3B SEHIR MODELLERININ OTOMATIK URETIMI VE
ETKIiLI GORSELLESTIRILMESI

AUTOMATIC RECONSTRUCTION AND EFFICIENT
VISUALIZATION OF 3D CITY MODELS

MEHMET BUYUKDEMIRCIOGLU

PROF. DR. SULTAN KOCAMAN GOKCEOGLU

Supervisor

Submitted to
Graduate School of Science and Engineering of Hacettepe University
as a Partial Fulfillment to the Requirements
for the Award of the Degree of Doctor of Philosophy

in Geomatics Engineering

2023

OZET

3B SEHIR MODELLERININ OTOMATIK URETIiMIi
VE ETKIiLi GORSELLESTIRILMESI

Mehmet BUYUKDEMIRCIOGLU

Doktora, Geomatik Miihendisligi Boluma

Tez Danismant: Prof. Dr. Sultan KOCAMAN GOKCEOGLU

Mart 2023, 114 sayfa

Giiniimiizde kirsal bdlgelerden goc¢, siirekli degisim ve sehirlerin yapismin giderek
karmasik hale gelmesi, sehir yonetimlerinde verimin artmasi i¢in yeni yontem arayislarini
beraberinde getirmektedir. 3 Boyutlu (3B) sehir modellerine olan talep giderek artmakta
ve bircok (lkede ¢esitli yonetim seviyelerinde farkli Olgeklerde aktif olarak
kullanilmaktadir. 3B sehir modelleri sadece gorsel modeller olmayip, ayn1 zamanda sahip
olduklar1 semantik veriler yardimiyla analizlere ve farkli gorsellestirme uygulamalarina
izin vermektedir. Bu modeller farkli detay seviyelerinde (LoD) retilebilmekte ve
seviyeleri arttikgca, bina ve ¢atiya ait modellenen nesnelerin/ayrmntilarin miktar1 da
artmaktadir. Yiiksek detay seviyesine sahip 3B modeller, genel olarak cok yiiksek
¢Oziinlrliikli stereo hava fotograflar1 yardimiyla fotogrametri operatorleri tarafindan
manuel olarak cizilmektedir. Bu ¢ok fazla insan giicti, zaman ve maliyet gerektiren bir
srectir. Ylksek detayli 3B sehir modellerini otomatik {iretmek igin literatiirde farkli
yaklagimlar bulunmaktadir ancak bu konu tam olarak ¢oziilememis bir sorun olarak

birgok arastirmaci tarafindan ¢alisiimaya devam etmektedir. Uretilen modellerin verimli

gorsellestirilmesi ise, kullanilacak gorsellestirme platformuna gore bir¢ok optimizasyon
ve farkli yaklasim gerektiren ayr1 bir sorundur. Bu tez kapsaminda, c¢ok yiiksek
¢cOzUndrltkli optik gorintllerden otomatik olarak bina ¢ati tiplerinin otomatik olarak
smiflandirilmasi, bina ayak izlerinin ¢ikartilmasi, LoD2.2 seviyesinde ¢at1 detaylarinin
cikartilarak 3B bina modeli tiretiminde kullanilmasmna yonelik derin 6grenme tabanli
coziimler gelistirilmistir. Calisma sahalar1 Tiirkiye nin farkli bolgelerinden segilmis ve
kullanilan derin 6grenme yontemine uygun sekilde 6grenme verisi hazirlanmistir. Bu
calismalarda elde edilen sonuglar detayli olarak incelenerek, potansiyel iyilestirmelere
yonelik 6neriler sunulmustur. Ayrica, LoD2 ve LoD3 sehir modellerinin
gorsellestirilmesine dair farkli ¢oziimler gelistirilerek tartisilmistir. Bu amagla hem Web
tabanli Cesium kutlphanesi hem de sanal gerceklik destekli Unity oyun motorunda
gorsellestirilme ¢aligsmalar1 tamamlanmig ve farkli avantaj ve dezavantajlar1 ortaya

konulmustur.

Anahtar Kelimeler: 3B Sehir modelleri, Derin Ogrenme, CityGML, Cesium, Sanal
Gergeklik

ABSTRACT

AUTOMATIC RECONSTRUCTION AND EFFICIENT
VISUALIZATION OF 3D CITY MODELS

Mehmet BUYUKDEMIRCIOGLU

Doctor of Philosophy, Department of Geomatics Engineering

Supervisor: Prof. Dr. Sultan KOCAMAN GOKCEOGLU

March 2023, 114 pages

Today, migration from rural areas, continuous change in cities and the increasing
complexity of their structure yielded the need of new methods to increase efficiency in
their management. The demand for 3 dimensional (3D) city models is increasing and they
are actively used by countries and municipalities at different scales. 3D city models are
not only visual models, but also allow analysis and different visualization applications
with the help of their semantic data. These models can be produced in different levels of
detail (LoD), and as the levels increase, the amount of modeled objects/details of the
building and roof also increases. 3D models with a high level of detail are produced
manually by photogrammetry operators, usually with the help of very high resolution
stereo aerial photographs. However, this process is costly in terms of labor and time.
There exist different approaches in the literature to automatically generate highly detailed

3D city models, but the topic is still an active research area being investigated by several

researchers. On the other hand, efficient visualization of the produced models also
involves optimization issues and depending on the platform, and different approaches
exist. Within the scope of this thesis, deep learning-based solutions have been developed
for automatic classification of building roof types from very high resolution optical
imagery, automatic extraction of building footprints, automatic extraction of roof details
at LoD2.2 level and their use in the production of 3D building models. The study sites
were selected from different regions of Turkiye and the training data were prepared in
accordance with the requirements of the deep learning methods. The results are presented
and suggestions for potential improvements are discussed. In addition, different solutions
for the visualization of LoD2 and LoD3 city models are developed and discussed. For this
purpose, web-based visualization with Cesium library and virtual reality supported Unity
game engine were employed to reveal various advantages and disadvantages of both
approaches.

Keywords: 3D City models, Deep Learning, CityGML, Cesium, Virtual Reality

ACKNOWLEDGMENTS

I didn’t know what future may bring when | started my PhD. In the end, | am greatful for
my choice and have completed this journey with a lot of good memories. This thesis

wouldn’t be completed without the help and support of many people.

My biggest thank goes to my supervisor Prof. Dr. Sultan Kocaman Gokgeoglu. If T didn’t
have the opportunity to work with her, I probably would never have pursued a PhD. |
learned a lot from her, both academically and about life. She supported my every decision,

and helped me become the person | am today. | will always be honored to be her student.

| am also very thankful to my doctoral committee members Dr. Nusret Demir and Dr.
Murat Durmaz for their valuable comments on the thesis progress, and also Dr. Ali Ozgiin
Ok and Dr. Umit Isikdag for taking their time and contributing to the thesis as jury

members.

| also would like to thank my best friend Gokhan and my colleagues and close friends
llyas, Gizem and Recep at the Geomatics Engineering department at Hacettepe
University. We have always helped and motivated each other whenever needed. Thank

you for the great memories and continuous support during this journey.

Another big thanks goes to Prof. Dr. Martin Kada for accepting me as visiting researcher
at TU Berlin. I have spent one amazing and very productive year at Berlin. He provided
me an office with a nice view and a quiet environment to study. His supervision and his
courses extended my knowledge about deep learning. I will always be grateful for his

support.

| want to acknowledge financial support of the Scientific and Technological Research
Council of Turkey (TUBITAK) 2214-A International Doctoral Research Fellowship
Programme during my one year visit at TU Berlin and 2224-A Grant Program for
Participation in Scientific Meetings Abroad for attending ISPRS Congress 2022 in Nice,
France. | also acknowledge financial support of Turkish Council of Higher Education
(YOK) for 100/2000 Ph.D. scholarship for 3 years. | also would like to thank General
Directorate of Land Registry and Cadastre of Turkey for providing the data used in this

thesis.

CONTENTS

(0 74 = LT i
A B ST R A C T .. e e et e et a e e e e a i ———aan i
ACKNOWLEDGMENTS ..ot s e e e e e e e e s n e e e e e e aans \
CON T EN T S e e e e e e e e e s et e e e e e e e s s s e nr it aeeeeeeeanans Vi
LIST OF TABLES ...t a e e e e eeeeas IX
LIST OF FIGURES.ottt s e e e e e e e s e e e e e e e e e X
SYMBOLS AND ABBREVIATIONS ..ot Xiil
L INTRODUCTION. .. .ottt sttt e e s rae e st e e nnnaeenneee sennnnees 14
1.1, MOTIVALION .ttt sttt e b et 16
1.2. Objectives and Research QUESTIONSccuiveiiireiiire e 18
1.3, CONEFDULIONS ...t 19
1.4, TRESIS STIUCTUIE ..ottt 20
2. RELATED WORKoiitiiiit ettt 21
2.1. Conventional MethodSooviiiiiiiie s 21
2.2. Building Information Extraction with Deep Learningcccccevevveevivveesinnnenne, 22
2.2.1. Roof Type Classification With CNINS............coiiieiiiire e 22
2.2.2. Building Footprint Extraction with Deep Learningcccceveveeviiveeninnnn 23
2.2.3. Roof Structure Extraction with Deep Learningcocceevvveeviveeviiieesiinnnn 25

2.3. 3D Building ReCONSLIUCLIONccuvvieiiieeiiie e 27
2.3.1. Conventional MEethodScoeiiiiiieiiieic e 27
2.3.2. Machine Learning Methods.............coovieiiiii i 29
2.3.3. DL-Based ReCONSIIUCTIONcoivieiieiiieiiiieiiie e 29
2.3.4. Combination of Deep Learning Based and Conventional Methods 31

2.4. Visualization of 3D City MOUEISccoviieiiiii e 32
2.4.1. Web-based VisualiZationcocvviiiiie i 33
2.4.2. Game Engines, Virtual Reality, Augmented Reality and Mixed Reality......34

Vi

3. DEEP LEARNING BASED BUILDING FOOTPRINT EXTRACTION WITH
FUSION OF TRUE ORTHOPHOTOS AND ELEVATION INFORMATION.............

3.1. Motivation for Building Footprint EXtractioncccoceviieiiinniiennienieeninnn
3.2. Study Area and DAASET..........cccviiiieiiieriii et
3.3, MOAEI TTAINING ..ottt
Buh. RESUILS ...

3.4.1. True Orthophoto (RGB) RESUIS........cccueeiiiiiiiiiiciieee e

3.4.2. True Orthophoto + NDSM (RGB-Z) ReSUILS..........ccceriiiiiiiiiiiieiiein,
3.5, VECIONIZALION ...ttt ettt ettt

3.6. Discussions and Conclusions on Building Footprint Extraction........................

4. ROOF TYPE CLASSIFICATION USING CONVOLUTIONAL NEURAL
NETWORKS ...ttt

4.1. Motivation for Roof Type Classificationc.ccoeivierieiiiiiiie e
4.2. Study Area and DAtaSEL...........ooiuiiiiieiie i
G T Y =11 o T (o] (0o Y2 OSSPSR
A4, RESUILS ...

4.5. Discussions and Conclusions on Roof Type Classification..............ccccceevevvennne.

5. AUTOMATIC LOD 2.2 BUILDING RECONSTRUCTION WITH DEEP
LEARNING ...t

5.1. Motivation for Automatic LoD2.2 Building Reconstructioncccceenne..
5.2. Study Area and Data Preparationccccveiiiieiiiee e
5.3. MethodOIOgY......ccoiuiieiie et
5.3.1. Data AUGMENALIONcccvvieiiiiieiiie e
5.3.2. EVAlUALION MEASUIES......cccvveiiieiiiieiiiesiee sttt nree s
5.3.3. Implementation DetailSccoovveiiiii i
5.4, RESUILS ...t
5.4.1. Quantitative RESUIESc.vvviiiiiiiie et
5.4.2. Qualitative RESUISccvviiiiiiiiie e
5.4.3. Method RODUSINESS........coiiiiiiieiiieie e
5.5. Vectorization and POSt-ProCESSING.......ccueeiiuieeiiieeiiie e

5.6. 3D Building RECONSIUCTIONcieiiiiiiee it

5.7. Discussions and Conclusions on Automated LoD2.2 Building Reconstruction

111 1 5 TP RRPPR PRI 80

6. EFFICIENT VISUALIZATION OF 3D CITY MODELS.......cccoociiiiiieiieneeieee, 83
6.1. Problem StatemMeNtcueiiire et 83
6.2. Web-based Visualization of 3D City Models with CesiumJS............ccccceevvenn. 84
6.3. 4D Data Visualization With CZML..........c.ccoiiiiiiiiiiic e 90
6.4. Game Engines and Virtual REaTYccccoiiiiiiiniiiic e 95
6.5. Discussions and Conclusions on Efficient Visualization of 3D City Models97

7. CONCLUSIONS AND FUTURE WORKcooiiiiiiiiie e 98
80 T o Tod (315 To SO SSSPTRR 98
7.2, FULUIE WOTK ...ttt ettt e e e et e et e e sntaeeanneae s 101
REFERENGCES.ottt ettt be et et nneenae e 103

viii

LIST OF TABLES

Table 3.1 Model training parameters [118]cccooveiiieiiiiiie e 40
Table 3.2 Quantitative results of RGB-only training [118].........cccccceiiiiieiiiiiienene, 42
Table 3.3 Quantitative results of RGB + nDSM training [118]..........cccccovviviiiiiiiennnnne 44
Table 3.4 Simplification tolerance values and their mean differences. [118] 45
Table 4.1 Number of training, validation, and test images for each roof type. 52
Table 4.2 Implemented shallow CNN parameters.cccoevveiieniienieiiie e 55
Table 4.3 Precision, Recall, and F1-score results of shallow CNNcccccovieinene. 56
Table 4.4 Precision, Recall, and F1-score results of fine-tuned VGG-16...................... 57
Table 4.5 Precision, Recall, and F1-score results of fine-tuned EfficientNetB4............ 59
Table 4.6 Precision, Recall, and F1-score results of fine-tuned ResNet-50................... 60
Table 5.1 Total number of lines and image tiles used for training and test data 67
Table 5.2 Evaluation results of non-augmented and augmented data...............c.cceeuveee. 72
Table 6.1 Comparison of texture sizes before and after optimization [53]. 88

LIST OF FIGURES

Figure 1.1 The main stages of 3D city model generation.cccceevveiiieniciiiennnnn 17
Figure 2.1 A view of the semi-automatically reconstructed 3D city model of Cesme,

TUKIYE [A5]. et 28
Figure 2.2 CNN-based 3D city model reconstruction of the Manhattan area [64] 30
Figure 2.3 A view of roofs reconstructed by ROOf-GAN [70]......cccccevviiiiinineiiienienne, 31
Figure 3.1 An overview of the study area and building footprintscccceovernee. 38

Figure 3.2 A sample tile from the study area: (a) RGB true orthophoto, (b) building
footprint vector, (c), NDSM, and (d) building mask [118]..........cccccovviiiiiiiirnnns 39
Figure 3.3 An overall view of the developed framework [118]..........ccccoooviviiiiinnnnnne 40
Figure 3.4 An overview of the RGB-only predictions for the test area: (a) True
orthophoto, (b) Ground truth, (c) U-Net+ResNet-18, (d) U-Net+ResNet-50, (e) U-
Net+SeResNet-18, (f) LinkNet+ResNet-18, (g) LinkNet+ResNet-50 and (h)
LinkNet+SeResnet-18 [118].ocieiiiieiiieiie e 43
Figure 3.5 An overview of the RGB + nDSM predictions for the test area: (a) True
orthophoto, (b) Ground truth, (c) U-Net+ResNet-18, (d) U-Net+ResNet-50, (e) U-
Net+SeResNet-18, (f) LinkNet+ResNet-18, (g) LinkNet+ResNet-50 and (h)

LiNKNet+SeResNet-18 [118]. ...cccvveeiiieeiiiie e e e 44
Figure 3.6 An overview of simplified building footprint vectors [118]...........ccccueennee.. 46
Figure 4.1 A general view (left) and close view (right) of the study area with building

{00140 Qg1 AR =Tot (o] -SSP 51
Figure 4.2 An example of a roof vector before (left) and after (right) correction 52
Figure 4.3 Sample roof tiles from each class (Cesme, TUrKey).cccccevvveviiveeiiineennnnn. 53
Figure 4.4 Depiction of accuracy measures and their equations...............ccccceevivveennen. 54
Figure 4.5 Shallow CNN model architeCture.............ccouveeive i 54
Figure 4.6 Normalized confusion matrix of shallow CNN.............cccccooviiiiieiiiieccnen. 57
Figure 4.7 Normalized confusion matrix of fine-tuned VGG-16c...ccocvvevinneenen. 58
Figure 4.8 Normalized confusion matrix of fine-tuned EfficientNetB4 59
Figure 4.9 Normalized confusion matrix of fine-tuned ResNet-50cccccoevveennnen. 60

Figure 5.1 A general and zoomed view of the study area with training tiles (red) and test
tiles (green) distribULIONcoiviiiiiie e 66

Figure 5.2 A close view of complex LoD2.2 building roof structureccc.ccoeuve.. 67

X

Figure 5.3 An example of a non-overlapping tiled image with roof lines and junction

[010] 0] £ F T PP PPP PP OVRUPRUPRTN 68
Figure 5.4 Overall view of the methodologycccoeiiiiiiiiiii s 69
Figure 5.5 Augmented files with ground truth a. original file, b. horizontal flip, c. vertical

FIIP, . MIMTOTING ..o 69
Figure 5.6 Ground truth and predictions in a test area (0.8 threshold).............c.c.ccoce.. 73
Figure 5.7 Ground truth and predicted roof structures with blocked trees.................... 74
Figure 5.8 Ground truth and predicted roof structures with shadowy areas................... 75

Figure 5.9 Visualization of roof structures for 0.2, 0.4, 0.6, and 0.8 score thresholds. ..75
Figure 5.10 Merged roof structures of 8 image tiles.ccooveriiiiiiiii i, 76
Figure 5.11 a — close view of the predicted line, b — snapped, ¢ — simplified, d - ground

.. 78
Figure 5.13 Reconstructed 3D roof models using the DSM.ccccccovviiiiiiiiniiinnnnn, 78
Figure 5.14 Building model reconstruction steps. (a) FME workbench script part 1; (b)

FME workbench script part 2; (c) illustration of the stages..........cc.ccccceveviiveiinnnnn, 79
Figure 5.15 Views of a reconstructed building from different viewing angles. 80

Figure 6.1 A view of Cesium World Terrain unmerged (left) and merged (right) high-
FESOIULION DTIM ...ttt et 85
Figure 6.2 LoD3 city model with underlying DTM before and after modification........ 85

Figure 6.3 A view of orthophoto and true orthophoto basemapscccccccovevivieinnnn, 86
Figure 6.4 A comparison between true orthophoto (a), Bing Maps (b), Mapbox Satellite

(c), and ESRI World Imagery (d) as basemap layersccccccovveeviveeiiiecviieeennn. 87
Figure 6.5 A view of attributes for selected LoD2 building in the web interface 89
Figure 6.6 LoD3 city model with 3D city plans in the web interface.c............ 89
Figure 6.7 Developed FME workbench for generating image footprints. 91
Figure 6.8 An example of visualization of an image footprint on the ground................ 91
Figure 6.9 Airplane and UAV MOEL.coovriiiiii e 92

Figure 6.10 Photogrammetric image acquisition visualization with an UAV with an 80%
forward OVErIap [53]. ...vve et 94
Figure 6.11 Photogrammetric image acquisition of 736 images in Gaziantep, Turkey with
an 80% forward and 60% lateral overlap [53].cooovveiiiiiiii 9

Xi

Figure 6.12 A view of the LoD3 city model in Unity game engine from different
VIEBWPOINES [129]. ..ot 96

Xii

SYMBOLS AND ABBREVIATIONS

Abbreviations

BIM Building Information Modeling
CAD Computer Aided Design

CNN Convolutional Neural Network
CSV Comma-seperate Value

DL Deep Learning

DSM Digital Surface Model

DTM The Digital Terrain Model

EOP Exterior Orientation Parameters
FME Feature Manipulation Engine
GAN Generative Adversarial Network
GDLRC The General Directorate of Land Registry and Cadastre of Turkiye
IOP Interior Orientation Parameters
LoD Level of Detail

LiDAR Light Detection and Ranging
MVS Multi-view Stereo

MOEU Ministry of Urbanization and Environment
0OGC Open Geospatial Consortium
TMS Tile Map Service

UAV Unmanned Air Vehicle

UTM Universal Transverse Mercator
WMTS Web Map Tile Service

Xiii

1. INTRODUCTION

Buildings are among the important objects in a city. As the population of cities continues
to increase every day, management of cities become more complex. The production and
use of virtual 3D city models and digital twins of cities have been increasing in parallel
for efficient management and planning with simulations using the generated models. 3D
city models can be generated with different levels of detail (LoD) [1] depending on the
application requirements. As a result of higher LoD and rich semantic information, the
number, variety, and quality of the analyses that can be performed on 3D city models also

increase.

3D city models can be reconstructed manually, semi-automatically, or fully
automatically. The process of manually reconstructing a 3D model of a city is commonly
carried out by photogrammetry operators through manual digitization of roofs or 3D
building models from stereo aerial imagery. However, it is very time-consuming and
costly to manually digitize large numbers of buildings in cities. With the semi-automatic
and automatic approaches, building geometries can be reconstructed from point clouds,
mostly from LIDAR (Light Detection and Ranging) sensors. Point clouds obtained from
optical images through stereo processing methods are preferred less due to sparse point
distribution in low-texture areas. Thus, roof corners or roof details may not always be
generated with optical (often called as photogrammetric) point clouds. Although LIiDAR
point clouds may present object shapes better than optical photogrammetric point clouds
depending on image resolution and texture, the LIiDAR data are often not available due

to their high cost.

Automatic and semi-automatic 3D building reconstruction methods usually require
building footprints as input along with a Digital Surface Model (DSM). The main reason
for this is that these methods usually reconstruct each building by clipping the respective
part from the DSM based on footprint area. Open data sources for building footprints such
as OpenStreetMap [2], and Microsoft buildings [3] can also be used for this purpose. The

main issue lies in the fact that these datasets are typically produced either manually or

14

automatically with artificial intelligence (particularly machine learning) methods from
satellite images, which usually have lower spatial resolution than aerial photos or LIDAR
data. Based on the image spatial resolution and the method used to generate the data of
the building footprints, openly available datasets are often not fully compatible with
higher-resolution datasets. Due to this fact, building footprints are usually delineated
manually using mono or stereo plotting methods, which is costly for time and labor.
Automatically extracting building footprints will enable tremendous cost and time
savings, as well as a reduction in the complexity of the process.

Novel deep learning (DL) methods can be more effective than the traditional methods of
computer vision and photogrammetry [4]. The use of the DL technologies has
transformed many tasks that were previously performed manually or with low accuracy
into automated tasks with high accuracy. Automatic reconstruction of 3D city models
with high detail levels (LoD2+) is still an unsolved problem, yet field of research in DL-
based 3D building reconstruction is still in its early stages and there is still a great deal to
be done. Through the use of the DL methods, roof structure extraction and 3D building
reconstruction could be performed more accurately by overcoming some of the

limitations of conventional methods.

This thesis aimed to develop a framework for DL-based reconstruction and visualization
of 3D city models towards full-automatization and high efficiency. Although not all steps
could be fully-automatically realized, several investigations were carried out to realize
the automatization and reveal the major issues. Towards achieving this goal, a number of
DL-based methods has been investigated and proposed using very high-resolution stereo
aerial imagery for roof type classification, building footprint extraction, and LoD2.2
building roof structure extraction for 3D building reconstruction. For this purpose, diverse
datasets from different geographical regions of Turkiye were utilized to train various DL
methods. Each study was conducted in a different study area. As the only dataset available
at the time, the Cesme dataset was used in the roof type classification study (Chapter 4).
Later, the data provided by TKGM was used in other studies (Chapter 3 and 5). The

results were validated both quantitatively and qualitatively, and discussed accordingly.

15

In addition, various solutions for the visualization have been investigated and their
advantages and disadvantages could be analyzed. For this purpose, different visualization
platforms such as web globes and game engines were implemented by integrating digital
terrain models (DTMs), true orthophoto basemaps, 3D city plans, as well as building
models with different levels of detail. Aerial photogrammetric images were also
visualized in a virtual globe using data from both drones and airplane to assess the image
acquisition process. Thus, the full processing chain involved in the 3D city model
production, from data collection to visualization, could be assessed with a holistic

approach.

1.1. Motivation

The process of creating 3D city models involves several stages, such as data collection
(mostly for high-resolution optical images with stereo capability), pre-processing
(photogrammetric triangulation, DSM and DTM generation, orthophoto production),
feature extraction, roof and building modeling, and presentation of the models in suitable
environments. The main stages (data collection, modelling, visualization) and their sub-
processes are depicted in Figure 1.1. Red color in Figure 1.1 indicates the steps
contributed in this thesis. This thesis aimed at improving various parts of this process
such as the automatization of building model generation, investigating and increasing the
efficiency of their visualization and presentation, and quality control through automated

methods and visual inspection platforms.

Building models with a high LoD are often generated manually by photogrammetry
operators using stereo aerial imagery. This process requires manual digitization by an
experienced operator and is a costly and time-consuming process in most cases. Several
commercial software reconstruct 3D city models semi-automatically, but they have
certain limitations. Preparing the input data require excessive file format conversions,
coordinate system transformations, and further data preprocessing. Building roofs
obstructed by trees or shadows are usually reconstructed incorrectly. Software based on
roof libraries are limited to widely used roof types, thus complex roofs or small objects

on them such as chimneys or small windows cannot be reconstructed. Therefore, further

16

research on the development of fully automatic algorithms for 3D reconstruction is

First Stage Second Stage Third Stage
Photogrammetric
Data 3D City Modelling Visualization
Acquisition
. . Data Processin
GCP Establishment and ¢ trocessing
) 3D Building Reconstruction (Reprojection, format
Ground Measurements = __—
conversion, etc.)
A 4 A 4 Y
Aerial Inmrgc Acquisition Texturing Data Optimization
and Triangulation =
Digital Surface and Terrain Format conversion . . L
= N R I . . Web-based Visualization Game Engine Visualization
Model Generation (CityGML, City]SON, ete.) @ vistalizatior rame Engine Visualizatior
Y
Orthophoto / True
Orthophoto Generation

Figure 1.1 The main stages of 3D city model generation.

The DL methods have the capability of improving the performance and quality of roof
segment detection and 3D building reconstruction. As a part of the thesis, a DL-based
framework using line segment detection networks for extracting and vectorizing LoD 2.2
roof details at the city scale is presented. This thesis presents the first study that utilizes
DL methods for extracting roof geometry in the form of vector lines at the LoD2.2. This
method differs from the other studies in the literature in that it does not require building
footprints and uses a single RGB image as an input while most existing methods require
building footprint vectors together with RBG images for clipping images directly from
building boundaries based on building footprints so that each tile contains a single
building. Predicted roof structures are then vectorized, reprojected, merged, and exported
at the city scale using custom scripts developed in Python. As a final step, the transition
between tiles and vector geometries is corrected and redundant junctions are removed
with post-processing. After the post-processing, 3D building geometries based on

detected roof structures are reconstructed.

17

1.2. Objectives and Research Questions

This thesis has the following main objectives:

To investigate the potential and efficiency of the DL methods for automatic 3D
building reconstruction and to develop a methodology for accurate reconstruction.

To analyze visualization methods for 3D city models with various LoDs and
semantic data using different technologies such as virtual globes or game engines

and provide recommendations.

Based on these goals, this thesis addresses the following questions:

Do the DL methods provide improved results compared to conventional methods
in terms of building information extraction from VHR aerial imagery?

In what ways can the DL methods be utilized in the automatic production of 3D

city models, and which advantages could they provide?

How accurately can the DL methods classify the different roof types and with
which LoDs? Is it possible to improve results by fine-tuning existing

Convolutional Neural Networks (CNNs) with pre-trained weights?

How robust are the DL methods against problems such as trees blocking roofs or

shadows causing false reconstructions?

Could the DL be used to detect complex roof structures other than the widely used

gable, hip, pyramid, etc roof types?

How can 3D city models be efficiently visualized on the web? What shall be the
motivation for visualizing the models on different platforms (web, game engine)

what are the requirements for obtaining high performance?

18

1.3. Contributions

Contributions of this thesis can be listed as following:

e A dataset for roof type classification with deep learning containing 10,000 unique
roof images and their class labels was generated from very high resolution
orthophotos.

e The first study on automatic vectorization of LoD2.2 roof structures with deep

learning at city scale is presented.

e Python scripts developed for automatic training data generation for line segment

detection networks using existing city models and VHR true orthophotos.

e The first LoD2.2 roof structure training dataset with more than 2.2 million lines

and 139k buildings for line segment detection networks is presented.

e The LoD3 city model of Bizimsehir, Turkiye's first smart city project, was
visualized on the web and in the Unity game engine with VR support prior to

construction.

e A methodology proposed for web-based visualization of photogrammetric image

acquisition flights with UAV and aircratft.

19

1.4. Thesis Structure

This thesis consists of the following sections:

Chapter 1 describes the motivation behind the thesis and the problems it aimed to

investigate.

Chapter 2 provides a literature review on the conventional and the DL methods for
building information extraction from VHR optical imagery, 3D building reconstruction,

and 3D city model visualization.

Chapter 3 explores the effect of combining height information (nDSM) with RGB data

for building footprint extraction, and conversion from raster to vector format.

Chapter 4 explores the potential of the DL methods for classifying roof types, and
compares the results of developed shallow CNN with fine-tuned popular CNNs using pre-

trained weights on the ImageNet dataset.

Chapter 5 introduces the first study for extracting and reconstructing LoD2.2 roof

structures using line segment detection networks.

Chapter 6 investigates the visualization and exploration of 3D city models on the web
using CesiumJS library, and also in the Unity game engine for assessing the use of Virtual

Reality.

Chapter 7 provides an overview of the issues experienced throughout the thesis, analyses

the results, and presents the recommendations for future work.

20

2. RELATED WORK

A literature review of building information extraction and 3D building reconstruction
methods is presented here together with visualization approaches. The first sub-section
presents the DL methods (classification, segmentation, and roof segment detection). The
second sub-section gives a literature review on 3D building reconstruction. An overview

of the literature on visualization methods is provided in the third chapter.

2.1. Conventional Methods

Conventional image segmentation methods are based on traditional computer vision
techniques and algorithms. These methods aim to partition an image into multiple regions
or segments based on certain characteristics or features of the image, such as color,
texture, or intensity. One popular method is the thresholding technique [5], where an
image is segmented into foreground and background based on a certain threshold value.
Another common method is edge detection [6], which identifies and extracts the
boundaries or edges of objects in an image. Other methods include region growing [7],
where adjacent pixels with similar characteristics are grouped together, and clustering
techniques, which group pixels based on their similarity in a feature space. These
conventional segmentation methods are still widely used in various applications, such as
medical imaging, remote sensing, and surveillance, and can often provide accurate results
in simple scenarios. However, in more complex or challenging situations, such as images
with low contrast or high noise, machine learning-based segmentation methods are often
preferred due to their ability to learn and adapt to various image characteristics and

features.

Conventional line detection methods are used to identify lines or edges in an image. These
methods are based on various techniques, such as gradient-based methods, Hough
transform [8], and template matching [9]. Gradient-based methods detect edges in an

image by calculating the gradient magnitude and direction of each pixel and thresholding

21

the resulting image to identify edges. The Hough transform is a popular technique that
transforms an image space into a parameter space to detect lines or other shapes. Template
matching involves comparing a portion of an image with a predefined template to detect
lines or other shapes that match the template. Other techniques include line fitting, which
fits a line to a set of points, and edge linking, which connects edges or segments to form
longer lines. These conventional line detection methods have been widely used in various
applications, such as computer vision, robotics, and remote sensing. However, like other
conventional computer vision techniques, they have limitations in handling noisy or
complex images, and may require fine-tuning of parameters to achieve optimal results.
With the recent advancements in deep learning and neural networks, machine learning-
based line detection methods have shown promising results and are becoming

increasingly popular in various applications.

2.2. Building Information Extraction with Deep Learning

The DL studies used for the building information modelling in the literature can be
categorized for classifying roof types, and extraction of building footprints and roof

structures as presented in the following.

2.2.1. Roof Type Classification with CNNs

A city’s structure is primarily comprised of buildings, which play an important role in
many aspects. Over the past few years, simulation of 3D city models has been used across
many applications [10]. Building roof types can be used for model-driven 3D
reconstructions of buildings and to reduce the reliance on digital surface models (DSMs)
[11].

A great deal of progress achieved in both photogrammetry and remote sensing through
the use of DL [4]. Several approaches are presented in literature that relies on DL

techniques to classify roof types. It is possible to classify roof types using deep CNNs as

22

well as to estimate roof heights [12]. In their study, Partovi et al. [11] used pan-sharpened
WorldView-2 imagery 50 cm Ground Sampling Distance (GSD) to classify roof types
with a Visual Geometry Group (VGG-Net) model. A model-based approach has been
developed by Alidoost and Arefi [13] using a combination of different data sources to
enhance roof type detection using CNNs. Mohajeri et al. [14] classified six roof types for
solar energy applications and achieved an overall accuracy of 66% using LIDAR data. A
study by Qin et al. [15] evaluated Deep Convolutional Neutral Networks (DCNN) in
building segmentation and achieved 94.67% accuracy using Gaofen-2 satellite imagery.
Additionally, they stated that DCNNs have the potential to improve building mapping in

dense urban areas with a wide variety of roof patterns using very high-resolution imagery.

Olger et al. [16] classified different roof types using a few training examples with a
Siamese neural network and achieved 66% accuracy. Bittner et al. [17] investigated the
use of Conditional Generative Adversarial Network (cGAN) for roof type classification
using DSM derived from Worldview-1 satellite imagery. LIDAR and satellite imagery
can be combined for labeling and classifying roof types using different machine learning-
based methods [18]. An average accuracy of 67% was obtained for classifying rooftops
using LIDAR and a random forest method by Assouline et al. [19]. ISPRS benchmark
dataset for building reconstruction and classification is a widely used dataset for similar
tasks that were developed by Rottensteiner et al. [20]. As part of the dataset, high-
resolution aerial imagery with an 8 cm resolution and laser scanning data from an airborne
laser scanner (6 points/m?) are used to detect and reconstruct buildings, trees, and 3D
models. They also provided an overview of current methods along with a discussion of

the common problems of the benchmark results [21].

2.2.2. Building Footprint Extraction with Deep Learning

The CNNs are considered more effective than conventional semantic image segmentation
methods in remote sensing imagery and image analysis in general [22]. As well as
classifying pixels and determining the content of those pixels, these networks have also
been used to predict the spatial structures of objects. CNNs are capable of detecting,

segmenting, and categorizing round objects of varying sizes and shapes. Additionally,

23

CNNs can predict the spatial extent of features including buildings, types of roofs, and
other objects [23].

Usually, image segmentation is performed using two-dimensional (2D) images, as that is
the most commonly used approach. The depth information, however, can also be used as
an additional band on top of RGB images to provide additional information. A semantic
image segmentation process that incorporates height information frequently produces
better results compared to RGB-only results [24]. The majority of algorithms used for the
extraction of buildings use RGB imagery as the only source of input [25]. Integrating
height information with RGB imagery can help to solve weaknesses of aerial images,

such as shadows, poor lighting, clouds, and many other obstructions.

A study by Marmanis et al. [22] shows that the CNNs can utilize high-resolution aerial
images to segment them and explicitly represent the boundaries between different classes.
Using the ISPRS Vaihingen benchmark dataset as the benchmark, their DCNN model
was able to achieve a 95.2% F1-score for building segmentation. The DeepResU-Net was
developed by Yi et al. [26] for Very High Resolution (VHR) imagery to be utilized for
pixel-based building extraction. As compared to the U-Net, network performance and

overall accuracy increased significantly.

A study by Kada and Kuramin [27] utilized the PointNet++ and KPConv algorithms to
classify building roofs from LIDAR data and scored an loU of 94.8%. Jiwani et al. [28]
used a modified DeepLabV3+ for extracting building footprints from satellite images. It
was demonstrated in the test with the help of three building extraction benchmark datasets
that their method achieved state-of-the-art results regardless of image resolution and
building density. The different CNNs can efficiently be combined to extract building
footprints based on VHR aerial imagery, as shown by Li et al. [29]. Pixel-based
segmentation accuracy of the model is measured by comparing each overlapping pixel,
and the precision, recall, and confidence of the model are 92.6%, 91.4%, and 85.1%,
respectively, for the WHU building dataset. WHU dataset consists of aerial imagery

dataset and satellite imagery dataset with varying resolutions from 0.075m to 2.5m with

24

manually delineated building footprint vectors, and used as benchmark dataset in many

building extraction studies.

Building extraction can also be achieved by combining data from multiple sources and
using CNNs. Additional data sources can be added as a fourth band to RGB images
without making any modifications to the CNN model. Sun et al. [30] used a frame field
learning model for building footprint extraction from orthophotos and nDSM with 0.25m
GSD. It was observed that incorporating the nDSM has made an improvement of 12% to
the intersection over union(loU) value, as compared to the 58% gained from only using

RGB images.

Bittner et al. [31], used fully convolutional networks (FCN) for building segmentation
using spectral and height data collected by multiple sensors and achieved 85.5% accuracy.
Zhao et al. [32] developed a methodology using CNNs and recurrent neural networks
(RNNSs) for generating regularized building outlines in vector format, where a CNN was
used to extract image features, and RNN was used to extract building polygons to generate
regularized building outlines. Following the work of PolyMapper [25], the researchers
have made several improvements to the backbone, as well as improved the detection, and
recurrence modules. It has also been shown that deep learning can be combined with

guided filtering for estimating district boundaries by Xu et al. [33].

2.2.3. Roof Structure Extraction with Deep Learning

Building outlines and roof line structures can be extracted from remote sensing imagery
with DL methods. Conventional methods (non-DL) also can be used to extract line
segments from aerial imagery in urban areas [34]. The neural networks are not only
capable of detecting edges in images, but also of assembling them into graphs. Several
studies found in the literature use conventional and DL-based methods to detect roof lines
and reconstruct 3D models. An extensive review of DL-based 3D building reconstruction

methods are presented by Buyukdemircioglu et al. [35].

25

Using very high-resolution orthophotos of the city of Detmold, Hensel et al. [36]
vectorized building roof structures using Point-Pair Graph Network (PPGNet). The F1
scores for junction detection and edge detection for LoD2.0 roof structures were 0.93 and
0.87, respectively.

Conv-MPN [37] was proposed as a DL architecture for reconstructing roof structures as
a planar graph from remote sensing imagery. Conv-MPN is a two-stage method that
requires corner detection as the first stage, then network training as the second stage. As
well as being computationally expensive, multi-stage approaches are inefficient for both

training and inference.

Roof Structure Graph Neural Network (RSGNN) [38] is another one-stage graph neural
network for extracting LoD2.0 roof structures from satellite and aerial imagery. Their
method achieved state-of-the-art results for extracting roof structures from VHR images.
Additionally, they introduced using Hough transform modules to improve line feature
detection using geometric priors. The Deep Roof Refiner [39] is another deep learning
method for extracting roof structures. In quantitative and qualitative experiments, they

achieved an optimal F1-score of 60.89% and 63.48%, respectively.

Gui and Qin (2021) proposed a DL-based LoD2 building reconstruction using MVS
satellite images. Using a "decomposition-optimization-fitting™ paradigm, they
reconstructed LoD2.0 building models based on a model-driven approach. Since the roof
models are reconstructed based on a roof type library, it may be challenging to obtain

reliable predictions for complex roof structures with the proposed method.

In a study by Alidoost et al. [40], 3D roof structures were extracted from aerial imagery
using a Y-shaped convolutional neural network. This framework consists of a Y -shaped
CNN with two encoders and one decoder. The proposed CNN computes predicted heights
and rooflines for three classes of eaves, ridges, and hips in LoD2.0 from RGB imagery.

Kenzhebay [41] proposed a method for roof structure extraction from aerial imagery and

26

DSMs and FCNs. Muftah et al. [42] used CNNs for extracting LoD2 roof structures from

aerial imagery.

2.3. 3D Building Reconstruction

Here, related work on building reconstruction methods is presented based on conventional
and novel machine learning methods. Special emphasis was also given to the DL methods

and the combinations of different approaches due to their popularity.

2.3.1. Conventional Methods

3D building reconstruction and 3D city modeling are mostly performed using
conventional methods. Detailed reviews of conventional 3D building reconstruction
methods as well as their applications are available in the literature [43-45]. The subsurface
growing method is an example of a conventional technique that can be used for
reconstructing 3D buildings [46]. Polyfit [47] is a data-driven software that reconstructs
lightweight polygonal surfaces using point clouds. Photogrammetric point clouds are also
used for reconstructing 3D building models by combining RANSAC and contextual
knowledge [48]. Digital surface models (DSM) and 2D footprints can be combined to
automatically create LoD1 building models [49]. It has also been demonstrated that
model-driven reconstruction methods can be used to semi-automatically reconstruct 3D

city models from large-format aerial imagery as illustrated in Figure 2.1 [50].

27

Figure 2.1 A view of the semi-automatically reconstructed 3D city model of Cesme,
Turkiye [50].

Reconstruction of 3D buildings can also be performed with rule-based methods and
photogrammetric point clouds [51]. A common and fast technique for 3D building
reconstruction models is building footprint extrusion. It is also possible to perform LoD2
building reconstruction using the half-spaces method [52]. Drescéek et al. [53] presented
a methodology based on a method known as Extract, Transform, Load (ETL) for 3D
building reconstruction from photogrammetric point clouds. Murtiyoso et al. [54]
developed a data-driven framework for LoD2 building reconstruction using

photogrammetric point clouds.

Using RANSAC constraints and topological-relation constraints, Li and Wu [55]
reconstructed 3D complex buildings using incomplete point clouds. Li and Shan [56]
proposed a two-step RANSAC-based method 3D building reconstruction method using
both LIDAR and photogrammetric point clouds. Using 2D building footprints and
Airborne Laser Scanning (ALS) point clouds, an automatic algorithm was developed to
reconstruct ten million LoD2 buildings in the Netherlands [57]. There is still a challenge
for researchers in the area of automatic reconstruction of LoD3 building models. It has
been shown that LoD3 building models are usually digitized manually and that they can

be merged and visualized together with existing 3D city models [58].

28

2.3.2. Machine Learning Methods

Apart from the neural networks, other machine learning approaches can also be used to
reconstruct 3D buildings and 3D city models. Using context-free and weighted attributes,
Dehbi et al. [59] developed a method for reconstructing 3D buildings based on context-
free grammar rules using Markov Logic Networks. Reconstruction of 3D building models
without elevation data is also possible with the help of machine learning [60]. According
to the proposed method, a building's height is predicted by analyzing the footprints and
attributes associated with the building, and then the footprints are extruded into 3D
models using the predicted height. It is possible to produce LoD2 models using datasets
with lower LoDs by predicting the roof types using machine learning methods [61]. As a
result of using multiclass classification, they predicted the type of roof with an accuracy
of 85% and predict whether the roof was flat with an accuracy of 92%. Park and
Guldmann [62] reconstructed a 3D city model using LIDAR point clouds using a Random
Forest-based point cloud classification methodology. Multi-temporal (4D) city models
can also be reconstructed by combining machine learning methods with historical

information [63].

2.3.3. DL-Based Reconstruction

Conventional 3D building reconstruction methods mainly involve two major problems
[64]. First, due to the number of manual designs involved in them, they are prone to errors.
Additionally, they are incapable of learning semantic features associated with 3D shapes.
Also, a large part of the effectiveness of this method relies on image quality and camera
calibration. By leveraging deep neural networks to automatically learn 3D shapes from

earth observation data, DL methods can resolve these deficiencies.

Several DL-based methods can be found in the literature for 3D building reconstruction.
The DL models are extremely powerful in many computer vision tasks by using images
to learn features [65]. It is also possible to reconstruct 3D buildings from EO data using

these methods. To perform a parametric 3D building reconstruction using satellite

29

imagery, Wang and Frahm [66] proposed a DL-based solution on the parametrization of
buildings as 3D cuboids. It has also been shown that CNNs can be used to reconstruct
buildings with procedural modeling. By inferring shape grammar rules from sequences
of 3D points, CAD-quality models were generated with Neural Procedural
Reconstruction [67]. Nishida et al. [68] developed a CNN-based tool for automatically
generating 3D building models from remote sensing imagery. Alidoost et al. [10] used
CNNs for building detection and reconstruction using aerial imagery. Based on the
proposed method, they achieved root mean square errors (RMSEs) of 3.43 m for 3D
building reconstruction and 1.13 m for nDSM. Multiple CNNs with encoder-decoder

architecture were used by Agoub et al. [69] to create 3D city models with depth maps.

Figure 2.2 provides an overview of 3D city model reconstruction based on their approach.

Figure 2.2 CNN-based 3D city model reconstruction of the Manhattan area [69]

Knyaz et al. (2020) presented another example of the use of CNN in a grid structure. It
has been demonstrated that CNN is an effective method of automatically segmenting wire
structures based on semantics, which overcomes the limitations inherent in
photogrammetric processing when applied to reconstructed complex grid structures in

three dimensions.

Generative Adversarial Networks (GANSs) [70] also are capable of generating 3D building
models. There are two main parts of a GAN, a generator, and a discriminator. To produce
photorealistic images and fool the discriminator, generators learn the distribution of real

30

images. Discriminators judge whether generated images are real or fake. GAN-based

methods also can be used to identify 3D shapes with obscured or missing portions [64].

3D buildings can be reconstructed from noisy DSMs using Conditional GAN (cGAN)
[71]. A 3D surface model of LoD2 was created by Bittner et al. [72] using stereo satellite
imagery with 50 cm GSD. Bittner et al. [17] also produced digital surface models (DSMs)
that provided high levels of detail similar to the LoD2 building forms but also assigned
additional object class labels on every pixel. It is also possible to use GANs to
automatically reconstruct buildings in LoD1 [73]. FrankenGAN [74] is another network
for reconstructing and enriching 3D city models with geometric details and building
textures. Roof-GAN [75] uses a combination of primitive roofs for generating 3D roof
geometries. Figure 2.3 illustrates a view of 3D roofs with a different number of primitives
reconstructed by Roof-GAN.

Figure 2.3 A view of roofs reconstructed by Roof-GAN [75]

2.3.4. Combination of Deep Learning Based and Conventional Methods

The DL methods can also be used to classify and reconstruct buildings from LiDAR point
clouds [76, 77]. A DL-based segmentation was used for 3D city modelling using satellite
imagery as mesh 3D models with textured surfaces by Leoatta et al. [78]. DL-based
methods can be used with point clouds for the automatic estimation of building roof

shapes in complex and noisy scenes [79].

A DL-based 3D reconstruction framework was introduced by Yu et al. [80] that

automatically creates LoD1 building models using stereo aerial imagery. It has been

31

demonstrated by Gui and Qin [81] that deep learning can be used to reconstruct the LoD2
building model's MVS aerial imagery. There are several steps in the developed workflow,
such as detecting building segments on the instance level, extracting initial building
polygons, decomposing and refining the building polygons, fitting the basic model, and
merging the models. DL-based methods are also capable of reconstructing historical 3D
city models [82]. Partovi et al. [83] developed a DL-based workflow for automating 3D
building reconstruction. Their method consists of building footprint extraction, building
decomposition, roof type classification, and the calculation of 3D roof structure

parameters.

Teo [84] used FCNs for detecting building regions from laser scanning data and 3D
prismatic building model reconstruction. An automatic reconstruction method for
building models is developed by Kippers et al. [85] using the combination of CityJSON
and building footprints. In their paper, Yu et al. [86] proposed a DL-based method for
automatically reconstructing LoD1 building models. Their method includes three steps:
DSM generation, building boundary detection, and 3D building reconstruction. Zhang et
al. [87] developed a framework for 3D building reconstruction using PointNet++ and a
holistic primitive fitting method. Chen et al. [88] developed a three-step method, which
makes use of embedded implicit fields and point clouds for 3D building reconstruction.
Moreover, DL-based methods can be combined with geographic information systems

(GIS) and satellite imagery to reconstruct 3D city models [89].

2.4. Visualization of 3D City Models

In this section, 3D city model visualization methods were discussed under the web- and
game engine-based technologies. It is also possible to use other desktop software
including those from the geographic information system (GIS) software vendors, which

are not considered here.

32

2.4.1. Web-based Visualization

Although various platforms exist for visualizing 3D city models, the most common use
is web-based visualization. The main reason for this is that it allows quick use via the web
browser without requiring any extra software installation. 3D city models of different
cities and countries are presented online and can be accessed by users. Web-based
visualization of 3D city models can be used in different applications with the help of
semantic data. Urban building energy modeling [90], Building Information Modeling
(BIM) [91], Heating Demand Prediction [92], air quality information [93], flood
simulation [94], smart city applications [95], cultural heritage [96] can be given as
example to different usages of 3D city models.

Stakeholders and citizens can use virtual 3D city models as part of collaborative processes
with their cities to help improve their quality of life [97]. 3D city models also allow
different analyses with the help of their semantic data. Visibility analysis is one of the
most common analyzes used on these models [98]. Although the main element of 3D city
models is buildings, other city objects are also of great importance in visualization and
analysis. Visualizing city furniture, bridges, tunnels, vegetation, etc. are also can be
visualized with building models [99]. Building models can be integrated with

architectural plans and cadastral data for more detailed analysis [100].

Virtual globes have become very popular and widely used in many applications. WebGL
technology made it possible to visualize and explore maps in 3D. Using WebGL requires
no additional plugins or extensions and enables cross-platform flexibility. Even with very
large datasets, it provides high performance with the help of GPU and WebGL
technology. CesiumJS [101] is a 3D geospatial data visualization library for both web and
game engines. As part of the streaming performance enhancements provided by
CesiumJS, the datasets are rendered using WebGL (Web Graphics Library). Different
types of geospatial data are supported by CesiumJS, including 3D city models, terrain,

imagery, and point clouds.

33

CesiumJS uses 3D Tiles [102], an Open Geospatial Consortium (OGC) standard format
for rendering and streaming 2D/3D geospatial datasets including 3D city models,
photogrammetric models, Building Infrmation Modeling(BIM)/Computer Aided
Design(CAD) models, and point clouds. Loading large volumes of geospatial data or 3D
city models on the Cesium virtual globe as a single tile usually is not recommended for
performance reasons. Thus, tiling large volumes of data is the best solution for this
problem. By using Adaptive Quadtree Tiling, 3D Tiles loads huge datasets as smaller
parts and renders them by dividing them into tiles, efficiently and effectively. By tiling,
stream performance can be improved and the browser's hardware requirements can be
reduced. In 3D Tiles, performance can be created for many zoom levels in the same view
using a geometric error to select detail levels and an adjustable pixel defect. In 3DTiles,
3D geometries and models are stored in gITF [103] format, which is widely used across
a variety of applications that deal with 3D geometries and models. It is possible to store,
stream, and optimize geographical data using Cesium ION [104], which is a cloud-based
platform that optimizes, tiles, and serves 3D geodata such as images, terrains, buildings,
point clouds, BIM/CAD, photogrammetry, and many other types of geospatial data based

on CesiumJS.

2.4.2. Game Engines, Virtual Reality, Augmented Reality and Mixed Reality

The large size of the geometries and textures within 3D city models requires performance
optimization for visualization. It is possible to integrate 3D city models into game engines
to visualize them more realistically. By supporting features such as high-detailed
photogrammetry models, terrain models, basemaps, and 3D buildings, game engines can

visualize high-detailed 3D geospatial datasets.

The popularity of virtual reality (VR) can be attributed to its use in many fields, but it is
most famous for its use in computer games. Game engines with VR technology offer
many benefits, such as the ability to explore 3D city models at the street level or to better
visualize future cities by combining them with existing 3D city models. Virtual reality is
an effective tool for evaluating the impact of future cities on the environment and
infrastructure. VR can enhance the planning and design process by allowing stakeholders

from different disciplines to participate in the process.

34

3D virtual representations of landforms can be created and visualized with the Unity game
engine [105]. The Unreal engine is capable of visualizing large-scale photogrammetric
models [106]. Game engines are also used for visualizing and disseminating cultural
heritage [107]. Modeling and texturing procedures are provided within their pipeline for

converting point clouds into textured models to import into game engines.

Virtual reality technology is also capable of allowing users to explore museums in a new
way [108]. Virtual reality is more than just a static virtual environment, it can also be
used as a powerful tool for combining various data types in a single scene [109]. Kim and
Kim [110] have used eye-tracking experiments to study perception and cognitive
processes in VR simulations. As part of their research, Broucke and Deligiannis [111]
evaluated perceived workloads and the parameters associated with data immersion by
analyzing tasks of data exploration on different web interfaces and the proposed VR
application. Historical cities can be explored interactively with VR technology [109].
Game engines can also be used for the visualization and monitoring of smart cities in a

virtual reality environment [112].

Geospatial data can be visualized and interacted with using a variety of platforms and
technologies, including VR [113], AR [114], and mixed reality [115]. Several areas in
which AR technologies are being used may be able to improve citizen-authority
engagement, such as urban decision-making and stakeholder participation [116]. Liu et
al. [117] conducted an outdoor case study with an AR system to detect thermal targets in
facade inspection tasks. Based on VR/AR environments, Santana et al. [118] developed
a mobile visualization application to display simulation and modeling results at the

building level.

35

3. DEEP LEARNING BASED BUILDING FOOTPRINT
EXTRACTION WITH FUSION OF TRUE ORTHOPHOTOS
AND ELEVATION INFORMATION

At this stage of the study, instead of classifying roof types as explained in the previous
chapter, building roofprints were aimed to reconstruct. Therefore, a framework for the
building footprint extraction using CNNs was implemented and experimented using VHR
true orthophotos and nDSM of Selcuk town in Izmir Province, Turkey. Unet and LinkNet
networks with different backbones were used on two different datasets, i.e. RGB (image
only) and RGB-Z (image + elevation information), and their quantitative and qualitative
results are discussed. The results presented in this chapter were largely published in [119].

3.1. Motivation for Building Footprint Extraction

Pixel-based classification and semantic segmentation of remotely sensed imagery can be
used to obtain information for several tasks, such as mapping and analysis of land cover
or the object detection. A major challenge in semantic image segmentation is the
continuous increase in resolutions of remotely sensed imagery. The amount of detail
contained in very high-resolution aerial images is making DL-based approaches for
extracting buildings more challenging. Higher image resolution results in wider class
imbalances and increased levels of difference for all classes, even though the VHR is
capable of collecting small details. A variety of conventional image segmentation
methods are still in use today, including thresholding, region-growing, and edge-based
methods, but they have some limitations. They are sensitive to noise and these methods

may not adapt well to changes in the image data or to different imaging modalities.

There have been significant improvements in the performance of CNNs over
conventional methods in the last decade. As a result, DL-based segmentation and

classification methods are becoming more popular and widely used by many researchers.

36

This chapter examines the performance of two CNN models for building segmentation,
namely U-Net [120] and LinkNet [121]. The results of these two CNNs are compared
using a set of different backbones. The dataset includes true orthophotos and nDSM
generated from VHR stereo aerial imagery. A comparative evaluation of the implemented
methods was conducted using first RGB data only, and then RGB + nDSM data. It was
found that fusing height information with RGB data improved model accuracy, thereby
improving their performance. Following the building extraction, the segmented buildings
were converted into vector geometry from pixels using GDAL [122], which was then
simplified to improve their appearance by smoothing with Douglas-Peucker [123]
simplification method. Vectorization result measures are presented and discussed in detail
in the last sub-section.

3.2. Study Area and Dataset

The production and development of 3D city models are common in countries around the
world, but they are also an important and active topic in Turkiye as well. General
Directorate of Land Registry and Cadastre of Tirkiye (GDLRC) is started "Production of
3D City Models and Creation of 3D Cadastre Bases™" project in 2018. The project is to
include all provinces and districts of Turkiye's settlement and development regions, it is
planned to produce 3D models of about 11 million buildings in these regions. This project
has been carried out in cooperation with GDLRC and the private companies. These
companies are responsible for digitizing building geometries and roof models in
CityGML LoD2.3. This study was conducted using data produced and provided by the
GDLRC within the scope of this project.

Experiments were conducted in a field of approximately 4.12 km? with 13,269 buildings
in Selcuk, Izmir, Turkey (Figure 3.1). A total of four types of data were included in the
dataset, involving true orthophotos (RGB), raster DSMs, and DTMs with 0.1 m GSD,
along with vector building footprints. A ground filter or similar method can be used to
remove man-made objects from DSM to generate DTM if one has not already been
generated for the study area. A number of different ratios were used for the number of
training, validation, and test images, and the ratio that yielded the best results was

selected. 80% of the dataset is used for training deep learning models, 10% for validation,

37

and 10% to test the performance of the models, respectively. In total, 2,185 buildings
were included in the test area, including buildings with different roof types and structures.
A random sample of validation data was selected from the study area. The buildings in

the test area were excluded and not used as part of the training deep learning models.

#

Figure 3.1 An overview of the study area and building footprints

38

Several pre-processing operations are performed for generating input image tiles for
CNNSs. Raster image of the building footprints was generated using building footprint
vectors, then the ground truth masks are generated by assigning pixels within the building
given the value of "1" and those outside given the value of "0". The study area was clipped
into 256x256 grids of non-overlapping pixels from the raster data, and those grids were
then used as inputs to the deep learning models. An example tile illustrating the RGB true
orthophoto, vector building footprint, nNDSM, and ground truth mask can be seen in Figure
3.2.

4
b o

(a) (b) (c) (d)

Figure 3.2 A sample tile from the study area: (a) RGB true orthophoto, (b) building
footprint vector, (c), nDSM, and (d) building mask [119]

3.3. Model Training

Several network training processes were conducted using UNet and Link-Net with
different backbones to obtain the most accurate possible results. To determine whether
building height information contributes significantly to the results of networks, two
separate inputs (RGB and RGB + nDSM) for networks were used. Several backbone
networks (ResNet-18, ResNet-50, and SeResNet-18) were used with U-Net and LinkNet,
both of which have a good reputation for their success when used for segmentation, to
achieve different levels of success in segmentation. Each CNN was trained using the
generated training dataset, i.e., a pre-trained weight or fine-tuning of the weights is not
used during the training phase. The learning process includes tweaking a few parameters
that are critical to the success of the process, such as the initial learning rate, batch size,
number of epochs, loss function and optimization method. An overall view of the
developed framework is given in Figure 3.3. An overview of model training parameters

is given in Table 3.1.

39

ay

True Orthophoto

B

nDSM

Ground Truth Mask

Figure 3.3 An overall view of the developed framework [119]

Parameter U-Net LinkNet
Backbone ResNet-18, ResNet50, SeResNet-18
Weight Initialization Pre-trained
Learning Rate 0.001 (Default)
Optimizer Adam
Metrics F1-Score
Loss Function BCE-Dice Loss
Number of Epochs 100
Data Augmentation None
Activation Function Sigmoid
Batch Size 16
Input Size 256 x 256 x 3 (True Ortho only)

256 x 256 x 4 (True Ortho + nDSM)

Table 3.1 Model training parameters [119]

Model training was performed using the Adam optimizer. The main difference between
different optimization algorithms is the way the learning rate is implemented as well as
the frequency with which these parameters (weights) are updated. The training was

performed 0.001 learning rate and weight decay is not used during model training.

40

An epoch of training refers to a complete cycle through all of the datasets for training.
Several model trainings were performed with different epochs as part of the model
training process to decide the most suitable number of epochs for training without
overfitting. Each CNN is trained for 100 epochs, as many models’ highest accuracy is
achieved up to 100 epochs, and training with more epochs did not result in further
improvements in the results. Each time the model was run through an epoch, the
validation data were used to evaluate the model for that epoch.

Batch size is also an important parameter that determines how many images will be used
for training in each epoch. Usually larger batch sizes lead to better results. Taking this
into consideration, a batch size of 16 is used for each model training. Models performance
is assessed using the F1-score, and Binary cross entropy (BCE)-dice is used as the loss
function. There are several ways to measure the error rate. One is by using the F1-score,
a harmonic mean that gives an estimate of how many incorrect classifications were made.
Segmentation is typically carried out using the BCE-Dice loss function. Both approaches
are useful for various reasons, such as being able to maintain the stability of BCE while

still allowing for some diversity in the loss.

Data augmentation techniques can also be applied to prevent models from overfitting.
Images can be augmented by performing geometric operations, such as flipping, scaling,
and rotating. Since no overfitting occurred during the training phase, this study did not
use any data augmentation techniques. It is also common to employ pre-trained models
trained on large datasets by fine-tuning pre-trained weights. This experiment does not use
pre-trained weights or fine-tuned networks but instead trains all networks from scratch

using the generated training dataset.

3.4. Results

In this section, RGB-only results and RGB-Z results are discussed. Results and

comparisons of the vectorization process are also presented.

41

3.4.1. True Orthophoto (RGB) Results

The results of the model based on the use of only true orthophotos are shown in Table
3.2. U-Net with ResNet-18 backbone achieved the highest F-1 Score and loU score on
the test data with 92.8% and 86.7%, respectively. LinkNet with ResNet-50 backbone,
which achieved the second best performance with an F-1 score of 92.7% and loU score
of 86.5% resulted as second. Results show that U-Net and LinkNet are of performed
similar in terms of visual analysis. There are, however, some differences between the
segmented output of U-Net and LinkNet, with LinkNet usually containing unorganized
predictions that are less homogeneous. In addition to this, the U-Net has shown to be an
effective means of separating structures with small areas, even though it is more
challenging. Nearly all models failed to predict correctly when the rooftops were covered
with trees. The quality of segmentation was primarily affected by shadows for all models.
A shaded area belonging to the building class is frequently misclassified as a non-building
area. Using pre-trained weights rather than fine-tuned CNNs has the potential to be a
useful strategy to improve the segmentation performance. A comparison of the

predictions of all the models is shown in Figure 3.4 on the same image tile.

Best Test Test
F1- Validation | Validation Jaccard
Model Epoch Loss F1- -
Score F1-Score Loss (IoU)
Result Score
Score

U-Net +
ResNet.18 78 0.981 | 0.037 0.949 0.157 0.929 0.867
U-Net +
ResNet_50 96 0.986 | 0.027 0.949 0.174 0.897 0.814
U-Net +
SeResNet- 83 0.987 | 0.025 0.947 0.184 0918 0.849
18
LinkNet +
ResNet.18 94 0.984 | 0.030 0.950 0.163 0.924 0.858
LinkNet +
ResNet_50 o7 0.975 | 0.050 0.947 0.154 0.927 0.865
LinkNet +
SeResNet- 88 0.986 | 0.026 0.945 0.189 0.908 0.832
18

Table 3.2 Quantitative results of RGB-only training [119]

42

Figure 3.4 An overview of the RGB-only predictions for the test area: (a) True
orthophoto, (b) Ground truth, (c) U-Net+ResNet-18, (d) U-Net+ResNet-50, (e) U-
Net+SeResNet-18, (f) LinkNet+ResNet-18, (g) LinkNet+ResNet-50 and (h)
LinkNet+SeResnet-18 [119].

3.4.2. True Orthophoto + nDSM (RGB-Z) Results

By incorporating height information into the training process, F1 and loU scores
significantly increased when compared to RGB-only results. LinkNet with ResNet-50
backbone achieved the best F1-Score and loU score on test data with 96.1% and 92.6%,
respectively. As compared to RGB-only results, using nDSM for the fourth band
improved the F1-Score and loU scores by 3.2% and 5.9%, respectively. The validation
loss, which was previously 0.154, was reduced to 0.073 as a result of this improvement.
Visual inspection of test predictions also indicates that incorporating height information
increased the performance of all CNNSs. (Figure 3.5). This can be seen in the fact that the
outputs were smoother, homogeneous, and more structured. Furthermore, adding nDSM
as height information also resulted in a less fuzzy presentation of boundaries along
buildings as well. Moreover, it has been observed that the U-Net was able to provide a
better segmentation quality for complex buildings, as well. A comparison of the

performance measures of different CNNs for RGB +nDSM is presented in Table 3.3.

43

Best Test Test
© F1- Validation | Validation St 1 Jaceard
Model Epoch Loss F1-
Score F1-Score Loss (IoU)
Result Score
Score
U-Net +
ResNet-18 93 0.982 | 0.034 0.972 0.073 0.958 | 0.919
U-Net +
ResNet-50 95 0.987 | 0.023 0.973 0.086 0.960 | 0924
U-Net +
SeResNet- 84 0.983 | 0.032 0.972 0.080 0.958 | 0.920
18
LinkNet +
ResNet-18 93 0.985 | 0.028 0.972 0.086 0.958 | 0.919
LinkNet +
ResNet-50 89 0.986 | 0.027 0.973 0.079 0.961 0.926
LinkNet +
SeResNet- 95 0.987 | 0.025 0.971 0.093 0.960 | 0.925
18

Table 3.3 Quantitative results of RGB + nDSM training [119]

'.!

H!.l*.'.':! =l| N!""
\ P ||i- £y

[\ -t K

e

a "WRTIERET] A
(e)

Figure 3.5 An overview of the RGB + nDSM predictions for the test area: (a) True
orthophoto, (b) Ground truth, (c) U-Net+ResNet-18, (d) U-Net+ResNet-50, (e) U-
Net+SeResNet-18, (f) LinkNet+ResNet-18, (g) LinkNet+ResNet-50 and (h)
LinkNet+SeResnet-18 [119].

44

3.5. Vectorization

As part of the vectorization, predicted building boundaries were vectorized with the help
of GDAL. The Douglas-Peucker line simplification algorithm was applied to vectorized
building footprints to reduce the total number of lines and make lines smoother. In the
Douglas-Peucker algorithm, a vector dataset is simplified by a tolerance value, so less
than the given tolerance value will be straightened out and simplified. Several tolerance
values are used to minimize the mean difference of vector geometries. Used tolerance
values for different models and their mean differences are given in Table 3.4. A view of
the generated vectorized building footprints from the test area can be seen in Figure 3.6.

Model Data Tolerance | Mean Difference
U-Net + ResNet-18 True Orthophoto 0.25 0.014 m?
U-Net + ResNet-50 True Orthophoto 0.20 0.006 m?
U-Net + SeResNet-18 True Orthophoto 0.30 0.004 m?
LinkNet + ResNet-18 True Orthophoto 0.25 0.008 m?
LinkNet + ResNet-50 True Orthophoto 0.30 0.006 m?
LinkNet + SeResNet-18 True Orthophoto 0.20 0.009 m?
U-Net + ResNet-18 True Ortho + nDSM 0.25 0.015 m?
U-Net + ResNet-50 True Ortho + nDSM 0.25 0.046 m?
U-Net + SeResNet-18 True Ortho + nDSM 0.20 0.009 m?
LinkNet + ResNet-18 True Ortho + nDSM 0.25 0.011 m?
LinkNet + ResNet-50 True Ortho + nDSM 0.25 0.015 m?
LinkNet + SeResNet-18 True Ortho + nDSM 0.15 0.025 m?

Table 3.4 Simplification tolerance values and their mean differences. [119]

45

Figure 3.6 An overview of simplified building footprint vectors [119].

46

3.6. Discussions and Conclusions on Building Footprint Extraction

This section compares the performance of two different CNNs, namely the U-Net and
LinkNet with different backbones, for extracting building footprints from VHR true
orthophotos and nDSMs. Results are presented based on input data from two sources:
RGB data only, and RGB data combined with height information (nDSM). Ground truth
mask data is generated from building footprints provided by the The General Directorate
of Land Registry and Cadastre of Turkiye (GDLRC) of Turkey.

As a result of the analysis, it can be concluded that fusing nDSM with RGB data
significantly improved the performance of the model. Using RGB data, it was found that
U-Net with ResNet-18 backbone model was able to achieve both highest F1-score and
loU (loU) scores 92.9% and 86.7%, respectively. LinkNet with ResNet-50 backbone
achieved F1-score of 96.1% and loU scores of 92.6% as the best results for the data fusion
approach (nDSM), respectively. Compared with the test data, it can be seen that F1-score

has improved by 3.2% and loU has improved by 5.9% in terms of accuracy.

The visual inspection revealed that false predictions appeared to be caused because of
obscured roofs due to shadows or trees, as well as by the areas that were located between
two buildings that were close together. To overcome these problems, it might be possible
to train line segment detection networks with more data so that they can directly extract
roof structures, instead of classifying them based on pixels. Alternatively, future studies
can also provide a deeper understanding of hyperparameters by analyzing them in more
detail. Building footprints are generated and updated with this approach, which reduces
manual efforts performed by the mapping agencies and enables them to produce and keep

up-to-date building data in an effective way.

When the results presented in this chapter are compared with the roof type classification
study given in the previous section, it can be concluded that the DL methods generally
performed better for building extraction task. Due to the fact that each roof patch is

considered as a whole in the roof type classification, and pixel-based segmentation is used

47

in DL-based building footprint extraction, there is expected to be a difference in accuracy
between these two approaches. Considering the fact that results are generally dependent
amount of the used training data and quality of the ground truth data, results can be
improved in future studies by expanding the dataset used in roof type classification or by
investigating different DL architectures.

DL-based object detection methods, such as YOLO [124] can also be used for this task.
YOLO (You Only Look Once) is an object detection algorithm that uses a single CNN to
predict the locations and classes of objects in an image. The YOLO network is composed
of 24 convolutional layers followed by two fully connected layers. The network takes the
entire image as input and divides it into a grid of cells. Each cell is responsible for
predicting bounding boxes and class probabilities for objects that lie within the cell. Using
YOLO together with SAHI [125] leads to more accurate results in object detection.

YOLO uses anchor boxes to allow the network to predict objects of different shapes and
sizes. YOLO detect objects in an image and draw bounding boxes around them. It works
by dividing the image into a grid and predicting bounding boxes and class probabilities
for each cell in the grid. YOLO has a single forward pass and predicts all the objects in
the image in one go, which makes it very fast and efficient. However, YOLO has

difficulty detecting small objects and objects that are close together.

YOLO and segmentation networks, such as U-Net have very different network
architectures due to the nature of the tasks they are designed for. YOLO is designed for
object detection, where the focus is on predicting the location and class of objects within
an image. U-Net is designed for image segmentation, where the focus is on segmenting
the image into different regions based on their semantic meaning. However, both
architectures use convolutional neural networks and have shown excellent performance
on their respective tasks. YOLO is an object detection algorithm that is fast and efficient
but may struggle with small or closely-packed objects, while U-Net is a segmentation
network that is precise and well-suited for building segmentation but may be slower and

require more computational resources.

48

Building footprints can be used as an important input for 3D building reconstruction. One
approach to using building footprints for 3D building reconstruction is to extrude the
footprints to generate a basic 3D model (LoD1) of the building. This involves assigning
a height value to the footprint and extruding it vertically to create a simple box-like shape
representing the building's height. While this method can generate a coarse 3D model of
the building, it may not accurately capture the building's shape, style, or architectural
details.

Another approach is to use machine learning techniques to learn from the building
footprints and generate more detailed 3D models. This involves training a machine
learning model on a large dataset of building footprints and their corresponding 3D
models, enabling the model to learn the relationships between building footprints and 3D
models. Once trained, the model can generate more accurate and detailed 3D models of

buildings from building footprints alone.

In summary, building footprints can be used as an important input for 3D building
reconstruction, enabling the generation of basic 3D models of buildings and serving as a

key input for more advanced techniques, such as machine learning and data fusion.

49

4. ROOF TYPE CLASSIFICATION USING CONVOLUTIONAL
NEURAL NETWORKS

In this chapter, the DL approach implemented for the roof type classification for six
categories is presented. A dataset with 10,000 unique roof images was generated based
on VHR orthophotos with 10 cm GSD of Cesme, Turkiye is used for the classification
task. A detailed comparison of the classification results obtained from different CNNs is
also presented in this section. The results given here are largely published in [23].

4.1. Motivation for Roof Type Classification

Despite recent advancements in computer vision and photogrammetry, it remains a
challenge for researchers to automate the extraction of building information in urban
environments. Roof is a key element in buildings, and it is generally required by
applications that work with three-dimensional geographic information systems (3D GIS)
in order to know what type of roof it is, and what its geometry is, to perform other analyses
on generated models. Model-driven and data-driven methods are two widely used
conventional ways for 3D building reconstruction. A model-driven method involves
predicting the roof model from the input image or DSM and then matching the roof model
against the roof library to reconstruct a 3D building model [126]. Therefore, roofs are

essential parts for model-driven reconstruction of 3D building models.

Conventional methods are still frequently used for image segmentation and classification.
The main limitation of these techniques can be attributed to the fact that they generally
use object features such as corners, edges, and lines. Various methods of artificial
intelligence (Al) have been developed over the last few decades for the extraction of
features from images. Deep learning, especially CNNs, presents a powerful tool for
image classification problems. However, it must be noted that a large volume of training
data is necessary to achieve accurate results with the DL-based methods. In this part of

the study, the primary goal was to transform very high-resolution orthophotos (10 cm) of

50

Cesme, Turkiye, into a roof type dataset that contains 10,000 roof images of 6 commonly
used roof types. A shallow CNN model was developed in this study for further
classification and the results were compared with different fine-tuned CNNSs using
ImageNet weights. The results of shallow CNN and fine-tuned CNNs using ImageNet
weights are given in detail here.

4.2. Study Area and Dataset

The dataset used for training, testing, and validation for the DL models was generated
from orthophotos with a spatial resolution of 10 cm. Photogrammetry operators manually
delineated the building footprints based on stereo imagery [50]. Manual adjustment of
roof edges was carried out by visual inspection of orthophotos with building footprint
vectors. Since building footprints lack attribute information, the roof edges were adjusted
by visually comparing orthophotos with building footprints. In addition to visual
assessments, the roofs under partial or complete occlusion of trees or shadows were
eliminated. For the classification task, a roof library comprising six types of roofs that are
commonly observed worldwide (flat, hip, half hip, gable, pyramid, and complex) is used.
Figure 3.1 illustrates the orthophoto of the study area with building footprints in a general
and close up view. An example of a roof vector before and after correction can be seen in

Figure 3.2.

Figure 4.1 A general view (left) and close view (right) of the study area with building footprint
vectors

51

Figure 4.2 An example of a roof vector before (left) and after (right) correction

A sample number of roofs for each type is chosen during the creation of the dataset as a
way of maintaining a balance among the roof types. Despite the total number of images
for each roof type, the number of samples obtained for classes such as half hip and
pyramids is lower than those obtained for other roof types. A number of different ratios
were used for the number of training, validation, and test images, and the ratio that yielded
the best results was selected. The number of training, validation, and test images for each
roof type is given in Table 4.1.

Roof Type T(';'z'f,z')‘g V“(II‘S;,:')““ Test (10%) Total
Complex 1620 405 225 2250
Flat 1260 315 175 1750
Gable 1260 315 175 1750
Hip 1260 315 175 1750
Pyramid 1080 270 150 1500
Halfhip 720 180 100 1000

Table 4.1 Number of training, validation, and test images for each roof type.

A further step was taken in the process of clipping the roof patches automatically from
the orthophotos by using the building footprints as a reference. Since the study area is
tiled into over 900 orthophotos, there is a possibility that a roof could be on the border,
which would result in multiple orthophotos covering the same building. Consequently,
an orthophotos mosaic with a resolution of 10 cm was generated before clipping to

52

prevent this problem from occurring. Roof image tiles were split and organized based on

their type. An illustration of sample roofs from each class can be found in Figure 3.3.

- ﬁ « -‘-
. - s S
| :
l-——-vh-——J
% g s
£ e
| A
o
= £ \{/
1 ﬁ | - \
= o e | o

Figure 4.3 Sample roof tiles from each class (Cesme, Turkey).

4.3. Methodology

It has been demonstrated by many studies that deep neural networks are superior for
computer vision tasks compared to conventional machine learning methods. A critical
step in training the CNNs is finding the optimal hyper-parameters to achieve high
accuracy results. The amount of parameters used in a neural network depends on its
design. The performance of neural networks is usually enhanced when they are trained

on large amounts of data.

A shallow CNN model is also developed for roof classification task, and the results of the
model compared to popular fine-tuned CNNSs. Classification results of three fine-tuned
CNNs using pre-trained ImageNet weights, namely EfficientNet [127], ResNet [128], and
VGG-16 [65] are compared with the developed shallow CNN model. Generated roof

dataset is split as training (72%), validation (18%), and testing (10%) assessing
performance of each DL method. Generated input dataset is used as input for the CNN.
Considering the fact that the performance of neural networks is usually enhanced when
they are trained on large amounts of data, a data augmentation for training neural
networks was applied. A comparison of precision, recall, Fl-score, and accuracy

measures of the different CNNSs is conducted in order to evaluate their classification

performance.
L. TP
True Label Precision =
TP + FP
True False
Positive Positive Positive TP
Recall =
(TP) (FP) TP + FN
Predicted
Label
False True 2 x precision x recall
. . . F1- score = —
Negative Negative Negative precision + recall
(FN) (TN)
Positive Negative Accuracy = TP+TN

TP+ FN +TN + FP

Figure 4.4 Depiction of accuracy measures and their equations.

Implemented shallow CNN consists of 312,550 parameters in five convolutional blocks
and the convolutional layers (Conv2D) use a 3x3 kernel size (Figure 3.5). Pooling layers
(MaxPooling2D, GlobalAveragePooling2D) use the default pool size of 2x2. To avoid
overfitting, a batch normalization with a momentum of 0.01 was applied. Instead of using
a flattened layer, a global average pooling layer was used to reduce shallow CNN
parameters. All CNNSs are trained for 150 epochs using Adam optimizer with a learning
rate of 0.0003, 64 batch size, and categorical cross-entropy loss function. A detailed view
of the shallow CNN model is given in Table 4.2.

Input
Conv2D (32)
BatchNormalization
MaxPooling2D
Conv2D (64)
Conv2D (64)
MaxPooling2D
Dense (256)

Activation (ReLU) ‘
BatchNormalization
Activation (RelLU) ‘
Conv2D (128)
Conv2D (128)
BatchNormalization
Activation (RelU) ‘
Dense (Softmax)
Output

GlobalAveragePooling2D

Figure 4.5 Shallow CNN model architecture

54

Layer (type) Qutput Shape Param #

conv2d_280 (Conv2D) (None, 148, 148, 32) 864

batch normalization 233 (Bat (None, 148, 148, 32) 128 o
activation_216 (Activation) (None, 148, 148, 32) 2
max_pooling2d_6@ (MaxPooling (None, 7@, 7@, 32) @
conv2d_281 (ConvaD) (None, 70, 70, 64) 18406
conv2d_282 (Conv2D) (None, 7@, 7@, 64) 36864
batch_normalization_234 (Bat (None, 78, 78, 64) 256
activation_217 (Activation) (Nome, 70, 78, 64) e
max_pooling2d_61 (MaxPooling (None, 35, 35, &4) a
conv2d_283 (Conv2D) (None, 35, 35, 128) 73856
conv2d_284 (ConvaD) (Nome, 35, 35, 128) 147456
batch_normalization 235 (Bat (None, 35, 35, 128) 512
activation_218 (Activation) (Mone, 35, 35, 128) 2]
global_average_pooling2d_34 (None, 128) 8

dense_76 (Dense) (None, 256) 33824
dense_77 (Dense) (None, &) 1542

Total params: 312,998
Trainable params: 312,558
Mon-trainable params: 448

Table 4.2 Implemented shallow CNN parameters.

The fine-tuning method involves freezing the base model of pre-trained CNN, and
training only a selected few top layers with the new dataset. This method generally
enhances the performance of neural networks trained with fewer data. For the
classification task, VGG-16, EfficientNetB4, and ResNet-50 networks using ImageNet
weights are fine-tuned. Fine-tuning of CNNSs is carried out by using weights that have
been pre-trained ImageNet [129] dataset. All networks are trained with 64 batch size
using cross-entropy loss function and Adam optimizer. After replacement, the modified
networks were trained for 10 epochs. Only the fully connected layers are trained during
the fine-tuning while the base network layers are frozen. The base network layers are then

trained for 10 epochs, then the entire network is trained for 50 epochs for fine-tuning.

55

4.4. Results

A comparison of the DL models was conducted based on F1-Score, precision, recall, and
accuracy measures. A random sample of 10% of each type (1000 images) of the roof was
selected from the dataset to test the classification performance of the CNNSs. This section
presents and discusses the classification results in detail, as well as the methods used.

The shallow CNN model achieved an overall performance of 80% accuracy on the test
dataset. Classification results of shallow CNN for each roof type are given in Table 4.3.
Normalized confusion matrix of classification results with shallow CNN is given in
Figure 4.6. The total number of images used for testing for each roof class is given in the
"Support” column of the table. The flat roof type achieved the highest precision and F1-
score among the six roof types. Due to the higher number of samples compared to other
roof types, complex roofs are classed as the second-best performance roof based on their
performance. Half-hip roof type achieved the lowest results as a result of a lower number

of samples compared with other roof types.

Roof Type Precision Recall F1-score Support
Complex 87% 80% 83% 225
Flat 89% 84% 86% 175
Gable 76% 86% 81% 175
Halfhip 74% 62% 67% 100
Hip 78% 75% 76% 175
Pyramid 73% 86% 79% 150
Accuracy 80% 1000
Macro avg. 79% 79% 79% 1000
Weighted avg. 80% 80% 80% 1000

Table 4.3 Precision, Recall, and F1-score results of shallow CNN

56

True label

complex

flat 1

gable

halfhip -

hip

pyramid -

0.

03 0.06

0.07 0.01

0.

01 0.01

0.02

0.01

0.04

0.00

0.01
\& K
hs) N
2 K
) @

Predicted label

0.04

0.00

&
)

0.8

0.7

0.6

0.5

0.4

0.3

r0.2

ro.1

- 0.0

Figure 4.6 Normalized confusion matrix of shallow CNN

VGG-16 achieved 6% better overall accuracy compared to shallow CNN. In terms of
precision as well as F1-score values, the pyramid roof type achieved the best results. The
half-hip roof type achieved the lowest classification score, as did the shallow CNN. Table

4.4 shows the classification results of fine-tuned VGG-16 network. Normalized confusion

matrix of classification results with VGG-16 is given in Figure 3.7.

Roof Type Precision Recall F1-score Support
Complex 90% 80% 84% 225
Flat 81% 93% 86% 175
Gable 90% 84% 87% 175
Halfhip 82% 80% 81% 100
Hip 83% 92% 87% 175
Pyramid 94% 89% 91% 150
Accuracy 86% 1000
Macro avg. 86% 86% 86% 1000
Weighted avg. 87% 86% 86% 1000

Table 4.4 Precision, Recall, and F1-score results of fine-tuned VGG-16

57

0.77 0.07 0.04 0.03 0.06 0.03
complex 0.8
flat{ 0-02 07
0.6
- 4 0.03
E gable 0.5
o
E L 0.4
& halfhip{ 0.05 '
0.3
ind 0.06
hip L 0.2
0.1
pyramid 0.03
T T —- 0.0
4 X (/] R
@ @ O &
LO@Q § @

Predicted label

Figure 4.7 Normalized confusion matrix of fine-tuned VGG-16

The EfficientNet achieved 84.4% accuracy on the ImageNet dataset in 2019, placing it
among the state-of-the-art CNNSs. EfficientNet divides the original convolution into two
stages by reducing computational costs by a significant amount with minimal loss of
accuracy. It uses linear activation at the last layer in each block to avoid loss of
information from ReLU. The model can therefore balance depth, resolution, and width to
achieve the highest results possible. Precision, Recall, and F1-score results of fine-tuned
EfficientNetB4 are given in Table 4.5. Normalized confusion matrix of classification
results with EfficientNetB4 is given in Figure 3.8.The pyramid roof type achieved the
highest F1-score, which is similar to the VGG-16 model with an overall accuracy of 83%.
It was found that both half-hip roof types (85%) and complex roof types (84%), as well

as pyramid roof types (85%), achieved the best results for classification.

58

Roof Type Precision Recall F1-score Support
Complex 85% 77% 81% 225
Flat 82% 83% 83% 175
Gable 79% 88% 83% 175
Halfhip 85% 81% 83% 100
Hip 82% 81% 81% 175
Pyramid 84% 89% 87% 150
Accuracy 83% 1000
Macro avg. 83% 83% 83% 1000
Weighted avg. 83% 83% 83% 1000

Table 4.5 Precision, Recall, and F1-score results of fine-tuned EfficientNetB4

complex ST 005 005 002 007 0.2 0.8
0.7
flat{ 0.03
0.6
E gable 0.03 0.5
0
Q
2 0.4
& halfhip{ 0.05
0.3
i 0.05
hip oo
0.1
pyramid 1 0.03
‘ —L 0.0
+
e’
&

Predicted label

Figure 4.8 Normalized confusion matrix of fine-tuned EfficientNetB4

ResNet-50 is a widely used CNN for classification tasks. The model won the ImageNet
challenge in 2015 and is capable of training deep CNNs with thousands of layers. The
model achieved an overall accuracy of 85%, which is slightly lower than VGG-16 model.
The pyramid roof type achieved the highest score, while the half-hip roof type also
achieved high precision and F1-scores, coming in second place. Precision, Recall, and
F1-score results of fine-tuned ResNet-50 are given in Table 4.6. Normalized confusion

matrix of classification results with ResNet-50 is given in Figure 3.9.

59

Roof Type Precision Recall F1-score Support
Complex 86% 79% 82% 225
Flat 84% 85% 85% 175
Gable 82% 88% 85% 175
Halfhip 89% 85% 87% 100
Hip 81% 86% 83% 175
Pyramid 90% 88% 89% 150
Accuracy 85% 1000
Macro avg. 85% 85% 85% 1000
Weighted avg. 85% 85% 85% 1000

Table 4.6 Precision, Recall, and F1-score results of fine-tuned ResNet-50.

complex JRES 008 003 004 0.05
flat{ 0.01
3 gable{ 0.03
e
=
g
& halfhip{ 0.06
hip 0.02
AN ¢ L ®
& ,\\’D ~<>\ (Q\ &
& S

Predicted label

0.01
0.8
0.6
0.4
0.2
—- 0.0
>
&
5
3

Figure 4.9 Normalized confusion matrix of fine-tuned ResNet-50

4.5. Discussions and Conclusions on Roof Type Classification

In this section of the thesis, a roof type dataset was generated based on VHR aerial
imagery. Proposed method can be used to perform automatic roof type detection and
classification tasks. The dataset includes six different types of roofs that can be classified

according to their characteristics. Classification performance of shallow CNN compared

60

with that of three fine-tuned CNNs namely VGG-16, EfficientNetB4, and ResNet-50. In
this section, CNN models are fine-tuned that use pre-trained ImageNet weights before
performing a comparison with the other models. A fine-tuned VGG-16 model, which was
able to achieve an overall accuracy of 86%, was found to be the best performing model
for classifying roof types. Implemented shallow CNN achieved an overall accuracy of
80%. By fine-tuning the models that use pre-trained weights, the performance problems
that are usually associated with smaller datasets can be overcome. Based on the accuracy
of the four models, it has been found that the values of class accuracy for each model
were not uniform. Halfhip class was found to achieve lower scores with the VGG-16

model while it was found to have the highest accuracy value with ResNet-50.

Based on the classification performance of CNNs, there appears to be a promising initial
result of the method, however, training data size can be increased in the future to improve
model performance. Although accuracy of the used models did not differ significantly
from each other, fine-tuned CNNs achieved better scores compared to implemented
shallow CNN. Due to the fact that the dataset did not have the same number of samples
for each roof type, it can be said that roof classes with more samples, such as the complex
roof type, are more likely to achieve better results compared to other roof types in general.
The results of the roof classification can be improved in the following ways: the dataset
can be expanded with more images, CNN parameters can be optimized, and new
categories of roof types can be introduced to the dataset. As a result of the fine-tuned
models having promising results, other popular networks may be used in the future to

extend the study's findings.

It can be concluded from the overall evaluations that the results of the fine-tuned networks
perform better compared to the untrained shallow CNN. In contrast, the shallow CNN
model also showed high accuracy although training images in dataset were fewer than the
pre-trained weights for other CNN models. As a result, the model can be further tuned to
increase the performance of the prediction. Building roof types affect the affect the overall
appearance, functionality, and durability of a building. Different roof types have different
shapes, slopes, and angles, which can greatly impact the overall appearance of a building.

The shape and design of a roof can also affect ventilation and airflow within a building.

61

A roof with a steep pitch or multiple slopes like a hip roof can create better air circulation,
which can help to regulate temperature and prevent moisture buildup. The type of roof
can also impact energy efficiency, particularly in terms of insulation and heat retention.
For example, a flat roof may require more insulation to prevent heat loss in colder

climates.

On the other hand, the output of roof type classification approaches are useful inputs for
semi-automatic building modeling software that are based on pre-defined libraries.
Although roof-type library based semi-automatic approaches represent an earlier stage in
the city modeling applications, they are fast and efficient to build models at large scale.
The proposed study demonstrated that high accuracy can be achieved with shallow CNNs
that can be applied regionally, although the number of roof types is the main limitation.

Roof types can be used as an important feature for procedural building reconstruction.
Procedural building reconstruction refers to the automatic generation of 3D models of
buildings from 2D images or point cloud data. In this process, roof types can provide
valuable information about the shape and style of a building's roof, which can be used to
generate more accurate and realistic 3D models. One approach to using roof types for
procedural building reconstruction is to classify the roof type of each building based on

its characteristics, such as the number of slopes, roof pitch, and overall shape.

Once the roof types are classified, they can be used to generate 3D models of buildings
with similar roof types. This can be done using procedural modeling techniques, such as
rule-based or parametric modeling, which generate 3D models based on a set of rules or
parameters that define the building's shape and style. By using roof types as a key input
for these models, the resulting 3D models can be more accurate and realistic, as they

reflect the characteristics of real-world buildings with similar roof types.

This study automated the classification of roof types using deep learning, allowing it to
be automated more quickly with high accuracy. In future studies, it may be possible to

improve results by using a larger dataset or by experimenting with different deep learning

62

algorithms. The main challenge is to generate dataset for deep learning, which requires
manual effort for assigning each roof type to a class. Data fusion from different sources,
such as RGB+height information may improve classification performance of the models.

In different computer vision and image recognition tasks, Vision Transformers [130] are
now becoming more popular as competitive alternatives to CNNs. The vision transformer
architecture replaces the convolutional layers used in traditional CNNs with a transformer
encoder. The input image is first divided into a fixed number of non-overlapping patches,
which are flattened and fed into the transformer encoder. The transformer encoder then
processes the patches and outputs a classification label. One advantage of the vision
transformer architecture is that it does not rely on hand-crafted features or prior
knowledge about the images. Instead, it learns to extract meaningful features directly
from the image patches using self-attention mechanisms. This allows the model to
achieve state-of-the-art performance on several image classification benchmarks, even
with limited amounts of training data. Overall, transformers offer a promising approach
for image classification, and their effectiveness in this domain is an active area of
research. As a future work, transformed-based classification architectures can be used for

roof type classification or similar tasks.

63

5. AUTOMATIC LOD 2.2 BUILDING RECONSTRUCTION WITH
DEEP LEARNING

In this chapter, investigations on another approach for extracting the roof geometries in
the form of vectors (lines) are presented and discussed. A DL-based framework for fully
automated vectorization of LoD 2.2 roof details in city-scale is proposed. This method
does not depend on any roof library, and can also detect complex roof shapes. As a part
of this section, a new dataset is generated from existing 3D city models and VHR true
orthophotos. Performance of the proposed framework assessed both quantitatively and
qualitatively. Also, robustness of the method is analyzed on cases such as blocking
objects over roofs like trees and shadow.

5.1. Motivation for Automatic LoD2.2 Building Reconstruction

Automatic extraction of roof line structures beyond LoD2.0 is still a difficult problem due
to complexity of roof structures and the difficulty of detecting smaller objects such as
chimneys and small windows. Very high resolution aerial images make several details
visible over the roofs, making it difficult to detect them. In this section, a framework for
fully automated vectorization of roof line segments in LoD2.2 using line segment
detection networks is proposed. The approach can be applied at city scale. Unlike the
library-based methods, the proposed approach does not depend on pre-defined roof types
and can also reconstruct complex roofs and objects smaller than 1 m2. A training dataset
with more than 2,2 million lines and more than 139 k buildings measured in LoD2.2 from
true orthophotos with 8 cm resolution with sub-pixel accuracy were used. The results
show an improvement to the recent studies on the extraction of LoD2.0 roof structures.
The robustness of the method was also analyzed w.r.t. roof-blocking objects such as trees

and shadow areas.

64

5.2. Study Area and Data Preparation

Ankara is the capital city of Turkiye with 5.1 million population, making it Turkiye’s
second most populated city after Istanbul. In this study, experiments were performed on
a custom dataset that covers Golbasi town near Ankara. A general and close view of the
study area with training and test tile distribution are given in Figure 5.1. A total of 139k+
buildings with roof details in LoD 2.2 were used in this research. There are several types
of roofs in the study area, which are generally used in various parts of Tirkiye, resulting
in a broad variety of roof types.

A total of 2.2 million lines of roof details were used in this study. LoD 2.2 roof details
were manually measured by experienced photogrammetry operators using aerial stereo
imagery. Together with the LoD 2.2 roof details, high-resolution true orthophotos of 8
cm GSD were used in the dataset. All data used in this study were provided by GDLRC.
The roof details with an area of less than 1 m? were kept in the dataset. An example of a
LoD2.2 building roof with multiple small roof details overlaid with very high-resolution
true orthophoto is given in Figure 5.2. The DSM of the study area was generated by
GDLRC from stereo aerial imagery. DTM is generated by applying ground filtering to
DSM. Additionally, a second DSM was created using height values of 3D roof

geometries.

Several pre-processing steps were carried out during the data preparation phase. Since all
line segment detection networks used in the study received inputs in different data
structures, different data processing scripts were generated for each network. The data
processing pipeline scripts have been written in Python to automate operations such as
image tiling, coordinate transformation, ground truth generation, and merge of output

files into shapefiles as batch processes.

65

Figure 5.1 A general and zoomed view of the study area with training tiles (red) and test
66

tiles (green) distribution

Figure 5.2 A close view of complex LoD2.2 building roof structure

8 cm resolution true orthophoto covering the entire study area was divided into a non-
overlapping grid with 512 x 512 tiles (see Figure 5.3 for an example). Vector data of roof
details for each tile was clipped in the same grid. Ground truth data in the projected
coordinate system was then reprojected into pixel coordinates with sub-pixel accuracy
(up to 15 digits). Since it would not be efficient to use images with very few lines in the
dataset, image tiles that do not contain any buildings or contain very few lines (less than
7) are automatically excluded with a Python script. The remaining dataset contains 30,446
tiles with 512x512 pixel size and approximately 2.2 million roof detail lines at LoD 2.2.
Since validation data was not used in similar line segment detection studies and
benchmark datasets, the dataset was divided into training and testing. Both the total
number of image tiles and lines in the dataset were split as 90% for training and 10% for

testing. The number of lines and tiles after data split is given in Table 5.1.

Data Type Percentage Number of lines Number of tiles
Training 90% 1,982,313 27,402
Test 10% 220,257 3,044
Total 100% 2,202,570 30,446

Table 5.1 Total number of lines and image tiles used for training and test data

L
o B

'

!

Figure 5.3 An example of a non-overlapping tiled image with roof lines and junction
points

In order to ensure heterogenous geographical distributions, the test data were randomly
distributed throughout the entire study area. A small area with neighboring tiles was also
tested to analyze the method's city-scale reconstruction performance. Images of roofs that
are blocked by trees and shadows in test data is also included to test algorithm robustness.

5.3. Methodology

To fully automate the vectorization of city-scale LoD2.2 roof structures, this study
proposes a multi-step methodology that uses in-house- developed custom Python scripts
with line segment detection networks to fully automate the vectorization process. In the
first step, a selected line segment detection network was trained using the proposed
LoD2.2 roof line segment training dataset. Once the training has been completed, roof
segments are predicted from the input image tiles using the trained model. Using Python
scripts developed in-house, roof segments are vectorized, merged, and reprojected after
being predicted from image tiles. After vectorizing, post-processing was applied to the
generated dataset to eliminate redundant junctions, fix line connections between tiles, and
simplify necessary lines. As the last step in the methodology, LoD2.2 roof structures are
exported into the intended format of a vector file such as ESRI Shapefile, GeoJSON, etc.
An overview of the proposed methodology for fully-automatic vectorizing city-scale

LoD2.2 roof structures is presented in Figure 5.4.

68

Line Segment Roof segment predictions Vectorization, Merge
Detection Network 9 P and Reprojection

Input images

Figure 5.4 Overall view of the methodology

Several line segment detection networks have been proposed by researchers to detect and
extract planar lines in images. In this study, ULSD (Unified Line Segment Detection)
[131] is adopted for predicting roof line segments from VHR RGB imagery. This network
was chosen due to its high efficiency for detecting line segments in benchmark datasets
such as the Wireframe [132] and YorkUrban [133] datasets. In addition to extracting
planar structures, ULSD can extract curved lines as well, using its workflow to include
the Bezier Curve. Stacked hourglass network [134] come in the form of a U-shape and
are mostly used for human pose estimation. Used DL network are trained from scratch
using the generated LoD 2.2 roof line dataset. As last, roof line segments and junctions

were predicted in the images of the test data given as input.

5.3.1. Data Augmentation

Data augmentation can be used for increasing the training data by applying several pre-
processing techniques to a dataset. As part of this study, the training dataset was
augmented to quadruple it by increasing from a total of 27,402 images to 109,608.
Horizontal flipping, vertical flipping, and horizontal shifting were used for this purpose.
The ground truth that incorporates the line information of the augmented images has also

been produced. Figure 5.5 shows an augmented sample image and ground truth data for

the generated images.

Figure 5.5 Augmented files with ground truth a. original file, b. horizontal flip, c. vertical
flip, d. mirroring

69

5.3.2. Evaluation Measures

Heatmap-based measures were originally developed for evaluating boundary detection
methods. The main issue in their use lies in that they do not penalize overlapping lines or
evaluate line connections properly, which makes them ineffective for wireframe
detection. To improve the assessment of line segment quality and the structural quality of
wireframes, Zhou et al. [135] proposed Structured Average Precision (SAP) measure for
assessing the accuracy of detected lines and junctions.

The msAP metric is calculated by comparing the predicted line segments with the ground
truth line segments. The metric computes the average precision of the predicted line
segments at different intersection over union (loU) thresholds, and then calculates the
mean of the average precision scores. The loU is a measure of overlap between the
predicted and ground truth line segments. The msAP metric is useful because it provides
a comprehensive evaluation of the line segment detection algorithm's performance across
different levels of loU threshold, which is important in real-world applications where

different levels of accuracy may be required.

In line segment detection, the line uncertainty is often quantified using a measure called
the angular uncertainty, which represents the range of angles over which the line can be
considered a valid match to the ground truth line. The angular uncertainty is usually
defined as a threshold on the angle difference between the predicted line and the ground
truth line. In the calculation of msAP, the line uncertainty is taken into account by
considering only those predicted lines that have an angular uncertainty below a certain
threshold. This is done to ensure that only the most accurate and precise predictions are

included in the evaluation.

Specifically, during the calculation of the average precision for a given loU threshold,
only those predicted lines that have an angular uncertainty below the threshold are
considered as valid detections. Any predicted line with an angular uncertainty above the
threshold is considered a false positive and is not included in the calculation of the average

precision. By including the angular uncertainty in the evaluation of line segment detection

70

algorithms, msAP provides a more comprehensive and realistic measure of performance,

considering both accuracy and precision of the predictions.

The quality of line segments is evaluated by the structural average precision under the
threshold of 5, 10, and 15 pixels (SAP®, sAP?, sAP®) and mean structural average
precision (msAP). The quality of junctions is evaluated by the vectorized junction mean
AP (mAP’), which is computed over the threshold of 0.5, 1.0, and 2.0 pixels.

5.3.3. Implementation Details

Non-overlapping RGB image tiles with a size of 512 x 512 pixels were used during the
training and testing phases. Once the tiles were generated, they were fed into the backbone
network for producing feature maps. Stack-hourglass network settings are based on
defaults settings of as L-CNN [135] and HAWP [136]. Learning rate and weight decay
are setto 4 x 10* and 1 x 10, respectively. The learning rate decayed at the 25" epoch.
A data augmentation experiment was conducted to examine the results of data
augmentation as a part of the study. Batch size was set to 32 for both testing and training.
Stacked hourglass network with 30 epochs is usually sufficient for obtaining accurate
results, and a higher number of training epochs usually do not provide significant
improvement. All model trainings are performed on a single Quadro RTX 8000 GPU with

48 GB of memory. It takes 25 hours to complete the model training.

5.4. Results

In this section, quantitative and qualitative results of line segment detection networks
used in the study are presented. The robustness of the methods is also tested based on

images with trees, shadows, and other obstructions blocking the roofs.

5.4.1. Quantitative Results

A summary of the results can be found in Table 5.2. Despite the increased complexity of
the extraction of LoD 2.2 roof details, the proposed method achieved very high

performance. Unlike the other methods, ULSD utilizes the Bezier curve for detecting line

71

segments. As a result of the experiments, order 4 for defining Bezier curve complexity
was found to provide the most accurate measures and used here. Since the ULSD was
mainly used the Wireframe dataset which is a benchmark dataset for indoor wireframe
parsing, it still performed well for roof segment extraction. Based on the results, ULSD
was able to achieve state-of-the-art results for roof line segment extraction task.

Data SAP® SAPY® | sAP® | msAP | mAP’ | FPS
No Augmentation 52.5 56.3 58.3 55.7 69.0 | 42.0
4x Augmentation 55.3 59.0 60.8 58.4 72.8 | 42.8

Table 5.2 Evaluation results of non-augmented and augmented data

It was shown that the performance of the model has been enhanced through the use of
augmented data. Compared to the original data (without augmentation), msAP increased
by 2.7%, and mAP’ increased by 3.8%. The visual inspection also revealed better

extraction of the small details of the roof when using data augmentation.

5.4.2. Qualitative Results

Figure 5.6 shows a reconstruction of predicted roof segments over a threshold (80% here)
using ULSD network on the LoD2.2 dataset. In terms of both measures and visual results,
the ULSD was successful in detecting the LoD2.2 roof segments in most cases. It was
able to detect roof structures that were even smaller than 1 m? and was also capable of
detecting line segments in complex roof structures. Additionally, the visual results also
show that ULSD generates fewer redundant lines outside buildings as compared to other
methods. ULSD achieved good results when detecting buildings with curved roof
structures due to the use of the Bezier curve. Howewer, the ULSD method has failed to

detect some of the roof structures as well.

72

Prediction Ground Truth

s

>

Figure 5.6 Ground truth and predictions in a test area (0.8 threshold)

73

5.4.3. Method Robustness

The main objective of this section was the evaluation of the robustness of algorithms w.r.t.
roofs of buildings completely or partially covered by trees, as well as against shadows
cast by buildings. Many computer vision methods are still struggling to correctly
reconstruct or detect blocked building roofs. To evaluate the robustness of the line
segment detection networks, a number of manually selected tiles for test data with roofs
that were partially or fully covered with trees. Roof line segments with over 80% score
for predictions were visualized. A separate analysis for blocking trees and shadows was
given. A comparison of the results from the different methods of predicting tile images
with trees blocking roofs given in Figure 5.7. Predictions indicate that the developed

framework was also successful in predicting roofs blocked with trees in most cases.

A comparison of the results from the different methods of predicting tile images in
shadow areas can be seen in Figure 5.8. The ULSD did not generate any redundant lines
and does not detect edges of shadow areas as lines. Although neural networks outperform
the conventional methods, they are still far from perfect. Their performance is also heavily
dependent on the number of examples with blocked roofs or shadows in training data.
More blocked roof segments can be used to train the model to increase its performance
and robustness for such cases. A total of 58 lines were detected with a score of 80% or

higher out of 71 roof structures obscured by trees or shadows.

Ground Truth

Prediction

. w’ . .
[-
- R

Figure 5.7 Ground truth and predicted roof structures with blocked trees

74

Ground Truth

Prediction

Figure 5.8 Ground truth and predicted roof structures with shadowy areas

5.5. Vectorization and Post-processing

The vectorization process was carried out with a Python script developed for this purpose.
By using roof line predictions and worldfiles containing the coordinates and orientation
information of each image, the entire vectorization process can be carried out
automatically as the batch process. The roof lines on the test data were predicted using
the model obtained after the training. For each tile of the test data, the predicted lines and
their scores are produced together and saved as a numpy script. Only lines above a given
threshold are regarded as vector data. The roof lines predicted for different threshold

scores are given in Figure 5.9.

Figure 5.9 Visualization of roof structures for 0.2, 0.4, 0.6, and 0.8 score thresholds.

In the coordinate transformation process, each predicted line was automatically
reprojected from the pixel coordinate system to an Earth referenced coordinate system
(EPSG:5255). All roof lines were generated with a sub-pixel accuracy for training and

testing. Predicted roof lines were converted from pixel coordinates to projected

75

coordinates using a worldfile that contains coordinate and rotation information for each
tile. The data from Gdlbasi district used in this study were converted from pixel
coordinate system to TUREF / TM33 - EPSG:5255 coordinate system. The EPSG code
parameter used in the script can be changed to convert to a desired coordinate system. A
final step involves automatically merging the roof lines of each tile into a single vector
file as a batch process. The merged vector file can then be exported in the desired format
such as ESRI Shapefile or GeoJSON. Merged roof detail prediction tiles with very high-
resolution true orthophoto basemap is given in Figure 5.10.

Figure 5.10 Merged roof structures of 8 image tiles.

A post-processing process was applied to the generated data after vectorization and
merging processes. A custom workflow is developed for post-processing based on
Python. Since orthophotos were not clipped based on building footprints, a single building
usually appears in more than one image tile. As a result, there are some tiny gaps between
line endpoints between predicted roof lines in image tiles. The result is that single lines
are split into multiple lines and redundant lines, thus redundant junctions are created. As
part of post-processing, the gaps between the roof lines in the transitions between the tiles
were removed, redundant lines and junctions were removed, and multiple continuous

lines are merged into a single line.

76

As a first step, the endpoints of each line segment were joined to eliminate any gaps in
the roof line structures extracted in different tiles. Second, the lines were merged into
MultiLineString. A final step in the reduction of the size of the data is to simplify it by
removing unnecessary junctions and breaks that appear along the lines to reduce its size
using the Douglas-Pecker simplification algorithm. Once the post-processing was
completed, junction points and the overall number of lines decreased by 24.8% and
35.4%, respectively when compared with the predicted raw data. Figure 5.11 shows the
post-processing steps for vector data of a building in more than one tile along with ground
truth data.

Figure 5.11 a — close view of the predicted line, b — snapped, ¢ — simplified, d - ground
truth.

5.6. 3D Building Reconstruction

Here, 3D building models were produced from the predicted roof structures and the
elevation data. Following the generation of building geometries, multiple data types are
used, such as raster DSM data and photogrammetric point clouds for 3D building
reconstruction. The results reveal that when building vectors are overlayed with DSM or
point clouds, the geometries of buildings do not match elevation data most of the time,
which leads to false reconstruction of building geometries. In most cases, the generated
DSM or point cloud is not able to give an accurate representation of critical roof points
such as corners and junctions, which make up the roof structure. As a result, it was not
possible to generate accurate 3D building models using the data provided. A view of the

generated roof structures overlaid with the DSM and point cloud is given in Figure 5.12.

77

Figure 5.12 Overlayed vector data with raster DSM and photogrammetric point cloud.

Thus, a new DSM is generated based on 3D roof data as ground truth provided by the
GDLRC for reconstructing more reliable and visually complete 3D roof models. By
utilizing new DSM, it was possible to achieve a better representation of 3D roof models.

A close view of generated 3D roofs is given in Figure 5.13.

77 N TN N =T I 4
N7 A/ S =<y

Figure 5.13 Reconstructed 3D roof models using the DSM.

A FME workbench was developed and tested to reconstruct 3D buildings from 3D roof
structures. The workbench takes 3D roof geometries and a DTM as input data and returns
3D building models. Firstly, building geometries were converted into polygon geometry
from line geometry to define each closed polygon separately. Then, each building
polygon was dissolved and the roof structure line is dissected, and only the footprint of
the building is left. When building footprints have been generated, each junction point in
the building footprint is assigned a new height value, and the junction heights are lowered

78

to fit the overlaying DTM and used as the building floor. The final part of the process is
to connect each junction point that overlays each other on top of each other and then
reconstruct 3D building model. An overview of the steps is given in Figure 5.14, and view

of the reconstructed 3D building from different viewing angles is given in Figure 5.15.

@)D single_buldng {0} {2DForcer] ——{AreaBuider)] —{{Dissolver &) —{cenemiize &} —{Chopper)] ¢
(r2p [— () — (b Area B— ¥ Qe 55— ¥ Chomed —
B Incomplete > = 18 b <Repcteds e ¥ Untouched >
I (b <Repced= e (b =Rejected> . | <Rejected>

b Glaed o—

(@) (s e

L- D)

{Comdnstebiredor 26 | —(VeimCrsiors 07 [mzmwmmor_ 2 j{@ ,—({u:ﬁw_s @@_
s fbnm?n B— (G e B - =) bome
(1 <Rejeeds [(P <Repoeds [—'M_‘

12

12

L)
P Sampled =]
(ENotsarped (B 11

oTM

@ 8
b Sampled =R
(> Notanpied @f 1

12

DSM

dsm paints

@. » GEOTIFF D ——— Lmamu“&iamg{a}) '{vsmuc,aﬂaj @3‘ ——;{L'ne&i.tr} {a}J '—(iFeahjr@nlﬁeﬂarj{?}J
O- L e 1’2_‘ (> Cupat E__‘l = ;_1]1 (> Cloas %’_u
L4 Pant [<Rejected> =2 (» e B (¥ <Rejerted> »+ " Lroofiground lines {33
P Point :'—/ » Pohgon - E -

¥ <Repaeds .

(b)

© Lﬂ

Figure 5.14 Building model reconstruction steps. (a) FME workbench script part 1; (b)
FME workbench script part 2; (c) illustration of the stages.

Figure 5.15 Views of a reconstructed building from different viewing angles.

5.7. Discussions and Conclusions on Automated LoD2.2 Building Reconstruction
with DL

In this section, a DL-based framework for fully automatic vectorization of LoD2.2 roof
structures from very high resolution true orthophotos was presented. Extracted roof
structures were then used for 3D building reconstruction with DSM and DTM. Also, first
LoD2.2 roof line segmentation dataset for line segment detection networks with more
than 139k buildings and 2.2 million lines was presented. In this section, state-of-the-art
results were achieved for roof segment detection with the proposed DL-based framework
was achieved by 58.4% in msAP and 73.1% in mAP’. Additionally, the results of this
study show that deep learning methods are capable of solving some problems such as

roofs that have been blocked by trees or shadows.

When compared with the roof type classification (Chapter 3) and building footprint
extraction (Chapter 4) approaches, the fully automatic vectorization of LoD2.2 roof
structures provides certain advantages, such as extracting building footprints and roof
structures directly as vectors. A vectorization process is not required in this approach, as
it is in pixel-based segmentation. Also, this method has shown to be more robust than the
other methods considering trees, shadows, and the other elements that cover roofs. A
simplification process is usually required to reduce the line complexity after pixel-to-
vector conversion. This approach directly produces planar building footprints and roof
structures. The outputs of this method can also be used for reconstructing 3D buildings

using different height data, such as LIDAR or photogrammetric DSM.

80

The quality of reconstructed 3D building models can be assesed by using software tools
to compare the ground truth model and reconstructed model numerically. This can
involve calculating metrics such as volume, surface area, or the number of vertices or
faces in the models. Another method is to use a visualization tool to compare the two
models visually. This can involve looking for differences in geometry, texture, and other

visual features.

There are only a limited number of line segment detection networks available in the
literature. The existing networks were not designed to extract building footprints or roof
structures, but instead to detect line segments in indoor environments. Therefore, these
networks need to be trained from scratch using a roof segment dataset. Currently, a large
number of city models are available as open data, but most of them are shared as LoD2.
Also, since aerial photos or satellite images of the same region are required along with
roof details to train neural networks, there are limited numbers of cities that present these

two data together as open data.

Yet, even if data are available, specific input data should be produced for each method
based on the input structure of the line segment detection network. It would be very
difficult to manually generate training data for thousands of lines and images, so this data
should be analyzed and converted into training data with an automatized way compatible

with the networks' input data structure.

The processes applied here were automated with scripts, and the existing 3D roof models
with true orthophotos are converted into training data for line segment detection networks
as a framework. It can be expanded with more training data. It is also planned to expand
the framework to extract 3D roof structures from orthophotos and building height
information obtained from point clouds or DSMs. Moreover, it is planned to extend the
dataset from other cities with different roof types so that the model works worldwide with

high accuracy, and is not limited to a specific area.

81

Combining conventional edge detection methods with deep learning methods may also
lead to improved results in tasks such as object recognition, segmentation or line segment
detection. Conventional edge detection methods, such as the Canny edge detector, Sobel
edge detector, or Laplacian of Gaussian operator, can extract edge features from images
with high accuracy. However, they may not be effective in complex scenes or under
challenging lighting conditions. On the other hand, CNNs can automatically learn
features from raw data, including edges, textures, and shapes, and can capture more
complex features that are difficult to detect using conventional methods. However, they
require a large amount of labeled training data, which may not always be available. By
combining these two methods, strengths of both methods can be leveraged to produce
more accurate and robust results. For example, conventional edge detection methods can
be used to preprocess images and extract initial edge maps, which are then used as input
to CNNs for further processing. This approach can reduce the amount of noise and false

positives in the edge maps, and can also help to localize objects more accurately.

82

6. EFFICIENT VISUALIZATION OF 3D CITY MODELS

This chapter investigates CesiumJS virtual web globe for web-based visualization and
Unity game engine with VR support for visualizing 3D city models. Performance
assessments were carried out using different visualization technologies for multi-LoD 3D
city models. Different optimization techniques were applied to the generated city models
for efficient and reliable visualization. In addition, issues experienced during the
development of the web-based platform and game engine were analyzed and solutions
were proposed. An in-depth analysis of the advantages and disadvantages of each

visualization technology is also provided.

6.1. Problem Statement

A 3D city model typically consists of buildings but they are visualized together with a
DTM and other city objects like bridges, roads, city furniture, and similar urban features
as these models describe the general shape and structure of the city. In addition, semantic
information is usually included to perform analyses and queries at a higher level, thus
requiring more storage and effort compared to traditional city models. Visualizing
thousands of buildings together with basemaps, DTM, and city furniture in a single scene
requires optimization for efficient visualization. Also, another critical step for
visualization is coordinate system transformations and format conversions. Cesium
supports spesific coordinate systems and file formats. DTM or basemap can be visualized
in different formats with varying file sizes. Selected data types and format conversions
are given in detail here. This section demonstrates of how all city components can be
efficiently visualized together using web-based and game engines with VR support.
Detailed description of the study area and generated multi-LoD 3D city model can be

found in [58]. The web-based model can be visited at www.bizimsehir.org.

83

http://www.bizimsehir.org/

6.2. Web-based Visualization of 3D City Models with CesiumJS

Many 3D city model applications require accurate digital terrain model for accurate
visualization and improved representation of a city. An underlying DTM enhances the
visual quality of 3D city models. Low-resolution DTMs may fail to place buildings well
on the terrain, causing them to appear to be inside the terrain or above it. Hence, for the
purpose of accurate modeling and preventing visual distortions, it is crucial to have a
DTM that is also compatible with the buildings. A number of factors make it necessary
to visualize high-resolution DTM alongside 3D city models, including: a) to provide
stakeholders with a more realistic visual experience, b) to ensure that earth surface data
is complete, c) to improve decision making reliability, and d) the product can be used for

a wider range of purposes.

CesiumJS can visualize high-resolution terrain models in different file types and formats,
as well as optimize them during streaming. Currently, only a single DTM can be
visualized in a scene, which makes it complicated to visualize large regions that have
multiple DTMs with varying resolutions. In addition to regular grids with heightmap
format, DTMs can also be visualized using TINs with a quantized mesh format. In the
Heightmap format, the terrain is represented as regular grids at multiple resolutions. On
the other hand, quantized-mesh format pre-renders a TIN mesh in advance for every tile
and has the capability of optimizing the mesh for different types of terrain. In contrast to
a Heightmap format with a regular spatial distribution, rugged terrain surfaces are

visualized more detailed structure.

Streaming and converting high-resolution DTMs were performed on the Cesium ION
platform. A DTM must be pre-processed before it can be converted to the terrain file
formats supported by Cesium ION. As an example, a single-band raster of DTM must be
defined in mean sea level (EMG96) or WGS84 ellipsoid without involving any nodata
values. To remove discontinuities in the terrain model and ensure visual completeness,
Cesium ION uses high-resolution DTM in conjunction with the Cesium World Terrain.
A view of Cesium World Terrain unmerged (left) and merged (right) high-resolution

DTM can be seen in Figure 6.1.

84

Figure 6.1 A view of Cesium World Terrain unmerged (left) and merged (right) high-
resolution DTM

The DTM of the LoD3 city model was pre-processed to align the city plans with the
existing components. Visualizing the LoD3 city model using the original DTM would
result in visual distortions since the DTM doesn't fit the 3D city plan. Therefore, a new
DTM was created that fits to the designs for the project area. LoD3 city model with
underlying DTM before and after processing is given in Figure 6.2.

Figure 6.2 LoD3 city model with underlying DTM before and after modification

A 3D city model will be visually complete when it is visualized accompanied by a high-
resolution basemap that is visually coherent with the building models. By doing this, users
will achieve a realistic impression of the virtual globe, and 3D objects will be positioned
accurately on it. The photogrammetric processing workflow with Agisoft Metashape
included the production of high-resolution orthophotos (10 cm GSD). Ministry of
Urbanization and Environment (MoEU) also produced and provided true orthophotos
with the same GSD as part of the Bizimsehir project [58]. True orthophotos are superior

85

to orthophotos because of their reduced distortions, particularly at building edges. A view

of orthophoto and trueorthophoto basemaps is given in Figure 6.3.

Figure 6.3 A view of orthophoto and true orthophoto basemaps

Georeferenced map tiles are typically served as basemap layers using the OGC standards
Tile Map Service (TMS) and Web Map Tile Service (WMTS). As a result of the large
file size of high-resolution imagery, more hardware resources are required. Due to this,
large basemaps are divided into smaller tiles, which can be streamed based on the angle
of the user's view. Several high-resolution imagery providers are supported by CesiumJsS,
including Cesium ION, Bing Maps, ESRI World Imagery, Mapbox Satellite, and
Sentinel-2. It is possible to stream high-resolution imagery or tiled imagery layers from
georeferenced raster data using Cesium ION. The Cesium ION platform is capable of
creating TMS and WMTS layers from raster imagery uploaded in a variety of formats,
including GeoTIFF, Erdas Imagine, JPEG, and PNG.

TMS and WMTS imagery layers were created by converting generated true orthophotos
into a single ZIP file and uploading it to Cesium ION. A dataset will usually contain more
than one overlapping tile of imagery, so if more than one raster file has multiple
overlapping tiles of imagery within it, all rasters must have the same GSD to avoid
inconsistencies within the dataset. Generated true orthophoto basemap, high-resolution
DTM, and textured LoD2 city model visualized on the CesiumJS virtual globe in a single

86

scene. A final accuracy assessment was conducted by using DTM and building models to
compare true orthophoto basemaps with other imagery layers. Figure 6.4 shows a
comparison between true orthophoto, Bing Maps, Mapbox Satellite, and ESRI World
Imagery as basemap layers.

Figure 6.4 A comparison between true orthophoto (a), Bing Maps (b), Mapbox Satellite
(c), and ESRI World Imagery (d) as basemap layers

As a last step, 3D city models with different level of details (LoD2 and LoD3) were added
to the web scene as the final step of visualization. The LoD2 city model was automatically
textured based on high resolution aerial photographs. It will be more difficult for the GPU
to handle high-resolution building textures, so texture optimization was needed to reduce
the texture size without compromising the visual quality. There are different formats that

textures can be stored in, including PNG, JPG, BMP, etc.) with different quality levels.

87

CityGML supports different texture formats, but JPEG textures were found to be optimal

for optimizing texture sizes while maintaining visual quality.

Models of buildings and furniture for the LoD3 city model, along with city plans and
textures, were all stored separately in CityGML files. It is important to optimize CityGML
and building textures in order to achieve efficient visualization. The texture patch for each
facade of the building is created by clipping images from aerial pictures that are used in
CityGML. In consequence, for a couple of buildings, CityGML files can easily consist of
hundreds of megabytes of textures. CityGML files contained redundant texture data, and
when those files were stored separately, they added to the size of the files as well as
created duplicate textures. This problem was resolved by merging files with shared
textures into a single CityGML, and then removing duplicate textures as the first step
towards optimizing textures. Buildings and city furniture were generated as separate

CityGML files along with their textures, then merged into a single file.

The use of a single texture for the whole building, rather than separate textures for each
facade, reduces hardware usage and increases visualization efficiency significantly. A

comparison of textures before and after optimization is given in Table 6.1.

LoD? Models LoD?2 Models CityPlanand City Planand LoD3 Buildings LoD3 Buildings

Furniture Furniture (Before) (After)

PNG Textures JPEG Textures (Before) (After)
15454 files 15454 files 608 files 33 files 3847 files 154 files
709 MB 100 MB 1233 MB 83.1 MB 568 MB 94 .4 MB

Table 6.1 Comparison of texture sizes before and after optimization [58].

3D city models, city plans and city furniture in CityGML format converted to 3DTiles
using Cesium ION. The CityGML format is capable of storing the semantics and the
properties of each building. Semantics in CityGML can be incorporated into 3D tiles for
each building. LoD2 city model with enriched semantics is visualized in a single scene
together with LoD3 city model. LoD2 model contains semantics such as 2D area, roof
type, usage and other features. LoD3 city model contains only automatically generated

semantics such as latitude, longitude and building height. It is possible to see the

88

semantics of the building by selecting a building on the developed web interface. Each
building can be selected separately and some queries such as measuring heights or areas
can be performed in the developed web interface. It's possible to style or hide buildings
according to their attributes. A view of the web interface that shows attributes for a LoD2
building is shown in Figure 6.5. LoD3 city model with 3D city plans is given in Figure
6.6.

@ Building_20987

>

View info about Bullding 21202 - y
[3 3
= -

‘

Figure 6.6 LoD3 city model with 3D city plans in the web interface.

89

6.3. 4D Data Visualization with CZML

In this subsection, a geo-visualization interface for UAV and airplane photogrammetric
flights using CesiumJS Virtual Globe has been developed for 4D data visualization.
Image trajectory elements such as camera rotations and image perspective center
coordinates measured during the flight were used for 4D visualization approach. Exterior
orientation parameters (EOPs) and the interior orientation parameters (IOPs) of the
images were used to visualize aircraft's flight path in time, camera position, and the image
footprints on the ground, as well as the airplane’s rotation. CesiumJS virtual globe is used
to visualize the flight and footprint of the images captured during the flight. A 4D
visualization of the photogrammetric image acquisition has been created based on the
data obtained from airplane and unmanned aerial vehicle (UAV) platforms during the

photogrammetric image acquisition process.

Flight paths reconstructed from image metadata, known as EOPs, and acquisition times.
The time difference between two image acquisitions is calculated and used to animate
image acquisitions precisely. Simulating aircraft rotations during flight was conducted
using the roll, pitch, and yaw angles from EOPs. Considering CesiumJS only supports
WGS84 coordinate system, the image perspective center coordinates in EOPs have been
reprojected from the Universal Transverse Mercator (UTM) projection system to the

WGS84 system for the visualization.

The image footprint vectors are generated by using a custom FME workbench that uses
the image EOPs and IOPs and assumes that the imaging conditions are nadir. Figure 6.7
gives an overview of the developed custom FME workbench. The perspective center of
the images was retrieved from EOPs in CSV format (Comma-separated Value) as first
step. "VertexCreator" transformer is used to create point features using image perspective
center coordinates. "Bufferer" transformer is used to generate image footprints polygons
around the points using a dummy size of 1 m x 1 m as a reference. Sensor size (image
width and height) and nominal GSD (Ground Sampling Distance) are used to simulate
the footprint of image on the terrain. As an example, UAV cameras with image sizes of

6000x4000 pixels and a5 cm GSD have image footprints of 300m x 200m on the ground.

90

In the next step, image footprint polygons are generated by resizing generated dummy

polygons for each image reference footprint polygon using the "Scaler" transformer.

Convert points into Extract corner
polygons by (Pixel * GSD) / 2 coordinates of Explodes each list Write photo ID's and
Read image center Convert image center
coordinates from CSV coordinates into points

@)» csv @}}-{:{Wr E¢)-{ Bufferer ; {87)-{ Scaler E}!,—D[r(b mw; if}l—c{l '(’ Ekm;s {é}},—t{» image_footprinls{é}@

(- Output (1 Buffered (b sl
(b <Rejeded> [=e (P <Rjeded> [>e (> <Rejeded> [>e (> <Rgjeced> [>e (» <Rejeded> [>w

generating a buffer X = (6000 * 0.05)/2 generated image member on each corner coordinates
zone around the ¥ = (4000 * 0.05) /2 projection on the input feature out into into CSV

points ground its own feature

Figure 6.7 Developed FME workbench for generating image footprints.

As a final step in the process, the coordinate values of image footprints on the ground are
calculated with "CoordinateExtractor™ transformer. For each image footprint, the corner
coordinates and image IDs are exported for intermediate processing for conversion to
CZML. Figure 6.8 shows an example of visualization of an image footprint on the ground.
As mentioned previously, a constant GSD value was used for all images, and the images
were taken in the nadir direction for the entire flight.

Figure 6.8 An example of visualization of an image footprint on the ground.

91

Geospatial data and 3D models can be visualized using CZML in a time-dynamic (four-
dimensional) environment using CesiumJS. Georeferenced data types can be visualized
on Cesium Virtual Globes using CZML, including 3D models as 3D Tiles, as well as
geometric shapes.

The animated 3D models are rendered in the gITF format. Depending on the type of
photogrammetric flight, such as an aerial photogrammetric flight or an UAV,
visualization can be performed using an animated 3D airplane or UAV. Since gITF uses
quaternions (X, y, z, w) to animate the rotations, aircraft rotations from EOPs are
converted to quaternions. Cesium's built-in capabilities help visualize aircraft rotations
by first converting the heading, pitch, and roll values of the aircraft from degrees to
radians, and then using the radians to quaternions conversion tool to convert the radians
to quaternions. The web interface also features a camera icon for each location of the
image perspective center. These icons can be interacted with to view image thumbnails
and to see information about that image such as ID, coordinates, acquisition time, and
EOPs of selected image. Aircraft models included in the default Cesium model library
(airplanes and UAVs) used in the study can be seen in Figure 6.9. As a last step, flight
data, including flight path, aircraft rotation, image footprints, and flight speed derived
from distance and interval information, then converted into a single CZML (Cesium

Language) file for visualization on the CesiumJS web globe.

Figure 6.9 Airplane and UAV model.

92

There are many different visualization projects that can be used with CZML. CZML
format does not have a static template, so CZML templates should therefore be created
for each project, so that they meet the specific requirements of that project. Visualizing
CZML data can be accomplished in a variety of ways. In addition to uploading and
visualizing generated CZML data online with Cesium ION, Cesium Sandcastle provides
the capability of visualizing generated data locally as well. The Cesium Sandcastle app is
both a live-coding app as well as a geovisualization interface application for viewing
CesiumJS examples in a local environment or online. It is possible to visualize a CZML
file either on Cesium Sandcastle by manually coding it, or by uploading it to Cesium ION
asa CZML file. Cesium Sandcastle allows users to to share developed CesiumJS projects
with other Cesium Sandcastle users with share option, however, it is not a suitable tool

for sharing data and projects between users.

Geospatial data can be uploaded and visualized more easily Cesium ION platform, which
is designed to handle large volumes of 3D geospatial data, in addition to hosting,
optimizing, and streaming them. Through Cesium ION, users have access to Cesium
World Terrain, several imagery layers, and the ability to convert geospatial datasets into
desired format for efficient visualization. As part of this thesis, generated CZML dataset
and 3D model are also visualized and published online with Cesium ION. A view of
photogrammetric image acquisition visualization with an UAV with an 80% forward
overlap is given in Figure 6.10. Figure 6.11 shows photogrammetric image acquisition of

736 images in Gaziantep, Turkey with an 80% forward and 60% lateral overlap.

93

Figure 6.10 Photogrammetric image acquisition visualization with an UAV with an
80% forward overlap [58].

Figure 6.11 Photogrammetric image acquisition of 736 images in Gaziantep, Turkey
with an 80% forward and 60% lateral overlap [58].

Users may identify errors in aerial photogrammetry flights with the help of a 4D
visualization. This will enable them to prevent similar errors in future missions. It is thus
possible to gain a better understanding of the definitions of photogrammetric terms, such

as image overlap, image resolution, flying height, and flight route by visualizing

94

photogrammetric flights. Furthermore, visualizing photogrammetric flights allows for the
analysis of the geometrical errors in the acquisition of images even in adverse weather

conditions such as rain and wind.

6.4. Game Engines and Virtual Reality

This section presents an approach to visualizing LoD3 city models in the Unity game
engine with VR support. Virtual Reality have become increasingly important in a wide
range of fields, including urban planning, architecture, civil engineering, and even
entertainment. Exploring 3D city models in VR can provide a wealth of information and
insights that are difficult to obtain from traditional 2D maps and models. They allow
urban planners and architects to create and visualize new designs and proposals in a
virtual space before actually building them, which can save time, money, and resources.
Civil engineers can use VR to simulate the behavior of infrastructure and transportation
systems, helping them to identify potential problems and optimize designs. In addition,
virtual 3D city models can be used in education and outreach, allowing the public to better

understand and engage with urban planning and development.

Game engine visualization of 3D city models requires a different approach than web-
based visualization. Most game engines rely heavily on processors and graphics cards
(GPUs). Various strategies can be used in game engine optimization to reduce CPU and
GPU usage. The scene can be optimized by loading only the models in the scene that are
visible in that point of view. Texture and polygon count are also important aspects of
optimization. The scene should provide the user with as realistic a presentation as possible

with the fewest number of polygons.

The LoD3 city model, city plans, and city furniture were created in a CAD environment
and exported to Unity in the scope of this study. For models with high polygon counts,
polygon optimization has been performed before exporting them to the game engine while
maintaining their visual quality. Since CAD environments generally do not support
projected coordinates, the entire city model must be manually reprojected from local
coordinates to projected coordinates. Buildings and objects were manually placed on the
reprojected city plan during this process. Sound effects and animations were added to the
scene to enhance its realism. The final step is to combine elements of the city, such as its

buildings, city plan, and furniture, and present them in VR environment.

95

Although exploring 3D city models with virtual reality offers a much more realistic
experience than web-based visualization, various hardware is required to use this
technology. Exploring generated scenes in a VR environment requires both a VR headset
and a VR-ready GPU. The limited accessibility of this hardware makes VR exploration
of 3D city models possible only for users with required equipment.

Data that visualized in the previous chapter using CesiumJS was then visualized using
Unity game engine in a more detailed scene. True orthophoto basemaps, high-resolution
DTM and generated 3D city models including buildings, ground plans, and city furniture
are visualized together in a single scene in Unity game engine to obtain the most accurate
visualization possible. A view of the LoD3 city model in Unity game engine from
different viewpoints can be seen in Figure 6.12.

Figure 6.12 A view of the LoD3 city model in Unity game engine from different
viewpoints [137].

96

6.5. Discussions and Conclusions on Efficient Visualization of 3D City Models

Web-based visualization and game engine visualization are two completely different
visualization platforms that requires different visualization optimizations. CesiumJS
provides an efficient way to visualize geospatial data by WebGL-based rendering,
dynamic level of detail and automatizing format conversion using Cesium ION. On the
other hand, game engines and VR offers more realistic experience for users. Game
engines and VR allow users to experience and explore the city in a more engaging way,
leading to a better understanding of the city's features and characteristics.

Users can experience cities in a more realistic way with virtual reality by being more
involved in the scene. Visitors can visit virtual reality cities in the design phase before
they are constructed. Future cities can be visualized and explored by stakeholders in VR
environment. The VR environment also allows users to interact with objects and explore
the city at street level. As a result, users can give more accurate feedback and contribute
to the city's development more effectively. As a result, the city's inhabitants, as well as
architects and city planners, can contribute to the design of the city. The use of VR in
urban development can therefore enhance the city in a variety of ways. Virtual reality also

allows users to explore cities virtually from around the world.

There are many advantages to visualizing 3D city models in game engines. It is possible
to visualize 3D city models that are as realistic as possible by using game engines. This
allows users to experience a realistic environment. The details of the architecture of
buildings, vehicles on the streets and the movements of people in a virtual 3D city model
provide a realistic experience in a game engine. Also, game engines provide users with
an interactive way to view and interact with cities and their details. Through the game
engine, users are able to touch, move and interact with city objects. Game engines allow
easy customization of virtual city models. City details, content, and appearance can be
modified by users. Therefore, virtual city models can be created for different scenarios in

this way.

97

7. CONCLUSIONS AND FUTURE WORK

In this section, conclusions and future work are presented in two separate sections based
on the studies that were conducted under the scope of the thesis. The conclusion section
contains the main findings, the critical analysis of the results, what is really novel, where
progress has been made and if the project objectives have been achieved. The future work
section contains directions for future research and potential improvements for each study.

7.1. Conclusions

In this thesis, the three main stages of 3D city modeling, i.e., data acquisition and pre-
processing, building extraction and modeling, and visualization, were investigated and
several optimization solutions were provided for each stage. Regarding the data
acqusition and pre-processing, aerial photogrammetry was preferred due to the provision
of both visible images and 3D geometries. For building extraction and modeling, different
approaches such as roof type classification for library-based model production, building
footprint segmentation with CNNs, and roof line extraction with line detection
segmentation networks were investigated. For the visualization, web globes and game

engine based VR were analyzed.

Many applications use building footprints to extract or clip buildings from images or
DSM. The F1-Score and IoU (loU) improved by 3.27% and 5.90% when nDSM data was
fused as a fourth band to RGB data. There have been some improvements in the results
that have been obtained by using nDSM from roofs that are obscured by objects, such as
shadows and trees, but this problem is still not completely resolved. Upon conversion of
predicted building footprints from pixel-based segmentation to vector data, a smoothing
process was performed on the vector data for correcting the un-smoothness of the vector
data. In some cases, other objects with a color value that is close to the roof color may be
classified as buildings as well. This study was conducted in a complex and unstructured

area of roof buildings but at the same time promising results were obtained, despite the

98

complexity of the study area. There is one disadvantage of this method of dividing
buildings under one roof, which is that it is impossible to distinguish the building lines
when there are more than one building under the same roof.

Roof types are very important due to several reasons. The type of roof can significantly
impact the energy efficiency of a building. Different roof types have different load-
bearing capacities and can withstand different levels of wind, snow, and other
environmental factors. Understanding the roof type is crucial for assessing the structural
stability of a building. A dataset containing 10.000 unique roof images for 6 different
types of roof was introduced in the roof type classification section. DL-based roof type
classification was achieved with a very high F1-score with 86% as the best result. A more
comprehensive analysis of the results indicates that roof types with more data were more
likely to be better learned by the model and achieved higher classification scores than
those with less data. Despite the fact that the "complex™ roof type has the most data among
all the roof types in the dataset, it was not classified with the highest level of accuracy
since it does not have a standard geometric structure. There are many different areas in
which roof type information can be used, such as procedural building reconstruction and

solar energy applications.

As a part of the thesis, a DL-based framework for fully automatic vectorization of LoD2.2
roof structures in city-scale. First LoD2.2 roof line segmentation dataset for line segment
detection networks with more than 139 k buildings and 2.2 million lines was also
introduced. DL-based method have achieved state-of-the-art results for roof segment
detection by 58.4% in msAP and 73.1% in mAP’. Additionally, the results of this study
show that deep learning methods are capable of solving some problems such as roofs that

have been blocked by trees or shadows.

Generally, extracting roof structure from RGB images is a more reliable method than
extracting roof structure from LIDAR or photogrammetric point clouds. Since only VHR
stereo aerial imagery is used as primary data source for this thesis, 3D buildings are
reconstructed using predicted roof structures from RGB images and photogrammetric

DSM. In spite of the fact that a high level of accuracy was obtained from roof structure

99

extraction, 3D building reconstruction based on heights from photogrammetry-based
DSM did not turn out to be satisfactory. Since photogrammetry-based DSMs do not
present heights to the same degree of accuracy as LIiDAR point clouds, the use of heights
obtained from photogrammetry-based DSM is likely to lead to incorrect 3D roof
reconstruction. This means that using stereo aerial imagery and LiDAR data together will

provide a more accurate way to generate the geometry of a 3D roof and building.

The primary objective of efficient visualization is to present the 3D city data in a way that
is clear, concise, and easily understandable, while preserving the accuracy and detail of
the original model. This may involve the use of visualization techniques such as 3D
rendering, interactive navigation, or virtual reality, to create an immersive experience that
allows stakeholders and citizens to explore and interract with the city data in a meaningful
way. The ultimate objective of efficient visualization of 3D city models is to provide a

powerful tool for urban planning, analysis, and decision-making.

As a part of thesis, visualization of multi-LoD 3D city models in different platforms and
investigated different performance optimization procedures. Web-based visualization and
game engine visualization require completely different approaches. The visual
representation of city models should be aimed at maintaining the highest possible level
of visual detail while at the same time minimizing the computer hardware load. A more
efficient approach would be to provide the details of the building or city through textures
rather than using more polygons for the models. Based on the results of a research, the
web-based visualization library CesiumJS is a suitable solution for displaying 3D city
models along with basemaps and DTMs from different geospatial datasets. Game engine
visualization of 3D city models offers a much more realistic experience than web-based
visualizations. By visualizing city models in VR and presenting them before the
reconstruction of the city, citizens and stakeholders can take part in making decisions

about the future of the city.

As a result of its intuitive interface and web-based system, these systems are not only
used by professionals, but also by the general public. Since CesiumJS provides support

for a variety of geospatial data, including DTM, basemaps, and textured 3D city models,

100

it is currently the most suitable open-source web globe for visualizing 3D city models and
developing WebGIS interfaces. CesiumJS library can be customized to meet the
requirements of the project. This thesis has also lists the following additional useful
features of Cesium; the ability to customize the interface; the ability to stream, style, and
interact with 3D tiles; support for visualizing DTMs in different resolutions; information
boxes for selecting objects and displaying attributes, and the ability to optimize GPU,
CPU, and power utilization. Unreal and Unity game engines can import geospatial
datasets hosted in Cesium ION without data conversion or processing.

7.2. Future Work

For building footprint extraction, line segment detection networks can be used to extract
building boundaries directly as vectors without having to first perform pixel-based binary
segmentation and then vectorization. This means that instead of two different processes,
building boundaries can be retrieved in a vector format in a single step. Insuch a case, if
there are multiple buildings under a single roof, line segment detection networks can also
be used to detect the roof boundaries. Since the dataset is a relatively small dataset, it
may be possible to expand the dataset by using photogrammetric data from other cities or
by using data augmentation techniques to generate new data from existing dataset. Each
band's segmentation performance can be evaluated separately, then bands that reduce
model accuracy can be excluded. Building bounding boxes can also be detected using
object detection algorithms such as YOLO or using YOLO together with SAHI.

The roof structure extraction can also be improved if the height data is derived from
LiDAR point clouds instead of photogrammetric DSM data, as this will allow a better
reconstruction of 3D buildings and roofs. Through the use of DL-based height prediction
methods, it is possible to directly extract roof structures in 3D. With the addition of height
estimation and edge detection methods to the framework, and the use of line segment
detection networks, roof segment detection accuracy can be further improved. The dataset
can also be extended using data from other cities with different types of roofs. This will
enable the model to be adapted by globally. It is possible to improve the post-processing

algorithm even further in order to provide better results from the predicted roof segments.

101

As future efforts, the classification of roof types can be extended to include roof types
other than the 6 roof types that are used in the generated dataset. It should be noted that
since the dataset used here is a relatively small dataset, it could be expanded by using
roofs from different cities or by augmenting the data. In addition to the CNNs used in this
thesis, other CNNs can be used for roof type classification task. It is possible to detect
and classify roofs directly from aerial photographs or satellite images with DL-based
object detection. This eliminates the need to clip each building from orthophotos with
building footprints. It is possible to tune hyperparameters such as batch size and learning
rate by experimenting with different values to determine the optimal value for achieving
best results. There is also the possibility of improving classification results by adding
height information (DSM) as a fourth band to the RGB images.

As a future step, the web interface developed during this project can be enhanced by
adapting the models to a 3D GIS platform or a database. By enriching the semantic data
of the building models, more analyses can be conducted on the models in city-scale. The
Cesium ION platform is able to visualize and analyze 3D geospatial data in a number of
different ways on the web, as well as in the Unity and Unreal game engines. The created
scenes can be enhanced visually through the use of game engines, while also providing a

more realistic experience through the use of sound effects and animations.

102

[1]

[2]
3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

REFERENCES

Biljecki, F., H. Ledoux, and J. Stoter, An improved LoD specification for 3D
building models. Computers, Environment and Urban Systems. 59: p. 25-37, 2016

OpenStreetMap, https://www.openstreetmap.org/, Last Access: 27.03.2022

Microsoft Building Footprints, https://www.microsoft.com/en-us/maps/building-
footprints, Last Access: 27.03.2022

Heipke, C. and F. Rottensteiner, Deep learning for geometric and semantic tasks
in photogrammetry and remote sensing. Geo-spatial Information Science. 23(1):
p. 10-19, 2020

Sezgin, M. and B.l. Sankur, Survey over image thresholding techniques and
quantitative performance evaluation. Journal of Electronic imaging. 13(1): p. 146-
168, 2004

Maini, R. and H. Aggarwal, Study and comparison of various image edge
detection techniques. International journal of image processing (1JIP). 3(1): p. 1-
11, 2009

Hojjatoleslami, S. and J. Kittler, Region growing: a new approach. IEEE
Transactions on Image processing. 7(7): p. 1079-1084, 1998

Illingworth, J. and J. Kittler, A survey of the Hough transform. Computer vision,
graphics, and image processing. 44(1): p. 87-116, 1988

Lewis, J.P. Fast template matching. in Vision interface. 1995. Quebec City, QC,
Canada.

Alidoost, F., H. Arefi, and F. Tombari, 2D image-to-3D model: Knowledge-based
3D building reconstruction (3DBR) using single aerial images and convolutional
neural networks (CNNSs). Remote Sensing. 11(19): p. 2219, 2019

Partovi, T., F. Fraundorfer, S. Azimi, D. Marmanis, and P. Reinartz, Roof Type
Selection based on patch-based classsification using deep learning for high
Resolution Satellite Imagery. International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences-ISPRS Archives. 42(W1): p.
653-657, 2017

Axelsson, M., U. Soderman, A. Berg, and T. Lithen. Roof type classification using
deep convolutional neural networks on low resolution photogrammetric point
clouds from aerial imagery. in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2018. IEEE.

Alidoost, F. and H. Arefi, KNOWLEDGE BASED 3D BUILDING MODEL
RECOGNITION USING CONVOLUTIONAL NEURAL NETWORKS FROM
LIDAR AND AERIAL IMAGERIES. International Archives of the
Photogrammetry, Remote Sensing & Spatial Information Sciences. 41, 2016

103

https://www.openstreetmap.org/
https://www.microsoft.com/en-us/maps/building-footprints
https://www.microsoft.com/en-us/maps/building-footprints

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Mohajeri, N., D. Assouline, B. Guiboud, A. Bill, A. Gudmundsson, and J.-L.
Scartezzini, A city-scale roof shape classification using machine learning for solar
energy applications. Renewable Energy. 121: p. 81-93, 2018

Qin, Y., Y. Wu, B. Li, S. Gao, M. Liu, and Y. Zhan, Semantic segmentation of
building roof in dense urban environment with deep convolutional neural
network: A case study using GF2 VHR imagery in China. Sensors. 19(5): p. 1164,
2019

Olger, N., D. Olger, and E. Suimer, Roof type classification with innovative
machine learning approaches. PeerJ Computer Science, 2023

Bittner, K., M. Korner, F. Fraundorfer, and P. Reinartz, Multi-task cgan for
simultaneous spaceborne dsm refinement and roof-type classification. Remote
Sensing. 11(11): p. 1262, 2019

Castagno, J. and E. Atkins, Roof shape classification from LIiDAR and satellite
image data fusion using supervised learning. Sensors. 18(11): p. 3960, 2018

Assouline, D., N. Mohajeri, and J.-L. Scartezzini. Building rooftop classification
using random forests for large-scale PV deployment. in Earth resources and
environmental remote Sensing/GIS Applications VI1II. 2017. SPIE.

Rottensteiner, F., G. Sohn, J. Jung, M. Gerke, C. Baillard, S. Benitez, and U.
Breitkopf, The ISPRS benchmark on urban object classification and 3D building
reconstruction. ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences 1-3 (2012), Nr. 1. 1(1): p. 293-298, 2012

Rottensteiner, F., G. Sohn, M. Gerke, J.D. Wegner, U. Breitkopf, and J. Jung,
Results of the ISPRS benchmark on urban object detection and 3D building
reconstruction. ISPRS journal of photogrammetry and remote sensing. 93: p. 256-
271, 2014

Marmanis, D., K. Schindler, J.D. Wegner, S. Galliani, M. Datcu, and U. Stilla,
Classification with an edge: Improving semantic image segmentation with
boundary detection. ISPRS Journal of Photogrammetry and Remote Sensing. 135:
p. 158-172, 2018

Buyukdemircioglu, M., R. Can, and S. Kocaman, Deep learning based roof type
classification using very high resolution aerial imagery. The International
Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences.
43: p. 55-60, 2021

Qin, R., J. Tian, and P. Reinartz, 3D change detection—approaches and
applications. ISPRS Journal of Photogrammetry and Remote Sensing. 122: p. 41-
56, 2016

Li, Z., J.D. Wegner, and A. Lucchi. Topological map extraction from overhead

images. in Proceedings of the IEEE/CVF International Conference on Computer
Vision. 2019.

104

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Yi, Y., Z. Zhang, W. Zhang, C. Zhang, W. Li, and T. Zhao, Semantic
segmentation of urban buildings from VHR remote sensing imagery using a deep
convolutional neural network. Remote sensing. 11(15): p. 1774, 2019

Kada, M. and D. Kuramin, ALS Point Cloud Classification Using Pointnet++ and
KPCONV with Prior Knowledge. Int. Arch. Photogramm. Remote Sens. Spat. Inf.
Sci. 46: p. 91-96, 2021

Jiwani, A., S. Ganguly, C. Ding, N. Zhou, and D.M. Chan, A semantic
segmentation network for urban-scale building footprint extraction using rgb
satellite imagery. arXiv preprint arXiv:2104.01263, 2021

Li, Z., Q. Xin, Y. Sun, and M. Cao, A deep learning-based framework for
automated extraction of building footprint polygons from very high-resolution
aerial imagery. Remote Sensing. 13(18): p. 3630, 2021

Sun, X., W. Zhao, R.V. Maretto, and C. Persello, Building outline extraction from
aerial imagery and digital surface model with a frame field learning framework.
The International Archives of Photogrammetry, Remote Sensing and Spatial
Information Sciences. 43: p. 487-493, 2021

Bittner, K., F. Adam, S. Cui, M. Kérner, and P. Reinartz, Building footprint
extraction from VHR remote sensing images combined with normalized DSMs
using fused fully convolutional networks. IEEE Journal of Selected Topics in
Applied Earth Observations and Remote Sensing. 11(8): p. 2615-2629, 2018

Zhao, W., C. Persello, and A. Stein, Building outline delineation: From aerial
images to polygons with an improved end-to-end learning framework. ISPRS
journal of photogrammetry and remote sensing. 175: p. 119-131, 2021

Xu, Y., L. Wu, Z. Xie, and Z. Chen, Building extraction in very high resolution
remote sensing imagery using deep learning and guided filters. Remote Sensing.
10(1): p. 144, 2018

Ok, A.O., J.D. Wegner, C. Heipke, F. Rottensteiner, U. Soergel, and V. Toprak,
Matching of straight line segments from aerial stereo images of urban areas.
ISPRS Journal of Photogrammetry and Remote Sensing. 74: p. 133-152, 2012

Buyukdemircioglu, M., S. Kocaman, and M. Kada, Deep learning for 3D building
reconstruction: A review. The International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences: p. 359-366, 2022

Hensel, S., S. Goebbels, and M. Kada, BUILDING ROOF VECTORIZATION
WITH PPGNET. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial
Information Sciences, 2021

Zhang, F., N. Nauata, and Y. Furukawa. Conv-mpn: Convolutional message
passing neural network for structured outdoor architecture reconstruction. in
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020.

105

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

Zhao, W., C. Persello, and A. Stein, Extracting planar roof structures from very
high resolution images using graph neural networks. ISPRS Journal of
Photogrammetry and Remote Sensing. 187: p. 34-45, 2022

Qian, Z., M. Chen, T. Zhong, F. Zhang, R. Zhu, Z. Zhang, K. Zhang, Z. Sun, and
G. L0, Deep Roof Refiner: A detail-oriented deep learning network for refined
delineation of roof structure lines using satellite imagery. International Journal of
Applied Earth Observation and Geoinformation. 107: p. 102680, 2022

Alidoost, F., H. Arefi, and M. Hahn, Y-SHAPED CONVOLUTIONAL NEURAL
NETWORK FOR 3D ROOF ELEMENTS EXTRACTION TO RECONSTRUCT
BUILDING MODELS FROM A SINGLE AERIAL IMAGE. ISPRS Annals of
Photogrammetry, Remote Sensing & Spatial Information Sciences. 5(2), 2020

Kenzhebay, M., Planar roof structure extraction from Very High-Resolution aerial
images and Digital Surface Models using deep learning. 2022, University of
Twente.

Muftah, H., T. Rowan, and A. Butler, Towards open-source LoD2 modelling
using convolutional neural networks. Modeling Earth Systems and Environment:
p. 1-17, 2021

Musialski, P., P. Wonka, D.G. Aliaga, M. Wimmer, L. Van Gool, and W.
Purgathofer. A survey of urban reconstruction. in Computer graphics forum. 2013.
Wiley Online Library.

Haala, N. and M. Kada, An update on automatic 3D building reconstruction.
ISPRS Journal of Photogrammetry and Remote Sensing. 65(6): p. 570-580, 2010

Wang, R., 3D building modeling using images and LIiDAR: A review.
International Journal of Image and Data Fusion. 4(4): p. 273-292, 2013

Kada, M. and A. Wichmann, Sub-surface growing and boundary generalization
for 3D building reconstruction. ISPRS Annals of the Photogrammetry, Remote
Sensing and Spatial Information Sciences. 3, 2012

Nan, L. and P. Wonka. Polyfit: Polygonal surface reconstruction from point
clouds. in Proceedings of the IEEE International Conference on Computer Vision.
2017.

Malihi, S., M.J. Valadan Zoej, and M. Hahn, Large-scale accurate reconstruction
of buildings employing point clouds generated from UAV imagery. Remote
Sensing. 10(7): p. 1148, 2018

Buyukdemircioglu, M. and S. Kocaman, A 3D campus application based on city
models and WebGL. 2018b

Buyukdemircioglu, M., S. Kocaman, and U. Isikdag, Semi-automatic 3D city

model generation from large-format aerial images. ISPRS International Journal of
Geo-Information. 7(9): p. 339, 2018a

106

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Xie, L., H. Hu, Q. Zhu, X. Li, S. Tang, Y. Li, R. Guo, Y. Zhang, and W. Wang,
Combined rule-based and hypothesis-based method for building model
reconstruction from photogrammetric point clouds. Remote Sensing. 13(6): p.
1107, 2021

Bizjak, M., B. Zalik, and N. Luka¢, Parameter-Free Half-Spaces Based 3D
Building Reconstruction Using Ground and Segmented Building Points from
Airborne LIDAR Data with 2D Outlines. Remote Sensing. 13(21): p. 4430, 2021
Drescek, U., M. Kosmatin Fras, J. Tekavec, and A. Lisec, Spatial ETL for 3D
building modelling based on unmanned aerial vehicle data in semi-urban areas.
Remote Sensing. 12(12): p. 1972, 2020

Murtiyoso, A., M. Veriandi, D. Suwardhi, B. Soeksmantono, and A.B. Harto,
Automatic Workflow for Roof Extraction and Generation of 3D CityGML Models
from Low-Cost UAV Image-Derived Point Clouds. ISPRS International Journal
of Geo-Information. 9(12): p. 743, 2020

Li, Y. and B. Wu, Automatic 3D reconstruction of complex buildings from
incomplete point clouds with topological-relation constraints. ISPRS Annals of
the Photogrammetry, Remote Sensing and Spatial Information Sciences. 5: p. 85-
92, 2020

Li, Z. and J. Shan, RANSAC-based multi primitive building reconstruction from
3D point clouds. ISPRS Journal of Photogrammetry and Remote Sensing. 185: p.
247-260, 2022

Peters, R., B. Dukai, S. Vitalis, J. van Liempt, and J. Stoter, Automated 3D
reconstruction of LoD2 and LoD1 models for all 10 million buildings of the
Netherlands. Photogrammetric Engineering & Remote Sensing. 88(3): p. 165-
170, 2022

Buyukdemircioglu, M. and S. Kocaman, Reconstruction and efficient
visualization of heterogeneous 3D city models. Remote Sensing. 12(13): p. 2128,
2020

Dehbi, Y., F. Hadiji, G. Groger, K. Kersting, and L. Plimer, Statistical relational
learning of grammar rules for 3D building reconstruction. Transactions in GIS.
21(1): p. 134-150, 2017

Biljecki, F., H. Ledoux, and J. Stoter, Generating 3D city models without
elevation data. Computers, Environment and Urban Systems. 64: p. 1-18, 2017

Biljecki, F. and Y. Dehbi, Raise the roof: Towards generating LoD2 models
without aerial surveys using machine learning. ISPRS Annals of the
Photogrammetry, Remote Sensing and Spatial Information Sciences. 4: p. 27-34,
2019

Park, Y. and J.-M. Guldmann, Creating 3D city models with building footprints

and LIDAR point cloud classification: A machine learning approach. Computers,
environment and urban systems. 75: p. 76-89, 2019

107

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

Farella, E.M., E. Ozdemir, and F. Remondino, 4D Building Reconstruction with
Machine Learning and Historical Maps. Applied Sciences. 11(4): p. 1445, 2021

Liu, C., D. Kong, S. Wang, Z. Wang, J. Li, and B. Yin, Deep3D reconstruction:
Methods, data, and challenges. Frontiers of Information Technology & Electronic
Engineering. 22(5): p. 652-672, 2021

Simonyan, K. and A. Zisserman, Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014

Wang, K. and J.-M. Frahm. Single view parametric building reconstruction from
satellite imagery. in 2017 International Conference on 3D Vision (3DV). 2017.
IEEE.

Zeng, H., J. Wu, and Y. Furukawa. Neural procedural reconstruction for
residential buildings. in Proceedings of the European Conference on Computer
Vision (ECCV). 2018.

Nishida, G., A. Bousseau, and D.G. Aliaga. Procedural modeling of a building
from a single image. in Computer Graphics Forum. 2018. Wiley Online Library.

Agoub, A., V. Schmidt, and M. Kada, Generating 3D city models based on the
semantic segmentation of lidar data using convolutional neural networks. ISPRS
Annals of the Photogrammetry, Remote Sensing and Spatial Information
Sciences. 4: p. 3-10, 2019

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, Generative adversarial networks. Communications
of the ACM. 63(11): p. 139-144, 2020

Bittner, K. and M. Korner. Automatic large-scale 3d building shape refinement
using conditional generative adversarial networks. in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. 2018.

Bittner, K., P. d’Angelo, M. Ko6rner, and P. Reinartz, DSM-to-LoD2: Spaceborne
stereo digital surface model refinement. Remote Sensing. 10(12): p. 1926, 2018

Beer, L., Automatic generation of lod1 city models and building segmentation
from single aerial orthographic images using conditional generative adversarial
networks. GI_Forum 2019. 7: p. 119-133, 2019

Kelly, T., P. Guerrero, A. Steed, P. Wonka, and N.J. Mitra, FrankenGAN: guided
detail synthesis for building mass-models using style-synchonized GANs. arXiv
preprint arXiv:1806.07179, 2018

Qian, Y., H. Zhang, and Y. Furukawa. Roof-gan: Learning to generate roof

geometry and relations for residential houses. in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2021.

108

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

Zhang, L., Z. Li, A. Li, and F. Liu, Large-scale urban point cloud labeling and
reconstruction. ISPRS Journal of Photogrammetry and Remote Sensing. 138: p.
86-100, 2018

Zhang, L. and L. Zhang, Deep learning-based classification and reconstruction of
residential scenes from large-scale point clouds. IEEE Transactions on
Geoscience and Remote Sensing. 56(4): p. 1887-1897, 2017

Leotta, M.J., C. Long, B. Jacquet, M. Zins, D. Lipsa, J. Shan, B. Xu, Z. Li, X.
Zhang, and S.-F. Chang. Urban semantic 3D reconstruction from multiview
satellite imagery. in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops. 2019.

Xu, B., X. Zhang, Z. Li, M. Leotta, S.-F. Chang, and J. Shan, Deep learning guided
building reconstruction from satellite imagery-derived point clouds. arXiv
preprint arXiv:2005.09223, 2020

Yu, D., S.Ji,J. Liu, and S. Wei, Automatic 3D building reconstruction from multi-
view aerial images with deep learning. ISPRS Journal of Photogrammetry and
Remote Sensing. 171: p. 155-170, 2021

Gui, S. and R. Qin, Automated LoD-2 model reconstruction from very-high-
resolution satellite-derived digital surface model and orthophoto. ISPRS Journal
of Photogrammetry and Remote Sensing. 181: p. 1-19, 2021

Kapoor, A., H. Larco, and R. Kiveris. Nostalgin: Extracting 3D city models from
historical image data. in Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2019.

Partovi, T., F. Fraundorfer, R. Bahmanyar, H. Huang, and P. Reinartz, Automatic
3-D building model reconstruction from very high resolution stereo satellite
imagery. Remote Sensing. 11(14): p. 1660, 2019

Teo, T.-A. Deep-Learning for Lod1 Building Reconstruction from Airborne Lidar
Data. in IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing
Symposium. 2019. IEEE.

Kippers, R., M. Koeva, M. van Keulen, and S.O. Elberink, Automatic 3D building
model generation using deep learning methods based on cityjson and 2D floor
plans. The International Archives of Photogrammetry, Remote Sensing and
Spatial Information Sciences. 46: p. 49-54, 2021

Yu, D., S. Wei, J. Liu, and S. Ji, ADVANCED APPROACH FOR AUTOMATIC
RECONSTRUCTION OF 3D BUILDINGS FROM AERIAL IMAGES.
International Archives of the Photogrammetry, Remote Sensing & Spatial
Information Sciences. 43, 2020

Zhang, W., Z. Li, and J. Shan, Optimal model fitting for building reconstruction

from point clouds. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing. 14: p. 9636-9650, 2021

109

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

Chen, Z., H. Ledoux, S. Khademi, and L. Nan, Reconstructing compact building
models from point clouds using deep implicit fields. ISPRS Journal of
Photogrammetry and Remote Sensing. 194: p. 58-73, 2022

Pepe, M., D. Costantino, V.S. Alfio, G. Vozza, and E. Cartellino, A novel method
based on deep learning, GIS and geomatics software for building a 3D city model
from VHR satellite stereo imagery. ISPRS International Journal of Geo-
Information. 10(10): p. 697, 2021

Chen, Y., T. Hong, X. Luo, and B. Hooper, Development of city buildings dataset
for urban building energy modeling. Energy and Buildings. 183: p. 252-265, 2019

Xu, Z., L. Zhang, H. Li, Y.-H. Lin, and S. Yin, Combining IFC and 3D tiles to
create 3D visualization for building information modeling. Automation in
Construction. 109: p. 102995, 2020

Rossknecht, M. and E. Airaksinen, Concept and evaluation of heating demand
prediction based on 3D city models and the citygml energy ADE—Case study
helsinki. ISPRS International Journal of Geo-Information. 9(10): p. 602, 2020

Isikdag, U. and K. Sahin, WEB BASED 3D VISUALISATION OF TIME-
VARYING AIR QUALITY INFORMATION. International Archives of the
Photogrammetry, Remote Sensing & Spatial Information Sciences. 42(4), 2018

Kilsedar, C.E., F. Fissore, F. Pirotti, and M.A. Brovelli, Extraction and
visualization of 3D building models in urban areas for flood simulation. The
International Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences. 42: p. 669-673, 2019

Jovanovi¢, D., S. Milovanov, I. Ruskovski, M. Govedarica, D. Sladi¢, A.
Radulovi¢, and V. Paji¢, Building virtual 3D city model for smart cities
applications: A case study on campus area of the university of novi sad. ISPRS
International Journal of Geo-Information. 9(8): p. 476, 2020

Pepe, M., D. Costantino, V.S. Alfio, M.G. Angelini, and A. Restuccia Garofalo,
A CityGML multiscale approach for the conservation and management of cultural
heritage: The case study of the old town of Taranto (Italy). ISPRS International
Journal of Geo-Information. 9(7): p. 449, 2020

Dembski, F., U. Wossner, M. Letzgus, M. Ruddat, and C. Yamu, Urban digital
twins for smart cities and citizens: The case study of Herrenberg, Germany.
Sustainability. 12(6): p. 2307, 2020

Virtanen, J.-P., K. Jaalama, T. Puustinen, A. Julin, J. Hyyppéa, and H. Hyyppa,
Near real-time semantic view analysis of 3D city models in web browser. ISPRS
International Journal of Geo-Information. 10(3): p. 138, 2021

Uggla, M., P. Olsson, B. Abdi, B. Axelsson, M. Calvert, U. Christensen, D.
Gardevarn, G. Hirsch, E. Jeansson, and Z. Kadric, Future Swedish 3D City

110

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

Models—Specifications, Test Data, and Evaluation. ISPRS International Journal
of Geo-Information. 12(2): p. 47, 2023

Dursun, 1., M. Aslan, I. Cankurt, C. Yildirim, and E. Ayyildiz, 3D city models as
a 3D cadastral layer: the case of TKGM model. The International Archives of the
Photogrammetry, Remote Sensing and Spatial Information Sciences.-2022. 43: p.
507, 2022

CesiumJS - Geospatial 3D Mapping and Virtual Globe Platform,
https://cesium.com/platform/cesiumjs/, Last Access: 27.03.2022

3DTiles, https://github.com/CesiumGS/3d-tiles, Last Access: 27.03.2022

The GL Transmission Format (gITF), https://www.khronos.org/gltf/, Last Access:
27.03.2022

Cesium ION, https://cesium.com/platform/cesium-ion/, Last Access: 27.03.2022

Carbonell-Carrera, C., P. Gunalp, J.L. Saorin, and S. Hess-Medler, Think spatially
with game engine. ISPRS International Journal of Geo-Information. 9(03): p. 159,
2020

Huo, Y., A. Yang, Q. Jia, Y. Chen, B. He, and J. Li, Efficient Visualization of
Large-Scale Oblique Photogrammetry Models in Unreal Engine. ISPRS
International Journal of Geo-Information. 10(10): p. 643, 2021

Merlo, A., C. Sanchez Belenguer, E. Vendrell Vidal, F. Fantini, and A. Aliperta,
3D model visualization enhancements in real-time game engines. International
Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences. 5: p. W1, 2013

Kersten, T., F. Tschirschwitz, and S. Deggim. Development of a virtual museum
including a 4D presentation of building history in virtual reality. in TC 1l & CIPA
3D Virtual Reconstruction and Visualization of Complex Architectures, 1-3
March 2017, Nafplio, Greece. 2017. Copernicus.

Walmsley, A.P. and T.P. Kersten, The IMPERIAL Cathedral in Konigslutter
(Germany) as an immersive experience in virtual reality with integrated 360
panoramic photography. Applied Sciences. 10(4): p. 1517, 2020

Kim, J.Y. and M.J. Kim, Exploring visual perceptions of spatial information for
wayfinding in virtual reality environments. Applied Sciences. 10(10): p. 3461,
2020

Broucke, S.V. and N. Deligiannis. Visualization of real-time heterogeneous smart
city data using virtual reality. in 2019 IEEE International smart cities conference
(1SC2). 2019. IEEE.

111

https://cesium.com/platform/cesiumjs/
https://github.com/CesiumGS/3d-tiles
https://www.khronos.org/gltf/
https://cesium.com/platform/cesium-ion/

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Bouloukakis, M., N. Partarakis, 1. Drossis, M. Kalaitzakis, and C. Stephanidis,
Virtual reality for smart city visualization and monitoring. Mediterranean Cities
and Island Communities: Smart, Sustainable, Inclusive and Resilient: p. 1-18,
2019

Tschirschwitz, F., C. Richerzhagen, H.-J. Przybilla, and T.P. Kersten, Duisburg
1566: transferring a historic 3D city model from google earth into a virtual reality
application. PFG-Journal of Photogrammetry, Remote Sensing and
Geoinformation Science. 87: p. 47-56, 2019

Yagol, P., F. Ramos, S. Trilles, J. Torres-Sospedra, and F.J. Perales, New trends
in using augmented reality apps for smart city contexts. ISPRS International
Journal of Geo-Information. 7(12): p. 478, 2018

UrbanX: Urban planning in mixed reality, https://urbanxgis.wordpress.com/, Last
Access: 27.03.2022

Sanaeipoor, S. and K.H. Emami. Smart city: exploring the role of augmented
reality in placemaking. in 2020 4th International Conference on Smart City,
Internet of Things and Applications (SCIOT). 2020

Liu, F., T. Jonsson, and S. Seipel, Evaluation of augmented reality-based building
diagnostics using third person perspective. ISPRS International Journal of Geo-
Information. 9(1): p. 53, 2020

Santana, J.M., J. Wendel, A. Trujillo, J.P. Suarez, A. Simons, and A. Koch.
Multimodal location based services—semantic 3D city data as virtual and
augmented reality. in Progress in location-based services 2016. Springer.

Buyukdemircioglu, M., R. Can, S. Kocaman, and M. Kada, Deep Learning Based
Building Footprint Extraction from Very High Resolution True Orthophotos and
Ndsm. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial
Information Sciences: p. 211-218, 2022

Ronneberger, O., P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. in Medical Image Computing and Computer-
Assisted Intervention—-MICCAI 2015: 18th International Conference, Munich,
Germany, October 5-9, 2015, Proceedings, Part I11 18. 2015. Springer.

Chaurasia, A. and E. Culurciello. Linknet: Exploiting encoder representations for
efficient semantic segmentation. in 2017 IEEE visual communications and image
processing (VCIP). 2017. IEEE.

Geospatial Data Abstraction Library (GDAL), https://gdal.org/, Last Access:
27.03.2022

Visvalingam, M. and J.D. Whyatt. The Douglas-Peucker algorithm for line

simplification: re-evaluation through visualization. in Computer Graphics Forum.
1990. Wiley Online Library.

112

https://urbanxgis.wordpress.com/
https://gdal.org/

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

Redmon, J., S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection. in Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016

Akyon, F.C., S.0. Altinuc, and A. Temizel. Slicing aided hyper inference and
fine-tuning for small object detection. in 2022 IEEE International Conference on
Image Processing (ICIP). 2022

Biiyiikdemircioglu, M., Implementation And Web-Based Visualization Of 3D
City Models. 2018.

Tan, M. and Q. Le. Efficientnet: Rethinking model scaling for convolutional
neural networks. in International conference on machine learning. 2019

He, K., X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. in Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016.

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-
scale hierarchical image database. in 2009 IEEE conference on computer vision
and pattern recognition. 2009

Han, K., Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu,
and Y. Xu, A survey on vision transformer. IEEE transactions on pattern analysis
and machine intelligence. 45(1): p. 87-110, 2022

Li, H., H. Yu, J. Wang, W. Yang, L. Yu, and S. Scherer, ULSD: Unified line
segment detection across pinhole, fisheye, and spherical cameras. ISPRS Journal
of Photogrammetry and Remote Sensing. 178: p. 187-202, 2021

Huang, K., Y. Wang, Z. Zhou, T. Ding, S. Gao, and Y. Ma. Learning to parse
wireframes in images of man-made environments. in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 2018.

Denis, P., J.H. Elder, and F.J. Estrada. Efficient edge-based methods for
estimating manhattan frames in urban imagery. in Computer Vision—-ECCV 2008:
10th European Conference on Computer Vision, Marseille, France, October 12-
18, 2008, Proceedings, Part 11 10. 2008. Springer.

Newell, A., K. Yang, and J. Deng. Stacked hourglass networks for human pose
estimation. in Computer Vision-ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VIII 14.
2016. Springer.

Zhou, Y., H. Qi, and Y. Ma. End-to-end wireframe parsing. in Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2019.

Xue, N., T. Wu, S. Bai, F.-D. Wang, G.-S. Xia, L. Zhang, and P.H. Torr,

Holistically-Attracted Wireframe Parsing: From Supervised to Self-Supervised
Learning. arXiv preprint arXiv:2210.12971, 2022

113

[137] Buyukdemircioglu, M. and S. Kocaman, Development of a Smart City Concept
in Virtual Reality Environment. The International Archives of Photogrammetry,
Remote Sensing and Spatial Information Sciences: p. 51-58, 2022

114

	ÖZET
	ABSTRACT
	ACKNOWLEDGMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	SYMBOLS AND ABBREVIATIONS
	1. INTRODUCTION
	1.1. Motivation
	1.2. Objectives and Research Questions
	1.3. Contributions
	1.4. Thesis Structure

	2. RELATED WORK
	2.1. Conventional Methods
	2.2. Building Information Extraction with Deep Learning
	2.2.1. Roof Type Classification with CNNs
	2.2.2. Building Footprint Extraction with Deep Learning
	2.2.3. Roof Structure Extraction with Deep Learning

	2.3. 3D Building Reconstruction
	2.3.1. Conventional Methods
	2.3.2. Machine Learning Methods
	2.3.3. DL-Based Reconstruction
	2.3.4. Combination of Deep Learning Based and Conventional Methods

	2.4. Visualization of 3D City Models
	2.4.1. Web-based Visualization
	2.4.2. Game Engines, Virtual Reality, Augmented Reality and Mixed Reality

	3. DEEP LEARNING BASED BUILDING FOOTPRINT EXTRACTION WITH FUSION OF TRUE ORTHOPHOTOS AND ELEVATION INFORMATION
	3.1. Motivation for Building Footprint Extraction
	3.2. Study Area and Dataset
	3.3. Model Training
	3.4. Results
	3.4.1. True Orthophoto (RGB) Results
	3.4.2. True Orthophoto + nDSM (RGB-Z) Results

	3.5. Vectorization
	3.6. Discussions and Conclusions on Building Footprint Extraction

	4. ROOF TYPE CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS
	4.1. Motivation for Roof Type Classification
	4.2. Study Area and Dataset
	4.3. Methodology
	4.4. Results
	4.5. Discussions and Conclusions on Roof Type Classification

	5. AUTOMATIC LOD 2.2 BUILDING RECONSTRUCTION WITH DEEP LEARNING
	5.1. Motivation for Automatic LoD2.2 Building Reconstruction
	5.2. Study Area and Data Preparation
	5.3. Methodology
	5.3.1. Data Augmentation
	5.3.2. Evaluation Measures
	5.3.3. Implementation Details

	5.4. Results
	5.4.1. Quantitative Results
	5.4.2. Qualitative Results
	5.4.3. Method Robustness

	5.5. Vectorization and Post-processing
	5.6. 3D Building Reconstruction
	5.7. Discussions and Conclusions on Automated LoD2.2 Building Reconstruction with DL

	6. EFFICIENT VISUALIZATION OF 3D CITY MODELS
	6.1. Problem Statement
	6.2. Web-based Visualization of 3D City Models with CesiumJS
	6.3. 4D Data Visualization with CZML
	6.4. Game Engines and Virtual Reality
	6.5. Discussions and Conclusions on Efficient Visualization of 3D City Models

	7. CONCLUSIONS AND FUTURE WORK
	7.1. Conclusions
	7.2. Future Work

	REFERENCES

