simulation Results for d=0.5.

For the effect size 0.5, the results of simulation scenarios were presented in Table 4.1. and Figure 4.1. With respect to similar performances out of the gray zone of the four methods,

- For the equal variances, the proposed algorithm which is Joint Entropy based algorithm for Uncertain Boundaries with both Kernel Smoothed densities for Youden's J statistic (JE-UB-KB) and Euclidian Distance (JE-UB-ED) gives the smallest length of the gray zone for sample sizes 50, 100, and 200 and prevalence of the disease 0.2, 0.5 and 0.8.
- For the unequal variances, for the prevalence of the disease 0.2 for the sample size 50, the JE-UB-ED algorithm gives the minimum length of the gray zone while for the sample sizes 100 and 200, the uncertain interval algorithm gives the minimum length of the gray zone.
- For the unequal variances, for the prevalence of the disease 0.5 for the sample sizes 50 and 100, the JE-UB-ED algorithm and uncertain interval gives the minimum length of the gray zone while for the sample size 200, the uncertain interval algorithm gives the minimum length of the gray zone.
- For the unequal variances, for the prevalence of the disease 0.8 for all sample sizes the JE-UB-ED algorithm and uncertain interval gives the minimum length of the gray zone.

	The Ratio			Boundaries Proportion of Gray Zone				Out of in the Gray Zone					
P(D)	of Variances	n	n	Methods	LL-UL	Length	Total %	Diseased %	Control %	AUROC	Accuracy	Sensitivity	Specificity
			UI	-0.123 - 1.005	1.127	37.064	19.998	80.002	0.762	0.752	0.780	0.744	
		50	GZ	-0.091 - 1.140	1.231	39.282	20.467	79.533	0.766	0.784	0.747	0.785	
		50	JE-UB-KB	-0.054 - 1.007	1.061	36.966	20.035	79.965	0.768	0.772	0.761	0.775	
			JE-UB-ED	-0.119 - 0.802	0.922	33.688	19.473	80.527	0.765	0.736	0.816	0.715	
			UI	-0.292 - 1.130	1.423	45.915	20.216	79.784	0.761	0.750	0.780	0.742	
	Equal	100	GZ	-0.323 - 1.225	1.548	49.166	20.256	79.744	0.767	0.772	0.765	0.768	
	Variances	100	JE-UB-KB	-0.200 - 1.000	1.200	41.319	20.141	79.859	0.765	0.749	0.792	0.739	
			JE-UB-ED	-0.251 - 0.893	1.143	39.863	20.237	79.763	0.764	0.726	0.825	0.702	
		200	UI	-0.450 - 1.264	1.713	54.306	20.125	79.875	0.762	0.755	0.775	0.749	
			GZ	-0.485 - 1.355	1.839	57.257	20.275	79.725	0.766	0.774	0.762	0.770	
			JE-UB-KB	-0.333 - 1.051	1.383	46.770	20.096	79.904	0.763	0.738	0.804	0.722	
D(D)=0.2			JE-UB-ED	-0.352 - 1.014	1.367	46.381	20.170	79.830	0.762	0.729	0.817	0.707	
P(D)=0.2		50	UI	0.522 - 1.585	1.063	24.984	20.157	79.843	0.747	0.850	0.577	0.918	
			GZ	0.033 - 1.560	1.527	39.522	17.929	82.071	0.766	0.831	0.669	0.863	
			JE-UB-KB	-0.183 - 1.199	1.382	42.094	15.508	84.492	0.768	0.781	0.745	0.791	
			JE-UB-ED	-0.155 - 1.025	1.180	37.976	15.915	84.085	0.766	0.760	0.772	0.761	
			UI	0.557 - 1.657	1.100	24.427	20.404	79.596	0.744	0.859	0.553	0.935	
	Unequal	100	GZ	-0.005 - 1.671	1.676	41.411	17.877	82.123	0.764	0.840	0.654	0.875	
	Variances	100	JE-UB-KB	-0.227 - 1.227	1.454	42.772	14.872	85.128	0.766	0.779	0.738	0.793	
			JE-UB-ED	-0.205 - 1.119	1.324	39.995	15.429	84.571	0.764	0.765	0.754	0.773	
		200	UI	0.512 - 1.748	1.237	26.696	20.153	79.847	0.737	0.861	0.529	0.944	
			GZ	-0.170 - 1.673	1.843	45.969	17.110	82.890	0.761	0.832	0.668	0.855	
		200	JE-UB-KB	-0.252 - 1.336	1.588	45.321	15.069	84.931	0.763	0.787	0.710	0.816	
				JE-UB-ED	-0.246 - 1.301	1.547	44.445	15.251	84.749	0.762	0.782	0.716	0.808

 Table 4.2. The Simulation Results for d=0.8.

			UI	-0.291 - 1.052	1.343	44.356	50.023	49.977	0.757	0.757	0.767	0.746
		FO	GZ	-0.305 - 1.139	1.444	47.946	50.065	49.935	0.767	0.771	0.761	0.772
		50	JE-UB-KB	-0.168 - 1.012	1.180	42.050	49.389	50.611	0.767	0.765	0.756	0.777
			JE-UB-ED	-0.145 - 0.992	1.137	40.982	49.470	50.530	0.766	0.765	0.756	0.777
			UI	-0.384 - 1.190	1.574	50.618	49.949	50.051	0.760	0.761	0.761	0.760
	Equal	100	GZ	-0.432 - 1.248	1.681	53.960	49.855	50.145	0.766	0.771	0.763	0.769
	Variances	100	JE-UB-KB	-0.243 - 1.066	1.309	44.559	49.815	50.185	0.764	0.764	0.760	0.769
			JE-UB-ED	-0.233 - 1.062	1.295	44.189	49.847	50.153	0.764	0.764	0.758	0.770
			UI	-0.505 - 1.308	1.813	57.469	49.946	50.054	0.762	0.765	0.763	0.762
		200	GZ	-0.591 - 1.379	1.970	61.257	49.772	50.228	0.766	0.775	0.769	0.763
		200	JE-UB-KB	-0.323 - 1.137	1.461	49.084	49.997	50.003	0.762	0.763	0.759	0.766
			JE-UB-ED	-0.322 - 1.137	1.460	49.063	49.991	50.009	0.762	0.763	0.758	0.766
P(D)=0.5			UI	0.455 - 1.694	1.239	29.036	49.814	50.186	0.742	0.742	0.539	0.945
		50	GZ	-0.075 - 1.544	1.619	40.412	45.615	54.385	0.764	0.763	0.657	0.870
		50	JE-UB-KB	-0.206 - 1.267	1.473	40.306	42.420	57.580	0.766	0.761	0.713	0.819
			JE-UB-ED	-0.125 - 1.249	1.373	38.284	42.566	57.434	0.765	0.759	0.701	0.829
			UI	0.481 - 1.740	1.259	28.165	49.988	50.012	0.744	0.744	0.531	0.957
	Unequal	100	GZ	0.002 - 1.614	1.612	38.589	45.536	54.464	0.762	0.762	0.634	0.891
	Variances	100	JE-UB-KB	-0.126 - 1.284	1.409	37.450	41.100	58.900	0.763	0.754	0.686	0.840
			JE-UB-ED	-0.074 - 1.277	1.351	36.225	41.300	58.700	0.763	0.752	0.679	0.847
			UI	0.452 - 1.793	1.342	29.532	50.108	49.892	0.740	0.740	0.522	0.958
		200	GZ	-0.067 - 1.624	1.690	40.480	44.995	55.005	0.760	0.760	0.638	0.883
		200 J	JE-UB-KB	-0.115 - 1.371	1.485	38.539	41.607	58.393	0.761	0.749	0.667	0.856
			JE-UB-ED	-0.111 - 1.365	1.476	38.363	41.644	58.356	0.761	0.749	0.667	0.855

 Table 4.2. (Continued). The Simulation Results for d=0.8.

			UI	-0.217 - 0.892	1.109	36.122	79.841	20.159	0.761	0.760	0.759	0.762
		50	GZ	-0.278 - 0.853	1.131	37.118	78.878	21.122	0.767	0.781	0.786	0.747
		50	JE-UB-KB	-0.190 - 0.879	1.070	37.696	79.398	20.602	0.768	0.769	0.769	0.767
			JE-UB-ED	0.021 - 0.939	0.918	34.428	80.028	19.972	0.766	0.734	0.712	0.819
			UI	-0.334 - 1.083	1.417	45.801	79.721	20.279	0.760	0.752	0.747	0.774
	Equal	100	GZ	-0.390 - 1.126	1.516	48.723	79.765	20.235	0.766	0.767	0.763	0.770
	Variances	100	JE-UB-KB	-0.186 - 1.023	1.208	41.775	79.636	20.364	0.766	0.746	0.733	0.800
			JE-UB-ED	-0.074 - 1.073	1.146	40.318	79.684	20.316	0.764	0.722	0.693	0.834
			UI	-0.461 - 1.246	1.708	54.139	79.935	20.065	0.762	0.758	0.753	0.770
		200	GZ	-0.511 - 1.287	1.799	56.805	79.851	20.149	0.766	0.767	0.760	0.772
		200	JE-UB-KB	-0.242 - 1.145	1.387	46.595	79.917	20.083	0.763	0.737	0.719	0.807
0_0_0			JE-UB-ED	-0.208 - 1.169	1.376	46.417	79.929	20.071	0.762	0.728	0.705	0.819
P(D)=0.8			UI	0.299 - 1.695	1.395	32.384	81.052	18.948	0.759	0.651	0.576	0.941
		EO	GZ	-0.099 - 1.126	1.224	28.776	75.904	24.096	0.765	0.738	0.718	0.811
		50	JE-UB-KB	-0.233 - 1.100	1.333	32.008	75.781	24.219	0.768	0.754	0.745	0.790
			JE-UB-ED	0.048 - 1.222	1.174	29.430	77.757	22.243	0.765	0.721	0.692	0.837
			UI	0.392 - 1.731	1.338	30.258	79.847	20.153	0.750	0.621	0.536	0.964
	Unequal	100	GZ	-0.019 - 1.430	1.449	33.005	76.737	23.263	0.765	0.694	0.649	0.880
	Variances	100	JE-UB-KB	-0.118 - 1.261	1.379	32.473	74.240	25.760	0.766	0.712	0.682	0.849
			JE-UB-ED	0.106 - 1.357	1.251	29.933	74.663	25.337	0.763	0.681	0.634	0.893
			UI	0.431 - 1.768	1.337	29.685	79.752	20.248	0.744	0.609	0.520	0.967
		200	GZ	-0.030 - 1.569	1.599	35.412	76.906	23.094	0.761	0.681	0.629	0.893
		200	JE-UB-KB	-0.006 - 1.393	1.399	32.363	74.289	25.711	0.763	0.682	0.640	0.885
			JE-UB-ED	0.092 - 1.440	1.348	31.309	74.475	25.525	0.762	0.668	0.618	0.905

 Table 4.2. (Continued). The Simulation Results for d=0.8.

Figure 4.2. The Simulation Results for d=0.8.

The results of the simulation for an effect size equal to 0.8 were given in Table 4.2. and Figure 4.2. According to these results,

- The same results with effect size 0.5 and equal variances were obtained. The the JE-UB algorithms give the minimum length of the gray zone.
- For unequal variances with all sample sizes of the prevalence of disease 0.2 and 0.5, the uncertain interval algorithm has the minimum length of the gray zone. It was followed with the the JE-UB-ED algorithm.
- For the prevalence of the disease 0.8 with unequal variances, for sample sizes 50 and 100, the JE-UB-ED algorithm shows the minimum length of the gray zone, on the other hand; for sample size 200, the uncertain interval algorithm reveals the minimum length of gray zone.

B(D)	The Ratio	tio Boundaries Proportion of Gray Zone				Zone Out of in the Gray Zone							
P(D)	of Variances	n	Methods	LL-UL	Length	Total %	Diseased %	Control %	AUROC	Accuracy	Sensitivity	Specificity	
			UI	0.113 - 1.252	1.139	35.180	18.897	81.103	0.842	0.850	0.829	0.855	
		50	GZ	0.066 - 1.398	1.333	38.922	19.804	80.196	0.845	0.870	0.814	0.875	
		50	JE-UB-KB	0.051 - 1.285	1.234	39.120	18.062	81.938	0.847	0.859	0.827	0.866	
			JE-UB-ED	0.006 - 1.213	1.206	39.248	17.040	82.960	0.846	0.851	0.839	0.853	
			UI	-0.041 - 1.287	1.328	41.146	20.143	79.857	0.840	0.835	0.850	0.831	
	Equal	100	GZ	-0.101 - 1.394	1.495	45.242	20.490	79.510	0.845	0.851	0.840	0.851	
	Variances	100	JE-UB-KB	-0.079 - 1.220	1.299	41.980	19.414	80.586	0.845	0.831	0.869	0.821	
			JE-UB-ED	-0.109 - 1.152	1.262	41.352	19.208	80.792	0.843	0.819	0.885	0.801	
			UI	-0.153 - 1.369	1.522	46.445	20.256	79.744	0.840	0.836	0.847	0.833	
		200	GZ	-0.273 - 1.477	1.750	52.401	20.136	79.864	0.846	0.846	0.852	0.840	
		200	JE-UB-KB	-0.167 - 1.218	1.385	44.419	19.407	80.593	0.842	0.817	0.886	0.798	
D(D)=0.2			JE-UB-ED	-0.179 - 1.193	1.372	44.199	19.373	80.627	0.842	0.812	0.894	0.790	
P(D)=0.2			UI	0.629 - 1.666	1.037	22.958	20.507	79.493	0.826	0.897	0.708	0.945	
		FO	GZ	0.169 - 1.700	1.531	37.670	17.329	82.671	0.848	0.889	0.784	0.912	
		50	JE-UB-KB	-0.036 - 1.394	1.430	40.770	14.422	85.578	0.847	0.857	0.830	0.865	
			JE-UB-ED	-0.042 - 1.289	1.331	39.496	14.270	85.730	0.846	0.847	0.843	0.849	
			UI	0.610 - 1.741	1.131	23.817	20.842	79.158	0.819	0.898	0.689	0.949	
	Unequal	100	GZ	0.004 - 1.723	1.719	42.146	16.312	83.688	0.845	0.882	0.789	0.901	
	Variances	100	JE-UB-KB	-0.146 - 1.381	1.527	43.219	14.114	85.886	0.845	0.844	0.843	0.846	
			JE-UB-ED	-0.151 - 1.329	1.480	42.429	14.266	85.734	0.844	0.837	0.853	0.834	
			UI	0.552 - 1.836	1.284	26.341	20.937	79.063	0.816	0.901	0.675	0.956	
			GZ	-0.141 - 1.736	1.877	46.908	15.561	84.439	0.843	0.876	0.797	0.890	
	200	200	JE-UB-KB	-0.171 - 1.444	1.615	44.707	14.258	85.742	0.842	0.847	0.830	0.854	
				JE-UB-ED	-0.177 - 1.431	1.608	44.632	14.308	85.692	0.842	0.844	0.833	0.851

Table 4.3. The Simulation Results for d=1.2.

			UI	-0.049 - 1.235	1.284	40.832	49.868	50.132	0.839	0.838	0.841	0.836
		50	GZ	-0.095 - 1.316	1.410	44.192	49.679	50.321	0.846	0.848	0.840	0.852
		50	JE-UB-KB	-0.039 - 1.242	1.281	42.074	48.847	51.153	0.847	0.847	0.839	0.855
			JE-UB-ED	-0.024 - 1.230	1.254	41.508	48.767	51.233	0.847	0.846	0.839	0.855
			UI	-0.117 - 1.314	1.431	44.343	49.888	50.112	0.840	0.841	0.841	0.839
	Equal	100	GZ	-0.192 - 1.416	1.609	49.003	50.062	49.938	0.846	0.850	0.842	0.851
	Variances	100	JE-UB-KB	-0.047 - 1.283	1.330	42.527	49.754	50.246	0.844	0.844	0.835	0.853
			JE-UB-ED	-0.042 - 1.280	1.321	42.366	49.804	50.196	0.844	0.843	0.835	0.853
			UI	-0.191 - 1.403	1.593	48.787	50.154	49.846	0.840	0.841	0.839	0.841
		200	GZ	-0.296 - 1.531	1.827	54.453	50.265	49.735	0.846	0.852	0.840	0.851
		200	JE-UB-KB	-0.107 - 1.321	1.428	45.109	49.965	50.035	0.842	0.842	0.840	0.844
			JE-UB-ED	-0.107 - 1.322	1.429	45.121	49.962	50.038	0.842	0.842	0.840	0.844
P(D)=0.5			UI	0.536 - 1.752	1.216	27.424	51.072	48.928	0.825	0.826	0.690	0.959
		FO	GZ	0.004 - 1.615	1.611	38.254	43.378	56.622	0.846	0.845	0.791	0.900
		50	JE-UB-KB	-0.072 - 1.423	1.495	38.212	40.725	59.275	0.847	0.844	0.816	0.877
			JE-UB-ED	-0.016 - 1.442	1.458	37.300	41.029	58.971	0.846	0.842	0.806	0.886
			UI	0.536 - 1.813	1.277	27.390	51.008	48.992	0.822	0.823	0.679	0.966
	Unequal	100	GZ	0.001 - 1.707	1.706	39.157	43.303	56.697	0.845	0.843	0.775	0.914
	Variances	100	JE-UB-KB	-0.039 - 1.480	1.519	37.513	39.866	60.134	0.843	0.836	0.793	0.893
			JE-UB-ED	-0.014 - 1.489	1.503	37.100	40.035	59.965	0.843	0.835	0.789	0.897
			UI	0.485 - 1.903	1.418	29.663	51.023	48.977	0.818	0.819	0.666	0.969
		200	GZ	-0.126 - 1.751	1.877	42.995	42.464	57.536	0.844	0.842	0.780	0.907
		200	JE-UB-KB	-0.041 - 1.559	1.601	38.496	40.694	59.306	0.841	0.833	0.781	0.901
			JE-UB-ED	-0.039 - 1.561	1.599	38.462	40.704	59.296	0.841	0.833	0.780	0.902

 Table 4.3. (Continued). The Simulation Results for d=1.2.

			UI	-0.054 - 1.090	1.144	35.052	80.480	19.520	0.841	0.852	0.859	0.824
		FO	GZ	-0.102 - 1.081	1.183	36.148	79.717	20.283	0.846	0.862	0.869	0.823
		50	JE-UB-KB	-0.057 - 1.117	1.174	37.434	80.526	19.474	0.847	0.859	0.865	0.829
			JE-UB-ED	0.004 - 1.194	1.190	39.018	82.265	17.735	0.845	0.851	0.853	0.838
			UI	-0.096 - 1.241	1.337	41.017	79.704	20.296	0.841	0.836	0.834	0.848
	Equal	100	GZ	-0.146 - 1.305	1.451	44.308	79.645	20.355	0.846	0.842	0.837	0.856
	Variances	100	JE-UB-KB	-0.019 - 1.275	1.294	41.617	80.160	19.840	0.846	0.830	0.818	0.874
			JE-UB-ED	0.049 - 1.317	1.268	41.529	80.529	19.471	0.844	0.817	0.798	0.890
			UI	-0.163 - 1.359	1.522	46.584	79.840	20.160	0.840	0.836	0.832	0.847
		200	GZ	-0.249 - 1.494	1.743	52.374	80.054	19.946	0.846	0.841	0.831	0.861
		200	JE-UB-KB	-0.018 - 1.392	1.411	45.200	80.633	19.367	0.843	0.816	0.796	0.889
			JE-UB-ED	0.007 - 1.409	1.401	45.115	80.747	19.253	0.842	0.811	0.788	0.896
P(D)=0.8			UI	0.306 - 1.819	1.513	33.302	81.923	18.077	0.839	0.778	0.734	0.944
		50	GZ	-0.105 - 1.335	1.440	30.206	76.190	23.810	0.846	0.847	0.844	0.848
		50	JE-UB-KB	-0.196 - 1.359	1.555	32.926	77.173	22.827	0.846	0.858	0.863	0.830
			JE-UB-ED	-0.190 - 1.612	1.802	38.154	80.783	19.217	0.845	0.855	0.858	0.833
			UI	0.438 - 1.841	1.403	30.370	80.405	19.595	0.829	0.743	0.685	0.974
	Unequal	100	GZ	-0.013 - 1.519	1.531	32.366	74.350	25.650	0.844	0.808	0.786	0.903
	Variances	100	JE-UB-KB	-0.043 - 1.476	1.518	32.688	74.183	25.817	0.845	0.813	0.795	0.895
			JE-UB-ED	0.021 - 1.593	1.572	33.891	75.601	24.399	0.842	0.803	0.779	0.906
			UI	0.471 - 1.868	1.398	29.779	80.160	19.840	0.823	0.731	0.669	0.977
		200	GZ	-0.034 - 1.673	1.708	35.544	74.665	25.335	0.843	0.797	0.770	0.917
		200	JE-UB-KB	0.085 - 1.658	1.573	33.574	74.771	25.229	0.843	0.783	0.751	0.935
			JE-UB-ED	0.148 - 1.703	1.555	33.419	75.307	24.693	0.841	0.775	0.738	0.945

Table 4.3. (Continued). The Simulation Results for d=1.2.

Figure 4.3. The Simulation Results for d=1.2.

For effect size 1.2, the results of the simulation study were represented in Table 4.3. and Figure 4.3.

- For equal variances, the minimum length of the gray zone is obtained from the the JE-UB-ED algorithm except for the prevalence of disease 0.2 and 0.8 with sample size 50. In this scenario, the minimum length is recorded for an uncertain interval algorithm.
- For unequal variances, for all the cases, the minimum length of the gray zone is found for the uncertain interval algorithm.

In all 54 scenarios, a similar pattern is found for unequal variances for the prevalence 0.2 and 0.5. However, for the prevalence of 0.8, this pattern was not observed. One of the reasons is when the prevalence is 0.8 and the variance of the diseased group is 3 times higher than the non-diseased group, there exists an underrepresentation of the non-diseased group. To research this issue, the additional 9 scenarios including the prevalence is 0.8, and the variance of the non-diseased group is 3 times higher than the diseased group with all sample sizes and effect sizes. The results are shown in Tables 4.4. and Figures 4.4., 4.5., and 4.6.

d	n	Mothoda	Boundaries	Boundaries Proportion of Gray Zone		Out of in the Gray Zone					
u	11	Methous	LL-UL	Length	Total %	Diseased %	Control %	AUROC	Accuracy	Sensitivity	Specificity
		UI	-0.848 - 0.144	0.992	22.406	78.675	21.325	0.680	0.820	0.910	0.449
	F.0	GZ	-0.925 - 0.368	1.293	31.048	77.892	22.108	0.686	0.812	0.883	0.489
	50	JE-UB-KB	-0.352 - 0.981	1.333	41.590	84.501	15.499	0.690	0.715	0.731	0.649
		JE-UB-ED	-0.011 - 0.901	0.912	31.418	84.143	15.857	0.687	0.674	0.670	0.703
		UI	-0.950 - 0.101	1.051	22.129	79.574	20.426	0.672	0.829	0.932	0.412
0.5	100	GZ	-0.945 - 0.419	1.363	32.688	79.720	20.280	0.681	0.812	0.891	0.471
0.5	100	JE-UB-KB	-0.472 - 1.049	1.521	44.816	85.050	14.950	0.688	0.720	0.752	0.625
		JE-UB-ED	-0.232 - 0.930	1.161	36.105	84.717	15.283	0.684	0.697	0.719	0.649
		UI	-0.997 - 0.118	1.115	23.252	79.681	20.319	0.668	0.832	0.940	0.396
	200	GZ	-0.895 - 0.413	1.308	32.055	80.326	19.674	0.679	0.810	0.891	0.466
	200	JE-UB-KB	-0.519 - 0.966	1.486	43.088	84.830	15.170	0.686	0.732	0.783	0.589
		JE-UB-ED	-0.376 - 0.924	1.300	39.043	84.599	15.401	0.682	0.716	0.757	0.607
		UI	-0.446 - 0.561	1.007	23.048	79.365	20.635	0.748	0.853	0.923	0.574
	50	GZ	-0.459 - 1.003	1.461	37.194	80.631	19.369	0.767	0.835	0.877	0.656
	50	JE-UB-KB	-0.051 - 1.308	1.359	41.328	84.262	15.738	0.768	0.779	0.787	0.750
		JE-UB-ED	0.168 - 1.296	1.128	36.610	83.977	16.023	0.766	0.751	0.744	0.788
		UI	-0.558 - 0.598	1.155	25.106	79.766	20.234	0.742	0.860	0.939	0.545
0.0	100	GZ	-0.475 - 1.105	1.579	40.413	82.206	17.794	0.762	0.832	0.876	0.648
0.8	100	JE-UB-KB	-0.123 - 1.401	1.524	44.616	84.678	15.322	0.766	0.779	0.794	0.738
		JE-UB-ED	-0.028 - 1.381	1.409	42.248	84.423	15.577	0.764	0.767	0.777	0.752
		UI	-0.614 - 0.625	1.239	26.641	79.642	20.358	0.737	0.862	0.944	0.531
	200	GZ	-0.463 - 1.185	1.648	42.915	82.794	17.206	0.759	0.826	0.865	0.654
	200	JE-UB-KB	-0.189 - 1.385	1.574	45.293	84.845	15.155	0.763	0.786	0.814	0.713
		JE-UB-ED	-0.158 - 1.385	1.542	44.715	84.746	15.254	0.762	0.781	0.807	0.718

Table 4.4. The Simulation Results for P(D) = 0.8 and Var(YC)=3 x Var(YD).

		UI	0.022 - 1.076	1.053	23.144	79.036	20.964	0.823	0.897	0.946	0.701
	50	GZ	0.072 - 1.586	1.514	38.168	82.525	17.475	0.846	0.878	0.899	0.793
	50	JE-UB-KB	0.323 - 1.734	1.411	40.596	84.442	15.558	0.848	0.855	0.862	0.834
		JE-UB-ED	0.410 - 1.757	1.346	39.956	84.998	15.002	0.846	0.847	0.848	0.844
		UI	-0.052 - 1.100	1.152	23.815	79.022	20.978	0.818	0.898	0.950	0.685
1.2	100	GZ	0.015 - 1.721	1.706	42.806	83.713	16.287	0.843	0.875	0.894	0.793
1.2	100	JE-UB-KB	0.314 - 1.870	1.555	43.991	85.392	14.608	0.845	0.843	0.843	0.848
		JE-UB-ED	0.364 - 1.874	1.510	43.225	85.314	14.686	0.844	0.837	0.833	0.855
		UI	-0.142 - 1.160	1.302	26.583	79.071	20.929	0.816	0.902	0.957	0.674
	200	GZ	0.004 - 1.843	1.839	46.853	84.427	15.573	0.843	0.872	0.886	0.800
	200	JE-UB-KB	0.250 - 1.874	1.624	44.784	85.609	14.391	0.843	0.848	0.856	0.829
		JE-UB-ED	0.259 - 1.878	1.619	44.744	85.595	14.405	0.842	0.846	0.854	0.830

Table 4.4. (Continued). The Simulation Results for P(D) = 0.8 and Var(YC)=3 x Var(YD).

Figure 4.4. The Simulation Results for P(D) = 0.8, Var(YC)=3 x Var(YD) and d=0.5.

Figure 4.5. The Simulation Results for P(D) = 0.8, $Var(YC)=3 \times Var(YD)$ and d=0.8.

Figure 4.6. The Simulation Results for P(D) = 0.8, Var(YC)=3 x Var(YD) and d=1.2.

According to the results in Table 4.4. and Figures 4.4., 4.5., and 4.6.:

- Similar patterns of unequal variances for the prevalence of 0.2 and 0.8 are obtained. In order to show this pattern more clearly, in the Appendices (A. Figure 1.1., A. Figure 1.2., A. Figure 1.3.), these results are plotted with effect sizes 0.2 and 0.5.
- In most of the results in Table 4.4., Figures 4.4., 4.5., and 4.6., the uncertain interval has the minimum length of the gray zone. For the smallest sample size in scenarios with effect size 0.5, the JE-UB-ED algorithm gives the minimum length of the gray zone.

4.2. The Results of the Real Data Set

A total of 532 complete data were used. The glucose variable was used to construct the boundaries of the gray zone. A total of 33.721% of subjects are in the diabetic group. The mean and standard deviation of each group with effect size is given in Table 4.5. Thus, the histograms of the two groups are plotted in Figure 4.8. The ROC curve was plotted in Figure 4.9.

Table 4.5. The Summary Statistics of the Glucose.

	Diabetic Group (n ₁ =177)	Non-diabetic Group (n ₂ =355)	Effect Size
Glucose	143.199±31.265	110.017±24.287	1.183

The effect size is large in Table 4.5. The AUROC is 0.794 in Figure 4.9.

Figure 4.8. The Histograms of Diabetic and Non-Diabetic Groups.

Figure 4.9. The ROC Curve of Glucose Variable.

Mathada	Bound	aries	Pro	portion of Grav	y Zone	Out of in the Gray Zone				
Wiethous	LL-UL	Length	Total %	Diseased %	Control %	Accuracy	Sensitivity	Specificity		
UI	109 - 148	39	38.910	34.783	65.217	0.834	0.743	0.882		
GZ	101 - 144	43	47.368	29.762	70.238	0.829	0.843	0.829		
JE-UB-KB	113 - 129	16	19.925	30.189	69.811	0.761	0.738	0.772		
JE-UB-ED	113 - 122	9	10.150	25.926	74.074	0.716	0.767	0.689		

 Table 4.6.
 The Results of Real Data Set.

The pre-selected values of LR (+) and LR (-) are 5 and 0.22 are calculated based on PPV=0.7 and NPV=0.9 for the grey zone approach. Thus for the pre-selected values of sensitivity and specificity in the gray zone 0.55 (default value). The main reason that we fixed the performance measure out of the gray zone is illustrated in Table 4.6. In the real data set, since the pre-selected values are used, for different preselected values different boundaries will appear.

The effect size is approximately 1.2 and the ratio of variance is approximately 1.657. The real data set results were renewed based on the fixed value of AUROC in the out-of-gray zone of 0.85. The results were presented in Table 4.7. and Figure 4.10.

Table 4.7. The Results of Data Set Based on Simulation Scenari	0.
--	----

-									
	Bounda	aries	Pro	portion of Grav	/ Zone		Out of in t	he Grav Zone	
Methods									
									-
	LL-UL	Length	Total %	Diseased %	Control %	AUROC	Accuracy	Sensitivity	Specificity
		0							
LII.	104 - 166	62	54 135	36 458	63 542	0 841	0.889	0 722	0 959
0.	10. 100		0.11200	001100	001012	01011	0.005	0.722	0.000
GZ	96 - 150	54	59.399	28.481	71.519	0.840	0.833	0.874	0.806
JE-UB-KB	100 - 146	46	51.504	28.472	71.528	0.843	0.837	0.863	0.822
	100 146	16	51 504	20 172	71 5 2 9	0 842	0 927	0 863	0 822
JE-OB-ED	100 - 140	40	51.504	20.472	/1.520	0.045	0.057	0.805	0.822
1	1							1	1

Figure 4.10. The Boundaries and Length of Gray Zone Approaches.

The minimum length of the gray zone is obtained for the JE-UB. Although the uncertain interval approach had the largest length of the gray zone, the total percentage of subjects who are in the gray zone is less than in the grey zone algorithm. The reason is that the number of subjects in 96 to 150 is more than 104 to 166. Thus, the specificity out of the gray zone is high in uncertain intervals but the sensitivity is low. For the JE-UB algorithms and the grey zone approach, the performance measures out of the gray zone are more balanced.

5. DISCUSSION

In statistical decision-making, diagnostic tests have an important role. There are a variety of diagnostic procedures that can offer information for medical decision-making (32). To rule out or rule in certain diseases by using diagnostic tests, which produce ordinal or quantitative results is specifying optimal cut-off points to discriminate subjects. To reach this aim, there exist several strategies based on some performance measures such as choosing optimal cut-off point based on maximizing sensitivity, specificity, the test statistics such that maximally selected chi-square statistic or minimum p-value and parametric approaches or parametric modeling by means of polynomials of covariates gives approximately solution (33). With respect to this cut-off value, no perfect discrimination can be made unless the test is the gold standard, thus yielding false positives and false negatives. Therefore, the middle inconclusive area (gray zone) in the overlapped area of diseased and non-diseased distributions is offered. The benefits of the gray zone approach are that false decisions decrease for patients in the gray zone, and true decisions increase outside of the gray zone (34).

There are different approaches to finding the boundaries of the gray zone. In this study, we take the grey zone (2) and uncertain interval (3) approaches into account. The grey zone method is based on pre-test probabilities while the uncertain interval approach is based on balancing TP to FN and TN to FP in the gray zone by using the SLSQP optimization. The simulation results for TG-ROC and uncertain interval approaches were given (3). In this study, we excluded TG-ROC since it is offered for the pre-selected values of sensitivity and specificity of 0.95 or 0.90. As a result, it ensures that sensitivity and specificity are a minimum of 95% or 90% outside of the intermediate region (other sensitivity and specificity values may be shown graphically). This algorithm has strict restrictions. Moreover, Landsheer (3) reported that the gray zone in TG-ROC does not clearly explain and outside of the gray zone does not meet expectations. Also, The TG-ROC simulation findings reveal that improving decision-making may not always come from choosing just the most discriminative scores and excluding intermediate levels.

When evaluating and comparing diagnostic tests, information statistics are useful (18). Our main aim is to propose an algorithm to find the borders of the gray zone by using the information theory. We also desire to highlight and show the application of the information theory to the decision-making process. The second aim of this study is to compare the proposed algorithm with the grey zone and uncertain interval algorithms with a simulation study. In addition to the simulation study, we also showed the application of these approaches on the real data set which is taken from the Pima Indian Data Set (29). We explained the results of the real data set in detail.

Both methods for the grey zone and uncertain interval approaches were used in the studies (14, 34). However, these studies did not compare the performance comparisons of the algorithms with a simulation study. The TG-ROC and uncertain interval comparisons were given by simulation study (3). The simulation scenarios are based on Somaza's (35) study which is the separation coefficient (the mean differences of two distributions divided by the standard deviation of the distribution of non-diseased groups) and asymmetry coefficient (the ratio of the standard deviations of two distributions). On the other hand, in this thesis, we used the effect size to standardize how much the distributions are overlapped. The medium and large effect sizes (0.5, 0.8, and 1.2) were considered, yielding the AUROC of the diagnostic test 0.64, 0.72, and 0.80. Therefore, we considered the discriminative ability of the tests as poor to fair (36). Yet, we also deal with the equality of the variances. Landsheer (3) regarded sample size and prevalence as a total of 1000 and 0.5, 0.2, and 0.1, respectively. However, we take in our study different sample sizes of 50,100, and 200, with the prevalence of the disease as 0.2, 0.5, and 0.8. We also desire to research the disease with high prevalence.

The major difficulty in the comparisons of the three approach is when the length of the gray zone increases, the performance of out of the gray zone increases.

For comparing these three methods, the AUROC out of the gray zone was fixed differently under different scenarios. The minimum length of the gray zone was accepted as the best algorithm.

In the light of the simulation results, we have found that:

- For equal variances, the proposed algorithms (JE-UB-KB and JE-UB-ED) gives the minimum length of the gray zone in most of the scenarios.
- For unequal variances and effect size 0.5, the length of the gray zone for the uncertain interval and the JE-UB-ED algorithms is narrower compared to the grey zone and the JE-UB-KB algorithms.
- For unequal variances, and the effect sizes 0.8 and 1.2, in some cases the uncertain interval gives the best results and for some cases, the JE-UB-ED algorithm gives the best results.
- In most of the scenarios, when the sample size increases, the length of the grey zone also increases. The sample size is a significant part of this study, as Landsheer (3) mentioned that how a larger sample size is needed for an uncertain interval approach is not clear. We accept total sample sizes of 50, 100, and 200 as small, medium, and large, respectively.
- For equal variances, similar patterns are observed among algorithms with respect to different effect sizes, sample sizes, and prevalence.
- For unequal variances, while similar patterns are shown for the algorithms for the prevalence of 0.2 and 0.5, similar patterns are not observed for the prevalence of 0.8. The reason is that when the prevalence is 0.8 and the variance of Y_D is three times that of Y_C , the representation of the non-diseased group is low. To show this idea, the prevalence of 0.8 and the variance ratio of Y_D to Y_C of 1/3 are also investigated. Then a similar pattern with a prevalence of 0.2 and 0.8 is found.

For the final remark, in this study, we propose an algorithm to find the boundaries of the gray zone based on joint entropy without prior knowledge. The performance of the proposed algorithm was as good as or better compared to the other algorithms for the poor to fair discriminative ability of the diagnostic tests.

6. CONCLUSION

The main aim of this study is to propose a new algorithm to find the boundaries of the gray zone based on the information statistics for quantitative diagnostic tests. Moreover, we also compared the proposed algorithm (JE-UB) with existing algorithms through a compressive simulation study.

In general, for simulation scenarios with equal variances, the JE-UB algorithm gives the minimum length of the gray zone while for unequal variances, in some cases the JE-UB algorithm gives better results for other cases the uncertain interval algorithm gives better results. As a result, the JE-UB algorithm is superior in some scenarios. For the rest of the scenarios, it is in the second place. We can conclude that the JE-UB algorithm is as good as or better compared to existing algorithms. Besides, the main advantage of the algorithm we propose is that there is no prior information to run the algorithm, unlike others.

As a final remark, the main contribution of constructing a gray zone can be summarized such that discriminates subjects into the diseased, non-diseased, and gray zone (neither diseased nor non-diseased) groups. This might provide clinicians to lead other biomarkers, tests, or medical imaging or to take precautions for the subjects in the gray zone.

For future studies:

- For all the simulation scenarios, the distributions were generated from normal distributions. The skewed distributions should be also examined in future studies. Yet, the cases in which skewed distributions are transformed into normal distributions might also be observed.
- For determining how distributions are close to each other, the effect size was used in this study. For this aim, the overlap coefficient (OVL) that gives the similarity of two distributions in the overlapped area (37) may also be used in future studies.

- In this study, a diagnostic test and class variables are only used. It is also significant to specify the boundaries of a gray zone for subgroups such as gender or age categories. Thus, creating a gray zone could provide clinicians with the tools to construct a decision-making algorithm. To rule in or rule out the disease for the patients in the gray zone, for instance, they may use more biomarkers or more advanced tests.
- Additional to those issues, the R package and RShiny web application will be developed and they will be publicly available to researchers.

7. REFERENCES

- **1.** Karaagaoglu E, Karakaya J, Kılıçkap M. Tani Testlerinin Değerlendirilmesinde İstatistiksel Yöntemler. 1st ed. Ankara: Detay Yayincilik; 2016.
- **2.** Coste J, Pouchot J. A grey zone for quantitative diagnostic and screening tests. International Journal of Epidemiology. 2003; 32(2):304–13.
- Landsheer JA. Interval of Uncertainty: An Alternative Approach for the Determination of Decision Thresholds, with an Illustrative Application for the Prediction of Prostate Cancer. Hurst R, editor. PLOS ONE. 2013; 11(11):e0166007.
- Campbell G, Levy D, Bailey JJ. Bootstrap comparison of fuzzy ROC curves for ECG-LVH algorithms using data from the Framingham heart study. Journal of Electrocardiology. 1990;23:132–7.
- Evangelista PE, Embrechts MJ, Bonissone P, Szymanski BK. Fuzzy ROC curves for unsupervised nonparametric ensemble techniques. Proceeding of 2005 IEEE International Joint Conference on Neural Networks; 2005 Jul 31 – August 4, Montreal, QC, Canada. p. 3040-3045).
- **6.** Castanho MJ, Barros LC, Yamakami A, Vendite LL. Fuzzy receiver operating characteristic curve: an option to evaluate diagnostic tests. IEEE Transactions on Information Technology in Biomedicine. 2007; **11**(3):244-50.
- **7.** Parmigiani G. Receiver operating characteristic curves with an indeterminacy zone. Pattern recognition letters. 2020; 136:94-100.
- **8.** Feinstein AR. The inadequacy of binary models for the clinical reality of threezone diagnostic decisions. Journal of Clinical Epidemiology. 1990; 43(1):109–13.
- **9.** Jamart J. Chance-corrected sensitivity and specificity for three-zone diagnostic tests. Journal of Clinical Epidemiology. 1992; 45(9):1035–8.
- Simel DL, Samsa GP, Matchar DB. Likelihood ratios for continuous test results making the clinicians' job easier or harder? Journal of Clinical Epidemiology. 1993; 46(1):85–93.
- Greiner M, Sohr D, Göbel P. A modified ROC analysis for the selection of cut-off values and the definition of intermediate results of serodiagnostic tests. Journal of immunological methods. 1995; 185(1):123-32.
- Coste J, Jourdain P, Pouchot J. A Gray Zone Assigned to Inconclusive Results of Quantitative Diagnostic Tests: Application to the Use of Brain Natriuretic Peptide for Diagnosis of Heart Failure in Acute Dyspneic Patients. Clinical Chemistry. 2006; 52(12):2229–35.
- Hosmer DW, Lemeshow S. Applied logistic regression. 1st ed. New York Toronto: Wiley; 2000.
- **14.** Öztürk E, Esenboğa K, Kurtul A, Kılıçkap M, Karaagaoglu E, Karakaya J. Measurement of Uncertainty in Prediction of No-Reflow Phenomenon after

Primary Percutaneous Coronary Intervention Using Systemic Immune Inflammation Index: The Gray Zone Approach. Diagnostics. 2023; 13(4):709–720.

- **15.** Shannon CE, Weaver W. The Mathematical Theory of Communication. The Bell System Technical Journal. 1948; 27(3), 379-423.
- **16.** Benish WA. Relative Entropy as a Measure of Diagnostic Information. Medical Decision Making. 1999; 19(2):202–6.
- Benish WA. The channel capacity of a diagnostic test as a function of test sensitivity and test specificity. Statistical Methods in Medical Research. 2012; 24(6):1044–52.
- **18.** Benish WA. A Review of the Application of Information Theory to Clinical Diagnostic Testing. Entropy. 2020; 22(1):97.
- **19.** Pepe MS. The statistical evaluation of medical tests for classification and prediction. Oxford University Press; 2003.
- 20. Learned-Miller, E. G. Entropy and mutual information [Internet]. 2003 [cited: 03.04.2023]. Available from: https://people.cs.umass.edu/~elm/Teaching/Docs/mutInf.pdf
- **21.** Fluss R, Faraggi D, Reiser B. Estimation of the Youden Index and its associated cutoff point. Biometrical Journal. 2005; 47(4):458–72.
- **22.** Adams RA, Essex, C. Calculus: A Complete Course.7th ed. Pearson Canada; 2010.
- **23.** Alpar R. Uygulamalı istatistik ve geçerlik-güvenirlik: spor, sağlık ve eğitim bilimlerinden örneklerle. 7th ed. Detay Yayıncılık; 2010.
- Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Routledge New York; 1988.
- Salgado JF. Transforming the Area under the Normal Curve (AUC) into Cohen's d, Pearson's r pb, Odds-Ratio, and Natural Log Odds-Ratio: Two Conversion Tables. The European Journal of Psychology Applied to Legal Context. 2018; 10(1):35–47.
- R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <u>https://www.R-project.org/</u>.
- 27. Landsheer H. UncertainInterval: Uncertain Interval Methods for Three-Way Cut-Point Determination in Test Results; 2021, R package version 0.7.0.
- **28.** Kuhn M. caret: Classification and Regression Training; 2022, R package version 6.0-91.
- **29.** Smith JW, Everhart JE, Dickson WC, Knowler WC, Johannes RS. Using the ADAP learning algorithm to forecast the onset of diabetes mellitus. Greenes RA, editor, Proceedings of the Symposium on Computer Applications in Medical

Care; 1988 Nov. 6-9; Washington, USA. Los Alamitos, CA: IEEE Computer Society Press; 1988. p. 261-265

- **30.** Venables WN, Ripley BD. Modern applied statistics with S-Plus. Springer New York; 2002.
- **31.** Wickham H, Sievert C, Springer. ggplot2: Elegant Graphics for Data Analysis. Springer; 2016.
- **32.** Kattan MW. Encyclopedia of Medical Decision Making. Thousand Oaks Sage Publications; 2009.
- **33.** Mi G, Li W, Nguyen TS. Characterize and Dichotomize a Continuous Biomarker. Fang L, Su C, editors Statistical Methods in Biomarker and Early Clinical Development., South San Francisco, CA, USA, Springer; 2019.
- **34.** Landsheer JA. The Clinical Relevance of Methods for Handling Inconclusive Medical Test Results: Quantification of Uncertainty in Medical Decision-Making and Screening. Diagnostics. 2018; 8(2).
- Somaza, E. Classifying Binormal Diagnostic Tests Using Separation Asymmetry Diagrams with Constant-performance Curves. Medical Decision Making. 1994; 14: 157-168.
- **36.** Li F, He H. Assessing the Accuracy of Diagnostic Tests. Shanghai Arch Psychiatry. 2018 ;30(3):207-212.
- **37.** Franco-Pereira AM, Nakas CT, Reiser B, Carmen Pardo M. Inference on the overlap coefficient: The binormal approach and alternatives. Statistical methods in medical research. 2021; 30(12):2672-84.

Appendix 1: The Simulation Results for P(D) = 0.8 and Var(YC)=3 x Var(YD) with Other Scenarios

A. Figure 1.1. The Simulation Results for d=0.5, for P(D) =0.2 and 0.5 $Var(Y_D)=3 \times Var(Y_C)$, for P(D) = 0.8, $Var(Y_C)=3 \times Var(Y_D)$.

A. Figure 1.2. The Simulation Results for d=0.8, for P(D) =0.2 and 0.5 Var(Y_D)=3 x Var(Y_C), for P(D) = 0.8, Var(Y_C)=3 x Var(Y_D).

A. Figure 1.3. The Simulation Results for d=1.2, for P(D) =0.2 and 0.5 Var(Y_D)=3 x Var(Y_C), for P(D) = 0.8, Var(Y_C)=3 x Var(Y_D).

Appendix 2: The Originality Report of Thesis Study

turnitin

Dijital Makbuz

Bu makbuz ödevinizin Turnitin'e ulaştığını bildirmektedir. Gönderiminize dair bilgiler şöyledir:

Gönderinizin ilk sayfası aşağıda gönderilmektedir.

Gönderen: Ödev başlığı: Gönderi Başlığı: Dosya adı: Dosya boyutu: Sayfa sayısı: Kelime sayısı: Karakter sayısı: Gönderim Tarihi: Gönderim Numarası:	Ebru Öztürk SPECIFYING THE BOUNDARIES OF GRA SPECIFYING THE BOUNDARIES OF GRA ebru_ozturk_phd_thesis_d_zetImeler_t 2.5M 54 13,695 56,834 28-Tem-2023 05:22ÖS (UTC+0300) 2138059234	Y ZONE IN DIAGNOSTI Y ZONE IN DIAGNOSTI urnitin.pdf
	INTERVISE THE BOUNDARIES OF GAM JONI IN DAMAGOING THEIR MITH INFORMATION CONTRIA	
Copyright 2023 Turnitin. Tüm hakl	arı saklıdır.	

Thesis Title: Specifying the Boundaries of Gray Zone in Diagnostic Tests with Information Criteria

Student Name and Surname: Ebru Öztürk

Total Page Number: 54

SPECIFYING THE BOUNDARIES OF GRAY ZONE IN DIAGNOSTIC TESTS WITH INFORMATION CRITERIA

ORIJINALLIK RAPORU					
%	B ERLÍK ENDEKSI	%4 Internet kaynaklari	%6 YAYINLAR	%1 Öğrenci (DEVLERI
BIRINCIL KAYNAKLAR					
1	Ebru Ozt Kurtul, M Jale Kara in Predic Primary I Using Sys The Gray Yayın	urk, Kerim Esen lustafa Kilickap, kaya. "Measure tion of No-Reflo Percutaneous Co stemic Immune Zone Approach	boga, Alpa Ergun Kara ment of Ur w Phenom oronary In Inflammat ", Diagnos	rslan aagaoglu, ncertainty enon after tervention ion Index: tics, 2023	%3
2	"Cochrar of Diagno _{Yayın}	e Handbook for ostic Test Accura	r Systemat acy", Wiley	ic Reviews , 2023	< _% 1
3	research Internet Kayna	space.ukzn.ac.z	a		< _% 1
4	Joël Cost "A Gray 2 of Quant to the Us Diagnosi Patients" Yayın	e, Patrick Jourda Zone Assigned to itative Diagnost se of Brain Natri s of Heart Failur , Clinical Chemis	ain, Jacque o Inconclus ic Tests: Ap uretic Pept re in Acute stry, 2006	s Pouchot. sive Results oplication tide for Dyspneic	<%1

9. CURRICULUM VITAE

Ebru Öztürk