

MICROSERVICE REFERENCE ARCHITECTURE FOR

DERIVING APPLICATION ARCHITECTURES

UYGULAMA MİMARİLERİ ELDE ETMEK İÇİN

MİKROSERVİS REFERANS MİMARİSİ

MEHMET SÖYLEMEZ

ASSOC. PROF. DR. AYÇA KOLUKISA TARHAN

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Doctor of Philosophy

in Computer Engineering

2023

i

ABSTRACT

MICROSERVICE REFERENCE ARCHITECTURE FOR DERIVING

APPLICATION ARCHITECTURES

MEHMET SÖYLEMEZ

Doctor of Philosopy, Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Ayça KOLUKISA TARHAN

Co-Supervisor: Prof. Dr. Bedir TEKİNERDOĞAN

January 2023, 161 pages

Microservice architecture (MSA) is an architectural style for distributed software

systems, which promotes the use of fine-grained services with their own lifecycles.

Several benefits of MSA have been reported in the literature, including increased

autonomy and modularity, flexible configuration, easier development, easier

maintenance, and increased productivity. Therefore, many practitioners leverage this

architectural style either to break their existing big monolithic applications into small

pieces or to start their new projects, in order to level up the agility of the development

process and increase the autonomy of services. On the other hand, there are many

concerns that the practitioners have to deal with, due to MSA’s distributed nature and

design principles to consider. Therefore, it is still challenging for the practitioners to

handle these concerns and come up with application architecture, and unfortunately, there

is no comprehensive study yet to address this issue. To fill this gap, in this thesis, we

ii

propose a novel reference architecture together with an approach to derive an application

architecture from it, as the keys to successfully building microservice-based applications.

To this end, we first identify what kind of challenges are there in MSA adoption and then

we follow a domain-driven software architecture design approach to identify basic

features of MSA. We provide a domain model by using feature diagrams including the

common and variant features of MSA. Leveraging the challenges and family feature

model of MSA, we apply the architecture design process to design the reference

architecture by using architectural viewpoints. Finally, after designing the reference

architecture, we carry out a multiple case study to evaluate the proposed reference

architecture.

Keywords: Microservice architecture, reference architecture, software architecture,

application architecture, architecture adoption, case study

iii

ÖZET

UYGULAMA MİMARİLERİ TÜRETMEK İÇİN MİKROSERVİS REFERANS

MİMARİSİ

Mehmet SÖYLEMEZ

Doktora, BİLGİSAYAR MÜHENDİSLİĞİ Bölümü

Tez Danışmanı: Doç. Dr. Ayça KOLUKISA TARHAN

Eş Danışman: Prof. Dr. Bedir TEKİNERDOĞAN

Ocak 2023, 161 sayfa

Mikro hizmet mimarisi (MHM), kendi yaşam döngüleriyle birlikte küçük boyuttaki

hizmetlerin kullanımını destekleyen, dağıtılmış yazılım sistemleri için bir mimari stildir.

Literatürde MHM'nin artan özerklik ve modülerlik, esnek yapılandırma, daha kolay

geliştirme, daha kolay bakım ve artan üretkenlik dâhil olmak üzere çeşitli faydaları

bildirilmiştir. Bu nedenle, birçok uygulayıcı, geliştirme sürecinin çevikliğini yükseltmek

ve hizmetlerin özerkliğini artırmak amacıyla mevcut büyük monolitik uygulamalarını

küçük parçalara ayırmak veya yeni projelerine başlamak için bu mimari stili kullanır. Öte

yandan, MHM'nin dağıtık yapısı ve dikkate alınması gereken tasarım ilkeleri nedeniyle

uygulayıcıların ele alması gereken birçok ilgi vardır. Uygulayıcılar için bu ilgileri ele

almak ve bir uygulama mimarisi oluşturmak hâlihazırda zordur ve ne yazık ki, henüz bu

konuyu adresleyen kapsamlı bir çalışma literatürde yer almamaktadır. Bu boşluğu

iv

doldurmak için, bu tezde, mikro hizmet tabanlı uygulamaları başarılı bir şekilde

oluşturmanın anahtarı olarak, kapsamlı bir referans mimari ve ondan bir uygulama

mimarisi türetmek için bir yaklaşım öneriyoruz. Bu amaçla, önce MHM'nin

benimsenmesinde ne tür zorlukların olduğunu tespit ediyoruz ve ardından MHM'nin

temel özelliklerini belirlemek için etki alanına dayalı bir mimari tasarım yaklaşımı

izliyoruz. MHM'nin ortak ve değişken özelliklerini içeren özellik diyagramlarını

kullanarak bir etki alanı modeli sağlıyoruz ve ardından, MHM'nin zorluklarından ve aile

özellik modelinden yararlanarak mimari bakış açıları tabanlı bir referans mimariyi

tasarlamak için, mimari tasarım sürecini uyguluyoruz. Son olarak, referans mimarisini

tasarladıktan sonra, önerilen referans mimarisini değerlendirmek için çoklu vaka

çalışması yürütüyoruz.

Anahtar Kelimeler: Mikro hizmet mimarisi, referans mimari, yazılım mimarisi,

uygulama mimarisi, mimari benimseme, durum çalışması

v

ACKNOWLEDGMENTS

I would like to express my sincere appreciation to my supervisor Assoc. Prof. Dr. Ayça

Kolukısa Tarhan and my co-supervisor Prof. Dr. Bedir Tekinerdoğan for their

inexhaustible support, patience, friendly encouragement and valuable guidance.

I am grateful to the thesis supervising committee members Prof. Dr. Ali Doğru and Assoc.

Prof. Dr. M. Kayhan İmre for their advices and helpful discussions throughout my thesis

study. I also thank Assoc. Prof. Dr. Altan Koçyiğit and Assist. Prof. Dr. Murat Aydos for

their review and suggestions during my thesis defense.

I would like to thank to the companies, where I conducted case studies, for their

contributions and support.

I would like to express my deep gratitude to my father and mother. I have always felt to

be privileged of having such a family.

I would like to give my special thanks to my beloved wife Seda for her endless love,

support and encouragement throughout my life. Last but not least, I would like to express

my huge thanks to my beloved son, Deniz and my beloved daughter, İpek for being such

a good kids always cheering me up.

January 2023, Ankara

vi

TABLE OF CONTENTS

ABSTRACT .. i	

ÖZET .. iii	

ACKNOWLEDGMENTS .. v	

TABLE OF CONTENTS ... vi	

LIST OF FIGURES ... ix	

LIST OF TABLES ... xi	

LIST OF ABBREVIATIONS ... xii	

1. INTRODUCTION ... 1	

2. BACKGROUND .. 5	

2.1. Microservice Architecture .. 5	

2.2.	Related Work .. 8	

2.3. Arcitectural Views ... 9	

2.4. Domain Analysis ... 10	

2.5. Domain Driven Design (DDD) ... 11	

3. CHALLENGES AND SOLUTION DIRECTIONS OF MSA 12	

3.1. Research Methodology ... 12	

3.2. Overview of Selected Studies ... 15	

3.3. Identified Challenges and Solution Directions .. 18	

3.3.1. RQ1. What are the identified challenges in the MSA domain? 18	

3.3.1.1. Service Discovery .. 22	

3.3.1.2. Data Management and Consistency .. 22	

3.3.1.3. Testing ... 23	

3.3.1.4. Performance Prediction, Measurement and Optimization 24	

3.3.1.5. Communication and Integration ... 24	

3.3.1.6. Service Orchestration .. 25	

3.3.1.7. Security .. 26	

vii

3.3.1.8. Monitoring, Tracing and Logging (MTL) 27	

3.3.1.9. Decomposition .. 27	

3.3.2. RQ2. What are the identified solution directions? 28	

3.3.2.1. Service Discovery ... 30	

3.3.2.2. Data Management and Consistency ... 31	

3.3.2.3. Testing .. 32	

3.3.2.4. Performance Prediction, Measurement and Optimization 34	

3.3.2.5. Communication and Integration .. 36	

3.3.2.6. Service Orchestration .. 37	

3.3.2.7. Security ... 46	

3.3.2.8. Monitoring, Tracing and Logging ... 48	

3.3.2.9. Decomposition .. 53	

3.4. Summary .. 54	

4. METHODOLOGY .. 56	

5. FEATURE DRIVEN CHARACTERIZATION OF MSA 58	

5.1. Research Methodology .. 58	

5.2. Characterization Framework .. 60	

5.2.1. Data Management and Consistency .. 62	

5.2.2. Communication Style ... 64	

5.2.3. Service Orchestration .. 65	

5.2.4. Decomposition ... 67	

5.2.5. Service Mesh and Sidecar Pattern .. 68	

5.2.6. Observability .. 68	

5.2.7. Provisioning and Configuration Management 69	

5.2.8. Security .. 70	

5.2.9. Testing ... 71	

5.2.10. Resilience and Fault Tolerance ... 72	

5.3. Survey of MSA ... 73	

5.4. Analysis of Existing Key Cloud Providers ... 76	

6. REFERENCE ARCHITECTURE ... 79	

6.1. Family Feature Model ... 80	

viii

6.2. Decomposition View ... 82	

6.3. Layered View .. 83	

6.4. Deployment And Service Oriented Architecture View (Combined View) 84	

6.5. Method To Derive Application Architecture From Reference Architecture

 88	

7. VALIDATION BY MULTI-CASE STUDY ... 90	

7.1. Case Study Protocol ... 90	

7.2. Case Study – Transportation Management System 92	

7.2.1. Application Feature Model .. 93	

7.2.2. Decomposition View ... 94	

7.2.3. Layered View .. 96	

7.2.4. Deployment & Service Oriented Architecture View 96	

7.3. Case Study – Remote Team Management System 97	

7.3.1. Application Feature Model .. 98	

7.3.2. Decomposition View ... 99	

7.3.3. Layered View .. 100	

7.3.4. Deployment & Service Oriented Architecture View 101	

7.4. Discussion On Results .. 101	

7.4.1. How Effective Is The Adopted Microservice Reference Architecture?

 101	

7.4.2. How Practical Is The Adopted Microservice Reference Architecture?

 103	

7.5. Limitations And Threats To Validity .. 104	

8. CONCLUSION ... 107	

9. BIBLIOGRAPHY .. 111	

APPENDIX .. 118	

APPENDIX 1 – Study Quality Assesment Checklist 118	

APPENDIX 2 – List of Primary Studies .. 121	

APPENDIX 3 – Related Publications – Journal Articles 131	

RESUME ... 133	

ix

LIST OF FIGURES

Figure 2.1. Reference model for MSA as adapted from [28] ... 7

Figure 3.1. Activities under the SLR protocol .. 12

Figure 3.2. Year-wise distribution of the number of primary studies 15

Figure 3.3 Quality metric results for the primary studies ... 17

Figure 3.4. Visual Summary of Identified Problems .. 21

Figure 4.1. Development Methodology of Microservice Reference Architecture 56

Figure 5.1. Research methodology ... 59

Figure 5.2. Top-level feature diagram of MSA. ... 60

Figure 5.3. Feature diagram of data management and consistency 63

Figure 5.4. Feature diagram of communication style ... 65

Figure 5.5. Feature diagram of service orchestration ... 66

Figure 5.6. Feature diagram of decomposition ... 68

Figure 5.7. Feature diagram of observability .. 69

Figure 5.9. Feature diagram of security .. 70

Figure 5.10. Feature diagram of testing .. 72

Figure 5.11. Feature diagram of resilience and fault tolerance 72

Figure 6.1. Microservice Reference Architecture – Decomposition View 83

Figure 6.2. Microservice Reference Architecture – Layered View 84

Figure 6.3. Microservice Reference Architecture – Deployment & Service Oriented

Architecture View ... 87

Figure 6.4. Method to derive application architecture from reference architecture 88

Figure 6.5. Three scenarios of using reference architecture to derive an application

architecture adopted from Kassahun [66] .. 89

Figure 7.1. Decomposition view for Transportation Management System 95

Figure 7.2. Layered view for Transportation Management System 96

Figure 7.3. Deployment & Service Oriented Architecture view for Transportation

Management System ... 97

Figure 7.4. Decomposition view for Remote Team Management System 100

Figure 7.5. Layered view for Remote Team Management System 100

x

Figure 7.6. Deployment & Service Oriented Architecture view for Remote Team

Management System ... 101

Figure 7.7. Interview results for Transportation Management System 102

Figure 7.8. Interview results for Remote Team Management System 103

xi

LIST OF TABLES

Table 3.1. Publication Sources Searched .. 13

Table 3.2. Quality Assessment Checklist ... 14

Table 3.3. Studies by research methods .. 16

Table 3.4. Primary Studies with Identified Problems of MSA 18

Table 3.5. Solution Directions for the Identified Challenges in MSA 28

Table 5.2. Mapping features with MSA technologies .. 74

Table 5.3. Feature-based service comparison: AWS, Google Cloud, and Microsoft Azure

 .. 77

Table 6.3 Explanation of each component in Deployment and Service Oriented

Architecture View ... 85

Table 7.1. Case study design .. 90

Table 7.2. Questionnaire used for qualitative data analysis ... 91

Table 7.3. Application Feature Domain Model .. 93

Table 7.4. Application Feature Domain Model .. 98

Table 7.5. Threats to construct validity and countermeasures 106

Table 8.1. SWOT Analysis of our approach ... 109

xii

LIST OF ABBREVIATIONS

2PC Two Phase Commit

ABE Attribute Based Encryption

ACID Atomicity, Consistency, Isolation, Durability

ACO Ant Colony Optimization

ACM Association for Computing Machinery

ADAL Accelerated Distributed Augmented Lagrangian

API Application Programming Interface

AWS Amazon Web Services

BAC Backup, Availability, Consistency

BASE Basically Available, Soft State, Eventually Consistent

BDD Behavior Driven Development

BE Backend

BFF Backend for Frontend

C&C Component & Connector

CAP Consistency, Availability and Partition Tolerance

CI&CD Continuous Integration & Continuous Delivery

CAS Central Authentication Service

CQRS Command and Query Responsibility Segregation

CPU Central Processing Unit

DB Database

DDD Domain Driven Design

DevOps Development and Operations

DPDK Data Plane Development Kit

ECR Energy Consumption Rate

ERP Enterprise Resource Planniung

ESMS Elastic Scheduling for Microservices

FaaS Function as a Services

GMAT Graph-based Microservice Analysis and Testing

HA High Availability

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

xiii

IBM International Business Machine

ICN Information Centric Networking

ID Identifier

IEEE Institute of Electrical and Electronics Engineers

IMAP Internet Message Access Protocol

I/O Input / Output

IP Internet Protocol

IT Information Technology

JWT JSON Web Token

LXC Linux Containers

LwIP Lightweight IP

MAPE Mean Absolute Percentage Error

MEC Mobile Edge Computing

MFRL-CA Method Based on Correlation Analysis

MicADO Microservice Architecture Deployment Optimizer

MQ Message Queue

MSA Microservice Architecture

MTL Monitoring Tracing Logging

MVC Model View Controller

NFV Network Function Virtualization

ORM Object Relational Mapping

RBAC Role Based Access Control

RCA Root Cause Analysis

REST REpresentational State Transfer

RQ Research Questions

SLR Systematic Literature Review

SMTP Simple Mail Transfer Protocol

SOA Service Oriented Architecture

SRE Site Reliability Engineering

SSO Single Sign-on

TCP Transmission Transfer Protocol

TLS Transport Layer Security

VM Virtual Machine

xiv

SWOT Strengths, Weaknesses, Opportunities, Threats

1

1. INTRODUCTION

Microservice Architecture (MSA) is an architectural style that encourages practitioners

to develop loosely coupled and highly cohesive services [1]. Compared to other

architectural styles such as Service Oriented Architecture (SOA) and Monolithic

Architecture, it stands out by putting emphasis on autonomous services that basically

allow practitioners to have independently deployable services [2]. Monolithic

Architecture is another and the most traditional architectural style in which the application

is built as a single operating unit [2]. Moreover, all the functionality in the codebase is

deployed together [3]. MSA can be considered as a variant of the SOA, which includes a

collection of loosely coupled services [4]. It adheres to the separation of concerns

principle relying on clear boundaries of services [5]. However, SOA depends on heavy-

weight middleware such as enterprise service buses and it breaks the autonomy of services

[6].

In MSA, services are small in size, autonomously developed, independently deployable,

and decentralized, while the protocols are lightweight. The following attributes are

considered to be present in an MSA: (1) It lends itself to a software development

methodology based on continuous delivery. This means that modifying a tiny portion of

the application just necessitates rebuilding and redeploying one or a few services. (2) It

follows business-driven development ideas such as fine-grained interfaces (to create

independently deployable services) and Domain-Driven Design (DDD). The idea is for

teams to be able to bring their services to life without relying on others. Because service

developers do not need to care about the service's users and do not push their

modifications on them, loose coupling lowers all forms of dependencies and

complications. Accordingly, MSA gives importance to autonomous and lightweight

services [6]. MSA has been in more demand because it minimizes the disadvantages that

come with SOA. MSA can be deployed, developed, tested, and operated independently.

It is crucial to design microservices as fine-grained services [2,4,7] that should adhere to

single responsibility principle by encapsulating their data. Furthermore, well-defined

abstraction and interfaces should be used in communicating with other services. Having

2

fine-grained services allows software agility to go up with independent development,

deployment, versioning, and scaling [6]. Decomposing domain into services organized

around business capability is the most popular way to obtain fine-grained services [2].

There are also some patterns to decompose the domain systematically. Domain-Driven

Design (DDD) pattern could be used to define bounded context and domain models in

order to decompose domain by building around business capability [8,9].

Autonomous services bring many benefits such as continuous delivery, being

independently deployable, and improved scalability [2]. MSA adopts automation in

continuous delivery as well as testing and deployment. These are the key benefits of MSA

[6]. Besides, as a result of its lightweight nature, containerization and communication

become also lightweight. Accordingly, it is easy to manage changes and extend the system

according to new coming requirements. Furthermore, practitioners take an advantage of

the microservices to be able to develop in different programming languages and

technologies. Therefore, there exists a freedom to use the most appropriate technology or

language to satisfy the user's needs [10].

Having improved scalability is another ability to scale autonomous services

independently. According to the growing amount of work, system should handle this

work by adding resources to the system [11]. Apart from that, it is expected that

availability and reliability will be improved thanks to the autonomous nature of MSA.

Moreover, application architecture is expected to be designed to adopt failure isolation

and tolerance principles to meet availability and reliability requirements. These are the

non-functional requirements that users can encounter while using the system, and they

should be handled properly to ensure customer satisfaction.

MSA promises software development firms increased agility because it is more open to

changing requirements and related use cases and technologies than monolithic

applications [2]. Design, development, and infrastructure automation processes can be

handled successfully with MSA. Infrastructure automation decreases manual effort in

building, deploying and operating microservices. On the other hand, decentralized

3

governance and data management allow services to be independent[2]. Thanks to

important benefits, several important vendors such as Amazon, Netflix, LinkedIn, and

Spotify have implemented their applications using MSA [2,12].

Despite the advantages mentioned above, there are also many concerns that practitioners

have to deal with due to MSA’s distributed nature and design principles to consider.

Orchestration of microservices, defining optimal boundary of microservices, ensuring

data consistency and distributed transaction management, versioning, and distributed

tracing are the main challenges to address during development of MSA based applications

[10,13–18]. After our comprehensive state-of-the-art survey [19] and systematic literature

review [20], we reached the conclusion that it is still challenging for practitioners to

handle these concerns, and to come up with an application architecture. Unfortunately,

there is no comprehensive study yet to address this issue. In order to fill this gap, we

consider that a comprehensive reference architecture is the key to successfully building

microservice-based applications.

Therefore, this study aims to propose a reference architecture of microservices and a

method to derive an application architecture from it. To this end, we adopt a domain-

driven architecture design approach to identify basic features of MSA. As a result of this

step, the domain model is provided by using feature diagrams including the common and

variant features of MSA. After that, an architecture design process is applied to design

the reference architecture by using architectural viewpoints. Finally, multiple case study

is conducted to assess the proposed reference architecture after it has been designed. As

a result, the following are the study's contributions:

• A domain-driven architectural design approach is described, and it is utilized to

create a microservice reference architecture.

• A reference architecture is created using the architecture design approach to

derive microservice application architecture.

• An industry multiple-case study is used to validate both the technique and the

reference architecture.

4

The rest of this thesis is organized as follows. Section 2 presents the background including

a detailed explanation of MSA, related work, and architecture design alternatives. Section

3 explains the research methodology. Sections 4 and 5 respectively presents our

Systematic Literature Review (SLR) study and Feature Characterization Framework of

MSA study. Section 6 explains development method of Microservice Reference

Architecture. The results of multiple case study are explained in Section 7. Finally,

Section 8 concludes the thesis.

 5

2. BACKGROUND

2.1. Microservice Architecture

MSA was firstly described by Lewis and Fowler in their famous article [2]. It has

managed to get a lot of attention in the academy, mostly in the industry from that day on.

Lewis and Fowler defined MSA as “an approach for developing a single application as a

suite of small services, each running in its own process and communicating with

lightweight mechanisms, often a HyperText Transfer Protocol (HTTP) resource

Application Programming Interface (API)”. This is not the only definition of MSA. For

example, Newman defines microservices as “small autonomous services that work

together, modeled around business domain” [1]. Even though there are many definitions

of microservices, all of them emphasize their small nature and autonomy.

The main reason why MSA is popular and used by many companies and individual

practitioners is to accelerate the software development process. This is the expected result

of its autonomous nature. The autonomy of the service emerges from the decomposition

of the complex domain into smaller subdomains and components, which can be

developed, deployed, versioned, tested, and managed independently [21]. With MSA, it

is expected to have high cohesive and loosely coupled services by applying the separation

of concerns principle. At this point, it is very important to determine the boundaries of

each microservice. Microservices are organized around business capabilities, which

simplifies identifying service boundaries. The most famous approach of identifying

boundaries is Business-Driven Development. It is an approach to identify bounded

context and to decompose a domain into subdomains [8,9].

MSA also provides great benefits in adapting to new requirements and change

management. In Monolithic Architecture, changes require the whole system to be rebuilt

and completely redeployed while with MSA, only the affected services are rebuilt and

deployed independently. Microservices are highly maintainable and testable [22]. This

gives great agility to a software system. It is easier to change the business direction

according to customer needs. It also allows practitioners to select the most appropriate

technology for the customer’s needs. It eliminates the long-term commitments to the

 6

technology stack since each microservice can be implemented in a different technology

stack that best fits its functional and non-functional requirements.

Another advantage of MSA is providing an infrastructure where microservices, as the

units of scaling, have the ability to be scaled independently according to their

requirements and the interests that they face [6]. Scalability is not only adapting a growing

amount of work by adding some resources but also operating the system efficiently while

preserving the quality [23,24]. Besides, practitioners can make decisions about each

service independently. In other words, different scaling policies can be applied to

microservices depending on their runtime metrics and states. All these abilities enable the

applications to be highly scalable and available.

The fact that MSA includes loosely-coupled services allows the system to be more fault

tolerant [25]. Generally, specific and relevant services are affected by a failure and only

those services need to be rebuilt and deployed. This situation prevents the whole system

from being unavailable. Accordingly, we have a more reliable architecture against any

failure.

Many companies, such as Amazon, Netflix, LinkedIn, and Spotify, have started to use

MSA in their projects [2,12,26]. All of these companies follow the basic model for MSA,

as shown Figure 2.1. This model is structured by some crucial building blocks, such as

main business services, infrastructural services, discovery mechanisms, and

communication infrastructure. Each block must be isolated from other blocks and

communicate with them using a lightweight protocol. Therefore, it is easy for them to

evolve over time according to the needs of the business or technology.

 7

Figure 2.1. Reference model for MSA as adapted from [27]

Systems are always open to changes as scenarios evolve and requirements change. This

is an expected behavior in software development process. However, managing these

changes better has become much more sustainable and applicable with MSA. Since every

microservice is a small business process and represents a small aspect of business

functionality, it is easy to adapt to new changes [28]. However, all these conveniences

are the outcome of an evolutionary process. This process starts with determining the

boundaries of microservices and shaping them around the business capability and

continues with the creation of DevOps practices and the evolution of the organization

accordingly. The next step is to have an elastic infrastructure and automate that

infrastructure to the possible extent by creating Continuous Integration & Continuous

Delivery (CI&CD) processes. With the automated infrastructure, many advanced

deployment techniques can be used, and projects become ready for using MSA [29].

Despite the advantages listed above, it is still difficult for software teams to implement

MSA in distributed projects, and for practitioners to guide teams to successful MSA

adoptions. The notion of MSA is complicated in terms of distributed service,

identification, management, and maintenance, which is one of the key reasons for its

complexity. As a result, successful MSA adoption necessitates a thorough awareness of

the issues and potential solutions.

Client API Gateway

Microservices

Service

Service

Service

Management & Orchestration

 8

2.2. Related Work

Few studies have addressed the architectural aspect of MSA-based development. Some

come with a general reference architecture, while others come with an architecture that

focuses on the specific aspects of MSA or the particular domains. In this section, we

provide an overview of the current studies.

Yu et al. [30] discussed the key characteristics of MSA. They proposed a reference

architecture with main building blocks and key components. They also emphasized some

common issues and solution alternatives while building microservice-based applications,

such as the uncertainty in business ownership and communication problems. However,

they are a bit far from today’s concerns and issues because with the increase in the usage

rate of microservices, more diverse and more critical concerns have started to emerge.

Aside from that, even though this study provides general guidance by involving many

buildings blocks such as service API registry, API proxy, etc., it does not propose a

systematic guidance to help practitioners choose the best-fit components for each concern

while building microservices.

Baylov and Dimov [31] proposed a reference architecture for self-adaptive microservice

systems. They focused on five basic components in their study. These were Service

Consumer, Service Registry, Service Provider, Service Instance, and Adaptation

Registry. Interactions of components with each other and the purpose for which they exist

were also explained in the reference model. The authors also defined how the reference

architecture they proposed could be used through an example application. However, this

study is lacking sufficient guidance for MSA based application development as well as

evidence for the verification of the reference architecture.

Aksakalli et al. [32] have proposed a model-driven architecture that offers automated

deployment alternatives for MSA based systems. The purpose of the architecture is to

minimize the execution cost and also the communication cost between microservices, and

to use cloud resources efficiently. The architecture consists of five main components.

These are microservice data exchange metamodel, microservice definition and

 9

communication metamodel, microservice infrastructure metamodel, microservice

runtime execution configuration metamodel, and finally, microservice deployment

metamodel. The proposed architecture is implemented using genetic and minimum nodes

algorithms in an example application and the alternative results of deployment are shared.

This study proposes a model specific to deployment only, and the results are discussed

along with the application of the proposed architecture.

In addition to academic studies, giant technology companies have also developed

reference architectures, but mostly focused on their own technologies or services [33–

36]. These reference architectures have addressed many critical building blocks in the

system. In addition, sample application architectures have been shared with the reference

architecture on how to use it within their own services or technologies. Although these

sample architectures cannot be used fully in more complex architectures, they are

considered to be useful for new starters. However, since these architectures are more

technology-oriented and most of the services provided by giant technology providers are

managed, practitioners could have trouble in comprehending the logic under the hood.

Based on the literature analysis presented in this section, we observe that the studies

mostly focused on the use of MSA for particular concerns. Additionally, in few existing

studies, the reference architecture was not dealt with comprehensively, and thus has not

reached sufficient maturity to serve as a guide for developing MSA based application

architectures.

2.3. Arcitectural Views

Software architecture is defining the structures of computing system composing the

elements and relationships among them [37,38]. Software architecture is a very important

tool to detect and prevent difficulties that may arise during the development phase of the

system, and to make the system more maintainable and reliable. In addition, it is an

essential artifact of software development process, as the decisions taken at this stage will

also affect the entire software development process of the system [39].

 10

Architectures are shaped by addressing stakeholder concerns. Stakeholders are

individuals, teams or organizations that take the lead with their knowledge, concern for

the design and development of the system, and play an important role in determining all

kinds of requirements of the system [37]. Considering the concerns of the stakeholders,

using different architectural views is the method generally followed in the definition of

software architecture. An architectural view is a representation that describes the system

components and their relationships from a particular point of view [38]. Thus, the views

that fit the concerns of the stakeholders more closely are defined, and an architecture that

appeals to all the stakeholders is obtained. Also, each stakeholder defines or analyses the

architecture using the views of his/her own interest.

There are multiple approaches to documenting software architectures. It has gained

importance that the architectures are reusable and easy to maintain, and how the

architecture will be represented. The latest approach that emerged for this purpose is

Views and Beyond [38]. In this approach, each view consists of different styles. In

general, views are divided into four main styles that are Module, Component and

Connector, Allocation, and Hybrid. Each view is meant to address architecture from

different viewpoints, and also addresses different concerns. Each style is also divided into

different sub-styles, and there are 17 sub-styles in total. Module style focuses on

implementation details, while Component and Connector style deals with interactions of

software components. Allocation style, on the other hand, addresses how to allocate

software components. In our study, we have leveraged each type of styles to document

not only microservice reference architecture but also application architectures. Sub-styles

that have been leveraged in each style are explained in detail in Section 6 and 7.

2.4. Domain Analysis

Domain analysis is used to determine the needed knowledge. Domain analysis is the

systematic method of obtaining and storing domain information to aid the engineering

design process. Domain scoping and domain modeling are the two most basic processes

in domain analysis. Domain scoping specifies the domain's scope as well as the

knowledge sources required to determine the core ideas. Domain modeling seeks to

express domain knowledge in a way that may be reused. One of the methodologies for

 11

domain modeling that may be employed is feature modeling [40]. In this method, feature

models are used to depict domain models, which may be used to convey common and

variable aspects of a product or system, as well as the connections between variable

features. There are four fundamental feature 'types' in a feature diagram: (1) must

have/must contain features, (2) optional features that can have/or not include components,

(3) alternative features (XOR) that must include one of the potential components, and (4)

and/or features that must include at least one of the components.

2.5. Domain Driven Design (DDD)

Domain Driven Design (DDD) was first proposed by Eric Evans. Its main purpose is to

provide a software development solution for complex needs by deeply connecting the

core business concepts of the application to a model. This theory consists of the following

three items [8]:

• Place the primary focus of the project on the main domain and domain logic.

• Fit complex designs into a model.

• Initiate a collaboration between technical and domain experts to further explore

the conceptual basis of the problem.

DDD requires new skills, discipline and a systematic approach. DDD is not a technology

or methodology. DDD provides a framework of practice and terminology for making

design decisions that focus and accelerate software projects dealing with complex

domains [8]. DDD is critical to microservice architecture. While developing software for

a large and complex area, it is possible to divide this area into different sub-domains and

to draw the boundaries of microservices from there correctly, with the perspectives

provided by DDD.

 12

3. CHALLENGES AND SOLUTION DIRECTIONS OF MSA

3.1. Research Methodology

The second step of this thesis aims to identify the state of the art of MSA and describe the

challenges in applying MSA and the corresponding solution directions. To this end, a

systematic literature review (or systematic review) was applied following the guidelines

by Kitchenham and Charters [41]. The basic activities of the review are shown in Figure

3.1. The SLR starts with defining the research questions followed by a definition of the

search strategy and the identification of the study selection and elimination criteria.

Subsequently, study quality assessment criteria are defined and the data extraction form

is developed. Once these steps are ready, the data synthesis method is developed.

Figure 3.1. Activities under the SLR protocol

The research questions (RQs) of our SLR are given below:

RQ1. What are the identified challenges of microservice architectures?

RQ2. What are the proposed solution directions?

 13

The studies published between January 2014 (which is the date when MSA was first

defined by Lewis and Fowler And February 2022 were included in the SLR. The

electronic digital libraries included in the search were (in alphabetical order): ACM

Digital Library, IEEE Xplore, Science Direct, Springer, and Wiley Inter Science (see

Table 3.1).

Table 3.1. Publication Sources Searched

Source

Studies

Initially Retrieved

Studies

After Applying Exclusion/Quality Criteria
IEEE Xplore 233 48

ACM 755 12

Springer 1619 10

Science Direct 978 11

Wiley 174 4

Total 3842 85

Journal papers, conference papers, workshop papers and books were considered as

potential search items. We used both automatic and manual search. Automatic search was

performed by defining search strings using the APIs of the corresponding search

databases. This was complemented with a manual search in which we used snowballing

techniques. For selecting the primary studies, the following query was used:

(("micro service" OR "microservice" OR "micro-service") AND

 ("challenge" OR "obstacle" OR "difficulty" OR "difficulties" OR "problem"))

We identified and used the exclusion criteria listed below in order to eliminate the studies

that were irrelevant for the purpose of this SLR:

EC 1: Studies with abstracts/titles that do not discuss MSA

EC 2: Studies with abstracts/titles that do not bring an approach to MSA

 14

EC 3: Studies without a full text

EC 4: Duplicate studies retrieved from different digital libraries

EC 5: Studies that are not in English

EC 6: Studies that do not explicitly discuss challenges of MSA

EC 7: Studies that relate to MSA but are experience and survey papers

EC 8: Studies that present the application of MSA and do not critically reflect on MSA

concepts

The application of the exclusion criteria resulted eventually in 85 papers of the 3842

papers that were initially selected.

The subsequent step included the quality assessment of the resulting primary studies, for

which we used the quality checklists as defined in [42]. For the quality assessment, we

used accordingly the checklist in Table 3.2. For the assessment scale we adopted a three-

point scale (i.e. yes = 1, somewhat = 0.5, no = 0). The scores for the assessment of the

primary studies are provided in Appendix 1.

Table 3.2. Quality Assessment Checklist

The SLR followed with the detailed analysis and data extraction of the full-text of the 85

primary studies. The quality evaluation was included in this SLR as part of the data

 15

analysis, therefore the review data was preserved in the same format. To develop the data

extraction, form a number of pilot primary studies were used and after a number of

iterations, the final data extraction form was provided based on consensus between myself

and my supervisors.

In the final step of the SLR, the data synthesis, a qualitative and quantitative analysis was

independently performed on the data that was extracted from the primary studies. We

discussed and selected suitable visual representations to support the synthesis process.

3.2. Overview of Selected Studies

The list of primary studies that were identified by this SLR is given in Appendix 2. In

Figure 3.2., we present the distribution of the primary studies by year. From the figure we

can observe a growing interest in the studies since 2015, following the year that MSA

was proposed.

 Figure 3.2. Year-wise distribution of the number of primary studies

We have also analyzed the research methods employed in the primary studies to

investigate the strength of evidence in these. Table 3.3. presents the adopted research

methods in 85 primary studies. As shown in the table, six different types of research

methods were searched in the review. From the table we can observe that the majority of

the primary studies are based on a single case study.

0

5

10

15

20

25

2015 2016 2017 2018 2019 2020 2021 2022

 16

Table 3.3. Studies by research methods

Adopted Research Method Study Labels # Studies Percentage

Descriptive or Not described
A, B, I, J, P, S, Y, AG, AH,

AJ, AL, AQ, BE, BL
14 16.48 %

Single-case

D, F, G, K, L, M, N, O, T, U,

V, X, Z, AA, AB, AC, AD,

AE, AF, AI, AM, AN, AP,

AR, AT, AW, AX, AY, BF,

BG, BH, BI, BJ, BK, BM,

BN, BO, BQ, BR, BS, BT,

BV, BW, BX, CA, CB, CC,

CE, CG

49 57.64 %

Multiple-case

C, E, H, Q, R, W, AK, AO,

AS, AU, AV, AZ, BA, BB,

BC, BD, BP, BU, BY, BZ,

CD, CF

22 25.88 %

Experiment - 0 0 %

Benchmarking - 0 0 %

Survey - 0 0 %

The result of the quality assessment using the quality checklist of Table 3.2. is shown in

Figure 3.3. We wanted to look at rigor, credibility, relevance, and reporting quality when

it came to methodological quality.

 17

(a) Reference reporting quality

(b) Relevance quality

(c) Rigor quality

(d) Credibility of evidence in the studies

(e) Overall quality of the primary studies

Figure 3.3 Quality metric results for the primary studies

From this quality assessment it was concluded that majority of the primary studies

(82.3%) are good with respect to reporting quality, and 63.5% of the studies (54 studies)

were directly relevant to the field. Considering rigor of the research methods we can

observe that 58 of the primary studies (%68.2) properly present the validity of their

findings. In terms of rigor, forty-six studies demonstrate top quality. Nineteen research

received the highest level for credibility of evidence, with reasonably robust and relevant

results and conclusions. As a result of the quality scores for reporting, relevance, rigor

and credibility of evidence, we can state that 59 studies (69.4%) with scores equal or

greater than 6 are relatively good, eleven studies being high quality. On the other hand,

26 studies with scores less than 6 are identified as being poor quality. As a result, the

majority of the reviewed studies are assessed to be good.

0 0 3 12

70

0

50

100

0 0,5 1 1,5 2

0 1
13 17

54

0
20
40
60

0 0,5 1 1,5 2

16
1

10 12

46

0
20
40
60

0 0,5 1 1,5 2

1
15

32
18 19

0

20

40

0 0,5 1 1,5 2

0

7 6 5 3 5 7
11

14 16
11

0
5
10
15
20

3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8

 18

3.3. Identified Challenges and Solution Directions

The results obtained in relation to the research questions are outlined in this section. The

data extracted from the primary studies are summarized with findings, separately for each

question.

3.3.1. RQ1. What are the identified challenges in the MSA domain?

Table 3.4 depicts a summary of the nine problems discovered. The labels of the primary

studies are listed in the first column, the publication dates in the second column, and the

discovered faults (P1 to P9) in the research are listed in the remaining columns. At the

right of the table is an explanation of the issues. Figure 3.4 shows a graphic representation

of the problems that have been identified. The issues arising from the primary research

are discussed in the sub-sections that follow.

Table 3.4. Primary Studies with Identified Problems of MSA

 Identified Challenges

Study Year P1 P2 P3 P4 P5 P6 P7 P8 P9

A 2015

X

B 2015

X

C 2015

X

D 2015

X

E 2016

X

F 2016

X

G 2016

X

P1 Service Discovery

P2 Data Management and Consistency

P3 Testing

P4 Performance Prediction, Measurement and Optimization

P5 Communication and Integration

P6 Service Orchestration

P7 Security

P8 Monitoring, Tracing and Logging

P9 Decomposition

 19

H 2016

X

I 2017 X

J 2017 X

K 2017

X

L 2017

X

M 2017 X

N 2017

X

O 2017

X

P 2017

X

Q 2018

X

R 2018

X

S 2018

X

T 2018

X

U 2018

X

V 2018

X

W 2018

X

X 2018

X

Y 2018

X

Z 2018

X

AA 2018

X

AB 2018

X

AC 2018

X

AD 2018

X

AE 2018

X

AF 2018 X

AG 2018

X

AH 2018

X

AI 2018

X

AJ 2018

X

AK 2019

X

AL 2019

X

AM 2019

X

AN 2019

X

AO 2019

X

AP 2019

X

AQ 2019

X

AR 2019 X

AS 2019 X

AT 2019 X

AU 2019 X

AV 2020 X

 20

AW 2020 X

AX 2020 X

AY 2020 X

AZ 2020 X

BA 2020 X

BB 2020 X

BC 2020 X

BD 2020 X

BE 2020 X

BF 2020 X

BG 2020 X

BH 2020 X

BI 2020 X

BJ 2020 X

BK 2020 X

BL 2021 X

BM 2021 X

BN 2021 X

BO 2021 X

BP 2021 X

BQ 2021 X

BR 2021 X

BS 2021 X

BT 2021 X

BU 2021 X

BV 2021 X

BW 2021 X

BX 2021 X

BY 2021 X

BZ 2021 X

CA 2021 X

CB 2021 X

CC 2021 X

CD 2021 X

CE 2021 X

CF 2022 X

CG 2022 X

TOTAL : 85 5 3 6 8 2 33 6 18 4

 21

Figure 3.4. Visual Summary of Identified Problems

 22

3.3.1.1. Service Discovery

In a distributed architecture such as microservice architectures, the discovery of

microservices is one of the primary challenges. The challenges for service discovery

relate to the design, implementation and quality concerns. At the design level designing

the service discovery is considered to be a challenge due to the multiple various service

discovery mechanisms such as client-side, server-side, hybrid service discovery. The

proper decision needs to be made based on the various different requirements and quality

concerns. Often multiple different design alternatives can be identified, and it is not easy

to derive a feasible alternative. Implementing service discovery is directly dependent on

system size and selected design so the most important criteria for the implementation are

high availability and scalability. A misguided design selection and subsequent

development will affect the system's availability and scalability. During the operation

time or run-time, discovering the proper services requires the corresponding orchestration

which needs to be aligned with the required quality of service parameters. One important

quality factor is the latency of the discovered and triggered service.

3.3.1.2. Data Management and Consistency

Data Management and Consistency is another challenge of MSA because of its distributed

nature. The challenges related to data management and consistency are more about

distributed transaction management, but it is also about backing up the system and data

integration. Architects and developers often choose database per service pattern to

achieve distributed transaction management and MSA also favors decentralized data

management. Although this pattern comes up with a lot of advantages like loosely

coupled services, independently deployable and scalable services, the management of

distributed transaction is really tough work. Backing up the entire application

decomposed into microservices consists of some trade-offs, so it is not possible to handle

backing up the entire system besides providing availability and consistency at the same

time. Therefore, it is another challenging point for practitioners to decide which ones are

more important according to the system design. In some MSA’s, there is not a mature

mechanism for data sharing and synchronization. Microservices can operate on each

other’s data without a coherent architecture and then it makes the system more complex.

 23

It should be handled these sharing and synchronization operation without operating on

each other’s data.

3.3.1.3. Testing

Testing plays a critical role for a system being ready before going live and for developers

moving forward confidently. However, for MSA it is a challenging task to satisfy testing

activities due to the distributed nature of MSA. Each microservice lives in a distributed

environment and can be developed using different technologies, languages, and

infrastructures which as such provides additional complexity for the testing process.

Testing resilience capabilities of MSA is identified as an important challenge. Resiliency

enables systems to handle failure cases properly, but in a distributed architecture it is not

easy to achieve this because microservices architecture is composed of a set of services

that operates together and thus are prone to frequent changes. They should be loosely

coupled and autonomous for being resilient as well.

Another challenging issue are performance tests. Non-functional requirements such as

throughput and response time are important performance parameters for software

systems. It is needed to have performance tests to measure these kinds of performance

parameters to trace the system properly and prevent any failure. In distributed

environments, however, measuring these quality parameters is not as easy as in a

monolithic architecture because of the diversity and number of microservices.

Regression testing is needed to ensure that the system is still running after newly added

feature or after a bug that has been resolved. Regression testing for MSA is not trivial,

since all the test activities need to be handled in an agile way, they must be automated

and included in the continuous delivery process.

 24

Another issue is related to acceptance tests. They are as a set of test activities that must

be run to ensure customer satisfaction and create robust systems, but this requires high

maintenance costs to be handled in the microservice world because of agility of MSA.

In addition, defining a comprehensive testing framework has emerged as a tough work in

recent years because it consists of many sub-challenging points like self-validation of

interfaces, unit validation and integration validation of services. Besides, each validation

should be automated to provide continuous and agile deployments.

The last one is automating tests. It is directly related to define or reuse a framework to

run tests automatically. The proper testing flow needs to be prepared and run from time

to time depending on decisions on test plan and at each testing cycle, it needs to be ensured

that it is not affected system’s reliability, and it is not an easy work.

3.3.1.4. Performance Prediction, Measurement and Optimization

Performance is a key quality factor for the systems employing MSA, because it is

addressed at different levels for the stages of system design, implementation and

operation. Usually, it is beneficial to estimate the performance of a software system before

it is implemented because it may be very difficult or costly to change the system

afterwards. After the implementation, performance measurement and optimization

become important in order to satisfy the quality of MSA-based system requirements.

3.3.1.5. Communication and Integration

Communication and Integration is another challenging point that has emerged as a result

of distributed architecture. Even if microservices communicate with a more lightweight

protocol, it is still difficult to ensure that the communication infrastructure is reliable and

the protocol to be used for communication and integration can handle complex

workflows. The most important criteria for both challenges are reliability and durability,

if these criteria are not met, the proper operation and reliability of the system will be

affected, possibly it will cause cascading failures in the system.

 25

3.3.1.6. Service Orchestration

Service orchestration is a concept that contains deployment, scalability, scheduling,

management and networking of microservices. Although container orchestration tools

that address many of these concepts have also been developed in industry, there are also

studies that suggest solutions for challenging points in each area. The challenges for

Service Orchestration relate to scalability, dynamic and automated orchestration, storage

service orchestration, deployment, load balancing and scheduling.

Adapting containers' resources dynamically according to the changing requirements

makes MSA-based systems highly available. However, it is a challenging issue to trace

the changing requirements of containers and make the necessary adjustments according

to usage of resources over time.

Providing persistent storage among different containers is another challenging point.

With the increasing usage of deployment for stateful applications in the cloud, the need

to address issues and challenges with persistent storage for containers are emerged. This

problem includes many sub challenging points like multi-protocol support and storage

service orchestration for volume management. They need to be handled by designing

comprehensive solution to overcome workloads and resource problem.

Deployment is also a big challenge for practitioners. Although deployment processes gain

a big momentum with containers, it has still some challenges. These challenges are mostly

related to planning and configuring deployment. Besides, decentralized deployments are

newly emerged challenges due to the necessity of deploying across data centers. Finally,

heterogeneity of functional and non-functional requirements of microservices pushes

practitioners to find an optimal deployment model to satisfy all these requirements for

each service.

Load balancing plays a critical role in effectively distributing incoming requests to the

backend servers. The most important criteria for the load balancing are availability

 26

because requests that are not effectively distributed will cause the system to stop

responding so it will affect system availability.

Auto-scalability is another challenging point for container orchestration because in

distributed environments, services need to be monitored and automatically adjusted

resources according to changing loads to keep application predictable, resilient and

available. These requirements bring a lot of challenges for scalability.

Other challenging point is resource allocation and scheduling. It is an important activity

to organize and manage chain of services and schedule the available resources to

effectively use. Besides, reducing total traffic cost and delay are important criteria for

scheduling. Misguided scheduling directly affects the availability and reliability of

system.

Understanding failure-recovery behavior of containers is the last challenge of

orchestration. It needs comprehensive analysis on how the containers run from

availability and reliability point of view. Moreover, deployment configurations often need

to be reviewed for effective analysis and if needed it should be improved.

3.3.1.7. Security

With the development of MSA and distributed architecture, security has started to be

more important topic because each microservice exposes new entry point to both internal

and external side. This situation brings with it a lot of security problems as long as it is

not addressed.

The first problem is access control mechanism in MSA. With the access control, the

resource that is intended to be accessed is either restricted or not allowed. However,

applying access control in the MSA is difficult to apply because of a distributed nature.

 27

Furthermore, building a comprehensive framework to establish security between

microservice is a tough work to achieve because it is very difficult to integrate and use

non-easy to use and non-lightweight frameworks comfortably.

Another important issue is monitoring of the network traffic and running some security

rules defined according to requirements.

3.3.1.8. Monitoring, Tracing and Logging (MTL)

Monitoring, tracing and logging is an important activity to ensure that systems are able

to satisfy availability, performance and reliability concerns. However, this important

activity consists of several challenging points related to identifying strong coupled

services, root cause of anomalies and performance problems, and heterogeneity of logs.

The logs from different microservices might be heterogeneous so understanding and

traversing the logs emerges a challenging point. If the trace cannot be established among

the logs, the ability to monitor of system is directly affected. Thus, practitioners will not

make proper decisions for troubleshooting.

It is critical to identify these problems and take quick action as soon as possible.

Otherwise, the system's availability, reliability and fault tolerance will be directly

affected.

Expected behavior for the MTL process is that trouble spots are detected, and the system

is made more available, scalable, reliable and fault tolerant by taking quick actions or

making changes in the design if necessary.

3.3.1.9. Decomposition

Decomposition allows us to have autonomous services organized around business

capability services. it is necessary to separate the system into suitable pieces functionally

and obtaining high cohesive and loosely coupled services are expected as a result of

 28

decomposition. The challenging point encountered first after deciding to go with MSA is

to determine the right size of business capability and if it cannot succeed properly, MSA

will not be an advantage and it might cause many problems in terms of mainly scalability,

performance, availability and reliability.

3.3.2. RQ2. What are the identified solution directions?

When addressing the challenges of MSA, many studies provide the related solution

directions together with the challenges.

Table 3.5. provides a summary of the solution directions for the identified problems in

Table 3.4. From what we observe from the Table 3.5, the solution directions are inherently

varied based on the identified challenges. Design heuristics and design abstractions,

algorithm implementation, adoption of other paradigms and ways to realize system-wide

quality management are some of the solution directions. Each challenge's solution

directions will be discussed individually below.

Table 3.5. Solution Directions for the Identified Challenges in MSA

Primary Challenge Solution Direction

P1. Service Discovery
 - Client-Side Service Discovery. Study J
 - Server-Side Service Discovery. Study J
 - Service Registry. Study J
 - ICN Based Service Discovery. Study I
 - Static - Dynamic Service Description. Study AF
 - Stateful Routing Mechanism. Study M

P2. Data Management
and Consistency

 - Multi Agent-based Framework. Study S
 - BAC Theorem for Backing up Data. Study AH
 - Solution Framework. Study C

P3. Testing
 - Reusable BDD based Acceptance Test Architecture. Study B
 - A Flow for Regression Test. Study AG
 - An Architecture and Framework to automate performance test. Study G
 - A Framework for Testing the Failure-handling Capabilities. Study H
 - Validation Framework. Study A
 - Automation Testing Framework. Study AL

P4. Performance
Prediction,
Measurement and
Optimization

 - Simulation Model. Study AA
 - Performance Model and Prediction Method. Study AK
 - Performance Prediction Model. Study AR
 - Performance Analytical Model. Study E

 29

 - An approach for the quantitative assessment of microservice architecture
deployment configuration alternatives. Study BB
- Performance Degradation Prediction Framework. Study BY
- A Model-driven Approach for Continuous Performance Improvement. Study CF

P5. Communication
and Integration

 - Reference Architecture and Orchestrator Language. Study AI
 - High-performance Userspace Networking Solution. Study R

P6. Service
Orchestration

 - An Extendable Solution for Autoscaling. Study L
 - Database-is-the-service Pattern. Study F
 - Workflow Scheduling Algorithm. Study AV
 - Autoscaling Research Pipeline. Study BF
 - Ant Colony Algorithm for Microservice Scheduling Optimization. Study AN
 - A Novel Scheduling Strategy. Study BA
 - A Lightweight and Flexible System for Autoscaling. Study AX
 - A Generic Architecture and Implementation for Automated Orchestration. Study
AU
 - Configuration Models and Tool for Analyzing the Availability. Study W
 - Storage Service Orchestrator Framework. Study Y
 - A Monitoring based Architecture for Managing Deployment. Study AM
 - Decentralized Orchestrator. Study AT
 - Process Definition for an Elasticity Controller. Study AE
 - Decentralized Load Balancing Algorithm. Study N
 - Overload Control Method. Study Q
 - A Hybrid Approach Combining Client-side and Server-side Load Balancing.
Study BE
 - Queue-based Chain-oriented Load Balancing Method. Study AW
 - A Novel Fair Weighted Affinity-based Scheduling Approach. Study O
 - A Novel Scheduling Framework for Kubernetes. Study AQ
 - Dynamic Microservice Scheduling Algorithm for Mobile Edge Computing.
Study AY
 - Resource Allocation Optimization Approach. Study AO
 - Many-Objective Genetic Algorithm Scheduler. Study BD
 - A Novel Formula and Model for Determining the Thresholds of Total Resource
Consumption. Study BH
 - Autoscaling Research Pipeline. Study BI
 - Using Declarative Business Processes for Service Orchestration. Study BK
 - RL agent based intelligent autoscaling model. Study BM
 - A Decision Framework to Select Right Microservice Collaboration Pattern –
Study BP
- Elastic Scheduling Algorithm – Study BW
- Layered Container Structure for Microservice Deployment – Study BX
- Autoscaling Framework for Microservice chain – Study BZ
- Dynamic Flow Control Algorithm – Study CA
- Microservice Rescheduling Framework – Study CB
- A Kubernetes Controller for Managing Availability – Study CD

P7. Security
 - An approach that provides authentication and decentralized role-based
authorization. Study T
 - A Platform for Identity and Access control of microservices. Study AC
 - Access Control Optimization Model. Study AJ
 - Prototype Layered Security Framework (hardware, virtualization, cloud,
communication, application, and orchestration). Study V
 - An Approach for Handling Security as Security-as-a-service . Study D
 - Extended Role-based Access Control Model. Study BT

 30

P8. Monitoring,
Tracing and Logging

 - An Approach and Tool for Generating Service Dependency Graph. Study X
 - A Tool for Generating Service Causal Graph. Study Z
 - An Approach for Analyzing Architecture. Study AD
 - A Tool for Handling Traversing Distinct Type of Logs. Study AS
 - A Tool for Architecture Recovery. Study P
 - A Root Cause Analysis Framework for Detecting Anomalies. Study AZ
 - An Execution Trace based Root Cause Location Method. Study BG
- A Graph-based Trace Analysis Approach – Study BJ
- An Offline Approach to Distributed Tracing – Study BL
- A Four Layered Framework for Detection and Diagnosis of Faulty
Microservices – Study BN
- In-kernel Transparent Monitoring Service – Study BO
- Microservice Fault Detection Method Based on Correlation Analysis – Study
BQ
- A Fault Model based Root Cause Localization Framework – Study BR
- An Anomaly Detection Method based on Semi-supervised Learning – Study BS
- A Root Cause Localization Approach - Study BU
- Lightweight Spectrum-based Performance Diagnosis Tool – Study BV
- An Anomaly Detection Approach with execution Trace Comparison – Study CE
- An Agent Based Monitoring Platform to Detect Anomalies and Unexpected
System Dependencies – Study CG

P9. Decomposition
 - A Conceptual Methodology for Deciding Right Size of Microservices. Study
AB
 - A Functional Decomposition Approach. Study U
 - A Dataflow-driven Decomposition. Study AP
 - A Dependency capturing and clustering based Microservice Identification
Approach. Study CC

3.3.2.1. Service Discovery

The authors [I] propose a new approach that uses information-centric networking (ICN)

to find a solution to latency and overhead problems of service discovery mechanism. They

make service discovery process in MSA easier by using information-centric network

concepts. Since it is possible to offer a simple discovery process that decreases the number

of service name record, name-based routing and hierarchical naming are used.

Study [J] presents multiple decision guidance models that can be used when deciding on

an eligible microservice infrastructure. In this paper, there are multiple decision guidance

model with own design options addressing the fault tolerance and service discovery area.

For each of the models, they provide specific infrastructure technologies to implement

design options.

 31

Study [AF] provides a novel solution architecture to solve scalability and workload

problems of service discovery in mega scale systems. The authors focus on the idea that

service description data can be broken into dynamic and static properties. They propose

an architecture subdivided into two independent, interconnected processing levels for

static and dynamic query parts. Both processing levels consist of interconnected peers

which allow to scale the registry dynamically.

Study [M] proposes a mechanism to optimize service discovery operation in stateful

microservices. Scalability and efficient usage of infrastructure resources are the main

aspects of this study. The authors claim that an efficient and scalable routing mechanism

is needed to figure these problems out. The proposed model has been validated with two

experiments and it has been observed that there was an increase in scalability and a

decrease in usage infrastructure resources.

Study [BC] argues the unavailable states of services, useless and faulty interactions

topics. The authors indicate that there should be synchronization mechanism to support

microservices communications. Hence, they offer a framework called Synchronizer. This

framework achieves collecting health/state information of microservices by using

distributed registries. This framework has been validated with multiple use cases and

according to result it brings effectiveness to synchronization among microservices.

To sum up, the corresponding solutions to the service discovery are based on the mainly

scalability and workloads problems. To cope with these problems, identified primary

studies propose either a decision model helping to choose the best option within the

existing solutions or novel model for handling service discovery problems.

3.3.2.2. Data Management and Consistency

Study [S] focuses on management of distributed transactions. In this study, a multi agent-

based framework is proposed to coordinate distributed transactions of the system. This

solution is based on agents associated particular microservice, eventual consistency,

 32

SAGA pattern [43] and semi-orchestrated asynchronous model and provides decoupled

autonomous layer to application to simplify the microservice interactions.

Study [AH] introduces backup, availability, and/or consistency (BAC) theorem to be used

in backing up microservice. This theorem indicates that practitioners have to pick up two

out of three items which are backup, availability or consistency. This theorem inspired by

the Consistency, Availability and Partition Tolerance (CAP) theorem [44] claims that it

is not possible to satisfy both availability and consistency at the same time in backing up

microservices.

Study [C] provides Synapse framework supporting independent services to share data

with each other through clean APIs. This study addresses the problem of complex service

groups that do not have a consistent, manageable structure, operate on each other's data.

Synapse provides a transparent data propagation layer by using Model-View-Controller

(MVC) framework and Object/Relational Mappings (ORMs). Synapse has been

implemented for Ruby-on Rails and shown that it provides good performance and

scalability.

In conclusion, the primary studies specified that data consistency, data backup, and data

synchronization are challenging to handle. For distributed transaction management, the

identified solution proposes multi agent-based framework. For backing up, the identified

solution proposes a novel BAC theorem. Finally, a solution comprehensive framework is

proposed to be used in data synchronization.

3.3.2.3. Testing

In Study [AG], the authors propose an automated method of running regression test. They

focus on the software reliability challenge. They claim that regression test is an essential

step of continuous delivery process and in order to ensure reliability, automated method

of regression test plays a critical role. Authors define the process of how to run regression

test automatically and place it in continuous delivery.

 33

Study [B] presents reusable automated acceptance testing architecture to handle

maintainability and reusability of the application. This study encourages developers to

use Behavior-Driven Development (BDD) acceptance test more frequently. The authors

claim that this architecture will minimize issues with integration maintenance cost.

Study [A] presents an analysis of existing cloud application test methods and defines the

characteristics of MSA. Based on this analysis, they propose a validation methodology of

microservice systems. This methodology consists of microservice unit validation and

integration validations of microservice systems.

Study [H] focuses on the problem of testing resiliency of MSA-based applications. They

present Gremlin that is a framework for assessing the failure-handling capabilities of

microservices. This framework is based on the idea that is about manipulating interservice

messages at the network layer while designing and executing tests. This framework has

been validated by multiple case studies and their results show that this framework helps

uncovering bugs in failure-recovery code and is suitable to MSA-based systems.

Study [G] addresses the problem of performance tests by checking the needs about non-

functional requirements like response time and throughput. In this paper, authors propose

a new framework that make performance tests run automatically. This solution is hooked

on the HTTP and can be built comfortably. It consists of two main aspects which are a

methodology allowing external applications to access the test parameters and a

mechanism for using the methodology. The main feature of this proposal is to place the

test methodology to each service. According to tests results, the mean of the average

response time is decreasing compared to the one without the framework.

Study [AL] argues the capabilities of testing framework to ensure reliability and quality

of applications. In order to overcome the lack of capabilities of testing framework, authors

decided to provide the automation testing of the microservice with the help of integrated

structure that includes the adaptation layer, data layer, test case layer, execution layer,

 34

analysis layer and management layer. As a result of this study, an automation testing

framework is proposed to ensure reliability and quality and ease test data generation.

To sum up, testing MSA is an essential step to deliver an application because there are a

lot of points that needs to be tested. Due to having a distributed nature, it can be complex

and difficult to manage. In order to overcome these challenges, an automation testing

solution and comprehensive testing framework are proposed. Furthermore, testing failure

handling capabilities and microservice unit validation and functional integration

validation approaches are proposed to develop resilient and reliable application.

3.3.2.4. Performance Prediction, Measurement and Optimization

Study [AA] focuses on dynamic workloads problem and to address it, the authors propose

an adaptive performance simulation approach. They measure the performance of

applications with a queue-based model and then estimate the response time by modifying

the parameters of the performance model of the application. To validate this approach,

microservice based application and simulated workloads are set up. It has been observed

according to experiment result that this approach on performance simulation gives better

results in terms of response time compared to other existing methods.

Study [AK] investigates the factors to decrease performance overhead for microservices.

Therefore, the authors suggest three-layer performance model and prediction method and

it is built upon performance optimization and modeling. They carried out both

experimental and simulation tests to validate performance model. It is evaluated that this

method provides significant advantages to enhance the performance of microservices.

Study [AR] points out the challenge of predicting the workload capacity of microservices.

The authors suggest a performance prediction model to address this challenge, and a tool

called Terminus was prepared to estimate the capacity of each microservice with respect

to different deployments. To evaluate this model, an experiments environment is set up,

which consists of 4 microservices. Experiment results show that it gives good result to

predict capacity with Mean Absolute Percentage Error (MAPE) less than 10%.

 35

Study [K] indicates that the size of a microservice directly impacts its performance and

availability. This paper proposes an approach providing workload-based feature

clustering for deployment to improve the performance of an MSA. This approach uses

genetic algorithm for clustering. To leverage this approach, they have created

Microservice Architecture Deployment Optimizer (MicADO), an open-source tool and

this approach has been applied in a case study on an Enterprise resource planning (ERP)

system. The case study results show that there is a meaningful improvement in

performance of the system.

Study [E] focuses on the scalability, manageability and performance issues. This paper

points out that these issues have become more remarkable with the MSA getting popular.

This paper proposes a performance analytical model for what-if analysis and capacity

planning. Finally, two experiments have been conducted to validate this approach by

using the performance metrics like response time and probability of request rejection. It

has been seen that what-if analysis and capacity planning for MSA could be applied for

minimum cost and time.

Study [BB] offer an approach for assessing scalability and performance on different

microservice deployment configurations quantitatively. Besides, a domain-based metric

for each alternative is defined and can be used for making decision on which one is well-

suited. This approach has been evaluated by extensive experiments. The authors note that

the domain-based metric for one of the environments is a function that does not increase

the number of CPU resources. Also, they strongly recommend that it is necessary to have

and execute performance engineering activities to modify by adding resources to

deployment configuration in auto-scaling cloud environments.

Study [BY] points out that there is a lack of predicting performance degradation and its

root cause. Although some approaches aim to predict performance degradation, they do

not address its root cause. This paper proposes a framework to detect its root cause as

well. This framework called SuanMing can predict root causes for potential performance

degradation. Further, its aim is to prevent performance degradation before it occurs. To

 36

validate this approach, the authors evaluated their framework in two MSA-based systems.

Evaluation results confirmed its accuracy of over 90% on predicting performance

degradation.

Study [CF] indicated that the number of studies addressing performance problems of

MSA-based systems is limited. In this study, the authors propose a model-driven

approach for continuous performance enhancements by defining some dedicated

metamodels. This study provides refactoring actions that enable performance

improvements by taking advantage of the relationship between the monitored data and

the architectural model. This approach has been used on two MSA-based systems to

validate its feasibility.

In summary, the challenges about this topic are related to performance prediction,

measurement and optimization. With the wide use of microservice applications, it has

become possible to create a wider solution set for performance problems. There are

studies that address performance issues directly, as well as studies that address other

problems such as scalability and load balancing and provide benefits at the point of

performance. These studies have been evaluated in their own categories.

3.3.2.5. Communication and Integration

Study [AI] focuses on complex microservice data flows and communication. To

contribute on the solution of this problem, event driven lightweight platform called

Beethoven for microservice orchestration is proposed. The platform is formed of

reference architecture and an orchestration language. To prove its practicality, an example

application has been implemented.

Study [R] focuses on network pressure increase because of inter-microservice

communication. The networking of containerized microservice is inefficient. This paper

proposes high-performance user space networking solution for containerized

microservices called DockNet and provides a master-slave threading model to decouple

execution and management. This model uses Data Plane Development Kit (DPDK) and

 37

customized Lightweight IP (LwIP) as the high-performance data plane and TCP/IP stack.

Thus, in order to improve network performance, a robust and fast channel between

microservices is built. Various experiments are conducted to validate it and as a result of

these experiments, DockNet delivers over 4.2 ×, 4.3 ×, 5.5 × higher performance

compared to existing networking solutions.

To sum up, with the widespread use of MSA, the need for communication and integration

between microservices has become a challenging point. However, there are not enough

studies proposing solutions. We identified only two studies figuring out some solutions

to challenging part of communication. These studies come up with solutions about

complex microservice data flows and network performance.

3.3.2.6. Service Orchestration

Study [L] focuses on the auto-scalability issue and provides a solution called Elascale for

managing resources according to workload and application states. However, there is a

need for collecting and analyzing performance metrics to manage the scalability of the

system. For this purpose, Elasticsearch is used. In this paper, the authors offer architecture

and the initial implementation of Elascale. Elascale consists of auto-scalability and

monitoring-as-a-service components. Thanks to the monitoring-as-a-service feature, the

application stack is monitored and if necessary, scale in or out process is applied. Besides,

Elascale is an extendable solution so if desired, a new scaling algorithm can be added.

Study [F] addresses complexity problem of microservices communication and scalability

issues. This study proposes to place the business logic in the database to reduce

complexity and obtain more scalable services. Its goal is combining services with data.

The proposed model has been validated by conducting proof of concept study and

experimental results show that there is an increase in terms of performance.

Study [AV] investigates the task scheduling and auto-scaling challenges in clouds. The

authors noted that existing algorithms are not compatible with a two-layer structure

consisting of virtual machines and containers. Therefore, the authors recommend an

 38

Elastic Scheduling for Microservices (ESMS) approach with a workflow scheduling

algorithm and a statistics-based strategy to find out the best-suited configuration under a

continuous workload. To validate this approach, many simulation base experiments have

been conducted. Experiments results show that ESMS reduces the cost.

The study [BF] argues how to provide auto-scalability efficiently to reduce costs and

energy usage and the authors stated that a good solution will bring a significant increase

in performance. Hence, they aim to build an autoscaling system using past service

experiences. To this end, they focus on which microservice needs to be scaled for

performance improvements. Finally, they propose a pipeline for auto-scaling and also an

evaluation of a hybrid sequence and a supervised learning model. According to the

experimental result, using a supervised model is so useful on which microservices should

be scaled up more.

Study [AN] addresses the container resource scheduling challenge. The authors indicated

that handling the container resource scheduling problem in an effective will decrease the

cost and increase the cluster performance. Hence, a multi-objective optimization model

with a novel ant colony algorithm for the container-based microservice scheduling is

proposed. They aim to improve the metrics related to computing and storage by the

proposed ant colony algorithm. To validate this approach, an experiment was conducted

and its result shows that the proposed ant colony algorithm for optimization gives good

results in terms of load balancing and cluster service reliability.

Study [BA] focuses on utilizing the computing resources challenge. To address this

challenge, container-aware application scheduling strategy is proposed in this paper. The

proposed strategy has multiple capabilities composed of using appropriate lightweight

containers with minimum deployment cost and heuristic-based auto-scaling policy for

optimizing computing resources. According to evaluation results, proposed method

shows significant improvement compared to existing studies in terms of processing cost,

processing time, resource utilization.

 39

Study [AX] indicates that autoscaling is an important mechanism to manage workload.

Computing resource is a key concept for autoscaling because when the workload

increases in the system, it should be used in an effective way not to decrease performance.

To this end, in this paper, a novel system named Microscaler is proposed to automatically

identify the services that need scaling by collecting and analyzing metrics in the

application stack and scale them to manage workload properly. The experimental results

in a microservice benchmark show that Microscaler gets a better result than state-of-the-

art methods in terms of optimum service scale and achieves an average of 93% accuracy

in determining the service needed in scaling.

Study [AU] analyzes how an orchestration mechanism is integrated to microservice based

cloud applications without making much reengineering. This paper suggests a generic

architecture and initial implementation called MICADO to support service orchestration.

Also, an implementation of this architecture is provided to show its usage and how the

scalability of Data Avenue file transfer application can be improved. The authors claim

that scaling up and down application cluster is made with MicADO effectively.

Study [W] addresses the issues about failure-repair behavior of the containers. In this

study, the authors propose different configuration models inspired by Google Kubernetes

to deploy software as a container. To make container availability analysis, non-state-

space and state-space analytic models are developed. These configuration models are

defined by a fail-response and migration service. Besides in this paper, an open-source

tool is developed by using these models. It helps system administrators to monitor and

evaluate containerized system availability.

Study [Y] focuses on the needs for supporting the stateful application workloads by

providing persistence storage. The authors propose the Cloud-Native storage service

orchestration platform based on the IBM Ubiquity framework. This platform provides

solutions for persistent storage among different container orchestrators and supporting

multi-protocol access for Volume management within the storage systems The authors

give the results of the effectiveness of the Cloud-Native storage service orchestration

 40

platform by preparing a prototype implementation. They estimate that the proposed

framework will be useful for MSA-based systems.

Study [AM] addresses the challenge of heterogeneity of functional and non-functional

requirements of microservices. It is important to satisfy all these requirements to

overcome these challenges. The authors aim to support the deployment of microservices

based on monitoring. To this end, an architecture is proposed to manage the deployment

involving several cloud providers and to find the best deployment plan. Evaluation results

show that this approach provides a solution within expected time interval.

Study [AT] identifies that there is a lack of deployment across data centers because most

of the study has worked on the deployment to clusters in data centers. Therefore, a more

dynamic approach is necessary to handle the deployment of applications in the edge

computing paradigm. To this end, the authors recommend a fully distributed and

decentralized orchestrator for containerized microservices, which is called DOCMA. To

validate this approach, an experiment was conducted and its result shows that DOCMA

has the required ability for orchestration of microservices.

Study [AE] focuses the problem of facing unpredictable workloads. The microservice-

based application must match as closely as possible to the request to respond quickly and

keep costs to a minimum. This paper proposes a novel heuristic adaptation process

including two mechanisms that complement each other. While first mechanism balances

load intensity by scaling containers according to capability of process, latter one manages

additional containers to handle unpredictable workload changes. The experiment results

show that this method manages unpredictable workloads successfully.

Study [N] addresses the load balancing issues and proposes a simple algorithm for

decentralized load balancing system for microservices inside container used to implement

a task executing in a cloud. It can provide better performance compared to the existing

centralized container orchestration systems.

 41

Study [Q] addresses the problem of overload control for large-scale microservice-based

applications. Authors propose an overload control scheme designed for MSA, called

DAGOR. It monitors the load status of each microservice in real-time and distributes the

load between the related services when overload is detected. DAGOR has been used in

the messaging application for five years. According to experience and experiment results,

DAGOR achieved high success.

Study [AW] focusses on the latency because of long-chain microservices. Generally, a

request is processed by many microservice called chain and these microservices chains

are in a competition to use resources. The authors noticed that there is not enough study

to handle the competition between microservices chains. In this study, a queue-based and

chain-oriented load balancing method is proposed. With this method, it is claimed that

this method decreases the latency of the long chain. Their evaluations also show that it

could decrease the latency of long chains.

Study [BE] addresses the load balancing issue. The authors stated that load balancing is

the most important mechanism for availability and scalability and there are some

techniques such as client-side and server-side to implement load balancing in a system.

However, in order to benefit each method’s advantages, they consider combining them.

To this end, they propose a hybrid model to leverage advantages of both sides.

Study [O] points out the scheduling problem of microservices, especially in multiple

clouds. The authors believe that there is an alternative way showing decreases overall

turnaround time in contrast to the standard biased greedy scheduling algorithm. For this

purpose, they propose affinity-based scheduling approach and compare it with the

standard biased greedy algorithm. The proposed approach achieves a big improvement.

Study [AY] addresses total network delay and network price issues. Also, the authors

noted that increasing energy efficiency is an important task in an edge platform. They aim

to minimize network delay and price and improve energy efficiency by designing a novel

approach. To this end, they propose a dynamic microservice scheduling algorithm for

 42

mobile edge computing (MEC) and evaluate the computational complexity of the

scheduling algorithm. According to simulation results, it has been observed that the

microservice scheduling framework improves the performance metrics based on total

network delay, energy consumption rate (ECR), failure rate, average price, satisfaction

level.

Study [AO] points to increase energy consumption and low service performance with

MSA. The authors stated that since resource allocation should be handled efficiently,

unlike the current studies not focusing on optimization issues for such chain-oriented

service provisioning, they focus on the resource allocation optimization problem. They

aim to optimize end-to-end response time and resource usage. To this end, the three-stage

scheme is proposed to improve the metrics mentioned above. According to the evaluation,

their approach provides a better result than benchmarking algorithms on load balancing

and energy consumption.

Study [AQ] works on a novel scheduling framework for Kubernetes. The authors aim to

introduce a solution providing improvement for locally main tasks. For this purpose, they

propose a hybrid-state scheduler with for the unscheduled jobs. To validate this approach,

they carried out an analysis of their approach’s capabilities and evaluation results show

that it will overcome problems of their existing solution in their clusters such as

collocation interference, priority preemption, high-availability and baseline scheduling

problem.

Study [BD] handles scheduling issues in terms of some concerns like availability,

reliability, resource utilization, scalability and power consumption. It is noted that current

scheduler solutions do not cover all of these concerns. However, the authors claimed that

these concerns should be handled together in a scheduling approach to take better results.

To this end, they propose a Many-Objective Genetic Algorithm Scheduler (MOGAS) to

handle all these concerns. According to comparison results with Ant Colony Optimization

(ACO)–based scheduler, it gives better results in distributing tasks equally and reducing

power consumption.

 43

Study [BH] focuses on the problem of determining the accurate resource consumption

thresholds to scale applications properly and to ensure high availability. It is also stated

that lower thresholds could cause many problems where the services become unavailable

against the load. For this purpose, authors propose a model for calculating total resource

consumption of containers by using mathematical formulas based on Gaussian functions

and they managed to calculate the upper threshold values. They use a research project to

validate calculated value being the minimum number of containers to deal with the load.

Study [BI] addresses a challenge of auto-scaling MSA or IoT-based systems. It is also

stated that in order to enhance our system availability and reduce cost and energy usage,

auto-scaling should be handled in an effective and efficient way. Hence, the authors aim

to design a prototype auto-scaling system for MSA-based web applications. As a part of

their study, they have developed a pipeline to be used to auto-scale microservices by

experimenting with a hybrid sequence and supervised learning model to validate and

endorse scaling solutions.

Study [BK] focuses on the difficulty of orchestrating microservices when business

processes expand across multiple microservices. Therefore, this study proposes using

declarative business processes to coordinate and orchestrate microservices from a data

flow perspective. To validate their recommendations, they used the Beethoven platform

introduced in Study [AI] and demonstrated the usability of this environment for

microservice orchestration along with their proposed method.

Study [BM] provides an approach for container-level scalability. Since most of the cloud

applications tend to be containerized every day and are expected to provide near real-time

response especially in real-time applications, scalability is becoming a real challenge for

this kind of application. The threshold values for autoscaling are getting important to

ensure scalability efficiently. Kubernetes suggests some techniques for setting thresholds

but setting the right values is still a big challenge. To this end, the authors introduce an

intelligent autoscaling system including two modules. The first is in charge of identifying

resource demands through a generic autoscaling algorithm and the second one is

responsible for identifying the autoscaling threshold values by using reinforcements

 44

learning agents. To validate their results, they conducted an experiment, and experiment

results show its efficiency compared to the default autoscaling paradigm. Up to 20%

enhancements in response time have been measured.

Study [BP] addresses the challenge of selecting the right communication and

collaboration pattern for microservices. There are two well-known patterns in the

literature right now which are choreography and orchestration. To address this challenge,

the authors propose a decision framework to help solution architects to consider key

factors and goals. Further, they provide a weighted scoring method to select the most

convenient pattern. The requirements of three case studies (Danske Bank, LGB Bank and

Netflix) were reviewed and evaluated to demonstrate this framework's usability.

According to the results of their evaluation, a hybrid approach using both patterns has

been suggested.

Study [BW] focuses on the challenges of scheduling and autoscaling. The authors claimed

existing algorithms had some trouble on streaming workloads and the two-layer structures

consisting of virtual machines and containers. Therefore, they propose an Elastic

Scheduling algorithm to overcome these challenges. This algorithm handles task

scheduling and auto-scaling which is based on Variable-Sized Bin Packing Problem

(VSBPP) together. With the conducted experiments, the proposed algorithm has been

validated that proposed algorithm improves success ratio and cost.

Study [BX] points out that remote registry-based images could cause increased pulling

traffics and startup time latency. To solve these issues, the authors come up with an idea

of layer sharing deployment for microservices. Since containers are generally

implemented as multi-layered structures, they claim that common layers can be shared

between microservices. For this purpose, they propose an Accelerated Distributed

Augmented Lagrangian (ADAL) based algorithm to be used by servers and registries.

Experiment results show that it reduces the microservice startup time by 2.20 times on

average.

 45

Study [BZ] addresses an issue of performance degradation when traffic increases. The

authors claim that existing approaches of autoscaling do not pay enough attention to the

microservice chain and performance degradation issues. This study proposes an

autoscaling framework for microservice chains. It includes two modules. The first is

responsible for collecting samples from microservices and training a latency model using

the GNN. The second is responsible for identifying the number of microservice instances

through the GNN model. Their evaluation results demonstrate pHPA effectiveness with

reduced latency and improved resource usage.

Study [CA] notes that the flow control rules are generally adjusted and applied manually.

Besides, it is also noted that availability is really critical for MSA-based systems and it

should be handled with some concepts like fault tolerance and flow limiting. To improve

the availability of a system, the authors claim that flow control rules should be handled

dynamically. To this end, they propose a dynamic flow control algorithm. The algorithm

works on monitoring data and current flow and determines the flow-limiting thresholds.

Evaluation results show that automatic flow control mechanisms obtain better results in

terms of performance compared to traditional static methods.

Study [CB] proposes a microservice rescheduling framework to address performance

degradation and response time challenges. The authors point out that response time is one

of the most important keys for Quality of Service. Hence, runtime adaptations and

rescheduling should be handled carefully. They stated that existing works lack handling

the effect of configuration parameters of container-based microservices. The proposed

solution makes some periodic monitoring and then rescheduling activities are triggered

based on threshold-based rules. Experiment results demonstrate that with the proposed

framework, a significant reduction of up to 13.97 % in the average response rate was

achieved.

Study [CD] focusses on the availability issues on MSA-based systems. It is pointed out

that availability is still a problem while migrating legacy application to MSA even if

microservices will be running on Kubernetes, which is a popular service orchestration

platform. The authors stated that repair actions of Kubernetes cannot satisfy the High

 46

Availability (HA) requirements. Hence, they propose an approach in which automatic

service redirection to healthy microservices and application state replication can be

achieved by adding service recovery to the repair actions of Kubernetes. Their

experiments results show that their solution brings an improvement in terms of response

time.

To sum up, there are many kinds of studies addressing almost all the concerns about

deployment, scheduling, auto-scalability, load-balancing and orchestration. These are the

most important areas in service orchestration. Besides, these studies use some best

practices and technologies implemented by some big vendors. Thus, it allows these

studies to be used on wide-spread application area.

3.3.2.7. Security

Study [AJ] focuses on the limitations of access control technologies in the microservice

environment. This paper suggests an access control optimization model based on Role-

based Access Control (RBAC). This model enhances the Attribute Based Encryption

(ABE) model being one of the most common cryptographic mechanisms, in which

existing RBAC users can directly access the ABE encrypted data in microservices. It has

several advantages compared to ABE, which are improving the expression ability of

access policies, the security and operational efficiency of microservices, and reducing the

computational cost.

Study [V] investigates the microservices security topic and tries to identify taxonomy of

security issues. While making this research, Docker Swarm and Netflix security decisions

are also investigated. This paper claims that microservice security requires a layered

security solution consisting of hardware, virtualization, cloud, communication,

application, and orchestration. In this paper, prototype framework for microservice

security is described and a case study is conducted. The case study result shows the

performance overhead of the security is around 11%.

 47

Study [D] focuses on two problems of microservice security. First, network complexity

complicates monitoring the security. Second, due to trusting among microservices, if any

microservice fails, it may affect entire application. In this paper, the authors propose a

design for security-as-a service for microservices-based cloud applications and they

implement a flexible monitoring and policy enforcement infrastructure for network traffic

by adding a new API primitive FlowTap for the network hypervisor. Effectiveness

analysis results show that the proposed solution is able to tackle various monitoring

scenarios.

Study [AC] addresses the problems of authentication and authorization in 5G platform.

The authors come up with a solution based on specifically for identity and access control

of microservices. The proposed solution has been implemented in the Network Function

Virtualization (NFV) based platform called SONATA. It encourages using well-known

techniques and simple designs for identity and access control and favors Role-Based

Access Control.

Study [T] focuses on the problems of the authenticity and confidentiality of microservice

calls. This paper criticizes of the HTTP based approach used for microservice an API

calls and transport layer security (TLS) providing only link level channel security. In

order to prevent these security problems, this paper comes up with a solution consisting

of authentication with password and key pair and decentralized role-based authorization.

Study [BT] points out that the security of access control becomes challenging as the

system grows because it causes more access points to be handled for security. The authors

propose an extended version of Role-based Access Control (RBAC) called Hierarchical

Trust RBAC. This model enables security managers to detect unauthorized access to

sensitive information and identify verification. They also conducted a case study to show

feasibility of their model. Case study results showed that it provides faster and more

flexible access to sensitive information.

 48

In summary, secure microservices are tightly dependent to our MSA design. Software

architects should design MSA by taking into account the security concern since it might

be tough work to provide secure system later. These studies propose solutions to

identified problems, but there is no study proposing a model about how to design MSA

to ensure security.

3.3.2.8. Monitoring, Tracing and Logging

Study [X] focuses on the managing complex dependency relationships between

microservices. This paper proposes an approach called Graph-based Microservice

Analysis and Testing (GMAT) that automatically prepare Service Dependency Graph

(SDG). It allows us to analyze, visualize and trace the dependency relationships between

microservices. Besides, it allows detecting anomalies by watching service invocation

chains. Experiments results show that GMAT is capable of managing complex

dependency relationships for MSA-based systems.

Study [Z] addresses the problem of complex interactions, identifying abnormal services.

Hence, the authors present a novel system called Microscope to efficiently generate a

service causal graph and extract the causes of performance problems. Experimental

evaluations show that Microscope has a good result and it is also claimed that it is better

than most recent technology solutions.

Study [AD] takes attention that extracts component relations from just static sources are

not enough for the accurate result because component relationships might arise at

runtime. Extracting component relations is important to detect design drawbacks or

potential architectural improvements. In order to overcome these issues, the authors offer

an approach to extract and analyze the architecture of an MSA-based software system

according to not only static service information but also aggregated runtime information.

They have conducted an experiment to evaluate an approach. The results show that this

approach is useful for detecting design drawbacks and improving the design.

 49

Study [AS] focuses on the problem of heterogeneity of logs. In other words, each

microservice can create logs in different format and it causes a heterogeneity for logs. It

is a tough work to understand and interpret these logs to make right decision for the

system. Therefore, this paper suggests a novel approach based on REpresentational State

Transfer (REST) architecture style. Two case studies have been made to validate an

approach and evaluate an implementation of this approach called MetroFunnel. The

assessments results indicated that it is successful in traversing logs and reducing the size

of collected data.

Study [P] addresses the importance of high decoupling among microservice because

authors realized that there is a lack of highlighting microservice communications. Hence,

an architecture recovery tool called MicroART is presented in this study to show

communications among microservices. This tool consists of 4 main components which

are Docker Analyzer, Github Analyzer, Log Analyzer and Model Log Analyzer to be able

to generate the models. The authors indicated that it can be used by software architects

for analysis, documentation and architectural reasoning.

Study [AZ] investigates the root cause of anomalies in the application and it is stated that

it can be a complicated and time-consuming job because a lot of communications need to

be investigated. In this work, the root cause analysis framework is recommended which

is graph-based. In order to show the effectiveness of this framework Grid’5000 testbed

has been used to deploy three different architectures and then some anomalies were

injected into these architectures. The evaluation result shows that this approach is more

effective than a machine learning method ignoring the relationship between elements.

The study [BG] focuses on anomaly identification and its fundamental cause in MSA.

The majority of Root Cause Analysis (RCA) investigations, according to the authors,

focus on data monitoring, data reliance among services, and invocation data. However,

they apply invocation chain anomaly analysis to solve the RCA problem in this study.

They used a robust principal component analysis and a single indication anomaly

detection approach to create the algorithm. They tested their algorithm on three batches

of test data from the 2020 International AIOps Challenge and a batch of sample data.

 50

They received a high score based on the organizers' scoring criteria, and their system

performed well, with more accuracy than several other typical anomaly detection

methods.

Study [BJ] points out the challenges experienced in traceability analysis in MSA base

systems. Since it is a complex and dynamic environment, analyzing to investigate any

problem can be challenging. This is mostly due to the fact that there is too much trace

data and it is difficult to obtain the necessary information to detect the real problem.

Therefore, the authors recommend a graph-based approach for trace analysis. The

strength of their proposed method is that it provides efficient processing and storage, as

well as a powerful access mechanism by combining graph database and real-time

analytics database. They have conducted an experiment to validate their approach and the

results of the experiment have confirmed its efficiency and effectiveness in diagnosing

the problem.

Study [BL] focusses system-wide challenges of observability. The distributed and

heterogeneous nature and tendency to decentralize responsibility are the factors that

complicate the observability of MSA-based systems. In this study, the challenges of

providing observability in MSA-based systems are emphasized and an offline approach

that performs distributed tracing is proposed. With this method, it is recommended to

model microservices as observable execution paths, so an abstraction is provided to

generate realistic trace data again.

Study [BN] proposes a novel layered diagnosis framework including service response

layer, timing constraints, causality analysis and ranking algorithm for detecting faulty

microservices. The authors indicated that as system size grows, detecting faulty

microservices in a complex environment would get challenging. Thus, they claim that

their framework could be a solution to this problem. They also carried out a case study to

validate their approach. Experimental results show that it managed to achieve 89%

specificity and 77% recall.

 51

Study [BO] provides a monitoring solution called Kmon for MSA-based systems. The

authors aim to monitor the complex microservice environment and internal states of

microservices in an effective way with their proposed solution. This solution collects

indicators by breaking into three categories: TCP request data, topology level and the

other indicators related to CPU, memory and block I/O, etc. To validate the proposed

solution, the authors conducted an experiment. Experiment results show that it has little

effect on response time and low CPU usage.

Study [BQ] points out the challenge of detecting faulty microservices and root cause

localization. For this purpose, the authors propose a method called Microservice Fault

Root Cause Location Method Based on Correlation Analysis (MFRL-CA). In this

method, a microservice fault propagation graph is built by collecting the correlation

between historical fault data and dependent call data to reduce the time consumption of

detecting faulty services. They carried out an experiment to show their approach

effectiveness and the results show that this method effectively managed to detect faulty

services and their root cause.

Study [BR] proposes a root cause localization framework called ModelCoder. In this

study, the authors have introduced some concepts to figure out the root cause localization

problem and developed the framework upon these concepts. The first one is a concept for

building dependency graphs between microservices. The second one is a formulization

for root cause localization problem based on the graph built in the first step. Finally, a

fault model called ModelCoder is built on these two concepts. They evaluated

ModelCoder on a real-world system and the results show that ModelCoder is able to

detect faulty root nodes within 80 seconds on average.

Study [BS] also points out the root cause localization problem and aims to detect

microservice failures in an effective way. For this purpose, the authors come up with a

method for detecting microservice failures by using a semi-supervised learning model

and dynamic sliding window methods. To evaluate their model, they used public data and

the results showed that the model had good performance and the accuracy of anomaly

detection and root-cause location was close to 100%.

 52

Study [BU] addresses availability issues caused by service anomalies. The authors stated

that existing approaches were limited in terms of inefficient traversing mechanism of

service dependency graph and detecting anomalies process also could result in failure. To

this end, they propose a highly efficient root cause localization approach based on

dynamically constructed service call graphs. Experimental results and the result of being

used in Alibaba showed it obtained good results in terms of accuracy and efficiency.

Study [BV] aims to address the root cause of performance issues. The authors claim that

complex communication among services makes the system performance unpredictable

and hard to trace and detect the root cause of performance issues. Therefore, they propose

a tool called T-Rank. It uses tracking data and combines them with a tracing chain.

Further, it provides a ranked suspicious list of the containers based on the spectrum

algorithm. As a result of their experiment with the data collected from a real-world MSA-

based system, T-Rank is feasible to be used in MSA base system thanks to its high

accuracy and low resource cost.

The authors [CE] propose an anomaly detection approach for MSA-based systems. They

stated that existing approaches do not have the required skills to detect faulty services

accurately. Therefore, they propose an anomaly detection approach. In this approach,

first, execution traces are collected across microservices, then anomaly degree of traces

is calculated and then differences between traces are analyzed to locate the components

causing anomalies. According to their evaluation results, this approach achieves high

precision and recall in detecting anomalies.

Study [CG] provides an agent-based monitoring platform by monitoring not only

internally developed services but also externally developed services with the help of

sidecar containers. Agents are responsible for monitoring incoming and outgoing network

traffic and also system state by reading kernel data. Prototype evaluation results show

that their solution has a similar performance as Prometheus, but also, they offer some

functionalities focused on multi-vendor service integration.

 53

In summary, it is important to monitor the environment after developing microservices

so these studies in this part are generally focus the monitoring architecture model, extract

dependencies and anomaly detection. There is a lack of a powerful tool with integration

API with other 3rd party software among these studies.

3.3.2.9. Decomposition

Study [AB] focuses on deciding right size of microservices and provides a conceptual

methodology to decompose business capability based on domain driven design principles.

To evaluate the usage of this methodology, a case study is conducted on the weather

information dissemination domain. Evaluation results show that weather information

dissemination system is partitioned into different microservices successfully.

Study [U] proposes a systematic approach using functional decomposition and based on

functional requirements. This approach aims to build high cohesive and low coupled

decomposition. To evaluate this approach, they have compared microservices

implementations by three independent teams. Evaluations results show that it achieves

to identify microservices much faster.

The authors [AP] stated that decomposition process is so challenging task and it should

be supported with an approach, so they suggest a dataflow-driven decomposition

approach to handle decomposition problem of MSA. They aim to obtain independently

deployable and scalable microservices, so they defined a four-step decomposition

procedure consisting of business requirement analysis, building fine-grained Data Flow

Diagrams, extracting dependencies between processes and finally identifying

microservices by clustering processes. They conducted a case study to validate this

approach and it has been observed that microservice candidates are determined by taking

coupling and cohesive constraints into consideration.

Study [CC] proposes an approach for identifying microservices by analyzing

dependencies between business processes thanks to control, data and semantic models.

 54

Further, it also provides a clustering method to identify potential microservices. To

validate this approach, the authors carried out a case study. The results of the case study

demonstrate its doability. Besides, it also achieves better results than existing approaches

in terms of microservice identification.

In summary, the better we decompose the business capability into microservices, the more

powerful microservices we have so we can say that this challenge is the primary among

other challenges. Despite of this fact, we could not find enough studies to work on this

topic deeply.

3.4. Summary

We conducted a systematic literature review following the guidelines of Kitchenham et

al [45]. The main purpose of the SLR was to identify relevant challenges and solution

directions. For this purpose, we conducted a comprehensive study and selected 85 as

primary studies from 3736 papers. We have carefully applied selection and elimination

criteria in order to catch the most appropriate studies for our SLR study. As a result of

our study, we could explore nine problem categories. We have observed that each study

has addressed one or more problems and explained their solution to problems in their

study. Quality factors like as dependability, availability, scalability, and performance are

at the root of many of these issues. We've raised concerns about quality as a result of the

difficulties we've uncovered. This SLR might be used in future research to emphasize the

importance of quality issues in MSA. It might also point in the right way for identifying

whatever quality problems have yet to be addressed directly. However, just because no

in-depth research has been done on these quality problems does not mean they are

irrelevant to MSA. Therefore, this observation could typically initiate further research on

the quality concerns in MSA.

We have observed that with the usage of cloud computing, cost of resources has emerged

as an important topic, so optimization of resource usage and performance and scheduling

problems have become crucial. Besides, it has been observed that the challenges of

service orchestration and monitoring have been covered in many more studies in recent

 55

years and detailed and comprehensive solutions have been presented on those areas. We

see this as an expected consequence of any system development process. Since as the

systems get bigger and more complex and the need for scalability increases, the need for

monitoring starts to occur in those systems and in parallel, the orchestration needs

increase. This is also the case in the development process of MSA-based systems. We

consider these challenges as newly recognized challenges as a result of the growth and

complexing of MSA-based systems.

The main threats to validity [46] of this SLR are related to publication and selection bias,

and also to data extraction and synthesis. The publication bias is about the likelihood of

the researchers to publish positive results rather than negative ones, which is beyond our

control and remains as an open issue for future work. We carefully identified and applied

the inclusion/exclusion criteria during the screening and review of the primary studies.

Subjectivity in setting the criteria and picking the primary research, on the other hand,

might have jeopardized the study's validity. To eliminate bias in the inclusion/exclusion

criteria, we initially chose a random group of ten papers as recommended Zhang et al.

[47] and defined the selection criteria recommended. I conducted the evaluation and

selection of the primary studies, which were then randomized and reviewed by the my

supervisors. Any difference in the selection of the primary studies was discussed in detail

and a final decision was reached per study. After the primary studies were evaluated and

selected, the relevant data for a pilot set of primary studies were extracted using a data

extraction sheet and taking informative notes on it. The pilot data extraction was then

reviewed by the supervisors and conflicts were resolved again by discussions until a

common understanding was reached. Regarding the data synthesis, we applied a

systematic grouping of the extracted data on the sheet. We evaluated and debated the

problem categories and their justification in meetings, so the categories we established

might be deemed to encompass the major issues. Some issues, on the other hand, might

be classified as sub-categories of the core categories. We used feature models to draw

attention to these.

 56

4. METHODOLOGY

In this section, we describe the process we followed to develop the reference architecture

for microservices. As illustrated in Figure 4.1, the process begins with MSA vendor

analysis as explained in Section 5. To design the reference architecture, it is important to

analyze the components, services, and architectures of MSA offered by the three major

cloud providers. We also examine challenges, opportunities, emerging technologies, and

new trends in MSA.

MSA is growing in popularity and several companies, including Amazon, Google, and

Microsoft, offer architectures and services to facilitate the implementation of MSA in the

cloud and the migration of monolithic architectures to MSA. Our review of the literature

shows that several reference architectures have been proposed, but they are either

conceptual in nature or do not fully address all aspects of modeling MSA.

Figure 4.1. Development Methodology of Microservice Reference Architecture

The MSA Vendor Analysis has been followed by Domain Analysis [19] as explained in

Section 5. It is an activity to store domain knowledge for the engineering team to use in

architecture development. Domain analysis comprises two primary activities: domain

scoping and domain modeling. Identifying the information sources and domains is what

domain scoping is about. Domain modeling aims to represent domain knowledge in a

reusable format. One methodology for domain modeling is feature modeling [40]. The

domain model is represented using feature models that can be used to show common and

variable features of a product or system, and the dependencies among variable features.

A feature diagram has four basic feature types: (1) mandatory features which are so-called

 57

must have/must include, (2) optional features which can have/or not components, (3)

alternative features (XOR) in which case it must include one of the possible components,

and (4) and/or features that at least one component should be included in.

After the domain analysis, the reference architecture of MSA using viewpoints has been

designed as described in Section 6. The architecture design can be represented using

architecture design viewpoints. Several architectural viewpoints are defined to address

different stakeholder concerns. In this study, we have adopted the layered view,

decomposition view, and deployment & service-oriented architecture view. Reference

architectures are generally designed by a group of varied organizations or by a company

that serves many different clients. The reference architecture should meet the following

characteristics to be beneficial [48]: Understandable to all stakeholders, accessible and

read/seen by most of the companies, handling significant domain concerns, having

satisfactory quality, acceptable, current, maintained, and offering value to the business.

Architecture design has been followed by a multiple-case study. Case study is an

approach to evaluate the artifacts of the reference architecture [49]. The feedback from

the case study can be used to enhance the reference architecture. Two case studies have

been conducted to apply our reference architecture. Their implementations with

recommendations, lesson-learned and evaluations are shared in Section 7.

 58

5. FEATURE DRIVEN CHARACTERIZATION OF MSA

5.1. Research Methodology

This study aims to facilitate the design and development stages of applications to be

developed with MSA and to serve as a guide. For this purpose, it is intended to identify

the features in the MSA and to classify the technologies according to these features. In

this way, the decision-making process will be accelerated, and it will be determined which

factors the technology choice depends on. In order to achieve this goal, we have

determined the following research questions:

RQ1—What are the current key MSA approaches in the state of the art?

RQ2—What are the key features of these MSA approaches in RQ1?

RQ3—What are the current implementation approaches for the MSA features in RQ2?

RQ4—What are the common and different features of the selected MSA vendor’s

approaches?

We developed and applied a research methodology shown in Figure 4.5 to reliably

analyze all of the published work involved in this study. This protocol starts by

performing domain analysis for MSAs and components; then, a characterization

framework is developed according to this domain analysis. Domain analysis is the

systematic process for analyzing and modeling the corresponding domain knowledge

necessary for the engineering process. Domain analysis includes two key sub-steps of

domain scoping and domain modeling. In the domain scoping process, the scope of the

investigated domain is defined. In the domain modeling step, the domain knowledge is

modeled for further reuse [9]. In this thesis, we use feature diagrams, which is one of the

approaches for domain modeling [40]. Feature diagrams represent the common and

variant features of a domain or system.

 59

Figure 5.1. Research methodology

This process is followed iteratively because, in the meantime, the missing points in the

characterization framework can be completed by returning to domain analysis again.

Then, to validate our characterization framework, the studies that suggest technology and

patterns from both the key providers and MSA area are handled separately and the related

technologies are structured according to the characterization framework developed.

While selecting and evaluating related MSA technologies and key vendors’

infrastructure, the characterization framework can be updated again by going back to the

domain analysis phase. Finally, we will eventually present a general evaluation of the

work done.

Domain Analysis to MSAs

Develop Characterization
Framework

Characterize each MSA
using Characterization FW

Overall Reporting and
Discussion

Select relevant MSA
Technologies/Patterns

Select relevant MSA from
key vendors in the

state-of-the-practice

Characterize each MSA
Cloud Provider approach

using Characterization FW

 60

5.2. Characterization Framework

We followed a bottom-up approach to classify studies on the MSA. As a result of this

process, the characterization framework emerged. Figure 4.6 introduces the feature

diagram of MSA, which represents the common and variant features as provided by the

solutions. Table 4.6 defines the features of MSA. It has many features, with sub-elements

being optional, obligatory, or having AND/OR and XOR relationships. Each top-level

feature, together with the sub-elements, will be evaluated and discussed in detail in the

following sub-section.

Figure 5.2. Top-level feature diagram of MSA.

Table 5.1. Description of the top-level features of the feature diagram for MSA

1 Data Management and
Consistency

Data Management and Consistency highlights ensuring the
quality of the distributed data management and consistency
between microservices. Moreover, it tries to answer what kind
of techniques exist to tackle data management and
consistency.

2 Communication Style Communication Style pays attention to the importance of
communication style because it is one of the most complicated
parts of microservices. So, it is crucial to find out what kind of
communication method exists to provide a stable
communication channel between microservices and outside.

 61

3 Service Orchestration Service Orchestration is the most comprehensive one,
addressing lots of critical concerns, such as auto-scaling,
service discovery, resource management, load balancing,
container availability, and deployment. It focuses on the
methods and concepts to handle all of these concerns.

4 Decomposition Decomposition is the most basic stage of the design of
microservices. It directly affects the further detail designs and
development activities. It is concerned with which practices
we can use while dividing our domain model to microservices.

5 Service Mesh and
Sidecar Pattern

Sidecar Pattern is a preceded pattern for the service mesh, and
the Service Mesh is usually built on this pattern. Sidecar
pattern and service mesh infrastructure is a dedicated
infrastructure layer for communication among services and
providing resiliency and fault tolerance.

6 Observability Observability is an important item that ensures the
sustainability of the system. In distributed systems, it is critical
to obtain information about the general performance of the
system and the status of each block of the system and to take
appropriate action according to this information or to avoid
problems that will force the system.

7 Provisioning and
Configuration
Management

Provisioning is the process of setting up the system
infrastructure. In this process, the necessary resources for the
system and users must be managed. These management
operations can be achieved with various specialized tools.
Configuration Management, on the other hand, is a process
that takes charge after provisioning and is used to ensure that
our system remains in the desired and consistent state.

8 Security Security stands on two headings, which are authentication and
authorization. In microservice-based systems, since a system
consists of many small parts, it must be designed very
differently from the one that is designed for monolithic
application. Being authenticated and being authorized for
many services are the main topics for this feature.

9 Testing In the MSA, although the fact that a system consists of smaller
services increases the testability and maintenance capability of
the system to a great extent, it is necessary to develop
structures suitable for the distributed architecture in order to
test use cases that spread on many services.

10 Resilience and
Fault Tolerance

Resilience and Fault Management is the concept for admitting
that failures always happen and the system is designed for
failures.

 62

5.2.1. Data Management and Consistency

The relationship between the data layer and services creates different alternative

situations in a distributed architecture because the design is shaped according to

preferences. When a monolithic application is allocated to microservices, it begins to

separate in transactions, which means that local transactions, which were previously in

the monolithic, are now being handled as distributed between services. There are different

approaches here.

The first and more primitive of these is to manage distributed transactions with a shared

database. Each service can access data owned by other services using local Atomicity,

Consistency, Isolation, Durability (ACID) transactions. While this situation enables

distributed transactions to be handled more easily and to make queries that require joining

from different tables more easy, it causes many disadvantages. These are coupling

creation in run time, different services needing different requirements from the same

database during development, and changes to affect all services [22].

Another method is to have a database for each service. There are many advantages over

a shared database in this more common alternative, where microservices are literally

decoupled. Each service uses the database that best suits its needs and, since the

dependency between services is removed, loosely coupled services are obtained, and this

situation makes deployment activities more independent.

As shown in Figure 5.3, there are some operations that need to be handled if a database

per service pattern is selected. First of all, the business transactions spanning multiple

services need to be managed and data consistency must be provided. In this case, since it

is important to have a highly available system, one needs to choose availability, as

specified in the CAP theorem [50], and consider the consistency eventually. This situation

corresponds with the Base Availability, Soft State, Eventually Consistency (BASE)

database types, which is proposed by eBay for supporting faster reaction to possible

inconsistencies by dismissing synchronization [51]. It is a database design methodology

which favors availability over consistency of operations [52].

 63

Figure 5.3. Feature diagram of data management and consistency

For data consistency, there are three alternatives. Two-phase commit (2PC) pattern is the

traditional and only synchronous solution recommended for the management of

distributed transactions. This pattern consists of prepare and commit phases and ensures

that the data in the entire service are consistent at any given time. According to its setup,

in case of failure, writing operations are blocked and availability is compromised. SAGA

is another alternative for distributed transaction management. It is asynchronous and is

used to ensure eventual data consistency without ACID operations when spanning

multiple services [22]. When necessary, SAGA carries out compensatory actions at

different stages to take it back when any business rule is violated. Each local transaction

causes the start of the new local transaction by publishing a new domain event and, at the

same time, compensatory functions are executed to undo local transactions as needed

[53]. SAGA is difficult to implement due to the reasons of implementing these

compensatory actions, the developers implementing these compensatory actions, and the

difficulty of managing and debugging these processes. Furthermore, a microservice needs

to update its business entity and transmit the message atomically to avoid data integrity

and possible bugs. This situation is possible with some improvement of the solution

brought by SAGA. With the event sourcing pattern, the atomicity problem is avoided. It

stores all states of the business entity in order in the event store. State changes and

message delivery are performed atomically on the business entity and a new state event

store is added for each state change. In this way, a more reliable transaction infrastructure

is provided. Moreover, the status of the business entity at any time can be determined by

queries made over the event store [54].

 64

Queries requiring different microservices have become difficult with the existence of

distributed transactions. Because most queries are obtained by joining operations over

data of more than one service, to overcome this situation, a structure that makes separate

queries from each service and combines them can be considered. The API composer

pattern recommends this. The results of the original query are calculated by firstly

dividing the queries into the required services and then composing the results from each

service. However, this situation often causes in-memory problems due to the excess of

in-memory joins [22]. Another solution is the command query responsibility segregation

(CQRS) pattern. With the CQRS pattern, queries are made over a view database that is

registered to domain events and shaped according to the type of queries, thus making

handling of complex queries easier [55].

5.2.2. Communication Style

Communication in a microservices architecture is one of the most challenging points due

to its distributed nature. It directly affects the availability and resiliency of the systems.

In the MSA, we can examine the communication in two headings, intra-microservice

communication and inter-microservice communication.

As shown in Figure 5.4, the first and most complex of the two is communication between

services. Services can communicate with each other through a sync communication

infrastructure, but, with this architecture, both the client and the server must be available

to sustain the communication. Moreover, there is a tight runtime coupling among

services. Communication can be sustained without the need for any message brokers, but

services need to know each other's locations, which brings extra complexity. Furthermore,

an external request generally needs collaboration between services, which might cause

blocking of the system for a long time and some problems in availability and resource

usage of the system. However, these concerns can be eliminated with async messaging.

Availability and resource management improves, and runtime coupling becomes loose.

The presence of a message broker can be counted as a challenging point. In addition,

communication management is more complex, too. Sometimes, domain-specific protocol

can be used in the communication between services; although this type of usage is limited,

it can be preferred in an appropriate use case, such as SMTP or IMAP [22].

 65

Figure 5.4. Feature diagram of communication style

As shown in Figure 5.4, some patterns are recommended to make the communication of

microservices outside of them healthier. For example, with the API Gateway pattern, all

requests coming from outside are transferred to the appropriate services inside through

this structure, and the services respond to this request by communicating with each other

[56]. Different APIs can be created for each type of client. It is called Backend for

Frontend (BFF) by SoundCloud [57]. Moreover, it can translate external requests into

protocols used across microservices. Since the location information of the services

changes dynamically, the outside world does not need to know this location information

thanks to API Gateway. This structure can be thought of as the only door opening to the

outside world and isolates the system inside. Security concerns can be addressed here.

For example, in a scenario where HyperText Transfer Protocol Secure (HTTPS) is used

when talking to the outside world, it will be sufficient for the services inside to talk with

the HTTP protocol because the inside can be considered safe after the API Gateway.

Some cross-cutting concerns, such as SSL, could be handled in API Gateway so internal

microservices are lightweight and simplified [58]. Another solution is that each client

communicates directly with microservices, but this method is a primitive method and its

usage area is very limited. None of the benefits that come with API Gateway can be

achieved with this pattern.

5.2.3. Service Orchestration

This concept, which can be referred to as service orchestration or container orchestration,

automates the management, scaling, deployment, and networking of microservices. The

application provides great assistance in deploying to different environments, without the

need for a new design, to orchestrate the services. In this context, service orchestration is

a concept that addresses many different concerns.

 66

As shown in Figure 5.5, auto-scaling is one of them, and, by monitoring our application,

it automatically adjusts the capacity according to the incoming load and keeps the system

highly available and steady [59,60]. Within the auto-scaling configurations, the system

can scale horizontally or vertically. It also provides a manual scaling feature to be used

in some cases.

Figure 5.5. Feature diagram of service orchestration

Another concern is load balancing. It is used to distribute the traffic coming to the system

efficiently. It also provides high availability and reliability by sending incoming requests

only to the servers that are standing [61]. It works in harmony with the new server, adding

and removing operations when necessary. In this way, the system will be more scalable

and flexible. Different variations depend on where the load balancing setup is carried out.

For example, in server-side load balancing, the client does not interfere with the load

balancing process and its request is distributed efficiently to the appropriate servers on

the server side; but, in client-side load balancing, the client takes over the load balancing

job. After querying which servers are suitable or not from a structure, such as a service

registry, it distributes the load effectively.

 67

Service discovery, on the other hand, is an indispensable structure in the distributed

architecture. Thanks to this structure, the changing services, whose location information

is dynamic, become able to discover after they complete service-registration. Here,

similar to the client- and server-side load balancer distinction, there is either a registry-

aware client mechanism or a structure that requires the request from the client to be

directed to our services via a registry-aware router.

Independent deployment is one of the most important skills aimed at and acquired by

MSA. In this way, the CI and CD pipelines of our services are separated. An advanced

deployment setup is created with automated infrastructure. In this way, fast delivery is

ensured. While deploying, one can prepare an application for deployment with the help

of containers. Thus, the containers are isolated from each other and encapsulated in the

technology stack used while the services are built. Moreover, the services can be easily

scaled up and down. Another method is to deploy the services using virtual machine

(VM). Compared to containers, resource usage is high in VM. The container-based

method has become a de facto for deploying the services at the moment and it is a lot

more portable. Another deployment method is serverless deployment. It emerged as a

result of the spread of microservices and cloud environments. With this deployment

method, the user simply writes the code and uploads a provider that provides a serverless

infrastructure. After that, it is completely up to the provider. Many headings, such as

scalability, deployment, and operating system, are completely managed by the provider.

Moreover, serverless is the deployment and development method, which is developed to

implement the Function as a Service (FaaS) category of cloud computing services.

5.2.4. Decomposition

One can develop systems, which are large in terms of business rule and domain, with

MSA. Hence, the aim is to develop the system in smaller applications and achieve

continuous delivery and deployment. In addition, each microservice is developed faster

and more easily. However, determining the boundaries of these small applications is not

an easy task and needs to be carried out carefully. Moreover, the aim is to create loosely

coupled, highly cohesive, and autonomous services. In addition, tools can be more cross-

functional in this way.

 68

The method used to design an application as smaller services are either decompose by

business capability or decompose by subdomain, as shown in Figure 5.6. In

decomposition by business capability, services are concentrated around business

capability; while using DDD [62] principles in the decomposition by subdomain, they are

concentrated on subdomains and use cases related to these subdomains.

Figure 5.6. Feature diagram of decomposition

5.2.5. Service Mesh and Sidecar Pattern

Before the service mesh ecosystem was introduced, sidecar proxies had emerged and

started to be used. Sidecar proxies encapsulate service discovery, communication

protocols, load balancing, and fault tolerance mechanism to abstract them from the

developer [29]. With the service mesh structure built on the sidecar proxy pattern, a fully

integrated service-to-service communication infrastructure is provided and the security,

reliability, and observability features are managed by the platform layer [6].

5.2.6. Observability

The large and complex nature of modern systems, dynamic infrastructure, and monitoring

the health of these systems and taking the necessary actions as a result of this monitoring

reveal the importance of observability.

As shown in Figure 5.7, monitoring collects information about a system by

communicating with services. In order for this need to continue uninterruptedly, the

system must have a scalable infrastructure and it must be easy to query the collected

information. Monitoring focuses on runtime metrics created by the applications

themselves and related measurements, such as CPU, memory, I/O, etc., which are the

 69

infrastructural metrics of the system. Distributed tracing in a system, on the other hand,

is where requests are spread over multiple services and each service responds to this

request by communicating with different layers. It follows the behavior of the application

while responding to this request and whether it is experiencing any problems by assigning

an external request ID to each request and recording it. In log aggregation, it is ensured

that the logs coming from all these services are collected in a central service and can be

queried and analyzed from there. In addition, by creating alerts for specific logs to be

examined, developers are notified when such logs occur. Exception tracking, on the other

hand, concentrates on exceptions and records the exceptions that occur in the system.

With the help of the recorded data, various inquiries and informing the developers using

alerts are provided when necessary. In this way, with a central exception tracking

infrastructure, developers are prevented from working continuously with the same error

because historic data are provided for the relevant error type and the user knows that the

error has been solved before. Audit logging, on the other hand, records the information

that the system users performed on the system and the stages they went through.

Figure 5.7. Feature diagram of observability

5.2.7. Provisioning and Configuration Management

Provisioning and configuration management has become a hot topic with the increasing

interest in distributed systems and MSA. As shown in Figure 5.8, they should be

established in each mature MSA.

Figure 5.8. Feature diagram of provisioning and configuration management

 70

Within the scope of provisioning, operations such as introducing the information

technology (IT) infrastructure and then managing the resources needed by this

infrastructure are handled. In addition, providing this infrastructure to the service of the

system and users is also one of the provisioning activities. There are four subtypes:

service, user, server, and network, coming after provisioning. It is a process to maintain

systems and software, which ensures that systems remain in the desired state. With any

configuration management tool, we can separate and manage the system into related

groups or modify the basic configuration center, prioritize some actions, and automate

processes, such as updating the system and expanding new settings [63]. Infrastructure

as code can be considered as the next step. With this feature, one can program

infrastructure by writing code and configure it the way it is wanted. In other words, one

writes code to automate the infrastructure and run it. The idea behind this approach is that

the systems and devices used to run the software themselves can be treated like software

[64].

5.2.8. Security

In an MSA, security is actually gathered under two main headings as in all other systems,

as shown in Figure 14. These are authorization and authentication. As shown in Figure

5.9, both are concepts to be addressed. However, handling these processes in MSA can

create a more complex structure compared to the monolithic architecture. There are some

best practices and patterns for this.

Figure 5.9. Feature diagram of security

For authentication, a token is usually given to the user by performing an identity check

through a structure that is developed into a communication task between the external

 71

world and the internal world, such as the API Gateway. This token contains the

information that the user has authenticated to the system and what his/her permissions

are. Thanks to this structure, the user can authenticate from a single point to a structure

with many services. This eliminates the disadvantage that many services have relations

with the outside world. Moreover, in this way, the services inside will have the

convenience of talking to each other with HTTP instead of HTTPS as an example. In this

case, however, it should not be forgotten that the API Gateway is a centralized failure

point and the design for failure should be carried out accordingly. Another option, for

each microservice to run, is having its own authentication and authorization processes

locally, as opposed to global management. This situation requires the requests to be

authenticated separately for each microservice and the complexity increases. However,

each service can use different authentication and authorization methods according to

preference and, at this point, a more fine-grained mechanism should be designed.

5.2.9. Testing

With the spread of software development with MSA, the need for revising some

approaches used in monolithic applications and adding new approaches has arisen,

because, now, this is an environment where each microservice can be deployed

individually and perhaps developed by different teams.

As shown in Figure 5.10, there are various types of test able to be used in MSA. We can

test whether the system shows the expected behavior from end to end, with the end-to-

end test, as in monolith applications. However, this approach is very difficult to manage

because the test boundaries are too large and tests are very fragile. We can test smaller

parts with integration tests. For example, it can be detected with this approach whether

there is an error in the communication interfaces between different layers, such as the

data layer and service layer. With the consumer-driven contract test, we concentrate on

communication between services and, in the communication of the two services, it is

tested whether the waiting of the service that will consult a message can be met by the

service that will produce the message. In the service component test, which is another

type of test, the components to be tested are isolated from the remaining parts of the

system by using test doubles and are tested by manipulating through internal interfaces.

 72

This enables each tested item to be tested in more detail. Finally, in chaos engineering,

to ensure the stability of the system under all kinds of conditions, the system’s responses

are examined by leaving the system to deal with various failure conditions in the

production environment, and thus the reliability of the system is tested. To sum up, it is

of great importance to use the mentioned test approaches together and in harmony for the

systems to reach high test coverage.

Figure 5.10. Feature diagram of testing

5.2.10. Resilience and Fault Tolerance

In monolithic applications, any failure had the potential to completely down the

application. However, in case of failure that can be experienced with the MSA, it provides

an opportunity to compensate for this situation without affecting the overall application.

It is necessary to admit that there will always be failures in the system, and designs that

address failure situations should be made to quickly avoid such failures or to reduce the

number of failures. For this, failure scenarios should be determined as much as possible,

locations that may cause a single point of failure should be identified, and our designs

should be arranged to avoid cascading failure in case of a failure. As shown in Figure

5.11, there are many ways to ensure resiliency. It is highly recommended to use as many

patterns as possible.

Figure 5.11. Feature diagram of resilience and fault tolerance

 73

Client-side load balancing is often used in some scenarios as it eliminates a single point

of failure and distributes the responsibility for load balancing and is easier to scale than

server-side load balancing. Service instances query and cache information of health

services from service discovery. In calls to be made by the service to other services,

service information is received from the service discovery and communication is

provided in a way that the load will be distributed equally. If one of the services responds

late or gives an error, the load balancing mechanism detects this problem and removes it

from the service repository and prevents cascading failures and system downtime. If

service discovery does not respond, client services can use the information in their own

cache copy. In circuit breaker pattern, if a client faces several problems over the call to

another service, it stops communicating with the relevant service, and thus prevents

cascading failure in the system. Fallback pattern is another approach for handling failure

cases. In this pattern, as a result of the detection of a problematic request, it prevents the

occurrence of a large problem that will affect the system in general by giving an

alternative response to the client. In bulkhead pattern, by separating and isolating both

suitable components and data from each other, it is ensured that the problems encountered

in any group will not affect those in the other group.

5.3. Survey of MSA

With the development of microservices and distributed architecture, the need for

practitioners to develop common solutions to problems arose. Due to these needs, many

products have been or are still being developed by various companies or communities.

Knowing what purpose these developed solutions serve and where they are located in the

MSA enable us to design the architecture more comfortably and to make our architecture

more robust. Therefore, we think that showing the feature set we have determined in the

field of microservices to match the relevant technologies will benefit practitioners greatly.

As is seen in Table 5.2, common solutions have been developed by various companies or

open-source communities for many features. We observe that no technology has been

developed for some feature sets and they are more design-oriented feature sets. In other

words, for these feature sets, it is recommended to apply the design decisions specified in

the feature instead of a solution. For example, database per service or shared database,

 74

which are two different patterns in data management and consistency, is entirely a design

decision about how you will position the data layer.

Table 5.2. Mapping features with MSA technologies

Feature Technology/Product/Service

Testing/Chaos Engineering Chaos Monkey
Chaos Toolkit
Simian Army

Testing/Service Component Test Spring Cloud Contract Test

Resilience and Fault Tolerance/Circuit Breaker Netflix Hystrix
Resilience4j

Communication Style/API Gateway Nginx
Netflix/Zuul
Spring Cloud Gateway

Communication Style/Domain Spesific Protocol SMTP
IMAP

Communication Style/Async Communication Apache Kafka
Rabbit MQ
Active MQ

Observability/Log Analysis Kibana
Datadog
LogDNA

Observability/Distributed Tracing Zipkin
Datadog
OpenCensus
Sentry
LogDNA

Observability/Monitoring Prometheus
Graphite
Grafana
InfluxDB
Zabbix

Observability/Log Aggregation Kibana
Datadog
LogDNA

Observaility/Exception Tracking Sentry

Provisioning and Configuration Management Ansible
Chef
Puppet
SaltStack

 75

Provisioning and Configuration
Management/Infrastructure as Code

Terraform

Security/Authentication CAS
Spring Security
SSO

Security/Authorization JWT
Spring Security

Decomposition/Decompose by Subdomain Domain Driven Design

Service Orchestration Kubernetes
Apache Mesos + Marathon
Docker Swarm

Service Mesh and Sidecar Pattern Istio
Linkerd
Envoy
Redhat Openshift

Deployment/CI & CD Jenkins
CircleCI
Travis
DroneCI
Gitlab CI
Bamboo

Deployment/Container Docker
LXC

Deployment/Virtual Machine VMWare
VirtualBox

Load Balancing/Server-side Nginx
Zuul
Eureka

Load Balancing/Client-side Ribbon Client

Service Discovery/Service Registry Eureka
Zuul
Consul
Apache Zookeeper

Service Discovery/Server-side Eureka
Zuul
Consul
Apache Zookeeper

Service Discovery/Client-side Ribbon Client

 76

We also observe that some features are taken together, and solutions are proposed

accordingly. Such solutions suggest a more comprehensive solution for one or more

features. For example, provisioning and configuration management are two separate

activities that can be considered as a continuation of each other. One cannot be thought

of without the other. Therefore, it makes sense to propose a solution that handles these

two features together while recommending a solution. Instead of learning and using

multiple technologies and integrating them, it is a more preferred way for developers to

use the ready-made solution. In such cases, if these solutions are suitable for all sub-

features of the relevant parent feature, these solutions are shown at the parent level. If it

does not fit all children, these technologies are shown in the feature diagram for each

feature. It is also observed that some solutions may be not only for siblings, but also for

features in different feature families. For example, the solutions suggested in load

balancing and service discovery are taken together for both features, and solutions

addressing these two features are produced.

5.4. Analysis of Existing Key Cloud Providers

In parallel with the development of the distributed architecture and MSA, cloud

computing is also improving. Cloud providers develop managed services for the

difficulties brought by the distributed architecture and make them ready to be used in

related architectures. Users configure and use the relevant services and are not interested

in many quality indicators because the services give warranties on many basic quality

indicators and developers focus more on domains and business rules. However, it should

be decided by considering the cost of the usage of cloud services.

In this section, the services provided by Amazon AWS, Google Cloud Platform, and

Microsoft Azure, which are the three most preferred cloud providers today, have been

examined and which solutions are available for which functions are presented.

As is seen in Table 5.3, services are offered by cloud providers for many features. These

services are provided as managed by the cloud provider, so you can start using the

services by making the necessary configurations. The services have the ability to work in

 77

harmony with each other and can be easily configured as interoperable. In this respect,

using these products will give us speed. Another important point is the fact that services

are developed parallel to each other by all three providers. You can find the equivalent of

each service in another provider. Here, which one will be selected can be concluded by

making some more detailed evaluations within the scope of performance, usability, use

cases, and cost analysis. The absence of a direct solution for some features indicates that

it must be a feature that needs to be programed and designed, that is, it cannot be fully

managed by the cloud provider. They are more conceptual and design-oriented features.

However, by bringing together more than one service, the design criteria recommended

within the scope of these features can be met.

Table 5.3. Feature-based service comparison: AWS, Google Cloud, and Microsoft Azure

Feature AWS Google Cloud Microsoft Azure

Communication
Style

Async Communication AWS MQ

AWS SNS

AWS SQS

AWS Kinesis

Google
Dataflow

Google
Pub/Sub

Azure Queue Storage

Azure Service Bus

Azure Event Grid

Azure Event Hubs

API Gateway AWS API Gateway Google Apigee Azure API Management

Service Orchestration AWS ECS

AWS EB

AWS EKS

Google Cloud
Run

Google App
Engine

Google
Kubernete
Engine

Azure Container
Instances

Azure App Service

Azure EKS

Service
Orchestration

Deployment/CI and
CD

AWS CodeDeploy

AWS CodeBuild

AWS CodePipeline

Google Cloud
Build

Azure Devops

Deployment/Serverles
s Function

AWS Lambda

AWS Step Function

Google Cloud
Function

Google Cloud
Composes

Azure Durable

Azure Functions

Deployment/Container AWS Fargate

AWS EKS

Google Cloud
Run

Google
Kubernete
Engine

Azure Container Instance

Azure Kubernete Service

Deployment/VM AWS EC2 Google
Compute
Engine

Azure VM

 78

Auto-scaling AWS EC2 Auto-
scaling

Google
Computer
Engine Auto-
scaling

Azure Virtual Machine
Scale Set

Load
Balancing/Server-side

AWS ELB Google Cloud
Engine Load
Balancing

Azure Load Balancing

Service
Discovery/Server-side

AWS Route 53

AWS Cloud Map

AWS ELB

Google Cloud
DNS

Google Cloud
Engine Load
Balancing

Azure DNS

Azure Load Balancing

Service Mesh and Sidecar Pattern AWS AppMesh Google Anthos
Service Mesh

Azure Service Fabric
Mesh

Observability Log Analysis AWSElasticsearch
Service

AWS Redshift

AWS Quicksight

AWS Athena

Google
Elasticsearch
Service

Google
BigQuery

Azure Elasticsearch
Service

Azure PowerBI

Azure Data Lake
Analytics

Exception Tracking AWS CloudWatch Google Cloud
Debugger

Google Cloud
Trace

Azure Application
Insights

Azure Monitor

Log Aggregation AWS CloudWatch Google Cloud
Logging

Azure Application
Insights

Azure Monitor

Audit Logging AWS CloudTrail

AWS Config

Google Audit
Logs

Google Cloud
Asset
Inventory

Azure Monitor

Distributed Tracing AWS X-Ray Google Cloud
Debugger

Google
CloudTrace

Azure Monitor

Monitoring AWS CloudWatch Google Cloud
Monitoring

Azure Monitor

Provisioning and Configuration
Management

AWS
CloudFormation

Google Cloud
Deployment
Manager

Azure Resource Manager

Azure VM extensions

Azure Automation

Security AWS Cognito Google
Firebase
Authentication

Azure Active Directory
B2C

 79

6. REFERENCE ARCHITECTURE

A Reference Architecture is a representation of the architecture of a system or collection

of systems that serves as a guide for developing application architecture. It captures the

key principles, elements, and relationships of the architecture, and helps to ensure that the

architecture is maintainable, scalable, and aligned with the needs of the stakeholders.

After the development of the family feature model with domain analysis, the next step is

to develop the reference architecture. The reference architecture has been built on domain

knowledge that was formed as a result of domain engineering activities. The most

important factor that increases the usability of the reference architecture is that the

reference architecture is documented with the viewpoints which address the concerns of

all stakeholders. We chose Views and Beyond by Clements et al. [38], which is a well-

defined framework for documenting software architecture. In the Views and Beyond

(V&B) approach, there are numerous defined styles (views) that address different

concerns of stakeholders. To select the appropriate styles for our study, we conducted a

survey with 50 practitioners with experience in software architecture design and

distributed architecture, working in various positions at different software companies (as

shown in Table 6.1.). All 17 viewpoints of the V&B approach were presented to the

participants.

Firstly, we explained each view with detailed information to the participants and then

asked them to what extent they were concerned with each defined view in Views and

Beyond. Participants chose one of the answers for each view in the survey. The first

option "d" indicated that detailed information was requested by the participant, the second

option "s" indicated that some detailed information was requested by the participant, and

the third option "o" indicated that overview information was requested by the participant.

Table 6.1 presents the survey results for the views with at least one "s" or "d", where d:

detailed information, s: some detailed information, o: overview information.

 80

Table 6.1. Survey results for selecting architectural design styles

Main Stakeholder Layered View
(Style)

Decomposition
View (Style)

Deployment
View (Style)

Service-Oriented
Architecture
View (Style)

Software Architect d d d d

Software Developer s d s d

DevOps Team member d d d d

QA o d o o

Project Manager / CTO /

Engineering Manager

o d o o

We analyzed the architectures described by key vendors. These architectures were

generally not defined using architectural views and were specific to the vendor.

Therefore, it was important to identify and make visible the components and relationships

that are necessary in a vendor- and platform-agnostic microservice architecture. Through

our vendor analysis, we examined the architectures of three major vendors (AWS, Google

Cloud and Microsoft Azure) in the field of MSA and determined which solutions address

which problems.

Additionally, we used the output of the domain analysis process. Through our research of

sources in multi-vocal literature and interviews with experts in the field, we completed

our domain analysis and modeled the domain using the feature-driven approach. We

incorporated all of these outputs into the design of the Reference Architecture.

6.1. Family Feature Model

In our previous study [19], we proposed a Feature Driven Model as shown in Table 6.2,

which resulted from our domain analysis. Including this model in the Reference

Architecture as a guide for determining which components should make up the

application architecture can be a useful practice for practitioners. This way, the

components that are necessary in the system as a whole and the relationships between

them can be defined first, and the application feature model can be generated from the

family feature model.

 81

Table 6.2. Family Feature Model of MSA

 82

6.2. Decomposition View

Decomposition view expresses responsibility segregation of the system. It relies on

separation of concerns principle. Responsibilities are separated across modules and each

module has its own sub-modules. It belongs to Module Style of "Views and Beyond"

approach. It is also a guide for other views because it contains valuable information about

the overall structure of the system. In our proposed method, the decomposition view is

obtained based on the features in the family feature model.

The Family Feature Model can address features as implementation units, but some

features may also be considered as design patterns and have no direct implementation

unit counterpart. Additionally, multiple features may come together to form an

implementation unit.

The decomposition view of the microservice reference architecture is shown in Figure

6.1. Each colored part in the figure represents the main modules. Different modules under

the same color are sub-modules of the relevant main module. In this case, decomposition

view represents all the sub-modules.

 83

Figure 6.1. Microservice Reference Architecture – Decomposition View

6.3. Layered View

Layered architecture is another modular style. A layered view is created by ordering the

modules specified in the decomposition view according to the layers. Layers are logical

groups that can help practitioners create and communicate their architecture. Also, each

layer provides a cohesive set of services [38].

Figure 6.2 presents the layered view of the microservice reference architecture. It

composes several layers and each layer is responsible for different concerns. As seen in

the figure, the layered view consists of many sidecar layers, for example Testing, and

Authorization & Authentication. This means that these modules can be associated with

one or more of the horizontal modules, so it is represented vertically. The first request to

a distributed system developed with a microservice architecture is met with the

Communication with outside layer, and then this request is forwarded to the appropriate

service as a result of service discovery and load balancing processes. In business rules

 84

spread over many services, communication between services is done with an approach

that takes place under the Communication between microservices module. At this time,

since instances of a microservice could be found in many nodes in a distributed

environment, and when it is thought that they are constantly dynamic, it becomes

important to distribute the load equally. With the help of client-side service discovery, it

is tried to distribute the load equally to microservices, and a more available and resilient

system is obtained. The service registry knows which service has which IP (Internet

Protocol) and port information. Both types of service discovery use the registry and learn

which services are standing by which instances and what is the IP and port information.

Considering that microservices may have different local transactions for a use case, one

or more of the techniques in the Data Management and Consistency layer are used to

provide data consistency handling all the local transactions. Other sidecar layers are

responsible for the jobs defined in Section 5.

Figure 6.2. Microservice Reference Architecture – Layered View

6.4. Deployment And Service Oriented Architecture View (Combined View)

Decomposition and Service Oriented Architecture View is a combined view. The

Decomposition view is in the Allocation style, while the Service Oriented Architecture

view is in the Component & Connector (C&C) style. They are styles that are frequently

used in combination with distributed systems [38]. While the layered and decomposition

views focus on the modular decomposition of a software system and how these modules

interact with each other in terms of layers view, the deployment view deals with how

these modules are allocated to the hardware of the computing platform [38]. These

modules are native to the C&C style [38]. In distributed and service-based architectures,

since each service can be deployed independently and also distributed, it can also be

 85

represented as separate independent deployable components (units) as shown in Figure

6.3.

Service Oriented Architecture style is under the C&C style that defines the relationships

between distributed services with the help of interfaces they provide. While the

components in the distributed architecture provide services for other components, other

components are also responsible for consuming the services provided to them.

Figure 6.3 shows the combined view of deployment view and service-oriented

architecture view. As seen from the figure, each component can be deployed

independently to the identified machine in the cloud or on-premise. Each component is a

deployable component and some of them are deployed to the given component as shown

in the figure. On the other hand, services communicate with each other through the

Application Programming Interfaces (API) they provide and ensure the integrity of the

system. Table 6.1 provides more detailed information about each component and its

relations.

Table 6.3 Explanation of each component in Deployment and Service Oriented

Architecture View

1 API Gateway It is a single-entry point for all clients and a place between clients and

backend services. It is responsible for transmitting client requests to the

backend services. It usually acts as a load balancer and forwards the request

to the appropriate backend services. In addition, it performs authentication

and authorization controls on the incoming request, and if the request is not

secure, it cancels the forwarding request to the backend services. The

benefit of this is, for example, when communicating with the outside over

HTTPS, HTTP can be used inside. Also, metrics are collected from the

incoming request by performing some tracing and logging operations on

API gateway. If rate limiting is desired, it can be done via API gateway.

But the most critical point to consider when using it is the single point of

failure situation. If a single instance is deployed, this risk is too high. In

order to rule out this risk, a load balancer that will understand the load

coming to API gateways can be included in the system, and if the API

 86

gateway is down, a new instance must take over. It is not the only method

for microservices to communicate with outside. If desired, clients can

directly communicate with Backend (BE) services, but this is not a

recommended method because all clients have access to all services,

creating a security vulnerability and considering that BE services are

dynamic, and IP and port information are also not fixed. Such cases are the

limitations of this method.

2 Authentication &

Authorization

It is responsible for authenticating and authorizing users to reach the

backend services.

3 Load Balancer It is used for distributing the requests to backend services which is

considered healthy by looking up Service Registry. In order to eliminate

the single point of failure, a new instance of load balancer must take over

in the case of failure. The load balancer is a very important component to

increase the availability and scalability of the system. It can be used as two

different deployable components with API Gateway, or it can be used

without API Gateway in some cases. In this case, it is possible that the

concerns addressed in the API gateway will be moved to the backend

services, but this is not a recommended approach.

4 Service Registry It is a key value database containing network information of services. The

API it provides is used by many components as shown in Figure 4.

5 Service Orchestrator It is the most comprehensive component, addressing lots of critical

concerns, such as auto-scaling, service discovery, resource management,

load balancing, container availability, resiliency and deployment. It

focuses on the methods and concepts to handle all of these concerns by the

help of the agents in the application servers.

6 Service Orchestrator

Agent

It is for caring about the state of the services and sharing this information

with the Service Orchestrator.

7 Messaging Platform It is used in asynchronous communication between microservices. It

manages messaging by providing APIs for producing messages and

consuming messages by other microservices. Information on which node

will consume the messages can be obtained from the Service Registry.

Successfully handling the cases where it is important to consume the

messages in the same order as they are produced and trying to consume the

message again in case of failure are the subjects of this module.

 87

8 Caching It is high-speed storage of a subset of data. It is used for many purposes,

especially by microservices, but could be used by other components.

9 Microservices They are small, loosely coupled and independent services organized

around business capability. They are deployed to the application servers.

They can produce or consume messages for interaction with other

microservices. Besides that, they can use Service Registry to distribute the

synchronous requests to other services.

10 Application Server It is a server that hosts microservice applications

11 Monitoring &

Analytics Agent

It is used for collecting information about the modules where it runs. It is

responsible for sharing this information with the Monitoring and Analytics

Server.

12 Monitoring &

Analytics Server

It is responsible for storing all kinds of logs, metrics, traces, events etc.

Besides, visualizing and querying the logs are also among its

responsibilities. It also provides some services to set up alerting

mechanisms.

14 Database Server It is a server that runs database application.

Figure 6.3. Microservice Reference Architecture – Deployment & Service Oriented

Architecture View

 88

6.5. Method To Derive Application Architecture From Reference Architecture

Application architecture is implemented by using the family feature model and

microservice reference architecture, which are the result of domain engineering activities

explained in the previous sections. Figure 6.4 represents the method to derive an

application architecture from the reference architecture. While creating the application

architecture, the reference architecture and family feature model can be updated

according to the feedback received. Before starting to develop the application

architecture, the requirements collected from stakeholders are analysed and the relevant

features are selected from the family feature model in order to derive the application

feature model. The next step is to develop the application architecture addressing software

components that correspond to the features in the family feature model. Here, application

architecture is derived using the views (styles) in the reference architecture.

Figure 6.4. Method to derive application architecture from reference architecture

There are three potential circumstances for applying a reference architecture, according

to Kassahun [65], as shown in Figure 6.5. The reference architecture is used as a starting

point for deriving an application architecture. Practitioners can add a new module for a

new feature that they concern about, if they cannot find the corresponding module in the

reference architecture. If there is already a module that fits their needs, they can either

 89

use it as it is, or they can change it according to their concerns and needs by decomposing

it or combining it with other modules, etc. Finally, the application architecture is obtained.

Figure 6.5. Three scenarios of using reference architecture to derive an application

architecture adopted from Kassahun [65]

 90

7. VALIDATION BY MULTI-CASE STUDY

In this section, microservices reference architecture is evaluated using case study

research. In this evaluation, our architecture designs based on viewpoints and feature

diagrams are used. Section 7.1 describes the case study protocol. Section 7.2 and 7.3

present the results from the two cases respectively.

7.1. Case Study Protocol

We used the case study empirical evaluation technique described by Runeson and Höst

[66] to validate our approach. The steps in the procedure are as follows: (1) case study

design, (2) data collection preparation, (3) data collection execution on the examined

case, (4) data analysis, and (5) reporting. The design of the multiple-case study is shown

in Table 10.

Table 7.1. Case study design

Case study design activity (For the two cases in the multiple-case study)

Goal Assessing the effectiveness and practicality of the reference
architecture

Research Questions How effective is the adopted microservices reference
architecture?

How practical is the adopted microservices reference
architecture?

Data Collection - Observation of the process and systems

- Meetings

- Semi-structured interviews were used to obtain both
indirect and direct data

(a mixture of open-ended and closed-ended questions)

Data Analysis Qualitative data analysis using Radar Charts

We also have adopted holistic and multiple-case design as suggested by Yin [49]. The

two cases within the multiple-case design have emerged in two different software

companies and have been prospective studies in which the companies intended to migrate

their monolithic applications to MSA. As previously stated, the goal of the multiple-case

 91

study evaluation is to aid in the design and development process. The purpose of this case

study is to assess the architecture designs that have been established, as well as the

development process. Data is collected by interviewing the architects, developers and Site

Reliability Engineering (SRE) team members and by observing the design and

development process.

Before starting the interviews, the reference architecture was reviewed by another

researcher with seven years of MSA experience and provided in its final form.

Subsequently, all interviews in the case study were conducted by myself and this

researcher.

We use radar charts to examine the findings of both situations using a qualitative data

analysis technique. Both direct and indirect data analysis were employed. We performed

semi-structured interviews with architects, developers, and SRE team members for direct

data analysis, using the predetermined questions in Table 7.2. The questions contained a

5-point Likert scale for possible responses (ranging from "1: strongly disagree" to "5:

strongly agree"). In addition, for each question, an additional explanation has been sought.

Table 7.2. Questionnaire used for qualitative data analysis

Questions

1 What is your opinion on the provided application architecture?

2 Do you think that the provided recommended application architecture is of high quality?

3 Do you think that the reference architecture is of high quality?

4 Is the method and the reference architecture sufficient to derive the application architecture?

5 Do you think that the method is practical?

6 Will you use the method again?

7 Do you think that the application of the method can provide a competitive advantage to the
organization?

8 Has the usage of the method enhanced your knowledge on MSA?

9 Do you have any suggestions for improving the method?

10 Do you have any suggestions for improving the feature models?

11 Do you have any suggestions for improving the reference architecture?

 92

Both cases in the multiple-case study research have followed the steps listed below:

• An initial interview with architects, SRE team members and developers was

planned first. The purpose of this interview was to get a sense of the participants'

early ideas and experiences with MSA.

• In the second phase, we provided a brief presentation on the proposed method's

purpose. We also briefly detailed how the approach works as well as the ultimate

result.

• In the third phase, we applied the approach to both cases with the development

team with several meetings and application architecture was developed

incrementally by holding multiple meetings with the development team. As the

last step, it was reviewed and finalized by the SRE team and the researchers.

(elaborated in Sections 7.2 and 7.3).

• The researchers assessed the architecture design that emerged from the method's

application to the prospective cases in the fourth phase.

• In the fifth phase, the researchers conducted a post-interview to determine the

method's effectiveness and practicality.

• In the sixth phase, the researchers analyzed data from the initial interview and the

post interview. The assessment was completed separately but reviewed together

to determine the lessons learned.

7.2. Case Study – Transportation Management System

With the changes that Coronavirus brought to our lives, many activities are now carried

out online. At the beginning of these activities comes the ones that require transportation.

Increased transportation demands of companies have increased the interest in this sector

and made it more competitive. Despite the increasing workload, companies that provide

transportation services want to continue their services effectively and to better monitor

and manage their processes. This situation, in turn, has increased the interest in

transportation management systems. Companies want to use easy-to-use systems that best

 93

suit their concerns and manage their processes efficiently. They also want to choose the

most suitable solution for them financially.

We have served our reference architecture to a software company that wants to develop

a solution for all these demands. This startup company, which has a team of 15 members,

develops various mobile and web-based products. The development team consists of 11

people. There are 2 SREs, 1 architect, 1 designer, 1 business analyst, and 6 developers.

They have an average of six years of software development experience. They have

decided to deploy their services to AWS and use its services. This was not a problem for

us since our reference architecture is platform independent. The application architecture

obtained after applying the case study protocol is presented in the sub-sections below.

7.2.1. Application Feature Model

This application feature model shown in Table 7.3. is derived by picking the features

required for this specific case from the family feature model of MSA presented in our

prior study [19] and summarized in Section 5.

Table 7.3. Application Feature Domain Model

 94

7.2.2. Decomposition View

The decomposition view is based on this feature model as we explained how to derive the

decomposition view from the family feature model in Section 6.1. Hence, only the

decomposition view will be shown here.

 95

Definitions there and information such as what the common and variable features are

critical information for deriving the decomposition view. Figure 7.1 shows the derived

decomposition view of the transportation management system.

Figure 7.1. Decomposition view for Transportation Management System

This is how the architecture is shaped according to the initial needs of the stakeholders.

As their understanding about the system progresses, they will be able to include other

components in the design. At the moment, they did not have a need for Query, so it will

not be implemented; but other than that, Database per Service will be used for data

management and consistency. Monitoring and log analysis will be adapted for monitoring

activities. Infrastructures will be configured for load balancing service discovery and

auto-scaling. The modules used in other parent modules are also shown in Figure 7.1.

 96

7.2.3. Layered View

This layered view, like the decomposition view, is adapted from the reference

architecture’s layered view diagram shown in Figure 6.2. The layered view of

transportation management system is depicted in Figure 7.2. Here, the decomposition

view's modules are spread among the layers in the layered view.

Figure 7.2. Layered view for Transportation Management System

7.2.4. Deployment & Service Oriented Architecture View

The deployment and service-oriented architecture view of the transportation management

system is shown in Figure 7.3. As seen from the figure, almost every deployable

unit/module in the reference architecture is also included in the application architecture.

Here, a specialized deployable unit is not preferred as an API gateway. AWS costs are

the most important factor in reaching this decision. Instead, the load balancer will take

over this responsibility. In addition, each microservice is responsible for performing

authentication and authorization using JWT tokens.

 97

Figure 7.3. Deployment & Service Oriented Architecture view for Transportation

Management System

7.3. Case Study – Remote Team Management System

Similar to the transportation management, remote team management has also become a

widespread need with the pandemic. Some companies encourage working remotely,

while others set up their teams entirely from the people who can work remotely even in

different continents. The number of applications developed as a solution to this need is

increasing every day and this industry is becoming competitive. It is expected that the

solution to be developed will provide efficient answers to many concerns like time

management, project management, reporting etc., and will facilitate the daily work of the

employees.

We have served our reference architecture to a software company that wants to develop

a solution for managing teams remotely and efficiently. This startup company, which has

a team of 11 members, develops various web-based products. The development team

consists of 9 people. There are 1 SREs, 1 architect, 1 designer, 1 business analyst, and 5

 98

developers. They have an average of eight years of software development experience.

They have decided to deploy their services to Google Cloud and use its services. The

application architecture obtained after applying the case study protocol is presented in the

following sub-sections.

7.3.1. Application Feature Model

The selected feature set for the Remote team management case from the Family Feature

Model is shown Table 7.4. As shown Table 9, CQRS is implemented to satisfy intense

query needs.

Table 7.4. Application Feature Domain Model

 99

7.3.2. Decomposition View

Figure 7.4 shows the decomposition view of the remote team management system.

Database per Service for data management and consistency is used. All monitoring

modules will be used for monitoring activities. Infrastructures will be configured for load

balancing, service discovery and auto-scaling. Besides, instead of through manual

process, managing and provisioning of infrastructure will be handled through code. The

modules used in other parent modules are also shown in Figure 7.4.

 100

Figure 7.4. Decomposition view for Remote Team Management System

7.3.3. Layered View

The layered view of remote team management system is shown in Figure 7.5. It is

customized from the layered view of the reference architecture given in Section 6.3

Similar to the previous case, the layer view of the modules in the decomposition view is

given in the figure.

Figure 7.5. Layered view for Remote Team Management System

 101

7.3.4. Deployment & Service Oriented Architecture View

Almost every deployable unit/module in the reference architecture is also included in the

application architecture for this case. Since load balancer capability of API Gateway will

be used here, it is not separately deployable. In addition, authentication and authorization

will be carried out through the API gateway. In addition, the caching module will be

implemented due to the need for services to access various information quickly. Figure

7.6 presents the Deployment & Service Oriented Architecture view of remote ream

management system faster.

Figure 7.6. Deployment & Service Oriented Architecture view for Remote Team

Management System

7.4. Discussion On Results

7.4.1. How Effective Is The Adopted Microservice Reference Architecture?

In the previous sections, we have explained how the reference architecture can be used to

create application architecture in two different cases within a multiple-case study design.

We used the research questions that we defined in the case study protocol to evaluate the

results of the prospective cases. Below are the interview results of the first case and the

 102

second case, respectively, using the radar chart. In the interviews, we used the predefined

questions that we have given in Table 7.2. During the interviews, we also asked if there

was anything else the team members wanted to point out aside from their answers to the

questions. The answers and comments were positive and good scores were obtained for

all the predefined questions.

As seen in Figure 7.7, the scores of 4 and above in the answers to questions 1 to 3 for the

first case study show that our reference architecture was effective for the given case. We

also received very good feedback from the answers to questions 8 to 11. The interviewees

were able to adapt the application architecture they obtained to the AWS environment in

a short time and stated that the architecture provided sufficient infrastructure and

guidance. They said that in the future, architectural changes might be made according to

the needs, in case they could follow the reference architecture and application architecture

development methodology again. However, they stated that it would be beneficial to

enhance the reference architecture by adding different views in the future according to

changing needs of the industry. They also stated that the application architecture was

adapted comfortably, the learning curve was reduced, and the concepts and methods to

be followed were well defined, which are the biggest benefits of the proposed approach.

Figure 7.7. Interview results for Transportation Management System

 103

For the second case, the results were similar as seen in Figure 7.8, where only the scores

of 4 and above were rated. Unlike the first case, the architecture had been developed but

had not been implemented yet. Therefore, the interviewees stated that they could apply

the same approach again if any changes would be needed while implementing. The

developers and architects participating in the survey stated that they could easily follow

how the application architecture would be derived, and that they would start to implement

the system accordingly. Additionally, they pointed out that the approach was easy to

understand and gave lots of details that they would take into account while implementing.

Figure 7.8. Interview results for Remote Team Management System

7.4.2. How Practical Is The Adopted Microservice Reference Architecture?

We mostly used questions from 4 to 7 and open-ended questions to improve the

practicality of the approach. The responses we received were only the scores 4 or above,

as shown in Figure 7.7 and Figure 7.8, and we received very positive feedback on the

practicality and the ease of use of the method in both case companies.

For the first case, architects and developers stated that the family feature diagram was a

quick guide about possible components and prevented wasting time searching for possible

solutions. They also pointed out the fact that the reference architecture and the application

architecture development approach accelerated the decision-making process and created

awareness of the concepts in the MSA. They stated that the approach enabled them to

 104

make some decisions early against the changes that might adversely affect the architecture

in the future.

Also for the second case, the interviewees found the approach useful and practical and

they stated that it gave the team confidence for the work to be done. They also had some

suggestions in terms of improving the reference architecture in the future. They suggested

that giving some widely used template application architectures, in addition to the

reference architecture, would enable the architecture to be implemented much faster.

7.5. Limitations And Threats To Validity

The reference architecture is meant to be general enough to be used to create various

application architectures. Nonetheless, the reference architecture, like other reference

architectures, does not give all the information. Similarly, the reference architecture

would not cover the modules of system that required highly specific features that were

not foreseen beforehand. We also focused on showcasing the reference architecture as

well as the approach for creating a concrete application architecture. This seems to be

handy and practical. We do not claim, however, that the reference architecture is

complete, and we believe that more research is needed to enhance and develop it.

Despite the fact that we demonstrated the effectiveness and practicality of our approach

in two cases in different companies, it can be taken as the base to conduct further cases.

In the multiple-case study, we have not concentrated on developing the entire system due

to elaborating on the design phase, which is a very critical phase of software development,

and to the confidentiality reasons. However, a study focusing on implementation is

considered as a future study.

The feature diagrams and reference architecture are both easily extensible. A more

comprehensive reference architecture and family feature diagram can be obtained by

addressing the concerns that may arise in the future, or some modules that do not affect

the architecture much but are important, such as Testing, can be handled in more detail.

 105

Another point is that the reference architecture can be expanded by adding different

architectural views according to the needs that may arise in the future.

To validate our approach, we followed a systematic, multiple-case study research method.

Every empirical study faces a number of possible risks to its validity. We will briefly

explore them for our multiple-case study research and detail each threat with its mitigation

technique(s).

Construct validity refers to the extent to which the operational measures under

investigation accurately reflect the researchers' intentions and the study objectives [49].

Reference architecture development approach as shown Figure 4.1 ensures the construct

validity to some extent. Table 7.5. lists the different threats to construct validity with the

countermeasures to minimize or eliminate their undesired effects.

Internal validity refers to the existence of a causal link between treatment and response.

The existence of a reference architecture development approach and the confirmation of

feedbacks through interviews made in rounds can be considered an advantage.

External validity refers to the ability of generalization of study. Despite the fact that

choosing cases from different companies and vendors for external validity can be

considered an advantage, it is not enough; there is a need for more work and for

improvement of suggestions.

 106

Table 7.5. Threats to construct validity and countermeasures

Threat Countermeasures

Interviewees' incorrect

perceptions of the questions'

descriptions

For the questions and answers, we used the ideas given

by Kitchenham and Pfleeger [67]. We included

thorough explanations to guarantee that each person's

understanding of the questions is unique.

Incorrect understanding of

descriptions of replies by

interviewees, as well as incorrect

answer selection

It might be difficult to tell the difference between

"Strongly Agree" and "Agree". We defined each scale in

detail for each Likert-scale question to mitigate this

treat.

The interviewees' incorrect

understanding of the open-

ended questions

We double-checked the interpretation of the questions

with those who were interviewed to mitigate this threat.

Researchers' incorrect

interpretation of the interviewed

people's responses

Both researchers were present in the interview to

establish observer triangulation, which mitigated this

threat.

Participants' experience in MSA

in the survey conducted for

which V&B views were selected

We tried to select participants worked in at least one

distributed architecture-based project in their

professional career.

 107

8. CONCLUSION

Microservice architecture (MSA) brings many advantages, such as agility and autonomy,

in software development. There are several studies suggesting a reference architecture for

MSA in the scientific literature, but these studies have remained at an abstract level and

do not suggest a method about how one should derive an application architecture. In our

study, we followed a systematic method to fill this gap.

First, we made a market analysis to define the reference architecture to be taken as a basis

for the application architecture and determined the needs. Then, we carried out a

systematic literature review and discussed the challenges in this area, and proposed

solutions to these challenges. Afterwards, we adopted a domain-driven approach to define

the family feature model of MSA, which represents common and variant features. As a

final step, we represented and shared the reference architecture using different

architectural views. Furthermore, we provided an architectural design method, specifying

how the application architecture would be derived from the reference architecture, so that

practitioners could easily derive their application architectures for different types of

MSA-based applications using this approach.

Multiple-case study research was applied to demonstrate effectiveness and practicality of

our approach. Two the cases within the multiple-case study design adopted the reference

architecture regarding their specific application needs for transportation management

system and remote team management system, respectively. According to the case-study

results, both the reference architecture and the method proposed to derive the application

architecture were revealed to be beneficial in deriving the concrete application

architectures. Moreover, the results also showed that the overall approach was found

practical and effective.

Moreover, the family feature model and the characterization of features, which is a crucial

step of the reference architecture, by using the Table 5.3 we provided on a cloud provider

basis, we believe that this can serve as a guide for companies that currently work with a

cloud provider. In case of a change in cloud provider, it is possible to determine, through

 108

utilizing the Table 5.3 again as a reference, the solutions available for each feature on

other cloud providers, and how these solutions should be used by paying attention to key

considerations. This guidance needs to be further evaluated with more comprehensive

studies. It is important to have in mind that it is not always necessary to have one-to-one

mapping between different solutions from different vendors. It could be more feasible to

map the functionality that covers each feature and build the new architecture by

combining different solutions and also evaluating the tradeoffs between them.

Our proposed reference architecture is specifically designed for microservice

architecture, however, we believe it can also be adapted for use in distributed systems, as

microservice architecture is a specialized version of distributed architecture. By using the

method that we have presented in Figure 6.5, we believe it is possible to develop a

reference architecture for a broader range of distributed architectures. We understand that

distributing a system is a complex task and it requires a lot of design decisions. Having a

reference architecture that considers these decisions and provides guidance can help

developers to navigate through the implementation of distributed systems and make the

process more structured and manageable.

As stated in Figure 6.4, while deriving the application architecture from the reference

architecture, some components of the reference architecture are either reused or the

reference architecture is adapted. In the case studies we have done, it has been noticed

that some variations may occur, especially in the deployment and service-oriented

architecture view, and the reference architecture has been updated so that it can easily

address these variants. As we mentioned in Section 3, this process is an opportunity to

improve the reference architecture. It is a fact that with more case studies, the reference

architecture can be further improved.

There are a few things to consider when deriving the application architecture from the

reference architecture. First, it should be known for what purpose each component

defined in the reference architecture will be used and what its variants are, and it should

be decided accordingly – because many design choices are actually trade-offs. It is also

highly recommended that the application architecture be documented according to all the

 109

views defined in the reference architecture, so that what components are required from

different perspectives and how the process will be handled, and whether there is a missed

point can be detected and corrected much earlier.

The use of the reference architecture for deriving more complex architectures and the

evaluation of the implementation details are among the needs to be satisfied in the future,

which also demonstrates the limitations of this study. In our upcoming studies, we plan

to evaluate the applicability of the reference architecture in larger projects by focusing on

these points.

Table 8.1 summarizes a SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis

of the proposed approach. Based on the SWOT analysis [68], it is determined that the

proposed approach’s strengths and opportunities outweigh its weaknesses and threats.

Table 8.1. SWOT Analysis of our approach

Dimension Explanation

Strengths

Both architectural views and feature diagrams are defined.

The method for deriving application architectures is provided.

Easy tailoring of the reference architecture for creating application
architectures is demonstrated by a multiple-case study.

Weakness

Further empirical studies are needed to understand how efficient the proposed
model is during implementation phase.

Runtime dependencies among components in each feature set can be variable
and complicated; and, it is not addressed in this study.

Opportunities

There is an opportunity to evaluate implementation aspect of the application
architectures.

There is an opportunity to carry out further case studies to enhance the
reference architecture.

Threats

MSA is quite a dynamic research domain for creating a reference architecture.

Chosing Views & Beyond as a software architecture documentation approach
can be considered a threat in relying on a specific documentation framework
for generic reference architecture

 110

The contributions of this study can be valuable to both practitioners and researchers who

are working on MSA. Practitioners can use the reference architecture and the application

architecture development method in order to evaluate, derive, or improve their own

application architectures. Researchers, on the other hand, can take our contribution as a

base to further assess or improve the reference architecture. As an example, our plans for

future work include studying on implementation approaches from an application

architecture and applying it on more complex architectures.

 111

9. BIBLIOGRAPHY

[1] S. Newman, Building Microservices, 1st ed., O’Reilly Media, Inc., 2015.

[2] M. Fowler, J. Lewis, Microservices,

https://martinfowler.com/articles/microservices.html, (Accessed September 19,

2022).

[3] S. Newman, Monolith to Microservices : Evolutionary Patterns to Transform Your

Monolith., (2019) 272.

https://books.google.com/books/about/Monolith_to_Microservices.html?id=ota_

DwAAQBAJ (Accessed April 19, 2022).

[4] O. Zimmermann, Microservices Tenets, Comput. Sci. 32 301–310.

https://doi.org/10.1007/s00450-016-0337-0.

[5] N. Josuttis, Soa in Practice: The Art of Distributed System Design, O’Reilly

Media, Inc., 2007.

[6] P. Jamshidi, C. Pahl, N.C. Mendonca, J. Lewis, S. Tilkov, Microservices: The

journey so far and challenges ahead, IEEE Softw. 35 (2018) 24–35.

https://doi.org/10.1109/MS.2018.2141039.

[7] J. Thönes, Microservices, IEEE Softw. 32 (2015).

https://doi.org/10.1109/MS.2015.11.

[8] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software,

Addison-Wesley, 2004.

[9] B. Tekinerdoğan, M. Akşit, Classifying and Evaluating Architecture Design

Methods, Software Architectures and Component Technology. (2002) 3–27.

https://doi.org/10.1007/978-1-4615-0883-0_1.

[10] P.D. Francesco, P. Lago, I. Malavolta, Architecting with microservices: A

systematic mapping study, Journal of Systems and Software. 150 77–97.

https://doi.org/10.1016/j.jss.2019.01.001.

[11] A.B. Bondi, Characteristics of Scalability and Their Impact on Performance,

Proceedings of the Second International Workshop on Software and

Performance - WOSP ’00. (2000). https://doi.org/10.1145/350391.

 112

[12] M. Villamizar, O. Garces, H. Castro, M. Verano, L. Salamanca, R. Casallas, S. Gil,

Evaluating the monolithic and the microservice architecture pattern to deploy web

applications in the cloud, in: 2015 10th Computing Colombian Conference

(10CCC), 2015: pp. 583–590.

https://doi.org/10.1109/ColumbianCC.2015.7333476.

[13] Microservice Decompositon: A Case Study of a Large Industrial Software

Migration in the Automotive Industry | BIG TU Wien,

https://www.big.tuwien.ac.at/publication/tuw-292039/ (Accessed April 20, 2022).

[14] Y. Wang, H. Kadiyala, J. Rubin, Promises and challenges of microservices: an

exploratory study, Empir Softw Eng. 26 (2021). https://doi.org/10.1007/S10664-

020-09910-Y.

[15] J. Ghofrani, D. Lübke, Challenges of Microservices Architecture: A Survey on the

State of the Practice, http://ceur-ws.org/Vol-2072

[16] M. Viggiato, R. Terra, H. Rocha, M.T. Valente, E. Figueiredo, Microservices in

Practice: A Survey Study, (2018). http://arxiv.org/abs/1808.04836

[17] C.M. Aderaldo, N.C. Mendonça, C. Pahl, P. Jamshidi, Benchmark Requirements

for Microservices Architecture Research, Proceedings - 2017 IEEE/ACM 1st

International Workshop on Establishing the Community-Wide Infrastructure for

Architecture-Based Software Engineering, ECASE 2017. (2017) 8–13.

https://doi.org/10.1109/ECASE.2017.4.

[18] M. Bruce, P. Pereira, Microservices in Action, 2018.

[19] M. Söylemez, B. Tekinerdogan, A.K. Tarhan, Feature-Driven Characterization of

Microservice Architectures: A Survey of the State of the Practice, Applied

Sciences 2022, Vol. 12, Page 4424. 12 (2022) 4424.

https://doi.org/10.3390/APP12094424.

[20] M. Söylemez, B. Tekinerdogan, A.K. Tarhan, Challenges and Solution Directions

of Microservice Architectures: A Systematic Literature Review, Applied Sciences

2022, Vol. 12, Page 5507. 12 (2022) 5507. https://doi.org/10.3390/APP12115507.

[21] J. Ghofrani, A. Bozorgmehr, Migration to microservices: Barriers and solutions,

Communications in Computer and Information Science. 1051 CCIS (2019) 269–

281. https://doi.org/10.1007/978-3-030-32475-9_20.

 113

[22] C. Richardson, Microservices Patterns, 2018.

[23] P. Jogalekar, M. Woodside, Evaluating the scalability of distributed systems, IEEE

Transactions on Parallel and Distributed Systems. 11 (2000) 589–603.

https://doi.org/10.1109/71.862209.

[24] G. Blinowski, A. Ojdowska, A. Przybylek, Monolithic vs. Microservice

Architecture: A Performance and Scalability Evaluation, IEEE Access. 10 (2022)

20357–20374. https://doi.org/10.1109/ACCESS.2022.3152803.

[25] M. Stefanko, O. Chaloupka, B. Rossi, The saga pattern in a reactive microservices

environment, ICSOFT 2019 - Proceedings of the 14th International Conference on

Software Technologies. (2019) 483–490.

https://doi.org/10.5220/0007918704830490.

[26] E.B.H. Yahia, L. Réveillère, Y.-D. Bromberg, R. Chevalier, A. Cadot, Medley: An

event-driven lightweight platform for service composition, Lecture Notes in

Computer Science (Including Subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics). 9671 (2016) 3–20.

https://doi.org/10.1007/978-3-319-38791-8_1.

[27] R. v. O’Connor, P. Elger, P.M. Clarke, Continuous software engineering—A

microservices architecture perspective, Journal of Software: Evolution and

Process. 29 (2017) e1866. https://doi.org/10.1002/SMR.1866.

[28] D. Shadija, M. Rezai, R. Hill, Towards an understanding of microservices, ICAC

2017 - 2017 23rd IEEE International Conference on Automation and Computing:

Addressing Global Challenges through Automation and Computing. (2017).

https://doi.org/10.23919/IConAC.2017.8082018.

[29] R. Benevides, Istio on Kubernetes, http://bit.ly/istio-kubernetes%0A, (Accessed

September 12, 2022)

[30] Y. Yale, H. Silveira, M. Sundaram, A microservice based reference architecture

model in the context of enterprise architecture, Proceedings of 2016 IEEE

Advanced Information Management, Communicates, Electronic and Automation

Control Conference, IMCEC 2016. (2017) 1856–1860.

https://doi.org/10.1109/IMCEC.2016.7867539.

 114

[31] K. Baylov, A. Dimov, Reference architecture for self-adaptive microservice

systems, Studies in Computational Intelligence. 737 (2017) 297–303.

https://doi.org/10.1007/978-3-319-66379-1_26/FIGURES/4.

[32] I.K. Aksakalli, T. Celik, A.B. Can, B. Tekinerdogan, A model-driven architecture

for automated deployment of microservices, Applied Sciences (Switzerland). 11

(2021). https://doi.org/10.3390/APP11209617.

[33] Microservices architecture on AWS - Implementing Microservices on AWS,

https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/simple-

microservices-architecture-on-aws.html (Accessed April 26, 2022).

[34] Microservice Architecture Reference Architectures 2017 | Red Hat Customer

Portal, (https://access.redhat.com/documentation/en-

us/reference_architectures/2017/html/microservice_architecture/index (Accessed

April 26, 2022).

[35] Microservices architecture design - Azure Architecture Center | Microsoft Docs,

https://docs.microsoft.com/en-us/azure/architecture/microservices/ (Accessed

April 26, 2022).

[36] Microservices architecture: Reference diagram - IBM Cloud Architecture Center,

https://www.ibm.com/cloud/architecture/architectures/microservices/reference-

architecture/ (Accessed April 26, 2022).

[37] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, Addison-

Wesley, 2003. http://books.google.fi/books?id=mdiIu8Kk1WMC.

[38] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R.

Nord, J. Stafford, Documenting Software Architectures: Views and Beyond,

Addison-Wesley, Upper Saddle River, NJ, 2010.

https://www.safaribooksonline.com/library/view/documenting-software-

architectures/9780132488617/.

[39] S. Apel, D. Batory, C. Kästner, G. Saake, Feature-Oriented Software Product

Lines, Feature-Oriented Software Product Lines. (2013).

https://doi.org/10.1007/978-3-642-37521-7.

[40] B. Tekinerdogan, K. Öztürk, Feature-Driven Design of SaaS Architectures, (2013)

189–212. https://doi.org/10.1007/978-1-4471-5031-2_9.

 115

[41] B. Kitchenham, S. Charters, Guidelines for performing Systematic Literature

Reviews in Software Engineering, Engineering. 2 1051.

https://doi.org/10.1145/1134285.1134500.

[42] B. Kitchenham, O.P. Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman,

Systematic literature reviews in software engineering – A systematic literature

review, Inf Softw Technol. 51 7–15. https://doi.org/10.1016/j.infsof.2008.09.009.

[43] C. Richardson, Pattern: Saga, https://microservices.io/patterns/data/saga.html.

(Accessed September 12, 2022).

[44] E. Brewer, CAP twelve years later: How the “rules” have changed, Computer

(Long Beach Calif). 45 (2012) 23–29. https://doi.org/10.1109/MC.2012.37.

[45] B. Kitchenham, O.P. Brereton, D. Budgen, M. Turner, J. Bailey, S. Linkman,

Systematic literature reviews in software engineering – A systematic literature

review, Inf Softw Technol. 51 (2009) 7–15.

https://doi.org/https://doi.org/10.1016/j.infsof.2008.09.009.

[46] T. Dybå, T. Dingsøyr, Strength of Evidence in Systematic Reviews in Software

Engineering, in: ESEM’08: Proceedings of the 2008 ACM-IEEE International

Symposium on Empirical Software Engineering and Measurement, ACM Press,

New York, New York, USA, 2008: pp. 178–187.

https://doi.org/10.1145/1414004.1414034.

[47] S. Tyszberowicz, R. Heinrich, B. Liu, Z. Liu, Identifying Microservices Using

Functional Decomposition, in: Springer, Cham, 2018: pp. 50–65.

https://doi.org/10.1007/978-3-319-99933-3_4.

[48] A Reference Architecture Primer, http://www.gaudisite.nl/ (Accessed September

27, 2022).

[49] R.K. Yin, Case Study Research: Design and Methods, SAGE Publications, 2009.

https://books.google.com.tr/books?id=FzawIAdilHkC.

[50] E. Brewer, CAP twelve years later: How the “rules” have changed, Computer

(Long Beach Calif). 45 (2012) 23–29. https://doi.org/10.1109/MC.2012.37.

[51] C. DeLoatch, S. Blindt, NoSQL databases: Scalable Cloud and Enterprise

Solutions”, University of Illinois at Urbana Champaign Thursday. (2012).

 116

[52] D. Ganesh Chandra, BASE analysis of NoSQL database, Future Generation

Computer Systems. 52 (2015) 13–21.

https://doi.org/10.1016/j.future.2015.05.003.

[53] X. Limon, A. Guerra-Hernandez, A.J. Sanchez-Garcia, J.C. Perez Arriaga,

SagaMAS: A Software Framework for Distributed Transactions in the

Microservice Architecture, in: 2018 6th International Conference in Software

Engineering Research and Innovation (CONISOFT), IEEE, 2018: pp. 50–58.

https://doi.org/10.1109/CONISOFT.2018.8645853.

[54] M. Fowler, Event Sourcing, https://martinfowler.com/eaaDev/EventSourcing.html

(Accessed September 12, 2022).

[55] C. Richardson, Command Query Responsibility Segregation (CQRS),

https://microservices.io/patterns/data/cqrs.html (Accessed September 11, 2022).

[56] What is an API Gateway? | NGINX Learning, https://www.nginx.com/learn/api-

gateway/ (Accessed September 11, 2022).

[57] BFF @ SoundCloud | ThoughtWorks,

https://www.thoughtworks.com/insights/blog/bff-soundcloud (Accessed

September 11, 2022).

[58] The API gateway pattern versus the direct client-to-microservice communication |

Microsoft Docs, https://docs.microsoft.com/en-

us/dotnet/architecture/microservices/architect-microservice-container-

applications/direct-client-to-microservice-communication-versus-the-api-

gateway-pattern (Accessed September 11, 2022).

[59] Microservices on AWS, AWS Whitepaper,

https://docs.aws.amazon.com/whitepapers/latest/microservices-on-

aws/microservices.html (Accessed 20 September, 2022)

[60] AWS Auto Scaling (Accessed 20 September, 2022)

[61] C. Liu, K. Li, K. Li, A Game Approach to Multi-Servers Load Balancing with

Load-Dependent Server Availability Consideration, IEEE Transactions on Cloud

Computing. 9 (2021) 1–13. https://doi.org/10.1109/TCC.2018.2790404.

[62] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of Software,

Addison-Wesley, 2004.

 117

[63] What is configuration management?,

https://www.redhat.com/en/topics/automation/what-is-configuration-management

(Accessed September 22, 2022).

[64] Infrastructure as Code: A Reason to Smile | ThoughtWorks,

https://www.thoughtworks.com/insights/blog/infrastructure-code-reason-smile

(Accessed September 22, 2022).

[65] A. Kassahun, Aligning business processes and IT of multiple collaborating

organisations, (2017). https://doi.org/10.18174/414988.

[66] P. Runeson, M. Höst, Guidelines for conducting and reporting case study research

in software engineering, Empir Softw Eng. 14 (2009) 131–164.

https://doi.org/10.1007/S10664-008-9102-8.

[67] B.A. Kitchenham, S.L. Pfleeger, Principles of survey research, ACM SIGSOFT

Software Engineering Notes. 27 (2002) 20–24.

https://doi.org/10.1145/511152.511155.

[68] T. Hill, R. Westbrook, SWOT analysis: It’s time for a product recall, Long Range

Plann. 30 (1997) 46–52. https://doi.org/10.1016/S0024-6301(96)00095-7.

 118

APPENDIX

APPENDIX 1 – Study Quality Assesment Checklist

REPORTING RELEVANCE RIGOR CREDIBILITY

Aim

Scope,
Context

&
Design

Implications
in practice
& research

Validity
&

reliability
of

variables

Explicitness
of measures

Adequacy
of

reporting

Creditability,
validity &
reliability

Limitations

Primary
Study Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Total

A 1,0 1,0 0,5 0,5 0,0 0,0 0,5 0,0 3,5

B 1,0 1,0 0,5 0,5 0,0 0,0 0,5 0,0 3,5

C 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,5 7,5

D 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,5 7,5

E 1,0 1,0 1,0 1,0 1,0 0,5 1,0 0,0 6,5

F 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,0 3,5

G 1,0 1,0 1,0 1,0 1,0 0,5 1,0 0,0 6,5

H 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,5 7,5

I 1,0 1,0 0,5 0,5 0,0 0,0 0,5 0,0 3,5

J 1,0 1,0 1,0 0,5 0,0 0,0 1,0 1,0 5,5

K 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,5 7,5

L 0,5 1,0 1,0 1,0 0,5 1,0 1,0 0,0 6,0

M 0,5 0,5 1,0 1,0 1,0 1,0 1,0 0,0 6,0

N 1,0 1,0 1,0 1,0 0,5 1,0 1,0 0,0 6,5

O 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,0 7,0

P 1,0 1,0 0,5 0,0 0,0 0,0 0,5 0,5 3,5

Q 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,0 7,0

R 1,0 0,5 1,0 1,0 1,0 1,0 1,0 0,0 6,5

S 0,5 1,0 1,0 0,5 0,0 0,0 1,0 0,0 4,0

T 0,5 0,5 1,0 0,5 0,5 1,0 0,5 0,0 4,5

U 1,0 1,0 1,0 1,0 0,0 0,0 1,0 0,0 5,0

V 1,0 1,0 1,0 1,0 0,5 1,0 1,0 1,0 7,5

W 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,0 7,0

X 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,0 7,0

Y 1,0 1,0 1,0 0,5 0,0 0,0 1,0 1,0 5,5

Z 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,5 7,5

 119

AA 0,5 1,0 1,0 1,0 0,5 1,0 1,0 0,0 6,0

AB 0,5 1,0 1,0 0,5 0,0 0,0 1,0 0,0 4,0

AC 1,0 1,0 1,0 0,5 0,0 0,0 0,5 0,0 4,0

AD 1,0 0,5 1,0 0,5 0,5 1,0 1,0 1,0 6,5

AE 1,0 1,0 1,0 1,0 0,5 1,0 1,0 0,0 6,5

AF 1,0 0,5 1,0 0,5 0,5 1,0 1,0 0,0 5,5

AG 1,0 1,0 0,5 0,5 0,0 0,0 0,5 0,0 3,5

AH 1,0 1,0 1,0 1,0 0,0 0,0 1,0 0,0 5,0

AI 1,0 1,0 1,0 0,5 0,0 1,0 0,5 1,0 6,0

AJ 1,0 0,5 0,5 0,5 0,0 0,0 1,0 1,0 4,5

AK 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,5 7,5

AL 1,0 1,0 1,0 1,0 0,0 0,0 0,0 0,0 4,0

AM 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,5 7,5

AN 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,5 7,5

AO 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 8,0

AP 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 8,0

AQ 1,0 1,0 1,0 1,0 0,0 0,0 1,0 0,5 5,5

AR 1,0 1,0 1,0 1,0 0,5 0,5 1,0 0,0 6,0

AS 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,5 7,5

AT 1,0 1,0 1,0 1,0 0,5 0,5 1,0 1,0 7,0

AU 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,0 7,0

AV 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 8,0

AW 1,0 0,5 1,0 1,0 1,0 1,0 0,5 0,0 6,0

AX 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 8,0

AY 1,0 1,0 1,0 0,5 1,0 0,5 1,0 0,0 6,0

AZ 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 8,0

BA 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,0 7,0

BB 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 8,0

BC 1,0 1,0 1,0 0,5 1,0 1,0 1,0 0,5 7,0

BD 1,0 1,0 1,0 1,0 1,0 0,5 1,0 0,0 6,5

BE 1,0 1,0 1,0 1,0 0,0 0,0 0,5 0,0 4,5

BF 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,0 7,0

BG 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,0 7,0

BH 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,0 7,0

 120

BI 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,0 7,0

BJ 1,0 1,0 0,5 0,5 0,5 0,5 0,5 0,0 4,5

BK 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 8,0

BL 1,0 1,0 0,5 0,5 0,5 0,5 0,5 1,0 5,5

BM 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 8,0

BN 1,0 0,5 0,5 0,5 0,5 0,5 0,5 0,0 4,0

BO 1,0 1,0 0,5 0,5 0,5 0,5 0,5 0,0 4,5

BP 1,0 1,0 1,0 0,5 0,5 0,5 0,5 0,0 5,0

BQ 1,0 1,0 0,5 1,0 1,0 1,0 1,0 0,0 6,5

BR 1,0 1,0 0,5 1,0 1,0 1,0 1,0 0,0 6,5

BS 1,0 1,0 0,5 0,5 1,0 1,0 1,0 0,5 6,5

BT 1,0 0,5 0,5 0,5 0,0 0,5 0,5 0,0 3,5

BU 1,0 1,0 0,5 1,0 1,0 1,0 1,0 1,0 7,5

BV 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,0 7,0

BW 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,5 7,5

BX 1,0 1,0 0,5 1,0 1,0 1,0 1,0 0,0 6,5

BY 1,0 1,0 0,5 1,0 1,0 1,0 1,0 1,0 7,5

BZ 1,0 0,5 0,5 0,5 0,5 0,5 0,5 0,0 4,0

CA 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,5 7,5

CB 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,5 7,5

CC 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,0 7,0

CD 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 8,0

CE 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 8,0

CF 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 8,0

CG 1,0 1,0 1,0 1,0 1,0 1,0 1,0 0,5 7,5

 121

APPENDIX 2 – List of Primary Studies

A. D. I. Savchenko, G. I. Radchenko, and O. Taipale, “Micro-services validation:

Mjolnirr platform case study,” in 2015 38th International Convention on Information

and Communication Technology, Electronics and Microelectronics (MIPRO), May

2015, pp. 235–240, doi: 10.1109/MIPRO.2015.7160271.

B. M. Rahman and J. Gao, “A Reusable Automated Acceptance Testing Architecture

for Micro-services in Behavior-Driven Development,” in 2015 IEEE Symposium on

Service-Oriented System Engineering, Mar. 2015, pp. 321–325, doi:

10.1109/SOSE.2015.55.

C. N. Viennot, M. Lécuyer, J. Bell, R. Geambasu, and J. Nieh, “Synapse,” in

Proceedings of the Tenth European Conference on Computer Systems - EuroSys ’15,

2015, pp. 1–16, doi: 10.1145/2741948.2741975.

D. Y. Sun, S. Nanda, and T. Jaeger, “Security-as-a-Service for Micro-services-Based

Cloud Applications,” in 2015 IEEE 7th International Conference on Cloud Computing

Technology and Science (CloudCom), Nov. 2015, pp. 50–57, doi:

10.1109/CloudCom.2015.93.

E. H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu, “Efficiency Analysis

of Provisioning Micro-services,” in 2016 IEEE International Conference on Cloud

Computing Technology and Science (CloudCom), Dec. 2016, pp. 261–268, doi:

10.1109/CloudCom.2016.0051.

F. A. Messina, R. Rizzo, P. Storniolo, M. Tripiciano, and A. Urso, “The Database-

is-the-Service Pattern for Micro-service Architectures,” Springer, Cham, 2016, pp. 223–

233.

G. A. de Camargo, I. Salvadori, R. dos S. Mello, and F. Siqueira, “An architecture to

automate performance tests on micro-services,” in Proceedings of the 18th International

Conference on Information Integration and Web-based Applications and Services -

iiWAS ’16, 2016, pp. 422–429, doi: 10.1145/3011141.3011179.

H. V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar, “Gremlin:

Systematic Resilience Testing of Micro-services,” in 2016 IEEE 36th International

Conference on Distributed Computing Systems (ICDCS), Jun. 2016, pp. 57–66, doi:

10.1109/ICDCS.2016.11.

 122

I. K. B. Long, H. Yang, and Y. Kim, “ICN-based service discovery mechanism for

micro-service architecture,” in 2017 Ninth International Conference on Ubiquitous and

Future Networks (ICUFN), Jul. 2017, pp. 773–775, doi: 10.1109/ICUFN.2017.7993899.

J. S. Haselböck, R. Weinreich, and G. Buchgeher, “Decision guidance models for

micro-services,” in Proceedings of the Fifth European Conference on the Engineering of

Computer-Based Systems - ECBS ’17, 2017, pp. 1–10, doi: 10.1145/3123779.3123804.

K. S. Klock, J. M. E. M. Van Der Werf, J. P. Guelen, and S. Jansen, “Workload-

Based Clustering of Coherent Feature Sets in Micro-service Architectures,” in 2017 IEEE

International Conference on Software Architecture (ICSA), Apr. 2017, pp. 11–20, doi:

10.1109/ICSA.2017.38.

L. H. Khazaei, R. Ravichandiran, B. Park, H. Bannazadeh, A. Tizghadam, and A.

Leon-Garcia, “Elascale: autoscaling and monitoring as a service,” Proceedings of the 27th

Annual International Conference on Computer Science and Software Engineering. IBM

Corp., pp. 234–240, 2017, Accessed: Jun. 11, 2019. [Online]. Available:

https://dl.acm.org/citation.cfm?id=3172823.

M. N. H. Do, T. Van Do, X. Thi Tran, L. Farkas, and C. Rotter, “A scalable routing

mechanism for stateful micro-services,” in 2017 20th Conference on Innovations in

Clouds, Internet and Networks (ICIN), Mar. 2017, pp. 72–78, doi:

10.1109/ICIN.2017.7899252.

N. M. Rusek, G. Dwornicki, and A. Orłowski, “A Decentralized System for Load

Balancing of Containerized Micro-services in the Cloud,” Springer, Cham, 2017, pp.

142–152.

O. D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan, “Multi-

objective scheduling of micro-services for optimal service function chains,” in 2017 IEEE

International Conference on Communications (ICC), May 2017, pp. 1–6, doi:

10.1109/ICC.2017.7996729.

P. G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino, and A. Di

Salle, “MicroART: A software architecture recovery tool for maintaining micro-service-

based systems,” in Proceedings - 2017 IEEE International Conference on Software

Architecture Workshops, ICSAW 2017: Side Track Proceedings, Jun. 2017, pp. 298–302,

doi: 10.1109/ICSAW.2017.9.

 123

Q. H. Zhou et al., “Overload Control for Scaling WeChat Micro-services,” in

Proceedings of the ACM Symposium on Cloud Computing - SoCC ’18, 2018, pp. 149–

161, doi: 10.1145/3267809.3267823.

R. X. Luo, F. Ren, and T. Zhang, “High Performance Userspace Networking for

Containerized Micro-services,” Springer, Cham, 2018, pp. 57–72.

S. X. Limon, A. Guerra-Hernandez, A. J. Sanchez-Garcia, and J. C. Perez Arriaga,

“SagaMAS: A Software Framework for Distributed Transactions in the Micro-service

Architecture,” in 2018 6th International Conference in Software Engineering Research

and Innovation (CONISOFT), Oct. 2018, pp. 50–58, doi:

10.1109/CONISOFT.2018.8645853.

T. K. Jander, L. Braubach, and A. Pokahr, “Defense-in-depth and Role

Authentication for Micro-service Systems,” Procedia Comput. Sci., vol. 130, pp. 456–

463, Jan. 2018, doi: 10.1016/J.PROCS.2018.04.047.

U. S. Tyszberowicz, R. Heinrich, B. Liu, and Z. Liu, “Identifying Micro-services

Using Functional Decomposition,” Springer, Cham, 2018, pp. 50–65.

V. T. Yarygina and A. H. Bagge, “Overcoming Security Challenges in Micro-service

Architectures,” in 2018 IEEE Symposium on Service-Oriented System Engineering

(SOSE), Mar. 2018, pp. 11–20, doi: 10.1109/SOSE.2018.00011.

W. S. Sebastio, R. Ghosh, and T. Mukherjee, “An Availability Analysis Approach for

Deployment Configurations of Containers,” IEEE Trans. Serv. Comput., pp. 1–1, 2018,

doi: 10.1109/TSC.2017.2788442.

X. S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and N.-L. Hsueh, “Using

Service Dependency Graph to Analyze and Test Micro-services,” in 2018 IEEE 42nd

Annual Computer Software and Applications Conference (COMPSAC), Jul. 2018, pp.

81–86, doi: 10.1109/COMPSAC.2018.10207.

Y. A. Warke, M. Mohamed, R. Engel, H. Ludwig, W. Sawdon, and L. Liu, “Storage

Service Orchestration with Container Elasticity,” in 2018 IEEE 4th International

Conference on Collaboration and Internet Computing (CIC), Oct. 2018, pp. 283–292, doi:

10.1109/CIC.2018.00046.

Z. J. Lin, P. Chen, and Z. Zheng, “Microscope: Pinpoint Performance Issues with

Causal Graphs in Micro-service Environments,” Springer, Cham, 2018, pp. 3–20.

 124

AA. Y. Sun, L. Meng, P. Liu, Y. Zhang, and H. Chan, “Automatic Performance

Simulation for Micro-service Based Applications,” Springer, Singapore, 2018, pp. 85–

95.

AB. E. Bainomugisha, A. S. I. G. on S. Engineering, and ACM Digital Library.,

Partitioning Micro-services: A Domain Engineering Approach. ACM, 2018.

AC. D. Guija and M. S. Siddiqui, “Identity and Access Control for micro-services

based 5G NFV platforms,” in Proceedings of the 13th International Conference on

Availability, Reliability and Security - ARES 2018, 2018, pp. 1–10, doi:

10.1145/3230833.3233255.

AD. B. Mayer and R. Weinreich, “An Approach to Extract the Architecture of Micro-

service-Based Software Systems,” in 2018 IEEE Symposium on Service-Oriented

System Engineering (SOSE), Mar. 2018, pp. 21–30, doi: 10.1109/SOSE.2018.00012.

AE. F. Klinaku, M. Frank, and S. Becker, “CAUS : An Elasticity Controller for a

Containerized Micro-service” in Companion of the 2018 ACM/SPEC International

Conference on Performance Engineering - ICPE ’18, 2018, pp. 93–98, doi:

10.1145/3185768.3186296.

AF. K. Jander, A. Pokahr, L. Braubach, and J. Kalinowski, “Service Discovery in

Megascale Distributed Systems,” Springer, Cham, 2018, pp. 273–284.

AG. M. J. Kargar and A. Hanifizade, “Automation of regression test in micro-service

architecture,” in 2018 4th International Conference on Web Research (ICWR), Apr. 2018,

pp. 133–137, doi: 10.1109/ICWR.2018.8387249.

AH. G. Pardon, C. Pautasso, and O. Zimmermann, “Consistent Disaster Recovery for

Micro-services: the BAC Theorem,” IEEE Cloud Comput., vol. 5, no. 1, pp. 49–59, Jan.

2018, doi: 10.1109/MCC.2018.011791714.

AI. D. Monteiro, R. Gadelha, P. H. M. Maia, L. S. Rocha, and N. C. Mendonça,

“Beethoven: An Event-Driven Lightweight Platform for Micro-service Orchestration,”

Springer, Cham, 2018, pp. 191–199.

AJ. G. Fu, J. Sun, and J. Zhao, “An optimized control access mechanism based on

micro-service architecture,” in 2018 2nd IEEE Conference on Energy Internet and Energy

System Integration (EI2), Oct. 2018, pp. 1–5, doi: 10.1109/EI2.2018.8582628.

 125

AK. L. Bao, C. Wu, X. Bu, N. Ren, and M. Shen, “Performance Modeling and

Workflow Scheduling of Micro-service-based Applications in Clouds,” IEEE Trans.

Parallel Distrib. Syst., pp. 1–1, 2019, doi: 10.1109/TPDS.2019.2901467.

AL. Y. Wang, L. Cheng, and X. Sun, “Design and Research of Micro-service

Application Automation Testing Framework,” in Proceedings - 2019 International

Conference on Information Technology and Computer Application, ITCA 2019, Dec.

2019, pp. 257–260, doi: 10.1109/ITCA49981.2019.00063.

AM. E. Fadda, P. Plebani, and M. Vitali, “Monitoring-aware Optimal Deployment for

Applications based on Micro-services,” IEEE Trans. Serv. Comput., pp. 1–1, Jul. 2019,

doi: 10.1109/tsc.2019.2910069.

AN. M. Lin, J. Xi, W. Bai, and J. Wu, “Ant Colony Algorithm for Multi-Objective

Optimization of Container-Based Micro-service Scheduling in Cloud,” IEEE Access, vol.

7, pp. 83088–83100, 2019, doi: 10.1109/ACCESS.2019.2924414.

AO. Y. Yu, J. Yang, C. Guo, H. Zheng, and J. He, “Joint optimization of service

request routing and instance placement in the micro-service system,” J. Netw. Comput.

Appl., vol. 147, p. 102441, Dec. 2019, doi: 10.1016/j.jnca.2019.102441.

AP. S. Li et al., “A dataflow-driven approach to identifying micro-services from

monolithic applications,” J. Syst. Softw., vol. 157, p. 110380, Nov. 2019, doi:

10.1016/j.jss.2019.07.008.

AQ. O.-M. Ungureanu, C. Vlădeanu, and R. Kooij, “Kubernetes cluster optimization

using hybrid shared-state scheduling framework,” in Proceedings of the 3rd International

Conference on Future Networks and Distributed Systems - ICFNDS ’19, 2019, Accessed:

Aug. 27, 2020. [Online]. Available: https://doi.org/10.1145/3341325.3341992.

AR. A. Jindal, V. Podolskiy, and M. Gerndt, “Performance modeling for cloud micro-

service applications,” in ICPE 2019 - Proceedings of the 2019 ACM/SPEC International

Conference on Performance Engineering, Apr. 2019, pp. 25–32, doi:

10.1145/3297663.3310309.

AS. M. Cinque, R. Della Corte, and A. Pecchia, “Micro-services Monitoring with

Event Logs and Black Box Execution Tracing,” IEEE Trans. Serv. Comput., 2019, doi:

10.1109/TSC.2019.2940009.

 126

AT. L. L. Jimenez and O. Schelen, “DOCMA: A decentralized orchestrator for

containerized micro-service applications,” in Proceedings - 2019 3rd IEEE International

Conference on Cloud and Fog Computing Technologies and Applications, Cloud Summit

2019, Aug. 2019, pp. 45–51, doi: 10.1109/CloudSummit47114.2019.00014.

AU. T. Kiss et al., “MiCADO—Micro-service-based Cloud Application-level

Dynamic Orchestrator,” Futur. Gener. Comput. Syst., vol. 94, pp. 937–946, May 2019,

doi: 10.1016/J.FUTURE.2017.09.050.

AV. S. Wang, Z. Ding, and C. Jiang, “Elastic Scheduling for Micro-service

Applications in Clouds,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 98–115,

Jul. 2020, doi: 10.1109/tpds.2020.3011979.

AW. F. Wan, X. Wu, and Q. Zhang, “Chain-Oriented Load Balancing in Micro-service

System,” in 2020 World Conference on Computing and Communication Technologies

(WCCCT), May 2020, pp. 10–14, doi: 10.1109/WCCCT49810.2020.9169996.

AX. G. Yu, P. Chen, and Z. Zheng, “Microscaler: Cost-effective Scaling for Micro-

service Applications in the Cloud with an Online Learning Approach,” IEEE Trans.

Cloud Comput., pp. 1–1, Apr. 2020, doi: 10.1109/tcc.2020.2985352.

AY. A. Samanta and J. Tang, “Dyme: Dynamic Micro-service Scheduling in Edge

Computing Enabled IoT,” IEEE Internet Things J., pp. 1–1, Mar. 2020, doi:

10.1109/jiot.2020.2981958.

AZ. Á. Brandón, M. Solé, A. Huélamo, D. Solans, M. S. Pérez, and V. Muntés-Mulero,

“Graph-based root cause analysis for service-oriented and micro-service architectures,”

J. Syst. Softw., vol. 159, p. 110432, Jan. 2020, doi: 10.1016/j.jss.2019.110432.

BA. S. N. Srirama, M. Adhikari, and S. Paul, “Application deployment using

containers with auto-scaling for micro-services in cloud environment,” J. Netw. Comput.

Appl., vol. 160, p. 102629, Jun. 2020, doi: 10.1016/j.jnca.2020.102629.

BB. A. Avritzer et al., “Scalability Assessment of Micro-service Architecture

Deployment Configurations: A Domain-based Approach Leveraging Operational Profiles

and Load Tests,” J. Syst. Softw., vol. 165, p. 110564, Jul. 2020, doi:

10.1016/j.jss.2020.110564.

BC. A. De Iasio and E. Zimeo, “A framework for micro-services synchronization,”

Softw. Pract. Exp., p. spe.2877, Aug. 2020, doi: 10.1002/spe.2877.

 127

BD. M. Imdoukh, I. Ahmad, and M. Alfailakawi, “Optimizing scheduling decisions of

container management tool using many-objective genetic algorithm,” Concurr. Comput.

Pract. Exp., vol. 32, no. 5, Mar. 2020, doi: 10.1002/cpe.5536.

BE. M. Autili, A. Perucci, and L. De Lauretis, “A Hybrid Approach to Micro-services

Load Balancing,” in Micro-services, Springer International Publishing, 2020, pp. 249–

269.

BF. N. C. Coulson, S. Sotiriadis, and N. Bessis, “Adaptive Micro-service Scaling for

Elastic Applications,” IEEE Internet Things J., vol. 7, no. 5, pp. 4195–4202, May 2020,

doi: 10.1109/JIOT.2020.2964405.

BG. M. Jin et al., “An Anomaly Detection Algorithm for Microservice Architecture

Based on Robust Principal Component Analysis,” IEEE Access, 2020, doi:

10.1109/ACCESS.2020.3044610.

BH. C. K. Rudrabhatla, “A Quantitative Approach for Estimating the Scaling

Thresholds and Step Policies in a Distributed Microservice Architecture,” IEEE Access,

vol. 8, pp. 180246–180254, 2020, doi: 10.1109/ACCESS.2020.3028310.

BI. N. C. Coulson, S. Sotiriadis, and N. Bessis, “Adaptive Microservice Scaling for

Elastic Applications,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4195–4202, May

2020, doi: 10.1109/JIOT.2020.2964405.

BJ. X. Guo et al., “Graph-Based Trace Analysis for Microservice Architecture

Understanding and Problem Diagnosis,” Proceedings of the 28th ACM Joint Meeting on

European Software Engineering Conference and Symposium on the Foundations of

Software Engineering, vol. 20, 2020, doi: 10.1145/3368089.

BK. D. Monteiro, P. H. M. Maia, L. S. Rocha, and N. C. Mendonça, “Building

orchestrated microservice systems using declarative business processes,” Service

Oriented Computing and Applications, vol. 14, no. 4, pp. 243–268, Dec. 2020, doi:

10.1007/S11761-020-00300-2/FIGURES/12.

BL. D. Ernst and S. Tai, “Offline Trace Generation for Microservice Observability,”

Proceedings - IEEE International Enterprise Distributed Object Computing Workshop,

EDOCW, pp. 308–317, 2021, doi: 10.1109/EDOCW52865.2021.00062.

 128

BM. A. A. Khaleq and I. Ra, “Intelligent Autoscaling of Microservices in the Cloud

for Real-Time Applications,” IEEE Access, vol. 9, pp. 35464–35476, 2021, doi:

10.1109/ACCESS.2021.3061890.

BN. A. Bento et al., “A layered framework for root cause diagnosis of microservices,”

2021 IEEE 20th International Symposium on Network Computing and Applications

(NCA), pp. 1–8, Nov. 2021, doi: 10.1109/NCA53618.2021.9685494.

BO. T. Weng, W. Yang, G. Yu, P. Chen, J. Cui, and C. Zhang, “Kmon: An In-kernel

Transparent Monitoring System for Microservice Systems with eBPF,” Proceedings -

2021 IEEE/ACM International Workshop on Cloud Intelligence, CloudIntelligence 2021,

pp. 25–30, May 2021, doi: 10.1109/CLOUDINTELLIGENCE52565.2021.00014.

BP. A. Megargel, C. M. Poskitt, and V. Shankararaman, “Microservices Orchestration

vs. Choreography: A Decision Framework,” pp. 134–141, Dec. 2021, doi:

10.1109/EDOC52215.2021.00024.

BQ. Y. Chen, N. Chen, W. Xu, L. Lian, and H. Tu, “MFRL-CA: Microservice Fault

Root Cause Location based on Correlation Analysis,” pp. 90–101, Dec. 2021, doi:

10.1109/DSA52907.2021.00018.

BR. Y. Cai, B. Han, J. Li, N. Zhao, and J. Su, “ModelCoder: A Fault Model based

Automatic Root Cause Localization Framework for Microservice Systems,” 2021

IEEE/ACM 29th International Symposium on Quality of Service, IWQOS 2021, Jun.

2021, doi: 10.1109/IWQOS52092.2021.9521318.

BS. M. Li, D. Tang, Z. Wen, and Y. Cheng, “Microservice Anomaly Detection Based

on Tracing Data Using Semi-supervised Learning,” 2021 4th International Conference on

Artificial Intelligence and Big Data, ICAIBD 2021, pp. 38–44, May 2021, doi:

10.1109/ICAIBD51990.2021.9459100.

BT. C. Pasomsup and Y. Limpiyakorn, “HT-RBAC: A Design of Role-based Access

Control Model for Microservice Security Manager,” pp. 177–181, Dec. 2021, doi:

10.1109/BDEE52938.2021.00038.

BU. D. Liu et al., “MicroHECL: High-efficient root cause localization in large-scale

microservice systems,” Proceedings - International Conference on Software Engineering,

pp. 338–347, May 2021, doi: 10.1109/ICSE-SEIP52600.2021.00043.

 129

BV. Z. Ye, P. Chen, and G. Yu, “T-Rank: A lightweight spectrum based fault

localization approach for microservice systems,” Proceedings - 21st IEEE/ACM

International Symposium on Cluster, Cloud and Internet Computing, CCGrid 2021, pp.

416–425, May 2021, doi: 10.1109/CCGRID51090.2021.00051.

BW. S. Wang, Z. Ding, and C. Jiang, “Elastic scheduling for microservice applications

in clouds,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp. 98–

115, Jan. 2021, doi: 10.1109/TPDS.2020.3011979.

BX. L. Gu, D. Zeng, J. Hu, H. Jin, S. Guo, and A. Y. Zomaya, “Exploring layered

container structure for cost efficient microservice deployment,” Proceedings - IEEE

INFOCOM, vol. 2021-May, May 2021, doi: 10.1109/INFOCOM42981.2021.9488918.

BY. J. Grohmann et al., “SuanMing: Explainable Prediction of Performance

Degradations in Microservice Applications,” ICPE 2021 - Proceedings of the

ACM/SPEC International Conference on Performance Engineering, pp. 165–176, Apr.

2021, doi: 10.1145/3427921.3450248.

BZ. B. Choi, J. Park, C. Lee, and D. Han, “pHPA: A Proactive Autoscaling

Framework for Microservice Chain,” 5th Asia-Pacific Workshop on Networking (APNet

2021), vol. 7, pp. 65–71, Jun. 2021, doi: 10.1145/3469393.3469401.

CA. Y. Li, Y. Zhang, Z. Zhou, and L. Shen, “Intelligent flow control algorithm for

microservice system,” Cognitive Computation and Systems, vol. 3, no. 3, pp. 276–285,

Sep. 2021, doi: 10.1049/CCS2.12013.

CB. C. T. Joseph and K. Chandrasekaran, “Nature-inspired resource management and

dynamic rescheduling of microservices in Cloud datacenters,” Concurrency and

Computation: Practice and Experience, vol. 33, no. 17, p. e6290, Sep. 2021, doi:

10.1002/CPE.6290.

CC. M. Daoud, A. el Mezouari, N. Faci, D. Benslimane, Z. Maamar, and A. el Fazziki,

“A multi-model based microservices identification approach,” Journal of Systems

Architecture, vol. 118, p. 102200, Sep. 2021, doi: 10.1016/J.SYSARC.2021.102200.

CD. L. A. Vayghan, M. A. Saied, M. Toeroe, and F. Khendek, “A Kubernetes

controller for managing the availability of elastic microservice based stateful

applications,” Journal of Systems and Software, vol. 175, p. 110924, May 2021, doi:

10.1016/J.JSS.2021.110924.

 130

CE L. Meng, F. Ji, Y. Sun, and T. Wang, “Detecting anomalies in microservices with

execution trace comparison,” Future Generation Computer Systems, vol. 116, pp. 291–

301, Mar. 2021, doi: 10.1016/J.FUTURE.2020.10.040.

CF. V. Cortellessa, D. di Pompeo, R. Eramo, and M. Tucci, “A model-driven approach

for continuous performance engineering in microservice-based systems,” Journal of

Systems and Software, vol. 183, p. 111084, Jan. 2022, doi: 10.1016/J.JSS.2021.111084.

CG. J. Moeyersons, S. Kerkhove, T. Wauters, F. de Turck, and B. Volckaert, “Towards

cloud-based unobtrusive monitoring in remote multi-vendor environments,” Software:

Practice and Experience, vol. 52, no. 2, pp. 427–442, Feb. 2022, doi: 10.1002/SPE.3029.

 131

APPENDIX 3 – Related Publications – Journal Articles

M. Söylemez, B. Tekinerdogan, and A. Kolukısa Tarhan, “Feature-Driven

Characterization of Microservice Architectures: A Survey of the State of the

Practice,” Applied Sciences, vol. 12, no. 9, p. 4424, Apr. 2022, doi:

10.3390/app12094424.

M. Söylemez, B. Tekinerdogan, and A. Kolukısa Tarhan, “Challenges and Solution

Directions of Microservice Architectures: A Systematic Literature Review,” Applied

Sciences, vol. 12, no. 11, p. 5507, May 2022, doi: 10.3390/app12115507.

