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ÖZET 

 

3B ķEHĶR MODELLERĶNĶN OTOMATĶK ¦RETĶMĶ                                              

VE ETKĶLĶ G¥RSELLEķTĶRĶLMESĶ 

 

 

Mehmet B¦Y¦KDEMĶRCĶOĴLU 

 

 

Doktora, Geomatik M¿hendisliĵi Bölümü 

Tez Danēĸmanē: Prof. Dr. Sultan KOCAMAN G¥K¢EOĴLU 

 

Mart 2023, 114 sayfa 

 

G¿n¿m¿zde kērsal bölgelerden göç, s¿rekli deĵiĸim ve ĸehirlerin yapēsēnēn giderek 

karmaĸēk hale gelmesi, ĸehir yºnetimlerinde verimin artmasē i­in yeni yºntem arayēĸlarēnē 

beraberinde getirmektedir. 3 Boyutlu (3B) ĸehir modellerine olan talep giderek artmakta 

ve birçok ülkede ­eĸitli yºnetim seviyelerinde farklē ºl­eklerde aktif olarak 

kullanēlmaktadēr. 3B ĸehir modelleri sadece gºrsel modeller olmayēp, aynē zamanda sahip 

olduklarē semantik veriler yardēmēyla analizlere ve farklē gºrselleĸtirme uygulamalarēna 

izin vermektedir. Bu modeller farklē detay seviyelerinde (LoD) üretilebilmekte ve 

seviyeleri arttēk­a, bina ve ­atēya ait modellenen nesnelerin/ayrēntēlarēn miktarē da 

artmaktadēr. Y¿ksek detay seviyesine sahip 3B modeller, genel olarak çok yüksek 

­ºz¿n¿rl¿kl¿ stereo hava fotoĵraflarē yardēmēyla fotogrametri operatörleri tarafēndan 

manuel olarak çizilmektedir. Bu çok fazla insan gücü, zaman ve maliyet gerektiren bir 

süreçtir. Yüksek detaylē 3B ĸehir modellerini otomatik ¿retmek i­in literat¿rde farklē 

yaklaĸēmlar bulunmaktadēr ancak bu konu tam olarak ­ºz¿lememiĸ bir sorun olarak 

bir­ok araĸtērmacē tarafēndan ­alēĸēlmaya devam etmektedir. Üretilen modellerin verimli 
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gºrselleĸtirilmesi ise, kullanēlacak gºrselleĸtirme platformuna gºre bir­ok optimizasyon 

ve farklē yaklaĸēm gerektiren ayrē bir sorundur. Bu tez kapsamēnda, ­ok y¿ksek 

çözünürlüklü optik görüntülerden otomatik olarak bina ­atē tiplerinin otomatik olarak 

sēnēflandērēlmasē, bina ayak izlerinin ­ēkartēlmasē, LoD2.2 seviyesinde ­atē detaylarēnēn 

­ēkartēlarak 3B bina modeli ¿retiminde kullanēlmasēna yºnelik derin ºĵrenme tabanlē 

­ºz¿mler geliĸtirilmiĸtir. Çalēĸma sahalarē T¿rkiyeônin farklē bºlgelerinden se­ilmiĸ ve 

kullanēlan derin ºĵrenme yºntemine uygun ĸekilde ºĵrenme verisi hazērlanmēĸtēr. Bu 

­alēĸmalarda elde edilen sonu­lar detaylē olarak incelenerek, potansiyel iyileĸtirmelere 

yönelik öneriler sunulmuĸtur. Ayrēca, LoD2 ve LoD3 ĸehir modellerinin 

gºrselleĸtirilmesine dair farklē ­ºz¿mler geliĸtirilerek tartēĸēlmēĸtēr. Bu amaçla hem Web 

tabanlē Cesium kütüphanesi hem de sanal gerçeklik destekli Unity oyun motorunda 

gºrselleĸtirilme ­alēĸmalarē tamamlanmēĸ ve farklē avantaj ve dezavantajlarē ortaya 

konulmuĸtur. 

 

Anahtar Kelimeler:  3B ķehir modelleri, Derin ¥ĵrenme, CityGML, Cesium, Sanal 

Gerçeklik 
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VISUALIZATION  OF 3D CITY MODELS  

 

 

Mehmet B¦Y¦KDEMĶRCĶOĴLU 

 

 

Doctor of Philosophy, Department of Geomatics Engineering 

Supervisor: Prof. Dr. Sultan KOCAMAN G¥K¢EOĴLU 

 

March 2023,  114 pages 

 

 

Today, migration from rural areas, continuous change in cities and the increasing 

complexity of their structure yielded the need of new methods to increase efficiency in 

their management. The demand for 3 dimensional (3D) city models is increasing and they 

are actively used by countries and municipalities at different scales. 3D city models are 

not only visual models, but also allow analysis and different visualization applications 

with the help of their semantic data. These models can be produced in different levels of 

detail (LoD), and as the levels increase, the amount of modeled objects/details of the 

building and roof also increases. 3D models with a high level of detail are produced 

manually by photogrammetry operators, usually with the help of very high resolution 

stereo aerial photographs. However, this process is costly in terms of labor and time. 

There exist different approaches in the literature to automatically generate highly detailed 

3D city models, but the topic is still an active research area being investigated by several 
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researchers. On the other hand, efficient visualization of the produced models also 

involves optimization issues and depending on the platform, and different approaches 

exist. Within the scope of this thesis, deep learning-based solutions have been developed 

for automatic classification of building roof types from very high resolution optical 

imagery, automatic extraction of building footprints, automatic extraction of roof details 

at LoD2.2 level and their use in the production of 3D building models. The study sites 

were selected from different regions of Türkiye and the training data were prepared in 

accordance with the requirements of the deep learning methods. The results are presented 

and suggestions for potential improvements are discussed. In addition, different solutions 

for the visualization of LoD2 and LoD3 city models are developed and discussed. For this 

purpose, web-based visualization with Cesium library and virtual reality supported Unity 

game engine were employed to reveal various advantages and disadvantages of both 

approaches. 

 

 

Keywords: 3D City models, Deep Learning, CityGML, Cesium, Virtual Reality 
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1. INTRODUCTION  

 

Buildings are among the important objects in a city. As the population of cities continues 

to increase every day, management of cities become more complex. The production and 

use of virtual 3D city models and digital twins of cities have been increasing in parallel 

for efficient management and planning with simulations using the generated models. 3D 

city models can be generated with different levels of detail (LoD) [1] depending on the 

application requirements. As a result of higher LoD and rich semantic information, the 

number, variety, and quality of the analyses that can be performed on 3D city models also 

increase. 

 

3D city models can be reconstructed manually, semi-automatically, or fully 

automatically. The process of manually reconstructing a 3D model of a city is commonly 

carried out by photogrammetry operators through manual digitization of roofs or 3D 

building models from stereo aerial imagery. However, it is very time-consuming and 

costly to manually digitize large numbers of buildings in cities. With the semi-automatic 

and automatic approaches, building geometries can be reconstructed from point clouds, 

mostly from LiDAR (Light Detection and Ranging) sensors. Point clouds obtained from 

optical images through stereo processing methods are preferred less due to sparse point 

distribution in low-texture areas. Thus, roof corners or roof details may not always be 

generated with optical (often called as photogrammetric) point clouds. Although LiDAR 

point clouds may present object shapes better than optical photogrammetric point clouds 

depending on image resolution and texture, the LiDAR data are often not available due 

to their high cost. 

 

Automatic and semi-automatic 3D building reconstruction methods usually require 

building footprints as input along with a Digital Surface Model (DSM). The main reason 

for this is that these methods usually reconstruct each building by clipping the respective 

part from the DSM based on footprint area. Open data sources for building footprints such 

as OpenStreetMap [2], and Microsoft buildings [3] can also be used for this purpose. The 

main issue lies in the fact that these datasets are typically produced either manually or 
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automatically with artificial intelligence (particularly machine learning) methods from 

satellite images, which usually have lower spatial resolution than aerial photos or LiDAR 

data. Based on the image spatial resolution and the method used to generate the data of 

the building footprints, openly available datasets are often not fully compatible with 

higher-resolution datasets. Due to this fact, building footprints are usually delineated 

manually using mono or stereo plotting methods, which is costly for time and labor. 

Automatically extracting building footprints will enable tremendous cost and time 

savings, as well as a reduction in the complexity of the process. 

 

Novel deep learning (DL) methods can be more effective than the traditional methods of 

computer vision and photogrammetry [4]. The use of the DL technologies has 

transformed many tasks that were previously performed manually or with low accuracy 

into automated tasks with high accuracy. Automatic reconstruction of 3D city models 

with high detail levels (LoD2+) is still an unsolved problem, yet field of research in DL-

based 3D building reconstruction is still in its early stages and there is still a great deal to 

be done. Through the use of the DL methods, roof structure extraction and 3D building 

reconstruction could be performed more accurately by overcoming some of the 

limitations of conventional methods. 

 

This thesis aimed to develop a framework for DL-based reconstruction and visualization 

of 3D city models towards full-automatization and high efficiency. Although not all steps 

could be fully-automatically realized, several investigations were carried out to realize 

the automatization and reveal the major issues. Towards achieving this goal, a number of 

DL-based methods has been investigated and proposed using very high-resolution stereo 

aerial imagery for roof type classification, building footprint extraction, and LoD2.2 

building roof structure extraction for 3D building reconstruction. For this purpose, diverse 

datasets from different geographical regions of Türkiye were utilized to train various DL 

methods. Each study was conducted in a different study area. As the only dataset available 

at the time, the ¢eĸme dataset was used in the roof type classification study (Chapter 4).  

Later, the data provided by TKGM was used in other studies (Chapter 3 and 5). The 

results were validated both quantitatively and qualitatively, and discussed accordingly. 
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In addition, various solutions for the visualization have been investigated and their 

advantages and disadvantages could be analyzed. For this purpose, different visualization 

platforms such as web globes and game engines were implemented by integrating digital 

terrain models (DTMs), true orthophoto basemaps, 3D city plans, as well as building 

models with different levels of detail. Aerial photogrammetric images were also 

visualized in a virtual globe using data from both drones and airplane to assess the image 

acquisition process. Thus, the full processing chain involved in the 3D city model 

production, from data collection to visualization, could be assessed with a holistic 

approach. 

 

1.1. Motivation  

 

The process of creating 3D city models involves several stages, such as data collection  

(mostly for high-resolution optical images with stereo capability), pre-processing 

(photogrammetric triangulation, DSM and DTM generation, orthophoto production), 

feature extraction, roof and building modeling, and presentation of the models in suitable 

environments. The main stages (data collection, modelling, visualization) and their sub-

processes are depicted in Figure 1.1. Red color in Figure 1.1 indicates the steps 

contributed in this thesis. This thesis aimed at improving various parts of this process 

such as the automatization of building model generation, investigating and increasing the 

efficiency of their visualization and presentation, and quality control through automated 

methods and visual inspection platforms.  

 

Building models with a high LoD are often generated manually by photogrammetry 

operators using stereo aerial imagery. This process requires manual digitization by an 

experienced operator and is a costly and time-consuming process in most cases. Several 

commercial software reconstruct 3D city models semi-automatically, but they have 

certain limitations. Preparing the input data require excessive file format conversions, 

coordinate system transformations, and further data preprocessing. Building roofs 

obstructed by trees or shadows are usually reconstructed incorrectly. Software based on 

roof libraries are limited to widely used roof types, thus complex roofs or small objects 

on them such as chimneys or small windows cannot be reconstructed. Therefore, further 
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research on the development of fully automatic algorithms for 3D reconstruction is 

needed. 

 

Figure 1.1 The main stages of 3D city model generation. 

  

The DL methods have the capability of improving the performance and quality of roof 

segment detection and 3D building reconstruction. As a part of the thesis, a DL-based 

framework using line segment detection networks for extracting and vectorizing LoD 2.2 

roof details at the city scale is presented. This thesis presents the first study that utilizes 

DL methods for extracting roof geometry in the form of vector lines at the LoD2.2. This 

method differs from the other studies in the literature in that it does not require building 

footprints and uses a single RGB image as an input while most existing methods require 

building footprint vectors together with RBG images for clipping images directly from 

building boundaries based on building footprints so that each tile contains a single 

building. Predicted roof structures are then vectorized, reprojected, merged, and exported 

at the city scale using custom scripts developed in Python. As a final step, the transition 

between tiles and vector geometries is corrected and redundant junctions are removed 

with post-processing. After the post-processing, 3D building geometries based on 

detected roof structures are reconstructed. 
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1.2. Objectives and Research Questions 

 

This thesis has the following main objectives: 

¶ To investigate the potential and efficiency of the DL methods for automatic 3D 

building reconstruction and to develop a methodology for accurate reconstruction. 

¶ To analyze visualization methods for 3D city models with various LoDs and 

semantic data using different technologies such as virtual globes or game engines 

and provide recommendations. 

 

Based on these goals, this thesis addresses the following questions: 

¶ Do the DL methods provide improved results compared to conventional methods 

in terms of building information extraction from VHR aerial imagery? 

¶ In what ways can the DL methods be utilized in the automatic production of 3D 

city models, and which advantages could they provide? 

¶ How accurately can the DL methods classify the different roof types and with 

which LoDs? Is it possible to improve results by fine-tuning existing 

Convolutional Neural Networks (CNNs)  with pre-trained weights? 

¶ How robust are the DL methods against problems such as trees blocking roofs or 

shadows causing false reconstructions? 

¶ Could the DL be used to detect complex roof structures other than the widely used 

gable, hip, pyramid, etc roof types? 

¶ How can 3D city models be efficiently visualized on the web? What shall be the 

motivation for visualizing the models on different platforms (web, game engine) 

what are the requirements for obtaining high performance? 
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1.3. Contributions 

 

Contributions of this thesis can be listed as following: 

 

¶ A dataset for roof type classification with deep learning containing 10,000 unique 

roof images and their class labels was generated from very high resolution 

orthophotos. 

¶ The first study on automatic vectorization of LoD2.2 roof structures with deep 

learning at city scale is presented. 

¶ Python scripts developed for automatic training data generation for line segment 

detection networks using existing city models and VHR true orthophotos. 

¶ The first LoD2.2 roof structure training dataset with more than 2.2 million lines 

and 139k buildings for line segment detection networks is presented. 

¶ The LoD3 city model of Bizimsehir, Türkiye's first smart city project, was 

visualized on the web and in the Unity game engine with VR support prior to 

construction. 

¶ A methodology proposed for web-based visualization of photogrammetric image 

acquisition flights with UAV and aircraft. 
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1.4. Thesis Structure 

 

This thesis consists of the following sections: 

 

Chapter 1 describes the motivation behind the thesis and the problems it aimed to 

investigate. 

 

Chapter 2 provides a literature review on the conventional and the DL methods for 

building information extraction from VHR optical imagery, 3D building reconstruction, 

and 3D city model visualization. 

 

Chapter 3 explores the effect of combining height information (nDSM) with RGB data 

for building footprint extraction, and conversion from raster to vector format. 

 

Chapter 4 explores the potential of the DL methods for classifying roof types, and 

compares the results of developed shallow CNN with fine-tuned popular CNNs using pre-

trained weights on the ImageNet dataset. 

 

Chapter 5 introduces the first study for extracting and reconstructing LoD2.2 roof 

structures using line segment detection networks.  

 

Chapter 6 investigates the visualization and exploration of 3D city models on the web 

using CesiumJS library, and also in the Unity game engine for assessing the use of Virtual 

Reality. 

 

Chapter 7 provides an overview of the issues experienced throughout the thesis, analyses 

the results, and presents the recommendations for future work. 
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2. RELATED WORK  

 

A literature review of building information extraction and 3D building reconstruction 

methods is presented here together with visualization approaches. The first sub-section 

presents the DL methods (classification, segmentation, and roof segment detection). The 

second sub-section gives a literature review on 3D building reconstruction. An overview 

of the literature on visualization methods is provided in the third chapter. 

 

2.1. Conventional Methods 

 

Conventional image segmentation methods are based on traditional computer vision 

techniques and algorithms. These methods aim to partition an image into multiple regions 

or segments based on certain characteristics or features of the image, such as color, 

texture, or intensity. One popular method is the thresholding technique [5], where an 

image is segmented into foreground and background based on a certain threshold value. 

Another common method is edge detection [6], which identifies and extracts the 

boundaries or edges of objects in an image. Other methods include region growing [7], 

where adjacent pixels with similar characteristics are grouped together, and clustering 

techniques, which group pixels based on their similarity in a feature space. These 

conventional segmentation methods are still widely used in various applications, such as 

medical imaging, remote sensing, and surveillance, and can often provide accurate results 

in simple scenarios. However, in more complex or challenging situations, such as images 

with low contrast or high noise, machine learning-based segmentation methods are often 

preferred due to their ability to learn and adapt to various image characteristics and 

features. 

 

Conventional line detection methods are used to identify lines or edges in an image. These 

methods are based on various techniques, such as gradient-based methods, Hough 

transform [8], and template matching [9]. Gradient-based methods detect edges in an 

image by calculating the gradient magnitude and direction of each pixel and thresholding 
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the resulting image to identify edges. The Hough transform is a popular technique that 

transforms an image space into a parameter space to detect lines or other shapes. Template 

matching involves comparing a portion of an image with a predefined template to detect 

lines or other shapes that match the template. Other techniques include line fitting, which 

fits a line to a set of points, and edge linking, which connects edges or segments to form 

longer lines. These conventional line detection methods have been widely used in various 

applications, such as computer vision, robotics, and remote sensing. However, like other 

conventional computer vision techniques, they have limitations in handling noisy or 

complex images, and may require fine-tuning of parameters to achieve optimal results. 

With the recent advancements in deep learning and neural networks, machine learning-

based line detection methods have shown promising results and are becoming 

increasingly popular in various applications. 

 

2.2. Building Information Extraction with Deep Learning  

 

The DL studies used for the building information modelling in the literature can be 

categorized for classifying roof types, and extraction of building footprints and roof 

structures as presented in the following. 

  

2.2.1. Roof Type Classification with CNNs 

 

A cityôs structure is primarily comprised of buildings, which play an important role in 

many aspects. Over the past few years, simulation of 3D city models has been used across 

many applications [10]. Building roof types can be used for model-driven 3D 

reconstructions of buildings and to reduce the reliance on digital surface models (DSMs) 

[11]. 

 

A great deal of progress achieved in both photogrammetry and remote sensing through 

the use of DL [4]. Several approaches are presented in literature that relies on DL 

techniques to classify roof types. It is possible to classify roof types using deep CNNs as 
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well as to estimate roof heights [12]. In their study, Partovi et al. [11] used pan-sharpened 

WorldView-2 imagery 50 cm Ground Sampling Distance (GSD) to classify roof types 

with a Visual Geometry Group (VGG-Net) model. A model-based approach has been 

developed by Alidoost and Arefi [13] using a combination of different data sources to 

enhance roof type detection using CNNs. Mohajeri et al. [14] classified six roof types for 

solar energy applications and achieved an overall accuracy of 66% using LiDAR data. A 

study by Qin et al. [15] evaluated Deep Convolutional Neutral Networks (DCNN) in 

building segmentation and achieved 94.67% accuracy using Gaofen-2 satellite imagery. 

Additionally, they stated that DCNNs have the potential to improve building mapping in 

dense urban areas with a wide variety of roof patterns using very high-resolution imagery. 

 

Ölçer et al. [16] classified different roof types using a few training examples with a 

Siamese neural network and achieved 66% accuracy. Bittner et al. [17] investigated the 

use of Conditional Generative Adversarial Network (cGAN) for roof type classification 

using DSM derived from Worldview-1 satellite imagery. LiDAR and satellite imagery 

can be combined for labeling and classifying roof types using different machine learning-

based methods [18]. An average accuracy of 67% was obtained for classifying rooftops 

using LiDAR and a random forest method by Assouline et al. [19]. ISPRS benchmark 

dataset for building reconstruction and classification is a widely used dataset for similar 

tasks that were developed by Rottensteiner et al. [20]. As part of the dataset, high-

resolution aerial imagery with an 8 cm resolution and laser scanning data from an airborne 

laser scanner (6 points/m2) are used to detect and reconstruct buildings, trees, and 3D 

models. They also provided an overview of current methods along with a discussion of 

the common problems of the benchmark results [21].  

 

2.2.2. Building Footprint Extraction  with Deep Learning 

 

The CNNs are considered more effective than conventional semantic image segmentation 

methods in remote sensing imagery and image analysis in general [22]. As well as 

classifying pixels and determining the content of those pixels, these networks have also 

been used to predict the spatial structures of objects. CNNs are capable of detecting, 

segmenting, and categorizing round objects of varying sizes and shapes. Additionally, 
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CNNs can predict the spatial extent of features including buildings, types of roofs, and 

other objects [23]. 

 

Usually, image segmentation is performed using two-dimensional (2D) images, as that is 

the most commonly used approach. The depth information, however, can also be used as 

an additional band on top of RGB images to provide additional information. A semantic 

image segmentation process that incorporates height information frequently produces 

better results compared to RGB-only results [24]. The majority of algorithms used for the 

extraction of buildings use RGB imagery as the only source of input [25]. Integrating 

height information with RGB imagery can help to solve weaknesses of aerial images, 

such as shadows, poor lighting, clouds, and many other obstructions. 

 

A study by Marmanis et al. [22] shows that the CNNs can utilize high-resolution aerial 

images to segment them and explicitly represent the boundaries between different classes. 

Using the ISPRS Vaihingen benchmark dataset as the benchmark, their DCNN model 

was able to achieve a 95.2% F1-score for building segmentation. The DeepResU-Net was 

developed by Yi et al. [26] for Very High Resolution (VHR) imagery to be utilized for 

pixel-based building extraction. As compared to the U-Net, network performance and 

overall accuracy increased significantly. 

 

A study by Kada and Kuramin [27] utilized the PointNet++ and KPConv algorithms to 

classify building roofs from LiDAR data and scored an IoU of 94.8%. Jiwani et al. [28] 

used a modified DeepLabV3+ for extracting building footprints from satellite images. It 

was demonstrated in the test with the help of three building extraction benchmark datasets 

that their method achieved state-of-the-art results regardless of image resolution and 

building density. The different CNNs can efficiently be combined to extract building 

footprints based on VHR aerial imagery, as shown by Li et al. [29]. Pixel-based 

segmentation accuracy of the model is measured by comparing each overlapping pixel, 

and the precision, recall, and confidence of the model are 92.6%, 91.4%, and 85.1%, 

respectively, for the WHU building dataset. WHU dataset consists of aerial imagery 

dataset and satellite imagery dataset with varying resolutions from 0.075m to 2.5m with 
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manually delineated building footprint vectors, and used as benchmark dataset in many 

building extraction studies. 

 

Building extraction can also be achieved by combining data from multiple sources and 

using CNNs. Additional data sources can be added as a fourth band to RGB images 

without making any modifications to the CNN model. Sun et al. [30] used a frame field 

learning model for building footprint extraction from orthophotos and nDSM with 0.25m 

GSD. It was observed that incorporating the nDSM has made an improvement of 12% to 

the intersection over union(IoU) value, as compared to the 58% gained from only using 

RGB images. 

 

Bittner et al. [31], used fully convolutional networks (FCN) for building segmentation 

using spectral and height data collected by multiple sensors and achieved 85.5% accuracy. 

Zhao et al. [32] developed a methodology using CNNs and recurrent neural networks 

(RNNs) for generating regularized building outlines in vector format, where a CNN was 

used to extract image features, and RNN was used to extract building polygons to generate 

regularized building outlines. Following the work of PolyMapper [25], the researchers 

have made several improvements to the backbone, as well as improved the detection, and 

recurrence modules. It has also been shown that deep learning can be combined with 

guided filtering for estimating district boundaries by Xu et al. [33].  

 

2.2.3. Roof Structure Extraction  with Deep Learning 

 

Building outlines and roof line structures can be extracted from remote sensing imagery 

with DL methods. Conventional methods (non-DL) also can be used to extract line 

segments from aerial imagery in urban areas [34]. The neural networks are not only 

capable of detecting edges in images, but also of assembling them into graphs. Several 

studies found in the literature use conventional and DL-based methods to detect roof lines 

and reconstruct 3D models. An extensive review of DL-based 3D building reconstruction 

methods are presented by Buyukdemircioglu et al. [35]. 
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Using very high-resolution orthophotos of the city of Detmold, Hensel et al. [36] 

vectorized building roof structures using Point-Pair Graph Network (PPGNet).  The F1 

scores for junction detection and edge detection for LoD2.0 roof structures were 0.93 and 

0.87, respectively. 

 

Conv-MPN [37] was proposed as a DL architecture for reconstructing roof structures as 

a planar graph from remote sensing imagery. Conv-MPN is a two-stage method that 

requires corner detection as the first stage, then network training as the second stage. As 

well as being computationally expensive, multi-stage approaches are inefficient for both 

training and inference. 

 

Roof Structure Graph Neural Network (RSGNN) [38] is another one-stage graph neural 

network for extracting LoD2.0 roof structures from satellite and aerial imagery. Their 

method achieved state-of-the-art results for extracting roof structures from VHR images. 

Additionally, they introduced using Hough transform modules to improve line feature 

detection using geometric priors. The Deep Roof Refiner [39] is another deep learning 

method for extracting roof structures. In quantitative and qualitative experiments, they 

achieved an optimal F1-score of 60.89% and 63.48%, respectively. 

 

Gui and Qin (2021) proposed a DL-based LoD2 building reconstruction using MVS 

satellite images. Using a "decomposition-optimization-fitting" paradigm, they 

reconstructed LoD2.0 building models based on a model-driven approach. Since the roof 

models are reconstructed based on a roof type library, it may be challenging to obtain 

reliable predictions for complex roof structures with the proposed method. 

 

In a study by Alidoost et al. [40], 3D roof structures were extracted from aerial imagery 

using a Y-shaped convolutional neural network. This framework consists of a Y-shaped 

CNN with two encoders and one decoder. The proposed CNN computes predicted heights 

and rooflines for three classes of eaves, ridges, and hips in LoD2.0 from RGB imagery. 

Kenzhebay [41] proposed a method for roof structure extraction from aerial imagery and 
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DSMs and FCNs. Muftah et al. [42] used CNNs for extracting LoD2 roof structures from 

aerial imagery. 

 

2.3. 3D Building Reconstruction 

 

Here, related work on building reconstruction methods is presented based on conventional 

and novel machine learning methods. Special emphasis was also given to the DL methods 

and the combinations of different approaches due to their popularity. 

 

2.3.1. Conventional Methods 

3D building reconstruction and 3D city modeling are mostly performed using 

conventional methods. Detailed reviews of conventional 3D building reconstruction 

methods as well as their applications are available in the literature [43-45]. The subsurface 

growing method is an example of a conventional technique that can be used for 

reconstructing 3D buildings [46]. Polyfit [47] is a data-driven software that reconstructs 

lightweight polygonal surfaces using point clouds. Photogrammetric point clouds are also 

used for reconstructing 3D building models by combining RANSAC and contextual 

knowledge [48]. Digital surface models (DSM) and 2D footprints can be combined to 

automatically create LoD1 building models [49]. It has also been demonstrated that 

model-driven reconstruction methods can be used to semi-automatically reconstruct 3D 

city models from large-format aerial imagery as illustrated in Figure 2.1 [50]. 
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Figure 2.1 A view of the semi-automatically reconstructed 3D city model of Cesme, 

Türkiye [50]. 

 

Reconstruction of 3D buildings can also be performed with rule-based methods and 

photogrammetric point clouds [51]. A common and fast technique for 3D building 

reconstruction models is building footprint extrusion. It is also possible to perform LoD2 

building reconstruction using the half-spaces method [52]. Dreġļek et al. [53] presented 

a methodology based on a method known as Extract, Transform, Load (ETL) for 3D 

building reconstruction from photogrammetric point clouds. Murtiyoso et al. [54] 

developed a data-driven framework for LoD2 building reconstruction using 

photogrammetric point clouds. 

 

Using RANSAC constraints and topological-relation constraints, Li and Wu [55] 

reconstructed 3D complex buildings using incomplete point clouds. Li and Shan [56] 

proposed a two-step RANSAC-based method 3D building reconstruction method using 

both LiDAR and photogrammetric point clouds. Using 2D building footprints and 

Airborne Laser Scanning (ALS) point clouds, an automatic algorithm was developed to 

reconstruct ten million LoD2 buildings in the Netherlands [57]. There is still a challenge 

for researchers in the area of automatic reconstruction of LoD3 building models. It has 

been shown that LoD3 building models are usually digitized manually and that they can 

be merged and visualized together with existing 3D city models [58].  
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2.3.2. Machine Learning Methods 

 

Apart from the neural networks, other machine learning approaches can also be used to 

reconstruct 3D buildings and 3D city models. Using context-free and weighted attributes, 

Dehbi et al. [59] developed a method for reconstructing 3D buildings based on context-

free grammar rules using Markov Logic Networks. Reconstruction of 3D building models 

without elevation data is also possible with the help of machine learning [60]. According 

to the proposed method, a building's height is predicted by analyzing the footprints and 

attributes associated with the building, and then the footprints are extruded into 3D 

models using the predicted height. It is possible to produce LoD2 models using datasets 

with lower LoDs by predicting the roof types using machine learning methods [61]. As a 

result of using multiclass classification, they predicted the type of roof with an accuracy 

of 85% and predict whether the roof was flat with an accuracy of 92%. Park and 

Guldmann [62] reconstructed a 3D city model using LiDAR point clouds using a Random 

Forest-based point cloud classification methodology. Multi-temporal (4D) city models 

can also be reconstructed by combining machine learning methods with historical 

information [63].  

 

2.3.3. DL-Based Reconstruction 

 

Conventional 3D building reconstruction methods mainly involve two major problems 

[64]. First, due to the number of manual designs involved in them, they are prone to errors. 

Additionally, they are incapable of learning semantic features associated with 3D shapes. 

Also, a large part of the effectiveness of this method relies on image quality and camera 

calibration. By leveraging deep neural networks to automatically learn 3D shapes from 

earth observation data, DL methods can resolve these deficiencies. 

 

Several DL-based methods can be found in the literature for 3D building reconstruction. 

The DL models are extremely powerful in many computer vision tasks by using images 

to learn features [65]. It is also possible to reconstruct 3D buildings from EO data using 

these methods. To perform a parametric 3D building reconstruction using satellite 
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imagery, Wang and Frahm [66] proposed a DL-based solution on the parametrization of 

buildings as 3D cuboids. It has also been shown that CNNs can be used to reconstruct 

buildings with procedural modeling. By inferring shape grammar rules from sequences 

of 3D points, CAD-quality models were generated with Neural Procedural 

Reconstruction [67]. Nishida et al. [68] developed a CNN-based tool for automatically 

generating 3D building models from remote sensing imagery. Alidoost et al. [10] used 

CNNs for building detection and reconstruction using aerial imagery. Based on the 

proposed method, they achieved root mean square errors (RMSEs) of 3.43 m for 3D 

building reconstruction and 1.13 m for nDSM. Multiple CNNs with encoder-decoder 

architecture were used by Agoub et al. [69] to create 3D city models with depth maps. 

Figure 2.2 provides an overview of 3D city model reconstruction based on their approach. 

 

Figure 2.2 CNN-based 3D city model reconstruction of the Manhattan area [69] 

 

Knyaz et al. (2020) presented another example of the use of CNN in a grid structure. It 

has been demonstrated that CNN is an effective method of automatically segmenting wire 

structures based on semantics, which overcomes the limitations inherent in 

photogrammetric processing when applied to reconstructed complex grid structures in 

three dimensions.  

 

Generative Adversarial Networks (GANs) [70] also are capable of generating 3D building 

models. There are two main parts of a GAN, a generator, and a discriminator. To produce 

photorealistic images and fool the discriminator, generators learn the distribution of real 
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images. Discriminators judge whether generated images are real or fake. GAN-based 

methods also can be used to identify 3D shapes with obscured or missing portions [64]. 

 

3D buildings can be reconstructed from noisy DSMs using Conditional GAN (cGAN) 

[71]. A 3D surface model of LoD2 was created by Bittner et al. [72] using stereo satellite 

imagery with 50 cm GSD. Bittner et al. [17] also produced digital surface models (DSMs) 

that provided high levels of detail similar to the LoD2 building forms but also assigned 

additional object class labels on every pixel. It is also possible to use GANs to 

automatically reconstruct buildings in LoD1 [73]. FrankenGAN [74] is another network 

for reconstructing and enriching 3D city models with geometric details and building 

textures. Roof-GAN [75] uses a combination of primitive roofs for generating 3D roof 

geometries. Figure 2.3 illustrates a view of 3D roofs with a different number of primitives 

reconstructed by Roof-GAN. 

 

 

Figure 2.3 A view of roofs reconstructed by Roof-GAN [75] 

 

2.3.4. Combination of Deep Learning Based and Conventional Methods 

The DL methods can also be used to classify and reconstruct buildings from LiDAR point 

clouds [76, 77]. A DL-based segmentation was used for 3D city modelling using satellite 

imagery as mesh 3D models with textured surfaces by Leoatta et al. [78]. DL-based 

methods can be used with point clouds for the automatic estimation of building roof 

shapes in complex and noisy scenes [79].  

 

A DL-based 3D reconstruction framework was introduced by Yu et al. [80] that 

automatically creates LoD1 building models using stereo aerial imagery. It has been 
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demonstrated by Gui and Qin [81] that deep learning can be used to reconstruct the LoD2 

building model's MVS aerial imagery. There are several steps in the developed workflow, 

such as detecting building segments on the instance level, extracting initial building 

polygons, decomposing and refining the building polygons, fitting the basic model, and 

merging the models. DL-based methods are also capable of reconstructing historical 3D 

city models [82]. Partovi et al. [83] developed a DL-based workflow for automating 3D 

building reconstruction. Their method consists of building footprint extraction, building 

decomposition, roof type classification, and the calculation of 3D roof structure 

parameters. 

 

Teo [84] used FCNs for detecting building regions from laser scanning data and 3D 

prismatic building model reconstruction. An automatic reconstruction method for 

building models is developed by Kippers et al. [85] using the combination of CityJSON 

and building footprints. In their paper, Yu et al. [86] proposed a DL-based method for 

automatically reconstructing LoD1 building models. Their method includes three steps: 

DSM generation, building boundary detection, and 3D building reconstruction. Zhang et 

al. [87] developed a framework for 3D building reconstruction using PointNet++ and a 

holistic primitive fitting method. Chen et al. [88] developed a three-step method, which 

makes use of embedded implicit fields and point clouds for 3D building reconstruction. 

Moreover, DL-based methods can be combined with geographic information systems 

(GIS) and satellite imagery to reconstruct 3D city models [89]. 

 

2.4. Visualization of 3D City Models 

 

In this section, 3D city model visualization methods were discussed under the web- and 

game engine-based technologies. It is also possible to use other desktop software 

including those from the geographic information system (GIS) software vendors, which 

are not considered here. 
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2.4.1. Web-based Visualization 

Although various platforms exist for visualizing 3D city models, the most common use 

is web-based visualization. The main reason for this is that it allows quick use via the web 

browser without requiring any extra software installation. 3D city models of different 

cities and countries are presented online and can be accessed by users. Web-based 

visualization of 3D city models can be used in different applications with the help of 

semantic data. Urban building energy modeling [90], Building Information Modeling 

(BIM) [91], Heating Demand Prediction [92], air quality information [93], flood 

simulation [94], smart city applications [95], cultural heritage [96] can be given as 

example to different usages of 3D city models. 

 

Stakeholders and citizens can use virtual 3D city models as part of collaborative processes 

with their cities to help improve their quality of life [97]. 3D city models also allow 

different analyses with the help of their semantic data. Visibility analysis is one of the 

most common analyzes used on these models [98]. Although the main element of 3D city 

models is buildings, other city objects are also of great importance in visualization and 

analysis. Visualizing city furniture, bridges, tunnels, vegetation, etc. are also can be 

visualized with building models [99]. Building models can be integrated with 

architectural plans and cadastral data for more detailed analysis [100]. 

 

Virtual globes have become very popular and widely used in many applications. WebGL 

technology made it possible to visualize and explore maps in 3D. Using WebGL requires 

no additional plugins or extensions and enables cross-platform flexibility. Even with very 

large datasets, it provides high performance with the help of GPU and WebGL 

technology. CesiumJS [101] is a 3D geospatial data visualization library for both web and 

game engines. As part of the streaming performance enhancements provided by 

CesiumJS, the datasets are rendered using WebGL (Web Graphics Library). Different 

types of geospatial data are supported by CesiumJS, including 3D city models, terrain, 

imagery, and point clouds. 
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CesiumJS uses 3D Tiles [102], an Open Geospatial Consortium (OGC) standard format 

for rendering and streaming 2D/3D geospatial datasets including 3D city models, 

photogrammetric models, Building Infrmation Modeling(BIM)/Computer Aided 

Design(CAD) models, and point clouds. Loading large volumes of geospatial data or 3D 

city models on the Cesium virtual globe as a single tile usually is not recommended for 

performance reasons. Thus, tiling large volumes of data is the best solution for this 

problem. By using Adaptive Quadtree Tiling, 3D Tiles loads huge datasets as smaller 

parts and renders them by dividing them into tiles, efficiently and effectively. By tiling, 

stream performance can be improved and the browser's hardware requirements can be 

reduced. In 3D Tiles, performance can be created for many zoom levels in the same view 

using a geometric error to select detail levels and an adjustable pixel defect. In 3DTiles, 

3D geometries and models are stored in glTF [103] format, which is widely used across 

a variety of applications that deal with 3D geometries and models. It is possible to store, 

stream, and optimize geographical data using Cesium ION [104], which is a cloud-based 

platform that optimizes, tiles, and serves 3D geodata such as images, terrains, buildings, 

point clouds, BIM/CAD, photogrammetry, and many other types of geospatial data based 

on CesiumJS. 

 

2.4.2. Game Engines, Virtual Reality, Augmented Reality and Mixed Reality 

The large size of the geometries and textures within 3D city models requires performance 

optimization for visualization. It is possible to integrate 3D city models into game engines 

to visualize them more realistically. By supporting features such as high-detailed 

photogrammetry models, terrain models, basemaps, and 3D buildings, game engines can 

visualize high-detailed 3D geospatial datasets. 

 

The popularity of virtual reality (VR) can be attributed to its use in many fields, but it is 

most famous for its use in computer games. Game engines with VR technology offer 

many benefits, such as the ability to explore 3D city models at the street level or to better 

visualize future cities by combining them with existing 3D city models. Virtual reality is 

an effective tool for evaluating the impact of future cities on the environment and 

infrastructure. VR can enhance the planning and design process by allowing stakeholders 

from different disciplines to participate in the process. 
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3D virtual representations of landforms can be created and visualized with the Unity game 

engine [105]. The Unreal engine is capable of visualizing large-scale photogrammetric 

models [106]. Game engines are also used for visualizing and disseminating cultural 

heritage [107]. Modeling and texturing procedures are provided within their pipeline for 

converting point clouds into textured models to import into game engines. 

 

Virtual reality technology is also capable of allowing users to explore museums in a new 

way [108]. Virtual reality is more than just a static virtual environment, it can also be 

used as a powerful tool for combining various data types in a single scene [109]. Kim and 

Kim [110] have used eye-tracking experiments to study perception and cognitive 

processes in VR simulations. As part of their research, Broucke and Deligiannis [111] 

evaluated perceived workloads and the parameters associated with data immersion by 

analyzing tasks of data exploration on different web interfaces and the proposed VR 

application. Historical cities can be explored interactively with VR technology [109]. 

Game engines can also be used for the visualization and monitoring of smart cities in a 

virtual reality environment [112]. 

 

Geospatial data can be visualized and interacted with using a variety of platforms and 

technologies, including VR [113], AR [114], and mixed reality [115]. Several areas in 

which AR technologies are being used may be able to improve citizen-authority 

engagement, such as urban decision-making and stakeholder participation [116]. Liu et 

al. [117] conducted an outdoor case study with an AR system to detect thermal targets in 

façade inspection tasks. Based on VR/AR environments, Santana et al. [118] developed 

a mobile visualization application to display simulation and modeling results at the 

building level. 
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3. DEEP LEARNING BASED BUILDING FOOTPRINT 

EXTRACTION WITH FUSION OF TRUE ORTHOPHOTOS 

AND ELEVATION INFOR MATION  

 

 

At this stage of the study, instead of classifying roof types as explained in the previous 

chapter, building roofprints were aimed to reconstruct. Therefore, a framework for the 

building footprint extraction using CNNs was implemented and experimented using VHR 

true orthophotos and nDSM of Selcuk town in Izmir Province, Turkey. Unet and LinkNet 

networks with different backbones were used on two different datasets, i.e. RGB (image 

only) and RGB-Z (image + elevation information), and their quantitative and qualitative 

results are discussed. The results presented in this chapter were largely published in [119]. 

 

3.1. Motivation for Building Footprint Extraction  

 

Pixel-based classification and semantic segmentation of remotely sensed imagery can be 

used to obtain information for several tasks, such as mapping and analysis of land cover 

or the object detection. A major challenge in semantic image segmentation is the 

continuous increase in resolutions of remotely sensed imagery. The amount of detail 

contained in very high-resolution aerial images is making DL-based approaches for 

extracting buildings more challenging. Higher image resolution results in wider class 

imbalances and increased levels of difference for all classes, even though the VHR is 

capable of collecting small details. A variety of conventional image segmentation 

methods are still in use today, including thresholding, region-growing, and edge-based 

methods, but they have some limitations. They are sensitive to noise and these methods 

may not adapt well to changes in the image data or to different imaging modalities.  

 

There have been significant improvements in the performance of CNNs over 

conventional methods in the last decade. As a result, DL-based segmentation and 

classification methods are becoming more popular and widely used by many researchers. 
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This chapter examines the performance of two CNN models for building segmentation, 

namely U-Net [120] and LinkNet [121]. The results of these two CNNs are compared 

using a set of different backbones. The dataset includes true orthophotos and nDSM 

generated from VHR stereo aerial imagery. A comparative evaluation of the implemented 

methods was conducted using first RGB data only, and then RGB + nDSM data. It was 

found that fusing height information with RGB data improved model accuracy, thereby 

improving their performance. Following the building extraction, the segmented buildings 

were converted into vector geometry from pixels using GDAL [122], which was then 

simplified to improve their appearance by smoothing with Douglas-Peucker [123] 

simplification method. Vectorization result measures are presented and discussed in detail 

in the last sub-section. 

 

3.2. Study Area and Dataset 

The production and development of 3D city models are common in countries around the 

world, but they are also an important and active topic in Türkiye as well. General 

Directorate of Land Registry and Cadastre of Türkiye (GDLRC) is started "Production of 

3D City Models and Creation of 3D Cadastre Bases" project in 2018. The project is to 

include all provinces and districts of Türkiye's settlement and development regions, it is 

planned to produce 3D models of about 11 million buildings in these regions. This project 

has been carried out in cooperation with GDLRC and the private companies. These 

companies are responsible for digitizing building geometries and roof models in 

CityGML LoD2.3. This study was conducted using data produced and provided by the 

GDLRC within the scope of this project. 

 

Experiments were conducted in a field of approximately 4.12 km2 with 13,269 buildings 

in Selcuk, Izmir, Turkey (Figure 3.1). A total of four types of data were included in the 

dataset, involving true orthophotos (RGB), raster DSMs, and DTMs with 0.1 m GSD, 

along with vector building footprints. A ground filter or similar method can be used to 

remove man-made objects from DSM to generate DTM if one has not already been 

generated for the study area. A number of different ratios were used for the number of 

training, validation, and test images, and the ratio that yielded the best results was 

selected. 80% of the dataset is used for training deep learning models, 10% for validation, 
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and 10% to test the performance of the models, respectively. In total, 2,185 buildings 

were included in the test area, including buildings with different roof types and structures. 

A random sample of validation data was selected from the study area. The buildings in 

the test area were excluded and not used as part of the training deep learning models. 

 

 

Figure 3.1 An overview of the study area and building footprints 
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Several pre-processing operations are performed for generating input image tiles for 

CNNs. Raster image of the building footprints was generated using building footprint 

vectors, then the ground truth masks are generated by assigning pixels within the building 

given the value of "1" and those outside given the value of "0". The study area was clipped 

into 256x256 grids of non-overlapping pixels from the raster data, and those grids were 

then used as inputs to the deep learning models. An example tile illustrating the RGB true 

orthophoto, vector building footprint, nDSM, and ground truth mask can be seen in Figure 

3.2. 

 

 

Figure 3.2 A sample tile from the study area: (a) RGB true orthophoto, (b) building 

footprint vector, (c), nDSM, and (d) building mask [119] 

 

3.3. Model Training  

Several network training processes were conducted using UNet and Link-Net with 

different backbones to obtain the most accurate possible results. To determine whether 

building height information contributes significantly to the results of networks, two 

separate inputs (RGB and RGB + nDSM) for networks were used. Several backbone 

networks (ResNet-18, ResNet-50, and SeResNet-18) were used with U-Net and LinkNet, 

both of which have a good reputation for their success when used for segmentation, to 

achieve different levels of success in segmentation. Each CNN was trained using the 

generated training dataset, i.e., a pre-trained weight or fine-tuning of the weights is not 

used during the training phase. The learning process includes tweaking a few parameters 

that are critical to the success of the process, such as the initial learning rate, batch size, 

number of epochs, loss function and optimization method. An overall view of the 

developed framework is given in Figure 3.3. An overview of model training parameters 

is given in Table 3.1. 
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Figure 3.3 An overall view of the developed framework [119] 

 

 

Table 3.1 Model training parameters [119] 

 

Model training was performed using the Adam optimizer. The main difference between 

different optimization algorithms is the way the learning rate is implemented as well as 

the frequency with which these parameters (weights) are updated. The training was 

performed 0.001 learning rate and weight decay is not used during model training. 
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An epoch of training refers to a complete cycle through all of the datasets for training. 

Several model trainings were performed with different epochs as part of the model 

training process to decide the most suitable number of epochs for training without 

overfitting. Each CNN is trained for 100 epochs, as many modelsô highest accuracy is 

achieved up to 100 epochs, and training with more epochs did not result in further 

improvements in the results. Each time the model was run through an epoch, the 

validation data were used to evaluate the model for that epoch.  

 

Batch size is also an important parameter that determines how many images will be used 

for training in each epoch. Usually larger batch sizes lead to better results. Taking this 

into consideration, a batch size of 16 is used for each model training. Models performance 

is assessed using the F1-score, and Binary cross entropy (BCE)-dice is used as the loss 

function. There are several ways to measure the error rate. One is by using the F1-score, 

a harmonic mean that gives an estimate of how many incorrect classifications were made. 

Segmentation is typically carried out using the BCE-Dice loss function. Both approaches 

are useful for various reasons, such as being able to maintain the stability of BCE while 

still allowing for some diversity in the loss.  

 

Data augmentation techniques can also be applied to prevent models from overfitting. 

Images can be augmented by performing geometric operations, such as flipping, scaling, 

and rotating. Since no overfitting occurred during the training phase, this study did not 

use any data augmentation techniques. It is also common to employ pre-trained models 

trained on large datasets by fine-tuning pre-trained weights. This experiment does not use 

pre-trained weights or fine-tuned networks but instead trains all networks from scratch 

using the generated training dataset.  

  

3.4. Results 

 

In this section, RGB-only results and RGB-Z results are discussed. Results and 

comparisons of the vectorization process are also presented.  
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3.4.1. True Orthophoto (RGB) Results 

 

The results of the model based on the use of only true orthophotos are shown in Table 

3.2. U-Net with ResNet-18 backbone achieved the highest F-1 Score and IoU score on 

the test data with 92.8% and 86.7%, respectively. LinkNet with ResNet-50 backbone, 

which achieved the second best performance with an F-1 score of 92.7% and IoU score 

of 86.5% resulted as second. Results show that U-Net and LinkNet are of performed 

similar in terms of visual analysis. There are, however, some differences between the 

segmented output of U-Net and LinkNet, with LinkNet usually containing unorganized 

predictions that are less homogeneous. In addition to this, the U-Net has shown to be an 

effective means of separating structures with small areas, even though it is more 

challenging. Nearly all models failed to predict correctly when the rooftops were covered 

with trees. The quality of segmentation was primarily affected by shadows for all models. 

A shaded area belonging to the building class is frequently misclassified as a non-building 

area. Using pre-trained weights rather than fine-tuned CNNs has the potential to be a 

useful strategy to improve the segmentation performance. A comparison of the 

predictions of all the models is shown in Figure 3.4 on the same image tile. 

 

 

 

Table 3.2 Quantitative results of RGB-only training [119] 
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Figure 3.4 An overview of the RGB-only predictions for the test area: (a) True 

orthophoto, (b) Ground truth, (c) U-Net+ResNet-18, (d) U-Net+ResNet-50, (e) U-

Net+SeResNet-18, (f) LinkNet+ResNet-18, (g) LinkNet+ResNet-50 and (h) 

LinkNet+SeResnet-18 [119]. 

 

3.4.2. True Orthophoto + nDSM (RGB-Z) Results 

 

By incorporating height information into the training process, F1 and IoU scores 

significantly increased when compared to RGB-only results. LinkNet with ResNet-50 

backbone achieved the best F1-Score and IoU score on test data with 96.1% and 92.6%, 

respectively. As compared to RGB-only results, using nDSM for the fourth band 

improved the F1-Score and IoU scores by 3.2% and 5.9%, respectively. The validation 

loss, which was previously 0.154, was reduced to 0.073 as a result of this improvement. 

Visual inspection of test predictions also indicates that incorporating height information 

increased the performance of all CNNs. (Figure 3.5). This can be seen in the fact that the 

outputs were smoother, homogeneous, and more structured. Furthermore, adding nDSM 

as height information also resulted in a less fuzzy presentation of boundaries along 

buildings as well. Moreover, it has been observed that the U-Net was able to provide a 

better segmentation quality for complex buildings, as well. A comparison of the 

performance measures of different CNNs for RGB +nDSM is presented in Table 3.3. 

 












































































































































