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ÖZET 

 

3B ŞEHİR MODELLERİNİN OTOMATİK ÜRETİMİ                                              

VE ETKİLİ GÖRSELLEŞTİRİLMESİ 

 

 

Mehmet BÜYÜKDEMİRCİOĞLU 

 

 

Doktora, Geomatik Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Sultan KOCAMAN GÖKÇEOĞLU 

 

Mart 2023, 114 sayfa 

 

Günümüzde kırsal bölgelerden göç, sürekli değişim ve şehirlerin yapısının giderek 

karmaşık hale gelmesi, şehir yönetimlerinde verimin artması için yeni yöntem arayışlarını 

beraberinde getirmektedir. 3 Boyutlu (3B) şehir modellerine olan talep giderek artmakta 

ve birçok ülkede çeşitli yönetim seviyelerinde farklı ölçeklerde aktif olarak 

kullanılmaktadır. 3B şehir modelleri sadece görsel modeller olmayıp, aynı zamanda sahip 

oldukları semantik veriler yardımıyla analizlere ve farklı görselleştirme uygulamalarına 

izin vermektedir. Bu modeller farklı detay seviyelerinde (LoD) üretilebilmekte ve 

seviyeleri arttıkça, bina ve çatıya ait modellenen nesnelerin/ayrıntıların miktarı da 

artmaktadır. Yüksek detay seviyesine sahip 3B modeller, genel olarak çok yüksek 

çözünürlüklü stereo hava fotoğrafları yardımıyla fotogrametri operatörleri tarafından 

manuel olarak çizilmektedir. Bu çok fazla insan gücü, zaman ve maliyet gerektiren bir 

süreçtir. Yüksek detaylı 3B şehir modellerini otomatik üretmek için literatürde farklı 

yaklaşımlar bulunmaktadır ancak bu konu tam olarak çözülememiş bir sorun olarak 

birçok araştırmacı tarafından çalışılmaya devam etmektedir. Üretilen modellerin verimli 
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görselleştirilmesi ise, kullanılacak görselleştirme platformuna göre birçok optimizasyon 

ve farklı yaklaşım gerektiren ayrı bir sorundur. Bu tez kapsamında, çok yüksek 

çözünürlüklü optik görüntülerden otomatik olarak bina çatı tiplerinin otomatik olarak 

sınıflandırılması, bina ayak izlerinin çıkartılması, LoD2.2 seviyesinde çatı detaylarının 

çıkartılarak 3B bina modeli üretiminde kullanılmasına yönelik derin öğrenme tabanlı 

çözümler geliştirilmiştir. Çalışma sahaları Türkiye’nin farklı bölgelerinden seçilmiş ve 

kullanılan derin öğrenme yöntemine uygun şekilde öğrenme verisi hazırlanmıştır. Bu 

çalışmalarda elde edilen sonuçlar detaylı olarak incelenerek, potansiyel iyileştirmelere 

yönelik öneriler sunulmuştur. Ayrıca, LoD2 ve LoD3 şehir modellerinin 

görselleştirilmesine dair farklı çözümler geliştirilerek tartışılmıştır. Bu amaçla hem Web 

tabanlı Cesium kütüphanesi hem de sanal gerçeklik destekli Unity oyun motorunda 

görselleştirilme çalışmaları tamamlanmış ve farklı avantaj ve dezavantajları ortaya 

konulmuştur. 

 

Anahtar Kelimeler: 3B Şehir modelleri, Derin Öğrenme, CityGML, Cesium, Sanal 

Gerçeklik 
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ABSTRACT 

 

 

AUTOMATIC RECONSTRUCTION AND EFFICIENT                     

VISUALIZATION OF 3D CITY MODELS 

 

 

Mehmet BÜYÜKDEMİRCİOĞLU 

 

 

Doctor of Philosophy, Department of Geomatics Engineering 

Supervisor: Prof. Dr. Sultan KOCAMAN GÖKÇEOĞLU 

 

March 2023,  114 pages 

 

 

Today, migration from rural areas, continuous change in cities and the increasing 

complexity of their structure yielded the need of new methods to increase efficiency in 

their management. The demand for 3 dimensional (3D) city models is increasing and they 

are actively used by countries and municipalities at different scales. 3D city models are 

not only visual models, but also allow analysis and different visualization applications 

with the help of their semantic data. These models can be produced in different levels of 

detail (LoD), and as the levels increase, the amount of modeled objects/details of the 

building and roof also increases. 3D models with a high level of detail are produced 

manually by photogrammetry operators, usually with the help of very high resolution 

stereo aerial photographs. However, this process is costly in terms of labor and time. 

There exist different approaches in the literature to automatically generate highly detailed 

3D city models, but the topic is still an active research area being investigated by several 
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researchers. On the other hand, efficient visualization of the produced models also 

involves optimization issues and depending on the platform, and different approaches 

exist. Within the scope of this thesis, deep learning-based solutions have been developed 

for automatic classification of building roof types from very high resolution optical 

imagery, automatic extraction of building footprints, automatic extraction of roof details 

at LoD2.2 level and their use in the production of 3D building models. The study sites 

were selected from different regions of Türkiye and the training data were prepared in 

accordance with the requirements of the deep learning methods. The results are presented 

and suggestions for potential improvements are discussed. In addition, different solutions 

for the visualization of LoD2 and LoD3 city models are developed and discussed. For this 

purpose, web-based visualization with Cesium library and virtual reality supported Unity 

game engine were employed to reveal various advantages and disadvantages of both 

approaches. 

 

 

Keywords: 3D City models, Deep Learning, CityGML, Cesium, Virtual Reality 
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1. INTRODUCTION 

 

Buildings are among the important objects in a city. As the population of cities continues 

to increase every day, management of cities become more complex. The production and 

use of virtual 3D city models and digital twins of cities have been increasing in parallel 

for efficient management and planning with simulations using the generated models. 3D 

city models can be generated with different levels of detail (LoD) [1] depending on the 

application requirements. As a result of higher LoD and rich semantic information, the 

number, variety, and quality of the analyses that can be performed on 3D city models also 

increase. 

 

3D city models can be reconstructed manually, semi-automatically, or fully 

automatically. The process of manually reconstructing a 3D model of a city is commonly 

carried out by photogrammetry operators through manual digitization of roofs or 3D 

building models from stereo aerial imagery. However, it is very time-consuming and 

costly to manually digitize large numbers of buildings in cities. With the semi-automatic 

and automatic approaches, building geometries can be reconstructed from point clouds, 

mostly from LiDAR (Light Detection and Ranging) sensors. Point clouds obtained from 

optical images through stereo processing methods are preferred less due to sparse point 

distribution in low-texture areas. Thus, roof corners or roof details may not always be 

generated with optical (often called as photogrammetric) point clouds. Although LiDAR 

point clouds may present object shapes better than optical photogrammetric point clouds 

depending on image resolution and texture, the LiDAR data are often not available due 

to their high cost. 

 

Automatic and semi-automatic 3D building reconstruction methods usually require 

building footprints as input along with a Digital Surface Model (DSM). The main reason 

for this is that these methods usually reconstruct each building by clipping the respective 

part from the DSM based on footprint area. Open data sources for building footprints such 

as OpenStreetMap [2], and Microsoft buildings [3] can also be used for this purpose. The 

main issue lies in the fact that these datasets are typically produced either manually or 
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automatically with artificial intelligence (particularly machine learning) methods from 

satellite images, which usually have lower spatial resolution than aerial photos or LiDAR 

data. Based on the image spatial resolution and the method used to generate the data of 

the building footprints, openly available datasets are often not fully compatible with 

higher-resolution datasets. Due to this fact, building footprints are usually delineated 

manually using mono or stereo plotting methods, which is costly for time and labor. 

Automatically extracting building footprints will enable tremendous cost and time 

savings, as well as a reduction in the complexity of the process. 

 

Novel deep learning (DL) methods can be more effective than the traditional methods of 

computer vision and photogrammetry [4]. The use of the DL technologies has 

transformed many tasks that were previously performed manually or with low accuracy 

into automated tasks with high accuracy. Automatic reconstruction of 3D city models 

with high detail levels (LoD2+) is still an unsolved problem, yet field of research in DL-

based 3D building reconstruction is still in its early stages and there is still a great deal to 

be done. Through the use of the DL methods, roof structure extraction and 3D building 

reconstruction could be performed more accurately by overcoming some of the 

limitations of conventional methods. 

 

This thesis aimed to develop a framework for DL-based reconstruction and visualization 

of 3D city models towards full-automatization and high efficiency. Although not all steps 

could be fully-automatically realized, several investigations were carried out to realize 

the automatization and reveal the major issues. Towards achieving this goal, a number of 

DL-based methods has been investigated and proposed using very high-resolution stereo 

aerial imagery for roof type classification, building footprint extraction, and LoD2.2 

building roof structure extraction for 3D building reconstruction. For this purpose, diverse 

datasets from different geographical regions of Türkiye were utilized to train various DL 

methods. Each study was conducted in a different study area. As the only dataset available 

at the time, the Çeşme dataset was used in the roof type classification study (Chapter 4).  

Later, the data provided by TKGM was used in other studies (Chapter 3 and 5). The 

results were validated both quantitatively and qualitatively, and discussed accordingly. 
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In addition, various solutions for the visualization have been investigated and their 

advantages and disadvantages could be analyzed. For this purpose, different visualization 

platforms such as web globes and game engines were implemented by integrating digital 

terrain models (DTMs), true orthophoto basemaps, 3D city plans, as well as building 

models with different levels of detail. Aerial photogrammetric images were also 

visualized in a virtual globe using data from both drones and airplane to assess the image 

acquisition process. Thus, the full processing chain involved in the 3D city model 

production, from data collection to visualization, could be assessed with a holistic 

approach. 

 

1.1. Motivation 

 

The process of creating 3D city models involves several stages, such as data collection  

(mostly for high-resolution optical images with stereo capability), pre-processing 

(photogrammetric triangulation, DSM and DTM generation, orthophoto production), 

feature extraction, roof and building modeling, and presentation of the models in suitable 

environments. The main stages (data collection, modelling, visualization) and their sub-

processes are depicted in Figure 1.1. Red color in Figure 1.1 indicates the steps 

contributed in this thesis. This thesis aimed at improving various parts of this process 

such as the automatization of building model generation, investigating and increasing the 

efficiency of their visualization and presentation, and quality control through automated 

methods and visual inspection platforms.  

 

Building models with a high LoD are often generated manually by photogrammetry 

operators using stereo aerial imagery. This process requires manual digitization by an 

experienced operator and is a costly and time-consuming process in most cases. Several 

commercial software reconstruct 3D city models semi-automatically, but they have 

certain limitations. Preparing the input data require excessive file format conversions, 

coordinate system transformations, and further data preprocessing. Building roofs 

obstructed by trees or shadows are usually reconstructed incorrectly. Software based on 

roof libraries are limited to widely used roof types, thus complex roofs or small objects 

on them such as chimneys or small windows cannot be reconstructed. Therefore, further 
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research on the development of fully automatic algorithms for 3D reconstruction is 

needed. 

 

Figure 1.1 The main stages of 3D city model generation. 

  

The DL methods have the capability of improving the performance and quality of roof 

segment detection and 3D building reconstruction. As a part of the thesis, a DL-based 

framework using line segment detection networks for extracting and vectorizing LoD 2.2 

roof details at the city scale is presented. This thesis presents the first study that utilizes 

DL methods for extracting roof geometry in the form of vector lines at the LoD2.2. This 

method differs from the other studies in the literature in that it does not require building 

footprints and uses a single RGB image as an input while most existing methods require 

building footprint vectors together with RBG images for clipping images directly from 

building boundaries based on building footprints so that each tile contains a single 

building. Predicted roof structures are then vectorized, reprojected, merged, and exported 

at the city scale using custom scripts developed in Python. As a final step, the transition 

between tiles and vector geometries is corrected and redundant junctions are removed 

with post-processing. After the post-processing, 3D building geometries based on 

detected roof structures are reconstructed. 
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1.2. Objectives and Research Questions 

 

This thesis has the following main objectives: 

• To investigate the potential and efficiency of the DL methods for automatic 3D 

building reconstruction and to develop a methodology for accurate reconstruction. 

• To analyze visualization methods for 3D city models with various LoDs and 

semantic data using different technologies such as virtual globes or game engines 

and provide recommendations. 

 

Based on these goals, this thesis addresses the following questions: 

• Do the DL methods provide improved results compared to conventional methods 

in terms of building information extraction from VHR aerial imagery? 

• In what ways can the DL methods be utilized in the automatic production of 3D 

city models, and which advantages could they provide? 

• How accurately can the DL methods classify the different roof types and with 

which LoDs? Is it possible to improve results by fine-tuning existing 

Convolutional Neural Networks (CNNs)  with pre-trained weights? 

• How robust are the DL methods against problems such as trees blocking roofs or 

shadows causing false reconstructions? 

• Could the DL be used to detect complex roof structures other than the widely used 

gable, hip, pyramid, etc roof types? 

• How can 3D city models be efficiently visualized on the web? What shall be the 

motivation for visualizing the models on different platforms (web, game engine) 

what are the requirements for obtaining high performance? 
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1.3. Contributions 

 

Contributions of this thesis can be listed as following: 

 

• A dataset for roof type classification with deep learning containing 10,000 unique 

roof images and their class labels was generated from very high resolution 

orthophotos. 

• The first study on automatic vectorization of LoD2.2 roof structures with deep 

learning at city scale is presented. 

• Python scripts developed for automatic training data generation for line segment 

detection networks using existing city models and VHR true orthophotos. 

• The first LoD2.2 roof structure training dataset with more than 2.2 million lines 

and 139k buildings for line segment detection networks is presented. 

• The LoD3 city model of Bizimsehir, Türkiye's first smart city project, was 

visualized on the web and in the Unity game engine with VR support prior to 

construction. 

• A methodology proposed for web-based visualization of photogrammetric image 

acquisition flights with UAV and aircraft. 
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1.4. Thesis Structure 

 

This thesis consists of the following sections: 

 

Chapter 1 describes the motivation behind the thesis and the problems it aimed to 

investigate. 

 

Chapter 2 provides a literature review on the conventional and the DL methods for 

building information extraction from VHR optical imagery, 3D building reconstruction, 

and 3D city model visualization. 

 

Chapter 3 explores the effect of combining height information (nDSM) with RGB data 

for building footprint extraction, and conversion from raster to vector format. 

 

Chapter 4 explores the potential of the DL methods for classifying roof types, and 

compares the results of developed shallow CNN with fine-tuned popular CNNs using pre-

trained weights on the ImageNet dataset. 

 

Chapter 5 introduces the first study for extracting and reconstructing LoD2.2 roof 

structures using line segment detection networks.  

 

Chapter 6 investigates the visualization and exploration of 3D city models on the web 

using CesiumJS library, and also in the Unity game engine for assessing the use of Virtual 

Reality. 

 

Chapter 7 provides an overview of the issues experienced throughout the thesis, analyses 

the results, and presents the recommendations for future work. 
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2. RELATED WORK 

 

A literature review of building information extraction and 3D building reconstruction 

methods is presented here together with visualization approaches. The first sub-section 

presents the DL methods (classification, segmentation, and roof segment detection). The 

second sub-section gives a literature review on 3D building reconstruction. An overview 

of the literature on visualization methods is provided in the third chapter. 

 

2.1. Conventional Methods 

 

Conventional image segmentation methods are based on traditional computer vision 

techniques and algorithms. These methods aim to partition an image into multiple regions 

or segments based on certain characteristics or features of the image, such as color, 

texture, or intensity. One popular method is the thresholding technique [5], where an 

image is segmented into foreground and background based on a certain threshold value. 

Another common method is edge detection [6], which identifies and extracts the 

boundaries or edges of objects in an image. Other methods include region growing [7], 

where adjacent pixels with similar characteristics are grouped together, and clustering 

techniques, which group pixels based on their similarity in a feature space. These 

conventional segmentation methods are still widely used in various applications, such as 

medical imaging, remote sensing, and surveillance, and can often provide accurate results 

in simple scenarios. However, in more complex or challenging situations, such as images 

with low contrast or high noise, machine learning-based segmentation methods are often 

preferred due to their ability to learn and adapt to various image characteristics and 

features. 

 

Conventional line detection methods are used to identify lines or edges in an image. These 

methods are based on various techniques, such as gradient-based methods, Hough 

transform [8], and template matching [9]. Gradient-based methods detect edges in an 

image by calculating the gradient magnitude and direction of each pixel and thresholding 
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the resulting image to identify edges. The Hough transform is a popular technique that 

transforms an image space into a parameter space to detect lines or other shapes. Template 

matching involves comparing a portion of an image with a predefined template to detect 

lines or other shapes that match the template. Other techniques include line fitting, which 

fits a line to a set of points, and edge linking, which connects edges or segments to form 

longer lines. These conventional line detection methods have been widely used in various 

applications, such as computer vision, robotics, and remote sensing. However, like other 

conventional computer vision techniques, they have limitations in handling noisy or 

complex images, and may require fine-tuning of parameters to achieve optimal results. 

With the recent advancements in deep learning and neural networks, machine learning-

based line detection methods have shown promising results and are becoming 

increasingly popular in various applications. 

 

2.2. Building Information Extraction with Deep Learning 

 

The DL studies used for the building information modelling in the literature can be 

categorized for classifying roof types, and extraction of building footprints and roof 

structures as presented in the following. 

  

2.2.1. Roof Type Classification with CNNs 

 

A city’s structure is primarily comprised of buildings, which play an important role in 

many aspects. Over the past few years, simulation of 3D city models has been used across 

many applications [10]. Building roof types can be used for model-driven 3D 

reconstructions of buildings and to reduce the reliance on digital surface models (DSMs) 

[11]. 

 

A great deal of progress achieved in both photogrammetry and remote sensing through 

the use of DL [4]. Several approaches are presented in literature that relies on DL 

techniques to classify roof types. It is possible to classify roof types using deep CNNs as 
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well as to estimate roof heights [12]. In their study, Partovi et al. [11] used pan-sharpened 

WorldView-2 imagery 50 cm Ground Sampling Distance (GSD) to classify roof types 

with a Visual Geometry Group (VGG-Net) model. A model-based approach has been 

developed by Alidoost and Arefi [13] using a combination of different data sources to 

enhance roof type detection using CNNs. Mohajeri et al. [14] classified six roof types for 

solar energy applications and achieved an overall accuracy of 66% using LiDAR data. A 

study by Qin et al. [15] evaluated Deep Convolutional Neutral Networks (DCNN) in 

building segmentation and achieved 94.67% accuracy using Gaofen-2 satellite imagery. 

Additionally, they stated that DCNNs have the potential to improve building mapping in 

dense urban areas with a wide variety of roof patterns using very high-resolution imagery. 

 

Ölçer et al. [16] classified different roof types using a few training examples with a 

Siamese neural network and achieved 66% accuracy. Bittner et al. [17] investigated the 

use of Conditional Generative Adversarial Network (cGAN) for roof type classification 

using DSM derived from Worldview-1 satellite imagery. LiDAR and satellite imagery 

can be combined for labeling and classifying roof types using different machine learning-

based methods [18]. An average accuracy of 67% was obtained for classifying rooftops 

using LiDAR and a random forest method by Assouline et al. [19]. ISPRS benchmark 

dataset for building reconstruction and classification is a widely used dataset for similar 

tasks that were developed by Rottensteiner et al. [20]. As part of the dataset, high-

resolution aerial imagery with an 8 cm resolution and laser scanning data from an airborne 

laser scanner (6 points/m2) are used to detect and reconstruct buildings, trees, and 3D 

models. They also provided an overview of current methods along with a discussion of 

the common problems of the benchmark results [21].  

 

2.2.2. Building Footprint Extraction with Deep Learning 

 

The CNNs are considered more effective than conventional semantic image segmentation 

methods in remote sensing imagery and image analysis in general [22]. As well as 

classifying pixels and determining the content of those pixels, these networks have also 

been used to predict the spatial structures of objects. CNNs are capable of detecting, 

segmenting, and categorizing round objects of varying sizes and shapes. Additionally, 
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CNNs can predict the spatial extent of features including buildings, types of roofs, and 

other objects [23]. 

 

Usually, image segmentation is performed using two-dimensional (2D) images, as that is 

the most commonly used approach. The depth information, however, can also be used as 

an additional band on top of RGB images to provide additional information. A semantic 

image segmentation process that incorporates height information frequently produces 

better results compared to RGB-only results [24]. The majority of algorithms used for the 

extraction of buildings use RGB imagery as the only source of input [25]. Integrating 

height information with RGB imagery can help to solve weaknesses of aerial images, 

such as shadows, poor lighting, clouds, and many other obstructions. 

 

A study by Marmanis et al. [22] shows that the CNNs can utilize high-resolution aerial 

images to segment them and explicitly represent the boundaries between different classes. 

Using the ISPRS Vaihingen benchmark dataset as the benchmark, their DCNN model 

was able to achieve a 95.2% F1-score for building segmentation. The DeepResU-Net was 

developed by Yi et al. [26] for Very High Resolution (VHR) imagery to be utilized for 

pixel-based building extraction. As compared to the U-Net, network performance and 

overall accuracy increased significantly. 

 

A study by Kada and Kuramin [27] utilized the PointNet++ and KPConv algorithms to 

classify building roofs from LiDAR data and scored an IoU of 94.8%. Jiwani et al. [28] 

used a modified DeepLabV3+ for extracting building footprints from satellite images. It 

was demonstrated in the test with the help of three building extraction benchmark datasets 

that their method achieved state-of-the-art results regardless of image resolution and 

building density. The different CNNs can efficiently be combined to extract building 

footprints based on VHR aerial imagery, as shown by Li et al. [29]. Pixel-based 

segmentation accuracy of the model is measured by comparing each overlapping pixel, 

and the precision, recall, and confidence of the model are 92.6%, 91.4%, and 85.1%, 

respectively, for the WHU building dataset. WHU dataset consists of aerial imagery 

dataset and satellite imagery dataset with varying resolutions from 0.075m to 2.5m with 
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manually delineated building footprint vectors, and used as benchmark dataset in many 

building extraction studies. 

 

Building extraction can also be achieved by combining data from multiple sources and 

using CNNs. Additional data sources can be added as a fourth band to RGB images 

without making any modifications to the CNN model. Sun et al. [30] used a frame field 

learning model for building footprint extraction from orthophotos and nDSM with 0.25m 

GSD. It was observed that incorporating the nDSM has made an improvement of 12% to 

the intersection over union(IoU) value, as compared to the 58% gained from only using 

RGB images. 

 

Bittner et al. [31], used fully convolutional networks (FCN) for building segmentation 

using spectral and height data collected by multiple sensors and achieved 85.5% accuracy. 

Zhao et al. [32] developed a methodology using CNNs and recurrent neural networks 

(RNNs) for generating regularized building outlines in vector format, where a CNN was 

used to extract image features, and RNN was used to extract building polygons to generate 

regularized building outlines. Following the work of PolyMapper [25], the researchers 

have made several improvements to the backbone, as well as improved the detection, and 

recurrence modules. It has also been shown that deep learning can be combined with 

guided filtering for estimating district boundaries by Xu et al. [33].  

 

2.2.3. Roof Structure Extraction with Deep Learning 

 

Building outlines and roof line structures can be extracted from remote sensing imagery 

with DL methods. Conventional methods (non-DL) also can be used to extract line 

segments from aerial imagery in urban areas [34]. The neural networks are not only 

capable of detecting edges in images, but also of assembling them into graphs. Several 

studies found in the literature use conventional and DL-based methods to detect roof lines 

and reconstruct 3D models. An extensive review of DL-based 3D building reconstruction 

methods are presented by Buyukdemircioglu et al. [35]. 
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Using very high-resolution orthophotos of the city of Detmold, Hensel et al. [36] 

vectorized building roof structures using Point-Pair Graph Network (PPGNet).  The F1 

scores for junction detection and edge detection for LoD2.0 roof structures were 0.93 and 

0.87, respectively. 

 

Conv-MPN [37] was proposed as a DL architecture for reconstructing roof structures as 

a planar graph from remote sensing imagery. Conv-MPN is a two-stage method that 

requires corner detection as the first stage, then network training as the second stage. As 

well as being computationally expensive, multi-stage approaches are inefficient for both 

training and inference. 

 

Roof Structure Graph Neural Network (RSGNN) [38] is another one-stage graph neural 

network for extracting LoD2.0 roof structures from satellite and aerial imagery. Their 

method achieved state-of-the-art results for extracting roof structures from VHR images. 

Additionally, they introduced using Hough transform modules to improve line feature 

detection using geometric priors. The Deep Roof Refiner [39] is another deep learning 

method for extracting roof structures. In quantitative and qualitative experiments, they 

achieved an optimal F1-score of 60.89% and 63.48%, respectively. 

 

Gui and Qin (2021) proposed a DL-based LoD2 building reconstruction using MVS 

satellite images. Using a "decomposition-optimization-fitting" paradigm, they 

reconstructed LoD2.0 building models based on a model-driven approach. Since the roof 

models are reconstructed based on a roof type library, it may be challenging to obtain 

reliable predictions for complex roof structures with the proposed method. 

 

In a study by Alidoost et al. [40], 3D roof structures were extracted from aerial imagery 

using a Y-shaped convolutional neural network. This framework consists of a Y-shaped 

CNN with two encoders and one decoder. The proposed CNN computes predicted heights 

and rooflines for three classes of eaves, ridges, and hips in LoD2.0 from RGB imagery. 

Kenzhebay [41] proposed a method for roof structure extraction from aerial imagery and 
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DSMs and FCNs. Muftah et al. [42] used CNNs for extracting LoD2 roof structures from 

aerial imagery. 

 

2.3. 3D Building Reconstruction 

 

Here, related work on building reconstruction methods is presented based on conventional 

and novel machine learning methods. Special emphasis was also given to the DL methods 

and the combinations of different approaches due to their popularity. 

 

2.3.1. Conventional Methods 

3D building reconstruction and 3D city modeling are mostly performed using 

conventional methods. Detailed reviews of conventional 3D building reconstruction 

methods as well as their applications are available in the literature [43-45]. The subsurface 

growing method is an example of a conventional technique that can be used for 

reconstructing 3D buildings [46]. Polyfit [47] is a data-driven software that reconstructs 

lightweight polygonal surfaces using point clouds. Photogrammetric point clouds are also 

used for reconstructing 3D building models by combining RANSAC and contextual 

knowledge [48]. Digital surface models (DSM) and 2D footprints can be combined to 

automatically create LoD1 building models [49]. It has also been demonstrated that 

model-driven reconstruction methods can be used to semi-automatically reconstruct 3D 

city models from large-format aerial imagery as illustrated in Figure 2.1 [50]. 
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Figure 2.1 A view of the semi-automatically reconstructed 3D city model of Cesme, 

Türkiye [50]. 

 

Reconstruction of 3D buildings can also be performed with rule-based methods and 

photogrammetric point clouds [51]. A common and fast technique for 3D building 

reconstruction models is building footprint extrusion. It is also possible to perform LoD2 

building reconstruction using the half-spaces method [52]. Drešček et al. [53] presented 

a methodology based on a method known as Extract, Transform, Load (ETL) for 3D 

building reconstruction from photogrammetric point clouds. Murtiyoso et al. [54] 

developed a data-driven framework for LoD2 building reconstruction using 

photogrammetric point clouds. 

 

Using RANSAC constraints and topological-relation constraints, Li and Wu [55] 

reconstructed 3D complex buildings using incomplete point clouds. Li and Shan [56] 

proposed a two-step RANSAC-based method 3D building reconstruction method using 

both LiDAR and photogrammetric point clouds. Using 2D building footprints and 

Airborne Laser Scanning (ALS) point clouds, an automatic algorithm was developed to 

reconstruct ten million LoD2 buildings in the Netherlands [57]. There is still a challenge 

for researchers in the area of automatic reconstruction of LoD3 building models. It has 

been shown that LoD3 building models are usually digitized manually and that they can 

be merged and visualized together with existing 3D city models [58].  
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2.3.2. Machine Learning Methods 

 

Apart from the neural networks, other machine learning approaches can also be used to 

reconstruct 3D buildings and 3D city models. Using context-free and weighted attributes, 

Dehbi et al. [59] developed a method for reconstructing 3D buildings based on context-

free grammar rules using Markov Logic Networks. Reconstruction of 3D building models 

without elevation data is also possible with the help of machine learning [60]. According 

to the proposed method, a building's height is predicted by analyzing the footprints and 

attributes associated with the building, and then the footprints are extruded into 3D 

models using the predicted height. It is possible to produce LoD2 models using datasets 

with lower LoDs by predicting the roof types using machine learning methods [61]. As a 

result of using multiclass classification, they predicted the type of roof with an accuracy 

of 85% and predict whether the roof was flat with an accuracy of 92%. Park and 

Guldmann [62] reconstructed a 3D city model using LiDAR point clouds using a Random 

Forest-based point cloud classification methodology. Multi-temporal (4D) city models 

can also be reconstructed by combining machine learning methods with historical 

information [63].  

 

2.3.3. DL-Based Reconstruction 

 

Conventional 3D building reconstruction methods mainly involve two major problems 

[64]. First, due to the number of manual designs involved in them, they are prone to errors. 

Additionally, they are incapable of learning semantic features associated with 3D shapes. 

Also, a large part of the effectiveness of this method relies on image quality and camera 

calibration. By leveraging deep neural networks to automatically learn 3D shapes from 

earth observation data, DL methods can resolve these deficiencies. 

 

Several DL-based methods can be found in the literature for 3D building reconstruction. 

The DL models are extremely powerful in many computer vision tasks by using images 

to learn features [65]. It is also possible to reconstruct 3D buildings from EO data using 

these methods. To perform a parametric 3D building reconstruction using satellite 



 

30 

 

imagery, Wang and Frahm [66] proposed a DL-based solution on the parametrization of 

buildings as 3D cuboids. It has also been shown that CNNs can be used to reconstruct 

buildings with procedural modeling. By inferring shape grammar rules from sequences 

of 3D points, CAD-quality models were generated with Neural Procedural 

Reconstruction [67]. Nishida et al. [68] developed a CNN-based tool for automatically 

generating 3D building models from remote sensing imagery. Alidoost et al. [10] used 

CNNs for building detection and reconstruction using aerial imagery. Based on the 

proposed method, they achieved root mean square errors (RMSEs) of 3.43 m for 3D 

building reconstruction and 1.13 m for nDSM. Multiple CNNs with encoder-decoder 

architecture were used by Agoub et al. [69] to create 3D city models with depth maps. 

Figure 2.2 provides an overview of 3D city model reconstruction based on their approach. 

 

Figure 2.2 CNN-based 3D city model reconstruction of the Manhattan area [69] 

 

Knyaz et al. (2020) presented another example of the use of CNN in a grid structure. It 

has been demonstrated that CNN is an effective method of automatically segmenting wire 

structures based on semantics, which overcomes the limitations inherent in 

photogrammetric processing when applied to reconstructed complex grid structures in 

three dimensions.  

 

Generative Adversarial Networks (GANs) [70] also are capable of generating 3D building 

models. There are two main parts of a GAN, a generator, and a discriminator. To produce 

photorealistic images and fool the discriminator, generators learn the distribution of real 
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images. Discriminators judge whether generated images are real or fake. GAN-based 

methods also can be used to identify 3D shapes with obscured or missing portions [64]. 

 

3D buildings can be reconstructed from noisy DSMs using Conditional GAN (cGAN) 

[71]. A 3D surface model of LoD2 was created by Bittner et al. [72] using stereo satellite 

imagery with 50 cm GSD. Bittner et al. [17] also produced digital surface models (DSMs) 

that provided high levels of detail similar to the LoD2 building forms but also assigned 

additional object class labels on every pixel. It is also possible to use GANs to 

automatically reconstruct buildings in LoD1 [73]. FrankenGAN [74] is another network 

for reconstructing and enriching 3D city models with geometric details and building 

textures. Roof-GAN [75] uses a combination of primitive roofs for generating 3D roof 

geometries. Figure 2.3 illustrates a view of 3D roofs with a different number of primitives 

reconstructed by Roof-GAN. 

 

 

Figure 2.3 A view of roofs reconstructed by Roof-GAN [75] 

 

2.3.4. Combination of Deep Learning Based and Conventional Methods 

The DL methods can also be used to classify and reconstruct buildings from LiDAR point 

clouds [76, 77]. A DL-based segmentation was used for 3D city modelling using satellite 

imagery as mesh 3D models with textured surfaces by Leoatta et al. [78]. DL-based 

methods can be used with point clouds for the automatic estimation of building roof 

shapes in complex and noisy scenes [79].  

 

A DL-based 3D reconstruction framework was introduced by Yu et al. [80] that 

automatically creates LoD1 building models using stereo aerial imagery. It has been 
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demonstrated by Gui and Qin [81] that deep learning can be used to reconstruct the LoD2 

building model's MVS aerial imagery. There are several steps in the developed workflow, 

such as detecting building segments on the instance level, extracting initial building 

polygons, decomposing and refining the building polygons, fitting the basic model, and 

merging the models. DL-based methods are also capable of reconstructing historical 3D 

city models [82]. Partovi et al. [83] developed a DL-based workflow for automating 3D 

building reconstruction. Their method consists of building footprint extraction, building 

decomposition, roof type classification, and the calculation of 3D roof structure 

parameters. 

 

Teo [84] used FCNs for detecting building regions from laser scanning data and 3D 

prismatic building model reconstruction. An automatic reconstruction method for 

building models is developed by Kippers et al. [85] using the combination of CityJSON 

and building footprints. In their paper, Yu et al. [86] proposed a DL-based method for 

automatically reconstructing LoD1 building models. Their method includes three steps: 

DSM generation, building boundary detection, and 3D building reconstruction. Zhang et 

al. [87] developed a framework for 3D building reconstruction using PointNet++ and a 

holistic primitive fitting method. Chen et al. [88] developed a three-step method, which 

makes use of embedded implicit fields and point clouds for 3D building reconstruction. 

Moreover, DL-based methods can be combined with geographic information systems 

(GIS) and satellite imagery to reconstruct 3D city models [89]. 

 

2.4. Visualization of 3D City Models 

 

In this section, 3D city model visualization methods were discussed under the web- and 

game engine-based technologies. It is also possible to use other desktop software 

including those from the geographic information system (GIS) software vendors, which 

are not considered here. 
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2.4.1. Web-based Visualization 

Although various platforms exist for visualizing 3D city models, the most common use 

is web-based visualization. The main reason for this is that it allows quick use via the web 

browser without requiring any extra software installation. 3D city models of different 

cities and countries are presented online and can be accessed by users. Web-based 

visualization of 3D city models can be used in different applications with the help of 

semantic data. Urban building energy modeling [90], Building Information Modeling 

(BIM) [91], Heating Demand Prediction [92], air quality information [93], flood 

simulation [94], smart city applications [95], cultural heritage [96] can be given as 

example to different usages of 3D city models. 

 

Stakeholders and citizens can use virtual 3D city models as part of collaborative processes 

with their cities to help improve their quality of life [97]. 3D city models also allow 

different analyses with the help of their semantic data. Visibility analysis is one of the 

most common analyzes used on these models [98]. Although the main element of 3D city 

models is buildings, other city objects are also of great importance in visualization and 

analysis. Visualizing city furniture, bridges, tunnels, vegetation, etc. are also can be 

visualized with building models [99]. Building models can be integrated with 

architectural plans and cadastral data for more detailed analysis [100]. 

 

Virtual globes have become very popular and widely used in many applications. WebGL 

technology made it possible to visualize and explore maps in 3D. Using WebGL requires 

no additional plugins or extensions and enables cross-platform flexibility. Even with very 

large datasets, it provides high performance with the help of GPU and WebGL 

technology. CesiumJS [101] is a 3D geospatial data visualization library for both web and 

game engines. As part of the streaming performance enhancements provided by 

CesiumJS, the datasets are rendered using WebGL (Web Graphics Library). Different 

types of geospatial data are supported by CesiumJS, including 3D city models, terrain, 

imagery, and point clouds. 
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CesiumJS uses 3D Tiles [102], an Open Geospatial Consortium (OGC) standard format 

for rendering and streaming 2D/3D geospatial datasets including 3D city models, 

photogrammetric models, Building Infrmation Modeling(BIM)/Computer Aided 

Design(CAD) models, and point clouds. Loading large volumes of geospatial data or 3D 

city models on the Cesium virtual globe as a single tile usually is not recommended for 

performance reasons. Thus, tiling large volumes of data is the best solution for this 

problem. By using Adaptive Quadtree Tiling, 3D Tiles loads huge datasets as smaller 

parts and renders them by dividing them into tiles, efficiently and effectively. By tiling, 

stream performance can be improved and the browser's hardware requirements can be 

reduced. In 3D Tiles, performance can be created for many zoom levels in the same view 

using a geometric error to select detail levels and an adjustable pixel defect. In 3DTiles, 

3D geometries and models are stored in glTF [103] format, which is widely used across 

a variety of applications that deal with 3D geometries and models. It is possible to store, 

stream, and optimize geographical data using Cesium ION [104], which is a cloud-based 

platform that optimizes, tiles, and serves 3D geodata such as images, terrains, buildings, 

point clouds, BIM/CAD, photogrammetry, and many other types of geospatial data based 

on CesiumJS. 

 

2.4.2. Game Engines, Virtual Reality, Augmented Reality and Mixed Reality 

The large size of the geometries and textures within 3D city models requires performance 

optimization for visualization. It is possible to integrate 3D city models into game engines 

to visualize them more realistically. By supporting features such as high-detailed 

photogrammetry models, terrain models, basemaps, and 3D buildings, game engines can 

visualize high-detailed 3D geospatial datasets. 

 

The popularity of virtual reality (VR) can be attributed to its use in many fields, but it is 

most famous for its use in computer games. Game engines with VR technology offer 

many benefits, such as the ability to explore 3D city models at the street level or to better 

visualize future cities by combining them with existing 3D city models. Virtual reality is 

an effective tool for evaluating the impact of future cities on the environment and 

infrastructure. VR can enhance the planning and design process by allowing stakeholders 

from different disciplines to participate in the process. 
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3D virtual representations of landforms can be created and visualized with the Unity game 

engine [105]. The Unreal engine is capable of visualizing large-scale photogrammetric 

models [106]. Game engines are also used for visualizing and disseminating cultural 

heritage [107]. Modeling and texturing procedures are provided within their pipeline for 

converting point clouds into textured models to import into game engines. 

 

Virtual reality technology is also capable of allowing users to explore museums in a new 

way [108]. Virtual reality is more than just a static virtual environment, it can also be 

used as a powerful tool for combining various data types in a single scene [109]. Kim and 

Kim [110] have used eye-tracking experiments to study perception and cognitive 

processes in VR simulations. As part of their research, Broucke and Deligiannis [111] 

evaluated perceived workloads and the parameters associated with data immersion by 

analyzing tasks of data exploration on different web interfaces and the proposed VR 

application. Historical cities can be explored interactively with VR technology [109]. 

Game engines can also be used for the visualization and monitoring of smart cities in a 

virtual reality environment [112]. 

 

Geospatial data can be visualized and interacted with using a variety of platforms and 

technologies, including VR [113], AR [114], and mixed reality [115]. Several areas in 

which AR technologies are being used may be able to improve citizen-authority 

engagement, such as urban decision-making and stakeholder participation [116]. Liu et 

al. [117] conducted an outdoor case study with an AR system to detect thermal targets in 

façade inspection tasks. Based on VR/AR environments, Santana et al. [118] developed 

a mobile visualization application to display simulation and modeling results at the 

building level. 
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3. DEEP LEARNING BASED BUILDING FOOTPRINT 

EXTRACTION WITH FUSION OF TRUE ORTHOPHOTOS 

AND ELEVATION INFORMATION 

 

 

At this stage of the study, instead of classifying roof types as explained in the previous 

chapter, building roofprints were aimed to reconstruct. Therefore, a framework for the 

building footprint extraction using CNNs was implemented and experimented using VHR 

true orthophotos and nDSM of Selcuk town in Izmir Province, Turkey. Unet and LinkNet 

networks with different backbones were used on two different datasets, i.e. RGB (image 

only) and RGB-Z (image + elevation information), and their quantitative and qualitative 

results are discussed. The results presented in this chapter were largely published in [119]. 

 

3.1. Motivation for Building Footprint Extraction 

 

Pixel-based classification and semantic segmentation of remotely sensed imagery can be 

used to obtain information for several tasks, such as mapping and analysis of land cover 

or the object detection. A major challenge in semantic image segmentation is the 

continuous increase in resolutions of remotely sensed imagery. The amount of detail 

contained in very high-resolution aerial images is making DL-based approaches for 

extracting buildings more challenging. Higher image resolution results in wider class 

imbalances and increased levels of difference for all classes, even though the VHR is 

capable of collecting small details. A variety of conventional image segmentation 

methods are still in use today, including thresholding, region-growing, and edge-based 

methods, but they have some limitations. They are sensitive to noise and these methods 

may not adapt well to changes in the image data or to different imaging modalities.  

 

There have been significant improvements in the performance of CNNs over 

conventional methods in the last decade. As a result, DL-based segmentation and 

classification methods are becoming more popular and widely used by many researchers. 
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This chapter examines the performance of two CNN models for building segmentation, 

namely U-Net [120] and LinkNet [121]. The results of these two CNNs are compared 

using a set of different backbones. The dataset includes true orthophotos and nDSM 

generated from VHR stereo aerial imagery. A comparative evaluation of the implemented 

methods was conducted using first RGB data only, and then RGB + nDSM data. It was 

found that fusing height information with RGB data improved model accuracy, thereby 

improving their performance. Following the building extraction, the segmented buildings 

were converted into vector geometry from pixels using GDAL [122], which was then 

simplified to improve their appearance by smoothing with Douglas-Peucker [123] 

simplification method. Vectorization result measures are presented and discussed in detail 

in the last sub-section. 

 

3.2. Study Area and Dataset 

The production and development of 3D city models are common in countries around the 

world, but they are also an important and active topic in Türkiye as well. General 

Directorate of Land Registry and Cadastre of Türkiye (GDLRC) is started "Production of 

3D City Models and Creation of 3D Cadastre Bases" project in 2018. The project is to 

include all provinces and districts of Türkiye's settlement and development regions, it is 

planned to produce 3D models of about 11 million buildings in these regions. This project 

has been carried out in cooperation with GDLRC and the private companies. These 

companies are responsible for digitizing building geometries and roof models in 

CityGML LoD2.3. This study was conducted using data produced and provided by the 

GDLRC within the scope of this project. 

 

Experiments were conducted in a field of approximately 4.12 km2 with 13,269 buildings 

in Selcuk, Izmir, Turkey (Figure 3.1). A total of four types of data were included in the 

dataset, involving true orthophotos (RGB), raster DSMs, and DTMs with 0.1 m GSD, 

along with vector building footprints. A ground filter or similar method can be used to 

remove man-made objects from DSM to generate DTM if one has not already been 

generated for the study area. A number of different ratios were used for the number of 

training, validation, and test images, and the ratio that yielded the best results was 

selected. 80% of the dataset is used for training deep learning models, 10% for validation, 
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and 10% to test the performance of the models, respectively. In total, 2,185 buildings 

were included in the test area, including buildings with different roof types and structures. 

A random sample of validation data was selected from the study area. The buildings in 

the test area were excluded and not used as part of the training deep learning models. 

 

 

Figure 3.1 An overview of the study area and building footprints 
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Several pre-processing operations are performed for generating input image tiles for 

CNNs. Raster image of the building footprints was generated using building footprint 

vectors, then the ground truth masks are generated by assigning pixels within the building 

given the value of "1" and those outside given the value of "0". The study area was clipped 

into 256x256 grids of non-overlapping pixels from the raster data, and those grids were 

then used as inputs to the deep learning models. An example tile illustrating the RGB true 

orthophoto, vector building footprint, nDSM, and ground truth mask can be seen in Figure 

3.2. 

 

 

Figure 3.2 A sample tile from the study area: (a) RGB true orthophoto, (b) building 

footprint vector, (c), nDSM, and (d) building mask [119] 

 

3.3. Model Training 

Several network training processes were conducted using UNet and Link-Net with 

different backbones to obtain the most accurate possible results. To determine whether 

building height information contributes significantly to the results of networks, two 

separate inputs (RGB and RGB + nDSM) for networks were used. Several backbone 

networks (ResNet-18, ResNet-50, and SeResNet-18) were used with U-Net and LinkNet, 

both of which have a good reputation for their success when used for segmentation, to 

achieve different levels of success in segmentation. Each CNN was trained using the 

generated training dataset, i.e., a pre-trained weight or fine-tuning of the weights is not 

used during the training phase. The learning process includes tweaking a few parameters 

that are critical to the success of the process, such as the initial learning rate, batch size, 

number of epochs, loss function and optimization method. An overall view of the 

developed framework is given in Figure 3.3. An overview of model training parameters 

is given in Table 3.1. 
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Figure 3.3 An overall view of the developed framework [119] 

 

 

Table 3.1 Model training parameters [119] 

 

Model training was performed using the Adam optimizer. The main difference between 

different optimization algorithms is the way the learning rate is implemented as well as 

the frequency with which these parameters (weights) are updated. The training was 

performed 0.001 learning rate and weight decay is not used during model training. 
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An epoch of training refers to a complete cycle through all of the datasets for training. 

Several model trainings were performed with different epochs as part of the model 

training process to decide the most suitable number of epochs for training without 

overfitting. Each CNN is trained for 100 epochs, as many models’ highest accuracy is 

achieved up to 100 epochs, and training with more epochs did not result in further 

improvements in the results. Each time the model was run through an epoch, the 

validation data were used to evaluate the model for that epoch.  

 

Batch size is also an important parameter that determines how many images will be used 

for training in each epoch. Usually larger batch sizes lead to better results. Taking this 

into consideration, a batch size of 16 is used for each model training. Models performance 

is assessed using the F1-score, and Binary cross entropy (BCE)-dice is used as the loss 

function. There are several ways to measure the error rate. One is by using the F1-score, 

a harmonic mean that gives an estimate of how many incorrect classifications were made. 

Segmentation is typically carried out using the BCE-Dice loss function. Both approaches 

are useful for various reasons, such as being able to maintain the stability of BCE while 

still allowing for some diversity in the loss.  

 

Data augmentation techniques can also be applied to prevent models from overfitting. 

Images can be augmented by performing geometric operations, such as flipping, scaling, 

and rotating. Since no overfitting occurred during the training phase, this study did not 

use any data augmentation techniques. It is also common to employ pre-trained models 

trained on large datasets by fine-tuning pre-trained weights. This experiment does not use 

pre-trained weights or fine-tuned networks but instead trains all networks from scratch 

using the generated training dataset.  

  

3.4. Results 

 

In this section, RGB-only results and RGB-Z results are discussed. Results and 

comparisons of the vectorization process are also presented.  
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3.4.1. True Orthophoto (RGB) Results 

 

The results of the model based on the use of only true orthophotos are shown in Table 

3.2. U-Net with ResNet-18 backbone achieved the highest F-1 Score and IoU score on 

the test data with 92.8% and 86.7%, respectively. LinkNet with ResNet-50 backbone, 

which achieved the second best performance with an F-1 score of 92.7% and IoU score 

of 86.5% resulted as second. Results show that U-Net and LinkNet are of performed 

similar in terms of visual analysis. There are, however, some differences between the 

segmented output of U-Net and LinkNet, with LinkNet usually containing unorganized 

predictions that are less homogeneous. In addition to this, the U-Net has shown to be an 

effective means of separating structures with small areas, even though it is more 

challenging. Nearly all models failed to predict correctly when the rooftops were covered 

with trees. The quality of segmentation was primarily affected by shadows for all models. 

A shaded area belonging to the building class is frequently misclassified as a non-building 

area. Using pre-trained weights rather than fine-tuned CNNs has the potential to be a 

useful strategy to improve the segmentation performance. A comparison of the 

predictions of all the models is shown in Figure 3.4 on the same image tile. 

 

 

 

Table 3.2 Quantitative results of RGB-only training [119] 
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Figure 3.4 An overview of the RGB-only predictions for the test area: (a) True 

orthophoto, (b) Ground truth, (c) U-Net+ResNet-18, (d) U-Net+ResNet-50, (e) U-

Net+SeResNet-18, (f) LinkNet+ResNet-18, (g) LinkNet+ResNet-50 and (h) 

LinkNet+SeResnet-18 [119]. 

 

3.4.2. True Orthophoto + nDSM (RGB-Z) Results 

 

By incorporating height information into the training process, F1 and IoU scores 

significantly increased when compared to RGB-only results. LinkNet with ResNet-50 

backbone achieved the best F1-Score and IoU score on test data with 96.1% and 92.6%, 

respectively. As compared to RGB-only results, using nDSM for the fourth band 

improved the F1-Score and IoU scores by 3.2% and 5.9%, respectively. The validation 

loss, which was previously 0.154, was reduced to 0.073 as a result of this improvement. 

Visual inspection of test predictions also indicates that incorporating height information 

increased the performance of all CNNs. (Figure 3.5). This can be seen in the fact that the 

outputs were smoother, homogeneous, and more structured. Furthermore, adding nDSM 

as height information also resulted in a less fuzzy presentation of boundaries along 

buildings as well. Moreover, it has been observed that the U-Net was able to provide a 

better segmentation quality for complex buildings, as well. A comparison of the 

performance measures of different CNNs for RGB +nDSM is presented in Table 3.3. 
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Table 3.3 Quantitative results of RGB + nDSM training [119] 

 

 

Figure 3.5 An overview of the RGB + nDSM predictions for the test area: (a) True 

orthophoto, (b) Ground truth, (c) U-Net+ResNet-18, (d) U-Net+ResNet-50, (e) U-

Net+SeResNet-18, (f) LinkNet+ResNet-18, (g) LinkNet+ResNet-50 and (h) 

LinkNet+SeResnet-18 [119]. 
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3.5. Vectorization 

 

As part of the vectorization, predicted building boundaries were vectorized with the help 

of GDAL. The Douglas-Peucker line simplification algorithm was applied to vectorized 

building footprints to reduce the total number of lines and make lines smoother. In the 

Douglas-Peucker algorithm, a vector dataset is simplified by a tolerance value, so less 

than the given tolerance value will be straightened out and simplified. Several tolerance 

values are used to minimize the mean difference of vector geometries. Used tolerance 

values for different models and their mean differences are given in Table 3.4. A view of 

the generated vectorized building footprints from the test area can be seen in Figure 3.6. 

 

 

Table 3.4 Simplification tolerance values and their mean differences. [119] 
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Figure 3.6 An overview of simplified building footprint vectors [119]. 
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3.6. Discussions and Conclusions on Building Footprint Extraction 

 

This section compares the performance of two different CNNs, namely the U-Net and 

LinkNet with different backbones, for extracting building footprints from VHR true 

orthophotos and nDSMs. Results are presented based on input data from two sources: 

RGB data only, and RGB data combined with height information (nDSM). Ground truth 

mask data is generated from building footprints provided by the The General Directorate 

of Land Registry and Cadastre of Turkiye (GDLRC) of Turkey. 

 

As a result of the analysis, it can be concluded that fusing nDSM with RGB data 

significantly improved the performance of the model. Using RGB data, it was found that 

U-Net with ResNet-18 backbone model was able to achieve both highest F1-score and 

IoU (IoU) scores 92.9% and 86.7%, respectively.  LinkNet with ResNet-50 backbone 

achieved F1-score of 96.1% and IoU scores of 92.6% as the best results for the data fusion 

approach (nDSM), respectively. Compared with the test data, it can be seen that F1-score 

has improved by 3.2% and IoU has improved by 5.9% in terms of accuracy.  

 

The visual inspection revealed that false predictions appeared to be caused because of 

obscured roofs due to shadows or trees, as well as by the areas that were located between 

two buildings that were close together. To overcome these problems, it might be possible 

to train line segment detection networks with more data so that they can directly extract 

roof structures, instead of classifying them based on pixels. Alternatively, future studies 

can also provide a deeper understanding of hyperparameters by analyzing them in more 

detail. Building footprints are generated and updated with this approach, which reduces 

manual efforts performed by the mapping agencies and enables them to produce and keep 

up-to-date building data in an effective way. 

 

When the results presented in this chapter are compared with the roof type classification 

study given in the previous section, it can be concluded that the DL methods generally 

performed better for building extraction task. Due to the fact that each roof patch is 

considered as a whole in the roof type classification, and pixel-based segmentation is used 
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in DL-based building footprint extraction, there is expected to be a difference in accuracy 

between these two approaches. Considering the fact that results are generally dependent 

amount of the used training data and quality of the ground truth data, results can be 

improved in future studies by expanding the dataset used in roof type classification or by 

investigating different DL architectures.     

 

DL-based object detection methods, such as YOLO [124] can also be used for this task. 

YOLO (You Only Look Once) is an object detection algorithm that uses a single CNN to 

predict the locations and classes of objects in an image. The YOLO network is composed 

of 24 convolutional layers followed by two fully connected layers. The network takes the 

entire image as input and divides it into a grid of cells. Each cell is responsible for 

predicting bounding boxes and class probabilities for objects that lie within the cell. Using 

YOLO together with SAHI [125] leads to more accurate results in object detection. 

 

YOLO uses anchor boxes to allow the network to predict objects of different shapes and 

sizes. YOLO detect objects in an image and draw bounding boxes around them. It works 

by dividing the image into a grid and predicting bounding boxes and class probabilities 

for each cell in the grid. YOLO has a single forward pass and predicts all the objects in 

the image in one go, which makes it very fast and efficient. However, YOLO has 

difficulty detecting small objects and objects that are close together. 

 

YOLO and segmentation networks, such as U-Net have very different network 

architectures due to the nature of the tasks they are designed for. YOLO is designed for 

object detection, where the focus is on predicting the location and class of objects within 

an image. U-Net is designed for image segmentation, where the focus is on segmenting 

the image into different regions based on their semantic meaning. However, both 

architectures use convolutional neural networks and have shown excellent performance 

on their respective tasks. YOLO is an object detection algorithm that is fast and efficient 

but may struggle with small or closely-packed objects, while U-Net is a segmentation 

network that is precise and well-suited for building segmentation but may be slower and 

require more computational resources. 
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Building footprints can be used as an important input for 3D building reconstruction. One 

approach to using building footprints for 3D building reconstruction is to extrude the 

footprints to generate a basic 3D model (LoD1) of the building. This involves assigning 

a height value to the footprint and extruding it vertically to create a simple box-like shape 

representing the building's height. While this method can generate a coarse 3D model of 

the building, it may not accurately capture the building's shape, style, or architectural 

details. 

 

Another approach is to use machine learning techniques to learn from the building 

footprints and generate more detailed 3D models. This involves training a machine 

learning model on a large dataset of building footprints and their corresponding 3D 

models, enabling the model to learn the relationships between building footprints and 3D 

models. Once trained, the model can generate more accurate and detailed 3D models of 

buildings from building footprints alone. 

 

In summary, building footprints can be used as an important input for 3D building 

reconstruction, enabling the generation of basic 3D models of buildings and serving as a 

key input for more advanced techniques, such as machine learning and data fusion. 
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4. ROOF TYPE CLASSIFICATION USING CONVOLUTIONAL 

NEURAL NETWORKS 

 

 

In this chapter, the DL approach implemented for the roof type classification for six 

categories is presented. A dataset with 10,000 unique roof images was generated based 

on VHR orthophotos with 10 cm GSD of Cesme, Türkiye is used for the classification 

task. A detailed comparison of the classification results obtained from different CNNs is 

also presented in this section. The results given here are largely published in [23]. 

 

4.1. Motivation for Roof Type Classification 

 

Despite recent advancements in computer vision and photogrammetry, it remains a 

challenge for researchers to automate the extraction of building information in urban 

environments. Roof is a key element in buildings, and it is generally required by 

applications that work with three-dimensional geographic information systems (3D GIS) 

in order to know what type of roof it is, and what its geometry is, to perform other analyses 

on generated models. Model-driven and data-driven methods are two widely used 

conventional ways for 3D building reconstruction. A model-driven method involves 

predicting the roof model from the input image or DSM and then matching the roof model 

against the roof library to reconstruct a 3D building model [126]. Therefore, roofs are 

essential parts for model-driven reconstruction of 3D building models. 

 

Conventional methods are still frequently used for image segmentation and classification. 

The main limitation of these techniques can be attributed to the fact that they generally 

use object features such as corners, edges, and lines. Various methods of artificial 

intelligence (AI) have been developed over the last few decades for the extraction of 

features from images.  Deep learning, especially CNNs, presents a powerful tool for 

image classification problems. However, it must be noted that a large volume of training 

data is necessary to achieve accurate results with the DL-based methods. In this part of 

the study, the primary goal was to transform very high-resolution orthophotos (10 cm) of 
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Cesme, Türkiye, into a roof type dataset that contains 10,000 roof images of 6 commonly 

used roof types. A shallow CNN model was developed in this study for further 

classification and the results were compared with different fine-tuned CNNs using 

ImageNet weights. The results of shallow CNN and fine-tuned CNNs using ImageNet 

weights are given in detail here. 

 

4.2. Study Area and Dataset 

The dataset used for training, testing, and validation for the DL models was generated 

from orthophotos with a spatial resolution of 10 cm. Photogrammetry operators manually 

delineated the building footprints based on stereo imagery [50]. Manual adjustment of 

roof edges was carried out by visual inspection of orthophotos with building footprint 

vectors. Since building footprints lack attribute information, the roof edges were adjusted 

by visually comparing orthophotos with building footprints. In addition to visual 

assessments, the roofs under partial or complete occlusion of trees or shadows were 

eliminated. For the classification task, a roof library comprising six types of roofs that are 

commonly observed worldwide (flat, hip, half hip, gable, pyramid, and complex) is used. 

Figure 3.1 illustrates the orthophoto of the study area with building footprints in a general 

and close up view. An example of a roof vector before and after correction can be seen in 

Figure 3.2. 

 

 

Figure 4.1 A general view (left) and close view (right) of the study area with building footprint 

vectors 
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Figure 4.2 An example of a roof vector before (left) and after (right) correction 

 

A sample number of roofs for each type is chosen during the creation of the dataset as a 

way of maintaining a balance among the roof types. Despite the total number of images 

for each roof type, the number of samples obtained for classes such as half hip and 

pyramids is lower than those obtained for other roof types. A number of different ratios 

were used for the number of training, validation, and test images, and the ratio that yielded 

the best results was selected.  The number of training, validation, and test images for each 

roof type is given in Table 4.1. 

 

 

Table 4.1 Number of training, validation, and test images for each roof type. 

 

A further step was taken in the process of clipping the roof patches automatically from 

the orthophotos by using the building footprints as a reference. Since the study area is 

tiled into over 900 orthophotos, there is a possibility that a roof could be on the border, 

which would result in multiple orthophotos covering the same building. Consequently, 

an orthophotos mosaic with a resolution of 10 cm was generated before clipping to 
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prevent this problem from occurring. Roof image tiles were split and organized based on 

their type. An illustration of sample roofs from each class can be found in Figure 3.3. 

 

 

Figure 4.3 Sample roof tiles from each class (Cesme, Turkey). 

 

4.3. Methodology 

It has been demonstrated by many studies that deep neural networks are superior for 

computer vision tasks compared to conventional machine learning methods. A critical 

step in training the CNNs is finding the optimal hyper-parameters to achieve high 

accuracy results. The amount of parameters used in a neural network depends on its 

design. The performance of neural networks is usually enhanced when they are trained 

on large amounts of data. 

 

A shallow CNN model is also developed for roof classification task, and the results of the 

model compared to popular fine-tuned CNNs. Classification results of three fine-tuned 

CNNs using pre-trained ImageNet weights, namely EfficientNet [127], ResNet [128], and 

VGG-16 [65] are compared with the developed shallow CNN model. Generated roof 
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dataset is split as training (72%), validation (18%), and testing (10%) assessing 

performance of each DL method. Generated input dataset is used as input for the CNN. 

Considering the fact that the performance of neural networks is usually enhanced when 

they are trained on large amounts of data, a data augmentation for training neural 

networks was applied. A comparison of precision, recall, F1-score, and accuracy 

measures of the different CNNs is conducted in order to evaluate their classification 

performance. 

 

Figure 4.4 Depiction of accuracy measures and their equations. 

 

Implemented shallow CNN consists of 312,550 parameters in five convolutional blocks 

and the convolutional layers (Conv2D) use a 3x3 kernel size (Figure 3.5). Pooling layers 

(MaxPooling2D, GlobalAveragePooling2D) use the default pool size of 2x2. To avoid 

overfitting, a batch normalization with a momentum of 0.01 was applied. Instead of using 

a flattened layer, a global average pooling layer was used to reduce shallow CNN 

parameters. All CNNs are trained for 150 epochs using Adam optimizer with a learning 

rate of 0.0003, 64 batch size, and categorical cross-entropy loss function. A detailed view 

of the shallow CNN model is given in Table 4.2. 

 

 

Figure 4.5 Shallow CNN model architecture 
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Table 4.2 Implemented shallow CNN parameters. 

 

 

The fine-tuning method involves freezing the base model of pre-trained CNN, and 

training only a selected few top layers with the new dataset. This method generally 

enhances the performance of neural networks trained with fewer data. For the 

classification task, VGG-16, EfficientNetB4, and ResNet-50 networks using ImageNet 

weights are fine-tuned. Fine-tuning of CNNs is carried out by using weights that have 

been pre-trained ImageNet [129] dataset. All networks are trained with 64 batch size 

using cross-entropy loss function and Adam optimizer. After replacement, the modified 

networks were trained for 10 epochs. Only the fully connected layers are trained during 

the fine-tuning while the base network layers are frozen. The base network layers are then 

trained for 10 epochs, then the entire network is trained for 50 epochs for fine-tuning. 
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4.4. Results 

 

A comparison of the DL models was conducted based on F1-Score, precision, recall, and 

accuracy measures. A random sample of 10% of each type (1000 images) of the roof was 

selected from the dataset to test the classification performance of the CNNs. This section 

presents and discusses the classification results in detail, as well as the methods used. 

 

The shallow CNN model achieved an overall performance of 80% accuracy on the test 

dataset. Classification results of shallow CNN for each roof type are given in Table 4.3. 

Normalized confusion matrix of classification results with shallow CNN is given in 

Figure 4.6. The total number of images used for testing for each roof class is given in the 

"Support" column of the table. The flat roof type achieved the highest precision and F1-

score among the six roof types. Due to the higher number of samples compared to other 

roof types, complex roofs are classed as the second-best performance roof based on their 

performance. Half-hip roof type achieved the lowest results as a result of a lower number 

of samples compared with other roof types. 

 

 

Table 4.3 Precision, Recall, and F1-score results of shallow CNN 
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Figure 4.6 Normalized confusion matrix of shallow CNN 

 

VGG-16 achieved 6% better overall accuracy compared to shallow CNN. In terms of 

precision as well as F1-score values, the pyramid roof type achieved the best results. The 

half-hip roof type achieved the lowest classification score, as did the shallow CNN.  Table 

4.4 shows the classification results of fine-tuned VGG-16 network. Normalized confusion 

matrix of classification results with VGG-16 is given in Figure 3.7. 

 

 

Table 4.4 Precision, Recall, and F1-score results of fine-tuned VGG-16 
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Figure 4.7 Normalized confusion matrix of fine-tuned VGG-16 

 

The EfficientNet achieved 84.4% accuracy on the ImageNet dataset in 2019, placing it 

among the state-of-the-art CNNs. EfficientNet divides the original convolution into two 

stages by reducing computational costs by a significant amount with minimal loss of 

accuracy. It uses linear activation at the last layer in each block to avoid loss of 

information from ReLU. The model can therefore balance depth, resolution, and width to 

achieve the highest results possible. Precision, Recall, and F1-score results of fine-tuned 

EfficientNetB4 are given in Table 4.5. Normalized confusion matrix of classification 

results with EfficientNetB4 is given in Figure 3.8.The pyramid roof type achieved the 

highest F1-score, which is similar to the VGG-16 model with an overall accuracy of 83%. 

It was found that both half-hip roof types (85%) and complex roof types (84%), as well 

as pyramid roof types (85%), achieved the best results for classification. 
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Table 4.5 Precision, Recall, and F1-score results of fine-tuned EfficientNetB4 

 

  

Figure 4.8 Normalized confusion matrix of fine-tuned EfficientNetB4 

 

ResNet-50 is a widely used CNN for classification tasks. The model won the ImageNet 

challenge in 2015 and is capable of training deep CNNs with thousands of layers. The 

model achieved an overall accuracy of 85%, which is slightly lower than VGG-16 model. 

The pyramid roof type achieved the highest score, while the half-hip roof type also 

achieved high precision and F1-scores, coming in second place. Precision, Recall, and 

F1-score results of fine-tuned ResNet-50 are given in Table 4.6. Normalized confusion 

matrix of classification results with ResNet-50 is given in Figure 3.9. 
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Table 4.6 Precision, Recall, and F1-score results of fine-tuned ResNet-50. 

 

  

 

Figure 4.9 Normalized confusion matrix of fine-tuned ResNet-50 

 

4.5. Discussions and Conclusions on Roof Type Classification 

 

In this section of the thesis, a roof type dataset was generated based on VHR aerial 

imagery. Proposed method can be used to perform automatic roof type detection and 

classification tasks. The dataset includes six different types of roofs that can be classified 

according to their characteristics. Classification performance of shallow CNN compared 



 

61 

 

with that of three fine-tuned CNNs namely VGG-16, EfficientNetB4, and ResNet-50. In 

this section, CNN models are fine-tuned that use pre-trained ImageNet weights before 

performing a comparison with the other models. A fine-tuned VGG-16 model, which was 

able to achieve an overall accuracy of 86%, was found to be the best performing model 

for classifying roof types. Implemented shallow CNN achieved an overall accuracy of 

80%. By fine-tuning the models that use pre-trained weights, the performance problems 

that are usually associated with smaller datasets can be overcome. Based on the accuracy 

of the four models, it has been found that the values of class accuracy for each model 

were not uniform. Halfhip class was found to achieve lower scores with the VGG-16 

model while it was found to have the highest accuracy value with ResNet-50.  

 

Based on the classification performance of CNNs, there appears to be a promising initial 

result of the method, however, training data size can be increased in the future to improve 

model performance. Although accuracy of the used models did not differ significantly 

from each other, fine-tuned CNNs achieved better scores compared to implemented 

shallow CNN. Due to the fact that the dataset did not have the same number of samples 

for each roof type, it can be said that roof classes with more samples, such as the complex 

roof type, are more likely to achieve better results compared to other roof types in general. 

The results of the roof classification can be improved in the following ways: the dataset 

can be expanded with more images, CNN parameters can be optimized, and new 

categories of roof types can be introduced to the dataset. As a result of the fine-tuned 

models having promising results, other popular networks may be used in the future to 

extend the study's findings. 

 

It can be concluded from the overall evaluations that the results of the fine-tuned networks 

perform better compared to the untrained shallow CNN. In contrast, the shallow CNN 

model also showed high accuracy although training images in dataset were fewer than the 

pre-trained weights for other CNN models. As a result, the model can be further tuned to 

increase the performance of the prediction. Building roof types affect the affect the overall 

appearance, functionality, and durability of a building. Different roof types have different 

shapes, slopes, and angles, which can greatly impact the overall appearance of a building. 

The shape and design of a roof can also affect ventilation and airflow within a building. 
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A roof with a steep pitch or multiple slopes like a hip roof can create better air circulation, 

which can help to regulate temperature and prevent moisture buildup. The type of roof 

can also impact energy efficiency, particularly in terms of insulation and heat retention. 

For example, a flat roof may require more insulation to prevent heat loss in colder 

climates.   

 

On the other hand, the output of roof type classification approaches are useful inputs for 

semi-automatic building modeling software that are based on pre-defined libraries. 

Although roof-type library based semi-automatic approaches represent an earlier stage in 

the city modeling applications, they are fast and efficient to build models at large scale. 

The proposed study demonstrated that high accuracy can be achieved with shallow CNNs 

that can be applied regionally, although the number of roof types is the main limitation.  

 

Roof types can be used as an important feature for procedural building reconstruction. 

Procedural building reconstruction refers to the automatic generation of 3D models of 

buildings from 2D images or point cloud data. In this process, roof types can provide 

valuable information about the shape and style of a building's roof, which can be used to 

generate more accurate and realistic 3D models. One approach to using roof types for 

procedural building reconstruction is to classify the roof type of each building based on 

its characteristics, such as the number of slopes, roof pitch, and overall shape.  

 

Once the roof types are classified, they can be used to generate 3D models of buildings 

with similar roof types. This can be done using procedural modeling techniques, such as 

rule-based or parametric modeling, which generate 3D models based on a set of rules or 

parameters that define the building's shape and style. By using roof types as a key input 

for these models, the resulting 3D models can be more accurate and realistic, as they 

reflect the characteristics of real-world buildings with similar roof types. 

 

This study automated the classification of roof types using deep learning, allowing it to 

be automated more quickly with high accuracy. In future studies, it may be possible to 

improve results by using a larger dataset or by experimenting with different deep learning 
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algorithms. The main challenge is to generate dataset for deep learning, which requires 

manual effort for assigning each roof type to a class. Data fusion from different sources, 

such as RGB+height information may improve classification performance of the models.  

 

In different computer vision and image recognition tasks, Vision Transformers [130] are 

now becoming more popular as competitive alternatives to CNNs. The vision transformer 

architecture replaces the convolutional layers used in traditional CNNs with a transformer 

encoder. The input image is first divided into a fixed number of non-overlapping patches, 

which are flattened and fed into the transformer encoder. The transformer encoder then 

processes the patches and outputs a classification label. One advantage of the vision 

transformer architecture is that it does not rely on hand-crafted features or prior 

knowledge about the images. Instead, it learns to extract meaningful features directly 

from the image patches using self-attention mechanisms. This allows the model to 

achieve state-of-the-art performance on several image classification benchmarks, even 

with limited amounts of training data. Overall, transformers offer a promising approach 

for image classification, and their effectiveness in this domain is an active area of 

research. As a future work, transformed-based classification architectures can be used for 

roof type classification or similar tasks. 
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5. AUTOMATIC LOD 2.2 BUILDING RECONSTRUCTION WITH 

DEEP LEARNING 

 

 

In this chapter, investigations on another approach for extracting the roof geometries in 

the form of vectors (lines) are presented and discussed. A DL-based framework for fully 

automated vectorization of LoD 2.2 roof details in city-scale is proposed. This method 

does not depend on any roof library, and can also detect complex roof shapes. As a part 

of this section, a new dataset is generated from existing 3D city models and VHR true 

orthophotos. Performance of the proposed framework assessed both quantitatively and 

qualitatively. Also, robustness of the method is analyzed on cases such as blocking 

objects over roofs like trees and shadow.  

 

5.1. Motivation for Automatic LoD2.2 Building Reconstruction 

 

Automatic extraction of roof line structures beyond LoD2.0 is still a difficult problem due 

to complexity of roof structures and the difficulty of detecting smaller objects such as 

chimneys and small windows. Very high resolution aerial images make several details 

visible over the roofs, making it difficult to detect them. In this section, a framework for 

fully automated vectorization of roof line segments in LoD2.2 using line segment 

detection networks is proposed. The approach can be applied at city scale. Unlike the 

library-based methods, the proposed approach does not depend on pre-defined roof types 

and can also reconstruct complex roofs and objects smaller than 1 m2. A training dataset 

with more than 2,2 million lines and more than 139 k buildings measured in LoD2.2 from 

true orthophotos with 8 cm resolution with sub-pixel accuracy were used. The results 

show an improvement to the recent studies on the extraction of LoD2.0 roof structures.  

The robustness of the method was also analyzed w.r.t. roof-blocking objects such as trees 

and shadow areas. 
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5.2. Study Area and Data Preparation 

 

Ankara is the capital city of Türkiye with 5.1 million population, making it Turkiye’s 

second most populated city after Istanbul. In this study, experiments were performed on 

a custom dataset that covers Gölbaşı town near Ankara. A general and close view of the 

study area with training and test tile distribution are given in Figure 5.1. A total of 139k+ 

buildings with roof details in LoD 2.2 were used in this research. There are several types 

of roofs in the study area, which are generally used in various parts of Türkiye, resulting 

in a broad variety of roof types.  

 

A total of 2.2 million lines of roof details were used in this study. LoD 2.2 roof details 

were manually measured by experienced photogrammetry operators using aerial stereo 

imagery. Together with the LoD 2.2 roof details, high-resolution true orthophotos of 8 

cm GSD were used in the dataset. All data used in this study were provided by GDLRC. 

The roof details with an area of less than 1 m2 were kept in the dataset. An example of a 

LoD2.2 building roof with multiple small roof details overlaid with very high-resolution 

true orthophoto is given in Figure 5.2. The DSM of the study area was generated by 

GDLRC from stereo aerial imagery. DTM is generated by applying ground filtering to 

DSM. Additionally, a second DSM was created using height values of 3D roof 

geometries. 

 

Several pre-processing steps were carried out during the data preparation phase. Since all 

line segment detection networks used in the study received inputs in different data 

structures, different data processing scripts were generated for each network. The data 

processing pipeline scripts have been written in Python to automate operations such as 

image tiling, coordinate transformation, ground truth generation, and merge of output 

files into shapefiles as batch processes.  
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Figure 5.1 A general and zoomed view of the study area with training tiles (red) and test 

tiles (green) distribution 
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Figure 5.2 A close view of complex LoD2.2 building roof structure 

 

8 cm resolution true orthophoto covering the entire study area was divided into a non-

overlapping grid with 512 x 512 tiles (see Figure 5.3 for an example). Vector data of roof 

details for each tile was clipped in the same grid. Ground truth data in the projected 

coordinate system was then reprojected into pixel coordinates with sub-pixel accuracy 

(up to 15 digits). Since it would not be efficient to use images with very few lines in the 

dataset, image tiles that do not contain any buildings or contain very few lines (less than 

7) are automatically excluded with a Python script. The remaining dataset contains 30,446 

tiles with 512x512 pixel size and approximately 2.2 million roof detail lines at LoD 2.2. 

Since validation data was not used in similar line segment detection studies and 

benchmark datasets, the dataset was divided into training and testing. Both the total 

number of image tiles and lines in the dataset were split as 90% for training and 10% for 

testing. The number of lines and tiles after data split is given in Table 5.1.  

 

Data Type Percentage Number of lines Number of tiles 

Training 90% 1,982,313 27,402 

Test 10% 220,257 3,044 

Total 100% 2,202,570 30,446 

 

Table 5.1 Total number of lines and image tiles used for training and test data 



 

68 

 

 

Figure 5.3 An example of a non-overlapping tiled image with roof lines and junction 

points 

 

In order to ensure heterogenous geographical distributions, the test data were randomly 

distributed throughout the entire study area. A small area with neighboring tiles was also 

tested to analyze the method's city-scale reconstruction performance. Images of roofs that 

are blocked by trees and shadows in test data is also included to test algorithm robustness. 

 

5.3. Methodology 

To fully automate the vectorization of city-scale LoD2.2 roof structures, this study 

proposes a multi-step methodology that uses in-house- developed custom Python scripts 

with line segment detection networks to fully automate the vectorization process. In the 

first step, a selected line segment detection network was trained using the proposed 

LoD2.2 roof line segment training dataset. Once the training has been completed, roof 

segments are predicted from the input image tiles using the trained model. Using Python 

scripts developed in-house, roof segments are vectorized, merged, and reprojected after 

being predicted from image tiles. After vectorizing, post-processing was applied to the 

generated dataset to eliminate redundant junctions, fix line connections between tiles, and 

simplify necessary lines. As the last step in the methodology, LoD2.2 roof structures are 

exported into the intended format of a vector file such as ESRI Shapefile, GeoJSON, etc. 

An overview of the proposed methodology for fully-automatic vectorizing city-scale 

LoD2.2 roof structures is presented in Figure 5.4. 
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Figure 5.4 Overall view of the methodology 

 

Several line segment detection networks have been proposed by researchers to detect and 

extract planar lines in images. In this study, ULSD (Unified Line Segment Detection) 

[131] is adopted for predicting roof line segments from VHR RGB imagery. This network 

was chosen due to its high efficiency for detecting line segments in benchmark datasets 

such as the Wireframe [132] and YorkUrban [133] datasets. In addition to extracting 

planar structures, ULSD can extract curved lines as well, using its workflow to include 

the Bezier Curve. Stacked hourglass network [134] come in the form of a U-shape and 

are mostly used for human pose estimation. Used DL network are trained from scratch 

using the generated LoD 2.2 roof line dataset. As last, roof line segments and junctions 

were predicted in the images of the test data given as input. 

 

5.3.1. Data Augmentation 

Data augmentation can be used for increasing the training data by applying several pre-

processing techniques to a dataset. As part of this study, the training dataset was 

augmented to quadruple it by increasing from a total of 27,402 images to 109,608. 

Horizontal flipping, vertical flipping, and horizontal shifting were used for this purpose. 

The ground truth that incorporates the line information of the augmented images has also 

been produced. Figure 5.5 shows an augmented sample image and ground truth data for 

the generated images. 

 

Figure 5.5 Augmented files with ground truth a. original file, b. horizontal flip, c. vertical 

flip, d. mirroring 
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5.3.2. Evaluation Measures 

Heatmap-based measures were originally developed for evaluating boundary detection 

methods. The main issue in their use lies in that they do not penalize overlapping lines or 

evaluate line connections properly, which makes them ineffective for wireframe 

detection. To improve the assessment of line segment quality and the structural quality of 

wireframes, Zhou et al. [135] proposed Structured Average Precision (sAP) measure for 

assessing the accuracy of detected lines and junctions.  

 

The msAP metric is calculated by comparing the predicted line segments with the ground 

truth line segments. The metric computes the average precision of the predicted line 

segments at different intersection over union (IoU) thresholds, and then calculates the 

mean of the average precision scores. The IoU is a measure of overlap between the 

predicted and ground truth line segments.The msAP metric is useful because it provides 

a comprehensive evaluation of the line segment detection algorithm's performance across 

different levels of IoU threshold, which is important in real-world applications where 

different levels of accuracy may be required. 

 

In line segment detection, the line uncertainty is often quantified using a measure called 

the angular uncertainty, which represents the range of angles over which the line can be 

considered a valid match to the ground truth line. The angular uncertainty is usually 

defined as a threshold on the angle difference between the predicted line and the ground 

truth line. In the calculation of msAP, the line uncertainty is taken into account by 

considering only those predicted lines that have an angular uncertainty below a certain 

threshold. This is done to ensure that only the most accurate and precise predictions are 

included in the evaluation. 

 

Specifically, during the calculation of the average precision for a given IoU threshold, 

only those predicted lines that have an angular uncertainty below the threshold are 

considered as valid detections. Any predicted line with an angular uncertainty above the 

threshold is considered a false positive and is not included in the calculation of the average 

precision. By including the angular uncertainty in the evaluation of line segment detection 
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algorithms, msAP provides a more comprehensive and realistic measure of performance, 

considering both accuracy and precision of the predictions. 

 

The quality of line segments is evaluated by the structural average precision under the 

threshold of 5, 10, and 15 pixels (sAP5, sAP10, sAP15) and mean structural average 

precision (msAP). The quality of junctions is evaluated by the vectorized junction mean 

AP (mAPJ), which is computed over the threshold of 0.5, 1.0, and 2.0 pixels. 

 

5.3.3. Implementation Details 

Non-overlapping RGB image tiles with a size of 512 x 512 pixels were used during the 

training and testing phases. Once the tiles were generated, they were fed into the backbone 

network for producing feature maps. Stack-hourglass network settings are based on 

defaults settings of as L-CNN [135] and HAWP [136]. Learning rate and weight decay 

are set to 4 × 10-4 and 1 × 10-4, respectively. The learning rate decayed at the 25th epoch. 

A data augmentation experiment was conducted to examine the results of data 

augmentation as a part of the study. Batch size was set to 32 for both testing and training. 

Stacked hourglass network with 30 epochs is usually sufficient for obtaining accurate 

results, and a higher number of training epochs usually do not provide significant 

improvement. All model trainings are performed on a single Quadro RTX 8000 GPU with 

48 GB of memory. It takes 25 hours to complete the model training. 

 

5.4. Results 

In this section, quantitative and qualitative results of line segment detection networks 

used in the study are presented. The robustness of the methods is also tested based on 

images with trees, shadows, and other obstructions blocking the roofs. 

 

5.4.1. Quantitative Results 

A summary of the results can be found in Table 5.2. Despite the increased complexity of 

the extraction of LoD 2.2 roof details, the proposed method achieved very high 

performance. Unlike the other methods, ULSD utilizes the Bezier curve for detecting line 
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segments. As a result of the  experiments, order 4 for defining Bezier curve complexity 

was found to provide the most accurate measures and used here. Since the ULSD was 

mainly used the Wireframe dataset which is a benchmark dataset for indoor wireframe 

parsing, it still performed well for roof segment extraction. Based on the results, ULSD 

was able to achieve state-of-the-art results for roof line segment extraction task. 

 

Data sAP5 sAP10 sAP15 msAP mAPJ FPS 

No Augmentation 52.5 56.3 58.3 55.7 69.0 42.0 

4x Augmentation 55.3 59.0 60.8 58.4 72.8 42.8 

Table 5.2 Evaluation results of non-augmented and augmented data 

 

It was shown that the performance of the model has been enhanced through the use of 

augmented data. Compared to the original data (without augmentation), msAP increased 

by 2.7%, and mAPJ increased by 3.8%. The visual inspection also revealed better 

extraction of the small details of the roof when using data augmentation.  

 

5.4.2. Qualitative Results 

Figure 5.6 shows a reconstruction of predicted roof segments over a threshold (80% here) 

using ULSD network on the LoD2.2 dataset. In terms of both measures and visual results, 

the ULSD was successful in detecting the LoD2.2 roof segments in most cases. It was 

able to detect roof structures that were even smaller than 1 m2 and was also capable of 

detecting line segments in complex roof structures. Additionally, the visual results also 

show that ULSD generates fewer redundant lines outside buildings as compared to other 

methods. ULSD achieved good results when detecting buildings with curved roof 

structures due to the use of the Bezier curve. Howewer, the ULSD method has failed to 

detect some of the roof structures as well.  
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Figure 5.6 Ground truth and predictions in a test area (0.8 threshold) 
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5.4.3. Method Robustness 

The main objective of this section was the evaluation of the robustness of algorithms w.r.t. 

roofs of buildings completely or partially covered by trees, as well as against shadows 

cast by buildings. Many computer vision methods are still struggling to correctly 

reconstruct or detect blocked building roofs. To evaluate the robustness of the line 

segment detection networks, a number of  manually selected tiles for test data with roofs 

that were partially or fully covered with trees. Roof line segments with over 80% score 

for predictions were visualized. A separate analysis for blocking trees and shadows was 

given. A comparison of the results from the different methods of predicting tile images 

with trees blocking roofs given in Figure 5.7. Predictions indicate that the developed 

framework was also successful in predicting roofs blocked with trees in most cases.  

 

A comparison of the results from the different methods of predicting tile images in 

shadow areas can be seen in Figure 5.8. The ULSD did not generate any redundant lines 

and does not detect edges of shadow areas as lines. Although neural networks outperform 

the conventional methods, they are still far from perfect. Their performance is also heavily 

dependent on the number of examples with blocked roofs or shadows in training data. 

More blocked roof segments can be used to train the model to increase its performance 

and robustness for such cases. A total of 58 lines were detected with a score of 80% or 

higher out of 71 roof structures obscured by trees or shadows. 

 

 

Figure 5.7 Ground truth and predicted roof structures with blocked trees 
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Figure 5.8 Ground truth and predicted roof structures with shadowy areas 

 

5.5. Vectorization and Post-processing 

The vectorization process was carried out with a Python script developed for this purpose. 

By using roof line predictions and worldfiles containing the coordinates and orientation 

information of each image, the entire vectorization process can be carried out 

automatically as the batch process. The roof lines on the test data were predicted using 

the model  obtained after the training. For each tile of the test data, the predicted lines and 

their scores are produced together and saved as a numpy script. Only lines above a given 

threshold are regarded as vector data. The roof lines predicted for different threshold 

scores are given in Figure 5.9. 

 

 

Figure 5.9 Visualization of roof structures for 0.2, 0.4, 0.6, and 0.8 score thresholds. 

 

In the coordinate transformation process, each predicted line was automatically 

reprojected from the pixel coordinate system to an Earth referenced coordinate system 

(EPSG:5255). All roof lines were generated with a sub-pixel accuracy for training and 

testing. Predicted roof lines were converted from pixel coordinates to projected 
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coordinates using a worldfile that contains coordinate and rotation information for each 

tile. The data from Gölbaşı district used in this study were converted from pixel 

coordinate system to TUREF / TM33 - EPSG:5255 coordinate system. The EPSG code 

parameter used in the script can be changed to convert to a desired coordinate system. A 

final step involves automatically merging the roof lines of each tile into a single vector 

file as a batch process. The merged vector file can then be exported in the desired format 

such as ESRI Shapefile or GeoJSON. Merged roof detail prediction tiles with very high-

resolution true orthophoto basemap is given in Figure 5.10.  

 

 

Figure 5.10 Merged roof structures of 8 image tiles. 

 

A post-processing process was applied to the generated data after vectorization and 

merging processes. A custom workflow is developed for post-processing based on 

Python. Since orthophotos were not clipped based on building footprints, a single building 

usually appears in more than one image tile. As a result, there are some tiny gaps between 

line endpoints between predicted roof lines in image tiles. The result is that single lines 

are split into multiple lines and redundant lines, thus redundant junctions are created. As 

part of post-processing, the gaps between the roof lines in the transitions between the tiles 

were removed, redundant lines and junctions were removed, and multiple continuous 

lines are merged into a single line. 
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As a first step, the endpoints of each line segment were joined to eliminate any gaps in 

the roof line structures extracted in different tiles. Second, the lines were merged into 

MultiLineString. A final step in the reduction of the size of the data is to simplify it by 

removing unnecessary junctions and breaks that appear along the lines to reduce its size 

using the Douglas-Pecker simplification algorithm. Once the post-processing was 

completed, junction points and the overall number of lines decreased by 24.8% and 

35.4%, respectively when compared with the predicted raw data. Figure 5.11 shows the 

post-processing steps for vector data of a building in more than one tile along with ground 

truth data. 

 

  

Figure 5.11 a – close view of the predicted line, b – snapped, c – simplified, d - ground 

truth. 

 

5.6. 3D Building Reconstruction 

Here, 3D building models were produced from the predicted roof structures and the 

elevation data. Following the generation of building geometries, multiple data types are 

used, such as raster DSM data and photogrammetric point clouds for 3D building 

reconstruction. The results reveal that when building vectors are overlayed with DSM or 

point clouds, the geometries of buildings do not match elevation data most of the time, 

which leads to false reconstruction of building geometries. In most cases, the generated 

DSM or point cloud is not able to give an accurate representation of critical roof points 

such as corners and junctions, which make up the roof structure. As a result, it was not 

possible to generate accurate 3D building models using the data provided. A view of the 

generated roof structures overlaid with the DSM and point cloud is given in Figure 5.12. 
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Figure 5.12 Overlayed vector data with raster DSM and photogrammetric point cloud. 

 

Thus, a new DSM is generated based on 3D roof data as ground truth provided by the 

GDLRC for reconstructing more reliable and visually complete 3D roof models. By 

utilizing new DSM, it was possible to achieve a better representation of 3D roof models. 

A close view of generated 3D roofs is given in Figure 5.13. 

 

 

Figure 5.13 Reconstructed 3D roof models using the DSM. 

 

A FME workbench was developed and tested to reconstruct 3D buildings from 3D roof 

structures. The workbench takes 3D roof geometries and a DTM as input data and returns 

3D building models. Firstly, building geometries were converted into polygon geometry 

from line geometry to define each closed polygon separately. Then, each building 

polygon was dissolved and the roof structure line is dissected, and only the footprint of 

the building is left. When building footprints have been generated, each junction point in 

the building footprint is assigned a new height value, and the junction heights are lowered 
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to fit the overlaying DTM and used as the building floor. The final part of the process is 

to connect each junction point that overlays each other on top of each other and then 

reconstruct 3D building model. An overview of the steps is given in Figure 5.14, and view 

of the reconstructed 3D building from different viewing angles is given in Figure 5.15. 

 

 

 

 

 

Figure 5.14 Building model reconstruction steps. (a) FME workbench script part 1; (b) 

FME workbench script part 2; (c) illustration of the stages. 

 

(a) 

(b) 

(c) 
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Figure 5.15 Views of a reconstructed building from different viewing angles. 

 

5.7. Discussions and Conclusions on Automated LoD2.2 Building Reconstruction 

with DL 

In this section, a DL-based framework for fully automatic vectorization of LoD2.2 roof 

structures from very high resolution true orthophotos was presented. Extracted roof 

structures were then used for 3D building reconstruction with DSM and DTM. Also, first 

LoD2.2 roof line segmentation dataset for line segment detection networks with more 

than 139k buildings and 2.2 million lines was presented. In this section, state-of-the-art 

results were achieved for roof segment detection with the proposed DL-based framework 

was achieved by 58.4% in msAP and 73.1% in mAPJ. Additionally, the results of this 

study show that deep learning methods are capable of solving some problems such as 

roofs that have been blocked by trees or shadows. 

 

When compared with the roof type classification (Chapter 3) and building footprint 

extraction (Chapter 4) approaches, the fully automatic vectorization of LoD2.2 roof 

structures provides certain advantages, such as extracting building footprints and roof 

structures directly as vectors. A vectorization process is not required in this approach, as 

it is in pixel-based segmentation. Also, this method has shown to be more robust than the 

other methods considering trees, shadows, and the other elements that cover roofs. A 

simplification process is usually required to reduce the line complexity after pixel-to-

vector conversion. This approach directly produces planar building footprints and roof 

structures. The outputs of this method can also be used for reconstructing 3D buildings 

using different height data, such as LiDAR or photogrammetric DSM.  
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The quality of reconstructed 3D building models can be assesed by using software tools 

to compare the ground truth model and reconstructed model numerically. This can 

involve calculating metrics such as volume, surface area, or the number of vertices or 

faces in the models. Another method is to use a visualization tool to compare the two 

models visually. This can involve looking for differences in geometry, texture, and other 

visual features. 

 

There are only a limited number of line segment detection networks available in the 

literature. The existing networks were not designed to extract building footprints or roof 

structures, but instead to detect line segments in indoor environments. Therefore, these 

networks need to be trained from scratch using a roof segment dataset. Currently, a large 

number of city models are available as open data, but most of them are shared as LoD2. 

Also, since aerial photos or satellite images of the same region are required along with 

roof details to train neural networks, there are limited numbers of cities that present these 

two data together as open data. 

 

Yet, even if data are available, specific input data should be produced for each method 

based on the input structure of the line segment detection network. It would be very 

difficult to manually generate training data for thousands of lines and images, so this data 

should be analyzed and converted into training data with an automatized way compatible 

with the networks' input data structure. 

 

The processes applied here were automated with scripts, and the existing 3D roof models 

with true orthophotos are converted into training data for line segment detection networks 

as a  framework. It can be expanded with more training data. It is also planned to expand 

the framework to extract 3D roof structures from orthophotos and building height 

information obtained from point clouds or DSMs. Moreover, it is planned to extend the 

dataset from other cities with different roof types so that the model works worldwide with 

high accuracy, and is not limited to a specific area. 
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Combining conventional edge detection methods with deep learning methods may also 

lead to improved results in tasks such as object recognition, segmentation or line segment 

detection. Conventional edge detection methods, such as the Canny edge detector, Sobel 

edge detector, or Laplacian of Gaussian operator, can extract edge features from images 

with high accuracy. However, they may not be effective in complex scenes or under 

challenging lighting conditions.  On the other hand, CNNs can automatically learn 

features from raw data, including edges, textures, and shapes, and can capture more 

complex features that are difficult to detect using conventional methods. However, they 

require a large amount of labeled training data, which may not always be available. By 

combining these two methods, strengths of both methods can be leveraged to produce 

more accurate and robust results. For example, conventional edge detection methods can 

be used to preprocess images and extract initial edge maps, which are then used as input 

to CNNs for further processing. This approach can reduce the amount of noise and false 

positives in the edge maps, and can also help to localize objects more accurately.  
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6. EFFICIENT VISUALIZATION OF 3D CITY MODELS 

 

 

This chapter investigates CesiumJS virtual web globe for web-based visualization and 

Unity game engine with VR support for visualizing 3D city models. Performance 

assessments were carried out using different visualization technologies for multi-LoD 3D 

city models. Different optimization techniques were applied to the generated city models 

for efficient and reliable visualization. In addition, issues experienced during the 

development of the web-based platform and game engine were analyzed and solutions 

were proposed. An in-depth analysis of the advantages and disadvantages of each 

visualization technology is also provided.   

 

6.1. Problem Statement 

A 3D city model typically consists of buildings but they are visualized together with a 

DTM and other city objects like bridges, roads, city furniture, and similar urban features 

as these models describe the general shape and structure of the city. In addition, semantic 

information is usually included to perform analyses and queries at a higher level, thus 

requiring more storage and effort compared to traditional city models. Visualizing 

thousands of buildings together with basemaps, DTM, and city furniture in a single scene 

requires optimization for efficient visualization. Also, another critical step for 

visualization is coordinate system transformations and format conversions. Cesium 

supports spesific coordinate systems and file formats. DTM or basemap can be visualized 

in different formats with varying file sizes. Selected data types and format conversions 

are given in detail here. This section demonstrates of how all city components can be 

efficiently visualized together using web-based and game engines with VR support. 

Detailed description of the study area and generated multi-LoD 3D city model can be 

found in [58]. The web-based model can be visited at www.bizimsehir.org. 

 

 

 

http://www.bizimsehir.org/
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6.2. Web-based Visualization of 3D City Models with CesiumJS 

Many 3D city model applications require accurate digital terrain model for accurate 

visualization and improved representation of a city. An underlying DTM enhances the 

visual quality of 3D city models. Low-resolution DTMs may fail to place buildings well 

on the terrain, causing them to appear to be inside the terrain or above it. Hence, for the 

purpose of accurate modeling and preventing visual distortions, it is crucial to have a 

DTM that is also compatible with the buildings. A number of factors make it necessary 

to visualize high-resolution DTM alongside 3D city models, including: a) to provide 

stakeholders with a more realistic visual experience, b) to ensure that earth surface data 

is complete, c) to improve decision making reliability, and d) the product can be used for 

a wider range of purposes. 

 

CesiumJS can visualize high-resolution terrain models in different file types and formats, 

as well as optimize them during streaming. Currently, only a single DTM can be 

visualized in a scene, which makes it complicated to visualize large regions that have 

multiple DTMs with varying resolutions. In addition to regular grids with heightmap 

format, DTMs can also be visualized using TINs with a quantized mesh  format. In the 

Heightmap format, the terrain is represented as regular grids at multiple resolutions. On 

the other hand, quantized-mesh format pre-renders a TIN mesh in advance for every tile 

and has the capability of optimizing the mesh for different types of terrain. In contrast to 

a Heightmap format with a regular spatial distribution, rugged terrain surfaces are 

visualized more detailed structure.  

 

Streaming and converting high-resolution DTMs were performed on the Cesium ION 

platform. A DTM must be pre-processed before it can be converted to the terrain file 

formats supported by Cesium ION. As an example, a single-band raster of DTM must be 

defined in mean sea level (EMG96) or WGS84 ellipsoid without involving any nodata 

values. To remove discontinuities in the terrain model and ensure visual completeness, 

Cesium ION uses high-resolution DTM in conjunction with the Cesium World Terrain. 

A view of Cesium World Terrain unmerged (left) and merged (right) high-resolution 

DTM can be seen in Figure 6.1. 
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Figure 6.1 A view of Cesium World Terrain unmerged (left) and merged (right) high-

resolution DTM 

 

The DTM of the LoD3 city model was pre-processed to align the city plans with the 

existing components. Visualizing the LoD3 city model using the original DTM would 

result in visual distortions since the DTM doesn't fit the 3D city plan. Therefore, a new 

DTM was created that fits to the designs for the project area. LoD3 city model with 

underlying DTM before and after processing is given in Figure 6.2. 

 

 

Figure 6.2 LoD3 city model with underlying DTM before and after modification 

 

A 3D city model will be visually complete when it is visualized accompanied by a high-

resolution basemap that is visually coherent with the building models. By doing this, users 

will achieve a realistic impression of the virtual globe, and 3D objects will be positioned 

accurately on it. The photogrammetric processing workflow with Agisoft Metashape 

included the production of high-resolution orthophotos (10 cm GSD). Ministry of 

Urbanization and Environment (MoEU) also produced and provided true orthophotos 

with the same GSD as part of the Bizimsehir project [58]. True orthophotos are superior 
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to orthophotos because of their reduced distortions, particularly at building edges. A view 

of orthophoto and trueorthophoto basemaps is given in Figure 6.3. 

 

 

Figure 6.3 A view of orthophoto and true orthophoto basemaps 

 

Georeferenced map tiles are typically served as basemap layers using the OGC standards 

Tile Map Service (TMS) and Web Map Tile Service (WMTS). As a result of the large 

file size of high-resolution imagery, more hardware resources are required. Due to this, 

large basemaps are divided into smaller tiles, which can be streamed based on the angle 

of the user's view. Several high-resolution imagery providers are supported by CesiumJS, 

including Cesium ION, Bing Maps, ESRI World Imagery, Mapbox Satellite, and 

Sentinel-2. It is possible to stream high-resolution imagery or tiled imagery layers from 

georeferenced raster data using Cesium ION. The Cesium ION platform is capable of 

creating TMS and WMTS layers from raster imagery uploaded in a variety of formats, 

including GeoTIFF, Erdas Imagine, JPEG, and PNG. 

 

TMS and WMTS imagery layers were created by converting generated true orthophotos 

into a single ZIP file and uploading it to Cesium ION. A dataset will usually contain more 

than one overlapping tile of imagery, so if more than one raster file has multiple 

overlapping tiles of imagery within it, all rasters must have the same GSD to avoid 

inconsistencies within the dataset. Generated true orthophoto basemap, high-resolution 

DTM, and textured LoD2 city model visualized on the CesiumJS virtual globe in a single 
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scene. A final accuracy assessment was conducted by using DTM and building models to 

compare true orthophoto basemaps with other imagery layers. Figure 6.4 shows a 

comparison between true orthophoto, Bing Maps, Mapbox Satellite, and ESRI World 

Imagery as basemap layers. 

 

 

 

Figure 6.4 A comparison between true orthophoto (a), Bing Maps (b), Mapbox Satellite 

(c), and ESRI World Imagery (d) as basemap layers 

 

As a last step, 3D city models with different level of details (LoD2 and LoD3) were added 

to the web scene as the final step of visualization. The LoD2 city model was automatically 

textured based on high resolution aerial photographs. It will be more difficult for the GPU 

to handle high-resolution building textures, so texture optimization was needed to reduce 

the texture size without compromising the visual quality. There are different formats that 

textures can be stored in, including PNG, JPG, BMP, etc.) with different quality levels. 
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CityGML supports different texture formats, but JPEG textures were found to be optimal 

for optimizing texture sizes while maintaining visual quality. 

 

Models of buildings and furniture for the LoD3 city model, along with city plans and 

textures, were all stored separately in CityGML files. It is important to optimize CityGML 

and building textures in order to achieve efficient visualization. The texture patch for each 

façade of the building is created by clipping images from aerial pictures that are used in 

CityGML. In consequence, for a couple of buildings, CityGML files can easily consist of 

hundreds of megabytes of textures. CityGML files contained redundant texture data, and 

when those files were stored separately, they added to the size of the files as well as 

created duplicate textures. This problem was resolved by merging files with shared 

textures into a single CityGML, and then removing duplicate textures as the first step 

towards optimizing textures. Buildings and city furniture were generated as separate 

CityGML files along with their textures, then merged into a single file.  

 

The use of a single texture for the whole building, rather than separate textures for each 

façade, reduces hardware usage and increases visualization efficiency significantly. A 

comparison of textures before and after optimization is given in Table 6.1. 

 

 

Table 6.1 Comparison of texture sizes before and after optimization [58]. 

 

3D city models, city plans and city furniture in CityGML format converted to 3DTiles 

using Cesium ION. The CityGML format is capable of storing the semantics and the 

properties of each building. Semantics in CityGML can be incorporated into 3D tiles for 

each building. LoD2 city model with enriched semantics is visualized in a single scene 

together with LoD3 city model. LoD2 model contains semantics such as 2D area, roof 

type, usage and other features. LoD3 city model contains only automatically generated 

semantics such as latitude, longitude and building height. It is possible to see the 
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semantics of the building by selecting a building on the developed web interface. Each 

building can be selected separately and some queries such as measuring heights or areas 

can be performed in the developed web interface. It's possible to style or hide buildings 

according to their attributes. A view of the web interface that shows attributes for a LoD2 

building is shown in Figure 6.5. LoD3 city model with 3D city plans is given in Figure 

6.6. 

 

 

Figure 6.5 A view of attributes for selected LoD2 building in the web interface 

 

 

Figure 6.6 LoD3 city model with 3D city plans in the web interface. 
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6.3. 4D Data Visualization with CZML 

In this subsection, a geo-visualization interface for UAV and airplane photogrammetric 

flights using CesiumJS Virtual Globe has been developed for 4D data visualization. 

Image trajectory elements such as camera rotations and image perspective center 

coordinates measured during the flight were used for 4D visualization approach. Exterior 

orientation parameters (EOPs) and the interior orientation parameters (IOPs) of the 

images were used to visualize aircraft's flight path in time, camera position, and the image 

footprints on the ground, as well as the airplane's rotation. CesiumJS virtual globe is used 

to visualize the flight and footprint of the images captured during the flight. A 4D 

visualization of the photogrammetric image acquisition has been created based on the 

data obtained from airplane and unmanned aerial vehicle (UAV) platforms during the 

photogrammetric image acquisition process. 

 

Flight paths reconstructed from image metadata, known as EOPs, and acquisition times. 

The time difference between two image acquisitions is calculated and used to animate 

image acquisitions precisely. Simulating aircraft rotations during flight was conducted 

using the roll, pitch, and yaw angles from EOPs. Considering CesiumJS only supports 

WGS84 coordinate system, the image perspective center coordinates in EOPs have been 

reprojected from the Universal Transverse Mercator (UTM) projection system to the 

WGS84 system for the visualization. 

 

The image footprint vectors are generated by using a custom FME workbench that uses 

the image EOPs and IOPs and assumes that the imaging conditions are nadir. Figure 6.7 

gives an overview of the developed custom FME workbench. The perspective center of 

the images was retrieved from EOPs in CSV format (Comma-separated Value) as first 

step. "VertexCreator" transformer is used to create point features using image perspective 

center coordinates. "Bufferer" transformer is used to generate image footprints polygons 

around the points using a dummy size of 1 m x 1 m as a reference. Sensor size (image 

width and height) and nominal GSD (Ground Sampling Distance) are used to simulate 

the footprint of image on the terrain. As an example, UAV cameras with image sizes of 

6000x4000 pixels and a 5 cm GSD have image footprints of 300m x 200m on the ground. 
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In the next step, image footprint polygons are generated by resizing generated dummy 

polygons for each image reference footprint polygon using the "Scaler" transformer. 

 

 

Figure 6.7 Developed FME workbench for generating image footprints. 

 

As a final step in the process, the coordinate values of image footprints on the ground are 

calculated with "CoordinateExtractor" transformer. For each image footprint, the corner 

coordinates and image IDs are exported for intermediate processing for conversion to 

CZML. Figure 6.8 shows an example of visualization of an image footprint on the ground. 

As mentioned previously, a constant GSD value was used for all images, and the images 

were taken in the nadir direction for the entire flight. 

 

 

Figure 6.8 An example of visualization of an image footprint on the ground. 
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Geospatial data and 3D models can be visualized using CZML in a time-dynamic (four-

dimensional) environment using CesiumJS. Georeferenced data types can be visualized 

on Cesium Virtual Globes using CZML, including 3D models as 3D Tiles, as well as 

geometric shapes.  

 

The animated 3D models are rendered in the glTF format. Depending on the type of 

photogrammetric flight, such as an aerial photogrammetric flight or an UAV, 

visualization can be performed using an animated 3D airplane or UAV. Since glTF uses 

quaternions (x, y, z, w) to animate the rotations, aircraft rotations from EOPs are 

converted to quaternions. Cesium's built-in capabilities help visualize aircraft rotations 

by first converting the heading, pitch, and roll values of the aircraft from degrees to 

radians, and then using the radians to quaternions conversion tool to convert the radians 

to quaternions. The web interface also features a camera icon for each location of the 

image perspective center. These icons can be interacted with to view image thumbnails 

and to see information about that image such as ID, coordinates, acquisition time, and 

EOPs of selected image. Aircraft models included in the default Cesium model library 

(airplanes and UAVs) used in the study can be seen in Figure 6.9. As a last step, flight 

data, including flight path, aircraft rotation, image footprints, and flight speed derived 

from distance and interval information, then converted into a single CZML (Cesium 

Language) file for visualization on the CesiumJS web globe. 

 

 

Figure 6.9 Airplane and UAV model. 
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There are many different visualization projects that can be used with CZML. CZML 

format does not have a static template, so CZML templates should therefore be created 

for each project, so that they meet the specific requirements of that project. Visualizing 

CZML data can be accomplished in a variety of ways. In addition to uploading and 

visualizing generated CZML data online with Cesium ION, Cesium Sandcastle provides 

the capability of visualizing generated data locally as well. The Cesium Sandcastle app is 

both a live-coding app as well as a geovisualization interface application for viewing 

CesiumJS examples in a local environment or online. It is possible to visualize a CZML 

file either on Cesium Sandcastle by manually coding it, or by uploading it to Cesium ION 

as a CZML file. Cesium Sandcastle allows users to to share developed CesiumJS projects 

with other Cesium Sandcastle users with share option, however, it is not a suitable tool 

for sharing data and projects between users.  

 

Geospatial data can be uploaded and visualized more easily Cesium ION platform, which 

is designed to handle large volumes of 3D geospatial data, in addition to hosting, 

optimizing, and streaming them. Through Cesium ION, users have access to Cesium 

World Terrain, several imagery layers, and the ability to convert geospatial datasets into 

desired format for efficient visualization. As part of this thesis, generated CZML dataset 

and 3D model are also visualized and published online with Cesium ION. A view of 

photogrammetric image acquisition visualization with an UAV with an 80% forward 

overlap is given in Figure 6.10. Figure 6.11 shows photogrammetric image acquisition of 

736 images in Gaziantep, Turkey with an 80% forward and 60% lateral overlap. 
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Figure 6.10 Photogrammetric image acquisition visualization with an UAV with an 

80% forward overlap [58]. 

 

 

Figure 6.11 Photogrammetric image acquisition of 736 images in Gaziantep, Turkey 

with an 80% forward and 60% lateral overlap [58]. 

 

Users may identify errors in aerial photogrammetry flights with the help of a 4D 

visualization. This will enable them to prevent similar errors in future missions. It is thus 

possible to gain a better understanding of the definitions of photogrammetric terms, such 

as image overlap, image resolution, flying height, and flight route by visualizing 
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photogrammetric flights. Furthermore, visualizing photogrammetric flights allows for the 

analysis of the geometrical errors in the acquisition of images even in adverse weather 

conditions such as rain and wind. 

 

6.4. Game Engines and Virtual Reality 

This section presents an approach to visualizing LoD3 city models in the Unity game 

engine with VR support. Virtual Reality have become increasingly important in a wide 

range of fields, including urban planning, architecture, civil engineering, and even 

entertainment. Exploring 3D city models in VR can provide a wealth of information and 

insights that are difficult to obtain from traditional 2D maps and models. They allow 

urban planners and architects to create and visualize new designs and proposals in a 

virtual space before actually building them, which can save time, money, and resources. 

Civil engineers can use VR to simulate the behavior of infrastructure and transportation 

systems, helping them to identify potential problems and optimize designs. In addition, 

virtual 3D city models can be used in education and outreach, allowing the public to better 

understand and engage with urban planning and development. 

Game engine visualization of 3D city models requires a different approach than web-

based visualization. Most game engines rely heavily on processors and graphics cards 

(GPUs). Various strategies can be used in game engine optimization to reduce CPU and 

GPU usage. The scene can be optimized by loading only the models in the scene that are 

visible in that point of view. Texture and polygon count are also important aspects of 

optimization. The scene should provide the user with as realistic a presentation as possible 

with the fewest number of polygons. 

The LoD3 city model, city plans, and city furniture were created in a CAD environment 

and exported to Unity in the scope of this study. For models with high polygon counts, 

polygon optimization has been performed before exporting them to the game engine while 

maintaining their visual quality. Since CAD environments generally do not support 

projected coordinates, the entire city model must be manually reprojected from local 

coordinates to projected coordinates. Buildings and objects were manually placed on the 

reprojected city plan during this process. Sound effects and animations were added to the 

scene to enhance its realism. The final step is to combine elements of the city, such as its 

buildings, city plan, and furniture, and present them in VR environment. 
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Although exploring 3D city models with virtual reality offers a much more realistic 

experience than web-based visualization, various hardware is required to use this 

technology. Exploring generated scenes in a VR environment requires both a VR headset 

and a VR-ready GPU.  The limited accessibility of this hardware makes VR exploration 

of 3D city models possible only for users with required equipment. 

 

Data that visualized in the previous chapter using CesiumJS was then visualized using 

Unity game engine in a more detailed scene. True orthophoto basemaps, high-resolution 

DTM and generated 3D city models including buildings, ground plans, and city furniture 

are visualized together in a single scene in Unity game engine to obtain the most accurate 

visualization possible. A view of the LoD3 city model in Unity game engine from 

different viewpoints can be seen in Figure 6.12. 

 

 

Figure 6.12 A view of the LoD3 city model in Unity game engine from different 

viewpoints [137]. 
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6.5. Discussions and Conclusions on Efficient Visualization of 3D City Models 

 

Web-based visualization and game engine visualization are two completely different 

visualization platforms that requires different visualization optimizations. CesiumJS 

provides an efficient way to visualize geospatial data by WebGL-based rendering, 

dynamic level of detail and automatizing format conversion using Cesium ION. On the 

other hand, game engines and VR offers more realistic experience for users. Game 

engines and VR allow users to experience and explore the city in a more engaging way, 

leading to a better understanding of the city's features and characteristics. 

 

Users can experience cities in a more realistic way with virtual reality by being more 

involved in the scene. Visitors can visit virtual reality cities in the design phase before 

they are constructed. Future cities can be visualized and explored by stakeholders in VR 

environment. The VR environment also allows users to interact with objects and explore 

the city at street level. As a result, users can give more accurate feedback and contribute 

to the city's development more effectively. As a result, the city's inhabitants, as well as 

architects and city planners, can contribute to the design of the city. The use of VR in 

urban development can therefore enhance the city in a variety of ways. Virtual reality also 

allows users to explore cities virtually from around the world. 

 

There are many advantages to visualizing 3D city models in game engines. It is possible 

to visualize 3D city models that are as realistic as possible by using game engines. This 

allows users to experience a realistic environment. The details of the architecture of 

buildings, vehicles on the streets and the movements of people in a virtual 3D city model 

provide a realistic experience in a game engine. Also, game engines provide users with 

an interactive way to view and interact with cities and their details. Through the game 

engine, users are able to touch, move and interact with city objects. Game engines allow 

easy customization of virtual city models. City details, content, and appearance can be 

modified by users. Therefore, virtual city models can be created for different scenarios in 

this way. 
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7. CONCLUSIONS AND FUTURE WORK 

 

 

In this section, conclusions and future work are presented in two separate sections based 

on the studies that were conducted under the scope of the thesis. The conclusion section 

contains the main findings, the critical analysis of the results, what is really novel, where 

progress has been made and if the project objectives have been achieved. The future work 

section contains directions for future research and potential improvements for each study. 

 

7.1. Conclusions 

 

In this thesis, the three main stages of 3D city modeling, i.e., data acquisit ion and pre-

processing, building extraction and modeling, and visualization, were investigated and 

several optimization solutions were provided for each stage. Regarding the data 

acqusition and pre-processing, aerial photogrammetry was preferred due to the provision 

of both visible images and 3D geometries. For building extraction and modeling, different 

approaches such as roof type classification for library-based model production, building 

footprint segmentation with CNNs, and roof line extraction with line detection 

segmentation networks were investigated. For the visualization, web globes and game 

engine based VR were analyzed. 

 

Many applications use building footprints to extract or clip buildings from images or 

DSM. The F1-Score and IoU (IoU) improved by 3.27% and 5.90% when nDSM data was 

fused as a fourth band to RGB data. There have been some improvements in the results 

that have been obtained by using nDSM from roofs that are obscured by objects, such as 

shadows and trees, but this problem is still not completely resolved. Upon conversion of 

predicted building footprints from pixel-based segmentation to vector data, a smoothing 

process was performed on the vector data for correcting the un-smoothness of the vector 

data. In some cases, other objects with a color value that is close to the roof color may be 

classified as buildings as well. This study was conducted in a complex and unstructured 

area of roof buildings but at the same time promising results were obtained, despite the 
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complexity of the study area. There is one disadvantage of this method of dividing 

buildings under one roof, which is that it is impossible to distinguish the building lines 

when there are more than one building under the same roof. 

 

Roof types are very important due to several reasons. The type of roof can significantly 

impact the energy efficiency of a building. Different roof types have different load-

bearing capacities and can withstand different levels of wind, snow, and other 

environmental factors. Understanding the roof type is crucial for assessing the structural 

stability of a building. A dataset containing 10.000 unique roof images for 6 different 

types of roof was introduced in the roof type classification section. DL-based roof type 

classification was achieved with a very high F1-score with 86% as the best result. A more 

comprehensive analysis of the results indicates that roof types with more data were more 

likely to be better learned by the model and achieved higher classification scores than 

those with less data. Despite the fact that the "complex" roof type has the most data among 

all the roof types in the dataset, it was not classified with the highest level of accuracy 

since it does not have a standard geometric structure. There are many different areas in 

which roof type information can be used, such as procedural building reconstruction and 

solar energy applications. 

 

As a part of the thesis, a DL-based framework for fully automatic vectorization of LoD2.2 

roof structures in city-scale. First LoD2.2 roof line segmentation dataset for line segment 

detection networks with more than 139 k buildings and 2.2 million lines was also 

introduced. DL-based method have achieved state-of-the-art results for roof segment 

detection by 58.4% in msAP and 73.1% in mAPJ. Additionally, the results of this study 

show that deep learning methods are capable of solving some problems such as roofs that 

have been blocked by trees or shadows. 

 

Generally, extracting roof structure from RGB images is a more reliable method than 

extracting roof structure from LiDAR or photogrammetric point clouds. Since only VHR 

stereo aerial imagery is used as primary data source for this thesis, 3D buildings are 

reconstructed using predicted roof structures from RGB images and photogrammetric 

DSM. In spite of the fact that a high level of accuracy was obtained from roof structure 
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extraction, 3D building reconstruction based on heights from photogrammetry-based 

DSM did not turn out to be satisfactory. Since photogrammetry-based DSMs do not 

present heights to the same degree of accuracy as LiDAR point clouds, the use of heights 

obtained from photogrammetry-based DSM is likely to lead to incorrect 3D roof 

reconstruction. This means that using stereo aerial imagery and LiDAR data together will 

provide a more accurate way to generate the geometry of a 3D roof and building. 

 

The primary objective of efficient visualization is to present the 3D city data in a way that 

is clear, concise, and easily understandable, while preserving the accuracy and detail of 

the original model. This may involve the use of visualization techniques such as 3D 

rendering, interactive navigation, or virtual reality, to create an immersive experience that 

allows stakeholders and citizens to explore and interract with the city data in a meaningful 

way. The ultimate objective of efficient visualization of 3D city models is to provide a 

powerful tool for urban planning, analysis, and decision-making. 

 

As a part of thesis, visualization of multi-LoD 3D city models in different platforms and 

investigated different performance optimization procedures. Web-based visualization and 

game engine visualization require completely different approaches. The visual 

representation of city models should be aimed at maintaining the highest possible level 

of visual detail while at the same time minimizing the computer hardware load. A more 

efficient approach would be to provide the details of the building or city through textures 

rather than using more polygons for the models. Based on the results of a research, the 

web-based visualization library CesiumJS is a suitable solution for displaying 3D city 

models along with basemaps and DTMs from different geospatial datasets. Game engine 

visualization of 3D city models offers a much more realistic experience than web-based 

visualizations. By visualizing city models in VR and presenting them before the 

reconstruction of the city, citizens and stakeholders can take part in making decisions 

about the future of the city. 

 

As a result of its intuitive interface and web-based system, these systems are not only 

used by professionals, but also by the general public. Since CesiumJS provides support 

for a variety of geospatial data, including DTM, basemaps, and textured 3D city models, 
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it is currently the most suitable open-source web globe for visualizing 3D city models and 

developing WebGIS interfaces. CesiumJS library can be customized to meet the 

requirements of the project. This thesis has also lists the following additional useful 

features of Cesium; the ability to customize the interface; the ability to stream, style, and 

interact with 3D tiles; support for visualizing DTMs in different resolutions; information 

boxes for selecting objects and displaying attributes, and the ability to optimize GPU, 

CPU, and power utilization. Unreal and Unity game engines can import geospatial 

datasets hosted in Cesium ION without data conversion or processing. 

 

7.2. Future Work 

 

For building footprint extraction, line segment detection networks can be used to extract 

building boundaries directly as vectors without having to first perform pixel-based binary 

segmentation and then vectorization. This means that instead of two different processes, 

building boundaries can be retrieved in a vector format in a single step.  In such a case, if 

there are multiple buildings under a single roof, line segment detection networks can also 

be used to detect the roof boundaries.  Since the dataset is a relatively small dataset, it 

may be possible to expand the dataset by using photogrammetric data from other cities or 

by using data augmentation techniques to generate new data from existing dataset. Each 

band's segmentation performance can be evaluated separately, then bands that reduce 

model accuracy can be excluded. Building bounding boxes can also be detected using 

object detection algorithms such as YOLO or using YOLO together with SAHI. 

 

The roof structure extraction can also be improved if the height data is derived from 

LiDAR point clouds instead of photogrammetric DSM data, as this will allow a better 

reconstruction of 3D buildings and roofs. Through the use of DL-based height prediction 

methods, it is possible to directly extract roof structures in 3D. With the addition of height 

estimation and edge detection methods to the framework, and the use of line segment 

detection networks, roof segment detection accuracy can be further improved. The dataset 

can also be extended using data from other cities with different types of roofs. This will 

enable the model to be adapted by globally. It is possible to improve the post-processing 

algorithm even further in order to provide better results from the predicted roof segments. 
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As future efforts, the classification of roof types can be extended to include roof types 

other than the 6 roof types that are used in the generated dataset. It should be noted that 

since the dataset used here is a relatively small dataset, it could be expanded by using 

roofs from different cities or by augmenting the data. In addition to the CNNs used in this 

thesis, other CNNs can be used for roof type classification task. It is possible to detect 

and classify roofs directly from aerial photographs or satellite images with DL-based 

object detection. This eliminates the need to clip each building from orthophotos with 

building footprints. It is possible to tune hyperparameters such as batch size and learning 

rate by experimenting with different values to determine the optimal value for achieving 

best results. There is also the possibility of improving classification results by adding 

height information (DSM) as a fourth band to the RGB images. 

 

As a future step, the web interface developed during this project can be enhanced by 

adapting the models to a 3D GIS platform or a database. By enriching the semantic data 

of the building models, more analyses can be conducted on the models in city-scale. The 

Cesium ION platform is able to visualize and analyze 3D geospatial data in a number of 

different ways on the web, as well as in the Unity and Unreal game engines. The created 

scenes can be enhanced visually through the use of game engines, while also providing a 

more realistic experience through the use of sound effects and animations.  
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