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ABSTRACT

REAL-TIME RADAR TRACKING SYSTEM WITH DEEP LEARNING

Muhammed Emir ÇAKICI

Master of Science, Computer Engineering
Supervisor: Prof. Dr. SUAT ÖZDEMİR

January 2023, 72 pages

Real-time data tracking plays an essential role in the flight test processes of an aircraft.

The data flowing from the aircraft to the ground control center must be real-time and

uninterrupted. However, sometimes ground control systems can cause disconnection with

the aircraft, making it difficult to track them. This thesis firstly gives a brief survey of

real-time aircraft tracking systems and then proposes a deep learning-based, real-time 3D

prediction of the next location named DeepAT for uninterrupted real-time data tracking. Our

DeepAT model uses an Encoder-Decoder GRU model to predict the next location of the

aircraft. Thus, in case of any disconnection, the tracking of the aircraft can be sustainable.

In the experiments, real flight test sensor data collected with the telemetry system are used.

Experimental analyzes are performed for two structurally different aircraft, one of which

is a highly maneuverable fixed-wing propeller aircraft and the other an Unmanned Air

Vehicle (UAV). The efficiency and superiority of the proposed method is demonstrated by

comparing it with state-of-the-art methods in terms of Mean Absolute Error (MAE) and

Mean Squared Error (MSE) metrics. The results show that our proposed method outperforms

the state-of-the-art and gives better prediction of the next location of aircraft.

Keywords: deep learning, GRU, Encoder-Decoder, aircraft, tracking system, UAV
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ÖZET

DERİN ÖĞRENME İLE GERÇEK ZAMANLI RADAR TAKİP
SİSTEMİ

Muhammed Emir ÇAKICI

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Prof. Dr. SUAT ÖZDEMİR

Ocak 2023, 72 sayfa

Gerçek zamanlı veri takibi, hava araçlarının uçuş testi süreçlerinde önemli bir rol

oynar. Uçaktan yer kontrol merkezine akan verinin gerçek zamanlı ve kesintisiz olması

gerekmektedir. Ancak yer kontrol sistemlerinden ya da hava aracından kaynaklı kopukluklar

yaşanabilir. Bu tez, öncelikle gerçek zamanlı hava aracı takip sistemleri hakkında yapılan

çalışmalar ile ilgli kısa bir inceleme sunar ve ardından kesintisiz gerçek zamanlı veri takibi

için, DeepAT adlı bir sonraki konumun derin öğrenmeye dayalı, gerçek zamanlı 3 Boyutlu

tahminini yapan bir model önerir. Veri seti olarak telemetri sistemi ile toplanan gerçek

hava aracı sensör verilerini kullandık. Biri yüksek manevra kabiliyetine sahip sabit kanatlı

pervaneli uçak ve diğeri İnsansız Hava Aracı (İHA) olmak üzere yapısal olarak çok farklı iki

uçak için ayrı testler yapıldı. Önerilen yöntem, zaman tabanlı tahmin alanında çok kullanılan

yöntemlerle karşılaştırılmıştır. Bu karşılaştırmalarda değerlendirme metrikleri olarak Mean

Absolute. Error (MAE) ve Mean Squared Error (MSE) kullanılmıştır. Sonuçlar, önerdiğimiz

yöntemin son teknoloji yöntemlerden daha iyi performans ve daha iyi tahmin sonuçları

verdiğini göstermektedir.

Keywords: derin öğrenme, GRU, Encoder-Decoder, hava aracı, takip sistemi, İHA
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1. INTRODUCTION

Aircraft Tracking Systems are used in different areas in the aviation industry such as military,

civil, or development phase of aircraft. It is important to be informed about the current

position and the trajectory of an aircraft to predict and control the traffic in airports. This

is why many types of Aircraft Tracking Systems are used in airports. As in civil use

cases, it may be crucial to know the current position and the trajectory of an ally or enemy

aircraft. Knowing the current position and trajectory gives superiority to the user. In

aircraft development phases, knowing the place of an aircraft is mandatory. After the initial

prototype is produced, the flight test phases begin immediately to determine the boundaries

of the prototype using a variety of sensors deployed at various locations by Flight Test

Instrumentation teams [1]. During the testing phase, telemetry devices are utilized to track

the position of the aircraft and to receive data from it. Following the airplane in all conditions

allows the user to do their duties more effectively and with fewer errors.

Real-time aircraft tracking is a long-studied topic that has not lost its appeal. It still needs to

improve as the aircraft evolves. There are different types of use cases for real-time aircraft

tracking methods. One of its most popular uses is as an air traffic management system in

airport traffic control systems. To avoid any negative consequences, real-time tracking of

aircraft is vital. Among traditional methods, real-time tracking of an aircraft is generally

sufficient to determine where the aircraft is. However, ongoing research is being conducted to

take aircraft tracking to a higher phase. The next phase includes not only tracking the aircraft

but also predicting the next location of the aircraft. In the past, mathematical methods have

been used to estimate the position of the aircraft [2, 3]. With the enhancements in machine

learning [4] and deep learning [5] methods, however, mathematical methods also lost their

validity and became a supportive position alongside machine learning and deep learning

methods. Especially for real-time prediction problems, deep learning-based methods have

gained too much attraction with their accurate results [6].

Flight test processes are another area where real-time tracking of the aircraft is mandatory.
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In flight test processes, data is landed from the air to the ground in real-time by telemetry

systems [7]. The ground-based telemetry antenna tracks the aircraft in the air to collect all

data from the aircraft. Data is collected via a telemetry antenna and transmitted to a real-time

telemetry visualization system for processing and visualization. In this process, it is critical

to obtain all data from aircraft, so losing aircraft during flight tests can be a challenging issue

for test phases. According to the size of the loss, either the flight test or the maneuver of the

aircraft can be restarted, which costs organizations both time and money.

1.1. Scope of the Thesis

In this thesis, we aim to develop a novel deep learning-based system called DeepAT. This

system predicts the next 3D position and altitude on highly maneuverable, fixed-wing

propeller aircraft and UAVs and then decides the trajectory accordingly in real-time. Thus,

possible data loss that may arise from problems such as the aircraft being out of sight of

the antenna during the test is minimized and the aircraft becomes traceable throughout all

flights. Data loss may occur when the aircraft moves faster than the antenna rotation angle

or with the corruption of the data reflected from surrounding buildings when flying too close

to the runway. In our previous work, we introduced DeepAT model [8] by focusing on its

advantages of real-time tracking systems. In this thesis, the proposed model is extended by

implementing two different aircraft data sets including a propeller fixed-winged aircraft and

an Unmanned Air Vehicle (UAV). The success of the proposed model is demonstrated by

comparing it with five different deep learning methods.

1.2. Contributions

Other contributions of the thesis can be listed as follows.

• To the best of our knowledge, this is the first real-time 3D next position prediction

system of a highly maneuverable aircraft.
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• We propose a new approach for aircraft tracking systems using the stacked

Encoder-Decoder GRU.

1.3. Organization

The organization of the thesis is as follows:

• Chapter 1 presents the motivation, contributions, and scope of the thesis.

• Chapter 2 gives brief background information.

• Chapter 3 provides detailed information about aircraft tracking systems and their

proposed methods.

• Chapter 4 proposes DeepAT method for aircraft tracking systems is explained.

• Chapter 5 performs experimental analysis and the results of the proposed DeepAT

model are discussed.

• Chapter 6 concludes the thesis and presents possible future directions.
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2. BACKGROUND INFORMATION

2.1. Long Short Term Memory (LSTM)

Recurrent Neural Network (RNN) is a neural network that has short-term memory, allowing

it to process time-series problems better. Even though RNN had great success with the

prediction of short-term time-series problems, it has a problem with long-term dependency

problems with long series [9]. LSTM has emerged to solve the RNN’s long-series

dependency problem. LSTM is a type of RNN [10] that learns long-term dependencies

with an innovative memory. Furthermore, LSTM is a powerful technique that specifically

addresses the time-series estimation problem [11]. When compared to RNN, the main

strength of LSTM is the gating mechanism. It also has memory blocks that have gates:

the input gate to update the current memory with the new memory state, the forget gate to

forget the previous memory state, and the output gate to handle the current memory state and

output [12]. Cell state is the key to LSTM. In forget gate, LSTM determines what kind of

information and how much of the information will be discarded. In order to consolidate the

data, a forget gate combines ht−1 and Xt into a single vector, normalizing the values from 0

to 1, where 1 is total pass and 0 is total discard using the sigmoid activation function. After

discarding with forget gate, the input gate gives new information to the cell state. In the input

gate, tanh function represents the current information and sigmoid function is used to catch

the necessary information and discard the useless information. The output of the sigmoid

function multiplies with tanh function output and is added to the current cell state. Lastly,

the output gate determines which information is going to be the output, which filters the data

effectively and prevents pointless calculations. The structure of LSTM can be seen in Fig.

2.1. The structure of the LSTM model gates can be formulated as [13]:

it = σg(Wxixt +Whiht−1 + bi) (1)

ft = σg(Wxfxt +Whfht−1 + bf ) (2)
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ot = σg(Wxoxt +Whoht−1 + bo) (3)

c̃t = tanh(Wxcxt +Whcht−1] + bc) (4)

ct = ft ⊙ ct−1 + it ⊙ c̃t (5)

ht = ot ⊙ tanh(ct) (6)

Figure 2.1 LSTM Structure

where it, ft, and ot are input, forget, and output gates, respectively. σ is the sigmoid

function. Wi,Wf ,Wo,Wc represent the weight matrices used in the gates and block input,

and bi, bf , bo, bc represent the bias vectors. xt is the current time. Also, ct is the state of

memory at time t, c̃t is the candidate memory state at time t, ht−1 is the output of the previous

memory in time t− 1, and ht is the output in time t.

2.2. Gated Recurrent Unit (GRU)

GRU is proposed by Chung et al. [14] to allow each recurring unit to adaptively capture the

dependencies of different timespans. When compared to LSTM, GRU has a simpler structure

and has a similar performance to LSTM. Hence, GRU can be thought of as a simpler version

of LSTM [14]. Instead of forget gate, input gate, and output gate, in GRU networks, there is

an update gate that allows the current hidden state to be updated with the new hidden state

and a reset gate that allows deleting the previous hidden status information. Unlike LSTM, in

GRU structure, the input and forget gates are combined in the update gate. The update gate
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Figure 2.2 GRU Structure

can be described as the combination of the forget and input gates in LSTM. Like LSTM’s

forget and input gate, the main responsibility of the update gate is processing memory and

information. More state information is fetched sooner when the value of the update gate is

larger. The reset gate is used to regulate how much status information from the previous

moment is discarded. The reset gate is discarded more often, the smaller its value. The

advantage of GRU over LSTM is that GRU needs fewer parameters and fewer samples than

LSTM. The structure of GRU can be seen in Fig.2.2 and the general structure of GRU models

can be formulated as follows [13]:

zt = σ(Wxzxt +Whzht−1 + bz) (7)

rt = σ(Wxrxt +Whrht−1 + br) (8)

h̃t = tanh(Wxhxt +Whh(rt ⊙ ht−1) + bh) (9)

ht = (zt)⊙ ht−1 + (1− zt)⊙ h̃t (10)

where zt is the update gate and rt is the reset gate which determines the amount of the

historical information to return, respectively. h̃t is the last information in the candidate

hidden layer. ht−1 is the previous hidden state and ht is the current hidden state. Wz,Wr,Wh

represent weight matrices and bu, br, bh represent bias vectors. σ is the Sigmoid function.
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2.3. Encoder-Decoder Neural Network

In sequence-to-sequence NLP applications like language translation, machine translation,

and encoder-decoder models have shown cutting-edge outcomes [15]. Multivariate

time-series data problems can also be seen as sequence-to-sequence learning problems.

Hence encoder-decoder model can be used. Traditionally, RNN models are used to predict

time series data. Simply by forcing the network to memorize the sequence, a well-tuned

LSTM layer may cause the entire network to function correctly with the sequential

knowledge in the data. Using encoder-decoder architecture with the time-series data is a

wise choice due to its superior performance with sequential data. Encoder-Decoder model

generally consists of three different parts [16]. The first part is the encoder part. The

encoder part is an RNN that receives the input sequence data and summarizes the information

gathered from the input sequence to internal state vectors. The second part is the feature

vector. Feature vector in an intermediate state that is responsible for keeping the information

of the input which is collected from the encoder. Moreover, it decides which information is

useful and needs to stay and which information is useless and needs to be discarded. The last

part is the decoder part. This part is an RNN whose initial states are initialized to the final

states of the encoder RNN. With these initial states, the decoder part generates the output

sequence. The general structure of Encoder-Decoder models can be seen in Fig. 2.3.

Figure 2.3 Encoder Decoder Neural Network
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3. RELATED WORK

Real-time aircraft tracking systems become important with the new involvements in the

aircraft industry. Especially, deep learning-based tracking systems have the capability of

more accurate predictions to avoid data loss during the connection of air to the ground station.

There are many studies in the literature focusing on aircraft tracking systems. These systems

generally aim to provide traffic management using different approaches. In this section, we

classify existing aircraft tracking systems into ML, DL, and mathematical models according

to which approach is used. This section firstly classifies existing aircraft tracking systems

into ML, DL and mathematical approaches summarized in Table 3.1 that focuses on the

real-time deep learning-based models in aircraft as summarized and demonstrated in Table

3.2. The studies carried out were grouped under fixed-wing aircraft and UAV.

Different from current studies, the proposed DeepAT focuses on predicting two different

aircraft that have different structural designs. These aircraft have different flexibility and

different maneuvering capabilities. Apart from these studies, the UAV that DeepAT is trying

to predict is a large aircraft with propellers, apart from the quadrotor architecture in the

studies. At the same time, the other aircraft DeepAT are trying to predict is a fixed-wing

propeller aircraft with high maneuverability and proven acrobatic capabilities.

3.1. Mathematical Approaches

Mathematical approaches have been used for a long time in trajectory prediction

studies. However, with the development of machine learning and deep learning methods,

mathematical models could not keep their old popularity and started to be used as an auxiliary

factor in machine learning and deep learning methods. In most studies, the estimation is

performed using Markov models. Although Markov models are generally good in short-term

predictions, they perform poorly in long-term predictions due to computational weight. Some

studies combine Markov models with machine learning methods. Also, some studies focus

on using Bayesian Filters. Although the use of Kalman filters seems to be used alone in
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relatively old studies, it has been used in machine learning and deep learning models in

recent studies. However, Kalman filters do not provide successful results when uncertainties

are high. For this reason, it may not be used for prediction in turboprop and jet-engine

aircraft. Baek et al. [3] introduce an Interaction of Multiple models to predict conflict

between aircraft and try to create a no-conflict zone. In the experiments, ADS-B data

is used. They split the flight with the first-order Markov chain and estimate the position

with Interaction Multiple Model. They divide the flight into four phases according to their

horizontal and vertical movements. Dividing phase similar to clustering methods. According

to the results, the model gives good results under divided phases. Wang et al. [2] propose

a Bayesian updating model to predict possible accidents in National Airspace System and

improve safety. In the experiments, flight track data from Sherlock Data Warehouse is

used. They use a bayesian entropy network to reduce uncertainty, and then use Bayesian

updating for trajectory estimation. According to the results, kinematic models can be used

to predict trajectory. Bayesian updating gives good results in landing phases. Ayhan et al.

[17] employ two different models to improve efficiency at ATM. They proposed HMM for

flight data and Viterbi model for weather data. In the experiments, raw trajectory database

and weather database are used. They split the area into cubes and calculate each one in their

cube considering the weather conditions. When comparing the predicted trajectories with

ground truth values, prediction results are successful. Banerjee et al. [18] propose a Bayesian

filtering algorithm for UAV traffic management and generation of possible trajectories for

UAVs. Flight UAV data is used. They generated the trajectory with non-uniform rational

B-splines and use Kalman filters for prediction. According to the results, with non-uniform

rational B-splines (NURBS), the trajectory can be generated without in-flight parameters.

However, sharp turns that UAVs needed could not be generated with this algorithm.

3.2. Machine Learning Based Approaches

As in other fields, Machine Learning (ML) offers promising solutions to aircraft tracking

systems. In clustering-based examples, the aircraft is included in a group according to its

flight time, sequence duration, flight phases, or landing and take-off positions, and it is
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expected to converge to the behavior of that group. In these examples, k-means and k-nn

methods are used for clustering. The data generated after clustering were used for estimation

using both DL-based and ML-based methods. Leege et al. [19] propose a generalized

linear model to reduce runway traffic and avoid conflict in aircraft landing processes. In

the experiments, commercial Aircraft and meteorological data are used. The meteorological

data and aircraft data are combined before the training phase by adding the wind parameters.

According to the results, each aircraft created its own line for descending. Also, the wind

has a strong effect on aircraft while descending. Another study on commercial aircraft data

is performed by Fernandes et al. [20]. The authors propose a Hybrid clustering Model and

a two-phased Hidden Markov Model (HMM) to help Air Traffic Management (ATM) and

reduce complicity on ATM. The authors, first, cluster the trajectories and then use HMM to

predict the future trajectories. According to the results, HMM can give satisfying outcomes

when combined with clustering methods. Baratt et al. [4] employ an unsupervised K-means

clustering algorithm and Gaussian Mixture Model (GMM) to solve the air traffic problem on

airways in the situations of takeoffs and landings. In the experiments, the only position from

ADS-B receivers information of the commercial aircraft is used. The reason for choosing

only position data is to ensure that the model to be created would be used in a way that would

appeal to the majority of aircraft. They, first, cluster the takeoff and landing situations, and

then they use GMM to predict the next location of the aircraft. According to the results,

clustering is very effective when trying to predict a maneuver of the aircraft. However, it

can be hard to predict the whole flight with only clustering and Gaussian methods. Julio

et al. [21] offer a Support Vector Regression model to estimate the trajectory of bus travel

with in-time information about traffic conditions. In the experiments, the historical data

and telemetry data obtained from the bus every 30 seconds are used. They made grid

cells of the road and predict travel in each grid on their own. According to results without

altitude value, machine learning models can predict trajectories of vehicles pretty well but

artificial neural networks used in this project show that in trajectory prediction situations,

Artificial Intelligence solutions work better than Machine Learning ones. Wang et al. [22]

present a multi-cell neural network with clustering using DBSCAN to predict the trajectory

of terminal maneuvering areas. In the experiments, ADS-B data taken from the airport is
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used. They split the model into two phases. In the first phase, they cluster with DBSCAN.

Then, in the second phase, they use Multi-Cell Neural Network with the aim of predicting

the trajectories. According to the results, clustering is the best way to predict trajectory in

machine learning applications. On the other hand, in real-time applications, prediction can

be hard with clustering.

Approach Reference Model Purpose Dataset Key Finding Real-time

Mathematical Model

Baek et al. [3] Interacting Multiple Model
To predict conflict between aircraft
and create a no-conflict zone ADS-B data

- The flight is divided into four phases according to
their horizontal and vertical movements.
- Dividing phases by movements similar to
clustering.
- The model gives good results under divided phases.

-

Wang et al. [2] Bayesian Updating
For safety and predict possible accidents
in National Airspace System

Flight track data from
Sherlock data warehouse

- Kinematic models can be used to predict trajectory.
- Bayesian updating gives good results on landing phases. -

Ayhan et al. [17]
Hidden Markov Model for flight data
Viterbi for weather data Efficiency at Air Traffic Management

Raw trajectory database
Weather database

- When comparing the predicted trajectories with ground
truth values viterbi and gives good results. -

Banerjee et al. [18] Bayesian filtering algorithm
UAV Traffic management and
generation of possible trajectories for UAVs In flight UAV data

- With non-uniform rational B-splines, trajectory can be
generated without in-flight parameters.
- With this algorithm, sharp turns cannot be generated.

-

Machine Learning

Leege et al. [19] Generalized Linear Models
Reduce runway traffic and
avoid conflict of aircraft landing processes

Commercial Aircraft
Meteorological data

- Each aircraft created its own line for
descending.
- The wind has a strong effect on aircraft
while descending.

No

Fernandes et al. [20]
Hybrid clustering
HMM two-phase algorithm Air Traffic Management Commercial Aircraft data

- Hidden Markov Models can
give satisfying outcomes when
combining with clustering.

No

Baratt et al. [4]
Unsupervised K-means clustering
Gaussian Mixture Model

Air Traffic Management in takeoff
and landing situations

Only position data from ADS-B
receivers of Commercial aircraft

- Clustering is very effective when trying
to predict a maneuver of the aircraft
but it can be hard to predict the whole flight with
only clustering and Gaussian methods

No

Julio et al. [21] Support Vector Regression
Bus travel trajectory estimation using
real-time information about traffic conditions

Historical data and Telemetry data
obtained from the bus
every 30 second

- Without altitude value, machine learning
models can predict the trajectories of
vehicles pretty well.
- But ANN model used in this project also
shows that in trajectory prediction situations,
AI solutions work better than ML ones.

Yes

Wang et al. [22]
Clustering with DBSCAN
Multi cell NN

4D trajectory prediction on
Terminal Maneuvering Area ADS-B data taken from Airport

- Clustering is the best way to predict the trajectory
in machine learning applications.
- But in real-time prediction clustering can be
hard

No

Table 3.1 Aircraft Tracking Systems with Traditional Approaches

3.3. Deep Learning Based Approaches

Deep Learning (DL) algorithms are innovative and powerful approaches for prediction

problems. Recently, the use of DL algorithms for aircraft tracking systems has increased

since the structure of these algorithms is suitable for solving real-time trajectory problems.

3.3.1. Fixed-wing Aircraft

Shafienya et al. [23] proposed a hybrid deep learning approach to predict the trajectory

in Airports. In the experiments, historical ADS-B data is used. Accordingly, they first

used a hybrid CNN-GRU model to extract features of flight trajectories and after that, a

3D-CNN is used to predict the spatial-temporal features. They used a sliding window to

split the data into trajectories. They used MAE and RMSE to measure the performance.

According to experimental results, the proposed methods give much better results with low
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maneuver capacity commercial aircraft. Wu et al. [24] proposed a Back Propagation Neural

Network to help Airport Traffic Management in real-time. They used commercial aircraft

ADS-B data in experiments. Since commercial aircraft have limited maneuverability and

are heavy, predictions are performed on small data. They employ the backpropagation

neural network after using the K-means clustering approach first. According to the results,

backpropagation methods efficiently support real-time trajectory estimation. Han et al. [25]

proposed a hybrid model with K-means clustering for clustering the trajectories and GRU

model to predict the trajectories to solve the aircraft traffic problem. They used 12 days

worth of ADS-B data. They combine historical and real-time datasets to obtain similarities.

After getting clusters from K-Means, they put historical data into historical GRU model and

real-time data into online-updating GRU model. This gives them the advantage of predicting

in real-time. Commercial aircraft generally have four different types of maneuvers in a

flight including Takeoff, Ascending, Descending, and Landing. Due to their heaviness, they

have limited maneuvering capacity. With that kind of aircraft, clustering is generally easy

and very efficient. Ma et al. [26] proposed a hybrid CNN-LSTM model for Air Traffic

Management. They used historical ADS-B data. They used CNN to extract the spatial

features and then they used LSTM to predict the trajectory. They selected six prior samples

to predict the next latitude, longitude, and altitude values. After getting the experimental

results, they compare their CNN-LSTM network with vanilla LSTM and BP networks.

They used RMSE, MAE, and MAPE as evaluation metrics. According to the results, the

authors show that CNN-LSTM network tends to learn better and give better results. Zhao

et al. [27] proposed a Deep LSTM model to solve the Air Traffic Management problem.

They used real flight data from ADS-B. They discovered that the limitations of the LSTM

cause it to lose its learning capacity while predicting multidimensional values. Therefore,

they presented a Deep LSTM model to overcome this problem. They used MAE, MRE,

and MSE to evaluate the performance. The proposed D-LSTM model has slightly better

performance than existing methods when compared to LSTM, Elman Neural Network, and

BP Neural Network. Zhang et al. [28] proposed a Bayesian neural network-based trajectory

prediction model to help ease the safety concerns in civil aviation. They trained two different

deep-learning models to predict short-term and long-term trajectories of aircraft. They used
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DNN to predict short-term and LSTM to predict long-term trajectories. After training these

two models, they combine them to get better results. Even though LSTM gives good results

in long-term prediction, DNN gives better results in short term, so they used DNN to correct

the prediction of LSTM in long term. They used RMSE and MAE as evaluation metrics.

Experimental results show that the combined method gives good results in full trajectory

prediction. Pang et al. [29] proposed a trajectory prediction method with consideration of

the weather impact on the trajectory of aircraft. They focused on the effects of environmental

changes. They used weather air traffic and weather data from Sherlock Warehouse. They

used RNN and FCNN as their prediction models and CNN for feature extraction. As a

result, the results show that the weather affects the flight trajectories, and adding weather

parameters while doing trajectory prediction reduces the error rate of prediction. Shi et al.

[5] proposed an LSTM network-based trajectory prediction method with the aim to create a

safer air traffic system and oversee the potential dangers in flight routes. They used ADS-B

data collected from the aircraft. They created an LSTM network with sliding windows to

predict trajectories. The results show that RNN networks are good at predicting trajectories

in real-time. However, LSTM has better accuracy due to its complex and gated network

structure with more parameters. LSTM also has higher accuracy compared to Hidden

Markov Models and Weighted Markov Models. Adding sliding windows gives the model the

ability to track every phase of the flight. Cheng et al. [30] proposed a machine learning-aided

trajectory prediction method with the aim to prevent conflict in Air Traffic. They proposed

an LSTM model to estimate the trajectories of aircraft. Then, they fed this prediction to

their conflict detection algorithm to discover in case of any conflict. They used ADS-B data.

They compare their LSTM-based conflict detection method with CNN-based and LS-based

conflict detection methods. They used RMSE to evaluate the prediction performance. They

compared these three algorithms in three different time spans. They conducted the test with

short-term, mid-term, and long-term trajectory prediction. According to the experimental

results, LSTM-based trajectory prediction gives better results in three different time spans.

Hashemi et al. [31] compared six different conventional and state-of-the-art models for

aircraft trajectory prediction. In their work, they compared Logistic Regression, Support

Vector Regression, DNN, CNN, RNN, and LSTM. After comparing, they tested the security
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of the models. They used traffic flow management system (TFMS) data. The results show

that even deep learning-based models give better results, these models have low resiliency

against adversarial attacks. Zhang et al. [32] proposed an Attention-based LSTM model for

trajectory prediction with aim of solving air traffic management problems. Their proposed

system deals with the trajectory prediction problem in three different phases which are

climbing, cruising, and approaching phases. They are focusing on short-term trajectory

prediction where the estimation period is nearly 10 minutes. They used ADS-B data, weather

data, and flight profiles as their dataset. They applied a soft attention mechanism to LSTM

so they can get higher accuracy scores. They used MAE as their evaluation metric. They

compared their methods with Kalman Filters, Hidden Markov Model, LSTM, and S-LSTM.

The result shows that adding attention to LSTM gives better results in three different phases.

Liu et al. [33] proposed an Encoder-Decoder LSTM network model for predicting 4D

trajectories to solve Air Traffic problem. They used the flight tracks dataset gathered from

FAA Traffic Flow Management System. In their model, they first used encoder LSTM to

create a fixed-size feature vector from flight plans. Then, they used decoder LSTM to map

the fixed-size feature vector to the target trajectory. Lastly, they used a convolutional layer

in decoder network to add weather-related data to trajectory prediction. The results show

that their encoder-decoder network is good at predicting full path trajectories. Han et al.

[34] proposed a cyclic GRU network for trajectory prediction with the aim of easing Air

Traffic Control. They used ADS-B data. They divide datasets into historical and real-time

data. They had 12 days worth of data in total and they used 11 days of data as history and

1 day as real-time. They trained GRU model with historical data and tested it on real-time

data. They used RMSE as an evaluation metric. They compared their model with ARIMA,

Holt-Winters, GRU, and LSTM models. According to the results, RMSE values of their

method are much lower than other ones. Wang et al. [22] proposed a Multi-cells Neural

Network model with the aim of predicting trajectory in Terminal Maneuvering Areas. They

used ADS-B data. They used DBSCAN and PCA to preprocess the data so they can use

it in MCNN model. They cluster the data with DBSCAN and fed these clusters to MCNN

model. They cluster data into five different clusters. The training phase worked on each

different cluster. They fed the trajectory data in this phase of the model. While predicting
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trajectory, their main focus is to estimate the time of arrival of aircraft to airports. They used

K-fold cross-validation method. They used Multiple Linear Regression (MLR) to compare

their methods. They used MAE and MRSE as their evaluation metrics. The results show that

their method has higher performance results than MLR but MAE and RMSE values differ

in each different cluster. You et al. [35] proposed a sequence-to-sequence Encoder-Decoder

GRU-RNN model to predict the trajectory of ships. They use AIS data as their dataset. They

first preprocess raw data for trajectory segmentation. They used Encoder-Decoder model

for prediction. Encoder part is a single-layer GRU model. After encoding, Decoder part

which is also a single-layer GRU gets the data and creates output. They used RMSE as their

evaluation metric. They used Adam optimizer for hyperparameter tuning. They compare

their Seq2Seq model with LSTM and GRU models. The results show that Seq2Seq model

has a significant impact on trajectory prediction.

3.3.2. UAV

Yang et. al [36] proposed a bidirectional GRU for real-time trajectory prediction of quad

rotors. They used historical data on ten different types of quad rotors. They compared

their bidirectional GRU model with GRU in terms of loss and evaluation time. They

used MAE, RMSE, and MAPE as evaluation metrics. The results show that bidirectional

GRU gives better performance than vanilla GRU model. Zhang et al. [37] proposed

a GRU model with optimization of HOA to predict UAV trajectories for military usage.

They used HOA to prevent GRU from falling into the local optimization problem. They

compared their HOA-GRU model with RNN, LSTM, GRU, and HOA-LSTM. They used

RMSE as an evaluation metric. Results show that HOA optimization reduces RMSE in

LSTM and GRU. However, traditional GRU works better than LSTM. When comparing the

prediction time, GRU outperforms HOA-GRU, which is expected due to the complexity of

HOA optimization. Even though the HOA optimization is time-consuming, the HOA-GRU

gives better results and the forecast time of the HOA-GRU is still below the maximum

tolerable prediction time. Xie et al. [38] proposed a maneuver prediction model on UAVs

based on deep learning models and supported this maneuver prediction with short-term
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trajectory prediction, which is based on LSTM. They created a library of maneuvering units

and predicted the maneuvers in this library. They proposed an Adaptive boosting-Auto

encoder-Deep Echo State Network to predict maneuver in long-term. They proposed an

LSTM model with the support of Gaussian walking algorithm to predict trajectory in

short-term. They combine these two models with a layered strategy to predict maneuvering

with better accuracy. Firstly, they used trajectory features to classify maneuvers with the

existing maneuvers inside the library. Then, they created two different layers one of which

is long-term prediction and the other one is short-term prediction models. Later that, they

kept track of historical movements and created characteristics to identify the maneuvers.

They combine these characteristics with current trajectory prediction results to determine

the maneuver in real-time. The results show that combining trajectory prediction with

maneuver prediction gives high accuracy in maneuver prediction. Tang et al. [39] proposed a

GRU-based trajectory prediction method for UAVs. In experiments, they used 800 historical

data on quadrotor UAVs. They used MAE as their evaluation metric. They compared their

GRU model with ARIMA, SVR, and LSTM. The results show that GRU and LSTM give

better performance than ARIMA and SVR. However, due to LSTM’s complex structure, the

prediction time of LSTM is higher than GRU.
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Table 3.2 Aircraft Tracking Systems with Deep Learning Approaches
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4. PROPOSED METHOD

In this thesis, we propose a novel deep learning-based real-time Stacked Encoder-Decoder

GRU model called DeepAT that will predict the next position of the aircraft in 3D (latitude,

longitude, and altitude). The general structure of Stacked Encoder-Decoder GRU model

is shown in Fig. 4.1. We aim to predict the latitude, longitude, and altitude values

of an aircraft at time t with respect to the old values. The main purpose of selecting

Encoder-Decoder GRU model is its superior performance in especially time-series problems.

Our real-time problem can be called a sequence-to-sequence problem. GRU and LSTM

models have high reliability in time-series prediction and combining RNN-based methods

with Encoder-Decoder architecture strengthens the prediction of RNN-based methods.

Figure 4.1 Stacked Encoder-Decoder GRU
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Figure 4.2 The System Model of Proposed DeepAT

The general flow of DeepAT is shown in Fig. 4.2. In DeepAT, our aim is to predict the

next location of an aircraft in 3D and solve the data loss problem in flight tests. In the

aviation industry, every aircraft needs to be tested before rolling out. Although different

types of aircraft, such as fighter jets and UAVs, have different structural designs, testing

phases are crucial for a safe and accurate aviation operation. This testing phase consists of

many different areas. The final part of this testing phase is the flight test. Many sensors are

placed inside the aircraft by flight test instrumentation engineers for flight tests. Real-time

tracking of these sensors from the ground is crucial. To track these sensors and track the

aircraft, a ground control center called a telemetry station is used. In the telemetry station,

the aircraft is tracked by a radar antenna, and data is collected from this antenna. With this

capability, any kind of error can be detected and a failure recording procedure can be started

by an engineer in the control center with the real-time data flow from the aircraft to the

ground. While in flight tests, any kind of loss in data flow can be big trouble and may affect

the test phase in very different ways. The aircraft’s speed, the antenna’s or radar’s angle of

view, the rotational speed of the antenna or radar, the aircraft’s proximity to the runway, and

the device all have the potential to cause data loss. One scenario where data loss occurs is

when an aircraft moves outside the radar’s coverage area. Repetition of the maneuver or the

flight test may be necessary, depending on the degree of the loss. To overcome this problem,
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we propose our DeepAT where the next location of aircraft is going to be predicted. For any

kind of data loss problem, the coordinates and altitude values obtained from DeepAT will be

used to find the aircraft with a radar antenna as soon as possible.

Parameter Values
Sliding Window Size 24
Number of Epochs 20
Patience 4
Optimizer Adam
Activation Function ReLU
Number of GRU in Encoder 2
Number of GRU in Decoder 1
Number of Units in GRU 32

Table 4.1 Hyper Parameters

The hyper parameters used for DeepAT are given in Table 4.1. 20 epochs are determined for

the training phase. The patience value was chosen as 4. The patience value is followed

by the validation loss value. Since Adam optimizer has a faster calculation time than

others and needs less parameters, Adam optimizer is selected. Also, ReLU is determined

as the activation function since it reduces the probability of encountering gradient vanishing

problems. We used 2 GRU in Encoder and 1 GRU in decoder, our repeat vector number was

1.

Figure 4.3 Sliding Window

We use a sliding window (Fig. 4.3) to predict the next location in real-time. We split windows

to a specific size and slide them one by one to predict the next location. In our DeepAT model,
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this sliding window size is 24. We are proposing a Stacked Encoder-Decoder GRU model in

our DeepAT model.

We compare our model with five different methods including LSTM, GRU, Encoder-Decoder

LSTM, Encoder-Decoder GRU, and Stacked Encoder-Decoder LSTM models. The reason

that we select GRU model and Encoder-Decoder architecture is the outstanding performance

of RNN with Encoder-Decoder architecture in time-series data. As we said before, real-time

time-series problems can be treated like sequence-to-sequence problems. The reason that we

choose GRU over LSTM is that GRU has a simpler structure, fewer parameters, and the same

performance as LSTM. In the short-term prediction of the next position, the complexity of

LSTM causes the model to give higher error rates.

Figure 4.4 Current Telemetry System

4.1. Dataset

We test DeepAT on two different aircraft types. The first one is a fixed-wing

high-maneuvering propeller aircraft and the other one is a UAV. As a result, we conduct

our experimental analysis on two different types of datasets. We use real-time telemetry
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data that flows to the ground from aircraft. As can be seen in Fig. 4.4, the current telemetry

system only gets the data from aircraft and sends it to a receiver and after doing the necessary

engineering conversions on raw data, visualize the data and store it in the database. In a

telemetry system, every parameter has its own sampling rate. These sampling rates can range

from 1 sample for 1 second to 8000 samples for 1 second. In general, similar parameters like

latitude, longitude, or altitude came at similar sampling rates. In our dataset, we used 10

samples for 1 second for propeller aircraft and we used 1 sample for 1 second for UAV. The

fixed-wing aircraft has a high-maneuvering capability and can even successfully complete

acrobatic maneuvers. In two different datasets, we have similar parameters but the behavior

of the aircraft is completely different. By selecting two completely different aircraft, our

goal is to show that our DeepAT model can effectively predict both low-maneuvering and

high-maneuvering aircraft. We have about 20 parameters for each aircraft and 10 flights per

aircraft. We trained our DeepAT model separately on each of these flights. Our parameters

are basically Calibrated Air Speed, True Air Speed, Ground Speed, Vertical Speed, Lateral

Acceleration, Longitudinal Acceleration, Normal Acceleration, Pitch Angle, Pitch Rate, Roll

Angle, Roll Rate, Yaw Angle, Yaw Rate, Magnetic Heading, True Heading, Ground Track,

Latitude, Longitude, GPS Altitude, East Velocity, North Velocity, and lastly Vertical Velocity.

Flight Number Flight Time Total Number of Data
F1 73 minute 43800
F2 113 minute 67800
F3 87 minute 52200
F4 56 minute 33600
F5 122 minute 73200
F6 72 minute 43200
F7 71 minute 42600
F8 90 minute 54000
F9 98 minute 58800

F10 75 minute 57000

Table 4.2 Data Specification of Propeller Aircraft

As can be seen in Table 4.2 each flight has its own size and separate time range. In general,

the flight times of aircraft are close to each other but flight characteristics are changeable. On

the other hand, Table 4.3 shows us that UAV has various numbers of different flight times.
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Flight Number Flight Time Data Size
F1 261 minute 15660
F2 379 minute 22740
F3 137 minute 8220
F4 148 minute 8880
F5 255 minute 15300
F6 1933 minute 115980
F7 1659 minute 99540
F8 139 minute 8340
F9 116 minute 6960
F10 3000 minute 180000

Table 4.3 Data Specification of UAV

We can say that UAV have similar flight characteristics in each flight. Flight time does not

have a great effect on the predictions for aircraft with repetitive movements in flights like

this one.

4.2. Pre-processing

We used real-time telemetry data collected with the ground control system. We selected two

different aircraft and 10 flights per aircraft, we had 20 different flights in total. In each flight,

we have about 20 parameters. Most of these parameters have different sample rates. Firstly,

we arrange these parameters at a fixed sampling rate of 10 values per second.

It is required to clean the data, after getting all parameters to a fixed sampling rate. In

telemetry systems, unreliable data continues to flow even when the connection is interrupted.

Such data needs to be removed. As seen in Fig. 4.5, there are peaks due to the loss of

connection. These peaks mean there is a problem with this data. In order to remove this data,

we limit the minimum and maximum positions in latitude, longitude, and altitude values.

Even after these limitations, still unreliable data or anomalies can be observed. To overcome

this problem, we detect and discard the anomalies and unreliable data with Interquartile

Range (IQR) method [40].
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Q1 = (1/4) ∗ n (11)

Q3 = (3/4) ∗ n (12)

IQR = Q3−Q1 (13)

UpperBound = Q3 + (1.5 ∗ IQR) (14)

LowerBound = Q1− (1.5 ∗ IQR) (15)

Figure 4.5 Data Sample Before Cleaning

However, just getting the data between Q1 and Q3 is not the way to eliminate outliers. To

do this, a new range is defined in IQR. As in equation 15 and equation 14 we create a new

bound to remove only the outliers After these calculations we can say that any data outside of

these points can be called outliers. After detecting unreliable data, we normalize the data by

extracting the mean and dividing by the standard deviation. We split the dataset into 70% for

training, 20% for validation, and 10% for testing. We do not use cross validation. Since the

time-series datasets are dependent on the previous data and are sequential within the dataset,

the datasets cannot be divided into random folds as is done in cross validation. The cross
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validation method used for time-series is not suitable for real-time prediction. The cross

validation method applied for the time-series is done by starting the dataset from a small

subset and enlarging the dataset to use larger datasets.
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5. EXPERIMENTAL ANALYSIS

5.1. Experimental Setup

The experiments were conducted on a laptop with 64GB RAM, 3.3GHz Intel core I9

processor, and NVIDIA GeForce RTX 3080 Graphics Card. Also, we utilize Keras,

TensorFlow, Matplotlib, seaborn, and SciPy libraries. To analyze the superiority of our

proposed DeepAT model, we compared our model with LSTM, GRU, Encoder-Decoder

LSTM, Encoder-Decoder GRU, and Stacked Encoder-Decoder LSTM models. These models

were chosen for comparison because they are commonly used in the literature, particularly

in aircraft systems.

5.2. Experimental Results and Discussion

In this thesis, the prediction of 3D next position of two different aircraft are analyzed in

detail. Due to their different structures, the same proposed model is used separately for each

aircraft flying datasets, one of them is a high-maneuvering propeller aircraft and the other

one is a UAV. We use MAE and MSE values as evaluation metrics to measure the deviation

of real and predicted values of the latitude, longitude, and altitude of the aircraft. We utilized

MAE and MSE to evaluate the performance of our model’s predictions in terms of both

general results and highly biased results. MSE was applied to see the high-bias estimations.

Because RMSE did not highlight large deviations as much as the MSE and was computed by

using the square root of the MSE value, it was not employed. The MAE and MSE metrics

are computed with the below equations.

MAE =
D∑
i=1

|xi − yi| (16)

MSE =
D∑
i=1

(xi − yi)
2 (17)
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We compared our proposed DeepAT model with state-of-the-art. The results show that our

proposed model has higher accuracy than state-of-the-art. As seen in Table 5.1, our proposed

DeepAT shows high performance in predicting the next location of the propeller aircraft. As

seen in Table 5.10, on the other hand, other models also has good results for UAV due to the

aircraft’s mostly repetitive path and low-maneuvering capability. Such complex structures

do not perform as well as expected in aircraft with low maneuverability and repetitive

movements.

Figure 5.1 Example of 3D Path of Propeller Aircraft

As seen in Fig. 5.1 and Fig. 5.2, there is a noticeable difference in capability between the

propeller aircraft and the UAV mission routes.

The proposed model is examined in detail in two sub-headings, one of which is a fixed-wing

propeller aircraft and the other is a UAV. The benefits of each are examined in depth, and the

advantages of the proposed model are clearly emphasized.
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Figure 5.2 Example of 3D Path of UAV

5.2.1. Fixed-Wing Propeller Aircraft

The DeepAT model is trained separately for each flight. Average MAE and MSE results

are given in Table 5.1. MAE and MSE metrics are evaluated individually for the latitude,

longitude and altitude predictions. The obtained results show that DeepAT model performs

better in average MAE and MSE scores when it is compared with the other approaches. The

Encoder-Decoder GRU model has the closest average MAE score to that of the DeepAT

model. For example, the Encoder-Decoder GRU average MAE score is 0.1512 where it is

0.1493 for DeepAT. Similarly, Altitude MAE average result of DeepAT is 0.0983 and altitude

MAE result of Encoder-Decoder GRU is 0.1006. The Longitude prediction has similar

results. The LSTM model had the lowest prediction results for all metrics of MAE and

MSE, whereas the other approaches had similar results among themselves. The results show

that DeepAT model has better results when compared to benchmark models. Furthermore,

experimental results are almost similar when each flight is inspected separately for models.

Accordingly, the DeepAT model has consistency in its prediction.
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The predictions made by the model are quite accurate and are close to the actual values. The

small variations observed in the predicted values can be attributed to the limitations of the

radar antenna range. It can be concluded that the sequence prediction made by the model has

a smooth transition and the predicted values gradually converge towards the real values as the

sequence progresses. The model’s performance is consistent and the predictions are reliable.

Overall, we can say that the model is able to effectively capture the underlying patterns in

the data and predict the values with a high degree of accuracy.

MAE MSE
Latitude Longitude Altitude Latitude Longitude Altitude

DeepAT 0.1493 0.1553 0.0983 0.0585 0.0593 0.0356
StEncDecLSTM 0.1515 0.1604 0.1285 0.0632 0.0683 0.0562

EncDecGRU 0.1512 0.1585 0.1006 0.0655 0.0629 0.0398
EncDecLSTM 0.1652 0.1661 0.1109 0.0714 0.0750 0.0492

GRU 0.1563 0.1642 0.1105 0.0768 0.0718 0.0511
LSTM 0.1829 0.1828 0.1365 0.0877 0.0864 0.0659

Table 5.1 Average MAE and MSE Results of Propeller Aircraft

Upon a thorough examination, it can be inferred that the altitude prediction results are

superior to those of latitude and longitude prediction. This is due to the penalties incurred

by even minimal errors during the normalization stages. Despite the changes in latitude and

longitude values being relatively small, it is crucial to estimate these changes as accurately

as possible in order to prevent aircraft loss. As demonstrated in the Table 5.2, Table 5.3

and Table 5.4 the DeepAT model does not produce optimal results in the third flight, albeit

it yields results that are comparable to those of other models in the estimation of latitude,

longitude, and altitude. However, it appears that all benchmark models performed worse

in this particular flight compared to other flights. This may be attributed to the inability

to effectively extract the specific erroneous data associated with the flight, as well as the

unique characteristics of certain flights. Additionally, it is observed that in the 10th flight, the

performance of all models is significantly inferior compared to other flights. Upon a detailed

examination of this flight, it is apparent that the instantaneous data losses are substantial,

and this data cannot be classified as outliers as it falls within certain constraints. In the 5th

flight, the performance of each model is commendable and the results are comparable. A
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more specific analysis of this flight reveals that the data loss is minimal, and the flight path

is relatively routine in comparison to other flights.

Flights DeepAT StEncDecLSTM EncDecGRU EncDecLSTM GRU LSTM
1 0.1178 0.1110 0.0697 0.1886 0.2525 0.1664
2 0.1651 0.1487 0.1645 0.1661 0.1746 0.1988
3 0.2475 0.2392 0.2616 0.2793 0.2619 0.2710
4 0.1983 0.2146 0.2195 0.2287 0.1997 0.2314
5 0.0299 0.0233 0.0317 0.0100 0.0273 0.0487
6 0.1144 0.1190 0.1171 0.1165 0.1172 0.1168
7 0.0742 0.0893 0.0956 0.0943 0.1334 0.0938
8 0.0680 0.0820 0.0745 0.0605 0.0797 0.1472
9 0.1564 0.1676 0.1628 0.1701 0.1607 0.1635

10 0.2914 0.3506 0.3152 0.3382 0.3875 0.3916

Table 5.2 Latitude MAE Results of Propeller Aircraft

Flights DeepAT StEncDecLSTM EncDecGRU EncDecLSTM GRU LSTM
1 0.1792 0.1862 0.1327 0.1806 0.2321 0.2491
2 0.2281 0.2180 0.2236 0.2204 0.2219 0.2385
3 0.1428 0.1516 0.1279 0.1257 0.1390 0.1426
4 0.1815 0.2005 0.1998 0.1964 0.1889 0.1961
5 0.0224 0.0432 0.0327 0.0213 0.0079 0.1013
6 0.1673 0.1705 0.1775 0.1930 0.2330 0.1818
7 0.1223 0.1456 0.1599 0.1616 0.1630 0.1650
8 0.1692 0.1408 0.1584 0.1524 0.1627 0.1719
9 0.1379 0.1323 0.1475 0.1454 0.1296 0.1332

10 0.2026 0.2160 0.2253 0.2647 0.2340 0.2494

Table 5.3 Longitude MAE Results of Propeller Aircraft

Flights DeepAT StEncDecLSTM EncDecGRU EncDecLSTM GRU LSTM
1 0.0598 0.0610 0.1071 0.0544 0.1558 0.1130
2 0.1674 0.1754 0.1656 0.1848 0.2155 0.2112
3 0.1311 0.1250 0.1093 0.1281 0.1568 0.1538
4 0.0981 0.1219 0.1053 0.1208 0.1004 0.1065
5 0.0038 0.0123 0.0078 0.0080 0.0327 0.1109
6 0.0914 0.1072 0.1055 0.1089 0.1098 0.1229
7 0.0492 0.0893 0.0654 0.0728 0.0762 0.1114
8 0.0338 0.0642 0.0161 0.0449 0.0424 0.0456
9 0.1082 0.1520 0.1042 0.1047 0.1050 0.1487

10 0.2411 0.2969 0.2206 0.2824 0.2342 0.2416

Table 5.4 Altitude MAE Results of Propeller Aircraft
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An in-depth examination of the mean squared error (MSE) values reveals the remarkable

success of the DeepAT model. The analysis takes into account both the compression of

data during preprocessing and the estimation errors of each model. Upon examining the

Latitude, Longitude, and Altitude values over Table 5.5, Table 5.6 and Table 5.7, it was

found that the DeepAT model demonstrated a commendably narrow margin of error for each

parameter, thereby yielding low MSE values that effectively penalize significant deviations

in the margin of error. The results of this analysis highlight the robustness and accuracy

of the DeepAT model in approximating and predicting the Latitude, Longitude, and Altitude

values. Upon examining the 10th flight in detail, it becomes apparent that all models perform

comparatively poorly in comparison to their results from other flights. Nevertheless, the

DeepAT model still exhibits a remarkably low MSE for each parameter compared to other

models. A closer look at the MSE values for this flight reveals that the DeepAT model avoids

producing results with significant deviations, despite producing some erroneous results. This

highlights the ability of the DeepAT model to maintain a certain degree of accuracy, even in

challenging conditions. With the exception of the 2nd flight, the DeepAT model consistently

produced favorable results when compared to benchmark models across all flights. In the

case of the 2nd flight, the results generated by the DeepAT model were notably similar to

those produced by other models. This demonstrates the overall reliability and effectiveness

of the DeepAT model in comparison to benchmark models, with only a minor deviation in

performance for the 2nd flight.

Flights DeepAT StEncDecLSTM EncDecGRU EncDecLSTM GRU LSTM
1 0.0271 0.0389 0.0387 0.0611 0.0835 0.0423
2 0.0430 0.0418 0.0495 0.0558 0.0684 0.0790
3 0.9801 0.0997 0.1121 0.1358 0.1149 0.1297
4 0.1463 0.1660 0.1992 0.1597 0.1302 0.1739
5 0.0003 0.0005 0.0008 0.0008 0.0010 0.0023
6 0.0257 0.0261 0.0279 0.0283 0.0289 0.0281
7 0.0132 0.0171 0.0246 0.0202 0.0349 0.0193
8 0.0070 0.0110 0.0080 0.0083 0.0164 0.0295
9 0.0324 0.0352 0.0355 0.0385 0.0355 0.0405

10 0.1614 0.2292 0.1992 0.2094 0.2554 0.3326

Table 5.5 Latitude MSE Results of Propeller Aircraft
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Flights DeepAT StEncDecLSTM EncDecGRU EncDecLSTM GRU LSTM
1 0.0524 0.0599 0.0314 0.0615 0.0803 0.1062
2 0.0919 0.0838 0.0967 0.0867 0.0866 0.1083
3 0.0351 0.0371 0.0275 0.0425 0.0384 0.0400
4 0.1013 0.1454 0.1246 0.1693 0.1065 0.1089
5 0.0005 0.0018 0.0005 0.0004 0.0006 0.0102
6 0.0751 0.0643 0.0770 0.0913 0.1309 0.0539
7 0.0771 0.1350 0.1036 0.1086 0.0944 0.0727
8 0.0477 0.0327 0.0419 0.0380 0.0487 0.0518
9 0.0274 0.0283 0.0303 0.0321 0.0284 0.0317

10 0.0763 0.0950 0.0956 0.1298 0.1037 0.2810

Table 5.6 Longitude MSE Results of Propeller Aircraft

Flights DeepAT StEncDecLSTM EncDecGRU EncDecLSTM GRU LSTM
1 0.0148 0.0224 0.0273 0.0263 0.0419 0.0343
2 0.0972 0.0953 0.1058 0.1129 0.1239 0.1240
3 0.0327 0.0921 0.0345 0.0360 0.0473 0.0436
4 0.0251 0.0741 0.0648 0.0637 0.0629 0.0689
5 0.0001 0.0001 0.0006 0.0006 0.0010 0.0123
6 0.0131 0.0459 0.0091 0.0168 0.0283 0.0292
7 0.0083 0.0150 0.0160 0.0366 0.0207 0.0272
8 0.0029 0.0082 0.0016 0.0051 0.0082 0.0084
9 0.0161 0.0275 0.0166 0.0187 0.0171 0.0287

10 0.1462 0.1916 0.1320 0.1915 0.1602 0.2830

Table 5.7 Altitude MSE Results of Propeller Aircraft

The tables presented above demonstrate the superiority of our proposed DeepAT method in

terms of mean absolute error (MAE) and mean squared error (MSE) values for propeller

aircraft. Upon examining each flight individually, it becomes evident that the DeepAT model

delivers satisfactory results in predicting the next position in 3D for propeller aircraft. This

supports the efficacy of our proposed DeepAT method in providing accurate predictions for

propeller aircraft.
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Figure 5.3 DeepAT and GRU Latitude Result for Flight 4 in Propeller Aircraft

As seen in Fig. 5.3 DeepAT model and the GRU model both aim to predict the latitude

value based on input data, and both models produce predicted values that converge towards

the actual latitude value as time progresses. The proposed DeepAT method demonstrates

remarkable proximity to actual values in comparison to GRU, as the deviation between the

predicted and actual latitude values for the DeepAT model remains within a relatively small

margin, while GRU exhibits significantly higher deviations. This suggests that the DeepAT

method is more accurate in predicting latitude values for this particular flight. It is possible

to highlight that DeepAT model takes into account the temporal relationship between the

latitude values, which can help it make better predictions compared to a model that only

considers each value independently.
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Figure 5.4 DeepAT and GRU Longitude Result for Flight 4 in Propeller Aircraft

DeepAT model predicts the longitude sequence better than GRU as seen in Fig. 5.4. In

addition, it appears that DeepAT outperforms GRU in terms of predicting longitude. The

values predicted by DeepAT are closer to the actual values compared to GRU, as evidenced

by the smaller difference between the actual and predicted values and the sequential structure.

This suggests that DeepAT is more effective at capturing the patterns and relationships in the

data, leading to more accurate predictions. Based on figure, it appears that the GRU model

is giving biased results for longitude prediction, as the values it predicts deviate significantly

from the actual values. The model’s predictions are consistently off from the actual values,

either being higher or lower than the actual values. This bias in the predictions can lead

to inaccuracies in the results and may cause problems in practical applications where the

accuracy of the predictions is important. As can be seen in Fig 5.5, the proposed DeepAT

34



Figure 5.5 DeepAT and GRU Altitude Result for Flight 4 in Propeller Aircraft

model gives a closer prediction to the actual values compared to GRU in this scenario.

This can be seen from the differences between the actual and predicted values, where the

differences between the actual and predicted values by DeepAT are smaller than those by

GRU. The actual altitude values seem to be close to the values predicted by the DeepAT

model, with deviations in the range of a few percent. On the other hand, the GRU model

appears to deviate more from the actual values and the deviation increases as the flight

progresses. DeepAT model has a sequential structure which means that the information from

the previous time step is taken into consideration in making predictions at each time step.

This can lead to better prediction results compared to the GRU model that evaluates each

prediction independently. Additionally, the results show that the DeepAT model has a closer

range to the actual values compared to the GRU model, which suggests that the DeepAT

model is more accurate in predicting altitude in this case.

The Table 5.8 illustrates the maximum deviation between the actual and predicted points

for flight 4. The results in the table demonstrate that the DeepAT model outperforms

other models in terms of accuracy in predicting latitude, longitude, and altitude values.

Furthermore, the results from Table 5.8 highlight that the Encoder-Decoder structure of
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Latitude Longitude Altitude
DeepAT 0.5593 0.6522 0.5525
StEncDecLSTM 1.0541 0.9837 0.8571
EncDecGRU 1.2359 0.8388 0.9890
EncDecLSTM 1.3579 1.3967 1.3911
LSTM 1.1719 1.8655 1.7152
GRU 1.8021 0.9637 1.4790

Table 5.8 Maximum Deviation Between Actual and Predicted Values in Flight 4

the DeepAT model effectively reduces the range of maximum deviation between the actual

and predicted values. The results in Table 5.8 reveal that the implementation of the

Encoder-Decoder structure in GRU and LSTM models leads to a significant reduction in

the deviation between actual and predicted values. Unlike the models without this structure,

which have a relatively high deviation margin, the models that utilize the Encoder-Decoder

structure exhibit a gradual decrease in deviation. This highlights the effectiveness of the

Encoder-Decoder structure in improving the accuracy of prediction results.

Figure 5.6 3D Flight Route Visualization for Flight 4 in Propeller Aircraft
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Figure 5.7 2D Flight Route Visualization for Flight 4 in Propeller Aircraft

The unreliable data from the aircraft can be observed in the form of straight lines in Figure

5.6 and as dots in Figure 5.7. Despite this, our DeepAT model has demonstrated exceptional

accuracy in predicting the aircraft’s exact or close locations in 3D. As depicted in Fig. 5.6,

the aircraft can execute sharp maneuvers, such as a 1500ft change in altitude within a short

period of time with a spin maneuver. The comparison of the actual latitude, longitude and

altitude values to the values predicted by DeepAT and GRU shows that DeepAT gives results

that are closer to the actual values. This suggests that the DeepAT model is more accurate in

predicting these values than GRU.

However, the GRU model still has some biases in its predictions, as seen in the deviations

from the actual values. This may be due to the structure of the GRU model, which evaluates

each prediction within itself, rather than taking into account the sequential information of the

data.

37



Figure 5.8 DeepAT and GRU Latitude Result for Flight 10 in Propeller Aircraft

As can be seen in Fig. 5.8 the DeepAT model appears to perform better than the GRU model

in terms of accuracy for predicting Latitude values, as can be seen from the lower error for

the DeepAT compared to the GRU in figure. Additionally, the DeepAT model’s predictions

are generally closer to the actual Latitude values compared to the GRU model’s predictions,

indicating that the DeepAT model has a higher level of accuracy in this case. This suggests

that the DeepAT model may be a more favorable choice for predicting Latitude values in a

similar scenario.
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Figure 5.9 DeepAT and GRU Longitude Result for Flight 10 in Propeller Aircraft

Fig. 5.9 demonstrates the comparison of the longitude prediction results of the DeepAT and

GRU models with the actual values. The results depicted in the figure indicate that the GRU

model has a large deviation in its predictions, while the DeepAT model, due to its sequential

structure, is able to better predict the changes in longitude. These results suggest that the

DeepAT model provides significantly better longitude prediction results compared to the

GRU model.
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Figure 5.10 DeepAT and GRU Altitude Result for Flight 10 in Propeller Aircraft

These Fig. 5.10 represent the predicted altitude values from DeepAT and GRU and the actual

altitude value for various points in a flight path. As can be seen in Fig. 5.10, the DeepAT

model is capable of predicting the altitude values with a small margin of error compared to

the actual values, but with small deviations in some instances. The GRU model also predicts

the altitude values with a margin of error, but with higher deviations than the DeepAT model.

It is possible that the sequencing capacity of the DeepAT model allows it to better capture

the temporal dependencies in the flight data, leading to improved predictions.

The above figures compare the results of our proposed DeepAT model and GRU model with

3D predictions at the flight of a fixed-wing propeller aircraft. This comparison consists of

latitude, longitude, and altitude values. The results show that DeepAT’s predictions have

significantly better predictions than GRU model. If we examine it more closely, in Fig. 5.9

and , it is observed that both models contain errors in their predictions of longitude. However,

unlike GRU, DeepAT model converges to the real values despite the errors. While DeepAT

model can predict 3D within the antenna angle, GRU model does not support the sequential

prediction structure.
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Latitude Longitude Altitude
DeepAt 0.3492 0.4872 0.2416
StEncDecLSTM 0.6487 0.5231 0.4416
EncDecGRU 0.5144 0.5951 0.3518
EncDecLSTM 0.5426 0.5378 0.6153
LSTM 1.4130 1.3315 2.4275
GRU 1.4041 1.4716 2.2391

Table 5.9 Maximum Deviation Between Actual and Predicted Values in Flight 10

The Table 5.9 illustrates the maximum deviation between the actual and predicted points

for flight 10. The analysis of the results from this specific flight shows that the DeepAT

model performed well in terms of latitude, longitude, and altitude values, even at the point of

maximum deviation. Table 5.9 indicates that the approaches based on the Encoder-Decoder

structure are effective in reducing the maximum deviation between the actual and predicted

values, thereby demonstrating the efficacy of the Encoder-Decoder-based methodologies in

sequence prediction tasks. The performance of the GRU and LSTM models in predicting

altitude values with high variations is observed to be unsatisfactory, as a significant deviation

is observed in their results. Conversely, the DeepAT and the StEncDecLSTM models,

which incorporate an Encoder-Decoder structure, demonstrate promising outcomes in their

prediction of altitude values with high variations, exhibiting a substantial reduction in

deviation. These results highlight the efficacy of Encoder-Decoder based approaches in

improving the accuracy of sequence predictions.
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Figure 5.11 3D Flight Route Visualization for Flight 10 in Propeller Aircraft

Figure 5.12 2D Flight Route Visualization for Flight 10 in Propeller Aircraft

As can be seen from the dots in Fig. 5.12 and the spikes in Fig. 5.11 unreliable data still

flows from aircraft to ground. But even with this kinds of unreliable data DeepAT model can

successfully predict the latitude, longitude and altitude values in small margins.
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5.2.2. UAV

The DeepAT model is trained separately for each flight, and the average MAE and MSE

results for the latitude, longitude, and altitude values are provided in Table 5.10. Unlike

the propeller aircraft, it is observed that the predictions of each model for the UAV are

similar to each other. As depicted in Fig. 5.1 and Fig. 5.2, these two aircraft have distinct

structures, and due to the UAV’s low capacity, simple models such as GRU also achieve

satisfactory results. The results presented in Table 5.10 show that the proposed DeepAT

method has competitive MAE and MSE values in all three dimensions and demonstrates its

competitiveness in UAV aircraft. The DeepAT model has the best MAE results for latitude

and altitude values, while the Encoder-Decoder GRU model slightly outperforms DeepAT

in longitude prediction. It is noted that each model has similar predictions in all three

dimensions, with close MAE values, for example, DeepAT has a Latitude MAE value of

0.2228, whereas GRU and StEncDecLSTM models have MAE values of 0.2261 and 0.2252,

respectively. When examining the MSE values, it is apparent that the results are consistent

with those obtained from the MAE values. It can be noted that the results are similar

among each model, however, the StEncDecLSTM model stands out with a slight difference

in terms of MSE values. Overall, it can be concluded that the proposed DeepAT method and

the StEncDecLSTM model provide competitive results in terms of latitude, longitude, and

altitude predictions in UAV aircraft.

MAE MSE
Latitude Longitude Altitude Latitude Longitude Altitude

DeepAT 0.2228 0.2333 0.1654 0.2976 0.3054 0.1365
StEncDecLSTM 0.2252 0.2309 0.1661 0.2964 0.3001 0.1355

EncDecGRU 0.2283 0.2296 0.1662 0.2965 0.3114 0.1361
EncDecLSTM 0.2287 0.2306 0.1663 0.2953 0.3083 0.1356

GRU 0.2261 0.2318 0.1677 0.2930 0.3090 0.1376
LSTM 0.2314 0.2297 0.1665 0.3012 0.3116 0.1361

Table 5.10 Average MAE and MSE Results of UAV
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It can be deduced from the results presented in the Table 5.11, Table 5.12 and Table 5.13 that

the performance of each model varies depending on the flight characteristics. The prediction

of longitude poses a more significant challenge compared to latitude and altitude estimations.

The normalization phase compresses the data into a narrow area, leading to small errors

being penalized. The results of each flight indicate that the relative success of each model

is dependent on the flight characteristics. For instance, the results for the 1st flight showed

that the latitude MAE values were relatively higher, whereas the longitude MAE values were

predicted more accurately. On the other hand, the 9th flight showed that the latitude MAE

values were more successful, while the longitude MAE values were relatively higher. These

results emphasize the importance of considering the flight characteristics when evaluating

the performance of prediction models.

Flights DeepAT StEncDecLSTM EncDecGRU EncDecLSTM GRU LSTM
1 0.2974 0.2984 0.3005 0.3000 0.2912 0.2878
2 0.2272 0.2258 0.2331 0.2268 0.2120 0.2184
3 0.1722 0.1733 0.1814 0.1801 0.1750 0.2108
4 0.3020 0.3008 0.3004 0.3001 0.2962 0.3000
5 0.1992 0.2029 0.1999 0.2070 0.2055 0.1987
6 0.2405 0.2492 0.2453 0.2474 0.2507 0.2616
7 0.1679 0.1646 0.1649 0.1647 0.1688 0.1704
8 0.1948 0.1984 0.2021 0.2086 0.1976 0.2018
9 0.2460 0.2553 0.2703 0.2612 0.2724 0.2686

10 0.1809 0.1842 0.1858 0.1912 0.1918 0.1967

Table 5.11 Latitude MAE Results of UAV

Flights DeepAT StEncDecLSTM EncDecGRU EncDecLSTM GRU LSTM
1 0.2083 0.2069 0.2096 0.2095 0.2139 0.2115
2 0.2401 0.2421 0.2407 0.2421 0.2502 0.2500
3 0.2445 0.2423 0.2494 0.2453 0.2343 0.2512
4 0.2540 0.2465 0.2536 0.2478 0.2494 0.2521
5 0.2464 0.2439 0.2447 0.2444 0.2519 0.2460
6 0.2471 0.2444 0.2469 0.2466 0.2457 0.2607
7 0.2334 0.2345 0.2353 0.2348 0.2308 0.2417
8 0.2566 0.2583 0.2652 0.2671 0.2573 0.2355
9 0.1654 0.1560 0.1131 0.1326 0.1392 0.1024

10 0.2378 0.2342 0.238 0.2362 0.2455 0.2466

Table 5.12 Longitude MAE Results of UAV
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Flights DeepAT StEncDecLSTM EncDecGRU EncDecLSTM GRU LSTM
1 0.2149 0.2115 0.2120 0.2117 0.2132 0.2126
2 0.2005 0.2003 0.2008 0.2017 0.1998 0.2011
3 0.1417 0.1432 0.1432 0.1384 0.1540 0.1426
4 0.2102 0.2103 0.2102 0.2102 0.2100 0.2099
5 0.1102 0.1142 0.1156 0.1170 0.1183 0.1167
6 0.1229 0.1226 0.1226 0.1229 0.1229 0.1229
7 0.1531 0.1569 0.1555 0.1558 0.1579 0.1578
8 0.2087 0.2083 0.2086 0.2071 0.2082 0.2082
9 0.1362 0.1340 0.1360 0.1353 0.134 0.134

10 0.1564 0.1597 0.1582 0.1635 0.1592 0.1599

Table 5.13 Altitude MAE Results of UAV

When examining the tables presenting the latitude, longitude, and altitude MSE values

of each model for each flight, it is evident that the results are contingent on the specific

characteristics of each flight. Upon closer examination, it becomes apparent that the altitude

values demonstrate higher accuracy when compared to the latitude and longitude values.

Although the MSE values for each model are relatively similar, it can not be concluded that

one model is superior to the others. However, it can be observed that simple models such as

GRU and LSTM perform admirably on large aircraft like UAVs, despite their less complex

structure. In particular, when analyzing the results of the 1st flight, it can be noted that

there are deviations in the latitude estimations of all models, which could be attributed to

the flight’s characteristics or residual anomalies. On the other hand, all models demonstrate

remarkable results in the 9th and 10th flights.In conclusion, while the performance of each

model may differ depending on the flight characteristics, it can be said that all models

provide acceptable results. When we delve deeper into each flight, we see that the models’

performance changes depending on the flight characteristics. For example, the 1st flight

showed relatively higher Latitude MAE values, while the Longitude MAE values were

predicted more accurately. The 9th flight showed better results for Latitude MAE values,

while Longitude MAE values showed relatively higher results. The model we proposed,

DeepAT, has competitive MAE and MSE values for latitude, longitude, and altitude values

and is able to produce good results for the UAV aircraft. However, the GRU model, which has

a simpler structure, also performed well, thanks to the repetitive nature of the UAV’s mission
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and its low maneuverability. Although the GRU model gives good results for individual

predictions, it has the potential to quickly go off the antenna angle at some points as it lacks

a sequential structure.

Flights DeepAT StEncDecLSTM EncDecGRU EncDecLSTM GRU LSTM
1 0.5543 0.5564 0.5642 0.5604 0.5369 0.5232
2 0.3546 0.3532 0.3474 0.3503 0.3297 0.3312
3 0.0746 0.0822 0.0853 0.0685 0.0771 0.1065
4 0.5851 0.5794 0.5852 0.5796 0.5706 0.5847
5 0.1197 0.1228 0.1199 0.1269 0.1264 0.1176
6 0.4573 0.4574 0.4420 0.4478 0.4634 0.5050
7 0.1642 0.1580 0.1590 0.1592 0.1647 0.1693
8 0.2001 0.2121 0.1897 0.2003 0.1781 0.1885
9 0.2854 0.2627 0.2947 0.2754 0.2984 0.2900

10 0.1810 0.1802 0.1781 0.1849 0.185 0.1968

Table 5.14 Latitude MSE Results of UAV

Flights DeepAT StEncDecLSTM EncDecGRU EncDecLSTM GRU LSTM
1 0.3012 0.2975 0.3065 0.3058 0.3145 0.3106
2 0.4149 0.4235 0.4170 0.4243 0.4503 0.4436
3 0.2804 0.2786 0.2907 0.2818 0.2659 0.2943
4 0.4240 0.4022 0.4218 0.4058 0.4113 0.4193
5 0.2893 0.2815 0.2859 0.2846 0.3010 0.2858
6 0.3268 0.3172 0.3241 0.3234 0.3190 0.3559
7 0.3206 0.3230 0.3249 0.3258 0.3137 0.3404
8 0.3309 0.3337 0.3506 0.3578 0.3245 0.2900
9 0.0513 0.0364 0.0758 0.0610 0.0587 0.0421

10 0.3153 0.3082 0.317 0.3133 0.3315 0.3342

Table 5.15 Longitude MSE Results of UAV
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Flights DeepAT StEncDecLSTM EncDecGRU EncDecLSTM GRU LSTM
1 0.2942 0.2868 0.2879 0.2874 0.2913 0.2891
2 0.2331 0.2327 0.2339 0.2357 0.2320 0.2345
3 0.0804 0.0827 0.0821 0.0767 0.0963 0.0850
4 0.2477 0.2477 0.2478 0.2484 0.2470 0.2445
5 0.0533 0.0522 0.0535 0.0548 0.0561 0.0545
6 0.0715 0.0711 0.0712 0.0716 0.0715 0.0715
7 0.0247 0.0246 0.0242 0.0243 0.0250 0.0249
8 0.2618 0.2607 0.2615 0.2578 0.2603 0.2603
9 0.0742 0.0718 0.0740 0.0733 0.0718 0.0718

10 0.0244 0.0255 0.0250 0.0267 0.0253 0.0255

Table 5.16 Altitude MSE Results of UAV

Figure 5.13 DeepAT’s Latitude Result for Flight 8 in UAV

A comparative latitude prediction results between DeepAt and GRU are given in Fig. 5.13.

Fig. 5.13, when analyzed, shows that the DeepAT model offers a more accurate prediction of

the latitude value compared to the GRU model. The DeepAT model can be seen to converge

towards the actual value with gradual and small fluctuations, while the GRU model is plagued

with sudden and sharp fluctuations in its predictions. This disparity in performance can be

attributed to the effectiveness of the encoder-decoder structure in DeepAT, which enables

it to handle sequence predictions effectively. Despite the fluctuations in the predictions, the
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wide field of view of the antennas used for telemetry data collection helps mitigate the impact

of small changes such as these.

Figure 5.14 DeepAT’s Longitude Result for Flight 8 in UAV

A comparative longitude prediction results between GRU and our proposed method are given

in 5.14. When analyzing Fig. 5.14, it can be seen that the predictions of the GRU model

deviate significantly from the actual longitude values. The GRU model’s estimates have

sharp increases and fluctuations, which can cause significant inaccuracies in the tracking of

the aircraft. On the other hand, although the DeepAT model also has some fluctuations, it

can be seen that it has a much better structure compared to the GRU model. The DeepAT

model’s predictions converge towards the actual values, and even in the moments where it

deviates from the actual values, it remains within a close range. This indicates the success of

the encoder-decoder architecture in sequence prediction. A comparative altitude prediction
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Figure 5.15 DeepAT and GRU Altitude Result for Flight 8 in UAV

results between DeepAT and GRU are given in Fig. 5.15. By examining Fig. 5.15, it is clear

that the DeepAT model is able to estimate the altitude of the UAV with remarkable accuracy,

despite some small deviations. This is due to the sophisticated architecture of the DeepAT

model, which is specifically designed to handle complex and dynamic flight characteristics.

The GRU model, on the other hand, lacks a sequential structure and although it provides

good estimates at certain intervals, it falls short in accurately tracking the altitude of the

aircraft. This is due to the fact that the predictions made by the GRU model are independent

of each other and any large, instantaneous deviations will result in significant problems in

the tracking of the aircraft. This highlights the importance of having a sequential structure in

the predictive model in order to accurately track the UAV and ensure safe flight operations.
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Figure 5.16 3D Flight Route Visualization for Flight 8 in UAV

Figure 5.17 2D Flight Route Visualization for Flight 8 in UAV

Figures from Fig. 5.15 to Fig. 5.14 compare the results of our proposed DeepAT model

and GRU model with 3D predictions at the flight of a UAV. Considering the results, as seen

in the following Fig. 5.15, DeepAT model makes the altitude prediction better. Although

it has a damped fluctuation, it does not disturb the sequential structure. On the other hand,

although GRU is good at single-point predictions, it cannot provide a sequential structure.
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Similar results are observed for latitude and longitude predictions. The UAV continuously

draws circles during this flight, as seen in Fig. 5.16 and 5.17, which means that data that is

substantially similar to the preceding data is repeated.

Latitude Longitude Altitude
DeepAT 0.4096 0.7518 0.3159

StEncDecLSTM 0.4336 0.8351 0.3319
EncDecGRU 0.4017 1.1851 0.343

EncDecLSTM 0.5491 1.2729 0.3646
GRU 0.3977 1.2715 0.4697

LSTM 0.5198 1.3904 0.4697

Table 5.17 Maximum Deviation Between Actual and Predicted Values in Flight 8

Table 5.17 illustrates the maximum deviation between the actual and predicted points for

flight 8. When looking at the maximum deviation in the predictions, it becomes clear that

the encoder-decoder architecture has a significant impact on the estimations of longitude

and altitude. It can be observed that models such as GRU and LSTM tend to have high

deviations, particularly in the longitude predictions, while models based on encoder-decoder

architecture demonstrate much more precise predictions within a relatively narrow range of

deviation. This highlights the superiority of encoder-decoder based models when it comes to

making accurate predictions in sequential data.

Fig. 5.18 displays the results of the latitude predictions made by the DeepAT and GRU

models in a sequence where the latitude value is highly variable. It can be seen that the

GRU model has made a substantial improvement compared to its initial predictions at the

start of the sequence, and has been able to get closer to the actual latitude values. However,

the fluctuations in its predictions and the large margin of errors demonstrate that it still has

some difficulty in making consistent estimations. On the other hand, the DeepAT model

has demonstrated remarkable consistency and accuracy in its predictions, due to its effective

use of sequential structure. It starts off with an estimation close to the true latitude value

and continues to produce predictions that are in close proximity to the actual data. In this

sequence, although the GRU model might perform better in single-point estimations, the

DeepAT model’s performance is more robust and reliable due to its sequential approach.
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Figure 5.18 DeepAT and GRU Latitude Result for Flight 10 in UAV

Figure 5.19 DeepAT and GRU Longitude Result for Flight 10 in UAV

Fig. 5.19 demonstrates the performance of the DeepAT and GRU models in predicting

longitude values in a sequence where the longitude is constantly changing. The DeepAT

model shows remarkable resilience in overcoming its initial estimation error, quickly

adjusting its predictions to align closely with the actual longitude values. Meanwhile,
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although the GRU model appears to have a degree of sequential structure, its predictions

are plagued by persistent fluctuations and deviations from the true longitude values. These

findings suggest that the DeepAT model may be more effective in accurately predicting

longitude values in dynamic environments, due to its ability to rapidly adapt to changes

in the data.

Figure 5.20 DeepAT and GRU Altitude Result for Flight 10 in UAV

As can be seen from Fig. 5.20, the results of the DeepAT and GRU models in estimating

the altitude of the aircraft are quite different from each other. The GRU model, which

struggles to provide continuous and consistent predictions in this sequence, tends to fluctuate

greatly and deviate from the actual data points. In contrast, the DeepAT model demonstrates

its superiority by starting with predictions that are close to the actual data points, and by

leveraging its sequential structure, it produces reliable and accurate results throughout the

flight. These predictions are essential in ensuring the safe and controlled navigation of the

aircraft, and the performance of the DeepAT model in this regard is particularly noteworthy.

This highlights the ability of the DeepAT model’s sequential structure to make accurate

predictions in a new and different flight scenario, demonstrating its robustness and reliability

in estimating altitude values.
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Figure 5.21 3D Flight Route Visualization for Flight 10 in UAV

Figure 5.22 2D Flight Route Visualization for Flight 10 in UAV

Figures from Fig. 5.20 to Fig. 5.19 compare the results of our proposed DeepAT model

and GRU model with 3D predictions at a specific type of a flight of a UAV. This flight is

unique because the UAV does quick maneuvers that it hasn’t done before and is not used to

executing. As seen in Fig. 5.21 and Fig. 5.22, in this flight, the UAV draws the Turkish flag
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in the sky with the route it follows. This flight was made during the 19 May Commemoration

of Atatürk, Youth and Sports Day, which is a national holiday. We are interested in this flight

because the UAV makes sharp maneuvers in an attempt to depict stars and crescents. The

MAE and MSE values provided by DeepAT model and GRU model we suggest for this flight

are extremely similar. DeepAT model, which we propose using for this flight, has an MAE

value of 0.1065, compared to GRU model’s MAE value of 0.0955. We may conclude that

DeepAT model we provide performs better in sharp maneuvering flights or during predictions

of the next position of aircraft with sharp maneuverability after looking at flight examples of

fixed-wing propeller aircraft beside this example.

Latitude Longitude Altitude
DeepAT 0.7491 0.8609 0.1669

StEncDecLSTM 0.7845 0.8928 0.1649
EncDecGRU 1.0835 0.8577 0.2264

EncDecLSTM 1.1364 0.8729 0.2287
GRU 1.4778 1.3624 0.2627

LSTM 1.4535 1.2431 0.2644

Table 5.18 Maximum Deviation Between Actual and Predicted Values in Flight 10

Table 5.18 illustrates the maximum deviation between the actual and predicted points for

flight 10. When analyzing the maximum deviation in detail, it becomes apparent that the

encoder-decoder based models have a significant impact on the prediction results for both

longitude, latitude, and altitude values. While GRU and LSTM models tend to produce high

deviations, particularly in longitude predictions, encoder-decoder based models are capable

of making predictions with much smaller deviation margins. Although each model performs

well in terms of altitude predictions, it is evident that the encoder-decoder based methods

produce outstanding results in terms of the maximum deviation metric. This highlights the

effectiveness and reliability of these models in ensuring accurate and consistent predictions.
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Model MAE Metrics Dataset
Latitude Longitude Altitude

DeepAT 0.1493 0.1553 0.0983 MAE/MSE Telemetry
DeepAT 0.2228 0.2333 0.1654 MAE/MSE Telemetry
LSTM [5] 0.0725 0.0552 77.9472 MAE/RMSE ADS-B
WMM [5] 0.0788 0.0910 141.3293 MAE/RMSE ADS-B
MM [5] 0.1065 0.1045 159.9611 MAE/RMSE ADS-B
CNN-LSTM [26] 0.0170 0.0710 33.8320 MAE/RMSE ADS-B
LSTM [26] 0.0170 0.0890 44.3250 MAE/RMSE ADS-B
BP [26] 0.0460 0.1740 77.2540 MAE/RMSE ADS-B
D-GRU [36] 4.4000 5.1700 1.5000 MAE/RMSE Quadrotor
GRU [36] 4.9800 5.5200 1.5900 MAE/RMSE Quadrotor

Table 5.19 Literature Comparison of DeepAT

Table 5.19 shows the comparison of the DeepAT model with different studies in the literature.

Each model created in the literature has its own fundamental differences, so we cannot call

this comparison an equal comparison. However, studies that used methods similar to the

ones we used in the literature are shown in Table 5.19. In the studies, unlike our thesis,

the RMSE value was chosen as the evaluation metric. At the same time, our thesis makes

predictions in an area where there are no exact studies in the literature, as the aircraft type it

is interested in. The studies in the literature are mostly concentrated on small quadrotors and

commercial aircraft. DeepAT, on the other hand, makes its predictions on two very different

aircraft than the studies. One of these aircraft is a highly maneuverable, propeller and very

fast aircraft, and the other is a large wingspan UAV that can carry loads at high weights. On

the other hand, the datasets and preprocessing steps used are also different in each study.

When a rough comparison is made, the DeepAT model gives outstanding performance in the

prediction of fixed-wing propeller aircraft than the studies in the literature. Since there is no

similar study with similar metrics and aircraft type, comparison of UAV with the studies in

the literature could not be made.
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6. CONCLUSION

This thesis proposes a hybrid Stacked Encoder-Decoder GRU model named DeepAT for

3D next-location prediction. This model is implemented on a real flight dataset that is

collected from the ground telemetry system in flight test phases. Two different types of

aircraft are analyzed differently and extensively: fixed-winged propeller aircraft and UAV.

This thesis aims to solve the problem of data loss in flight test phases. Knowing the

next location of the aircraft gives us an upper hand in tracking the aircraft in real-time.

This model is compared with state-of-the-art techniques (LSTM, GRU, Encoder-Decoder

LSTM, Encoder-Decoder GRU) for sequence prediction. MAE and MSE metrics are used

as evaluation metrics. According to the experimental results, DeepAT shows superior

performance and predictions in propeller aircraft and gives similar results with GRU for

UAVs. In addition, when compared to GRU model, our proposed DeepAT model achieves

better performance for sequential structure. The experimental results show that using

GRU-based Stacked Encoder-Decoder architecture is good at solving time-series sequencing

problems in real-time. We can state that DeepAT model performs significantly better against

sharp maneuvers than GRU and that DeepAT model performs similarly to GRU even during

flights of the rather sluggish and cumbersome UAV. For two different aircraft, the proposed

DeepAT model is contrasted with five other state-of-the-art methods. For the fixed-wing

propeller aircraft, we acquire the values of 0.1493 for latitude MAE, 0.1553 for longitude

MAE and 0.0983 for altitude MAE values. At the same time we acquire 0.0585 for latitude

MSE, 0.0593 for longitude MSE and 0.0356 for altitude MSE values. Also, for the UAV,

we obtain the values of 0.2228 for latitude MAE, 0.0233 for longitude MAE and 0.1654

for altitude MAE values. At the same time we acquire 0.2976 for latitude MSE, 0.3054 for

longitude MSE and 0.1365 altitude MSE. While DeepAT model achieves superior results to

all other methods for fixed-wing aircraft, it produces competitive results to each model for

UAV flights.
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