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In this study, we introduce a novel deep learning technique (CmpXRnnSurv_AE) that 

obliterates the limitations imposed by traditional approaches and addresses the limitations of the 

existing deep learning systems to jointly predict the risk-specific probabilities and survival 

function for recurrent events with competing risks. We introduce the component termed Risks 

Information Weights (RIW) as an attention mechanism to compute the weighted cumulative 

incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to 

extract complex characteristics among the set of covariates responsible for the cause-specific 

events. We train our model using synthetic and real data sets and employ the appropriate metrics 

for complex survival models for evaluation. As benchmarks, we selected both traditional, and 

machine learning models and our model demonstrates better performance across all datasets 

with the best weighted time dependent concordant index score of 92% and the weighted time 

dependent Brier score of 20%. 

Keywords: Cumulative Incidence Function (CIF), Risk Information Weight (RIW), 

Autoencoders (AE), Survival analysis, Recurrent Neural Networks (RNN), Long Short-Term 

Memory (LSTM).  



 

ii 
 

ÖZET 

 

 

KARMAŞIK YAŞAM PROBLEMLERİ İÇİN YİNELEMELİ SİNİR AĞLARI  

 

 

Pius Sindiyo MARTHIN 

 

Doktora, İstatistik Bölümü 

Danışman: Prof. Dr. Nihal ATA TUTKUN 

 

Mayıs 2023, 130 Sayfa 

 

Bu çalışmada, yarışan riskli tekrarlı olaylar için riske özel olasıklıkları ve yaşam fonksiyonunu 

birlikte tahmin etmek için geleneksel yaklaşımların dayattığı sınırlamaları ortadan kaldıran ve 

mevcut derin öğrenme sistemlerinin kısıtlamalarını gösteren yeni bir derin öğrenme tekniği 

(CmpXRnnSurv_AE) verilmiştir. Ağırlıklı kümülatif insidans fonksiyonunu (WCIF) 

hesaplamak için bir dikkat mekanizması olarak Risk Bilgi Ağırlıkları (RIW) adlı bileşeni ve 

nedene özgü  olaylardan sorumlu ortak değişkenler kümesi arasından karmaşık özellikleri 

ayıklamak için bir özellik seçici olarak harici bir otomatik kodlayıcıyı (ExternalAE) 

önerilmiştir.  Modelimiz yapay ve gerçek veri kümeleri kullanarak eğitilmiş ve değerlendirme 

için karmaşık yaşam modelleri için uygun ölçümler kullanılmıştır. Kıyaslama olarak hem 

geleneksel hem de makine öğrenimi modelleri seçilmiş ve önerilen modelin tüm veri 

kümelerinde %92'lik en iyi ağırlıklı zamana bağlı uyumlu uygunluk indeksi ve %20'lik ağırlıklı 

zamana bağlı Brier skor ile daha iyi performans gösterdiği sonucuna ulaşılmıştır. 

Anahtar Kelimeler: Birikimli İnsidans Fonksiyonu,  Risk Bilgi Ağırlığı,  Otomatik 

Kodlayıcılar, Yaşam Çözümlemesi,  Yinelemeli Sinir Ağları,  Uzun-Kısa Vadeli Hafıza. 
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OBJECTIVE 

In this study, we propose a deep learning technique to jointly predict the weighted cumulative 

incidence function (WCIF) and the weighted overall survival function (WOS) for recurrent 

events with competing risks. To account for the complex correlational structure, we introduce 

the component termed Risks Information Weights (RIW) as an attention mechanism to compute 

the WCIF. We also propose an external auto-encoder (ExternalAE) as a feature selector to 

extract relevance characteristics among the set of covariates responsible for the cause-specific 

events. 
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1. INTRODUCTION  

Survival analysis is the most used approach in the modeling of time-to-event data (Singer & Willet, 

2003). This technique has been widely utilized across various disciplines, including but not limited 

to medicine, engineering, and economics, to explore complex structural relationships among the 

set of covariates concerning the outcome of an entity (Cox, 1975; Johnson et al., 2016). In the 

medical field, survival models can assist clinicians in running the appropriate diagnostics and 

making proper treatment arrangements to optimize overall costs and patient well-being (Luck et 

al., 2017).  

 

Despite being popular in modeling survival data, the traditional approach to survival analysis 

which includes both parametric, non-parametric, and semi-parametric techniques, faces limitations 

due to strong assumptions that limit the inference and prediction ability of the resulting models 

(Lee et al., 2020). As a widely used semi-parametric approach for survival data, the Cox 

proportional hazards model (CPH) encounters interpretability issues and low performance due to 

the unknown distribution of the outcomes and proportionality assumption for the hazard ratio, 

respectively (Lee et al., 2018; 2020).  

 

When we encounter complex survival data, predicting the risks of failure or survival time 

distribution of an instance requires techniques that correctly model the complex correlation 

structure and the relationship between covariates and the outcome. Before the revival of deep 

learning recently, for simple survival problems, the traditional approach to survival analysis, such 

as the CPH model and its variants, gave competitively better performance compared to machine 

learning approaches (Wang et al., 2019). This is because the traditional methods work well with 

censored data when the simplest data structure is employed or when the underlying stochastic 

process for the survival time is known (Lee et al., 2018).  

 

However, with the increase in survival data complexity, such as recurrent events with competing 

risks, traditional methods appeared to be overwhelmed (Gupta et al., 2019). Recently, tremendous 

achievements have been attained in the field of machine learning. Machine learning practitioners 

can now train models with very high accuracy compared to many statistical approaches (Wang et 
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al., 2020). Also, technological advancement has facilitated enormous collections and data storage 

that are freely accessible to the community (Du et al., 2020). Therefore, survival model 

practitioners can now utilize Electronic Health Records (EHR) and big data from different sources 

to train machine learning models that are less limited to traditional assumptions (Coccia, 2020). 

 

Despite the outstanding achievements of deep learning models over the traditional methods across 

disciplines, the field of survival analysis seems to need to catch up in employing these techniques, 

especially in the case of complex survival data. Although several deep learning models exist for 

survival analysis, as discussed in section 2, studies focusing on complex survival problems remain 

limited.  

 

The existing deep learning models on complex survival problem, such as CRESA (Gupta et al., 

2019) and DeepHit (Lee et al., 2018, 2020) relies on the basic cumulative incidence function (CIF), 

which poses a limitation on fully accounting for the complex correlational structure caused by 

recurrent events with competing risks. In addition, these models may suffer from performance 

deficits due to noise and redundant information in the data. In practice, recurrent events with 

competing risks survival data come from various sources such as EHR. These data are most likely 

subjected to noisy and redundant information, which may impact the model performance 

(Rietschel et al., 2018). To attain reasonable performance on such data, it is necessary to design a 

model that dynamically accounts for the data structure's noise, redundancy, and complexity. 

 

In this study, we propose a new deep learning technique to jointly predict the weighted cumulative 

incidence function (WCIF) and the weighted overall survival function (WOS) for recurrent events 

with competing risks. To account for the complex correlational structure, we introduce the 

component termed Risks Information Weights (RIW) as an attention mechanism to compute the 

WCIF. We also propose an external auto-encoder (ExternalAE) as a feature selector to extract 

relevance characteristics among the set of covariates responsible for the cause-specific events. The 

proposed model has multi-fold advantages, including complete freedom from traditional 

assumptions and noise tolerance by using the ExternalAE. Also, the network successfully 

addresses the complex correlational structures in the data by predicting the WCIF and facilitates 

feature transfers through the residual connections. 
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The organization of the thesis is given below: 

● Chapter 2 introduces related studies on complex survival problems, 

● Chapter 3 presents the research methodology, 

● Chapter 4 discuss machine learning approach to complex survival problems, 

● Chapter 5 presents the proposed network architecture for complex survival model, 

● Chapter 6 introduces the loss functions for complex survival problems, 

● Chapter 7 presents the general approach of training machine learning models, 

● Chapter 8 introduces the benchmark models, 

● Chapter 9 presents experimentations, 

● Chapter 10 discuss the results, and 

● Chapter 11 presents the concluding remarks and future work recommendations. 
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2. RELATED STUDIES  

2.1. Traditional Approach to Survival Modeling 

Survival analysis aggregates statistical procedures to analyze the time-to-event data (Cox, 1972). 

Time to an event data is experienced in different fields such as the medical field, time until the 

death or time until the recurrence of a particular health issue, engineering, time until the failure of 

equipment or part of the machinery equipment, in social studies, time until recidivism (re-arrest), 

in education field time until the dropout, in the economic field time until recession or loan 

repayment and many more. Due to various reasons, survival data happenstance the problem of 

censorship where some instances have incomplete information. Consequently, survival data 

analysis has been achieved in various ways, from traditional to machine learning approaches 

(Lee et al., 2018). 

 

Traditional approaches to survival analysis are organized into three groups: the non-parametric 

approach, the semi-parametric approach, and the parametric approach (Wang et al., 2017). The 

non-parametric approach to survival analysis features the most traditional techniques, including 

the Kaplan Meier, also known as the product limit estimator, due to Kaplan and Meier (1958). KM 

is used to estimate the population survival function. The life table method, which computes the 

population survival curve in the case of large population size, is another non-parametric technique 

(Fine & Gray, 1999). The Nelson Aalen estimator is a counting process technique in the pack of 

non-parametric approaches to obtain the population hazard function. 

 

The non-parametric approaches to survival analysis are suitable when the proportional hazards 

assumption fails to hold or when the underlying distribution for the event time is unknown (Gupta 

et al., 2019). Although these techniques assist the estimation of population survival functions and 

furnish light to the field of survival analysis, they do not involve any covariates apart from the 

survival time.  

 

 

The semi-parametric approach to survival analysis has played a prominent role in modeling time-

to-event data. The CPH model is a semi-parametric approach to survival analysis most popular 
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and widely adopted technique by survival model practitioners across different disciplines to 

analyze time-to-event data (Pénichoux et al., 2015). Several variations of this model are available 

in the literature to cater to the needs, including the classic Cox model, Cox boost, regularized Cox, 

and time-dependent Cox model. Further, regularized Cox branches into Elastic Net (EN-Cox), 

Lasso Cox, Ridge Cox, and OSCAR Cox (Wang et al., 2017).  

 

These models utilize parametric and non-parametric techniques to produce more consistent 

estimators over a wide range of conditions. Despite its outstanding achievement, the CPH model 

suffers from a solid proportional hazards assumption and diminishing performance when modeling 

complex survival data (Lee et al., 2020). 

 

The alternative to non and semi-parametric approaches to survival analysis is the parametric 

method encompassing techniques such as linear regression and accelerated failure time (AFT) 

models (Yao et al., 2017). Linear regression includes the Tobit model, Buckley-James model, and 

penalized regression in terms of weighted regression and structured regularization (Wang et al., 

2017). The parametric survival models assume a known distribution for the survival time. Most 

popular distributions, such as Exponential, Gompertz, Weibull, Logistic, Log-logistic, Normal, 

and Log-normal distributions, are assumed for the survival time (Wang et al., 2017). Despite good 

performance in modeling survival data, the parametric approach is more restrictive to the prior 

knowledge of the distribution for the survival time which may lead to bias and inefficient estimates 

when the data fails to follow the desired distributions (Rietschel et al., 2018). 

 

2.2. Machine Learning Approach to Survival Analysis 

Before the revival of deep learning in recent years, researchers across various disciplines have 

observed the prosperity of artificial intelligence (AI) systems, which significantly, have become 

the primary substitute for most traditional approaches. Despite the remarkable achievement of 

machine learning techniques in most areas, its application to survival analysis has lagged due to 

the difficulties imposed by censored information and the paucity of survival data. In today's 

literature, there exist several machine learning approaches to survival analysis which include but 

are not limited to survival trees, support vector machine (SVM), ensemble techniques such as 
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bagging survival trees, boosting, and random survival forest (RSF), artificial neural network and 

Bayesian approach (Wang et al., 2017). Although machine learning models have achieved high 

performance across different disciplines, in survival analysis, the CPH model has significantly 

competed with most of the above approaches, especially for simple survival tasks (Coccia, 2020). 

 

2.3. The Revival of the Deep Learning Era 

Recent technological advancement has facilitated more research in the deep learning field, and the 

results are outstanding. For the past decade, researchers have witnessed the breakthrough in 

artificial neural networks that led to remarkable transformation across various fields due to the 

application of deep learning technology. In the medical field, specifically cancer-related research, 

powerful classification models have been attained by training a deep neural network (Coccia, 

2020).  

 

In the survival analysis discipline, researchers are now leveraging AI systems to achieve 

reasonable accuracy, which is significantly better than the traditional approaches. Advanced deep 

learning techniques exist for survival analysis problems, including multi-task, active, and transfer 

learning (Wang et al., 2017). Below we briefly discuss the achievements attained so far by applying 

deep learning to survival analysis. 

 

A deep learning technique called CRESA is introduced to model the probabilistic association 

between the inputs and outcomes distribution for recurring multiple events. This model is 

developed by starting with a single risk (stacked Long Short Term Memory (LSTM)), and the 

generalization to multiple risks follows. This model leverages the CIF by computing the joint 

distribution over the event times per competing risk across time steps (Gupta et al., 2019).  

 

 

Despite good results compared to the baseline models, it needs to fully account for the complex 

correlational structure imposed by the recurrent events with competing risks. A Dynamic-DeepHit 

is an AI approach to complex survival problems designed specifically for the case of longitudinal 

data. This model successfully addressed the limitations of standard approaches to survival data 
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with competing risks such as joint modeling and land-marking (Lee et al., 2020). Despite the 

drastic improvement in discrimination power for complex events, this model is designed for the 

case of longitudinal data. 

 

A temporal (multiple time points) multi-tasks learning framework (MTMT) for survival analysis 

problems that utilizes tensor representation is introduced by (Wang et al., 2020). Applying the 

survival dataset, the authors generated a model at every time point in a sequence, and the 

optimizations were jointly performed to ensure the sharing of standard features across tasks. 

Although this model has the added advantage of dynamically monitoring the survival status of 

instances on multiple events over time by computing the task-specific survival functions, it does 

not account for the case of recurrent events with competing risks.  

 

In addition, the optimization techniques involve tedious tensor manipulations, and the model is 

only partially free from traditional assumptions. A Deep Recurrent Model for Survival Analysis 

(RNN-SURV) leverages the RNN for time-to-event data. This model is designed to exploit the 

survival data to compute the risk score and the survival distribution of each sample (Giunchiglia 

et al., 2018).  

 

The authors applied several real datasets and comparisons using the concordance index (C-index) 

shows its superiority against the selected benchmark models. Despite the excellent performance 

and ability to personalize the treatment per patient, it is unsuitable for more complex survival data, 

such as recurrent events with competing risks. 

 

A deep learning approach to survival analysis with competing risks called DeepHit is introduced 

to overcome the parametric assumptions made on traditional approaches to survival analysis. This 

model can handle the survival time predictions in the presence of competing risks.  

The DeepHit not only smoothly models the competing risk scenarios but also handles time-variant 

covariates (Lee et al., 2018).  

 

Using a time-dependent concordance index, the model was tested and compared with several states 

of the art models. Despite good performance, it cannot handle the case of recurrent events with 
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competing risks. A deep multi-tasks neural network that directly models the survival function 

instead of the hazard function to predict survival time for kidney graft patients is introduced by 

Luck et al., (2017). This model can be trained to learn survival time and rank in the Cox partial 

log-likelihood. Although the trained model was tested on various real datasets and outperformed 

state-of-the-art models based on the (C-index), it cannot handle the case of complex survival data 

such as recurrent events with competing risks. 

 

The Deep Correlational Learning for Survival Prediction from Multi-Modality Data is introduced 

by Yao et al., (2017). The authors designed a deep network (DeepCorrSurv) to extract the most 

relevant features from pathological images and bio-molecular data by considering the correlational 

structure among the features. Despite its good performance, it is limited to more complex survival 

data, such as recurrent events with competing risks.  

 

The Deep multi-task Gaussian process for survival analysis with competing risks is another 

application of AI to analyze survival data with multiple competing events. The authors viewed 

patients' survival times concerning competing risks as a result of a Deep Multi-task Gaussian 

Process (DMGP) and developed a non-parametric Bayesian model for survival data with 

competing risks Alaa et al., (2017). This method followed a Bayesian approach by parameterizing 

the vector-valued functions of the patient’s characteristics and updating the posterior functions 

given the right-censored time-to-event data. The model was evaluated using both synthetic and 

real datasets. Comparison with the baseline techniques is achieved by using the cause-specific 

concordance index. Despite good performance, it is not wholly free from parametric assumptions. 

Also, the model cannot suffice in the case of recurrent events with competing risks. 

 

The Deep Convolutional Network (CNN) for survival analysis with pathological data is introduced 

by Zhu et al., (2016). Due to the limitations of the traditional survival approaches, which use only 

the basics and handcrafted features, the authors designed a deep CNN for survival analysis. The 

design takes pathological images as input for the first time to improve prediction. Although the 

model shows a 12% increase in performance due to higher feature extraction using CNN, it is not 

suitable for more complex survival data, such as recurrent events with competing risks.  
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The limitations imposed by the traditional approach to survival modeling led to the introduction 

of a multi-task learning formulation for survival analysis. This approach involves modifying 

survival problems into a multi-task formulation where the multi-task learning approach is 

leveraged to predict the survival distribution (Li et al., 2016).  

 

Although the model is trained on a gene expression dataset and outperformed several states of the 

art models upon comparison, it is not a deep learning technique, and it cannot manage the case of 

complex survival data. For asset health management, a study that combines deep learning and 

survival analysis is conducted by Liao et al., (2016). In this paper, the authors designed three layers 

of the deep neural network to simultaneously extract features from the input data using the LSTM 

architecture, which was stacked by another layer through the mean pooling to learn the 

representative features before the final layer attached to predict asset health condition. After 

application using both small and large datasets, the model showed promising results. Similar to 

most techniques discussed above, this model is not only inappropriate for the case of recurrent 

events with competing risks but also a solid parametric assumption concerning the survival time 

is used. 

 

Despite remarkable achievements of deep learning techniques over the traditional methods across 

disciplines, the field of survival analysis seems to lag in employing these techniques, especially in 

the case of complex survival data.  Most contributions to survival analysis using deep learning 

techniques focus on the simple survival data structure, and very little literature is available for the 

case of recurrent events with competing risks.  As specified earlier, in practice, we always 

encounter complex survival data. For recurrent events with competing risk survival problems, 

particular features may account for the perseverance of a risk-specific outcome. In modeling this 

type of problem, it is necessary to design a network that accounts for the complex correlational 

structure among the covariates and addresses the dependency among the risk-specific outcomes.  

 

Therefore, we propose a multi-tasks approach that uses an external autoencoder (ExternalAE), the 

Risks Information Weights (RIW) as an attention mechanism, and the residuals connections to 

address the risk-specific outcomes for the case of recurrent events with competing risks. The multi-

task approach is suggested due to its success in various applications for handling complex data 
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(Lee et al., (2018)). The proposed model has multifold advantages, including adequately 

accounting for the dependency structure among the risk-specific outcomes, denoising the data to 

improve efficiency, accounting for the complex correlational structure among the covariates, and 

complete freedom from traditional assumptions. 
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3. MATERIAL AND METHODS 

3.1. Recurrent Events with Competing Risks Survival Problem 

In real-life applications, for instance, in medicine, the data structure is more complex. Every patient 

has a unique set of characteristics that lead to different responses to a particular treatment at a 

given time. In practice, health practitioners commonly encounter situations where patients receive 

treatment due to multiple co-occurrence health issues that repeat over time. Treating patients under 

such conditions may result in complications. For instance, various breast cancer treatments may 

accelerate cardiovascular diseases (Lee et al., 2018). Further, data generated through survival 

studies on such groups of patients is always complex.  

 

The simplest method to analyze survival data with competing risk outcomes dates back to the 

earlier works by Kalbfleisch and Prentice (1984), which is a conventional approach using the CPH 

model by considering the competing events as censored under the strong independent assumption 

(Zhang, 2019). This approach is unrealistic due to the complex correlational structure among the 

competing events, which leads to inappropriate Kaplan-Meier estimates.  

 

One of the alternatives to the cause-censoring techniques to compute the cause-specific risk 

probabilities in case of competing risks is to consider the cumulative incidence function (CIF) 

(Gooley et al., 1999). The CIF suffices in modeling survival data with competing risks, and an 

extension to account for the case of recurrent events with competing risks is archivable (Gupta et 

al., 2019).  

 

However, like the rest of the traditional approaches to survival analysis, strong assumptions 

concerning the stochastic nature of the survival time are applied. Therefore, there is a need for 

survival model practitioners to apply AI techniques that are free from traditional assumptions. 

 

3.2 Representation of Recurrent Events with Competing Risks Survival Problem 

Like in any survival analysis problem, each subject has three essential components: the survival 

time ��; the covariates vector �� ∈ ��, which can either be static or time-variant; and the label  
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��, which is an indicator function for an event or censoring. In this study, we assume none-

informative right-censored data where the actual patient’s survival time is longer than the observed 

time due to reasons such as loss of follow-up. To define our complex survival problem, we consider 

a set of mutual exclusive competing risks  

 

� ∈ ���� = {∅,1,2,3,...,�}, 

 

where an individual subject experiences only one event at a particular recurrent time �� = �� and 

∅ is censorship.  

 

To allow multitasks learning, we discretize the continuous survival time to a finite set denoted as 

{��,��,��,...,����}, where ���� is the maximum time horizon predetermined at the study's 

commencement. At any time-step �� = �� , we define an event experienced by an individual 

subject using an indicator function  

 

 � = {1,��  �� ≤ �� 0,��  �� > ��   , where �� is the observed time.  

 

Assuming we have � data points, we present the dataset for our complex survival problem as 

���
�,��

�,��
�,��

��
���

�
where ��

� ∈ �� is the vector of covariates for an individual � at the recurrent time step 

�, ��
� ∈ ����� , is an observed event/censorship time for an individual � at the recurrent time step �, ��

� is 

an indicator function evaluated at the time � for an individual �, and ��
�  is the event type occurred at the 

time � for the subject �. 

 

3.3. Analysis of the Complex Survival Problem 

As an alternative approach to avoid strictly independent assumptions on the competing risks, the 

Cumulative Incidence Function (CIF) can appropriately assign the cause-specific probabilities to the 

respective class (Fine & Gray, 1999). Therefore, in this study, the CIF will be an essential estimator for the 

probabilities of the cause-specific events under the presence of competing risks. Conditioned on the 

covariates, Fine and Gray (1999) defined the risks-specific CIF as follows:  
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Let � ���  �  be the event and censoring times, � ∈ ���� = {∅,1,2,3,...,�} is the set  � observable 

risks, and let � ∈ ��  be the feature vector. Considering the right-censored survival data, we can observe 

the survival time as [���(�,�),� = �(� ≤ �], where �(.) is an indicator function.  

 

Given the set of independent identically distributed samples of size � with the records {��,��,����,��}, 

conditioned on the covariate vector �, we define the CIF for a specified cause � = �∗ as  

 

                                       ��∗(�,�)= �(� ≤ �,�∗|�)= ∑�∗��
��(� = �∗,�∗|�)                         (3.1) 

 

Let {��}∈ �� be the sequence of real-valued vectors whose elements are such that:        

∑�
�

� ��

∑� �
� ��

= 1, we define the weighted cumulative incidence function (WCIF) of an instance 

with risk �∗ at a particular recurrent time step �∗ as  

 

                      ��∗,�∗(��,��)= �(�� ≤ �∗,� = �∗|��∗,(�� ≥ �∗)∪ ((�� ≤ �∗)∩ � ≠ �∗))     (3.2) 

 

which can be evaluated as  

 

       ��∗,�∗(��,��)= ∑����
�∗

�(�� = ��,� = �∗|��∗,(�� ≥ �∗)∪ ((�� ≤ �∗)∩ � ≠ �∗))        (3.3) 

 

where the quantity (�� ≥ �∗)∪ ((�� ≤ �∗)∩ � ≠ �∗) represents the risk set, �� = �� ⊙ �� and 

⊙ is the Hadamard product. Therefore, the risk-specific probability will be given by an       

Equation 3.3. For further details and derivation of the WCIF, see Section 6. 

 

 

 

 

 

 

 

 



 

14 
 

4. NEURAL NETWORKS FOR SURVIVAL ANALYSIS 

Neural networks can be used in survival analysis to model the relationship between a set of input 

variables and the time until the event of interest occurs. These models are called survival neural 

networks, and they can be used to make predictions about the survival time of new patients or to 

identify important factors that influence survival. One popular type of survival neural network 

involves the CPH model where the risk score function is learned via a neural network. Learning 

the weights of the CPH model using a neural network allows the auto-modeling of complex 

relationships between the input variables and the survival time, and it also allows for the modeling 

of censored subjects (Alaa & van der Schaar, 2017). 

 

An alternative technique to survival neural networks is deep survival analysis, which leverages the 

deep learning framework suitable for survival problems. Deep neural networks can be used for 

both survival and event prediction. Overall, neural networks can be useful for survival analysis 

because they can model complex relationships between input variables and survival time, and 

handle censoring, making predictions more accurate (Farragi & Simon, 1995). 

 

4.1. The Feedforward Neural Networks  

F2eedforward neural networks, also known as multilayer perceptrons (MLPs), are the building 

blocks of deep learning models. The MLPs are used to approximate any arbitrary non-linear 

function ��:� → �  by learning the parameters � ∈ � through input-output mapping. They are 

called feedforward because information flows in one direction only, i.e., from the inputs � to the 

outputs �.  

 

They are called networks because they are composed of several functions described with a directed 

acyclic graph, i.e., ��(�)= ��(��(��...(����(����(��(�)))))), where � is the number of 

layers in the network and ��, is the ��� layer (Goodfellow et al., 2016). In order to understand the 

mechanisms of the feedforward neural networks, it is better to start with the linear model        

��:� → � and generalize using the non-linear transformation kernel ��.  
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Consider the nonlinear function ��:� → �; let (�,�)∈ � be the network's weights where   � ∈

��,���� � ∈ ��. We can express the dense layer of the feedforward neural network as a non-

linear transformation ��:�� → �� = � (��� + �). The official name of the transformation 

function �  is called the activation function.  

 

To obtain the MLPs, we combine several dense layers using composite functions. Suppose 

��:�� → �� is an MLP with � layers; then it can be expressed as ��(�)= ���

� ∘ ���
� ∘

���
� ,...,,�����

��� ∘ ���

� , where the number of layers � determines the depth of the network. The 

intermediate layers, (1,2,3,...,� − 1) are hidden layers, the final layer, �, is the output layer, and 

the layer 0 is the input layer. Training of this network involves the optimization of parameters 

(�,�) and hyperparameters turning such as the depth of the network �, number of neurons in the 

layer, and the type of activation function � . 

 

The architecture in Figure 4.1 is the simplest form of a feedforward neural network with a single 

hidden layer to solve the exclusive OR (XOR) problem. The classical XOR problem consists of 

two binary inputs, which evaluate "True" if the values are different and "False" when the values 

are similar (Brutzkus & Amir, 2019). The left-hand side graph consists of individual neurons 

linked together to present the mapping ��:� → �, while the right-hand side is the compact form 

with the individual nodes representing a layer.  

 

 

There is a wide choice of non-linear transformation functions (� ) available in the literature. We 

can select the activation function based on the task at hand, such as classification, regression, data 

generation, and many more. We select activation functions in the intermediate layers in favor of 

the model's convergence. Some of the most used activation functions in practice include the 

sigmoid (logistic) activation, the hyperbolic tangent (���ℎ) activation, the rectified linear unit 

(ReLU) activation, and its variants, and the softmax activation function. 
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Figure 4.1. The feedforward neural network for the XOR problem 

 

Considering the random vector � ∈ ��, we have the following mathematical definitions 

concerning the activation function: We obtain the sigmoid activation as  

 

�:�� → ��;�(�)=
��

����.  

 

The hyperbolic tangent activation is given as  

 

�:�� → ��;�(�)=
������

������
. 

 

The rectified linear unit (ReLU) activation is given as 

 

 �:�� → ��;�(�)= ���(0,�)= ��,  

 

and the softmax activation is given as 
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�:�� → ��;�(�)=
���

∑� ���
 

 

4.2. Recurrent Neural Networks 

For the past decade, artificial neural networks have been demonstrated to achieve magnificent 

performance over traditional approaches and other machine learning algorithms on tasks such as 

classification, image segmentation, regression, data generation, features extraction, data denoising, 

image inpainting, and many more. Most of these tasks are accomplished by using deep learning 

models with convolution layers, i.e., deep convolutional neural networks (CNN) and feedforward 

neural networks (MLPs) architectures. Although these networks can be applied in modeling 

temporal sequences, the overall performance remains substandard due to the complex correlation 

structure in sequential data (Erizmann, 2021).  

 

Therefore, recurrent neural networks (RNN) are specifically designed to handle temporal 

correlation structure in sequential data (Rumelhart et al., 1986). The RNN helps to identify patterns 

in a sequence or temporal data such as texts, speech, video, time series, signals, genomics data, 

survival data, and many more (Manaswi, 2018).  

 

The RNN has been successfully utilized across different disciplines to model temporal data, and 

remarkable achievements are seen in the field of Natural language processing (NLP), specifically 

machine translation, speech recognition, texts, and music generation, to mention a few (Lee et al., 

2018).  

 

The performance of the RNN model on sequential data is guided by its unique ability to store 

memory and allow parameter sharing across the time steps, which enables the model to generalize 

well in practice. The neurons of the RNN model can keep track of information using the state 

vector (ℎ�) at every step.  

 

At each time step, the RNN neuron receives an input sequence (��) and the previous state vector 

(ℎ���) to compute the current state vector (ℎ�). Let �  be the activation function, (��,��) be the 

lengths of input {��} and output {��}  sequences, respectively, for each layer in an RNN we can 
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compute the following quantities:ℎ� = ��(��
��� + ��

�ℎ��� + ��) and �� = �����
�ℎ� +

���  where ℎ� ∈ ���, �� ∈ {��}���

��
 and �� ∈ {��}���

��  are the hidden states, the output, and the input 

vectors at a time �. The parameters � = [��,��,��,��] are shared across all time steps.  

Figure 4.2. The recurrent neural network architecture 

 

Figure 4.2 displays the computational graph of the RNN. The left-hand side graph is the compact 

form (the unrolled) with the cyclic arrow to represent re-currency. The right-hand side graph is a 

long version of the RNN architecture where the network is unrolled through time to become similar 

to MLPs. Notice that the weights (� = �) are shared across all time steps. Here the activation 

function for the hidden states and output states are given by (�� = �) and (�� = �). Depending 

on the task the output vector (�) can be computed at every time step or suppressed until the end 

of the sequence. 

 

There are various input-output structures of the RNN computational graphs conditioned on the 

task at hand. In the case of sequence-to-sequence models such as time series forecasting and 
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machine translation, both inputs and outputs are sequences (Erizmann, 2021). Further, the input 

can be a sequence, and the output can be a vector, like the case of sentiment analysis, to predict 

customer satisfaction or opinion towards a particular product.  

 

Also, the vector-to-sequence input-output relationship can be observed for tasks such as language 

or music generation and image captioning. The general format of the input-output relationship can 

be achieved using the encoder-decoder architecture, where the sequences are allowed to take any 

shape.  

 

In practice, we always encounter sequences with elements of different lengths. Either padding can 

address this problem according to the longest element in the sequence or truncation according to 

the shortest element in the sequence (Erizmann, 2021). Due to parameter redundancy and length 

of the sequence, the vanilla RNN suffers much from the problem of gradient decay or explosion 

during training. This is because the backpropagation (BPP) algorithm operates over the unrolled 

version of the RNN architecture, which led to the multiplication of gradients with similar 

magnitudes. If these gradients are less than one, we have a decaying gradient issue, and the network 

will stop training. On the other hand, if these gradients are higher than one, we encounter the 

problem of gradient explosion.  

 

These issues are addressed using several techniques, including applying gated recurrent units 

(Goodfellow et al., 2016). The most prominent gated RNN architectures used in practice are the 

Long Short Term Memory (LSTM) and the Gated Recurrent Unit (GRU) (Ravanelli et al., 2018). 

The LSTM cell stores two state vectors associated with temporally and long-term memories to 

keep track of information flows across time steps in longer sequences.  

 

At every step t, the LSTM cell outputs state vectors �� and ℎ�. Using state vectors, the LSTM can 

automatically ignore or preserve past information when updating the next stage of the network, 

which is achieved using several gates that create paths through time to enable a steady flow of 

derivatives. 
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At every time step, the LSTM cell conducts several operations across different gates, namely the 

input gate (��), the forget gate (��), and the output gate (��). These gates consist of simple 

feedforward sub-networks. The name "forget" is associated with the sigmoid activation function, 

which emits higher probability values to open the gate and low probability values to close the gate. 

The following computations are performed within the LSTM cell at each time step: 

 

● The input (��) is scaled using the hyperbolic tangent (���ℎ) activation function as 

 
�� = ���ℎ(���

� �� + ���
� ℎ��� + ��). 

 

● The computation at the forget gate(��) is expressed as 

 

�� = �����
� �� + ���

� ℎ��� + ���. 

 

●  The computation at the input gate (��) is given as 

 

�� = �(���
� �� + ���

� ℎ��� + ��). 

 

● The computation at the output gate (��) is given as  

 

�� = �(���
� �� + ���

� ℎ��� + ��). 

 

● We obtain the state vectors (��,ℎ�)  as  

 

�� = �� ⊙ ���� + �� ⊙ ��      and     ℎ� = �� ⊙ ���ℎ(��),  respectively. 
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Figure 4.3. The LSTM cell architecture (Long Short-term Memory - Wikipedia, 2022) 

 

Notice that every gate has a unique set of trainable parameters to be shared across the time steps 

given as  

����,���,���,���,���,���,���,���,��,��,��,��� 

 

The state vectors are obtained using the Hadamard product of respective components. Also, the 

derivatives of the state vector i.e., �
���

�����
= ��� do not directly depend on the network parameters 

which makes LSTM efficient during training (Goodfellow et al., 2016). 

 

 

The complex architecture of the LSTM can be simplified by suppressing the number of 

computations. This is achieved by the introduction of the gated recurrent unit (GRU). The GRU 

cell controls the flow of gradients via the reset gate (��) and the update gate (��) (Cho et al., 2014). 
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Figure 4.4. The GRU cell architecture (Gated Recurrent Unit - Wikipedia, 2016) 

 

 

The GRU contains a single state vector that propagates information across the sequence. Using the 

non-linear transformation functions � and ���ℎ. We carry out the following computations within 

the GRU cell:  

 

● In the update gate, we have 

 

�� = �����
� �� + ���

� ℎ��� + ���. 

 

●  We compute the reset gate as 

 

�� = �[���
� �� + ���

� ℎ��� + ��].  
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● The state candidate is given as  

 

�� = ���ℎ[���
� �� + ���

� (ℎ��� ⊙ ��)+ ��] . 

 

●  We obtain the output vector as 

 

ℎ� = �� ⊙ ℎ��� + (1 − ��)⊙ ��. 

 

The update gate combines and filters information received from the input sequence at the current 

time with the output received from the previous GRU cell. In practice, the GRU provides almost 

equal performance to the LSTM. Due to the flexibility of these architectures, there are many 

variants of both GRU and LSTM in the literature (Erizmann, 2021). 

 

4.3. Autoencoders (AE) networks 

Autoencoders are a unique form of neural network architectures that are widely applied for various 

tasks, including feature extraction, dimensionality reduction, data reconstruction, and data 

generation (Bank et al., 2020). The great advantage of autoencoders is their ability to be embedded 

into the primary model and concurrently trained to accomplish the given task. Autoencoders have 

two network systems: the encoder (E) and the decoder (D). The encoder �:�� → ��,� ≤ � maps 

the input vector of size � into the code space of size �, while the decoder �:�� → �� maps the 

code space to decode the original information. The desired task is accomplished by optimizing the 

cost of the form �� = �(�,� ∘ �(�)) (Erizmann, 2021). 
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Figure 4.5 The autoencoder architecture (Jonnalagadda, 2018) 

 

In Figure 4.5, the left-hand side of the encoded layer constitutes the encoder’s network while the 

right-hand side is the decoder’s network. 

 

4.3.1. Feature selection with Autoencoders 

Like in other machine learning models, deep learning models for survival analysis may suffer from 

performance deficits due to noise and redundant information in the dataset (Carl et al., 2019). 

Selecting the most relevant features is necessary to reduce computation complexity and gain 

efficiency in training machine learning models.  

 

Several feature selection techniques are available in the literature, including filter and wrapper 

algorithms and the embedding approach. Filters and wrappers are independent of the primary 

model, while the embedding approach allows selection and training procedures to be parallel 

(Jundong et al., 2016).  
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In this study, we embed the autoencoder as an unsupervised feature selection algorithm into the 

primary network to facilitate feature selection. Given the unlabeled data matrix � ∈ �(�,�), � is 

the number of samples, and � is the feature size. The task is to select the set of representative 

features, say (� ≤ �), that are useful for training our machine learning model. This autoencoder 

feature selector leverages the simple autoencoder network with the MLPs architecture proposed 

by Wang et al., (2017). For the detail of this network see Section 5. 

 

4.4. Attention Mechanism 

The attention mechanism is a popular term in the deep learning arena, particularly for the family 

of encoder-decoder networks. By allowing the network to learn the alignments between inputs and 

outputs, significant performance is achieved for the task related to neural machine translation 

(NMT) (Bahdanau & Cho, 2014), speech recognition (Chorowski et al., 2015), image 

segmentation (Sinha & Dolz, 2020), image captioning (Huang et al., 2019), time series forecasting 

(Du et al., 2020) and many more.  

 

There are several forms of attention mechanisms based on the alignment score function. To 

improve the performance of the basic encoder-decoder in NMT, the additive (soft) attention 

technique, which allows the network to align and translate, is introduced by Bahdanau & Cho, 

(2014). 

 

To obtain the conditional probability of the target sequence                     

�(��|����,����...,��,��,�)= �(����,��,��)  for a machine translation problem, the authors 

introduced an attention mechanism that uses the context vector 

 

 �� = ∑�
����,�ℎ�   

 

and the alignment model is given as 

 

 ��,� = �(����,ℎ�)  
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where � is the feed-forward neural network, (ℎ�,��) is the hidden states of the RNN, �� is the 

context vector at ��, �� is the length of the input sequence, ���
 is the target at �� and 

 

 ��,� =
���(��,�)

∑���
�� ���(��,�)

  

 

are �(��|��) used to extract information from the input sequence. The decoder network generates 

predictions based on this information by paying attention to the specific part of the input sequence. 

These weights are learned using the feed-forward neural network, which is trained with the rest of 

the system. Another form of attention mechanism is content-based (hard) attention with the 

alignment score function given as  

 

�(��,ℎ�)= ��(��,ℎ�)= ���(��,ℎ�),  

 

which is the cosine similarity between the decoder and encoder hidden states (Mnih et al., 2014). 

Luong et al., (2015) modified Bhadanau's attention by computing the context vector at both global 

and local levels. They leverage the concepts of soft and hard attention to obtain what is termed as 

global and local attention. The global attention considers all the hidden states of the encoder to 

derive the context vector (�).  

 

The alignment model is  

 

���
= �(��,ℎ��

)=
���������(��,���)�

���������(��,���

�
)�

,  

 

where �� is the decoder's hidden state, and ℎ��
 is the encoder's hidden state. The score function 

�����(�,�) can be computed as ���, which is a dot product attention also given as ����,  where 

� is the transformation matrix if vectors � and � are of different dimensions. The general attention 

is given as �����ℎ(�[� ⊕ �]) which is similar to Bhadanau's attention where the alignment 

model learns (�,�).  
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To reduce computation complexity, the local attention, which aligns only on the part of the 

encoder's hidden states per target, is considered. In this case, the network selects the alignment �� 

for each target, and the context vector �� is computed by considering the small differentiable 

window [�� − �,�� + �]∈ ����� where � is empirically selected.  

 

The alignment score function for the local attention can be computed based on monotonic 

assumption or predicted using a sigmoid transformation. For more computational details, see 

Luong et al., (2015). More development on the attention mechanism include the scaled dot product 

attention, which leads to the transformers networks (Vaswani et al., 2017).  

 

Transformers networks are completely based on the stacked self-attention (intra-attention) 

mechanism for both encoder and decoder networks. The scaled dot product attention is based on 

three quantities, namely query (Q), which is the vector of feature values; key (K), which represents 

a feature contribution; and value (V) which is the vector corresponding to each input element. Here 

the score function takes query and keys as inputs to produce probability vectors which determine 

the contribution of each input element to the target.  

 

The weights are obtained as 
([���])

��
, where �� is a scale factor and [.] is the dot product. We can 

compute the scaled dot product attention as,  

 

���������(�,�,�)= ������� �
(���)

��
�� 

 

This is similar to the dot product attention in computational complexity when the scale factor is 

negligible. To allow the network to attend to the information at different subspace positions jointly, 

the multi-head attention can be leveraged (Vaswani et al., 2017). This is achieved by several linear 

projections on the key, query, and value vectors along their respective dimensions, which are 

learned differently.  
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Attention is computed in parallel on each projected vector. Outputs are combined and projected 

once more to get the final results. Multi-head attention is given as 

 

 ���������(�,�,�)= [ℎ���� ⊕ ℎ���� ⊕ ℎ���� ⊕ ...,⊕ ℎ����]�� 

 

 and 

 ℎ���� = �������������
� ,���

�,���
��,  

 

where  

 

 ��
�

∈ �(������,��),   ��
� ∈ �(������,��),   ��

� ∈ �(������,��), and  �� ∈ �(���,������)  

 

are parametric matrices that are directly learned by the network. For our network, we consider the 

global attention by Luong et al., (2015), which is similar to additive (Bahdanau & Cho, 2014) 

attention. We consider the query, key, and value vectors as 

 

                                                       � = � = � = [�� ⊕ ��]                                               (4.4.1) 

 

 for �� ∈ ���,��  and �� ∈ ���,�∗��, where �� is the hidden size of the RNN and ⊕  is the 

concatenation operation. The alignment vector is given as 

 

 �� = �(��,��)=
���(�����(��,��))

���������(��,��
�
)�

,  

 

where �����(.) is an MLPs. 
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5. THE PROPOSED NETWORK ARCHITECTURE 

The proposed architecture consists of four components. The external autoencoder (ExternalAE), 

the shared sub-network, which is an LSTM block, the self-attention, and the risk-specific sub-

networks, which are MLPs networks (Marthin & Tutkun, 2023). The central architecture is shown 

in Figure 5.1, while    Figure 5.2 shows the autoencoder in detail.  

 

Given the sequence of feature vectors {��}���
� ⟹ � ∈ ��×� where � is the sequence length, and � 

is the feature size at time �. We partition the input vectors into categorical and numerical sets as 

[{��}�
� :{��

���}�
� ;{��

���}�
� ]. The task is to select the set of representative features say (� ≤ �), that 

are useful for training our machine learning model. 

 

Figure 5.1. The general architecture 
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Figure 5.2. The external autoencoder (ExternalAE) architecture 

 

The encoder network is computed as follows: 

 

               {��
���}= {��}+ {��

���}⟹ ��
� = ��(��

���)= ��
�(��

���,��
�)= ��

���                        (5.1) 

                                                                                                                                                     

             {��
���}= {��}+ {��

���}⟹ ��
� = ��(��

���)= ��
�(��

���,��
�)= ��

���                 (5.2) 

 

The decoder network is given as 

 

                        ��
� = ��(��(��

���))= ��(��
���),��

� = ��(��(��
���))= ��(��

���)               (5.3) 

 

which produces the reconstruction outputs as  
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                                    {�̂
�
���

}= ��
� ∘ (��

�)= ��(��
���)= ��

�(��(��
���),��

�)                        (5.4)  

 

                            {�̂
�
���

}= ��
� ∘ (��

�)= ��(��
���)= ��

�(��(��
���),��

�)                                 (5.5) 

 

where {��
�,��

�,��
�,��

� ∈ �} are the weights of the encoder-decoder's MLPs given as 

��
�,��

�,��
�,��

� respectively, and {��} is the white Gaussian noise (WGN) randomly introduced 

during training to improve the reconstruction loss [14]. 

 

The RNN input is given as {�̂
�}= ��

��� ⊕ ��
��� ∈ ����, where ⊕  is the concatenation operator. 

In the architecture, we maintain the input notation (��) to ease the notation. 

 

The autoencoder network is trained by minimizing the loss function given as:  

 

��
�� = ��

��� + ��
��� , where  

 

                         ��
��� =

�

��
���� − ��

̂��
�

�

+ ��|��
�;��

�|�
�,�

+
�

�
∑���

� ����
���

�

�

                        (5.6) 

 

                         ��
��� = ���

�,��
�,��

�,...,��
�

�
�

�ℎ�����
� = −���

� �
�������(��

�,��
��

∑
��
���� ����(��

�,��)�
�                         (5.7) 

   

where � is, the batch size and ||.||� is the Frobenius norm for matrices,  

 

�|�∗|�
�,�

= ∑���
� �∑���

� (��,�
∗ )� is the sparsity term to filter redundant information and 

�

�
∑���

� ����
���

�

�

  is the weight decaying factor to reduce overfitting and speed the convergence 

process. ��
��� is the weighted cross entropy loss where the weights (���

�) are proportional to the 

class scores of each categorical feature and (��
�,��

�) are the ground truth and reconstructed values. 

The shared sub-network consists of two stacked layers of RNN with an LSTM architecture. All 

forms of RNN architecture, like vanilla RNN and the GRU, are used for experimentation.  
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The LSTM receives the hidden representation of the external autoencoder ({��
̂}) as input. The 

following computations are performed within an LSTM cell at each time step: 

 

● The input ��
̂ is scaled using the hyperbolic tangent activation function (���ℎ) as  

 

�� = ���ℎ����
� �̂

� + ���
� ℎ��� + ��� 

 

● The computation at the forget gate (��) is given as 

 

�� = �����
� �̂

� + ���
� ℎ��� + ��� 

 

● The computation at the input gate (��) is given as 

 

�� = �����
� �̂

� + ���
� ℎ��� + ��� 

 

● The computation at the output gate (��) is given as  

 

�� = �����
� �̂

� + ���
� ℎ��� + ���.  

 

● The state vectors (��,ℎ�) are given as  

 

�� = �� ⊙ ���� + �� ⊙ ��, ℎ� = �� ⊙ ���ℎ(��) respectively. 

 

The input to the attention network is given as {��}= ��̂
� ⊕ ℎ�� ⟹ � ∈ ���×�. The RIW is given 

as 

                            ��� = ��������(��)= �� ∋ ∑�
�

� ��

∑� �
� ��

= 1,�� ∈ ��                         (5.8)  

 

where the score function ��(.) is simple ���� and � is the sigmoid function. The empirical ���� 

is given as 
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                                        �̂
�∗,�∗(��,��)= ��∈��[�� ⊙ �̂

�]⊕ [ℎ� ⊕ �̂
��                              (5.9)  

 

where ⊙ is the Hadamard product, �� is computed by Equation 5.8,  �̂
� = ��

��� ⊕ ��
���, and 

��∈� is the ���� with the softmax outputs which is the final layer of our network. 
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6. THE LOSS FUNCTION 

The loss function is an essential component of a training loop and plays a prominent role in the 

model’s performance. In this study, we focus on minimizing the loss function that accounts 

explicitly for the complexity of recurrent events with competing risks under the presence of non-

informative right censoring. Our loss function consists of several components.  

 

The main component is the negative partial log-likelihood loss (��) which is specifically designed 

to accommodate the case of recurrent events with competing risks, the ranking loss (��), which 

act as a penalty factor for the miss-classification of the risks-specific outcomes, and the 

reconstruction loss (��) which is given in Equation 5.6  and Equation 5.7 above to train our feature 

selector. We obtain the total loss as  �� = ���� + ���� + ����, where the network learns 

[��,��,��] directly. 

 

The single event (here described as simple) case survival problem, the CPH (Cox, 1972) model, 

can be expressed as ℎ�∈�(�|�)= ℎ�(�)���� where ℎ� is the baseline hazard, � ∈ � are the 

weights/parameters, and � is the vector of covariates. Ignoring the baseline hazard ℎ�(�), we can 

achieve a consistent estimator �̂ using the random sample [��,��,��] where �� is an observed 

censoring/survival time for an individual, and �� is the indicator function with �� = 1 for an event 

and �� = 0 for censoring. 

 

 Let us consider the set of � distinct events which occur according to their respective times; the 

risk set (risk-free individuals by time � is given as �� = {�:�� ≥ �}. For uncensored data, the 

conditional probability of the observed failures/events given the risk set constitutes an essential 

part of the likelihood function. At each distinct time ��, we obtain the contribution to the likelihood 

function as  

 

��:� ∈ � 
= �[����������� ����� ����� �ℎ�� �ℎ��� �� �� ����� ��� �������� �� �ℎ� ���� �����] 

       =
�[�������� � ����� ����� ���� �� �� ���� �� ���� �]

∑�∈���[�������� � ����� ����� ���� �� �� ���� �� ���� �]
                                                                 (6.1) 
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By intuition, this means the probability of an individual developing an event given that he/she was 

event-free up to that particular time. In terms of the hazard function, we can write Equation 6.1 as  

 

                                                  ��:� ∈ � =
�(��|��)��[�����|��]

∑�∈�(��)�(��|��)
 .                                                (6.2) 

 

Following (Cox, 1972, 1975), under the CPH assumption, the likelihood function for the � distinct 

events can be written as  

                         

                            ��∈� = ∏ ���
� �

��(��)���
��

∑�∈�(��)��(��)���
��

� = ∏ ���
� �

���
��

∑�∈�(��) ���
��

�.                          (6.3) 

 

Since the survival data always contains some incomplete records due to censorship, we express 

the likelihood function in a form that accounts for this information. We cannot record any event 

for a censored instance, but partial information concerning survival time is available (in our study, 

we assume that censorship is observable).  

 

For the case of simple survival data, the likelihood function for a right-censored instance 

corresponds to the survival function, i.e., ��:� ∈ � = ��(��). On the contrary, if an instance 

develops an event/failure at time ��, we obtain the likelihood function assuming non-informative 

right censored data as ��:� ∈ � = ��(��|��)ℎ�(��|��).  

 

Therefore, we can write the partial likelihood function for a non-informative right censored 

survival data can as  

 

                                             ��∈� = ∏ ���
�[ℎ�(��|��)]��[��(��)].                                              (6.4)  

 

We can also include the risk-set information in the likelihood function to have it as 

 

                              ��∈� = ∏ ���
� �

(��(��))

∑�∈�(��)��(��)
�

��

�∑�∈�(��)ℎ�(��)�
��

��(��)                              (6.5)  
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where ∑�∈�(��)ℎ�(��) is the risk set. Since the first term of  Equation 6.5 is the sufficient statistic 

for � ∈ �, under the proportional hazard assumption we have the likelihood function given as 

 

 ��∈� = ∏ ���
� �

(��(��))

∑�∈�(��)��(��)
�

��

, which simplifies to 

 

                    ��∈� = ∏ ���
� �

��(��)���
��

∑�∈�(��)��(��)���
��

�

��

= ∏ ���
� �

���
��

∑�∈�(��) ���
��

�

��

                             (6.6) 

 

where  � ∈ � is the vector of parameters, � is the covariates vector, �� is an indicator function for 

the event if (�� = 1) and censorship if (�� = 0), and ℎ�(��) is the baseline hazard. 

   

For the cause-specific events (events with competing risks), we are interested in the distribution 

of the time to failure due to a specified risk under other competing risks. Let us assume two 

competing failures (��,��)∈ � and their possible failure times (��,��) respectively. In practice, 

for a particular instance, we usually record the ���[��,��] assuming the events are mutually 

exclusive. In this case, we can consider the crude death rate (hazard) or the cumulative incidence 

rate as the parameter of interest. We compute the crude death rate for a subject due to a particular 

risk (� = �∗), given that an instance was alive past time (�) as  

 

                                               ℎ�∗(��)= ���
���

→�
�

�(������������
,���∗|�����)

���

�                                   (6.7) 

 

which is also known as instantaneous failure potential for the ��� instance due to risk �∗ within an 

infinitesimal time change. We can obtain the cumulative incidence function (CIF) for a subject 

among the group of instances present in the risk set at that particular time point as                    

��∗(�)= �[� ≤ �,� = �∗|��], where �� is the risk set, including the ��� candidate. Considering 

all subjects in a dataset/batch, we have the relation ������ + �� = 1 where �� is the chance that 

neither individual developed a risk over the entire study duration.  
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Fine and Gray (1999) considered the CIF as the sub-distribution function to include covariates in 

the model. We can express this sub-distribution hazard function as the ratio of the derivative of 

cause-specific probability to the survival distribution 

 

                                           ℎ�∗(�)= ���
��→�

�[��������,���∗]

��
= �

���∗(�)

��

����∗(�)
�                                  (6.8) 

 

Replacing the usual baseline hazard component with the cause-specific probability/sub-

distribution hazard, we obtain the model suitable for competing-risk events as ℎ�∗(�)=

ℎ�,�∗(�)���� with ℎ�,�∗ in the form of Equation 6.7 (Fine & Gray, 1999). Consider the tuple 

(��,��,��,��)���
�  where �� is an event or censorship time for the ��� subject, �� is an indicator 

function, �� is a risk-specific event, and �� is a covariate vector. If we assume none-informative 

right censored survival problem with mutually exclusive events, we have the likelihood function 

for the  � competing risks written as 

 

               ��∈� = ∏ ���
��ℎ��

(��,��)����(��,��)� = ∏ ���
��ℎ��

(��,��)��∏ ���
�����(��,��)�            (6.9) 

 

where ��(��,��) is the CIF for the ��� subject.  This means that the subject censored at time � will 

have the survival information up to that point given as 

 

 �(��,��)= ∏ ���
�����(��,��)  

 

otherwise the contribution to the likelihood function by that instance will be equivalent to the death 

density expressed in terms of survival and hazard functions as 

                                  

                                    ℎ��
(��,��)���

(��,��)= ℎ��
(��,��)∏ ���

�����(��,��)                          (6.10) 

 

 which is equivalent to the joint likelihoods for individual risks. 
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In practice, we usually encounter a scenario where the event of interest is not necessarily death or 

disappearance from the study (Gupta et al., 2019). Therefore, subjects are exposed to multiple 

risks which may repeat several times (recurrence) over the study’s duration. For the case of a single 

recurrent event, several traditional approaches have been introduced in the literature.  

 

The most straightforward approach is the counting processes which applies the usual CPH model 

with the assumption that subjects with more than one interval (occurrence) are treated 

independently as if they are different examples. The partial likelihood function is the product of 

individual functions at each ordered time point. When recurrent events are viewed differently at 

each time step, the marginal approach technique, similar to CIF, can be employed.  

 

As the generalization to recurrent events with competing risks survival problem, we extend the 

CIF concept for the case of competing risk to contain recurrent events scenario. This is achieved 

by conditioning the risk-specific outcomes across the time steps. We can obtain the cause-specific 

probability for a specified event � = �∗ for a subject across multiple time stamps conditioned on 

the covariates and risk set as 

 

                                     ��∗(�∗|��
∗,��

∗)= ∑���
�∗

�[� = �,� = �∗|�∗,��∗]                               (6.11) 

 

 where �∗ = {(� ∈ (�� ≥ �∗)∪ (�� ≤ �∗ ∩ (� ≠ �∗)} is the risk set which consists of survivors 

from the risk �∗ and those who developed other forms of events prior to time �∗, and ��∗is the 

covariate vector at time �∗. This can further simplifies to 

 

                                       ��∗(�∗|��
∗,��

∗)=
∑���

�∗
�����,���∗|��∗�

��∑��∅∑���
�∗

�[���,���∗|�∗,��∗]
                                   (6.12) 

 

where the denominator of Equation 6.12 is the survival information for all uncensored subjects in 

the risk set by time �∗.  

 

We can express the survival distribution for a specified subject concerning the particular risk as 

the compliment of the cause-specific probability for events only 
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                        ��∗(�∗|��
∗,��

∗)= 1 − ��∗(�∗|��
∗,��

∗)= 1 −
∑���

�∗
�����,���∗|��∗�

��∑��∅∑���
�∗

�[���,���∗|�∗,��∗]
           (6.13) 

 

Following Equation 6.9, the likelihood function for the case of recurrent events with competing 

risks can be generalized. This is achieved by conditioning on the recurrence time with the 

maximum sequence length of (�) using the sample of size � as follows 

 

��∈� = ∏ ���
�∑���

��ℎ��
(��,���

)�
��

���
(��,���

)= ∏ ���
�∑���

��ℎ��
(��,���

)�
��

∏ ���
��

����(��,���
) ,  

 

which simplifies to  

       

                                      ��∈� = ∏ ���
�∏ ���

�∑���
��ℎ��

(��,���
)�

��
�

����(��,���
)                      (6.14) 

 

Since it is mathematically contented to work with the log-likelihood function, we can express 

Equation 6.14 as 

 

                  ��∈� = ∑���
�∑���

���� �∑���
��ℎ��

(��,���
)�

��
�

����(��,���
)�,  

which simplifies to  

 

             ��∈� = ∑���
�∑���

���� �∑�
��� �ℎ��(��,���

))�
��

� − ∑���
�∑���

����(��,���
)              (6.15) 

 

Following similar steps, we define the weighted cause-specific probability for a particular event 

(� = �∗) recorded at a given time stamp conditioned on the covariates and risk set of an individual 

as 

                                 ��∗(�∗|��
∗,��

∗)= ∑���
�∗

�[� = �,� = �∗|�∗,��∗]                                 (6.16) 

 

where �∗ = {� ∈ (�� ≥ �∗)∪ (�� ≤ �∗ ∩ (� ≠ �∗} is the risk set, ��∗ = ��∗ ⊙ ��∗ is the weighted 

covariate vector at the time �∗ with �� ∈ ��  is a real-valued vector whose elements are such that:        

∑�
�

� ��

∑� �
� ��

= 1.  
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This simplifies further to gives 

 

                                           ��∗(�∗|��
∗,��

∗)=
∑���

�∗
�����,���∗|��∗�

��∑��∅∑���
�∗

�[���,���∗|�∗,��∗]
                               (6.17) 

 

where the denominator of an Equation 6.17 is the survival information for all uncensored subjects 

in the risk set by time �∗. The weighted overall survival (���) for an instance concerning a 

particular event is the complement of the weighted cause-specific probability for events only. This 

can be written as 

 

                     ��∗(�∗|��
∗,��

∗)= 1 − ��∗(�∗|��
∗,��

∗)= 1 −
∑���

�∗
�����,���∗|��∗�

��∑��∅∑���
�∗

�[���,���∗|�∗,��∗]
           (6.18)                                                           

 

Equations 6.17 and 6.18 are the quantities of interest for our study. Since we have yet to learn the 

nature of probability distributions for the survival time and the complex events interactions, the 

closed-form solutions cannot be evaluated analytically. Therefore, empirical estimates  �̂
�∗(.) and 

�̂
�∗(.) are obtained using Equation 5.9.  

 

Following Equation 6.14, the likelihood function with weighted covariates for the case of recurrent 

events with competing risks can be generalized. This is achieved by conditioning on the recurrence 

(�) using the sample of size � as follows: 

 

��∈� = ∏
���

�
∑

���

�
�ℎ��

���,���
��

��
���

���,���
� =

                                      ∏ ���
�∑���

��ℎ��
(��,���

)�
��

∏ ���
��

����(��,���
)                                       (6.19) 

                        = ∏ ���
�∏ ���

�∑���
��ℎ��

(��,���
)�

��
�

����(��,���
)                                                     (6.20) 

 

Since it is mathematically contented to work with the log-likelihood function, we can express 

Equation 6.20 as 

 

                               ��∈� = ∑���
�∑���

���� �∑���
��ℎ��

(��,���
)�

��
�

����(��,���
)�                     (6.21) 
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which simplifies to 

 

             ��∈� = ∑���
�∑���

���� �∑�
��� �ℎ��(��,���

))�
��

� − ∑���
�∑���

����(��,���
)            (6.22) 

 

Since in machine learning, we usually minimize the loss function, then equivalently, instead of 

maximizing the above partial log-likelihood, we reduce the negative partial log-likelihood given 

as 

 

   −��∈� = − �∑���
�∑���

���� �∑�
��� �ℎ��(��,���

))�
��

� − ∑���
�∑���

����(��,���
)�               (6.23) 

 

which simplifies to 

 

 −��∈� = �� = −∑���
� �(�� = 1)��� �

∑���
�∗

�����,���∗|��∗,�∗�

��∑��∅∑���
�∗

�[���,���∗|��∗,�∗]
�� +  [(�� = 0)���[1 −

∑���
�∗

�����,���∗|��∗,�∗�

��∑��∅∑���
�∗

�[���,���∗|��∗,�∗]
]]  

                                                                                                                                                  (6.24) 

 

Equation 6.24 constitutes the loss function’s main component (��) necessary to optimize our 

neural network. 

 

6.1 The Ranking Loss (��) 

The ranking loss is the miss-classification penalty necessary to regulate the network for wrong 

risk-specific event predictions. Ideally, the ranking loss is based on the comparison approach 

analogous to the concept of the concordance index (C-index) (Lee et al., 2018). This component 

regulates the network by penalizing the incorrectly ordered pair of instances with a high risk 

(subjects who developed an event by time �) compared to those who remained event-free past time 

�. Using the C-index formulation.  
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We compute the �� loss by leveraging the risk-specific probabilities given by the estimated CIF in 

Equation 5.9. We consider the pared individuals (�,�) as a matching pair for a specified risk       

(� = �∗) at the time �∗ given that the subject � has not developed the event until time �∗, i.e., 

(��
∗ > ��

∗). Under this condition, we expect the estimated risk probabilities (CIF) to satisfy the rule  

 

                                              �̂
�∗(��

∗,|���
∗)≥ �̂

�∗(��
∗,|���

∗)                                                     (6.25)  

 

We compute the loss among the acceptable pairs of subjects as follows:   

 

                           �� = ∑�∗��
���∗,�∗∑���

����,�
∗ � ��̂

�∗(��
∗,|���

∗),�̂
�∗(��

∗,|���
∗)�                       (6.26) 

 

where ���,�
∗  is an indicator function of the form 

 

                                 ���,�
∗ = {1 ��(��

∗ > ��
∗,� = �∗),0 ��(��

∗ ≤ ��
∗,� = �∗)                           (6.27) 

 

��∗,�∗ is the hyper-parameter to trade off the ranking loss for the ��� risk with other competing 

risks, and �(.) is a convex kernel. For our case, we compute the weighted ranking loss by 

conditioning on the weighted covariates. Under this condition we expect the estimated risk 

probabilities (WCIF) to satisfy the rule 

 

 �̂
�∗(��

∗,|���
∗)≥ �̂

�∗(��
∗,|���

∗). 

 

For our network, we compute the �� loss with weighted covariates among the acceptable pairs of 

subjects is as  

 

                        �� = ∑�∗��
���∗,�∗∑���

����,�
∗ � ��̂

�∗(��
∗,|���

∗),�̂
�∗(��

∗,|���
∗)� .                      (6.28) 

 

For convenience we set ��∗,�∗ = � across all time steps and �(�,�)= ��(���) which is an 

exponential smoothing kernel. The reconstruction loss (���) for the autoencoder is given as  
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                                                          ��� = ∑���
�[��

��� + ��
���]                                            (6.29) 

 

where ��
��� and ��

��� are given in Equations 5.6 and 5.7. 

 

6.2 Performance Metrics for Survival Models 

Unlike other machine learning models, assessing the classifier's performance for the survival 

analysis task requires special techniques to account for the event times and their respective 

probabilities (Longato et al., 2020). Traditional metrics, such as the area under the receiver 

operating characteristics (ROC) curve, fail to quantify the correlation between the predicted 

outcomes and observed survival times.  

 

We address this issue by using the concordance index (C_index), which relies on the idea of a 

matched-mismatched (concordant-discordant) pair of observations. The C-index is a 

comprehensive metric that summarizes the relationship between event times and risk probabilities 

to aid model evaluation and selection (Wang et al., 2019).  

 

Consider the pair of random subjects (�,�) with the risk scores (��,��) and the survival times 

(��,��). We compute the C-index for a single-event survival problem as 

 

                                                         C-index= ���� > ��|�� > ���                                         (6.30) 

 

This number expresses the relationship between the risk score of a subject and its respective event 

time. The above relation implies that the subject � is at higher risk of encountering an event than 

the ��� subject.  

 

Therefore, in this manner, the higher values of the C-index imply the assignment of higher risk 

scores to subjects in the higher-risk category (Longato et al., 2020). Harrell's estimator is the 

favored approach to estimate the C-index (Harrell et al., 1982). Let �̂
� and �̂

� be the estimates of 

risk probabilities for the subjects � and � at times (��,��), respectively.  
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We obtain Harrell's estimator for C-index with tied observations as the ratio between the number 

of matched pairs and the total comparable pairs as follows 

 

                                  �̂
����� =

∑���
� ��∑�������������������������������̂

���̂
���

�

�
��̂

���̂
���

∑���
� ��∑����������

                    (6.31) 

 

where �  is an event indicator, �(.) is an indicator function to fetch the number of concordant pairs, 

and � is the sample size. Without ties in the survival times and predicted risk probabilities, 

Equation 6.7 reduces to 

 

                                                   �̂
����� =

∑���
� ��∑��������������̂

���̂
��

∑���
� ��∑����������

                                        (6.32) 

 

It is easy to notice that if all the samples are correctly matched according to the predicted risks, 

i.e., the quantity ���̂
� < �̂

�� in the numerator gives 1 for all pairs, then the estimated C-index = 1, 

while if all pairs are discordant, then the estimated C-index = 0 and therefore, 0 ≤ �̂
����� ≤ 1.  

 

Also, the update of �̂
����� stops when the last event is encountered (say at time �), and a clear 

indication of this event are necessary for practical application. The termination point of Harrell's 

�̂
����� algorithm can be set to some lower value, say (�∗ < ����), to establish a split between the 

early (���� ≤ �∗) and later (���� ≥ �∗) stages of the data to guide the identification of hazardous 

individuals (Longato et al., 2020). We can generalize Harrell's C-index algorithm to account for 

the complex survival data. 

 

Consider the pair of subjects (�,�) with the specified risk (� = �∗). Let (�̂
�,�̂

�) be the predicted 

risk probabilities at time (� = �∗) for subjects � and �, respectively. We define the risk-specific 

time-dependent concordant index as 

 

                                   ��∗(�∗)= ��(�̂
� > �̂

�)|(�∗|���
∗ > �∗|���

∗),� = �∗� .                        (6.33) 
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We can obtain the estimate of Equation 6.9 following Equation 6.7 as 

 

                                                 �̂
�∗(�∗)=

�∑���
� ��∑������,�

∗ ���
∗���

∗����,�
∗ ��̂

���̂
���

∑���
� ��∑������,�

∗ ���
∗���

∗�
                             (6.34) 

 

The generalization of Harrell's C-index algorithm to account for the recurrent events with 

competing risks survival data is achieved by conditioning over the time stamps. For the recurrent 

events with competing risks scenario, it is essential to consider variation due to time-dependent 

covariates (Lee et al., 2018).  

 

Following Equations 6.7, 6.8, 6.9 and 6.10 we obtain the time-dependent concordant index with 

weighted covariates for our complex survival problem as follows: 

 

● Consider the pair of subjects (�,�) with the specified risk (� = �∗).  

 

● Let (�̂
�,�̂

�) be predicted ���� at the time (� = �∗) for subjects � and � respectively. We 

define the weighted covariates’ risk-specific time-dependent concordant index as 

 

                                ��∗(�∗)= ��(�̂
� > �̂

�)|(�∗|���
∗ > �∗|���

∗),� = �∗� .                            (6.35)  

 

We estimate Equation 6.35 as 

 

                                            �̂
�∗(�∗)=

�∑���
� ��∑������,�

∗ ���
∗���

∗����,�
∗ ��̂

���̂
���

∑���
� ��∑������,�

∗ ���
∗���

∗�
                                  (6.36)  

 

Using the estimate of the ���� from Equation 5.9 results to 

 

                                     �̂
�∗(�∗)=

�∑���
� ��∑������,�

∗ ��̂
�∗(��

∗|���
∗��̂

�∗(��
∗|���

∗��

∑���
� ��∑������,�

∗ ���
∗���

∗�
                                  (6.37)  
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where ���,�
∗  is given by Equation 6.3, �� is an event indicator, and � is the batch size.  

 

Another popular metric used to evaluate the performance of survival models is the Brier score. 

The Brier score is a measure of the accuracy of probabilistic predictions (Weigel et al., 2007). It 

is commonly used in the field of weather forecasting, but can also be applied to other types of 

probabilistic predictions, such as those made by machine learning models (Hu et al., 2022).  

 

The Brier score is calculated as the mean squared difference between the predicted probability and 

the actual outcome for a binary classification problem (Weigel et al., 2007). The Brier score ranges 

from 0 to 1, with 0 representing a perfect score and 1 representing a completely incorrect score. 

The Brier score can also be extended to multi-class classification problems by averaging the score 

for each class.  

 

The Brier score can be useful for comparing different probabilistic predictions, as it provides a 

single scalar value that summarizes the overall accuracy of the predictions. It can also be used to 

evaluate the performance of probabilistic classifiers. In addition, the Brier score can be 

decomposed into two terms: resolution and reliability. The resolution term measures the capability 

of the model to distinguish between events that are likely to happen and events that are unlikely to 

happen. The reliability term measures the consistency of the predicted probabilities with the 

observed frequencies (Hu et al., 2022). 

 

One of the main advantages of the Brier score is that it allows the evaluation of the performance 

of a probabilistic prediction in a way that can be directly related to the loss that would be incurred 

by using the predicted probabilities to make decisions. 

 

For our study, we calculate the Brier score at every timestamp using the following formulation: 

 

                                                    ��� =
�

�
∑���

���
�(�̂

�
�

− ��
�)�                                             (6.38) 
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where � is the batch size, ��
� is an indicator function for the subject �, �̂

�
�
 is the weighted survival 

prediction for the subject �, and ��
� is the actual outcome for the subject �. 

 

Therefore, to assess and compare the performance of our network against the selected benchmark 

models, we employ Equations 6.13 and 6.14 as the performance measure. 
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7. TRAINING MACHINE LEARNING MODEL 

Training refers to the process of optimizing the neural network parameters (Goodfellow et al., 

2016). Consider the neural network model (��:� → �,� ∈ �) where {�,�}∈ �(�,������), � is 

trainable parameters belonging to parametric space �, � is the total number of subjects (batch 

size), and ������ is the dimension of the feature vector.  

 

Learning the parameters � ∈ � of the neural network involves the adjustment of these weights 

conditioned to the training data and patterns (Shang et al., 1996). Given the cost function ��∈� and 

the training data {(�,�):(�,�)}∈ �(�,������), we can empirically obtain the optimal weights by 

minimizing the cost function ��∈�.  

 

Mathematically; we can express this operation as �̂ = ������
�∈�

�(��|(�,�)). Since the parameters 

of the neural network exist in the high dimensional parametric space, obtaining the closed-form 

solution for the above optimization problem is not possible in practice. In addition, the nature of 

the data and the type of cost function increases the complexity in computation and interpretability, 

which makes the neural networks regarded as black-box models (Molnar et al., 2020).  

 

The commonly used procedure is an iterative technique that allows updating the parameters at 

every step. For the convex cost function ��∈�, we start by initializing the set of parameters to 

random values � = �� and subsequently obtaining the next solution as                                                   

�� = ���� − � � � �����
|(��,��)� where � > 0 is the learning rate parameter which determines 

the size of the step towards optimality and � � (.) is the partial derivative of the loss function with 

respect to the training parameters. 

 

Following the function's gradient to the optimal point is called the steepest gradient descent since, 

after each step, the parametric vector descends towards the optimal space via the path with the 

highest decline in the cost function (Goodfellow et al., 2016). The training data {(�,�):(�,�)∈

�(�,������)} passes through the network ��∈� at every iteration for the optimization process. This 

procedure is called the batch or deterministic gradient method and is achievable when the dataset 

is small enough to fit into the memory at once.  
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In practice, we always encounter big training datasets and complex loss functions, which makes 

the optimization process quite expensive with the computational complexity ≥ �(�). Since the 

gradients are an expectation, we can approximate by using a part of the dataset which are 

independent and uniformly randomly selected. 

 

Therefore, instead of passing the entire training data, a mini-batch {��,��,��,...,��} is selected 

at every iteration to compute the gradients of the cost function. Here, � < � can be any small 

number ranging from 1 to a few hundred (Goodfellow et al., 2016).  

 

By applying the mini-batch examples, the Monte Carlo estimate of the gradient is given as � =

�

�
� �∈� ∑���

� ��(��(��,��))�. When the mini-batch size is one, the procedure is called the 

stochastic gradient descent (SGD), and the computational complexity reduces to �(� = 1).  With 

the recent technological advancement, multiple machines can be used in parallel for more efficient 

training (Erizmann, 2021).  

 

In practice, the SGD and its variants are the most used algorithms in finding the optimal solution 

to the neural network. In addition, if the training data is small, it is beneficial for the network to 

attend to it several times by setting the minimum number of epochs for better results. The number 

of epochs can be tuned along with other hyperparameters in the network. For more factors 

associated with the mini-batch size and training, see Chapter 8 of Goodfellow et al., (2016).  

 

To obtain the derivative of the loss function with respect to the model's parameters, i.e., 

� �∈� �(��,(�,�)), we employ the backpropagation (BPP) algorithm. The BPP algorithm is the 

fastest method that employs the chain rule of differentiation to express how quickly the loss 

function changes as the network parameters (weight and bias) change, revealing the model's 

overall behavior (Nielsen, 2015).  

 

The goal of the BPP algorithm is to compute the derivative of the cost function with respect to the 

weights and biases of the neural network model, i.e., � �∈� �(��,(�,�)). In order to conduct this 

operation; we assume that the cost function �(��,(�,�)) can be expressed as the expectation over 

the cost of an individual example, i.e., � = �(��∈��)[��] where � is an example since BPP computes 
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the partial derivative per individual example and take the average overall training samples for the 

final result.  

 

Also, the cost function is assumed to be represented as a function of the outputs of the neural 

network i.e., � = �(��(�),�).  

 

Nielsen (2015) summarizes the BPP algorithm into the following steps: 

 

●  Supply the input � to the neural network ��∈� and set its corresponding activation ��, 

 

● For each layer 1,2,3,...,� of the neural network perform forward propagation by      

computing the quantities  �� = ������ + �� and �� = �(��) where �,�,� are the 

weights, biases, and activation functions at the layer �, 

 

● Compute the output error �� = � � � ⊙ �
�
(��)  where ⊙ is the Hadamard (point-

wise) multiplication of vectors, 

 

● Back-propagate the error by computing �(�(���)�
�(���)� ⊙ �

�
(��) ,   

 

● Obtain the gradients for the weights and biases as 
��

���,�
� = ��

(���)
��

� and 
��

���
� = ��

� . 

 

Training the recurrent neural network (RNN) requires unfolding the network through time. 

Although the RNN shares weights across time stamps, the network can quickly explode once 

unfolded since every time stamp constitutes a unique layer.  

 

We apply the standard BPP algorithm to the unfolded network, and we call it Backpropagation 

Through Time (BPPT) which is quite expensive to compute since all intermediate states need to 

be known in advance (Erizmann, 2021). For more details and proof of the BPP algorithm, see 

Chapter 2 of Nielsen (2015).  
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We can apply various methods to accelerate the training of the RNN models, including teacher-

forcing and curriculum learning. These techniques are specifically used for the RNN with the 

encoder-decoder structure whereby, during the decoding process, the network is supplied with the 

ground truth target instead of previous predictions (teacher-forcing) or randomly supplied with the 

ground truth predictions over a particular probability value (curriculum learning) to assist the next 

step of prediction (Goodfellow et al., 2016). 

 

At any time-step �, the hidden state of the RNN model is given as  ℎ� = �[��
��� + ��

�ℎ��� + ��], 

which gives the partial derivative of the state vector at the time � with respect to the previous state 

as 
���

�����
= �

�
[��

��� + ��
�ℎ��� + ��]��. Since the derivatives used for BPPT depend on the 

product of the activation function (�[.]) and the network parameters at later layers, the RNN 

suffers from the problem of gradient decay or an explosion depending on the nature of the non-

linearity function.  

 

In addition, multiplication with the derivatives of identical weights may accelerate the problem 

due to parameter sharing, i.e., when the weights are less than one (gradient decay) or greater than 

one (gradient explosion). Several measures to address this issue are proposed in the literature, 

including truncated backpropagation through time, gradient clipping, the better choice of 

activation function, and the use of gated recurrent units such as LSTM and GRU (Erizmann, 2021). 
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8. THE BENCHMARK MODELS 

For comparison purposes, we consider both traditional and deep learning models. We compare our 

approach with the Fine and Gray model (1999), which we extend to account for the case of a 

recurrent event with competing risks, the random survival forest (SRF) for competing risks 

(Ishwaran et al., 2014), the DeepHit (Lee et al., 2018), the DeepSurv (Katzman et al., 2018), and 

CRESA (Gupta et al., 2019). Below we give a brief description of each model. 

 

8.1. A Proportional Hazards Model for the Subdistribution of a Competing Risk 

The famous traditional approach to dealing with multiple events with competing risks in the right 

way is to apply the concept of the incidence function. To mitigate the strong assumptions and 

interpretability issues in modeling competing risks, Fine and Gray (1999) developed the semi-

parametric proportional hazard model, which relies on the cumulative incidence function (CIF). 

Consider � competing events labeled (1,2,3,...,�) and a vector of covariates �. For a particular 

event, � = �∗, We obtain the sub-distribution hazard function at the time � = �∗ as  

     

                                       ℎ�∗(�)= ���
��

∗→�

�(�∗����∗���
∗,���∗|(���∗)∪(���∗∩���∗)

��
∗                              (8.1) 

 

where the risk set (� ≥ �∗)∪ (� ≤ �∗ ∩ � ≠ �∗) includes all survivors from the risk of interest 

and other individuals who encountered other events different from �∗. For the sub-distribution 

baseline hazard ℎ�,�∗(�), we express the risk function as ℎ�∗(�∗)= ℎ�,�∗(�∗)���� where � is the 

parameters vector and � is the vector of covariates. The (CIF) for the specified risk �∗ at the time 

�∗ is given as ��∗(�∗|�)= �(� ≤ �∗,� = �∗|�,(� ≥ �∗)∪ (� ≤ �∗ ∩ � ≠ �∗).  

 

We obtain the generalization for the case of recurrent events with competing risks as follows:  

 

Let us assume � events occur multiple times represented by the time steps (1,2,3,...,�). We 

compute the CIF for an individual at a particular time step, say ��
∗, by conditioning on the previous 

time steps.  
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We compute the sub-distribution hazard function as 

 

ℎ�∗(��
∗)= ���

���→�

����
∗������

∗����
∗,���∗|(�����

∗)∪(�����
∗∩���∗�

���

, 

 

which simplifies to   

                                                      ℎ�∗(��
∗)= ℎ�∗(��

∗|��)= ℎ�,�∗(��
∗)���

��                                (8.2) 

 

where (� ∈ �). 

 

We can now obtain the Fine-Gray CIF for the case of recurrent events with competing risks as  

 

                    ��∗(��
∗|��)= �(�� ≤ ��

∗,� = �∗|��,(�� ≥ ��
∗)∪ (�� ≤ ��

∗ ∩ � ≠ �∗)                (8.3) 

 

Although uniformly consistent estimators of the predicted CIF for an individual with specified 

covariates exist, the solid proportional hazard assumptions and the inability to handle non-linear 

effects limit the performance of this model. 

 

8.2. Random Survival Forest (RSF) for Competing Risks 

Random survival forest (RSF) is the collection of decision trees specifically for right-censored 

survival data. In their first work, the authors proposed a tree ensemble algorithm that treats the 

survival problem as a classification problem, but instead of predicting a particular class or value 

at the terminal node, they predicted the quantity called ensemble mortality. From this setting, we 

obtain an extension to include the competing risk scenarios (Ishwaran et al., 2014).  

 

The RSF differs from Breiman's random forest (RF) (Breiman, 2001) concerning the splitting 

rules. In RSF, the splitting rule incorporates survival time and the status of an event. The RSF 

algorithm consists of the following steps: 

 



 

54 
 

1. We select the ‘b’ bootstrap samples which include 63% of the data for training and the 

remaining 37% referred to as out-of-bag (OOB) samples for validation. 

2. We develop the survival tree using each bootstrap sample ‘b’ by selecting some 

covariates at random to obtain a decision variable, and the splitting rule that maximizes 

the survival difference between the daughter nodes is selected. 

3. The survival tree is grown until we reach a particular criterion, i.e., until the number of 

notable deaths is not less than a pre-specified positive value. 

4. We compute the cumulative hazard function (CHF) at the terminal node for each tree 

and obtain the average across all trees (ensemble prediction). 

5. The out-of-bag samples (OOB) are used for evaluation. 

  

On the contrary, different splitting criteria to grow a competing risk survival tree is proposed. As 

a modification to address a survival problem with competing risks, the CIF of Fine and Gray (1999) 

is estimated at the terminal node.  

 

The generalized log-rank test, which relies on the weighted difference of the cause-specific risks 

of the Nelson-Aalen estimates, is used as a splitting criterion to detect the variables related to the 

cause-specific hazards. To obtain the optimal CIF estimates, Gray's test (Gray, 1988) compares 

the cumulative incidence functions of the daughter's nodes to ensure the selection of variables 

directly affecting the CIF is used as a splitting rule.  

 

Further, the composite rule combining the cause-specific splitting criteria across the event's type 

is used to obtain the CIF of all causes simultaneously and identify variables influencing the cause-

specific events. 

 

The outline of the RSF for the competing risk algorithm includes the following steps. 

 

1. Obtain the ‘b’ bootstrap samples from the training data 

2. Select a random sample of covariates from the bootstrap, and use the variable that 

maximizes the competing risks splitting rule as a decision variable to split the node into 

daughters nodes 
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3. Grow the tree to full size until the termination criteria are reached (until the terminal 

nodes have a minimum pre-specified number of unique candidates. 

4. Risk-specific quantities of interest, such as CIF and cumulative hazards functions, are 

estimated at the end of each competing risk decision tree, and the average across all 

trees is obtained as ensemble estimates. 

 

As our benchmark, we train the RSF for competing risks at every time step.  

 

8.3. A Deep Learning Approach to Survival Analysis with Competing Risks (DeepHit) 

DeepHit is an alternative to the traditional approach for survival prediction in case of multiple 

events with competing risks, leveraging the power of deep neural networks (Lee et al., 2018). 

DeepHit has a multitask learning architecture which allows the network to learn the joint 

distribution of survival times and risks directly.  

 

The DeepHit model assumes a class of mutually exclusive competing events � ≥ 1 with right-

censorship denoted as � = ∅ discrete survival time (�� = 0,��,��,...,���� = 100), which leads 

to the survival data expression as � = �(��,��,��)�
���

�
 where � = ���(�,�) is the time at which 

an event or censorship is recorded for a subject.  

 

The target is to predict the probability for a particular event  � = �∗ that occurs at the time � = �∗ 

for the given subject with covariates �, which is given as �(� = �∗,� = �∗|�,�∗ ≠ ∅).           

Figure 8.1 shows the DeepHit architecture. 

 

The architecture consists of fully connected layers for both shared and risk-specific sub-networks. 

The shared sub-network maps the input vector � to the hidden representation �(�), which is then 

combined with the raw inputs using the residual connection to give � = {�(�),�}, where � is the 

input to the risk-specific sub-networks which uses the shared softmax layer to learn the probability 

distribution of survival times for every risk.  
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The network utilizes the Fine and Gray (1999) CIF to assess the discrimination ability across 

competing events. For a particular risk say � = �∗ the CIF for an individual with covariate � at 

the time � = �∗ is given as  

 

��∗(�∗|�)= �(� ≤ �∗,� = �∗|�) 
 

which simplifies to ∑���
�∗

�(� = �,� = �∗|�). This quantity is unknown and is estimated from the 

network using the softmax probabilities �(�∗,�∗) as �̂
�∗(�∗|�)= ∑���

�∗
���∗,�

∗ �. 
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Figure 8.1. The DeepHit architecture 

 

For training, the DeepHit utilizes the loss function which consists of the partial log-likelihood 

function for survival data with competing risks and the ranking loss as a miss-classification 

penalty. The total loss is given as 

 

� = �� + �� = −∑���
��1(�� ≠ ∅)���(���,��)+ 1(�� = ∅)���(∑���

�(1− �̂
�((��)|��)))� +

 ∑���
���∑�����,�,��(�̂

�(��)|��),�̂
�(��)|��))    

                                                                                                                                                    (8.4) 
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where 1(.) is an indicator function, the second term in the log-likelihood loss (��) covers survival 

information for the censored individuals, ��,�,� is an indicator function to capture the alignment of 

two individuals (�,�) according to the specified risk (� = �), �� is a trade-off parameter, and �(.) 

is a convex kernel. As the measure of performance, the time-dependent concordance index is given 

as  

 

                 �� = ���̂
�(��|��)≥ �̂

�(��|��)|�� ≤ ��� =
∑��,�,����̂

�(��|��)��̂
�(��|��)�

∑��� ��,�,�
.                 (8.5) 

 

We will train this model at multiple time points as the baseline for the case of multiple recurring 

events with competing risks. 

 

8.4. Personalized Treatment Recommender System Using A Cox Proportional Hazards Deep 

Neural Network (Deepsurv) 

In order to address the limitation of the CPH model, the DeepSurv is specifically designed to model 

the high-level treatment-covariate interactions to achieve personalized treatment recommendations 

(Katzman et al., 2018).  

 

In this study, the authors address the linearity assumption on the log risk function of the CPH 

model by using neural networks. The model is structured as follows: Consider the CPH model 

given as �(�|�)= ℎ�(�)���, where �� is the risk score to be estimated, and ℎ�(�) is the baseline 

common to all subjects.  

 

The Cox proportional hazard assumption estimates the risk score �� as a log-linear function of the 

covariates given as �� = ����, where � are the model's coefficients, and � is the vector of 

covariates. Since, in practice, we encounter complex interactions between patient covariates and 

treatment concerning the outcome risks, the linearity assumption on the risk score function is not 

adequate.  

 

We can replace the risk score function with the neural network's output, which is the modification 

of Faragi and Simon's (1995) method (Katzman et al., 2018). The network architecture consists of 
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MLPs with a scaled exponential linear unit (SELU) activation. For regularization, they employed 

the dropout technique and �� norm, which is added as a component of the loss function. 

 

The risk score function �� is now approximated by the output of the neural network ℎ̂
�∈�(�), 

which is parameterized by the new weights (� ∈ �). We train this model by minimizing the loss 

function, which consists of the partial log-likelihood function with �� a penalty on the estimated 

parameters given as 

 

                      �� = −
�

����
∑�:���� �ℎ̂

�(��)− ���(∑�∈��
��̂

�(��))� + ��|�|�
�

�
                              (8.6) 

 

Notice that this loss explains the event cases only and the censorship information is ignored since 

the treatment recommender system applies to the available patients.  

 

As the benchmark, we can extend this model to account for the recurrent event with competing 

risks. Considering a set of � events that repeats R times for a given subject, we can express the 

hazard function for a specified event �∗ at a time �� as  ℎ�∗�(��|��,�� = �∗)= ℎ��∗,����∈�(��,�∗), 

where ��∈�(.) is the output from the neural network at the time � of risk �∗. 

 

We can then express the likelihood function as 

 

                                     �� = ∏ �:����� �∏ �∈�
�

��∈�(���
,�)

∑�∈��
�

��∈�(���
,�)�                                        (8.7) 

 

where ��∈�(.) is an estimated risk score function for risk � at the time �.  

 

As our benchmark, we train DeepSurv by minimizing the loss function of the form 

 

        �� = −
�

����
∑�∈�∑�:����� ���∈�(���

,�)− ���(∑�∈��
�

��∈�(���
,�)

)� + ��|�|�
�

�
               (8.8) 
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                                                 Figure 8.2. The DeepSurv architecture 

 

8.5. A Deep Learning Approach to Competing Risks Recurrent Events Survival Analysis 

(CRESA) 

CRESA is the deep learning algorithm for predicting survival time distribution and risk-specific 

outcomes for recurrent events with competing risk survival problems (Gupta et al.,2019). The 

network is designed to mitigate the strong assumptions of traditional approaches, such as constant 

hazards function and the stochastic nature of the data generation process. The authors utilized the 

CIF concept from Fine and Gray (1999) to predict the risk-specific outcomes in case of recurrent 

events with competing risks. For the baseline, both traditional and deep learning techniques are 

applied. The assessment is achieved based on simulation and real datasets. Figure 8.3 shows the 

architecture of the CRESA network. 
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Figure 8.3. The CRESA network architecture 

 

This architecture consists of two stacked LSTM layers, which receive the preprocessed survival 

data. The hidden states of the LSTM become the input to the risk-specific sub-networks, the MLPs. 

To obtain the risk-specific survival distribution, a shared softmax layer is employed. In case of a 

single risk, this network reduces to the simple LSTM.  

 

The loss function consists of ranking loss and partial log-likelihood, specifically for recurrent 

events with competing risks. For a specified risk � = �∗ and covariate vector ��
∗, the cause-

specific cumulative incidence function at or before time ��∗ is given as 

 

              ��
∗(��

∗|��
∗)= �(�� ≤ ��

∗,� = �∗|��∗,(�� ≥ ��
∗)∪ (�� ≤ ��

∗ ∩ � ≠ �∗))                 (8.9) 
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where (�� ≥ ��
∗)∪ (�� ≤ ��

∗ ∩ � ≠ �∗) is the risk set which consists of all individuals free of risk 

�∗ and those who developed any other competing events prior to C. The partial log-likelihood is 

given as 

 

     �� = ∑���
�∑���

��(��� = 1)�����
��
� ,���,��

�� + (��� = 0)����1 − ∑���
��̂

�(��
�|��

�)��     (8.10) 

 

where �� is an indicator function for censoring or event, and �̂
�(��

�|��
�) is predictions from the 

softmax layer of the network. The ranking loss is given as 

 

                                          �� = ∑���
���,�∑�����

�,�,�
���̂

�(��
�|��

�),�̂
�(��

�|��
�
)�                           (8.11) 

 

where �� is a trade-off parameter, ��
�,�,�

 is an indicator function given as 

 

��
�,�,�

= ���̂
�(��

�|��
�)≤ �̂

�(��
�|��

�
)|��

� ≥ ��
�
�, 

 

and �(.) is a convex function.  

 

The ranking loss is a penalty factor if an individual is wrongly classified as possessing a particular 

risk. As the benchmark, this model can be obtained as a particular case of our network when we 

exclude the residual connections, an external auto-encoder, and the attention mechanism. 
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9. EXPERIMENTATION 

In this study, we utilize both synthetic and real-life datasets to train and evaluate our model. We 

consider the case of two events for demonstration purposes, and generalization can be achieved 

analogously. We describe the data and problem formulation in the following section. 

 

9.1 Simulation of Recurrent Events with Competing Risks 

Generation of recurrent events with competing risks survival data involves a dynamic process that 

considers all possible forms of complexity, such as events dependency and heterogeneity among 

the subjects. In medical research, it is necessary to determine the correct time scale to reflect the 

problem under study. We employ the calendar time scale when simulating events that evolve in 

the long run, while the gap time scale, which depends on the inter-arrival distribution, is selected 

for events that evolve within a limited time (Penichoux et al.,2015).  

 

Since it is unrealistic to assume a homogeneous stochastic process for the complex survival time, 

the Gompertz distribution can be applied to simulate data that reflects reality (Bender et al.,2005). 

To address the variation among the subjects in a dynamic survival setting, adding a random effect 

term specific to each individual is necessary. In practice, gamma frailty under the Gompertz 

distribution baseline hazard has been proven to effectively models a heterogeneous population 

(Tutkun & Marthin, 2021). In this study, we made the following assumptions for data generation.  

 

Following the simulation done by (Lee et al., 2018) and (Gupta et al., 2019) on complex survival 

data, we also consider the set of multivariate distributed normal covariates 

 

{(��,��,��)}∼ �(0,��). 

 

For simplicity, we assume the case of two competing risks (� = 2). To reflect the complexity of 

the recurrent events with competing risks, we employ Gompertz distribution for the survival and 

the gap times, i.e.,  ��,� ∼ ��������(��,��) and �� ∼ ��������(��,��). To account for the 

events dependency, we express the parameters of the time generator distribution in terms of the 
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covariates, i.e.,  [�� = �� = 1], ��� = ��
���,� + (��

���,�)�,�� = ��
���,� + (��

���,�)��, where �� =

�� = �� = 10.  

 

We also include the gamma-distributed frailty term (� ∼ �(�,�)) as a random effect to address 

the heterogeneity among the subjects. Therefore, for an individual subject, the survival times are 

distributed as 

 

��,�
� ∼ ��������(��,��) ��,�

� ∼ ��������(��,��) , 

 

where ��,��,��,�� are defined above. A random variable � ∼ ��������(�,�) if the probability 

density function (pdf) is given as 

 �(�)= ��
����

�
�

�������
�
 , 

 

where � is the shape parameter and � is the scale parameter.  

 

Following the work of Penichoux et al., (2015), the multiplicative proportional intensity using the 

gap time is given as 

 

 ℎ�(�|��)= ℎ�,�(� − ��(��))���
���, 

 

where (� − ��(��)) is the gap time which represents the inter-arrival times between the recurrent 

events for risk �.  

 

To account for the heterogeneity, we simulate the identical independently distributed (���) 

samples (��) from the gamma distribution. We assume the gap time quantity follows the same 

distribution as the survival times, i.e., ��������(�,�). Let the gap-time variable for the ��� event  

 

(�� = (�� − ��(���)))∼ ��������(�,�),  
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the cumulative distribution function for the ��� step (���
) is given as 

  

���
= 1 − ���,�(��)�

��
���

  

 

where ��,� is the CDF of the Gompertz model. Further, the random variable � ∼ �(�,�), if the 

probability density function is given as  

 

�(�)=
����������

�(�)
,(�,�)> 0.  

 

Including this frailty term, we can write the proportional intensity function as 

 

 ℎ�(�|��)= ℎ�,�(� − ��(��))�����
���  

 

where �� ∼ �(� = 2,� = 3) and �� ∼ �(� = 0.5,� = 3). Since a random variable's cumulative 

distribution function (CDF) is a random variable with a uniform distribution, we have  

 

                          ����
= 1 − ���,�(��)������

� ∼ �[0,1], which implies  

 

�1 − ���
= ���,�(��)������

� ∼ �[0,1].  

 

Therefore, we generate the survival process as 

 {��,�}=
��,�

��,�
���� �1 −

��,�

��,�

���(�)

���(���
��, 

 

 where �� = �� = �� = �� = 1,� ∼ �[0,1] and ��,�,��,�,��,� are defined above. 

 

We then select the survival time ��,�
� = ���(��,�

� ,��,�
� ) if ��

� ≠ ∅ and ��,�
� = ��,�

�  if ��
� = ∅ where 

��,�
�  is the uniformly distributed censorship accounts the 45% of the data, i.e.,                                     
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��,�
� = �[0,���(��,�

� ,��,�
� )]. We employed Numpy and Pandas libraries in Python to simulate two 

processes of length five, each with a maximum time horizon of 30 and 30,000 subjects. We outline 

our data generation algorithm in Figure 9.1. Figure 9.2 gives the overall event’s status distribution 

across the time steps and the survival time distribution with embedded covariates. We observe the 

uniform occurrence of the events for all time steps since we assumed common censorship with a 

rate of 45% to demonstrate the performance of our model for the data with steady dynamics.  

 

To evaluate the performance of the ExternalAE, we introduced a total of 49 binary covariates to 

account for noise and redundancy information. This is accomplished following the work of Lee & 

Carlin (2012) and Rietschel et al.(2018), where, for each subject, we simulate the process         

{��
�;� = 1,2,3,,4,5}∈ ���×�, where ��

� ∼ ���������(��) and �� ∼ �[0,1]. 
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Figure 9.1. Recurrent event with competing risks survival data generator algorithm  
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Figure 9.2. Survival and event  status distribution across the time stamps 
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9.2. UNOS-OPTN (KIDPAN) Dataset 

UNOS-OPTN is the Organ Procurement and Transplantation Network (OPTN), which is a national 

transplant system that is operated by the United Network for Organ Sharing (UNOS). The OPTN 

is responsible for the allocation of organs for transplantation in the United States and for 

maintaining a national database of transplant data. The UNOS-OPTN database contains 

information on organ donors, transplant recipients, and organs that have been transplanted in the 

United States. The data includes information on the characteristics of the donors and recipients, 

the organs that were transplanted, and the outcomes of the transplants (UNOS-KIDPAN, 2022). 

 

The UNOS-OPTN database is often used for research purposes, such as studying trends in organ 

transplantation and identifying factors that may affect transplant outcomes. The database is 

available for download to researchers who have obtained the necessary approvals. The OPTN 

repository contains several datasets concerning various organ transplants collected from patients 

and donors since 1987. The UNOS-KIDPAN is a dataset that contains data on kidney and pancreas 

transplant recipients in the United States.  

 

The dataset was developed by the United Network for Organ Sharing (UNOS) and is maintained 

by the Scientific Registry of Transplant Recipients (SRTR). The data includes information on the 

characteristics of the transplant recipients, the donors, and the transplanted kidneys and pancreas, 

as well as outcomes such as graft survival and patient survival. The UNOS-KIDPAN dataset is 

often used for research purposes, such as studying trends in kidney and pancreas transplantations 

and identifying factors that may affect transplant outcomes (UNOS-KIDPAN, 2022).  

 

In this study, we employ the kidney-pancreas (KIDPAN) data as of July 2022 which consists of 

patients hospitalized recurrently due to the failure of a kidney (KGRFT) or pancreas graft (PGRFT) 

after receiving an organ transplant. Among 97,050 patients who experienced graft failure at most 

four times, 60% are right-censored. We considered the duration (in years) until the graft failure as 

the survival time, and an individual is right-censored when death occurs. We selected 100 features 

related to demographics, clinical tests, physical measurements, medication, and mortality 

information for both patients and donors. Figure 9.3 gives the events' status distribution across the 

time stamps, and the overall event distribution based on graft survival.  
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Figure 9.4 displays the relationship between antigen counts for both patients and donors and the 

overall graft survival. We can notice that the durability of the graft is improving with low antigen 

counts for both patients and donors,i.e., patients with low counts for the specified antigen types, 

who received the organ from corresponding donors also with low counts for the specified antigen 

types have higher graft survival. Figure 9.5 gives the summary distribution of graft survival based 

on immunosuppressive disorders statuses, i.e., diabetes and HIV serostatus. For further 

descriptions of the data concerning some covariates and graft survival-time relationships, see the 

Appendix 1. 
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Figure 9.3. Graft survival and event status distribution across the time stamps 
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From Figure 9.3, we can track the overall trend of graft failure for the patients who received both 

kidney and pancreas transplants. The orange curve ‘2’ represents pancreas transplant patients, the 

red curve ‘0’ represents kidney transplant patients, and the blue curve ‘1’ represents censored 

patients. Most patients experience failure at the early stage after the transplant. Graft failure due 

to a pancreas transplant is more frequent at the earlier stage compared to a kidney transplant. This 

is observed through the sharp slope of survival curve 2 (orange color).  After year 10 most patients 

are readmitted due to kidney graft issues compared to pancreas graft failure. We also notice rapid 

fluctuation at the early stage after the pancreas transplant. There is a declining trend in the number 

of patients as shown in the bar plot, which makes the survival process unstable across time stamps. 

More patents are censored compared to events at every time step, which is the case since we have 

60% of censorship. 
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Figure 9.4. Graft survival based on donors’ physical characteristics 
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Figure 9.5. Graft survival based on patient’s-donors antigen counts 
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Figure 9.4 gives the relationship between overall graft survival and the donor’s physical 

characteristics. We select the donor’s physical measurements such as weight in kilograms, height 

in centimeters, age in years, and BMI. We observe some interesting patterns concerning graft 

survival and the selected physical features. We can identify the inverse relationship between graft 

survival and the donor’s physical measurements. Also, we notice the rapid fluctuation in graft 

survival concerning the selected physical characteristics. 

 

We observe an interesting relationship between the selected antigen types and graft survival from 

Figure 9.5. We compute and plot the antigen counts for both donors and patients against graft 

survival. The top plot in Figure 9.5 is related to the selected antigen from donors, and the bottom 

plot is for patients. In both plots, we notice an improvement in graft performance with low levels 

of antigen counts. These features and the related ones may be good predictors for our black-box 

model.   



 

76 
 

 

 

 

 

Figure 9.6. Graft survival based on patient’s diabetes and HIV serostatus 
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The relationship between graft survival and patients' immune suppression statuses can be derived 

from Figure 9.6. The top diagram is the bar plot of event status against the average graft survival 

embedded with the patient’s diabetes history. Diabetes history is interpreted as the number of years 

after diagnosis. There is an unusual outcome for patients with 10 years history of diabetes with 

graft survival. We would expect poor graft performance for this category of patients since diabetic 

individuals are at high risk for graft failure after transplant (Lin et al., 2021). On the other hand, 

the distribution of patients across the event status based on diabetes history and average graft 

survival seems to be fairly uniform.  

 

The bottom subplot displays the relationship between the overall graft survival time and patients’ 

HIV serostatus. From this plot, we can observe the general overview of graft performance taking 

into account the recipient's HIV serostatus. Among the patients who experience graft failure in the 

first 15 years after transplants, most have category ‘0’ HIV serostatus followed by category ‘2’, 

‘1’, and ‘4’. Patients with category ‘3’ HIV serostatus constitute less proportion across the 

observation period. The overall graft survival declines with time since the transplant as indicated 

by more failures, especially after year 10. 

 

9.3 The MIMIC-III Clinical Dataset 

Medical Information Mart for Intensive Care (MIMIC-III) is a popular database that comprises 

anonymized clinical data for patients admitted to the Beth Israel Deaconess Medical Center in 

Boston, Massachusetts (Johnson et al., 2016). The dataset includes information on patient 

demographics, diagnoses, vital signs, medications, laboratory tests, and other types of clinical data.  

 

The MIMIC-III dataset is often used for research purposes, such as studying trends in patient care 

and outcomes in the ICU and identifying factors that may affect patient outcomes. The MIMIC-

III dataset is widely used in the field of healthcare and has been used in many research studies and 

publications. MIMIC-III database associated with both adults i.e., patients over 16 years old, and 

neonates (newborns) admitted to the critical care units over a specified duration.  

 

The critical care units feature the Coronary Care Unit (CCU), Cardiac Surgery Recovery Unit 

(CSRU), Medical Intensive Care Unit (MICU), Surgical Intensive Care Unit (SICU), and Trauma 
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Surgical Intensive Care Unit (TSICU). Over 53,423 adult patients were admitted to the critical 

care units between 2001 and 2012, and 7838 neonates were admitted between 2001 and 2008 

(Johnson et al., 2016).  

 

The MIMIC-III database consists of data collected during the normal routine of hospital operations 

i.e., data were downloaded from different sources including the hospital’s EHR databases, archives 

from the critical care intensive system, and social security administration health master file 

(Johnson et al., 2016). 

 

The datasets comprise various classes including patient descriptions such as demographic 

information; interventions, which include procedures such as dialysis and imaging studies, 

laboratory measurements such as hematology and blood chemistry, medications, free textual data 

such as hospital discharge summaries, electrocardiogram reports, and progress notes, 

physiological information such as verified vital signs. Figure 9.7 shows the flow chart of the 

MIMIC-III database (Johnson et al, 2016).  

 

The usage of the MIMIC-III dataset is waived from the patient’s consent since there was no 

medical care impact and all sensitive health information related to the patients was de-identified. 

In this study, we employ the MIMIC-III data to predict the ICU stay duration (in days) for patients 

admitted multiple times to the ICU due to various health issues. For our study, we derived 46,520 

patients recurrently admitted to the Intensive Care Unit (ICU) due to multiple risks. We focus on 

patients who were readmitted to the ICU at most five times due to several heart problems or other 

risks.  

 

A subject is right censored when death occurs. Fifty-one features related to the patient's 

demographic records, mortality, laboratory test results and medication were derived. Out of 25,744 

patients admitted to the ICU at most five times, 22,600 developed heart conditions or other risks, 

and 3,144 were censored. For simplicity, we generated two groups of subjects based on heart 

conditions and other health issues. We also introduced a total of 49 binary covariates to account 

for noise and redundancy information following the same procedure outlined in Section 9.1 

 



 

79 
 

Figure 9.8 displays a detailed summary of the event status across time stamps and patient 

distribution based on admission status, risks, and hospital death. Figure 9.9 shows that the patient's 

ICU readmission frequency is directly proportional to the length of stay in the hospital (LOS). In 

addition, we obtain the relationship between a patient’s blood chemistry and length of stay in the 

ICU. Figure 9.9 shows patient distribution based on the top 25 heart issues, hospital death, and 

gender while Figure 9.10 displays event distribution based on patient demographic information, 

length of ICU and hospital stay, and mortality. In addition, we obtain the patient’s heart-rate pattern 

based on blood pressure in Figure 9.11. For further descriptions of the data concerning some 

covariates-survival relationships see the Appendix 1. 

 

Figure 9.7 displays the MIMIC-III data flow. Patient records are collected across different ICU 

centers and external sources into a single archive. For the protection of human subjects, the concept 

of privacy is contained by de-identification and date shifting before channeling the data into a 

public database. The users are allowed access to the database upon special request. For 

improvement, users can provide feedback, such as corrections, which is channeled back to the 

central archive.  
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                                               Figure 9.7. The MIMIC-III database flowchart  
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Figure 9.8. Distribution of heart conditions and overall event status across the time stamps 
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The top plot in Figure 9.8 shows the distribution of the event’s status along the time steps. Since 

the classes are quite imbalanced within and between the time steps, we expect some challenges, 

especially when using classical approach predictive modeling. Most patients are admitted to the 

ICU due to heart conditions compared to other risks. The number of subjects declines with the 

frequency of ICU readmission. The bottom plot in Figure 9.8  gives the overall patient distribution 

based on hospital admission status, different heart issues, and hospital death. More than 80% of 

patients who suffered multiple heart problems are in-patients, while less proportion of the data is 

out-patient subjects.  
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Figure 9.9. Patients distribution based on the ICU stay duration, LOS, and laboratory results  
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The top plot in Figure 9.9 displays patients' laboratory results in terms of cell counts concerning 

the number of days spent in the ICU. Except for patients who stay about five days in the ICU, 

patients with a large number of cell counts spent less time in the ICU compared to those with 

diminished cell counts. In our study, we consider patients who stayed at most 30 days in the ICU 

due to extremely missing covariates information.  

 

The bottom plot in Figure 9.9 gives an overview of patient distribution based on the length of stays 

in the hospital and the ICU after the exclusion of censored individuals. The color of the bubbles 

represents the length of ICU stay, while the bubble’s size represents the hospital staying duration. 

The longer the patient stays at the hospital, the higher the frequency of ICU readmission. 
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Figure 9.10. Patient distribution based on the top 25 heart issues, event status and gender 
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Figure 9.10 gives a detailed description of the patient's distribution based on different heart 

conditions concerning demographic factors. The top plot shows the overall distribution of patients 

over each category for events only. Most patients are admitted to the ICU due to left ventricular 

malfunction and myocardial infarction. We can also observe multiple heart issues in a patient, 

which occurred most likely after heart surgery. The bottom plot shows a detailed description by 

considering mortality and gender factors. The number of hospital deaths due to different heart 

issues is fairly distributed between male and female subjects.  
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Figure 9.11. Patient distribution based on event status, blood pressure, ICU stay duration, LOS, 

and demographics features  
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The top diagram in Figure 9.11 is the pivot table which displays information concerning patients' 

ethnic group, age at the admission stage, length of stay in the ICU (LOS-ICU), length of stay in 

the hospital (LOS-hospital), hospital mortality, and event status. From the table, we can see that 

all patients in the hospital were at least admitted to the ICU. Hospital mortality is higher for male 

patients compared to female patients. Older patients have higher ICU readmission frequency and 

hospital mortality.  

 

The bottom subplot shows the heart rate distribution based on the patient's blood pressure. A low 

heart rate is indicated by smaller dots, while large dots represent a high heart rate. From the plot, 

we can see that a low heart rate is associated with low blood pressure, while patients with high 

blood pressure have a faster heart rate. 

 

9.4. Data Preparation for a Machine Learning Task 

Data preparation is the process of cleaning, formatting, and organizing data in a way that makes it 

suitable for analysis and machine learning tasks. Data preparation involves a range of activities, 

such as gathering and collecting data from various sources, removing missing or corrupted data, 

formatting the data in a consistent way, and converting the data into a format that is suitable for 

the task at hand. Data preparation may also involve normalizing or standardizing the data, selecting 

and constructing relevant features from the raw data, and splitting the data into training and test 

sets (Talend, 2022). 

 

Data preparation is an essential step in the machine-learning process, as it can significantly affect 

the efficiency and accuracy of the trained algorithm. In practice, we can categorize data into two 

main groups including structured and unstructured data. Structured data is well organized and 

specified information usually stored in a predefined format, while unstructured data involves a 

mixture of information that exists in its raw forms. Examples of structured data include the 

relational database, where data are formatted into precisely defined fields, while unstructured data 

are more qualitative rather than quantitative and include information such as texts, charts, images, 

or sensor data (Li et al., 2022).  
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Structured data are easy to use and allow access to a wide variety of analytics tools, while 

unstructured data are complex to use and require experts on limited analytic tools. Since structured 

data are predefined, they are limited in use and storage options, while unstructured data are format 

free and can be accumulated at a faster rate (Talend, 2022). Data preprocessing is a crucial step in 

any data science project in order to draw essential insights and build relevant predictors or 

classifiers. In practice, machine learning algorithms require data to be in a particular format and 

shape.  

 

For better and more efficient performance of an algorithm, we require data that is valid, clean, rich 

in features, and compatible to achieve the desired goal for a given task. Data preparation involves 

dealing with missing or incomplete information, improper data value format, extreme information 

which can either be outliers or anomalies, inconsistency and unstandardized categories, and sparse 

attributes that occur mainly due to fuzzy matching and feature engineering techniques.  

 

Although data preprocessing procedures are unique to the data types, algorithm, and desired goal 

for the project there exist common steps for any machine learning project including data cleaning, 

feature selections, data augmentation, feature engineering, data transformation, and dimensionality 

reduction (Kernbach et al., 2022). 

 

In order to estimate the performance of a machine learning algorithm, data splitting is an essential 

routine. For proper generalization, an algorithm not only requires training on a sufficient dataset 

but also needs to perform well on unseen future data. Generally, for a machine learning project, it 

is advised to at least retain a small portion of data to assess the generalization of a learned 

algorithm. Before deployment of the machine learning algorithm, it is essential to follow the 

training, validation, and testing pipelines. 

 

Since machine learning algorithms are data-driven techniques, especially during training, it is 

crucial to employ a proper data-splitting technique to maximize the overall performance and 

generalization of the learned algorithm. There are several techniques widely applied in practice to 

split the data into train, validation, and test sets. When we have enough data the commonly used 
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procedure involves the (70-30) or (80-20) or (90-10) percentage splits for the train and test sets, 

while some proportion of the training data may be retained for validation purposes. 

 

The training dataset is used to train the machine learning algorithm. Usually, the performance of 

the model on the training data may be almost perfect, and it is not advisable to evaluate the machine 

learning algorithm relying on the training set because it may simply be a memorization. The 

validation dataset is used to evaluate the model concurrently during training. For optimization 

purposes, the validation data plays a crucial role in assisting the tuning of the model’s hyper-

parameters (Talend, 2022). We employ the testing dataset to evaluate the learned algorithm on the 

unseen examples before sending it to production.  

 

In practice, for some domains, due to the nature of the problem, we may encounter a limited 

dataset. For such a scenario, we cannot afford to withhold the data following the above splitting 

technique because we would want to utilize every limited example available for training purposes. 

Possible solutions may involve restriction to machine learning algorithms that are not prone to 

overfitting such as support vector machine (SVM) or using cross-validation techniques. The 

common problem encountered in a machine learning project is overfitting or underfitting the 

learned algorithm (Kernbach & Staartjes , 2022).  

 

Underfitting is a problem in machine learning that occurs when a model is too simple and is unable 

to capture the underlying structure of the data. This can lead to poor performance on the training 

data and poor generalization to new, unseen data (Kernbach & Staartjes, 2022). Underfitting is 

often caused by using a model that is too simple or by not providing the model with enough training 

data. It can also be caused by using poor quality or irrelevant features, or by not properly tuning 

the model’s hyperparameters. 

 

Generally, under this circumstance the performance of the model on the training data is 

unsatisfactory. To address underfitting, we may need to use a more complex model, provide the 

model with more training data, or use more relevant or higher-quality features. We may also need 

to tune the model's hyperparameters to find the best balance between complexity and fit the data. 
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It is necessary to leverage the dataset to perform hyperparameters’ tuning using techniques such 

as cross-validation (Kernbach & Staartjes, 2022). 

 

Overfitting is often caused by using a model that is too complex or by using a large number of 

features, relative to the amount of training data. It can also be caused by using irrelevant features’ 

matrix, or by not properly tuning the model's hyperparameters. To address overfitting, we may 

need to use a simpler model, use fewer features, or use regularization techniques to constrain the 

model's complexity. We may also need to optimize the model's hyperparameters to find the best 

balance between the complexity and fit of the model. Figure 9.12 gives an overview of underfitting 

and overfitting a machine learning algorithm. 

 

 

 

 

Figure 9.12. Overfit, underfit, and the optimal fit of a learning algorithm (Rathod, n.d)  

 

The best way to deal with the overfitting and underfitting problems is by employing model 

selection techniques such as cross-validation. Cross-validation is a statistical concept used by 

machine learning practitioners to optimize the performance of the model, especially when we 

encounter limited data.  

 

This technique involves partitioning the data into several groups referred to as folds. The idea 

behind cross-validation is to run the analysis on each fold iteratively and take the average to obtain 

the final results. There are several forms of cross-validation techniques including K-folds cross-
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validation, stratified K-folds cross-validation, leave-n-out (LNO), and leave-one-out (LOO) cross-

validation (Brownlee, 2022). 

 

The following steps elaborate the idea behind the K-folds cross-validation: - Randomly, split the 

dataset into K subsets (samples also called folds), train the model on the first K-1 folds, and 

evaluate the performance of each model using the remaining fold, iteratively repeat the process 

and take the average performance across the folds (Brownlee, 2022).  

 

This procedure may reduce bias in the resulting model since every example has a chance of 

appearing in the train and validation set. When we have a class imbalance issue for a classification 

task the K-folds cross-validation may not suffice. This is because some folds may contain data of 

similar class only which lead to bias in the final model.  

 

To address this issue, we stratify the data accordingly to ensure the appropriate proportion of 

examples of each class within a fold. The K-folds cross-validation after stratification is called 

stratified K-folds cross-validation. Figure 9.13 displays the conceptualization of the K-folds cross-

validation. 
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Figure 9.13. The K-folds cross-validation (How to Implement K Fold Cross-Validation in 

Scikit-Learn, n.d.) 

 

The leave-n-out cross-validation (LNO) involves an iteratively random selection of ’n’ examples 

from the dataset of size N. For all possible combinations of ’n’ examples at every iteration, we 

train the model on ’N-n’ data points and use the remaining ’n’  to evaluate the model (Buintick et 

al., 2013).  

 

The most simplified version of LNO is the leave-one-out (LOT) cross-validation where ’n’ is set 

to one, which results in N number of combinations for the dataset of size N. Since our model is 

complex and we have enough data, we employ the hold-out data splitting technique by considering 

the ratio of 80:20 train-test split (Buintick et al., 2013).  
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9.5. Preparation of Survival Data for the RNN Model 

Consider the sequence of length {��}���
�  , where � is the length of the sequence. The RNN model 

receives the input of shape [�,�,�], where � is the batch size (total number of examples supplied 

at the time �), � is the length of the sequence, and � is the number of features (Paszke et al., 2019). 

Refers to our complex survival problem in Section 3.2 we have the dataset of form  

 

���
�,��

�,��
�,��

��
���

�
.  

 

Using the sequence of covariates {��}, we are required to produce the survival distribution and the 

risks-specific outcomes as output. The sequence length for our case corresponds to the number of 

recurrent (time stamps). For cost computation, both {�� ��� ��} are supplied with the aid of an 

indicator function {��} as a mask. 

 

In our study, we have the input of shape [� = 30,000,� = 5,� = 61], for the case of the synthetic 

dataset, [� = 25,744,� = 5,� = 100], for the case of the MIMIC-III clinical dataset, and         

[� = 97,050,� = 4,� = 100], for the UNOS-OPTN dataset. We use the ratio of 80:20 to split the 

data into training and testing sets. Further, we keep 20% of the training data as a validation set. 

 

Since this project is implemented in PyTorch with the PyTorchLightining framework, we utilized 

PyTorch Dataset and DataLoader classes to customize our data into the proper format. PyTorch’s 

Dataset and DataLoader are utilities for loading and manipulating data in PyTorch.  

 

A Dataset is a class that represents a dataset and defines how to access the data. It should inherit 

from the base ‘torch.utils.data.Dataset’ class and implement two methods: ‘__len__ ‘and 

‘__getitem__’. The ‘__len__’ method should return the number of samples in the dataset, and 

the ‘__getitem__’ method should return a sample at a given index.  

 

A DataLoader is a utility that loads data in parallel from a dataset object. It takes in several 

arguments, including the dataset object, a batch size, and whether or not to shuffle the data. The 
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batch size determines the number of samples per batch, and shuffling the data means that the order 

of the samples will be randomized each time the data is loaded.  

 

One of the main advantages of using DataLoader is that it allows loading data in parallel using 

multiple workers. In summary, a Dataset is a class that represents a dataset, it defines how to 

access the data, it should be inherited from the base ‘torch.utils.data.Dataset’ class and 

implement two methods ‘__len__’ and ‘__getitem__’. DataLoader is a utility that loads data 

in parallel from a dataset object, it allows loading data in parallel using multiple workers which 

can speed up the data loading process, especially when working with large datasets (Paszke et al., 

2019). 
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10. TRAINING PROCEDURES 

For experimentation, the dataset is preprocessed by scaling all numeric features and creating the 

embedding for categorical variables.  Following the work of Rietschel et al. (2018) and Lee & 

Carlin(2012), we added a total of 49 synthetic binary covariates to the MIMIC-III clinical and the 

simulated datasets to demonstrate the power of the external autoencoder.  

 

We appropriately organized the data and obtained a split of 80% to 20% for the training and testing 

sets. Further, we consider 20% of the training set as the validation set. We implement our model 

by exploring RNN, GRU, and LSTM architectures with two layers and a hidden size set as a 

hyperparameter ranging from (32 to 128).  

 

We leveraged batch normalization and dropout layers as regularizers. The attention mechanism 

and risk-specific subnetworks consist of a simple fully connected feedforward network with a 

softmax output. The hidden size and the number of layers for the external autoencoder are 

hyperparameters optimized directly by the network.  

 

We employ Adam optimizer and leverage the ReduceLROnPlateau (Paszke et al., 2019) learning 

rate scheduler from Pytorch with a factor of 0.1, threshold of ���, and minimum decay of ���. 

We trained our model via backpropagation with the gradient clipping threshold of 1.5, and (��,��) 

for the ranking, loss is set as hyperparameters. 

 

We perform hyperparameter tuning through a simple exhaustive grid search (Bergstra et al., 2012).  

 

10.1. Batch Normalization and Dropout 

Batch normalization and dropout are two techniques used in deep learning to improve the 

performance and stability of neural networks. Batch normalization is a technique that normalizes 

the activations of a layer in a neural network across a batch of data. This helps to reduce the internal 

covariate shift, which occurs when the distribution of the input data to a layer changes during 

training (Ioffe et al., 2015; Srivastava et al., 2014).  
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By normalizing the activations, batch normalization helps to stabilize the training process and 

make it more efficient. Dropout is a technique that randomly drops out a certain percentage of the 

weights in a layer during training.  

 

This helps to prevent overfitting, which happens if the algorithm is too complex and starts to 

memorize the training data rather than generalize to new examples. Dropout acts as a form of 

regularization by forcing the algorithm to learn multiple independent manifolds, rather than relying 

on a few specific neurons.  

 

Batch normalization is typically used after the activation function in a layer, and dropout is 

typically used after the linear transformation in a layer. Both techniques are typically used when 

training the network and are switched off during the evaluation and testing stages. In summary, 

Batch normalization standardizes the activations of a layer in a neural network across a batch of 

data, it helps to reduce the variances and stabilize the training process.  

 

10.2. ReduceLROnPlateau 

In machine learning, the learning rate is a hyperparameter that determines how quickly the model 

learns the underlying patterns in the training data. The learning rate is used during the optimization 

process of training a model, where the goal is to minimize the error between the predicted outcome 

and the actual output (Erizmann, 2021).  

 

The learning rate is typically set at the beginning of training and can significantly affect the 

performance of the network. A common technique for selecting a learning rate is to try out different 

values and pick the best result on a validation set. In our study, we experimented with different 

learning rates by leveraging the ReduceLROnPlateau learning rate scheduler (Paszke et al., 2019). 

 

ReduceLROnPlateau is a method for dynamically reducing the learning rate in an algorithm during 

training. It is typically used as a callback function in the training process. The method monitors a 

chosen metric, such as the validation loss, and if the metric does not improve for a certain number 
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of epochs, the learning rate is reduced by a specified factor. This allows the model to converge 

faster and reach a better local minimum. 

 

10.3. Hyperparameter Optimization 

Hyperparameter tuning involves procedures of finding the best set of hyperparameters for an AI 

algorithm, in order to achieve the best results for the task at hand. Since we can not leverage the 

data to directly optimize the network hyperparameters, careful choice and assessment of their 

values are usually applied during the evaluation stage (Goodfellow et al., 2016).  

 

There are several techniques for hyperparameter optimization, some of which include: 

 

● Grid search: This is a hyperparameter tuning technique in machine learning where a set of 

hyperparameters for a given model is defined, and a search is conducted over all possible 

combinations of these hyperparameters (Erizmann, 2021). 

● Random search: This method involves randomly sampling hyperparameter values from a 

predefined range (Lee et al., 2018).  

● Bayesian optimization: This is a probabilistic approach that uses a model of the objective 

function to guide the search for the optimal hyperparameters. It balances exploration and 

exploitation by using a probabilistic model to predict the expected improvement in the 

objective function for each set of hyperparameters (Lee et al., 2018). 

● Genetic algorithms: This algorithm begins by creating an initial population of random 

hyperparameters. Each set of hyperparameters is evaluated using a performance metric like 

accuracy or loss, and a fitness score is assigned to it. The algorithm then selects the fittest 

individuals from the population and performs genetic operations like crossover and 

mutation to create a new generation of potential solutions. This process is repeated for 

multiple generations until the algorithm converges to the optimal set of hyperparameters 

(Xiao et al., 2020). 

 

These are some of the most used methods to optimize the hyperparameters of a model, however, 

other methods can also be used without limitations. As mentioned above, we employ the Grid 

search technique with a window of (32 to 128) for the hidden size of RNN, LSTM, and GRU, (1 
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to 3) for the number of layers of the external autoencoder, and (0 to 1) for the hyperparameters 

associated with the ranking loss (��) and autoencoder loss (��). 

 

For simplicity, we set �� = �� = �� = 1 in �� = ���� + ���� + ���� . 

 

We leverage the Test Tube library from PyTorch for hyperparameters tuning. Test Tube is a Python 

library for managing machine learning experiments. It can be used for hyperparameter tuning by 

specifying the hyperparameters to be tuned, the search space for each hyperparameter and a 

performance metric to evaluate the model. 

 

TestTube also allows you to define the optimization algorithm to be used for tuning, such as grid 

search, random search, or Bayesian optimization. It also provides a way to track the experiments, 

save the results and load previous experiments. It also allows users to use different backends such 

as MongoDB, SQLAlchemy, etc to store the experiment results, which can be helpful if you have 

a large number of experiments.  

 

Users can also specify the resources (such as GPU, CPU) that are required for the experiment to 

run, and TestTube will automatically match the resources to the available hardware. TestTube also 

provides a way to visualize the results of the experiments, such as plotting the performance metric 

over time or comparing the performance of different runs of the experiment (Paszke et al., 2019). 

 

10.4. Optimizer Selection 

When training an AI system, the goal is to find the optimal set of model parameters that can 

accurately predict the outcomes. However, finding the optimal parameters is a complex and 

iterative procedure that requires adjusting the model parameters in a systematic way to improve 

its performance. Optimizers are used to automate this process by iteratively updating the network 

parameters based on the feedback received from the training data. They work by estimating the 

slopes of the loss function concerning the model parameters and then making the adjustment in 

the direction that reduces the loss (Ghorbani et al., 2019).  
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In practice, some commonly used optimizers include: 

 

● Stochastic Gradient Descent (SGD): SGD is an optimization algorithm commonly used in 

machine learning for training models that involve large amounts of data. It is a variant of 

the gradient descent algorithm that updates the model parameters based on a randomly 

selected subset of the training data, rather than the entire dataset (Goodfellow et al., 2016). 

● Adam: This is an extension of the gradient descent algorithm that includes adaptive 

learning rates for each weight in the neural network, allowing the learning rate to adapt to 

the characteristics of the gradients observed during training. This adaptive learning rate 

reduces the risk of getting stuck in local minima and accelerates the convergence of the 

algorithm (Kingma et al., 2014).  

● RMSprop: This optimizer also adapts the learning rate of each parameter based on 

historical gradient information, but it uses a moving average of the squared gradient instead 

of the gradient itself (Tieleman & Hinton, 2012). 

● Adagrad: This optimizer also adapts the learning rate of each parameter, but it uses a 

different approach. It uses a per-parameter learning rate that is inversely proportional to 

the historical gradient information (Lydia et al., 2019). 

● L-BFGS: This is a Quasi-Newton method optimizer that computes the Hessian matrix of 

the loss function and uses it to update the model's parameters. It's computationally 

expensive but often converges faster than other optimizers. 

 

It is a common procedure to try different optimizers and select the one that gives the best results 

in the validation set. For our study, we employed an Adam optimizer.  

 

The training process for an AI model typically involves the following steps (Goodfellow et al., 

2016): 

● Collect and prepare the data: This involves gathering a dataset that is representative of the 

problem you are trying to solve and cleaning or preprocessing the data to ensure it is in a 

format that can be used to train the model. 

● Split the data into training and testing sets: The dataset is usually split into two sets, one 

for training the model and one for evaluating its performance. 
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● Define the model architecture: This step involves deciding on the specific type of model to 

use (e.g. a neural network) and defining its computational graph. 

● Train the algorithm: During the training process, the model is exposed to a dataset 

containing input data and corresponding output values, and it uses this data to adjust its 

internal parameters to optimize its predictions or decisions. The goal of training is to find 

the optimal set of parameters that minimizes the difference between the model's predictions 

and the true output values for the training data. 

● Evaluate the model: The trained model is then evaluated on the test data to measure its 

performance and identify any issues that need to be addressed. 

● Fine-tune the model: This is an iterative process that involves changing the values of the 

hyperparameters, training the model, and evaluating its performance on a validation set. 

The hyperparameters that lead to the best performance on the validation set are then 

selected as the final settings for the model. 

●  Deploy the model: The deployment process involves several steps, including converting 

the trained model to a format that can be used by the deployment platform, optimizing the 

model for efficient inference on the target hardware, and setting up a scalable and secure 

infrastructure for serving the model. 

 

Following the above steps, we trained our model with and without an external autoencoder. We 

selected the Fine-Gray model (Fine & Gray, 1999), the DeepHit (Lee et al., 2018), the random 

survival forest (RSF) (Ishwaran et al., 2014), CRESA (Gupta et al., 2019), and DeepSurv 

(Katzman et al., 2018) as benchmarks.  

 

We trained the Fine-Gray and the RSF models for all time steps using the cmprsk (Gray & Gray, 

2014) and randomForestSRC (Ishwaran et al., 2023) packages in �. We trained the DeepHit and 

CRESA following the work of (Gupta et al., 2019). 

10.5. Results and Discussion 

Using the validation dataset, we perform 20 trials for the hyperparameters optimization. Table 10.1 

shows the values of the optimal hyperparameters for the best model across the datasets and models. 
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Using the test dataset, we evaluate the performance of our model by computing the metric given 

in Equations 6.2.8 and 6.2.9 (Marthin & Tutkun, 2023). 

 

We obtain the C-index per risk across the timestamps and the Brier scores across the time stamps. 

Table 10.1 displays the optimal values of hyperparameters obtained through the grid search. For 

CmpXRnnSurv_AE trained on MIMIC-III clinical dataset, the optimal hyperparameters are 64 

units for the LSTM hidden size, two hidden layers for the external autoencoder, and 37 neurons 

for the autoencoders' hidden size.  

 

The optimal ranking loss parameters �� = �� is 0.358, the optimal sparsity and decaying rate 

parameters for the autoencoders' loss are � = 0.0046 and � = 0.0925, the best validation loss is 

0.4193, and the learning rate is 0.0001. Without an external autoencoder (CmpXrnnSurv) trained 

on the MIMIC-III dataset has optimal hyperparameters of 0.001 for learning rate, 128 units for 

LSTM hidden size, 0.510 for ranking loss parameters, and best validation loss of 0.6905. We can 

draw analogous explanations across UNOS-OPTN(KIDPAN) and the synthetic datasets. 

 

 

Table 10.1. Optimal Hyperparameters across datasets and models 
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Table 10.2. Model selection based on architecture performance 

 

 

 

Table 10.2 displays the summary results of the model’s evaluation on the testing dataset. We 

trained our network with and without an external autoencoder (CmpXRnnSurv_AE and 
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CmpXRnnSurv). For performance evaluation, we compute the weighted time-dependent 

concordance index and time-dependent Brier scores across the datasets.  

 

From Table 10.2, CmpXRnnSurv_AE and CmpXRNNSurv have the best performance when an 

LSTM architecture is employed. CmpXRnnSurv_AE reaches the best score of 92% for the Ct 

index and predicts discrepancy of 20% from the ground truth outcomes for the UNOS-

OPTN(KIDPAN) dataset. Across the datasets, except for the synthetic dataset, we observe the 

better performance of the GRU architecture. 

 

Since our model under the LSTM architecture slightly provided better predictions, we present its 

summary results across the datasets and models in Tables 10.3 and 10.4 respectively. As seen in 

Tables 10.3 and 10.4, the CmpXRnnSurv-AE outperformed the benchmark models across all 

datasets except for the first time stamp (Marthin & Tutkun, 2023). 

 

We can notice that the CmpXRnnSurv-AE attains the highest performance when trained on 

UNOS-OPTN (KIDPAN) dataset with a C-index up to 0.92 and a Brier score of 0.2036, while the 

RSF has the lowest performance with a C-index of 0.43 and a Brier score of 0.9330. These results 

were due to the noise invariant provided by the external autoencoder, information transfers through 

the residual connection, and the ability to handle the complex correlation structure by computing 

the WCIF.  

 

Without an external autoencoder, our model (CmpXRnnSurv) still gives better results, especially 

on the MIMIC III and the synthetic datasets, while CRESA demonstrated competitive performance 

for the UNOS-OPTN(KIDPAN) dataset. This performance highlighted the ability of our model to 

handle data complexity by using the RIW to obtain the WCIF instead of the basic CIF. The Fine-

Gray and the DeepHit models provide better performance only at the first time-step due to the 

inability to handle noise and complex correlational structure in the data. The RSF gives the worst 

performance across all datasets. In Appendices 1G, 1H, and 1I we provide the predicted WCIF 

and WOS for the selected subjects. 
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               Table 10.3. The weighted time dependent concordance indices  
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Table 10.4. The weighted time dependent Brier scores  
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11. CONCLUSION AND FUTURE OUTLOOK 

We developed a novel deep learning model termed CmpXRnnSurv-AE for the complex survival 

problem. To the best of the author’s knowledge, this is the second work on a deep-learning 

approach to recurrent events with competing risks. Using the external autoencoder, we addressed 

the noise invariant problem in the complex survival data.  

 

By computing the weighted cumulative incidence function (WCIF), we managed the complex 

correlation structure in recurrent events with competing risk survival data. Since deep learning 

models are overparameterized and deterministic, the point estimates provided are unreliable for 

the predictions' uncertainty measurements.  

 

In addition, the RNN is subjective to temporal inconsistency. Temporal inconsistency in RNNs 

refers to the problem that the internal state of the RNN may not accurately reflect the information 

present in the input sequence up to the current time step, due to the fact that the state is updated as 

the sequence is processed. This can make it difficult for the RNN to accurately process long 

sequences or sequences with complex temporal dependencies. 

 

Historical Consistent Neural Networks (HCNN) is a type of neural network architecture that 

addresses the problem of temporal inconsistency in RNNs. In HCNN, the internal state of the 

network is updated only at specific time steps, determined by the input, rather than at every time 

step. This allows the network to maintain a consistent internal state that accurately reflects the 

information present in the input sequence up to the current time step, making it better suited to 

process long sequences or sequences with complex temporal dependencies (Rockefeller et al., 

2022).  

 

Bayesian approach is widely used in Machine Learning, especially in probabilistic models and in 

modeling uncertain and complex systems. The Bayesian framework is a mathematical framework 

for reasoning under uncertainty. It provides a way to reason about the probability of different 

hypotheses given some observed data. In the Bayesian framework, all unknown quantities 
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(parameters and/or hypotheses) are treated as random variables, and probability distributions are 

assigned to them.  

 

The key idea of Bayesian inference is to update the probability distribution of the unknown 

quantities, given the observed data, using Bayes' theorem. This process is called Bayesian updating 

or Bayesian inference. In the Bayesian framework, the prior knowledge is encoded into prior 

probability distributions, which combined with the likelihood of the data, lead to posterior 

probability distributions. The posterior probability distributions are then used to make predictions 

or inferences about the unknown quantities (He et al., 2023). 

 

In future work, we propose to apply the Historical Consistent Neural Networks (HCNN) in the 

Bayesian framework to quantify uncertainties in the model's predictions for the case of complex 

survival problems. 
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APPENDICES  

APPENDIX 1 -  Descriptions of the data concerning some covariates-survival relationships 

Appendix 1A: Graft survival based on patient's-donors age 
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Appendix 1B. Graft survival based on patient's-donors height 
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Appendix 1C. Graft survival based on patient’s-donors weight 
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Appendix 1D. Graft survival based on patient’s-donors BMI 
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Appendix 1E. Patient distribution based on event’s status, LOS, ICU-stay’s duration and 

laboratory measurements
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Appendix 1F.  Patients distribution based on ethnicity, LOS, laboratory results and event’s 

status 
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Appendix 1G.  WCIF and WOS predictions on the MIMIC-III dataset for the selected subjects. 
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Appendix 1H.  WCIF and WOS predictions on the UNOS-OPTN(KIDPAN) dataset for the 

selected subjects.  
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Appendix 1I.  WCIF and WOS predictions on the synthetic dataset for the selected subjects 
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