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ABSTRACT

A NOVEL COMMUNICATION PROTOCOL DESIGN FOR
INTERNET OF FLYING THINGS

Burak Han ÇORAK

Master of Science, Computer Engineering
Supervisor: Prof. Dr. Suat ÖZDEMİR

January 2023, 103 pages

In this thesis a new communication protocol, Message Queuing Telemetry Transport

Extended (MQTT-XT) is proposed for the Internet of Flying Things (IoFT) network. The

main objective of the proposed protocol is to enable UAVs to be considered as part of

IoT nodes. The MQTT-XT protocol bridges the gap between UAVs and IoT devices by

converting MQTT and MAVLINK message types to make them compatible with each other.

Three different client types have been proposed to support long-distance and distributed

communication with UAVs and IoT devices. A testbed was set up in simulation to evaluate

the performance of MQTT-XT and MAVLINK protocols in terms of UAV management

messages and 4 different IoFT scenarios. The experimental results show that MQTT-XT

consumes 5 times less message size to transmit command messages and 20 times less for

status messages. Additionally, the MQTT-XT protocol-based network completes missions

30% faster, and the packet loss ratio is reduced from 20% to 2%. In conclusion, MQTT-XT

outperforms MAVLINK in IoFT autonomous applications.

Keywords: MQTT-XT, Internet of Things, Internet of Flying Things, Unmanned Aerial

Vehicle, IoT Communication Protocols, MQTT, MAVLINK
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ÖZET

UÇAN NESNELERİN İNTERNETİ İÇİN YENİ BİR İLETİŞİM
PROTOKOLÜ TASARIMI

Burak Han ÇORAK

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Suat ÖZDEMİR

Ocak 2023, 103 sayfa

Bu tezde, Uçan Nesnelerin İnterneti (IoFT) ağı için yeni bir iletişim protokolü olan

Message Queuing Telemetry Transport Extended (MQTT-XT) önerilmiştir. Önerilen

protokolün temel amacı, İHA’ların IoT düğümlerinin bir parçası olarak kabul edilmesini

sağlamaktır. MQTT-XT protokolü, MQTT ve MAVLINK mesajlarını dönüştürerek ve

birbirleriyle uyumlandırarak İHA’lar ve IoT cihazları arasındaki boşluğu doldurur. İHA’lar

ve IoT cihazları ile uzun mesafeli ve dağıtık iletişimi desteklemek için üç farklı istemci

tipi önerilmiştir. MQTT-XT ve MAVLINK protokollerinin performansının İHA yönetim

mesajları ve 4 farklı IoFT senaryosu açısından değerlendirilmesi amacıyla simülasyonda

test ortamı hazırlanmıştır. Deneysel sonuçlar, MQTT-XT’nin komut mesajlarını iletmek

için 5 kat ve durum mesajları için 20 kat daha az mesaj boyutu tükettiğini göstermektedir.

Ek olarak, MQTT-XT protokol tabanlı ağ, verilen görevleri %30 daha hızlı tamamlar

ve paket kayıp oranı %20’den %2’ye düşürür. Sonuç olarak MQTT-XT, IoFT otonom

uygulamalarında MAVLINK’ten daha iyi performans gösterir.

Anahtar Kelimeler: MQTT-XT, Nesnelerin İnterneti, Uçan Nesnelerin İnterneti, İnsansız

Hava Aracı, IoT İletişim Protokolü, MQTT, MAVLINK
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joy, and happiness to my life on this journey. You have made me stronger, better, and more

fulfilled than I could have ever imagined.

I would like to extend my most sincere appreciation to all of my friends who have provided

me with unwavering support throughout the research process. Unfortunately, the constraints

of this page do not permit me to mention each and every one of you by name, but please

know that your contributions have been invaluable to my success. I am forever grateful for

your support and be part of my life.

iii



CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
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1. INTRODUCTION

Communication has been one of the most important milestones of humanity in every aspect

throughout history. The revolution of technologies is getting more advanced by interchanging

information between many scientists. For example, the computer is one of the greatest

inventions in technology history. It helps to solve many complex problems that require

many calculations. However, advancement in this area has been taking a big step since

the World-Wide-Web (WWW) was invented. Thanks to this invention, people could start

sharing their knowledge, experience, and many things in a few minutes instead of weeks.

The same principle spreads to machines. The basic definition of the Internet of Things

(IoT) is the things that connect to the internet. In other words, the devices that connect

and communicate with each other. These tiny, low-resource, low-price, low-power

consumer devices are integrated into almost every place in our daily lives. They are

also integrated into many health, heavy industry, farming, etc., applications [1]. The

application area of the IoT industry has expanded more widely in the last decades with

many advancements in the communication area. Popular companies in tech area like Intel,

Microsoft, Amazon, Google, and Cisco start different projects to achieve next-generation

solutions in the IoT communication industry [2], as these devices are generally produced

with low resource-consuming and provide cost-effective solutions.

Accordingly, many new-brand protocols are introduced such as Constrained Application

Protocol (CoAP), Message Queuing Telemetry Transport (MQTT) etc., since the IoT devices

run on low-bandwidth, low-resources, and extremely high latency networks in many cases

[3]. These lightweight protocols aim to send messages under difficult circumstances by

providing a reliable connection. Also, protocols are developed to cope with the high density

of message traffic since the IoT environment consists of different devices. Furthermore,

the scalability factor of IoT devices is higher when compared to the traditional networks,

as we know in the WWW. The main purpose of the protocols is to organize the network
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by considering more complicated low-connection networks where the number of nodes can

reach thousands while ensuring a low rate of packet loss.

The scalability factors of IoT devices were limited to existing terrestrial networks [4].

However, applications area of the IoT can be varied such as agriculture, disaster monitoring,

etc., where terrains are more rough and terrestrial networks are not available. By considering

different application domains, the scalability factor becomes a more challenging problem.

Thus, many suggestions were provided by the researchers to overcome these communication

problems. One of these suggestions includes a wireless ad hoc network (WANET). WANETs

are specified for their domain and they are decentralized network types.

The Internet of Flying Things (IoFT) has emerged concept among all ad hoc networks

[5]. The future of IoT has become another level with Unmanned Aerial Vehicle (UAV)

technology, since these low-cost flight-based devices provide more flexible and mobile

communication when compared to other types of ad hoc networks. Moreover, the

management of the IoFT is more complex. The ad hoc networks provide communication

over their routers or access points. Nevertheless they are not focused on communicating or

managing vehicles. Despite that, UAV systems are required to be directed and managed.

At this point, a communication protocol showed up as one of the biggest challenges. Because

on the one hand, IoT devices use their protocols while on the other hand, UAVs use their

protocols. This problem causes the design of two different communication infrastructures

which can be more complex as the number of nodes increases which is completely opposed

to the idea of the IoT concept. For this reason, UAVs should be considered as a part of the

IoT network. One of the solutions to achieve this is to propose a single protocol that provides

communication for IoFT components.
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1.1. Scope Of The Thesis

The main focus of the thesis, to solve the communication problem that creates a distinction

between drone systems which require ground stations to receive commands, and IoT devices

where a large scale of the network is needed but insufficient to distribute due to a lack of

process capabilities. The IoT protocols are well-designed for low bandwidth, low resources,

and packet loss. However, the current UAV’ protocols are more talkative and need more

resources than IoT devices from the perspective of the network load. Furthermore, UAVs

need centralized management to take commands and report their status to ground stations.

In this thesis, a new MAVLINK enabled MQTT Extended (MQTT-XT) protocol design is

proposed to consider UAVs as a part of IoFT nodes. For this reason, a single protocol is

suggested which provides communication between IoT and UAVs by interpreting MAVLink

and MQTT messages to each other in the UAV platform. Furthermore, IoT network devices

work in resource-constrained environments. MQTT-XT makes it possible for UAVs to

work in this type of network with its lightweight structure. Furthermore, MQTT-XT has

specialized functions which employ multiple UAVs for communication. The proposed novel

protocol is built on top of MQTT by extending and stretching the MQTT structure. The

MQTT-XT protocol makes it more cost-effective for communication among IoFT while it

responds to the requirements of both UAV and IoT nodes.

1.2. Contributions

In this thesis, the deficiency of the communication protocol of the IoFT concept is handled.

The IoT environment includes heterogeneous devices, while often they work on constrained

resources. Similarly, IoFT has not only many different devices but it also has UAVs.

However, there is no proposed protocol to manage UAVs over existing IoT protocols. These

constraints push researchers to create more unique architectures when they work on different

scenarios.
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The main motivation of the thesis is to make the IoFT concept more flexible, reliable,

low-cost, and efficient with the proposed protocol. The approach proposes a single protocol

to overcome communication problems for UAVs in IoFT networks by considering UAVs as

IoT nodes. This novel design MQTT-XT protocol offers a simple and efficient approach

while the UAVs’ nodes are still able to communicate with other IoT devices. The key

difference between the MQTT-XT and the existing proposed models is a single protocol

that aims to communicate UAVs directly with over MQTT topics by interpreting MQTT and

MAVLINK messages to each other in the UAV platform.

The main contributions of this thesis are summarized as follows:

• A new MQTT-XT (MQTT Extended) protocol for IoFT which provides to control UAV

over MQTT topics without changing the structure of MQTT is proposed

• Unlike most of the previous work, a single protocol is built by considering the

requirements of UAVs while extending MQTT for IoFT.

• For the first time, an IoT communication protocol that accepts UAVs as part of an IoT

network is proposed

• Customized functions like QDoS and PSMI for managing UAVs is introduced. Also,

specified functions such as broadcast messages that provide to manage drones with a

single command message are presented which have not existed in previous studies.

• The experimental results show that the MAVLINK protocol is not suitable for the IoFT

since it has a heavy message traffic.
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1.3. Organization

The organization of the thesis is as follows:

• Chapter 1 presents the motivation, contributions, and the scope of the thesis.

• Chapter 2 provides basic knowledge of IoT and UAV protocol. Also, the existing

problems for IoFT are given in this chapter.

• Chapter 3 gives related works which aim to establish communication between IoT

devices and drones. The related works will be examined under two different topics:

Multi-Protocol Based Architectures and Single-Protocol Based Architectures

• Chapter 4 introduces the novel protocol MQTT Extended (MQTT-XT) with its 3

different types of clients by inspecting the general architecture of the protocol.

• Chapter 5 demonstrates the experimental results for our thesis. These results

are obtained by comparing MAVLINK and MQTT-XT protocols with different

communication metrics on different message sets and various scenarios in the

simulation environment.

• Chapter 6 states the summary of the thesis and possible future directions.
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2. BACKGROUND OVERVIEW

The IoT has rapidly gained a reputation since the term includes all devices which can

connect to the Internet. The IoT devices can be heavy computing machines, smartphones,

micro-chip-based machines with basic functions, sensing the environment with a dozen sets

of sensors, or daily devices that people used for their daily routines [6]. This wide and various

definition consists of many different devices. For this reason, the term started to evolve more

and more heterogeneous structures day by day. Besides, the complexity level is increasing

and the management of networks that have very different smart devices is even harder than

before.

The other feature that gives a reputation to IoT is the ability to work in low-resources and

constrained environments. However, the trade-off is the reliability of the network. The

development of the existing traditional application layer protocols and the new IoT protocols

are introduced to overcome reliability problems. The IoT protocols are aimed to organize the

network by considering the heterogeneous structure of devices which is presented in Figure

2.1. Also, they provide reliability for the constrained resource environments.

After these huge steps, the research domain of IoT research is spread among very wide areas

like smart cities, smart farming, health-care monitoring, natural disasters, etc. However, the

key problem for some of the research areas is many IoT devices that lack Internet networks.

Since there is no Internet connection among these devices, they are not able to transmit data

to the cloud. Even the local networks are provided to obtain certain data and transmit them

when a network is available, the real-time dilemma exists for this type of connection [7].

Also, maintenance operations are very difficult for these types of networks. Besides, smart

farming or natural disaster management application areas are more likely implemented on

rough terrains which causes a couple of different problems for researchers.

One of the biggest challenges of long-distance communication in such solutions is the

distribution in very wide areas as a nature of the IoT devices structure [8]. Furthermore, the

terrestrial network cannot be accessible or many devices are faced with very small bandwidth
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Figure 2.1 Heterogeneous Devices of the IoT Applications

even if it is accessed. In such resource-constrained environments, different IoT protocols

such as MQTT and CoAP have been designed to make sure that the sensor network can be

easily maintained, enabling devices to operate with limited resources. The importance of

such protocols is vital to provide manageability of these devices which are scattered and

spread over a wide environment. Additionally, due to the complete lack of access to the

terrestrial network, at some points, different solution methods have been developed, such as

satellite Internet, 4G, or 5G [9].

Besides these technologies, ad hoc networks such as Vehicular ad hoc networks (VANET),

Mobile ad hoc networks (MANET), and Flying ad hoc networks (FANET) are provided

to overcome accessibility problems. The main purpose of ad hoc networks is to

solve accessibility problems with the different types of wireless connections and routing

operations. One of the other ad hoc networks, which is named IoFT, emerged more than

other types. The term includes many integrated UAVs to collect data from sensors. Figure

2.2 presents the aforementioned ad hoc network types.
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Figure 2.2 MANET, VANET, FANET, and IoFT

Even if the IoFT is inspected under the ad hoc network type, the term can be expanded to

the application layer domain. Because the main purpose of the IoFT is to collaborate with

drones to gather different data types. The typical problem for the IoFT type of network is

the communication protocols since many UAVs are used in architecture. The management of

drones stands out as another challenge. For example, MAVLINK, the most common of the

existing drone protocols, is designed for RF communication with line-of-sight operations.

Even if it has the capability to communicate with UAVs with Transmission Control Protocol

(TCP) and User Datagram Protocol (UDP), this capability is only limited to UAVs and
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not IoT devices. So, implementing the IoFT is not well described or handled regarding

application layer protocols.

The IoFT is suggested by researchers to fill the gaps in IoT communication. Nevertheless,

the details are not well defined and are still unclear in many aspects. The first problem is

the management of UAVs in IoFT networks. UAVs are still considered to be like other types

of devices. The IoFT employs UAVs to provide communication between IoT networks but

does not offer to manage drones over existing network architectures. The second problem is

that as the number of UAVs increases to tens or hundreds, the management of existing UAVs

becomes harder and harder.

For example, given in Figure 2.3 and Figure 2.4, the drones are used to gather data from

different IoT nodes and transmit end-user through the cloud. The multiple UAVs-based

architectures offer mobility. However, the management of the multiple UAVs-based

architectures are harder than the IoT network. The researchers should employ at least two

different protocols to organize the architecture. One of them is needed to receive and transmit

data from IoT nodes and one of them is needed to manage and control UAVs. This is

the common dilemma of IoFT. Because, on the one hand, the IoFT provides high mobility

networks by establishing communication over IoT nodes; on the other hand it has complexity

since it has different types of devices.

To overcome this issue, the UAV should be considered as part of the IoT network and the

management of UAV should be provided IoT protocols [10]. Thus, the UAV communication

protocol becomes suitable for IoT environments and it can directly communicate with other

IoT nodes. Moreover, existing UAV protocols such as MAVLINK use heavy payloads to

communicate with ground stations. Fundamentally, IoT networks are generally built on

constrained resources and the UAV protocols are not suitable in the long term for IoFT

environments since they use heavy payloads. So, the IoFT needs to be supported with IoT

communication protocols to provide efficient communication between UAVs and IoT nodes.
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Figure 2.3 IoT nodes and UAV connections - 1

Figure 2.4 IoT nodes and UAV connections - 2
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2.1. IoT Communication Protocols

One of the most popular IoT application layer communication protocols such as CoAP,

MQTT, Advanced Message Queuing Protocol(AMQP), Extensible Messaging and Presence

Protocol(XMPP), and ZeroMQ are varied and built on UDP and TCP network layer

protocols. The main purpose of the protocols is to transmit messages in low-resource

applications. Different research is presented to compare these similar protocols. Paridhika

et. al. [11] compared the performance of CoAP, MQTT, and XMPP in the smart parking

application domain. By measuring their response time, the researchers obtained the result

that the CoAP performs better than MQTT and XMPP at lower usage of the server. In the

contrary, if multi-threading is supported, XMPP is better than others.

The other research is presented by Naik [12] to compare IoT communication protocols. The

MQTT, CoAP, AMQP, and HTTP are compared and CoAP performs better in many network

metrics. However, MQTT is still the most preferred technology among the other protocols

for IoT applications. Tightiz et. al. [13] analyzed the protocols from the perspective of a

smart grid and the Data Distribution Service(DDS) and ZeroMQ emerged among all other

protocols due to security and reliability characteristics.

Anusha et. al. [14] reviewed the AMQP, CoAP, XMPP, MQTT, MQTT-SN (MQTT-Sensor

Network), and DDS with under packet loss, message size, bandwidth consumption, and

latency metrics. CoAP and XMPP have the highest packet loss rates than other protocols

when the actual telemetry loss rate ratio is increased. However, CoAP has better results on

the latency of packets since it is built on UDP.

The MQTT is the most common preferred protocol of any others in IoT application domains

[15, 16]. The main reason for more implementation of MQTT is that it has a more flexible

structure than other protocols and is more eligible for IoT environments. Also, since it was

developed earlier than others, the optimization and standardization parameters are better

when it is compared with other IoT protocols. A brief comparison summary of IoT protocols

is presented in Table 2.1.
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Protocol Transport Messaging Architecture Security

Layer Type

CoAP UDP Request/ Client/ DTLS, IPSec

Response Server

MQTT TCP Publish/ Client/ TLS/SSL

Subscribe Broker

XMPP TCP Publish/ Client/ TLS/SASL

Subscribe Server

AMQP TCP Publish/ Client/ TLS/SSL IPSec

Subscribe Broker SASL

ZeroMQ UDP Publish/ Client/ TLS/SSL

Subscribe Broker(Opt.)

Table 2.1 Summary of the IoT protocols

2.2. MQTT (Message Queuing Telemetry Transport)

The MQTT protocol, released by IBM in 1999 and standardized by OASIS in 2013, is the

most popular IoT protocol which has novel publish and subscribe architecture [17]. The

main focus of the protocol was built as an extremely lightweight. The efficient bandwidth

usage of the protocol provides to connect devices where the resources are constrained. The

use-case of MQTT has spread very wide variety in many application and research areas.

The MQTT runs over TCP/IP and messaging relies on the topic structure. It allows multiple

bidirectional connections for IoT devices. It has two different client types which are named

publisher and subscriber. Also, it has a server known as the broker for MQTT which is

used to exchange messages between clients through topics. The publisher clients transmit

messages to the broker with publish mechanism into the specific topics which are defined by

the user. The subscriber clients receive the message by subscribing to the specified topics.

The general publish/subscribe architecture is given in Figure 2.5.
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Figure 2.5 General MQTT Architecture

MQTT present 3 different Quality of Services (QoS) levels. The QoS 0 is the fire and forget

level. The message delivery is not guaranteed since the message is sent once. The QoS is

generally a good option where the connection is reliable or the packet loss is acceptable. The

QoS 1 level is guaranteed packet delivery but it is not guaranteed duplication of data. The last

QoS level 2 is certainly transmitting messages only once. Besides, QoS 2 is guaranteed the

delivery of messages to the broker. But, the trade-off for QoS 2 is that the time consumption

and workload are higher since it tries to send a message and waits for the acknowledgment

message from the broker. However, it offers a more reliable connection where packet loss is

not tolerated.
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Table 2.2 List of the MQTT messages

The packet format for MQTT consists of 3 main sectors: Fixed Header, Variable Header,

and Payload. The Variable Header and Fixed Header sectors are flexible and not always

presented. But the Header size is fixed and always presented. Control Header and Packet

length are part of the Fixed Header. The Control Header includes the message type which

is given in Table 2.2 and the control flag to introduce a message for the client or broker.

The control flag is used to specify the QoS level for publish message and it is not used for

other message types. The packet length is used to indicate the payload length sum of the

Variable Header and Payload. The Variable Header is not always used in MQTT packets. It

provides to specify packets and include protocol names. The payload carries the data to be

sent between the client and broker. The general structure of the MQTT packet is given in

Figure 2.6
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Figure 2.6 MQTT General Packet Structure

2.3. UAV Protocols

The protocols for the low-cost UAVs are mostly developed as on open-source projects. Many

of them aim to establish communication between UAVs and ground stations. In preliminary,

the management of the UAV is provided by the remote controller with the RF signals from

Remote Controller by giving manual inputs to adjust rotor speed levels. In this situation,

the ground station is only used to monitor drone status, and protocols are often dedicated to

receiving status. With the development of the autopilot stage, the UAV has become a more

robotic device and predefined activities such as takeoff, arm, land, etc. could be provided by

the ground station. Thus, the protocols are also evolved to manage and control UAVs.

Many companies design their own protocol architecture since the applications of UAVs are

more used for military or commercial purposes. In this type of application, communication

infrastructure is called a Data Link which can be different variations. The most common

types are presented in Figure 2.7. These types of systems benefit Radio Frequency (RF)

signals to reach long-distance communication for sight-line operations. However, the RF is

only able to transmit signals between the ground station and UAV in the visible range. Thus,

satellite communication is the other option. The UAVs transmit the data to the satellite and

then the ground station receives signals from the satellite.

Besides, open-source protocols have been developed to support research on UAVs. Also,

these open-source protocols are not limited to specific architectures. But, the open-source

application layer UAV protocols are very limited. Khan et. al. [18] presented three different
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protocols with their pros and cons. Furthermore, the first one is UranusLink which is

designed for RF signals. The second one is the UAVCan which is designed for basic usage

and is not useful for mission-critical systems. The most negative side of UranusLink and

UAVCan protocols is that they have been developed for small overhead. The last one is the

MAVLINK which is more widely known and has a more mature packet structure. MAVLINK

is more stable than UranusLink and UAVCan. Also, MAVLINK supports many application

layer protocols and has a multi-programming language.

Figure 2.7 UAV Communication - Data Link

2.4. MAVLink

MAVLink which stands for micro air vehicle link is a protocol that provides communication

between unmanned systems and ground stations. MAVLINK uses minimal overhead to

provide lightweight communication. The approach of the protocol benefits serialization and

supports different layers of message transportation [19]. The typical network interfaces like
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UDP and TCP are also usable for MAVLINK to transmit messages. UDP provides more fast

messaging while TCP is more reliable, but the management of connections becomes more

difficult.

The typical message structure of MAVLINK depends on binary serialization. The

serialization converts the messages into binary series which is given in Table 2.3 and

transmits over different layers. The packet frame of MAVLINK includes the message types

to indicate which messages are delivered. Also, the message types are divided into command

and status messages. The status messages provide information about UAVs. The command

messages are used to manage or initiate predefined actions like take-off, arm, disarm, etc.

The frame of the MAVLINK is given in Figure 2.8.

Table 2.3 MAVLINK Packet Format

Figure 2.8 MAVLINK 1.0 and 2.0 Packet Frame
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3. RELATED WORK

In this chapter, different studies are presented which are eligible to solve the IoFT

communication problem and manage to drone over IoT protocols.

In the few last years, the research area for the domain of IoT and UAVs has increased and

expanded significantly as non-terrestrial networks are much more popular nowadays. For the

UAV-enabled IoT network, the communication between IoT devices and unmanned systems

includes many different scenarios. However, most of the time, in related studies architecture

of their systems and information about the management of the highly heterogeneous network

are not given in detail which causes an insufficient review of the network requirements and

scalability factor from the perspective of communication protocols. For example, Boursianis

et. al. [20] reviewed IoT and UAV-assisted applications and prepared a survey on different

aspects. The researchers described some different metrics, and technology and included

different metrics in IoT and UAV-assisted agriculture application domain. Moreover, the

researchers cited that they analyzed a total of 65 different papers. However, the researchers

even mentioned to IoT protocols the participation of the UAV is not well covered. Also,

the total Scopus database presents 865 total papers from 2004 to the research published day

while the contributors do not go into detail about the UAVs management in IoT networks

with the communication protocols.

A similar issue can be observed in different application domains such as smart cities [21, 22]

disaster management[23, 24], virtually augmented reality [25, 26], edge computing [27, 28]

or data transferring/gathering in different formats[29–33] and much more different Machine

to Machine (M2M). The summaries of the research show us that the communication protocol

is not well-defined to specify the UAV management in IoT networks. According to [34],

the drone term should be kept as ”things” in given domain sets. The researchers are

demonstrating the whole process where both terms are included. The key factor of the paper

is that the introduced framework supports IoT-UAV-based applications. However, the given

aerial networking is not yet defined as the whole process of the UAV-supported network to
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manage and orchestrate the very-wide spread network without the detailed aerial protocol.

Only configurations are presented like MANETs, VANETs, and FANETS grouped under

three main types: Proactive, Reactive, and Geographic.

Table 3.1 Summary table of related works about IoFT protocols
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As a result of this, the complicated structures cannot be overviewed with the combined

communication protocols which suit IoT devices and UAVs. The different studies are

proposed to provide solutions to a given problem set by using UAV and IoT-based

architecture. However, the main focus of these studies is solving the problems not comparing

protocols or handling communication architecture. Under these considerations, in this thesis,

the related work reviews are separated into 2 sections which are Multiple Protocol Based

Architectures and Single Protocol Based Architectures. The purpose of dividing the 2 major

sections is to show protocol differences in their own domains and IoFT domain. Also, the

summary of related works is given in Table 3.1

3.1. Multiple Protocol Based Architectures

The multiple protocol based studies for UAV-IoT communication on at least two different

protocols are presented in this section. Many studies benefit from different protocols for their

application domains. Also, the majority of studies focus more on applications and scenarios

without giving any details of network architecture [35–37]. The swarm technologies are

much similar to the IoT network architecture and studies published about managing UAV

swarms with IoT principle [38, 39]. Both terms need to deal with communication problems

about a large number of devices.

Regarding the IoFT structures, many architectures employ different protocols since the UAV

and IoT devices do not communicate with each other. For example, Yuan et. al. [40]

designed architecture to provide UAV swarm communication in the 5G domain. The testbed

consists of 30 different devices to reflect real-life conditions. The architecture consists of

software and hardware designs. Also, in software design, the CoAP and MQTT protocols

are suggested for the embedded operating system. But, the MAVLINK is used to manage or

control UAVs for data encapsulation in software design. The main key feature of the design

is that it provides more reliable and efficient connections in cellular networks.

Mukherjee et. al. [41] reviewed the Internet of Drones Thing (IoDT) concept and they

developed message transfer with enhanced MQTT and MQTT-SN to provide communication
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in edge computing. Also, they state that topology estimation is needed since the mobility of

drones is higher than standard IoT architecture. For this reason, they prepared an estimation

algorithm to provide reliability. By using an enhanced message transfer strategy, they aim

to decrease forwarding latency between routers and provide efficient bandwidth utilization.

They review the performance of the proposed approach in various metrics such as average

packet delivery, latency, memory, bandwidth utilization, and power consumption. They

achieve 30% better performance with enhanced MQTT-SN and 17% with enhanced MQTT

for average packet delivery. Furthermore, the MQTT-SN uses minimum energy consumption

when compared to other strategies. Experimental result shows that MQTT-SN with the

proposed algorithm has better performance for memory usage and bandwidth utilization.

Saib’s book [42] reviewed publish/subscribe mechanism on distributed UAVs architecture.

The message strategy of MQTT and DDS provides for managing UAVs in vision-based

Simultaneous Localisation and Mapping (SLAM) system. Since the complexity and

heterogeneous structure of these type of network is enormous level, the researcher states

that MQTT and DDS publish/subscribe mechanism serve better to overcome communication

problems. Also, the suitability and scalability factors can be enhanced by using IoT

protocols in a distributed environment. To build infrastructure between IoT devices and

UAVs, MAVLINK is employed. The latency and bandwidth utilization are measured for the

evaluation criteria. But, the observation is obtained internally by measuring given metric

sets.

Airborne measurements, inspections, or surveillance missions with UAVs are very common.

Matlekovic et al [43] designed a cloud system that provides to inspect infrastructures with

planning paths and assigning the task to UAVs. Microservices are defined to manage

UAVs and requested tasks. The complexity of the design tried to be under control by

defining different functional requirements and non-functional requirements. For providing

communication between all nodes and transferring obtained data to the web interface, Fast

DDS is operated. On the UAV side, the MAVLINK message protocol is supporting the

architecture. The evaluation criteria from the perspective of IoFT are provided by measuring

a response time and load test.
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The digital twin concept is another important topic in the last few years. Meng et. al.

[44] create a digital twin of the UAV-based IoT environment. The test scenarios include

different network types such as WiFi, 4G, and 5G. Both real and virtual frameworks consist

of MAVLINK and MQTT to establish a connection between IoT nodes and UAVs. The

frameworks are evaluated with the transmission time and packet sizes. The researchers

emphasize that creating a cloud-based digital twin of UAV systems makes them more

intelligent.

3.2. Single Protocol Based Architectures

In this section, the single protocol based architectures are presented. Vangimalla et. al.

[45] proposed a system architecture that aims to solve interoperability problems that exist in

constrained resource areas by using THREAD protocol for UAVs. Thread protocol is useful

regarding cost-effectiveness, low-power consumption, and reliability. It has no application

layer which encourages the researchers to build their own protocol. The network layer

of Thread protocol consists of UDP, IP Routing, and Low-Power Wireless Personal Area

Networks (6LoWPAN). The implementation of the paper shows that the proposed method

uses a Thread protocol between UAVs and IoT devices. The management of UAVs is still

provided with MAVLINK.

Silva et. al. [46] introduced MQTT-based UAV control architecture. The researchers

deployed MQTT. MQTT was used to receive commands from the controller and to transmit

the status of the drone to the controller. The evaluation criteria of the architecture have

three metrics: Platform Latency, Network, and Memory Tests. The measurement consists of

Ethernet and WiFi connections. The researchers suggested a new ML model that prevents

DDOS attacks for this type of architecture. The other contribution of the paper is data

balancing and Bayesian optimization. However, the main problem of the research is the lack

of comparison of their architecture with similar protocols and is more likely to test MQTT

performance in UAV communication. Also, the key point of the research is the deployment

of MQTT for the management of UAVs instead of solving communication problems in IoFT.
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Another research which is presented by Scilimati et. al. [47] proves that the IoT protocols

are much more effective where UAVs and IoT devices are incorporated. The researchers

built a test environment in Robotic Environment System (ROS) and the testbed consists of

IoT-aided UAV systems. To provide IoT communication and gather IoT sensor data with

UAV, CoAP is employed with a bunch of message sets of PUT and GET. According to the

network joining time, memory usage, and packet loss ratio, the researchers state that the

performance of CoAP is sufficient regarding data gathering and message delivery. However,

the study does not include any comparison of other protocols or proof of sufficient criteria.

Furthermore, the architecture of CoAP is built only with PUT and GET messages which are

useful to gather data, but it does not consider receiving the status message of the UAV. The

scenarios are created to send only commands to UAVs and prepare mission items for them.

Integration of UAVs into the cellular networks is studied by various researchers [48–50].

Generally, UAVs were handled point of router protocols or case studies view in these studies.

Zhang et. al. [51] proposed a sense-and-send protocol by comparing networks between

UAV-to-UAV, UAV-to-infrastructure, and UAV-to-anywhere regarding a sum of up-link rates.

Also, they proposed an iterative sub-channel allocation and speed optimization algorithm

(ISASOA) that organizes multi-UAV-based networks which run 10% better than a greedy

algorithm. However, this study has only been limited to gathering data through cellular

networks in terms of the IoFT.

Web services incorporating UAVs are also another popular topic. This topic is researched

in different studies [52, 53]. Mahmoud et. al. [54] used HTTP protocol to integrate UAVs

as a part of the cloud. By specifying HTTP’s RESTful Application Programming Interface

(API) and Request/Respond mechanism, the researchers aimed to adapt UAVs to the Web of

Things. The prepared architecture to communicate UAVs over web services consists of the

command and status messages of UAVs. The researchers present response time results for

each HTTP message. Even though the main purpose of the paper is that integrate UAVs into

the web domain, the paper has not sufficient evaluation criteria to prove managing drones

over web services is efficient or reliable.
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4. PROPOSED METHOD

The base problem of the protocol is the assumption that UAVs should be considered like

IoT nodes. Basically, the UAVs should have two vital functions: Receive Commands and

Transmit Status. These two basic principles are managed with the ground station. Thanks to

improvements in autopilot technology, many UAV behavior such as takeoff, land, cruise, etc.

can be managed without manual input [55]. In other words, the UAV rotors are controlled

through Remote Controller (RC) such as a joystick with a different signal. However, the

direct inputs to provide managing on the drone are not needed anymore for predefined

actions. The flight modes such as off-board are providing different predefined actions for

specific tasks.

Accordingly, the ground stations which are more focused the managing drones in visual

ways and interactions with MAVLINK protocol are not effective when it comes to scenarios

involving hundreds of UAVs and different locations. As mentioned in the background

section, the cloud is necessary to manage multi UAVs based networks such as swarm.

Although, the MQTT and other preferable IoT protocols are employed to deal with

multi-vehicle networking problems. Nevertheless none of them is not directly aiming to

consider UAVs as IoT nodes. The main concern is managing the swarm, rather than including

each UAV as part of the chain.

In the light of this information, the protocol should have a design that provides

communication with the UAVs while it can be useful for the IoT network [56]. The main

focus of the proposed method is re-configuring the MQTT with a MAVLINK interpreter

to deal with the long-distance UAV communication within the IoT environment to provide

communication among UAVs as the IoT node. The main principle of this perspective is

preserving the UAV as an IoT node and closing the gap in the protocol differences when

the UAVs are needed to manage from the end-user in the IoT network. Because the IoFT

term includes both systems of the UAVs and IoT sensor networks to achieve better distances.

However, the problem of the researchers is dealing to design 2 different network architectures

24



to overcome the problem. One of them is needed to communicate with the IoT nodes while

the other one is needed to manage or communicate with UAVs.

The MAVLINK is the most common protocol among UAV management in various tasks.

It is specialized to communicate with ground-station and UAVs with RF signals. As the

requirement of the communication is changed at some point, the TCP/UDP packets also

support the MAVLINK frame. However, because of the nature of MAVLINK, it is really

talkative protocol than the IoT protocols since the main aim of the protocol is directly

controlling the drone, and the design approach of the protocol is only managing the UAVs and

receiving the status of UAV just in time. Even though the protocol provides communication

with multiple types of UAVs and it assigns unique identities for each of them, the cost of

managing all of them is a really challenging situation as it has many packet frames in a

couple of seconds. The router or different types of low-cost methods can be used to achieve

long-distance communication. But as mentioned before the fact is that each hop of the

network will demand more resources for each one of them. Also, MAVLINK is not tolerating

constrained resources.

For this issue, we provide the MAVLINK enabled MQTT (MQTT-XT) to provide more

flexibility for both systems where the MAVLINK is not needed to be considered to manage

drones anymore in the IoT network by embedding it in the UAV platform as MAVLINK

interpreter. The architecture of the MQTT allows one to specify the topics and separates

them for specific tasks. The publish and subscribe structure of the MQTT can be altered to

combine the MAVLINK frame which is preferred to manage the UAV system. These specific

topics are configured to manage, command, receive status, and other different functionalities

which are previously provided by MAVLINK. The MQTT allows to customize and organize

topics. The MQTT is designed on top of the TCP layer where it has its own abilities for

the publish-subscribe mechanism. In this thesis, we built our protocol with auto-generated

topics which aim to manage drones with specific topics. This layer is illustrated in Figure

4.1
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Figure 4.1 MQTT-XT Layers

Our next-generation structure of communication model design offers to decrease the

workload of the network by moving the MAVLINK packet structure to the closest point

to the UAV. The communication between the client-server is re-arranged to transmit UAV

status to the end-user and to allow command from the end-user. The general structure of our

communication protocol is given in Figure 4.2.

The architecture of the proposed method stands on three different client types and one cloud

server. The protocol waits for the connection signal from the end user. Each client component

of the protocol design has its own responsibilities. Each type of the MQTT-XT component

and their summarized functionalities are given below:

• Ground-station Client (End User): Typical ground-station that provides to connect,

send commands, and receive the status of UAVs which are connected to the cloud.

• Cloud (Server): The cloud server that provides to establish the connection between

Activator client and End-User with its specific topics

• Activator Client (FoG Area): This client provides to activate communication that

is not reachable by default for the end-user. It has its own broker that provides a

connection point for its area. Also, this client has some novel functions such as QDoS

and PSMI.
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• UAV Client (UAV Platform): UAV client is deployed on the UAV Platform and its

main aim is that interpret the MQTT message to UAV and UAV Messages to MQTT

topics.

Figure 4.2 MAVLINK enabled MQTT (MQTT-XT) Top-Down level architecture flowchart

Since the motivation of the thesis is establishing communication of UAVs on the IoT network,

we communication approach is designed to be more flexible that fit the requirement of

the different areas. The key point of the architecture is the MAVLINK interpreter and

auto-generated topics by clients. The subscribe and publish mechanism of the proposed
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protocol allows controlling UAVs more easily by generating custom topics over MQTT.

In Figure 4.2, the beginning of the process is presented. The subscribe events are colored

orange and publish events are colored purple. The sequential process of the protocol can be

easily tracked with blue arrows. However, each type of component has a unique task to keep

communication alive. Furthermore, even the backbone of the MQTT is preserved, as the

long-distance communication is aimed the structure is varied than MQTT. To demonstrate

each component functionalities’ detailed processes are presented following subsections.

4.1. Ground-station Client (End User)

The typical strategy to manage UAVs stands on establishing communication between UAV

and Ground-station [57]. As far as the communication or broadly known as data link is built,

the user can interact with UAV. From the perspective of the UAV flight modes, some of the

tasks require manual input from RC while some autonomous flight modes only require a

command to perform predefined actions. Furthermore, these autonomous flight modes do

not require active and robust communication as long as the commands are received once and

it knows what to do.

For this reason, MQTT-XT protocol is designed for UAVs by considering the network

connection is unstable like in many IoT environments. However, it is also useful where

manual inputs are not required. The ground-station client is acting like the typical controlling

center which is traditionally used for the command and control center illustrated in Figure

4.3

Unlike the traditional way, the end-user is connecting directly to the activator client in

different areas instead of UAVs. Actually, the activator clients are a more vital role than

the end-user in the perspective of the data link since the command and control are more

vulnerable on cloud messaging. The reason for this approach, providing more efficient

interaction with UAVs by providing a bridge on the edge of the FoG. A detailed explanation

of the approach for reason is given under Activator client.
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Figure 4.3 Typical communication between Ground station and UAVs

The ground-station (GS) client stands for 3 different publisher that allows sending message

and 3 different subscriber that listens to topics on the cloud for each FoG area connection.

The topics can be grouped under Connections, States, and Commands. The Connections

Topic class provides a connection between GS client and activator client. Also, reachability

information per drones that exist in the related connected area can be found under this group.

For example, if the user wants to connect FoG-1 and FoG-2 areas, the protocol sends the

connection message under "fog[X]/init_connect" and cloud responses this connect

message under "fog[X]/drone[Y]/reachable" where the X indicates FoG ID and

Y indicates the drone ID.

The topics are auto-generated on the cloud when the protocol is deployed. The user can

easily connect the FoG with only FoG IP. The IP table is also available via the activator

client. However, in order to ease case scenarios, the user interacts with the activator client

instead of each drone. The backbone of the MQTT-XT algorithm for the GS client is given

in Figure 4.4.

The State Topic includes the status of drones that are generated from autopilot and reported

29



Figure 4.4 MQTT-XT Backbone Algorithm for Ground station Client

by the activator client. The activator client automatically starts to publish the status of the

drone when the connect message is received. The functions are defined to receive each status

data which are received from all drones. When the user pulls the status data, cloud responses

messages under "fog[X]/drone[Y]/state/[Status]" where the Status is a topic

that indicates the different status of the drone (e.g. Location, Battery Percentage, Flight

Mode, etc.).

The last topic which is named Commands Topics is used to provide giving the task

to drones. Each command has its result in the same topic group. When sending

a command, the end-user has two options. The first option is that give specific

drones that exist in FoG. For this command set, the user sends a message under

"fog[X]/drone[Y]/commands" topic and cloud responses this command under

"fog[X]/drone[Y]/commands_result" topic. The second option is related

to the FoG area. The protocol provides to receive one command that affects all
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nodes under FoG. To achieve this, the user can use a command to directly to

the activator client. The command message will be broadcast for all nodes under

"fog[X]/commands" topic and cloud responses this message for each drone again under

"fog[X]/drone[Y]/commands_result" topic. These typical message requests and

responses are given in Figure 4.5. The figure presents the typical connection, getting status,

and giving the command.

Figure 4.5 MQTT-XT Messaging between GS Client and Cloud
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4.2. Server (Cloud)

The cloud component is providing a bridge between the end-user and activator clients. The

main focus of the cloud side is preserving topics that are generated from end-user and

activator clients. The topics are playing a vital role as the concept includes many different

connections among the network. The FoG number which is connected can be various

numbers as the main purpose of the protocol is to provide messaging between the activator

client and end-user. In Figure 4.6, the different types of connection can be noticed.

Figure 4.6 Cloud - Type of Connections

The topics are automatically generated when the connection is established. Thus, the cloud

server settings are not needed as the activator client has its own server to provide services

for the edge side. The cloud should be deployed where clients can communicate without any

restrictions. Also, the messaging traffic will exponentially increase when the FoG node is

added. The limitation of the network on the cloud is limitless when it is compared to the

activator client. The activator client should have a more efficient load balance related to the

connected drone number. The total network load for the activator client is calculated using

the equation (1).
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L(x) =
k∑

n=1

ByteStreamn (1)

Where the k indicates the number of the drone, x indicates the FoG number, and L courier

is used for the Total Load for FoG. Similarly, the total network load of the cloud can be

represented with the equation (2).

TotalLoad =
t∑

x=1

L(x) (2)

Where the t represents the number of FoG that is connected to the cloud. As can be seen

in the equations, the load of the cloud is highly increasingly related to the FoG number.

Furthermore, the resources of the cloud can be assumed as infinitely. Contrarily, the activator

client has a limited process and connection capacity due to the decreased cost of the edge

node.

4.3. Activator Client (Fog Area)

Activator client has the most vital role in protocol architecture design. The activator client

has its own broker to communicate different UAVs. In other words, the broker is embedded

for each FoG node. It receives the drone status and transmits them to the cloud. It also

receives commands from the end-user client and publishes them to the related UAV clients.

The client has a communication infrastructure with two different servers. The cloud side has

two subscribers and four publishers while the fog side has two subscribers and one publisher.

The topic groups for the cloud are the same as the ones mentioned in the end-user client:

Connections, States, and Commands. Except for the connection topic group, the states and

commands groups are existing in the FoG broker.

For the connection topics, the activator client listens to the initialization from the end user.

The name of the client comes from that function. The message publish mechanism for the
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cloud is not activated until the message received from "fog[X]/init_connect" topic.

The approach for the communication between the cloud and activator client is reactive. The

user needs to send connect message to activate communication. Also, the disconnect message

means deactivating message streaming. As the connect message is received, the activator

client publishes each drone reachability under "fog[X]/drone[Y]/reachable"

topic.

The messaging between UAV client and the activator client is proactive. As the

systems are alive, each UAV generates the status messages and publishes them under

"drone[Y]/state/[Status]" topic. The activator client adds a tag with its ID and

publishes the same messages under "fog[X]/drone[Y]/state/[Status]" topic as

the connection message is received. Figure 4.7 presents the activation and deactivation of

message traffic.

Figure 4.7 Activator Client Activation and Deactivation Message Traffic

For the command messages, the activator client listens to two different topics

to process data. The first one is the drone-specified command messages under
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"fog[X]/drone[Y]/commands" topic and forwards the command by

publishing under "drone[Y]/commands". The second one is received through

"fog[X]/drone[Y]/commands" topic. When the command is not specified

for the drone, the user can use "fog[X]/commands" topic. The activator client

processes the command whether it is broadcast or Prioritization on Selectable

Mission Item (PSMI). The command result message will be forwarded under

"fog[X]/drone[Y]/commands_result" topic. The backbone of the MQTT-XT

algorithm for the activator client is given in Figure 4.8.

For the common command message, related to its function, the activator client broadcasts or

prioritizes the command. This function provides a more effective way to communicate with

multiple nodes. For the broadcast message, the activator client publishes a message for each

drone. However, the PSMI includes the calculation to assign a task for the specific drone.

4.3.1. Prioritization on Selectable Mission Item (PSMI)

The PSMI is a useful feature to manage and organize comprehensive tasks. The main aim is

to create a decision support system for some commands. For example, if the user wants

to send a drone to X location, for this request, the command message is received from

"fog1/commands/goto" topic. If drone A location is assumed as Y and drone B as

Z, for the geological distance calculation, the Haversine Formula (3) can be used [58].

a = sin2∆ϕ

2
+ cosϕ1 × cosϕ2 × sin2∆λ

2

c = 2× atan2(
√
a,
√
1− a)

d = R× c

(3)

where the latitude is ϕ, longitude is λ and R represents earth’s radius. The value for Y can

be calculated as dA→X and the value for Z can be calculated as dB→X . If the Z value is less

than Y, the activator client will forward go to command for drone B. In this case, the PSMI

value for ”go to” mission will be [2,1].
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Figure 4.8 MQTT-XT Backbone Algorithm for Activator Client
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However, the PSMI value is not only calculated based on the distance factor, the status of the

drone is also included to calculate PSMI. The battery drainage to arrive at that location is the

mostly used factor. For this reason, the estimated remaining distance for a drone is another

filter. If the drone is not eligible to arrive at that location, the PSMI will be not listed for the

end-user. Also, the distance between the commanded location and the drone location is not

the only factor to estimate for PSMI. The protocol promises to be suitable for any kind of

drone. So, the maximum groundspeed of the drone should be added PSMI calculation for

the commanded location after filtering eligible ones. The PSMI values will be ordered with

their time to arrive related to (4) formula.

TimetoArrive =
d

groundSpeed
(4)

4.3.2. Quality of Drone Services

The Quality of Drone Services (QoDS) is the function that presents the best available UAVs

which is ready for mission based on their status of them. The list is prepared by using

the battery percentage and maximum ground-speed attribute. The QoDS is published under

"fog[X]/QoDS" as the connection message is received. The user can call this list to see

the best option for the task. The function provides decision support for a user similar to

PSMI. Unlike the PSMI, the calculation is not related to any input from the user.

For the first step, the filter is defined to make a group of UAVs based on their battery

percentage. The filter works by dividing tenths of a hundred for battery percentage. A total

of ten groups are sorted for the first step. The higher battery percentage means to a higher

QoDS order. The second filter is used to separate and sort the UAVs that are sorted into the

same group. For this reason, the ground speed is used to sort. The higher ground speed takes

first place in the list. The example filter and sort operations are given in Figure 4.9.
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Figure 4.9 QoDS List Example

4.4. UAV Client (UAV Platform)

The last component is the UAV client which is placed on the UAV platform to communicate

with Autopilot over the serial bus. The main attribute of the UAV client is the interpreting

function. This function converts the MAVLINK message to the MQTT message and

transmits the MAVLINK message through MQTT topics. The protocol automatically does

the interpreting phase.

The MAVLINK message frame has a minimum packet length is 8 bytes while the maximum

packet length can be up to 263 bytes. The MQTT-XT is receiving this various byte array from

autopilot with serial interface and replaces it with predefined topics. Topics are generated

over the activator client with a UAV number tag. Thus, UAV client creates access points

for the end-user over the activator client. The activator client transmits its own status to the

activator client broker when the system is activated. The topics are designed according to the

MAVLINK packet structure and they are generic for all UAVs.

The user will be able to receive the status of desired UAV system with the

"fog[X]/drone[Y]/state/[Z]/" topic where the X indicates the FoG number,

Y indicates the UAV number, and Z is related to the directly MAVLINK topic
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like location, battery status, heading, etc. UAV client listens to commands

from the activator client under "drone[Y]/commands" and responses under

"drone[Y]/commands_result/[A]" where the A has received a command message.

The command result includes the success or failure message to inform the end user.

The MAVLINK packets’ interpreting operation is designed by imitating the MAVLINK

messages. The serialization structure of MAVLINK supports different communication

methods for UAV communication. The UAV client of MQTT-XT is built on the serial

interface of the autopilot. The MAVLINK messaging is active between autopilot and UAV

clients. However, the user no anymore to struggles with MAVLINK packets since the

communication is provided by MQTT topics. The UAV client interpreter is given in Figure

4.10.

Figure 4.10 UAV Client MAVLINK Interpreter

The main purpose of UAV client is to make MAVLINK protocols accessible via MQTT

topics for the any type of IoT network. This client structure can be used in one drone and

can be used for dozens of different types of platforms. Deploying it on the drone is enough

to start the communication. The backbone of the MQTT-XT algorithm for the UAV client is

given in Figure 4.11.
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Figure 4.11 MQTT-XT Backbone Algorithm for UAV Client
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5. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents the experimental results by comparing the payload, time delay, mission

time, and packet loss between MQTT-XT and MAVLINK protocols. The protocols are

deployed within the different levels of the network to measure for given metric sets.

Furthermore, the experimental results are divided into two major sections: Message set

comparison and Scenarios.

The message set section includes the 10 types of messages that are provided to control UAVs

and to receive their status of them. The 5 vital status messages are selected for experimental

results: Battery, Location, Groundspeed, Flight mode, and Heading. The other message types

are commands to manage UAV movements with pre-defined functionalities: Arm, Takeoff,

Land, Offboard, and Go-to.

The scenarios are created with the same conditions and environments as the message set, but

they cover the complete task to manage drones. The last scenario is including the IoT packet

transfer with three different sensor types while still including the management of UAVs. On

the other side, the first three scenarios are only related to managing UAVs.

These two major experiments are tested in the same testbed; however, the number of UAVs

is 6 in the scenarios while this number is limited to one in message sets. Also, the number

of IoT nodes is different from each other since the scenarios are more focused on the

performances of protocols while the message set tests aim to measure individual messages

and have only 1 node per network level.

The key difference between the protocols is the network layers. The MQTT-XT benefits

from the TCP protocol while the MAVLINK is built over UDP. The MAVLINK has been

developed to provide RF communication to achieve long distances when the UAV is in line of

sight. However, as the demands of the user are changed, it has implementations for different

application layers. In this thesis, we prefer to use the UDP layer since it is more mature and

widely used.
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5.1. Testbed and Simulation Environment

The simulation environment is built using the Gazebo, which is an open-source project that

provides the deployment of different types of UAVs and PX4 autopilot. The simulator is

generally preferred to simulate robotic applications with its 3D physics engines. It generates

the sensor data for UAVs and it has the ability to interact with drones with the defined topics.

The PX4 flight controller is used to simulate the UAV platform autopilot. PX4 autopilot has

a strong open-source community. This flight control project is started at ETH Zurich and

it is low-cost and has a plug-and-play architecture to use in different research projects and

environments. It allows to use of different modes which are named Software in the Loop

(SITL) and Hardware in the Loop (HITL). The SITL provides to run the autopilot software

in the simulator without using any physical device while HITL needs a real device which is

connecting the simulator with the serial bus. The HITL is useful for testing flight controllers

in a simulator before deploying them on a UAV platform. Our experimental testbed is built

on the SITL since the controller does not need to be tested. The view of the gazebo is given

in Figure 5.1

The testbed is varied for the two major experimental results. For the first experimental

results, the architecture was designed to receive and transmit messages for both protocols.

The testbed includes one end-user computer, one cloud, one node, and one UAV node. For

the MQTT-XT, the cloud is used to deploy MQTT. The FoG node has the activator client

and the end-user has the ground station client to provide interaction with the nodes. Lastly,

the UAV platform has the UAV client and it simulates the UAV platform by using the UAV

Gazebo simulator.

For the MAVLINK, the cloud, FoG, and UAV nodes have the MAVLINK router. The user

interacts drone with the MAVSDK library. The MAVSDK is developed to be used in different

applications with software-based implementation. The MAVLINK router has the ability to

forward the MAVLINK packets to both sides like a bridge. To decide on the MAVLINK

router, two different candidate applications put themselves forward: mavproxy and mavp2p.
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Figure 5.1 Gazebo Simulator

Both of them serve the purposes of the experimental results. However, from the perspective

of the simulation environment, the mavp2p promises to serve under constrained resource

conditions. For this reason, mavp2p is used as a MAVLINK router for all test scenarios. The

UAV platform has the same structure as the MQTT-XT side except for the UAV client.

The UAV client uses the MAVLINK router like other nodes. The general structure of the

testbed for MQTT-XT and MAVLINK protocols is given respectively under Figure 5.2 and

Figure 5.3.

The second major experimental result aims to test protocols under specific tasks to reveal

the performances of the protocols under heavy load. For this reason, four different scenarios

are defined. All scenarios have six UAV Clients with the two FoG nodes. The first 3 UAVs

are connected to the FoG 1, while the last 3 of them are connected to the FoG 1. The

number of cloud and end-user clients is 1 node for each of them. However, scenario 4 has

an extra 6 IoT sensor nodes which produce temperature, humidity, and light data to transmit

end-user. Thus, the main aim of Scenario 4 is to present the performance capabilities under
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Figure 5.2 Testbed Structure for the MQTT-XT Protocol on Message Sets

Figure 5.3 Testbed Structure for the MAVLINK Protocol on Message Sets

an IoT environment while the first three scenarios aim to manage UAVs. For the first three

scenarios, the general structure of the testbed for MQTT-XT and MAVLINK protocols is

given respectively, under Figure 5.4 and Figure 5.5.

Scenario 4 has a unique architecture while the UAV management is the same as the 3

scenarios. The key difference is related to IoT sensor networks. The scenario includes

directing UAVs to specific tasks where the UAVs receive three different sensor types and

transmit these data over their FoG nodes. A total of 18 sensor data is transmitted to the

end-user in Scenario 4. The Scenario 4 problem definition helps to understand the differences

between MQTT-XT and MAVLINK protocols from the point of IoT network view. UAVs

are in service as the IoT node in MQTT-XT, while the MAVLINK lacks the transmission
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or interact with other IoT nodes. For this reason, the basic MQTT structure is built for

MAVLINK to transmit sensor data over existing networks. The simulation view can be seen

in Figure 5.6.

Furthermore, the detail of scenario expectation is given in Figure 5.7. Each UAV has a task

to do such as go to given coordinate to obtain data. The range of the sensor is not able to

transmit the sensor data to FoG. Thus, UAVs create a bridge by obtaining data from sensors

and transmitting them directly to FoG. The MQTT-XT has the flexibility to create topics that

serve the communication with other IoT nodes. Thus, UAVs can be considered a part of the

IoT node. The UAVs are connected only to their FoG and this is pre-defined.

Figure 5.4 Testbed Structure for the MQTT-XT Protocol on Scenarios
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Figure 5.5 Testbed Structure for the MAVLINK Protocol on Scenarios

Figure 5.6 Gazebo Simulator for Scenario 4
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Figure 5.7 Scenario 4 design on the Groundstation Map View

47



5.2. Performance Metrics

The evaluation criteria of performance metrics for the network-based methods depend mostly

on the time delay, packet size, and packet loss. Because, these three types of metrics

are affected by the other types of metric data such as throughput, bandwidth, jitter, etc.

For this reason, 3 different types of metrics are selected for evaluating MAVLINK and

MQTT-XT protocols when comparing the message set: Packet size, Time delay, and Packet

Loss. Furthermore, the other important metrics are the message traffic size after establishing

a connection between nodes and the number of messages exchanged between all nodes.

Consequently, it is aimed to compare the protocols over 5 different metrics.

The packet size is measured independently for the transmitted command message and

received status message. The time delay metric for the message set is calculated end-to-end.

In other words, required time for messages to reach the end-user node from the UAV node or

vice versa. Packet loss is one of the most important metrics since UAVs are more susceptible

than IoT devices regarding packet loss if they are not received a command message, and the

given task is not able to execute.

The packet count and message traffic size metrics present the message traffic that occurs

when the user needs to send a command or receive a status. The base architecture is not

changed for MAVLINK or MQTT-XT. Since both protocols have their architecture to provide

communication among nodes, the protocols can send or receive different messages other than

the selected ones. The main purpose of the metrics is to present that the packet size which is

consumed by the protocols to provide communication does not only consist of the messages

sent or received but also the different types of messages that should be taken into account

since the MAVLINK streams many different packets, even if the user needs the specific ones.

Also, MQTT-XT has internal processes between nodes e.g., SYNC, CONNECT, ACK. In

this way, traffic density can be observed among all nodes.

The packet loss is the other important criterion since the message types consist of required

information for both UAV and end-user clients. For this reason, the QoS level of the
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MQTT-XT is used as 0 to provide a more fair comparison. Because the QoS 1 and 2 levels

guarantee the packet delivery. Also, the QoS level is not defined as 1 or 2 since the density of

the message is high. Furthermore, QoS 2 is the slowest alternative among quality of service

levels. The packet loss is calculated for only transmitted or received messages. The other

message types are not taken into account since the main purpose is evaluating the compared

messages and both protocols have different types of messages.

Lastly, the above 3 of 5 metrics are different for prepared scenarios. Because the point of

the scenarios is to measure the robustness and efficiency of the protocols in the different

conditions and tasks. The time delay metric is changed as the mission complete time to

measure the response of the protocols under heavy-load conditions and pressure of the high

density of traffic. The packet loss is obtained for the whole traffic which is produced by

the protocols. The packet size is not used for the scenarios. However, message traffic size

and packet count metrics have not changed. Also, unlike the message set tests, packet loss

is calculated for all messages that are taken as part of scenarios. In other words, the whole

packets which are transmitted or received by nodes are measured to obtain packet loss.

5.3. Command and Status Messages Evaluation

The various number message set is defined under MAVLINK to manage UAVs. These

different message sets have their responsibilities. MQTT-XT imitates each MAVLINK

message under MQTT topics to transmit one node to another. To provide a comparison

between MAVLINK and MQTT-XT, the 5 different status messages and 5 different command

message is used. Especially, the command message benefits the autopilot structure to direct

UAVs and the command set does not require manual input continuously. These 10 different

message types and their description is given in Table 5.1 and these types are evaluated with

explanation in following subsection.
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Message Name Type Description
Arm Command Provides to start (arm) the motors of the UAVs.
Takeoff Command Provides to take-off the UAVs vertically in current position.
Land Command Provides to land the UAVs vertically in current position.
Go to Command Provides to direct the UAVs given location and altitude.
Offboard Command Provides to direct the UAVs with given attitude.
Battery Status Provides remaining battery information of UAVs.
Location Status Provides current location and altitude of UAVs.
Heading Status Provides current heading of UAVs.
Groundspeed Status Provides current speed of UAVs relative to ground.
Flight Mode Status Provides current flight mode information of UAVs.

Table 5.1 Evaluated message types and their description

5.3.1. Time Delay

The time delay of each message is tested individually. This metric is obtained by measuring

message transmission time for an end-to-end node. For each message type, 100 messages

are used to eliminate intruders. The summary results of the time delay for MQTT-XT and

MAVLINK are presented under Figure 5.8.

The results show that both protocols produce close values to each other. However,

MAVLINK performs better since it is based on the UDP stream. Also, the MQTT has only

a 6 ms difference from MAVLINK when the Go-To message type is analyzed. The highest

difference between them is obtained for the location data. The time difference is 200 ms for

this message.
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Figure 5.8 Average Time Delay for 100 Messages

The maximum and minimum points of time delay data have very different results when the

message types are inspected individually. For example, in Figure 5.9, the maximum time

delay is observed as 3202 ms for MQTT-XT where the value is 1450 ms for MAVLINK. A

similar result can be seen in Figure 5.10. The maximum value is 2727 ms for MQTT-XT

where the value is 1967 ms. The key difference between MQTT-XT and MAVLINK is

related to their architecture. The principle of the MAVLINK stands on streaming that aims

to fire and forget. This situation differs for MQTT-XT. Because MQTT-XT tries to transmit

a message at least once since the QoS level is set as 1.
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Figure 5.9 Time Delays for 100 Arm command message

Figure 5.10 Time Delays for 100 Battery status message

The time delays for the command message set are given in Figure 5.11, Figure 5.12, Figure

5.13, and Figure 5.14. The result of the command message set shows similar trends to each

other. When the time delay is inspected for command messages, the maximum value to

transmit a message is offboard command with 2112 ms among the command messages. For

the MQTT-XT side, this maximum value is received for the Takeoff command with 5938.

However, the time delay is the exception and the average time delay of the commands is too

far between MQTT-XT and MAVLINK.
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Figure 5.11 Time Delays for 100 Takeoff command message

Figure 5.12 Time Delays for 100 Land command message
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Figure 5.13 Time Delays for 100 Go to command message

Figure 5.14 Time Delays for 100 Offboard command message

The time delays for the status message set are given in Figure 5.15, Figure 5.16, Figure 5.17,

and Figure 5.18. The sudden rise in time delay is observed for the location status message

and the linear decrease that follows it. The main root cause is that location data is the heaviest

payload data. So, the time delay trend on the location can be considered as a result of this

reason. The status message has a similar result to the command message set. Comparing

both protocols, the MAVLINK has better time delay performance. The maximum value for

transmitting a message is obtained in location status with 2678 ms among all status messages.
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Also, the maximum value between status messages is received in the same Location status

message for MQTT-XT status with 5523 ms. However, the time delay is the exception and

the average time delay of the commands is too far between MQTT-XT and MAVLINK.

Figure 5.15 Time Delays for 100 Flightmode status message

Figure 5.16 Time Delays for 100 Groundspeed status message
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Figure 5.17 Time Delays for 100 Heading status message

Figure 5.18 Time Delays for 100 Location status message
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5.3.2. Packet Loss

The packet loss of the message set for MQTT-XT is a very low percentage when compared to

MAVLINK. Thanks to TCP and QoS mechanisms, the packets are transmitting more reliably

for MQTT-XT. On the other side, the MAVLINK is only streaming the packets and there is no

control mechanism for re-transmission. However, this situation causes more time delay for

MQTT-XT, but the trade-off gap is not so close between MQTT-XT and MAVLINK as in the

time delay metric. The packet loss is obtained only for the exact number of transmitted and

received packets. The other packet types are ignored since the main purpose of the metric is

presenting a demanded message set. The command message has a lower packet loss when it

is compared to the status message for both protocols. Among the message sets, the location

and the heading have the most packet loss percentage than any other type. A total of 15

packets out of 100 are lost in MAVLINK while the packet loss rate is 5 for location and 1

for heading in MQTT-XT. For the different loss rate between Location and Heading message

types in MQTT-XT is related to the MQTT-XT. MQTT-XT separates the heading data from

other data and not transmits other data, unlike MAVLINK. The payload size can be up to 255

bytes. So, some of the packets have many data instead of the desired ones. The packet loss

for all message sets are given in Figure 5.19.

Figure 5.19 Packet Loss for Command and Status Messages
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5.3.3. Packet Size

The packet size metric directly aims to present the size of the packet for both protocols.

For this reason, all status and command messages are obtained to give perspective for

performance evaluation considering only packet types. Also, the packet sizes are obtained

between only 2 nodes. If the architecture has 3 different hops to be able to transmit a message,

packet sizes will be increased relative to node number. The packet sizes for 10 different

messages are given in Table 5.2.

Message Name MAVLINK (bytes) MQTT-XT (bytes)
Arm 86 95

Takeoff 86 99
Land 86 96
Go to 86 96

Offboard 87 103
Battery 86 97

Location 124 242
Heading 124 112

Groundspeed 71 118
Flight Mode 70 95

Table 5.2 Packet size comparison for 10 message types between MAVLINK and MQTT-XT

The evaluation shows that the MQTT-XT has more payloads than the MAVLINK. The main

reason for the packet size difference is related to MQTT-XT topics. MQTT-XT specifies

the topic to indicate the address of nodes. Also, it carries the data with the same payload.

However, MAVLINK fundamentally aims to stream data. The MQTT-XT reduces the

MAVLINK heavy payload by interpreting messages for specific nodes and publishing them

under specific topics. Also, MQTT-XT extracts the required data and transmits it when the

end-user client sends the connection message.
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5.3.4. Packet Count and Message Traffic Size

Both protocols have other message types other than the selected message set. When the

communication is established protocols produce the traffic rather than only transmitting

a specific message. For example, MQTT-XT has different processes between broker

and clients like SYNC, ACK, PUBACK, etc. when it deals to transmit one single

message. MAVLINK also has a message stream between nodes to provide communication

continuously and this function is the fundamental part of it. Therefore, the packet count and

the total message traffic size for protocols are measured to reveal the traffic density even if

for one particular message type. However, the 100 command messages are sent continuously

for both protocols and the connection is not broken until the last message is received. Also,

MQTT-XT does not include status messages since it can prefer listening message topics

or not. Also, the total sizes of ongoing messages are obtained between the first and last

commands. The consumed total size to transmit 5 different 100 command messages is given

in Figure 5.20.

Figure 5.20 UAV Command Messages Comparison in MB
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The result shows that the packet size of MQTT-XT is at least 5 times smaller than MAVLINK.

Also, the message sizes are changed between commands while the MQTT-XT remains

almost the same size for each command message. For the Arm command, the amount of

packets and their distribution for the MAVLINK is given in Figure 5.21

Figure 5.21 Traffic Message analysis for the Arm command message

The total size of the command is 5 times greater if MQTT-XT and MAVLINK are compared.

However, the packet count does not fit the same trend line. The MAVLINK is 3 times

greater for the number of packets than the MQTT-XT which is caused by the packet density.

The most packet density for the MAVLINK is between 80-159 bytes while it is between

40-79 for the MQTT-XT. The MQTT-XT can transmit the same command messages with

smaller packets. Furthermore, the payload can be up to 160-319 for MAVLINK. As a result,

traffic will exponentially increase for MAVLINK when the other nodes are added to the same

network. Another example can be observed for offboard command in Figure 5.22.
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Figure 5.22 Traffic Message analysis for the Offboard command message

The packet size difference is almost 8 times while the packet count is only 6 times. The

correlation between message traffic size and packet count is similar to each other. The other

command messages Takeoff, Go to, and Land are respectively given in Figure 5.23, Figure

5.24, and Figure 5.25.

Figure 5.23 Traffic Message analysis for the Takeoff command message
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Figure 5.24 Traffic Message analysis for the Go to command message

Figure 5.25 Traffic Message analysis for the Land command message

Status messages have different results than command messages for the MAVLINK. Status

messages are transmitted continuously and automatically at specific rates by MAVLINK.

However, obtaining exactly 100 selected status messages cause to increase in the size

significantly on the status message set. The consumed total size to receive 5 different 100

status messages is given in Figure 5.20.
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Figure 5.26 UAV Status Messages Comparison in MB

The same payload distribution can also be seen for status messages. For example, the battery

status is given in Figure 5.27. The packet count and sizes are still the same density level with

the same byte lengths as obtained for command messages.

Figure 5.27 Traffic Message analysis for the Battery status message
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The traffic message size result for the battery is almost 3 times greater than the command

message set. However, the result is not changed dramatically for MQTT-XT since the stream

function is not defined for MQTT-XT. But, as the packet lengths are increased, the traffic

message size is also increased for MQTT-XT, which can be observed in Figure 5.28.

Figure 5.28 Traffic Message analysis for the Location status message

The location data is formed of longitude, latitude, and altitude data. Also, this data includes

long numbers to transmit among the network. Therefore, unlike other MQTT-XT message

sets, the location status message has a packet distribution between 160-319. But, it still

outperforms the MAVLINK. The other status messages Heading, Groundspeed, and Flight

Mode are respectively given in Figure 5.29, Figure 5.30, and Figure 5.31.
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Figure 5.29 Traffic Message analysis for the Heading status message

Figure 5.30 Traffic Message analysis for the Groundspeed status message
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Figure 5.31 Traffic Message analysis for the Flight Mode status message

5.4. Drone Management and IoT Sensor Data Gathering Scenarios

Evaluation

The experiments of the scenarios are designed to reveal the performance of the protocols

in different situations. The first 3 scenarios are related to managing a drone with a couple

of messages. The task flow first scenario starts with the Arm command and continues with

the takeoff, hold for 15 seconds and then land. For the second scenario, each drone has

certain coordinates to arrive after an arm, takeoff sequence. After this step, they return to

their takeoff positions and land. The third scenario includes only the arm, takeoff, and land

command sequence.

The last scenario is similar to the second scenario except for the data transmission task. The

task sequence starts with the arm, takeoff and continues with arriving given coordinates.

After reaching a mission point, the transmission of IoT data starts and after finishing the

transmission operation they return to the takeoff points and land exact position.
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5.4.1. Mission Complete Time

The mission complete time is measured from the first arm command to disarming the last

UAV. The mission complete time includes all processes of the mission. A total of 10 mission

complete times are obtained per scenario to compare protocol behaviors. The average

Mission complete time is presented in Figure 5.32

Figure 5.32 Average Mission Complete Time

The results show that the MQTT-XT completes missions approximately 30% faster than

MAVLINK. The MQTT-XT utilizes communication for multiple vehicles with its broadcast

function. Since MAVLINK aims to manage drones with peer-to-peer connections, some of

the tasks are performed just in time. Also, for every 6 UAVs, the end-user and cloud need

MAVLINK routers per connection and each fog needs 3 routers. The first 3 scenario mission

complete time for 10 attempts and its distribution over time is given in Figure 5.33, Figure

5.34, and Figure 5.35.
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Figure 5.33 Scenario 1 - Mission Complete Time

Figure 5.34 Scenario 2 - Mission Complete Time
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Figure 5.35 Scenario 3 - Mission Complete Time

The scenario 4 mission complete time also is originated from the extra connection for the

IoT sensors’ data gathering. The MQTT-XT uses its connection to transmit the data while

the MAVLINK is not able to receive and transmit data to FoG. For this reason, alongside

the MAVLINK connection, MQTT is established to provide sensor gathering operation. The

mission complete time result of Scenario 4 is presented in Figure 5.36.

Figure 5.36 Scenario 4 - Mission Complete Time

69



5.4.2. Packet Loss

Unlike the result of the message set, the packet loss is increased for the MAVLINK. As

the MAVLINK streams different variables to the end user, most of them do not even arrive

at the end user. Also, as the number of nodes is increased from 1 to 6, the MAVLINK

has remarkable performance issues in terms of packet loss. However, the main aim of the

MAVLINK is not to guarantee packet delivery. But, the MQTT-XT performs extremely

better since the infrastructure of the MQTT-XT stands on the TCP. Thus, the packet loss

ratio is approximately between 1-2% for MQTT-XT while this ratio goes up to 28%.

Figure 5.37 Packet Loss for Scenarios

5.4.3. Packet Count and Message Traffic Size

This evaluation criteria has the most remarkable results. The packet count and message

traffic size rise drastically for MAVLINK, while these values are very significantly low for

MQTT-XT. Since the MAVLINK is more talkative, the packet counts are extremely increased

for it. In figure 5.38, the total consumed message sizes are given.

There is a directly proportional relationship between the elapsed time and the number of

packets counted. On the other hand, the high number of UAVs greatly affects traffic density.
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Figure 5.38 Total Consumed Message Size for the Scenarios

Because MAVLINK supports only peer connections for the UAVs and routers are only

responsible for forwarding packets to end-users. The results of Scenario 1-3 are presented in

Figure 5.39, Figure 5.40, and Figure 5.41.
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Figure 5.39 Traffic Message analysis for the Scenario 1

Figure 5.40 Traffic Message analysis for the Scenario 2
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Figure 5.41 Traffic Message analysis for the Scenario 3

Scenario 4 has the most traffic messages among scenarios. It is almost 4 times greater than

Scenario 1 and Scenario 3. However, the elapsed time is also greater by almost 5 times

than others. However, the MQTT-XT does not spend much effort to complete a mission.

Moreover, the great ratio of the message size comes from the sensor data. The MQTT-XT

still has the same result as Scenario 2. The result of Scenario 4 is given in Figure 5.42.
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Figure 5.42 Traffic Message analysis for the Scenario 4

5.5. Discussion

For the evaluation, UDP-based MAVLINK and TCP-based MQTT-XT are compared in the

Gazebo simulation environment. The evaluation is based on 2 different experimental results.

The first experimental summary results, which are given in Table 5.3 present the 10 different

command and status message types that provide to manage UAVs and to receive their status

of them. For the first experimental results, 1 UAV platform, one Raspberry Pi to simulate
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FoG, one cloud, and one End-user client were used. Each message type is sent or received

100 times for both protocols to obtain results.

Table 5.3 Summary table of the experimental results for 100 command and status messages

The result shows that the MQTT-XT utilizes packet size at least 5 times better than

MAVLINK for the command message set. In the status message set, MQTT-XT outperforms

by shrinking at least 20 times. The main reason for the enormous difference between

protocols is that MAVLINK streams many different messages, while MQTT-XT is more

likely to focus on UAVs as IoT nodes and is designed to minimize packet sizes. Also, the

number of packets to transmit or receive required messages is costly for MAVLINK. Even to

receive or transmit 100 messages among nodes, it spends packets of at least more than 17000

for command types; 110000 for status types.

For the average time delay, the MAVLINK performs slightly better for 6 different message

types since the principle of MAVLINK is fire and forget while MQTT-XT offers a more

reliable connection for constrained environments. However, this difference causes packet

loss for MAVLINK. The packet loss ratio is higher on MAVLINK. Especially, in the status

message set, the packet loss ratio ups to 15 percent where it is 5 percent in MQTT-XT.

The second experimental result aims to reveal protocols’ performances under more

complicated network architectures with designed 4 different scenarios. For the first three

scenarios are designed to control and manage six UAVs on two Raspberry Pi which simulate
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different located FoGs, one cloud, and one end-user is used. Scenario 4 includes the first 3

scenarios’ purpose, but it is also designed to obtain three different sensors for each UAV and

transmit data to the end user. The summary of the results for four different scenarios is given

in Table 5.4.

Table 5.4 Summary table of the experimental results for 4 different scenarios

The density of message traffic for MAVLINK is high. Also, as the MAVLINK has a

heavy payload, the message sizes are extremely costly. The MQTT-XT uses packet sizes

100 times smaller than MAVLINK. Furthermore, in Scenario 4, the cost ups to 239 MB

while it is only 0.34 MB for the MQTT-XT. The MQTT-XT also utilizes the network to

serve better performance for multiple UAVs and mission complete time is 30% better than

MAVLINK-based architecture.

The other main evaluation criterion is the packet loss ratio. The situation also differs from

the message set test. Under heavy workload, the MAVLINK packet loss is between 20% and

28%. The MQTT-XT protocol provides a more reliable connection with its architecture and

the packet loss ratio is between 1% and 2%. The main problem for the MAVLINK is that it

aims to send packets as soon as possible and is not optimized for packet loss. The MQTT-XT

is designed to work on constrained resources and it is more robust to communicate with

enormous numbers of connected nodes.
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6. CONCLUSION

In this thesis, a novel MQTT-XT protocol, also known as MAVLINK Enabled MQTT, is

proposed to provide communication with UAVs over IoT networks while considering these

devices as a part of the IoT. The main motivation is to close the gap between IoT devices

and UAVs. The main problem is that the UAVs protocol differs from IoT protocols and

the management of UAVs is not possible with the current IoT protocols. Since UAVs have

their dialect protocol like MAVLINK, IoFT researchers are struggling to implement different

protocols. Furthermore, the protocols are generally built on RF signals that are useful for

line-of-sight operations but not for cloud operations.

With the advancement in technology, the requirements of the UAVs are changed and the

MAVLINK provides communication over network layers to spread more different network

layers. Thus, the researchers have the capability to build the MAVLINK with the network

layer protocols like UDP and TCP. However, there are still problems with the perspective

of IoFT. As well known, the IoT term includes many different devices which cause

heterogeneous structures. When the number of UAVs is increasing, controlling and managing

the network is becoming more complex.

For this reason, MQTT-XT plays a vital role in solving existing problems in IoFT, while

on the other hand, it serves as an IoT protocol. The MQTT-XT has the capability of

communicating with UAVs and IoT devices over MQTT. To provide this, MQTT-XT

introduces 3 different client types, unlike the traditional MQTT approach client-server logic.

The first client named UAV client has the responsibility to interpret MAVLINK and MQTT

messages to each other. The main purpose of the UAV client is to be a bridge between

IoFT devices by removing the limitation of MAVLINK. The second one is the activator

client. It is designed for the FoG area and can be used on the cloud if the UAVs have direct

communication with the cloud. The activator client provides communication between UAVs

and users over FoG. The UAVs are directly connected to the activator client. The activator

client has 2 different useful functions which are named QDoS and PSMI. Also, the user can
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use broadcast messages to communicate with all drones that are connected wtih activator

client. Lastly, the end-user client is designed like the ground station, which aims to manage

and control UAVs.

The future direction of this thesis is that implement all MAVLINK messages and prepare the

MQTT-XT dialect with the MQTT topic structure. The activator client has a heavy workload

when compared to other client types. The different artificial intelligence approaches can

be applied to improve efficiency, reliability, and robustness. Also, the proposed protocol

is designed with primitive functions and it is also not optimized. The main purpose and

contribution of the protocol are to close the gap between IoT nodes and UAVs. Since the

IoFT term is gaining more research areas, the network becomes a more complex structure.

The MQTT-XT is designed to decrease the implementation process time and complexity of

the IoFT area by offering a single protocol. Lastly, MQTT-XT is built on MQTT topics and

security approaches are not considered in this thesis. The vulnerability of the MQTT-XT

protocol can be reviewed in other studies.
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[19] Anis Koubâa, Azza Allouch, Maram Alajlan, Yasir Javed, Abdelfettah Belghith,

and Mohamed Khalgui. Micro air vehicle link (mavlink) in a nutshell: A survey.

IEEE Access, 7:87658–87680, 2019.

[20] Achilles D. Boursianis, Maria S. Papadopoulou, Panagiotis Diamantoulakis,

Aglaia Liopa-Tsakalidi, Pantelis Barouchas, George Salahas, George

Karagiannidis, Shaohua Wan, and Sotirios K. Goudos. Internet of things

(iot) and agricultural unmanned aerial vehicles (uavs) in smart farming: A

comprehensive review. Internet of Things, 18:100187, 2022. ISSN 2542-6605.

doi:https://doi.org/10.1016/j.iot.2020.100187.

[21] Fei Qi, Xuetian Zhu, Ge Mang, Michel Kadoch, and Wei Li. Uav network and

iot in the sky for future smart cities. IEEE Network, 33(2):96–101, 2019. doi:10.

1109/MNET.2019.1800250.

[22] Andrey Giyenko and Young Im Cho. Intelligent uav in smart cities using iot.

In 2016 16th International Conference on Control, Automation and Systems

(ICCAS), pages 207–210. 2016. doi:10.1109/ICCAS.2016.7832322.

[23] N Nikhil, S M Shreyas, G Vyshnavi, and Sudha Yadav. Unmanned aerial

vehicles (uav) in disaster management applications. In 2020 Third International

Conference on Smart Systems and Inventive Technology (ICSSIT), pages

140–148. 2020. doi:10.1109/ICSSIT48917.2020.9214241.

[24] Waleed Ejaz, Muhammad Awais Azam, Salman Saadat, Farkhund Iqbal, and

Abdul Hanan. Unmanned aerial vehicles enabled iot platform for disaster

81



management. Energies, 12(14), 2019. ISSN 1996-1073. doi:10.3390/

en12142706.

[25] Si Jung Kim, Yunhwan Jeong, Sujin Park, Kihyun Ryu, and Gyuhwan Oh. A

Survey of Drone use for Entertainment and AVR (Augmented and Virtual Reality),

pages 339–352. Springer International Publishing, Cham, 2018. doi:10.1007/

978-3-319-64027-3 23.

[26] Metehan Unal, Erkan Bostanci, Evren Sertalp, Mehmet Serdar Guzel, and Nadia

Kanwal. Geo-location based augmented reality application for cultural heritage

using drones. In 2018 2nd International Symposium on Multidisciplinary Studies

and Innovative Technologies (ISMSIT), pages 1–4. 2018. doi:10.1109/ISMSIT.

2018.8567073.

[27] Yassine Yazid, Imad Ez-Zazi, Antonio Guerrero-González, Ahmed El Oualkadi,
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