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ABSTRACT

AUTOMATIC RECONSTRUCTION AND EFFICIENT
VISUALIZATION OF 3D CITY MODELS

Mehmet B! Y! KDEMKRCKOJLU

Doctor of Philosophy, Department ofGeomatics Engineering

Supervisor: Prof. Dr.Sul t an KOCAMAN G¥K¢EOJLU

March 2023, 114 pages

Today, migration from rural areas, continuous change in cities and the increasing
complexity of their structurgielded the need afew methods to increase efficiency in
their managemenihe demand for 8imensiona(3D) city models is increasing and they

are actively used by countries and municipalitieslifferent scales3D city models are

not only visual models, but also allow analysis and different visualization applications
with the help of their semantic data. These models can be produced iardiféarels of

detail (LoD), and as the levels increase, the amount of modeled objects/details of the
building and roof also increases. 3D models with a high level of detapraduced
manually by photogrammetry operators, usually with the help of vejly t@solution
stereo aerial photographidowever, this process is costly in terms of labor and time.
Thereexistdifferent approaches in the literature to automatically generatby ligtaied

3D city models, buthe topic is still an active research abedgng investigately several



researchersOn the other handefficient visualization of the produced modeltso
involves optimization issueand depending on the platfornand different approaches
exist Within the scope of this thesis, deep learraged solutions have been developed
for automatic classification of building roof types from very high resolutptical
imagery automatic extraction of building footprints, automatic extraction of rotzfilde

at LoD2.2 level and their use in the production of 3D building models. The siigdy
were selected from different regions Tifirkiye andthe training datawere prepared in
accordance with theequirements of thdeep learning methadThe resultsre presented
and suggestions for potential improvemeas discussedn addition, different solutions
for the visualization of LoD2 and LoD3 city models are developed and discussed. For this
purposeweb-basedvisualizationwith Cesiumlibrary and virtual reality supported Unity
game enginavere employed to reveal varioaslvantages and disadvantagdsooth
approaches

Keywords: 3D City models, Deep Learning, CityGML, Cesium, Virtual Reality
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1. INTRODUCTION

Buildingsare amongheimportant objects im city. As thepopulation of cities continues
to increag everyday, nanagenent ofcities become more compleXhe production and
use of virtual 3D city models and digital twins of citlesve been increasing in parallel
for efficient managenentandplanning withsimulationsusingthe generated models. 3D
city models can be generateath different levels of detaill(oD) [1] depending on the
applicaton requirements. As a result of higheoD and rich semantic information, the
number, variety, anquality of the analyses that can be performed on 3D city matkels

increase

3D city models can be reconstructed manually, smrtomatically or fully
automatically. The process of manually reconstructing a 3D model of a city is commonly
carried out by photogrammetiperatorsthrough manual digitiation of roofs or 3D
building models from stereo aerial imageHowever, i is very time-consuming and
costly to manually digitize large numisexf buildings in citiesWith the sem+automatic
and automatic approaches, building geometr@s bereconstructedrom point clouds,
mostly from LIDAR (Light Detection and RangingensorsPoint cloudsobtained from
optical imageghrough stereo processing methade preferredess due to sparse point
distribution in lowtexture areasThus roof corners or roof detailsiay not alwaysbe
generatedvith optical (often called aghotogrammetricpoint clauds.AlthoughLiDAR
point cloudsmaypresent object shapes better thgticalphotogrammetric point clouds
depending on image resolution and texttine LIDAR data are often natvailable due

to their high cost

Automatic and serautomatic 3D building reconstruction methods usually require
building footprints as input along witnDigital Surface Model (DSM). The main reason
for this is that these methods usually reconstruct each building by clippingstrectie
part from theDSM based orfootprintarea Open data sources for building footprints such
as OpenStreetMdj2], and Microsoft building$3] canalsobe used for this purpos&he

main issue lies in théact that these dasetsare typically produced either manually or
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automaticallywith artificial intelligence(particularly machine learningnethodsfrom
satellite imageswhich usually havéower spatialresolution than aerial phator LIDAR
data.Basa onthe imagespatialresolution and the method used to generate the data of
the building footprints, openly available dasets areoften not fully compatible with
higherresolution datasets. Due to this fact, building footprints are usdallpeated
manually using mono or stereo plotting methods, whgltostly for time and labor.
Automatically extractingbuilding footprints will enabletremendous cost and time
savings, as well as a reduction in the complexity of the process.

Novel ceep learnindDL) methodscan bemore effective thathetraditional methodsf
computer vision and photogrammetfg]. The use ofthe DL technologies has
transformed many tasks that were previously performed manually or with low accuracy
into automated tasks with high accuragytomatic reconstruction of 3D city models
with high detail levelsl{oD2+) is stillanunsolvedproblem yetfield of research in DL

based 3D building reconstruction is still in its early stages and there is still a great deal to
be doneThrough the use dhe DL methods, roof structure extraction and 3D building
reconstruction could be performed more acclyatey overcoming some of the

limitations of conventional methods.

This thesis airadto developa framework folDL-based reconstructicand visualization

of 3D city models towards fulutomatization and high efficiency. Although not all steps
could be fullyautomatically realizedseveral investigations were carried out to realize
the automatization and reveal the major issliesiards ahieving this gogla number of
DL-based methods has been investigated and proposed using vergdulytiion stereo
aerial imagery for roof type classification, building footprint extraction, and LoD2.2
building roof structure extraction for 3D buildingaonstruction. For this purpose, diverse
datasets from different geographical regioh3 trkiye were utilized to train various DL
methodsEach study was conducted in a different study &sé#he only dataset available
at the ti me, t bseditteeroofaypedclrdsificatientstudy &Chapter 4).
Later, the data provided by TKGM was used in other studies (Chapter 3 ahkeb).

results were validateldoth quantitatively and qualitativelgnd discussed accordingly



In addition, various soludns for the visualization have been investigated and their
advantages and disadvantages could be analyzed. For this pdiffesent visualization
platforms such@web globesnd game enginagereimplemented by integratingigital
terrain modelgDTMs), true orthophoto basemaps, 3D city plans, as well as building
models with different levels of detail. Aerial photogrammeir images werealso
visualized in a virtual globe usirdata fromboth drones and glaneto assesthe image
acquisition proess Thus, thefull processing chain involved in the 3D city model
production, from data collection to visualization, could be assessed with a holistic

approach.

1.1. Motivation

The process of creating 3D city models involves several stages, such aslidataon
(mostly for highresolution optical imagesvith stereo capabiliy preprocessing
(photogrammetric triangulation, DSM and DTM generation, orthophoto production),
feature extraction, roof and building modeling, and presentation of the modaltainle
environments. Thenain stageqdata collection, modelling, visualization) and their sub
processesare depicted in Figurd.l Red color in Figure 1l.lindicates the steps
contributed in this thesishis thesis aimed at improving various parts of this process
such as the automatization of building model generation, investigating and increasing the
efficiency of theirvisualization and presentation, and quality control through automated

methods and visal inspection platforms.

Building models with a high LoD are often generated manually by photogrammetry
operators using stereo aerial imagery. This process requires manual digitization by an
experienced operator and is a costly and4bmesumingprocess in most cases. Several
commercial softwaraeconstruct 3D city models sewmiitomatically but they have
certain limitations. Preparing the input data require excessive file format conversions,
coordinate system transformations, and further dat@rgcessing. Building roofs
obstructed by trees or shadows are usually reconstructed incorrectly. Software based on
roof libraries are limited to widely used roof types, thus complex roofs or small objects

on them such as chimneys or small windows canno¢denstructed. Therefore, further

16



research on the development of fully automatic algorithms for 3D reconstruction is
needed.

First Stage Second Stage Third Stage

Photogrammetric
Data 3D City Modelling Visualization
Acquisition

Data Processing
3D Building Reconstruction (Reprojection, format
conversion, etc.)

GCP Establishment and
Ground Measurements

A 4 A 4 Y

Aerial Image Acquisition
and Triangulation

\ y /\

Digital Surface and Terrain Format conversion
Model Generation (CityGML, CityISON, etc.)

Texturing Data Optimization

‘Web-based Visualization Game Engine Visualization

Y

Orthophoto / True
Orthophoto Generation

Figurel.1 The main stages @D city model generation

The DL methodshave thecapability of improving the performanesd quality ofroof
segment detection ar8D building reconstructionAs a part ofthe thesis a DL-based
frameworkusingline segment detection networks for extracting and vectorlziiy 2.2
roof details at the city scale presentedThis thesis presents the first study that utilizes
DL methods for extracting rogieometry in the form ofectorlines attheLoD2.2. This
method differs fronmhe other studies in the literature in thiatloesnot require building
footprints and uses a single RGB image as an input witktexisting methodsequire
building footprint vectors together with RBG imades clipping imagedirectly from
building boundaries based on building footprints so that e#ehcontains a single
building. Predicted roof structurasethenvectorized, reprojected, mergeuhd exported

at the city scale using custom scripts developed in Python. As a final step, the transition
between tiles and vector geometries is correatati redundant junctions are removed
with postprocessing. Afterthe postprocessing, 3D building geometries based on

detected roof structures are reconstructed.
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1.2. Objectivesand Research Questions

This thesis has the following main objectives:

1 To investigat thepotential and efficiency othe DL methods for automatic 3D
building reconstruction an developa methalologyfor accurate reconstruction

1 To analyzevisualization methodgor 3D city models with various.oDs and
semantic data using different technologies such as virtual globes or game engines

andproviderecommendations.

Based on theegoals, thighesis addressehe following questions:

91 Do the DLmethods providémprovedresultscompared t@wonventional methods
in terms of building information extraction frodHR aerial imagery?

1 In what ways camhe DL methods be utilized in the automatic production of 3D

city models, andvhich advantagesouldthey provid®

1 How accuratly can the DL methodslassifythe differentroof typesand with
which LoDs? Is it possible to improve results by fieing existing

Convolutional Neural Network€CNNs) with pretrained weights?

1 How robust arehe DL methods against problems such as trees blocking roofs or

shadows causinf@lsereconstructions?

1 Couldthe DLbe used to detect complex roof structures other than the widely used

gable, hip, pyramid, etc roof types?

1 How can 3D city models be efficiently visualized on the walitat shall be the
motivation forvisualizng themodels on different platforms (web, game engine)

what are the requirements for obtaintmgh performance?
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1.3. Contributions

Contributions of this thesis can be listed as following:

1 A dataset for roof type classificatiovith deep learningontaining10,000 unique
roof images and their class labels was generated from very high resolution
orthophotos.

1 The first study on automatic vectorization of LoD2.2 roof structures with deep

learning at city scale is presented.

1 Python scrips developed for automatic training data generation for line segment

detection networks using existing city models and VHR true orthophotos.

1 The first LoD2.2 roof structure training dataset with more than 2.2 million lines

and 139k buildings for line segmiedetection networks is presented.

1 The LoD3 city model of Bizimsehir, Turkiye's first smart city project, was
visualized on the web and in the Unity game engine with VR support prior to

construction.

1 A methodology proposed faveb-based visualization of photogrammetricage

acquisition flightswith UAV and aircratft.
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1.4.Thesis Structure

This thesis consists of the following sections:

Chapter 1 describes the motivation behind the thesis and the problems edamm

investigate

Chapter 2 provides a literature review aime conventional andhe DL methods for
building information extractiofrom VHR optical imagery3D building reconstructign

and3D city model visualization.

Chapter 3 explores the effect afombining height information (hnDSM) with RGB data

for building footprint extraction, and conversion from raster to vector format.

Chapter 4 explores the potential of the DL methods for classifying roof types, and
compares the results of developed shal&MN with fine-tuned popular CNNs using pre

trained weights on the ImageNet dataset.

Chapter 5 introducesthe first study for extracting and reconstructihgD2.2 roof

structures using line segment detection networks.

Chapter 6 investigatedhe visualizaion and exploration of 3D city modets the web
using CesiumJ$brary, and alsan the Unity game enginier assessing the use\diftual

Reality.

Chapter 7 provides an overview of the issues experienced throughout the thesis, analyses

the results, angresentdherecommendations for future work.
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2. RELATED WORK

A literature review ofbuilding information extraction and 3D building reconstruction
methods is presentdeere together with visualization approaches. The firstsaahion
presers the DL methods (classification, segmentation, and roof segment detection). The
secondsubsectian gives a literature reviewn 3D building reconstruction. An overview

of the literature on visualization methods is provided in the third chapter.

2.1.Conventional M ethods

Conventional image segmentation methods are based on traditional computer vision
techniques and algorithms. These methods aim to partition an image into multiple regions
or segments based on certain characteristics or features of the image, such as color,
texture, or intensity. One popular method is the thresholding techféfueshere an

image is segmented into foreground and background based on a certain threshold value.
Another common method is edgietection[6], which identifies and extracts the
boundaries or edges of objects in an image. Other methods include region drgwing
where adjacent pixels with similar characteristics are grouped together, and clustering
techniques, which group pixels based on their similantya feature space. These
conventional segmentation methods are still widely used in various applications, such as
medical imaging, remote sensing, and surveillance, and can often provide accurate results
in simple scenarios. However, in more complex @allelmging situations, such as images

with low contrast or high noise, machine learrbbaged segmentation methods are often
preferred due to their ability to learn and adapt to various image characteristics and

features.

Conventional line detection mett®dre used to identify lines or edges in an image. These
methods are based on various techniques, such as grhdsat methods, Hough
transform[8], and template matching®]. Gradientbased methds detect edges in an

image by calculating the gradient magnitude and direction of each pixel and thresholding
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the resulting image to identify edges. The Hough transfsrenpopular technique that
transforms an image space into a parameter space toloetear other shapes. Template
matching involves comparing a portion of an image with a predefined template to detect
lines or other shapes that match the template. Other techniques include line fitting, which
fits a line to a set of points, and edgeiing, which connects edges or segments to form
longer lines. These conventional line detection methods have been widely used in various
applications, such as computer vision, robotics, and remote sensing. However, like other
conventional computer vision deniques, they have limitations in handling noisy or
complex images, and may require filuming of parameters to achieve optimal results.
With the recent advancements in deep learning and neural networks, machine Jearning
based line detection methods hasBown promising results and are becoming

increasingly popular in various applications.

2.2.Building Information Extraction with Deep Learning

The DL studies used for the building information modelling in the literature can be
categorized for classifying réaypes, and extraction of building footprints and roof

structures as presented in the following.

2.2.1.Roof Type Classification with CNNs

A cityGs structure is primarily comprised of buildings, which play an important role in
many aspect®©ver the pat few years, simulation of 3D city models has been used across
many applications[10]. Building roof types can be usetbr modetdriven 3D
reconstrudbns of buildings andb reduce the reliance on digital surface models (DSMs)
[11].

A great deal of progssachievedin both photogrammetry and remote sensthgough
the use ofDL [4]. Severalapproachesre presentedh literature that reds on DL

techniques to classify roof typdsis possible to @ssify roof types using deep CNNs as
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well as to estimate roof heightk?]. In their study, Partovi et dl11] usedpansharpened
WorldView-2 imagery50 cmGround Sampling Distanc&SD) to classify roof types
with a Visual Geometry GroupMGG-Net) model. A modebased approach has been
developed by Alidoost and AreffiL3] usinga combination oflifferent data source®
enhanceoof type detectiomsingCNNs Mohajeri et al[14] classified sixoof typesfor

solar energy applicatiorand achieved an overall accuracy of 668ing LIDAR dataA
study by Qin et al[15 evaluatedDeep Convolutional Neutral Network®CNN) in
building segmentation and achieved 94.67% accuracy using Gacatelliteimagery.
Additionally, they stated that DCNNs have the potential to improve building mapping in

dense urban areas with a wide variety of roof patterns using verydsghution imagery.

Olger et al.[16] classifieddifferent roof types using a few training exampheith a
Siamese neural network aadhieved 66%accuracyBittner et al.[17] investigated the
use ofConditional Generative Adversarial Network (cGAN) foof type classification
usingDSM derived from Worldviewl satellite imageryLIDAR and satellite imagery
can be combinefibr labeing and classifing roof typesusing different machine learning
based methoddl 8]. An averag accuracy of 67% was obtained for classifying rooftops
using LIDAR and a random forest method by Assouline €f18]. ISPRSbenchmark
dataset for building reconstruction and classificat®oa widely used dataset for similar
tasks that were developed by Rottensteiner ef28l. As part of the dataset, high
resolution aerial imagery with an 8 cm resolution and laser scanning data from an airborne
laser scanner (6 pointsfrare used to deteand reconstruct buildings, trees, and 3D
models.They also provide@n overview of current methodsong with a discussion of

the common problems of the benchmark reqi}.

2.2.2.Building Footprint Extraction with Deep Learning

TheCNNs are considered more effective than conventional semantic image segmentation
methods in remote sensing imagery and image analysis in g¢@gralAs well as
classifying pixels and determining the content of those pixels, these networks have also
been used to predict the spatial structures of objects.sGi¥d\capable of detecting,

segmenting, and categang round objects of varying sizes and shapes. Additionally,
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CNNs can predicthe spatial extent of features including buildings, types of roofs, and
other object$23].

Usually,image segmentation is performeasing twedimensional (2D)mages as that is

the most commonly used approa€he depth information, however, can also be used as
an additional band on top of RGB images to provide additional informatisamantic
image segmentation process that incogbes height information frequently produces
better results compared to R&Bly resultd24]. The majority ofalgorithms used for the
extraction of buildings use RGB imagery as the only source of [ig&lit Integrating
height information with RGB imagery can hdlp solveweaknessesf aerial images,
such as shadows, poor lightirdouds, and many other obstructions.

A study by Marmanis et aJ22] shows thathe CNNs can utilize highresolution aerial
images to segment them and explicitly represent the boundaries between different classes.
Using the ISPRS Vaihingen benchmark dataset as the benchmarlp @i model

was able to achieve a 95.2%-8dore forbuilding segmentatiarmhe DeepReset was
developed by Yi et a[.26] for Very High Resolution Y{HR) imagery to be utilized for
pixel-basedbuilding extraction As compared to the WMlet, network performance and

overall accuracyncreased significantly.

A study by Kada and Kuramif27] utilized the PointNet++ and KPConv alggbms to
classify building roofs from LIDAR data and scored an loU of 94.8®sani et al[28]
used a modified DeepLabV3er extractingbuilding footprintsfrom satellite image It
was demonstrated in the test with the help of thualding extractiorbenchmark datasets
that their method achievedstateof-the-art results regardless of imagesolution and
building density.The different CNNs can efficiently be combined to extract building
footprints based on VHR aerial imagery, as shown by Li etf28]]. Pixelbased
segmentatiomccuracy of the model is measuteglcomparing each overlapping pixel
and the precision, recall, and confidence of the model are 9B8%6, and 85.1%,
respectively, for the WHU building datasé/HU dataset consists of aerial imagery

dataset and satellite imagery dataset with varying resolutions from 0.075m to 2.5m with
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manually delineated building footprint vectpesd used as benchmark dataset in many

building extractiorstudies.

Building extraction can also be achieved by combining data from multiple sources and
using CNNs.Additional data sourcesanbe added as a fourth band to RGB images
without making any maifications to the CNN modelSun et al[30] used a frame field
learning model fobuilding footprint extractiorirom orthophotosnd nDSM with 0.25m

GSD. It was observed that incorporating the nDSM has made an improvement of 12% to
theintersection over uniofgU) value, as compared to the 58% gained from only using

RGB images.

Bittner et al.[31], usedfully convolutional network (FCN) for building segmentation

using spectral and heigtitacollectedoy multiple sensors and achieved 85.5% accuracy
Zhao et al[32] developeda methodlogy using CNNs and recurrent neural networks
(RNNs) for generating regularized building outlines in vector format, where a CNN was
used to extract image features, and RNN was usexitact building polygont generate
regularized building outlines. Following the wook PolyMapper{25], the researchers

have made several improvements to the backbone, as well as improved the detection, and
recurrence moduledt has also been shown that deep learning can be combined with

guided filtering for esmating district boundaries by Xu et &R3].

2.2.3.Roof Structure Extraction with Deep Learning

Building outlines and roof line structures can be extracted fieonote sensing imagery

with DL methods Conventional methods (ndbL) also can be used to extract line
segments from aerial imagery in urban arg&8. The neual networks are not only
capable of detecting edges in images, but also of assembling them into graphs. Several
studiesound in the literatureseconventional an@®L-basednethods to detect roof lines

and reconstruct 3D modelsn&xtensive review dDL-based3D building reconstruction

methods are presented Byyukdemircioglu et af35].
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Using very highresolution orthophotos of the city of Detmold, Hensel et[af]
vectorized buildng roof structures using Poiffair Graph Network (PPGNet). The F1
scores for junction detection and edge detectiohd®?2.0 roof structures were 0.93 and
0.87, respectively.

Conv+MPN [37] was proposed as DL architecturdor reconstructingoof structuress

a planar graph fromemote sensing imagergon+MPN is a twostage method that
requirescorner detectiomsthefirst stagethen networkrainingasthe second stageis
well as being computationally expensive, mstige approaches are inefficient for both

training and inference.

Roof Structure Graph Neural Network (RSGNISJ] is anotheionestagegraph neural
network for extractingLoD2.0 roof structures from satellite and aerial imagérieir
methodachieved statef-the-art results for extracting roof structures from VHR images.
Additionally, they introduced using Hough transform modules to improve line feature
detection using geometric priorBhe Deep Roof Refingi39] is another deep learning
method forextractng roof stuctures In quantitative and qualitative experimerttzey

achieved amptimal Fxscore of 60.89% and 63.48%, respectively

Gui and Qin (2021) proposed RL-basedLoD2 building reconstructiomsing MVS
satellite image Using a "decompositionptimizationfitting” paradigm, they
reconstructedtoD2.0 building models based ammodeldriven approactSince the roof
models are reconstructed based on a roof type library, it may be challenging to obtain

reliable predictions for complex roof structures with the proposed method.

In a study by Alidoost et aj40], 3D roof structures were extractedm aerial imagery
usinga Y -shaped convolutional neural network. This framework consists e$khaped
CNN with two encoders and one decodire proposed CNN computes predicted heights
and rooflines fothree classes of eaves, ridges, and hips in LoD2.0 from RGB imagery

Kenzhebay41] proposed a method fooof structure extractioftom aerial imagerand
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DSMs and FCNsMuftah et al[42] usedCNNsfor extractingLoD2 roof structurefrom

aerial imagery.

2.3.3D Building Reconstruction

Here, related work on building reconstruction methods is presented based on conventional
andnovel machine learning methodqegial emphasiwas alsayiven to the DL methods

and the combinations of different approacties to their popularity

2.3.1.Conventional Methods

3D building reconstruction and 3D city modeling amneostly performed using
conventional methodsDetailed reviews of conventionaBD building reconstruction
methodsas well as their applications are availahbléne literaturg43-45]. The subsurface
growing method is an example of a conventional technique that can be used for
reconstructing 3D buildinggl6]. Polyfit [47] is a datadriven software thateconstructs
lightweight polygonal sugcesusingpoint cloudsPhotogrammetricqnt cloudsarealso
usedfor reconstructing3D building models by cobining RANSAC and contextual
knowledge[48]. Digital surface models (DSM) and 2D footprints can be combined to
automatically create.oD1 building modet [49]. It has also been demonstrated that
modetdrivenreconstruction methodsan be used to serautomatically reconstru@D

city modelsfrom largeformat aerial imagery as illustrated in Figuré [50].
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Figure 2.1 A view of the semiautomatically reconstructed 3D city model of Cesme,
Tarkiye [50].

Reconstruction of 3D buildings can also performedwith rule-based methodand
photogrammetric point cloudgbl]. A common and fastechniquefor 3D building
reconstructioomodels isbuilding footprintextrusion It is also possible to perforboD2
building reconstruction usinthe half-spaces methob2]. Dr e g |[58]kpresernted a |
a methodology based on a method known as Extract, Transform, Load (ET3L for
building reconstructionfrom photogrammetric point cloudMurtiyoso et al.[54]
developed a datadriven framework for LoD2 building reconstruction using

photogrammetric point clouds.

Using RANSAC constraints and topologigalation constraints, Li and W{55]
reconstructed 3zomplex buldings using incomplete point clouds. Li and Shibo]
proposed @awo-stepRANSAC-basedmethod3D building reconstruction methagsing
both LIDAR and photogrammetric point clouddsing 2D building footprints and

Airborne Laser Scanning (ALS) point clouds, an automatic algorithm was developed to

reconstruct ten milliohoD2 buildings in the Netherland$7]. There is still a challenge
for researchers in the area of automatic reconstructituw@8 building models. It has
been shown thdtoD3 building models are usually digitized manualhyd that they can
be merged andisualized togethewith existing 3D citymodels[5§].
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2.3.2.Machine Learning Methods

Apart from the neural networks, otheaahine learning approaches can also be used to
reconstruct 3D buildings and 3D city modélsing contextfree and weighted attributes,
Dehbi et al[59] developed a method for reconstructing 3D buildings based on context
free grammar rulegsing Markov Logic Networkd®keconstruction of 3D building models
without elevation data is also possible with the helmacghine learnin§60]. According

to the proposed method, a building's height is predicted byzmglshe footprints and
attributes associated with the building, and then the footprints are extruded into 3D
models using the predicted heiglitis possible to produdeoD2 models using datasets
with lower LoDs by predicting the roof types using chane learning method$1]. As a

result of using multiclss classification, thegredictedthe type of roof with an accuracy

of 85% and predict whether the roof was flat with an accuracy of 92%. Park and
Guldmann62] reconstructea 3D city modelusingLiDAR point cloudsusing a Random
Forestbased point cloud classification methodolotulti-temporal (4D) city models

can also be reconstructed by combining machine learning methods with historical

information[63].

2.3.3.DL-Based Reconstrution

Corventional 3Dbuilding reconstruction methadmainly involvetwo major problems

[64]. First, due to the number of manual designs involved in them, they are prone to errors.
Additionally, they are incapable of learning semantic features associated with 3D. shapes
Also, a large part of the effectiveness of this metho@sein image quality and camera
calibration.By leveraging deep neural networks to automatically learn 3D sliape

earth observation datBL methodscan resolveéhesedeficiencies

SeveraDL-basedmethodscan be foundn the literaturefor 3D building reconstruction
The DL models are extremelyowerful in many computer vision taskg using images
to learn featurefs9]. It is also possible to reconstruct 3D buildings from EO data using

these methodsTo perform a parametri@D building reconstructionusing satellite
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imagery, Wang and Frah[66] proposed DL-based solutiomn the parametrization of
buildings as 3D cuboids. It has also been shown that CNNs can be used to reconstruct
buildings with procedural modeling. By inferring shape grammar rules from sequences
of 3D points, CAD-qualty models were generated with Neural Procedural
Reconstructiorj67]. Nishida et al[68] developed &NN-based tool formautomatically
generaing 3D building models from remote sensing imagekjdoost et al.[10] used

CNNs for building detecton ard reconstrution using aerial imagery Based on the
proposed method, they achieved root mean square errors (RMSESs) of 3.43 m for 3D
building reconstruction and 1.13 m for nDSMultiple CNNs with encodedecoder
architecturevere usedby Agoub et al[69] to create3D city modelswith depth maps.
Figure2.2provides an overviewf 3D city modefreconstruction based on their appraach

Figure2.2 CNN-based 3D city model reconstructiofithe Manhattan aref69]

Knyaz et al. (2020) presented another example of the use of CNN in a grid structure. It
has been demonstrated that CNN is an effective method of automatically segmenting wire
structures based on semantics, which overcomes the limitations inherent in
photogammetric processing when applied to reconstructed complex grid structures in

three dimensions.

Generative Adversarial Networks (GANS))] alsoare capable of generating 3D building
models There are two main partd aGAN, a generatgand a discriminatolo produce
photaealistic images and fool the discriminator, generators lderdistribution of real
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images.Discriminators judge whether generated images are real or GakN-based

methodsalso can be used identify 3D shapes witbbscuredr missing portion$64].

3D buildings can be reconstructed from noisy DSMs us€lngditional GAN (cGAN)

[71]. A 3D surface model of LoD2 was created by Bittner eff7d] using stereo satellite
imagerywith 50 cm GSDBittner et al[17] also produced digital surface models (DSMs)
that provided high levels of detail similar to the LoD2 building forms but also assigned
additional object class labels on every pixel. It is also pasdibl use GANs to
automatically reconstruct buildings ilmD1 [73]. FrankenGAN 74] is another network

for reconstructing and enriching 3D city models with geometric details and building
textures RoOoFGAN [75] uses a combination of primitive roofs fgenerating3D roof
geometriesFigure2.3illustrates a view 08D roofs withadifferent number of primitives
reconstructedby RoofGAN.

Figure2.3 A view of roofs reconstructed by ReGAN [75]

2.3.4. Combination of Deep Learning Based and Conventional Methods

The DL methodsan also beised to classify and reconstruct buildings flaBAR point
clouds[76, 77]. A DL-based segmentatiavasusedfor 3D city modellingusingsatellite
imagey as mesh 3D models with textured surfabgslLeoatta et al[78]. DL-based
methods can be used with point clouds thee automatic estimation of building roof

shapes in complex and noisy scefi&3.

A DL-based3D reconstructionframework was introduced by Yu et a[80] that

automatically createkoD1 building models usingter® aerial imagery. It has been
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demonstratetly Gui and Qir{81] that deep learning oebe used to reconstrutieLoD2
building modekMVS aerial imageryThere areseveraktepsan thedevelopedvorkflow,

such asdetecting building segments on the instance level, extracting initial building
polygons, decomposing and refining the building polygons, fitting the basic model, and
merging the model®L-based methodare also capable of reconstructimgtorical 3D

city models[82]. Partovi et al[83] developed a Dibasedwvorkflow for autanating3D
building reconstructionTher methodconsists of building footprint extractiohuilding
decomposition roof type classification and the calculation o8D roof structure

parameters

Teo [84] used FCNs for detecting building regions from laser scanning data and 3D
prismatic building model reconstruction automatic reconstruction method for
building modelss developedy Kippers et al[85] usingthe combiration of CityJSON

and building footprints In their paper, Yu et a[86] proposeda DL-basedmethod for
automatically reconstructingoD1 building models Their method includethree steps:
DSM generation, buildingoundary detectiorand 3D building reconstructiodhang et

al. [87] developeda framework for 3D buildingeconstructiorusing PointNet++ and a
holistic primitive fitting methodChen et al[88] developeda threestepmethod which
makesuse of embedded implicit fields and point clodiois3D building reconstructian
Moreover, DL-basedmethods can be combined with geographic information systems

(G1S) and satellite imagery reconstruct 3D city model89].

2.4.Visualization of 3D City Models

In this section3D city model visualization methoagere discussed under the welnd
game engindased technologies. It is also possible to use other desktop software
including those from the geographic information system (GIS) software vendors, which

are not considered here.
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24.1. Web-based Visualizaton

Althoughvarious platforms exist for visualizing 3D city modetlse most common use

Is webbased visualization. The main reason for this is that it allows quick use via the web
browser without requiring any extra software installation. 3D city modetiflerent

cities and countries are presented online and can be accessed by usebms&deb
visualization of 3D city models can be used in different applications with the help of
semantic data. Urban building energy modeljag], Building Information Modeling
(BIM) [91], Heating Demand Predictiof®2], air quality information[93], flood
simulation [94], smart city application$95], cultural heritagg96] can be given as
example tadifferent usagesf 3D city modes.

Stakeholders and citizens can use virtual 3D city models as part of collaborative processes
with their cities to help improve their quality of 1if®7]. 3D city models also allow
different analyseswith the help of their semantic data. Visibility analysis is one of the
most common analyzes used on these m@é8]sAlthough the main element of 3D city
models is buildings, other city objects are also of great importance in visualization and
analysis. Visualizing city furniture, bridges, tunnels, vegetation, etc. are also can be
visualized with building models [99]. Building models can be integrated with

architectural plans and cadastral data for metailéd analysi§10Q.

Virtual globes have become very popular and widely us@sany applicationd3NebGL
technology made it possible to visualize and explore maps in 3D. Using WebGL requires
no additional plugins or extensions and enables gutzg&rm flexibility. Even with very

large datasets, it provides high performance with the help of GPU arizWe
technology. CesiumJ&.01]] is a3D geospatial data visualization library for both web and
game enginesAs part of the streaming performance enhancements provided by
CesiumJS, the dataseteaendered using WebGL (Web Graphics Library). Different
types of geospatial data are supported by CesiumJS, including 3D city models, terrain,

imagery and point clouds.
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CesiumJS uses 3D Tilg$02, anOpen Geospatial Consortiuf®@GC) standard format

for rendering and streaming 2D/3D geospatial datasetsiding 3D city models
photogrammetric models,Building Infrmation ModelingBIM)/Computer Aided
DesignCAD) models and point cloud. Loading large volumes of geospatial data or 3D
city models orthe Cesium virtual globe as a single tile usually is not recommended for
performance reasons. Thus, tiling large volumes of d@athe best solution for this
problem. By using Adaptive Quadtree Tiling, 3D Tiles loads huge datasets as smaller
parts and renders them by dividing them into tiles, efficiently and effectively. By tiling,
stream performance can be improved and the browsamtsvare requirements can be
reduced. In 3D Tiles, performance can be created for many zoom levels in the same view
using a geometric error to select detail levels and an adjustable pixel defect. In 3DTiles,
3D geometries and models are stored in JW3 format, which is widely used across

a variety of applications that deal with 3D geometries and models. It is possible to store,
stream, and optimize geographical data using Cesiun10¥, which is a clouebased
platform that optimizes, tiles, and serves 3D geodata such as images, terrains, buildings,
point clouds, BIM/CAD, photogrammetry, and many other types of geospatidiatzd

onCesiumJS.

24.2. Game EnginesVirtual Reality, AugmentedReality and Mixed Reality

The large size of the geometries and textures within 3D city models requires performance
optimization for visualizationt is possible to integrate 3D city models into game engines

to visualize themmore realisticall. By supporting featuresuch as higiuetailed
photogrammetry models, terrain models, basemaps, amiiBIings game enginesan

visualizehigh-detailed3D geospatiatlatasets.

The popularity of virtual reality (VR) can be attributed to its use in many fields, but it is
most fanous for its use in computer games. Game engines with VR technology offer
many benefits, such as the ability to explore 3D city modelseastreet level or to better
visualizefuture citiesby combining them with existing 3D city modeléirtual realityis

an effective toolfor evaluating the impact ofuture cities on the environment and
infrastructure. VR can enhance the planning and design process by allowing stakeholders

from different disciplines to participate in the process.
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3D virtual representations of landforms can be created and visualizeth@lithity game
engine[105. The Unreal engine is capable of visualizing lasgale photogrammetric
models[106. Game engines are also used for visualizing and disseminating cultural
heritage[107]. Modeling and texturing procedures are provided within their pip&ine

converting point clouds into textured models to import into game engines.

Virtual reality technology is also capable of allowing users to explageoms in a new

way [10§. Virtual reality is more than just a static virtual environment, it can lbéso

used as a powerful tool for combining various data types in a single[4€&heKim and

Kim [110 have used ey#acking experiments to study perception and cognitive
processes in VR simulation8s part of their research, Broucke abdligiannis[111]
evaluated perceived workloads and the parameters associated with data immersion by
analyzing tasks of data exploration different web interfacesand the proposed VR
application.Historical cities can be exploredhteractivelywith VR technology[109.

Game engines can also be usedtifiervisualization and monitoringf smart cities in a

virtual reality environmentl112].

Geospatial data can be visualized and interacted with using a variety of platforms and
technologiesincluding VR [113, AR [114], and mixed reality115. Several areas in
which AR technologies are being used may be able to improve e#dizdority
engagement, such as urban decigioaking andstakeholdeparticipation[116]. Liu et
al.[117] conducted an outdoor case study with an AR system to detect thargst in
facade inspection tasks. Based on VR/AR environments, Santanfldigableveloped

a mobile visualization application to display simulation and modeling results at the

building level.
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3. DEEP LEARNING BASED BUILDING FOOTPRINT
EXTRACTION WITH FUSION OF TRUE ORTHOPHOTOS
AND ELEVATION INFOR MATION

At this stage of the study, instead of classifying roof types as explained in the previous
chapter, building roofprints were aimed to reconstruct. Therefore, a framework for the
building footprint extraction using CNNs was implemented and experimentep\idiR

true orthophotos and nDSM of Selcuk town in Izmir Province, Turkey. Unet and LinkNet
networks with different backbones were used on two different datasets, i.e. RGB (image
only) and RGBZ (image + elevation information), and their quantitative araligiive

results are discussed. The results presented in this chapter were largely pubjishéd in

3.1. Motivation for Building Footprint Extraction

Pixetbased classification and semantic segmentaticamotely sensed imagery can be
used to obtain information for several tasks, such as mapping and analysis of land cover
or the object detection. A major challenge in semantic image segmentation is the
continuous increase in resolutions of remotely seénsegery. The amount of detail
contained in very highesolution aerial images is making fhased approaches for
extracting buildings more challenginbligher image resolution results in wider class
imbalances and increased levels of difference for aisgs, even though the VHR is
capable of collecting small details. A variety of conventional image segmentation
methods are still in use today, including thresholding, regiowing, and edgéased
methods, but they have some limitations. They are semdiinoise and these methods

may not adapt well to changes in the image data or to different imaging modalities.

There have been significant improvements in the performance of CNNs over
conventional methods in the last decade. As a resultpddled segentation and

classification methods are becoming more popular and widely used by many researchers.
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This chapter examines the performance of two CNN models for building segmentation,
namely UNet [120 and LinkNet[121]. The results of these two CNNs are compared
using a set of different backbones. The dataset includes true orthophotos and nDSM
generated from VHR stereo aeti@agery. A comparative evaluation of the implemented
methods was conducted using first RGB data only, and then RGB + nDSM data. It was
found that fusing height information with RGB data improved model accuracy, thereby
improving their performance. Followgrthe building extraction, the segmented buildings
were converted into vector geometry from pixels using GOA2Z, which was then
simplified to improve their appearance by smoothing with Douigiscker[123
simplification method. Vectorization resafteasure are presented and discussed in detail

in the last sutsection.

3.2.Study Area and Dataset

The production ashdevelopment of 3D city models are common in countries around the
world, but they are also an important and active topic in Tirkiye as Geleral
Directorate of Land Registry and Cadastre of Turkiye (GDLRC) is started "Production of
3D City Models andCreation of 3D Cadastre Bases" project in 2018. The project is to
include all provinces and districts of Turkiye's settlement and development regions, it is
planned to produce 3D models of about 11 million buildings in these regions. This project
has beercarried out in cooperation with GDLRC and the private companies. These
companies are responsible for digitizing building geometries and roof models in
CityGML LoD2.3. This study was conducted using data produced and provided by the
GDLRC within the scopefdhis project.

Experiments were conducted in a field of approximately 4.12vith 13,269 buildings

in Selcuk, Izmir, Turkey (Figur8.1). A total of four types of data were included in the
dataset, involving true orthophotos (RGB), raster DSMs, @ifls with 0.1 m GSD,

along with vector building footprints. A ground filter or similar method can be used to
remove marmade objects from DSM to generate DTM if one has already been
generated for the study area.number of different ratios were usear the number of
training, validation, and test images, and the ratio that yielded the best results was

selected80% of the dataset is used for training deep learning models, 10% for validation,
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and 10% to test the performance of the models, respectlvetgtal, 2,185 buildings
were included in the test area, including buildings with different roof types and structures.
A random sample of validation data was selected from the study area. The buildings in

the test area were excluded and not used asfide training deep learning models.

#

Figure3.1 An overview of the study area and building footprints
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Several preprocessing operations are performed for generating input image tiles for
CNNSs. Raster image of the buildidgotprints was generated using building footprint
vectors, then the ground truth masks are generated by assigning pixels within the building
given the value of "1" and those outside given the value of "0". The study area was clipped
into 256x256 grids ohon-overlapping pixels from the raster data, and those grids were
then used as inputs to the deep learning models. An example tile illustrating the RGB true
orthophoto, vector building footprint, nDSM, and ground truth mask can be seen in Figure
3.2.

4
R

(a) (b) (c) (d)

Figure3.2 A sample tile from the study area: (a) RGB true orthophoto, (b) building
footprint vector, (c), nDSM, and (d) building maskL9

3.3.Model Training

Several networkraining processes were conducted using UNet and-MNetk with
different backbones to obtain the most accurate possible results. To determine whether
building height information contributes significantly to the results of networks, two
separate inputs (RGBnd RGB + nDSM) for networks were used. Several backbone
networks (ResNe18, ResNeb0, and SeResNdi8) were used with {Net and LinkNet,

both of which have a good reputation for their success when used for segmentation, to
achieve different levels of saess in segmentation. Each CNN was trained using the
generated training dataset, i.e., a-fpegned weight or finguning of the weights is not

used during the training phase. The learning process includes tweaking a few parameters
that are critical totlte success of the process, such as the initial learning rate, batch size,
number of epochs, loss functiaand optimization method. An overall view of the
developed framework is given in FiguBe8. An overview of model training parameters

is given in Table3.1.
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True Orthophoto

B

nDSM

Ground Truth Mask

Figure3.3 An overall view of the developed framewdkl9

Parameter U-Net LinkNet
Backbone ResNet-18, ResNet50, SeResNet-18
Weight Initialization Pre-trained
Learning Rate 0.001 (Default)
Optimizer Adam
Metrics F1-Score
Loss Function BCE-Dice Loss
Number of Epochs 100
Data Augmentation None
Activation Function Sigmoid
Batch Size 16
Input Size 256 x 256 x 3 (True Ortho only)

256 x 256 x 4 (True Ortho + nDSM)

Table3.1 Model training parametefd 19

Model training was performed using the Adam optimizer. The main difference between
different optimization algorithms is the way the learning rate is implemented as well as
the frequency with whichthese parameters (weights) are updated. The training was

performed 0.001 learning rate and weight decay is not used during model training.
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An epoch of training refers to a complete cycle through all of the datasets for training.
Several model trainings we performed with different epochs as part of the model
training process to decide the most suitable number of epochs for training without
overfitting. Each CNN is trained for 100
achieved up to 100 epochs, amdiiing with more epochs did not result in further
improvements in theesuls. Each time the model was run through an epoch, the

validation data were used to evaluate the model for that epoch.

Batch size is also an important parameter that determines how many images will be used
for training in each epoch. Usually larger batch sizes lead to better results. Taking this
into consideration, a batch size of 16 is used for each model training. Ndedelsmance

is assessed using the-Bdore, and Binary cross entropy (B@tge is used as the loss
function. There are several ways to measure the error rate. One is by usingstoee; 1

a harmonic mean that gives an estimate of how many incorresificasons were made.
Segmentation is typically carried out using the BOiEe loss function. Both approaches

are useful for various reasons, such as being able to maintain the stability of BCE while

still allowing for some diversity in the loss.

Data aigmentation techniques can also be applied to prevent models from overfitting.
Images can be augmented by performing geometric operations, such as flipping, scaling,
and rotating. Since no overfitting occurred during the training phase, this study did not
use any data augmentation techniques. It is also common to emplitgipesl models
trained on large datasets by finming pretrained weights. This experiment does not use
pretrained weights or finduned networks but instead trains all networks fismratch

using the generated training dataset.

3.4.Results

In this section, RGBnly results and RGE results are discussed. Results and

comparisons of the vectorization process are also presented.

41



3.4.1. True Orthophoto (RGB) Results

The results of the model based on the use of only true orthophotos are shown in Table
3.2. U-Net with ResNetl8 backbone achieved the highest Bcore and loU score on

the test data with 92.8% and 86.7%, respectively. LinkNet with ResD&ackbone,

which achieved the second best performance with-ars€ore of 92.7% and loU score

of 86.5% resulted as second. Results show thBieUand LinkNet are of performed
similar in terms of visual analysis. There are, however, some differences between the
segmentd output of UNet and LinkNet, with LinkNet usually containing unorganized
predictions that are less homogeneous. In addition to this,-thet bas shown to be an
effective means of separating structures with small areas, even though it is more
challengirg. Nearly all models failed to predict correctly when the rooftops were covered
with trees. The quality of segmentation was primarily affected by shadows for all models.
A shaded area belonging to the building class is frequently misclassified adaildory

area. Using prerained weights rather than fitened CNNs has the potential to be a
useful strategy to improve the segmentation performance. A comparison of the

predictions of all the models is shown in Fig@ré on the same image tile.

Best Test Test
F1- Validation | Validation Jaccard
Model Epoch Loss F1- -
Score F1-Score Loss (IoU)
Result Score
Score

U-Net +
ResNet.18 78 0.981 | 0.037 0.949 0.157 0.929 0.867
U-Net +
ResNet_50 96 0.986 | 0.027 0.949 0.174 0.897 0.814
U-Net +
SeResNet- 83 0.987 | 0.025 0.947 0.184 0918 0.849
18
LinkNet +
ResNet.18 94 0.984 | 0.030 0.950 0.163 0.924 0.858
LinkNet +
ResNet_50 o7 0.975 | 0.050 0.947 0.154 0.927 0.865
LinkNet +
SeResNet- 88 0.986 | 0.026 0.945 0.189 0.908 0.832
18

Table3.2 Quantitativeresults of RGBonly training[119
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Figure 3.4 An overview of the RGBonly predictions for the test area: (a) True
orthophoto, (b) Ground truth, (c)-Net+ResNetl8, (d) UNet+ResNet0, (e) U
Net+SeResNel8, (f) LinkNet+ResNetl8, (g) LinkNet+ResNeb0 and (h)
LinkNet+SeResne18[119.

3.4.2. True Orthophoto + nDSM (RGB-Z) Results

By incorporating height information into the training process, F1 and loU scores
significantly increased when compared to R@My results. LinkNet with ResN€i0
backbone adbved the best FScore and loU score on test data with 96.1% and 92.6%,
respectively. As compared to R@Gmly results, using nDSM for the fourth band
improved the FiScore and loU scores by 3.2% and 5.9%, respectively. The validation
loss, which was prewusly 0.154, was reduced to 0.073 as a result of this improvement.
Visual inspection of test predictions also indicates that incorporating height information
increased the performance of all CNNs. (FigBif). This can be seen in the fact that the
outputswere smoother, homogeneous, and more structured. Furthermore, adding nDSM
as height information also resulted in a less fuzzy presentation of boundaries along
buildings as well. Moreover, it has been observed that thietJvas able to provide a
better sgmentation quality for complex buildings, as well. A comparison of the

performance nmesuras of different CNNs for RGB +nDSM is presented in Tebi&
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