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ABSTRACT

NEURAL SEMANTIC PARSING, ANNOTATION AND EVALUATION
FOR TURKISH

NECVA BÖLÜCÜ

Doctor of Philosophy , Computer Engineering
Supervisor: Assoc. Prof. Dr. HARUN ARTUNER

2nd Supervisor: Assoc. Prof. Dr. BURCU CAN BUĞLALILAR
December 2022, 220 pages

Semantic representation is a way of expressing the meaning of a text that can be processed

by a machine to serve a particular natural language processing (NLP) task. Universal

Conceptual Cognitive Annotation (UCCA) is one such semantic representation form that

is both cognitively and linguistically inspired. UCCA represents the meaning of a text

with a directed acyclic graph (DAG) whose nodes can be either terminal or non-terminal

nodes, where terminal nodes correspond to tokens and multi-tokens in the text, non-terminal

nodes comprise several tokens that are jointly viewed as a single entity according to some

semantic or cognitive consideration, and edges indicate the role of a child in a relation. In

this thesis, there are three research paths within UCCA representation especially for Turkish

language: semantic parsing, data annotation, and evaluation of UCCA representation as

extrinsic evaluation in other NLP problems.

In the first part of the thesis, we present supervised deep learning-based parsing models,

which are transition and graph-based approaches, to better analyze the approaches for
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UCCA representation. We also present an unsupervised deep learning model that leverages

pre-trained language models (PLM) as an external knowledge source.

In the second part of the thesis, we present a Turkish UCCA-annotated dataset, that is built

using the proposed graph-based semantic parser in a semi-automatic pipeline.

Finally, we investigate using UCCA for other NLP tasks including Semantic Textual

Similarity (STS), text classification, and question answering (QA) as extrinsic evaluation

of UCCA representation. It is therefore reasonable to ask whether we can improve

the performance of NLP tasks by using semantic information in the form of UCCA

representation. In conclusion, the results show that semantic information in the form of

UCCA representation improves performance in NLP tasks, especially in tasks that require

more semantic information, such as QA.
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ÖZET

TÜRKÇE İÇİN NÖRAL SEMANTİK AYRIŞTIRMA, ETİKETLEME
VE DEĞERLENDİRME

NECVA BÖLÜCÜ

Doktora, Bilgisayar Mühendisliği
Danışman: Doç. Dr. Harun ARTUNER

Eş Danışman: Doç. Dr. Burcu Can BUĞLALILAR
Aralık 2022, 220 sayfa

Semantik gösterim, bir doğal dil işleme uygulamasında kullanılmak üzere verilen bir

metnin makine tarafından işlenebilecek şekilde anlamını ifade etmek için bir yöntem sağlar.

Hem bilişsel hem de dilsel temellere dayanarak tasarlanan Universal Conceptual Cognitive

Annotation (UCCA) bu semantik gösterimlerden sadece birisidir. UCCA’da bir metnin

anlamı döngüsüz çizge ile ifade edilmektedir ve çizgede düğümler terminal veya terminal

olmayan düğümlere ve kenarlar çocuk düğümün çizgedeki rolüne karşılık gelmektedir.

Terminal düğüm metindeki sözcük yada birden çok sözcüğe karşılık gelirken, terminal

olmayan düğüm semantik yada bilişsel değerlendirmelere göre tek bir birim olarak görülen

birkaç sözcüğe karşılık gelmektedir. Bu tezin, özellikle Türkçe UCCA gösterimi altında 3

odak noktası bulunmaktadır: semantik ayrıştırma, veri etiketleme ve UCCA gösteriminin

diğer NLP problemlerinde harici olarak kullanıp değerlendirilmesi.

Tezin ilk bölümünde, UCCA gösterimi için yaklaşımları daha iyi analiz edebilmek için,

denetimli derin öğrenme tabanlı ayrıştırma modellerinden geçiş ve çizge tabanlı yaklaşımlar
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açıklanmaktadır. Ayrıca, harici kaynak olarak önceden eğitilmiş dil modellerinden

yararlanan denetimsiz bir derin öğrenme modeli de tanıtılmaktadır.

Tezin ikinci bölümünde, yarı-özdevinimli olarak etiketlenmiş Türkçe UCCA veri kümesi

tanıtılmaktadır. Veri etiketleme esnasında çizge modelinden faydalanılmıştır.

Son olarak, tez UCCA gösteriminin harici olarak değerlendirilmesi amacıyla semantik

metinsel benzerlik, metin sınıflandırma ve soru cevaplama dahil olmak üzere diğer doğal

dil işleme problemlerinde kullanılmış ve sonuçlar tartışılmıştır. Burada temel soru,

UCCA gösteriminin semantik bilgi için kullanılmasının doğal dil işleme uygulamalarında

performası iyileştirip iyileştiremeyeceği yönündedir. Sonuç olarak, UCCA semantik

gösteriminin doğal dil işleme uygulamalarının, özellikle daha fazla semantik bilgi gerektiren

uygulamalarının performansını iyileştirdiği gözlenmiştir.

Keywords: UCCA, semantik gösterim, Türkçe, ayrıştırma, etiketleme, değerlendirme
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1. INTRODUCTION

Semantics is concerned with everything that is related to meaning. In linguistics, a distinction

is made between semantic representation and semantics, the former being more concerned

with relations between the text components; i.e., words, statements, etc. [14]. Semantic

representation is a way to transform the meaning of a natural language utterance so that it can

be understood by machines in much the same way that humans understand natural language.

With the increasing attention to semantic representation, a number of graph-based semantic

representation frameworks have been proposed, such as Abstract Meaning Representation

(AMR) [15], Elementary Dependency Structures (EDS) [16] and Universal Conceptual

Cognitive Annotation (UCCA) [17], Universal Decompositional Semantics (UDS) [18].

These semantic representations facilitate meaning to be pervasively used in a structured

form in Natural Language Processing (NLP) and Natural Language Understanding (NLU)

applications, such as text summarization [19–21], paraphrase detection [22], neural machine

translation (NMT) [23–25], question answering (QA) [26–28], and text simplification [29].

UCCA is such a graph-based semantic representation, that is based on cognitive theories [30]

and consists of multiple layers that allow abstracting from syntactic forms by representing

only semantic distinctions and treating syntax as a hidden layer in learning the mapping

between form and meaning. UCCA is represented as a directed acyclic graph (DAG) whose

edges are labeled with the UCCA categories (semantic relations) and whose nodes refer

to units that are either terminal or non-terminal nodes, where terminal nodes are tokens and

non-terminal nodes compromising several tokens that are jointly considered as a single entity

according to semantic or cognitive consideration. Moreover, UCCA is not based on English

grammar and, unlike other semantic annotations such as AMR, does not require syntactic

preprocessing for learning. AMR is also a well-studied semantic representation. However,

it requires PropBank [31] predicates as edges in the annotation. All of these properties

contribute to the choice of the UCCA representation as the focus of this thesis.

With annotated data, it becomes conceivable to train deep learning (DL) models to map the
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data in their UCCA representation. In the first part of this thesis, we develop algorithms

for learning to map natural language to UCCA using released UCCA datasets [1]. In order

to understand the unique properties of the UCCA formalism, that brings new challenges

to the parsing community, namely reentrancy, non-terminal nodes, implicit units, and

discontinuous units, we develop supervised and unsupervised algorithms to understand the

limitations of these models for the problem by using different approaches and comparing

the unsupervised model with 3 different parsing problems, namely constituency parsing,

dependency parsing, and semantic parsing. This thesis contributes in the form of novel

approaches to parsing and deep analyses of the models.

UCCA annotated datasets have been released so far for English, French, German, Russian,

and Hebrew. However, semantically annotated datasets in Turkish, a low-resource language

in this field, are very scarce. In the literature, only the AMR dataset exists as a semantic

dataset for Turkish [32]. The parsing models are applicable in a pipeline for the annotation

process of the datasets. In the second part of this thesis, we used one of the semantic

parsing models we developed to annotate a UCCA dataset for Turkish in a semi-automatic

annotation process. Since Turkish is an agglutinative language and has complex grammar

rules compared to other languages such as English and German, a detailed analysis of the

rules is required for annotation. Using the output of the parser model on the Turkish dataset,

we refine the discrepancies between the output of the parser model and the Turkish guideline.

The other contribution of the thesis is the released Turkish UCCA dataset. We believe that

this dataset will be a crucial resource for advancing the state of the art in semantic parsing in

Turkish and Turkish UCCA parsing in particular.

It is possible that UCCA significantly advances the state-of-the-art in NLP tasks because

UCCA captures relations between nodes and represents abstract semantic meaning. It can

be used as an intermediate representation in a variety of tasks that require semantic meaning,

such as semantic textual similarity (STS), QA, and sentiment analysis. In the third and final

part of the thesis, we develop semantic-aware models for various NLP problems and compare

the models using UCCA graphs with other semantic and syntactic representations for NLP
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problems. The contribution of the final part is semantic-aware models for NLP problems

with a deep analysis of the representations in the models.

1.1. Scope of the Thesis

UCCA has gained popularity because it is portable across domains and languages and covers

sentences or paragraphs with more than one sentence. The framework is also beneficial

in many NLP tasks, such as summarisation [33, 34] and QA [26, 35]. In addition, there

has been increasing popularity in developing semantic-aware models, that use semantic

representations to capture the abstract meaning of a sentence using long-distance semantic

information. Unfortunately, despite these benefits of the UCCA framework, there is still a

gap in semantic representations in Turkish.

In this thesis, the UCCA framework, which allows easy annotation without requiring

substantial linguistic knowledge, is explored in terms of parsing models, the annotation

process, and evaluation in other tasks, mainly for Turkish. The goal of this research is to

propose novel DL based semantic parsing models for the UCCA framework, focusing on

supervised and unsupervised methods. Moreover, the proposed semantic parser is used for

a semi-automatic pipeline for Turkish UCCA annotation, which will be a valuable resource

for NLP applications in Turkish. Finally, the UCCA framework is evaluated by using it as

external information in the DL models for various NLP problems.

To the best of our knowledge, there is no previous research that has introduced an

unsupervised parser model for UCCA parsing by comparing the model for different levels of

parsing from syntax to semantics. Moreover, there has been no UCCA dataset for Turkish

before. We claim that the dataset is of paramount importance for improving performance and

implementing high-quality systems. The studies dealing with NLP tasks have neglected to

thoroughly investigate the semantic representation to improve the performance of the models.

In addition to the datasets, this is the first attempt to develop semantic-aware DL models

using the UCCA framework for different NLP tasks and to compare semantic and syntactic

representations for these tasks.
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1.2. Main Contributions of the Thesis

In this thesis, we address the deficiencies in the literature for the UCCA framework.

We propose different parsing methods for the UCCA framework by applying different

approaches and supervised settings. Since there is no annotated Turkish UCCA dataset, we

apply one of the proposed methods to ease the annotation process. To address the semantic

information in NLP problems, we propose novel models that integrate the UCCA framework

into the input of the models. The main contributions of this thesis are as follows:

• We propose a graph-based and a transition-based approach to compare the approaches

on the UCCA framework. The graph-based approach is a self-attentive parser that

addresses the parsing problem in the form of chart-based constituency parsing. The

transition-based approach is an incremental parser where the transition set is updated

to cover the properties of the UCCA framework.

• By conducting an experimental analysis, we demonstrate the effectiveness of the

proposed graph-based approach compared to the incremental parser. We also

conducted the experiments in zero-shot and few-shot settings to understand the effect

of the size of the dataset, since the size of the dataset is smaller for some languages than

for others. We also applied single-lingual and cross-lingual experiments for in-depth

analysis in terms of the dataset.

• We also propose an unsupervised parser called the chart-based zero-shot parsing

model, which uses a pre-trained language model (PLM) and is the first attempt at

fully unsupervised UCCA parsing. We adopted the method for the constituency and

dependency parsing in addition to UCCA parsing to evaluate various parsing levels

using the same model and to understand the behavior of the model for different levels

of parsing from syntax to semantics.

• We propose a pipeline process for data annotation, where we use a parser method to

build the first UCCA dataset in Turkish. We define UCCA annotation rules, which are

not covered in the English UCCA guideline, in line with the Turkish syntax

4



• We propose a DL model for Semantic Textual Similarity (STS) using the UCCA

framework. Moreover, we used the results of the model to generate semantically

informed sentence embeddings that can be used in the downstream tasks.

• We use the semantic representation as input for text classification in different domains

and with different labels. We apply the AMR semantic framework and dependency

parsing to evaluate the limitations of the UCCA-based model.

• We also propose a semantic informed model for Question Answering (QA) by

incorporating deep semantic information and capturing long distance information.

1.3. Organization

The organization of the thesis is as follows:

• Chapter 1. gives a brief introduction to the problem, presents our motivation for the

next chapters, the main contributions, and the scope of the thesis.

• Chapter 2. provides background on relevant topics, including semantic representations,

UCCA framework, and semantic parsing approaches.

• Chapter 3. provides detailed background on Turkish grammar.

• Chapter 4. introduces the proposed semantic parser models. First, we introduce

the self-attentive parser, which is a graph-based approach. Then, we introduce the

incremental parser, which is a transition-based approach. Finally, we present an

unsupervised chart-based zero-shot parser, which is a fully unsupervised model. We

also present the experiments we performed on the released UCCA datasets for the

models and the Turkish UCCA dataset annotated in this thesis and analyse the results.

• Chapter 5. presents the complete annotation process and describes how an external

semantic parser has been used in the annotation of the UCCA framework. First, we

present the extracted rules for the Turkish grammar. Finally, the quality of the created

dataset is demonstrated by annotation agreement and annotation statistics.
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• Chapter 6. demonstrates the proposed models for the NLP problems STS, text

classification, and QA used in the extrinsic evaluation of UCCA, mainly for Turkish.

We also present the experiments we conducted for the proposed models, with detailed

experimental analyses to demonstrate the effectiveness of the proposed models.

• Section 7. concludes this study with a summary of the thesis and possible future work.
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2. BACKGROUND

2.1. Semantic Representations

Semantics is concerned with meaning defined by relations between words in a sentence.

Revealing semantic relations between words or a group of words in a sentence helps to

better understand natural languages, and this will eventually help in the development of

linguistically motivated semantic models in NLP applications. While semantics is the study

of the relations between the building blocks of a sentence (i.e., words or a group of words)

and their implicit meaning, semantic representation reflects the meaning of the text in a rather

structured form (e.g., graph-based or tree-based representation) [14].

Graphs have been receiving increasing attention in NLP in recent years due to their ability

to express and generate adequate target structures, especially for sentence-level syntactic

analysis and semantic representation of a text. The increasing popularity of graph-based

semantic representations has led to the proposal of various semantic representation

frameworks such as AMR [15], UCCA [17], bilexical Semantic Dependencies (SDP) [36],

UDS [18], and Parallel Meaning Bank (PMB) [37].

Kuhlmann and Oepen [38] define 3 types: Flavor(0), Flavor(1), and Flavor(2) for a formal

graph to distinguish graph-based semantic frameworks by specifying the form of anchoring

in graphs. If we sort the Flavors from the strongest to the weakest form of anchoring,

Flavor(0) indicates the strongest form of anchoring, where each node is directly linked

to a specific token. Flavor (1) is a more general form of an anchored semantic graph,

where there is a more relaxed anchoring that allows linkage between nodes and arbitrary

parts of the sentence, which may be a sub-token or multi-token sequence. This provides

flexibility in the representation of meaning. EDS [16] and UCCA [17] are categorized

in Flavor(1). UCCA defines semantic graphs with a multi-layer structure, where the

foundational layer of representation focuses on the integration of all surface tokens into

argument structure phenomena (e.g., verbal, nominal, adjectival). The terminal nodes of

a graph are anchored to possibly discontinuous sequences of surface substrings, whereas

7



the interior nodes of the graph are not. Finally, Flavor(2) indicates unanchored graphs where

there is no correspondence between nodes and tokens. AMR [15] is categorized in Flavor(2),

a sentence-level semantic representation framework that uses unanchored graphs where the

nodes represent concepts (predicate frames, special keywords, etc.) and the edges represent

semantic relations between them to avoid explicit mapping of graph elements to surface

utterances.

We give the details of the UCCA representation, which is the focus semantic representation

of this thesis.

2.2. Universal Conceptual Cognitive Annotation (UCCA)

UCCA is a semantic annotation scheme introduced by Abend and Rappoport [17] in

2013. It is a cross-linguistic annotation scheme for encoding semantic annotations

with a multi-layered framework in which each layer corresponds to a “module” of

semantic distinctions. The foundational layer of UCCA focuses on all grammatically

relevant information, including predicate-argument relations to predicates of all grammatical

categories.

We focus on the foundational layer of UCCA described in Abend and Rappoport [17, 39]

which focuses on grammatically relevant information. The aim of the representation is

to represent the main semantic phenomena in a text by abstracting from syntactic forms,

while maintaining low learning cost and rapid annotation by non-experts [14]. UCCA

is a cross-linguistic representation that has proven effective in several languages and is

a popular target framework that has been studied in multiple parsing tasks [1, 40]. The

effectiveness and efficiency in annotating and refining UCCA has been demonstrated in

several studies [41, 42].

UCCA is represented by a directed acyclic graph (DAG) whose leaves correspond to tokens

and multi-tokens in the text. The nodes of the graph are known as units, which are

either terminals or non-terminals. Multiple tokens correspond to a single entity based on

a particular semantic or cognitive consideration. The edges of a graph refer to the categories
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(a) The annotation of the sentence “John and Mary bought
two chairs together”

(b) The annotation of the sentence “The film we saw yesterday
was wonderful”

Figure 2.1 Examples of UCCA annotation graphs

of its children. In the UCCA representation, there are 4 main categories: (i) Scene Elements:

Process (P), State (s), Participant (A), Adverbial (D), (ii) Non-Scene unit Elements: Center

(C), Elaborator (E), Connector (N), Relation (R), (iii) Inter-Scene relations: Parallel Scene

(H), Linker (L), Ground (G), and (iv) Other: Function (F).

Two sentences annotated based on the UCCA framework are given in Figure 2.1. In the

sentence given in Figure 2.1(a), there is a Scene with a relation called Process, which

corresponds to “bought”. “John and Mary” and “two chairs” are the Participants of the

Scene, and “together” is the Adverbial in this Scene. The Participant “John and Mary”

consists of entities of the same type that is called Center for both “John” and “Mary”,

connected by “and” which is a Connector. The Participant “two chairs” is composed of

a Center that is “chairs” and an Elaborator that is “two”, which describes the Center.

In the second sentence given in Figure 2.1(b), there is a Scene that contains a relation

called State and a Participant. The State consists of a Function and a Center and the

Participant consists of an Elaborator, a Function, and a Center. The Elaborator “film

we saw yesterday” is an E-Scene, because “saw” evokes another Scene. While ‘film” is

the Center of the Participant, it also serves as the Participant of the E-Scene, resulting in

‘film” has two parents.
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2.2.1. UCCA Categories

The foundational layer views the text as a collection of Scenes. A Scene describes a

movement or an action, or a temporally persistent state. It usually contains information

regarding when the Scene happens, the location, and the ground that explains how it

happens1:

Examples:

• Alex played at school (1 Scene)

• Alex went home and started cooking (2 Scene)

2.2.1.1. Scene Elements A Scene has only one main relation, which determines the type

of the Scene (either dynamic or static). The Relation becomes a Process (P) if there is an

action or a movement. However, if a Scene evolves in time, it becomes a State (S), which

means that the Scene describes a temporally persistent state.

Examples:

• Alex is ⟨weighted⟩S

• Alex ⟨kicked⟩P the ball

• It is ⟨in⟩S the school

A Scene contains one or more Participants (A). They can be concrete or abstract.

Embedded Scenes are also considered as the Participant of the main Scene.

Examples:

• ⟨Alex⟩A is weighted

1Please note that no punctuation is given in the example sentences for simplicity.
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• ⟨It⟩A is in ⟨the school⟩A

The secondary relations of the Scenes are marked as Adverbials (D). They describe the

main relation (P/S) in the Scene. It can refer to the time, frequency, duration of the process

or state, as well as modality in verbs (e.g., can, will, etc.), the manner relations, and relations

that specify a sub-event (begin, end, finish etc.).

Examples:

• Alex ⟨began⟩D playing the guitar

• Alex ⟨may⟩D sleep earlier today

• Alex ⟨may⟩D come at around eightD

• He saw the doctor ⟨regularly⟩D

2.2.1.2. Non-Scene Unit Elements There are also non-Scene relations in the UCCA

framework that do not evoke a Scene. Each non-unit contains one or more Center (C),

which is required for the conceptualization of the non-Scene unit. It is the main element

of the non-Scene unit, and other relations may elaborate or be associated with this element.

Class descriptors that determine the semantic type of the parent unit are considered as an

Elaborator (E) of the main element. Quantifiers describing the quantity of the magnitude

of an entity or expression are also identified as an Elaborator (E):

Examples:

• ⟨chocolate⟩E ⟨cookies⟩C

• I bought ⟨⟨⟨three⟩E ⟨⟨kilos⟩C⟩E ⟨⟨of⟩R ⟨apples⟩C⟩E⟩A

• ⟨Queen⟩C ⟨⟨of⟩R ⟨England⟩C⟩E

• ⟨big⟩E brownE dogC
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• ⟨three⟩E ⟨apples⟩C

Connectors (N) are the relations between two or more entities with similar features or

types.

Example:

• I will have ⟨⟨coffee⟩C ⟨and⟩N ⟨cookies⟩C⟩A

The other type of relation between two or more units is called Relator (R), which does

not evoke a Scene. In two different scenarios, the relation is marked as a Relator:

1. A single entity is related to the other relation in the same context as a Relator. In this

case, the Relator should be positioned as a sibling of the C (or the Scene). It is placed

inside the unit they pertain to:

Examples:

• Alex said [⟨that⟩R he’ll not come to the party]

• Alex met [⟨with⟩R ⟨Mary and Jane⟩C]

2. Two units attached with different aspects of the same entity are related through a

Relator.

Example:

• ⟨⟨bottom ⟨of⟩R⟩E ⟨⟨the⟩E ⟨sea⟩C⟩C

Linkage is the term used for Inter-Scene relations in the UCCA. There are four types of

Linkages in the UCCA adopted from the Basic Linguistic Theory [43]:

1. Elaborator Scenes: E-Scene adds information to a previously established unit to

answer the questions which X or what kind of X.
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Examples:

• [The cat ⟨that played with my child ⟨(cat)⟩A⟩E] is brown

• My fried ⟨whom I gave [the present] [⟨to⟩R (friend)]⟩E

• Alex played [an American ⟨taken to the Adriatic (American)⟩E]

2. Center Scenes: C-Scene is a Center unit of a larger Scene that is also a Scene that

is internally annotated.

Examples:

• the ⟨taxi driver⟩C who swims

• the tall ⟨English teacher⟩C arrived

3. Participant Scenes: A-Scene is a participant in a Scene and has a removable role,

as it does not add information to the participant in the main Scene and answers the

question what in a Scene.

Examples:

• ⟨Drinking cold water⟩A is ill-advised (what is ill-advised)

• Alex said ⟨he’s thursty⟩A (what did Alex say)

• ⟨⟨Alex ‘s⟩A wonderful slam dunk⟩A saved the game (what saved the game)

4. Parallel Scenes: If a Scene is not a Participant, Center, or Elaborator in

a Scene and is connected to other Scenes by a Linker, which is a relational word

between Scenes, the Scenes are called Parallel Scenes (H):

Examples:

• ⟨Alex played basketball⟩H ⟨while⟩L ⟨preparing for exams ⟩H

• ⟨After⟩L ⟨graduation⟩H , ⟨Alex moved to NYC⟩H
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• ⟨When⟩L ⟨I arrived at the train station⟩H ⟨I realised that I had forgotten my cell

phone⟩H

• ⟨If⟩L ⟨they called us⟩H ⟨we will certainly go to the party⟩H

• ⟨I completed my assignment⟩H ⟨asked my questions to my professor⟩H ⟨and⟩L
⟨started working on a new project⟩H

• ⟨You knew the answer of this question only⟩H ⟨because⟩L ⟨I explained it to you⟩H

Ground (G) is a unit used to relate some unit to its speech event; either the speaker, the

hearer, or the general context in which the text was uttered/written/conceived. It is similar to

Linker except that it relates the Scene to the speech act of the text (the speaker, the hearer,

or their opinions).

Examples:

• ⟨Interestingly⟩G our team won the game

• ⟨In my opinion⟩G, Alex won’t come to the party

• ⟨I was shocked⟩H ⟨when⟩L our team lost the game

2.2.2. Other

There are also Function (F) units in which the terminals do not refer to a participant or a

relation. They function only as part of the construction in which they are situated in:

Examples:

• I want ⟨to⟩F run [a marathon]

• It ⟨is⟩F likely thatF Alex will come

• ⟨Let⟩F me introduce Alex
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2.2.3. Remote and Implicit Units

While some relations are clearly described in the text, there are instances where a sub-unit in

a given unit is not explicitly mentioned:

1. If the missing entity is referenced from another position in the text, we add a reference

to the missing unit, which is labeled as a REMOTE unit (the minimal unit is used as

REMOTE).

Examples:

• [Alex went home] and [started cooking ⟨(Alex)⟩A−REMOTE]

• [The cat [that played with my child ⟨(cat)⟩A−REMOTE]] is brown

2. When the missing entity does not appear in any place in the text, we add an IMPLICIT

entity that stands for the missing sub-unit.

Examples:

• We just opened ⟨(the thing)⟩A−IMPLICIT

• [Alex is tall], [Mary is ⟨(tall)⟩C−IMPLICIT n’t]

In general, UCCA is built based on the following principles:

• Graph Representation UCCA is represented by a directed, edge-labeled acyclic

graph, which enables reentrancy. UCCA is defined as a multi-layer structure that

allows an unbounded extension. It also enables paragraph-level annotation.

• Multiple Parents In the UCCA representation, a unit may participate in more than

one relation, so it has multiple parents in the graph. This relation is represented by

remote edges. UCCA distinguishes between primary edges, which appear explicitly in

a relation, and remote edges, which allow a Scene to indicate its arguments by linking

from another Scene. Primary edges form a tree, while Remote edges allow reentrancy

and form a DAG.
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• Non-terminal Nodes Unlike other representations, the UCCA uses non-terminal

nodes to represent units compromising more than one word.

• Discontinuity of Semantic Units In the UCCA representation, some units in the text

may be discontinuous. Discontinuity that is a property of UCCA, is pervasive e.g.,

with multi-word expressions. For example, in “Alex gave everything up”, the phrasal

verb “gave ... up” forms a single discontinuous semantic unit.

• Implicit Units UCCA also distinguishes an entity that is important to the interpretation

of a Scene but does not exist explicitly in the text. UCCA introduces Implicit Units to

represent such kind of entity.

2.3. UCCA Parsing

UCCA parsing is the task of converting natural language into UCCA graphs. Depending on

their formal properties, various parsing methods have been used for various frameworks. The

main parsing approaches can be categorized as transition-based and graph-based.

2.3.1. Transition-based Parsing

Transition-based parser [44, 45], also called shift-reduce parser, is a general approach to

building a tree or graph from a natural language. The parse tree or graph is built by applying

a transition at each step to the parser state defined by a buffer B of tokens and nodes to be

processed, a stack S of processed nodes and a graph G = (V,E, l) of constructed nodes and

labeled edges, where V is the set of nodes, E is the set of edges, and l : E → L is the label

function, where L is the set of possible labels. At each step, a classifier is used to select the

next transition based on the features that encode the current state of the parser. Starting from

an initial state, the parser applies actions until a terminal state, containing the final parse, is

reached.

The first transition-based parser proposed for generating UCCA representations is the

TUPA parser [46]. This is an extension of the standard transition-based parser for
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handling UCCA properties, reentrancy, discontinuity, and remote nodes. The operations

of the transition-based parser are extended by adding additional operations to the standard

transition-based parser operations SHIFT, moving a node from the buffer to the stack S

and REDUCE the possible appending of nodes and removing nodes from the stack S [47].

The additional operations are NodeX , Left-EdgeX , Right-EdgeX , Left-RemoteX ,

Right-RemoteX , Swap, and Finish [46].

In the training step, an oracle uses the gold-standard annotation to create training instances

for the classifier and the parser uses the instances to reconstitute the representation graph in

a deterministic way.

2.3.2. Graph-based Parsing

Graph-based parser [48] is a general approach based on building a tree or graph by

performing the entire parsing process as graph operations. Graph-based parsers parameterize

a model over smaller substructures to search the space of valid graphs and generate the most

likely one. The simplest parameterization is the arc-factored model, which defines scores for

spans s(i, j, l), where i and j denote the starting and ending positions of the span with label

l from the label set L, and also defines the score of a graph as the sum of the scores of all

spans contained in it.

A UCCA graph for an input sentence w0, · · · , wn is a labeled directed graph G = (V,E)

consisting of a set of nodes (terminal or non-terminal) and a set of labeled edges E ⊆ V ×

V × L, where L is the set of possible labels. The graph-based parsing problem is equivalent

to finding the directed spanning tree with the highest score in the complete graph over the

input sentence, as defined below:

T̂ = arg max
G=(V,E)

∑
(i,j,l)∈E

s(i, j, l) (1)
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2.3.3. Composition-based Parsing

Composition-based approach [49, 50] is an approach that builds a graph with a set of

lexical and syntactic-semantic rules governed by a well-defined grammar formalism such

as Hyperedge Replacement Grammar (HRG) [49] and Apply-Modify (AM) Algebra [50].

Composition-based parsers model derivations yielding semantic graphs by defining a score

function SCORED for D = r1, r2, · · · , rm a set of rules. The parsing problem is equivalent

to finding rules with the highest score to find the graph over the input sentence as defined

below:

G′ = arg max
G∗∈GEN(x)

∑
D∈DERIV (G∗)

SCORED(D) (2)

In the scope of this thesis, we have presented three semantic parser models in Chapter 4.,

which are transition-based and graph-based approaches. Self-attentive and chart-based

zero-shot parsing models, which are graph-based approaches, solve the parsing problem as

constituency parsing using CYK to build semantic graphs. Incremental parser, which is a

transition-based approach, applies a new transition set to the semantic parsing problem.

2.4. Other Semantic Representations

Due to the increasing popularity of graph-based semantic representations, several

frameworks for semantic representations have been proposed in the literature. Abstract

Meaning Representation (AMR), the bilexical Semantic Dependencies (SDP), and Parallel

Meaning Bank (PMB) are among these representations.

2.4.1. Abstract Meaning Representation (AMR)

AMR was introduced by Banarescu et al. [15] and represents a semantic representation

language that captures the meaning of a sentence with the question “who is doing with

whom” in the sentence. AMR represents semantic representation using a graph, which is a
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Figure 2.2 Example of AMR annotation graph

rooted directed acyclic graph (DAG) in which nodes represent core concepts in the sentence,

which can be either word (adjectives, stemmed nouns, and adverbs) or frame extracted from

PropBank [51], and labeled edges between nodes indicate a semantic relationship between

nodes. Edges can have either core roles (PropBank predicates) indicating semantic roles

between AMR concepts, or non-core roles such as location, time, purpose, etc., which

form the rest of AMR relations. AMR drops inflectional morphology that defines tenses

and omits articles and punctuation that do not give logical meaning to graphs (including a

logical rather than syntactic representation). The aim of AMR representation is to give the

same representation to sentences that have the same meaning (e.g., the sentences “Children

wanted to go to school” and “Children’s wish is to go to school” may have the same AMR

representation). An example of the AMR representation of the sentence “Children want to

play football at the garden of the school.” is shown in Figure 2.2. For more details on AMR,

see the AMR guidelines [15].

2.4.2. Bilexical Semantic Dependencies (SDP)

Bilexical Semantic Dependencies (SDP) was introduced by Oepen et al. [36] and

represents a semantic representation that is an extension of the previous version used as

Semantic Dependency Parsing representations in SemEval 2014 [52] and 2015 [53]. SDP

representations are characterized by a graph G = (V,E), where V is a set of nodes with
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labels using word form, optional lemma, part of speech, a Boolean flag indicating whether

the node represents a top predicate, and optional frame tag and E ∈ V × V is a set of edges

labeled with semantic relations that hold between their source and target nodes.

2.4.3. Parallel Meaning Bank (PMB)

Parallel Meaning Bank (PMB) was introduced by [37], a cross-lingual representation, that

provides fine-grained meaning representations for words, sentences, and texts. The PMB

representation has 8 annotation layers ranging from syntactic to semantic (segmentation,

symbolization, word sense disambiguation, syntactic parsing, semantic role labeling,

semantic tagging, coreference resolution, and semantic parsing.
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3. TURKISH GRAMMAR

In this chapter, we briefly describe Turkish grammar along with the morphological and

syntactic features of the language that were consulted during the annotation process.

3.1. Morphology

Turkish is an agglutinative language where suffixes are attached to word roots or stems to

form words, known as suffixation. Therefore, Turkish words commonly contain more than

one syllable [54]. An example of suffixation for the root kitap (book) is given below:

defter → notebook

defter − ler → notebooks

defterler − imiz → our notebooks

defterlerimiz − de → on our notebooks

defterlerimizde− ki → the one on our notebooks

defterlerimizdeki− ler → the ones on our notebooks

3.1.1. Morphemes

Morphemes are defined as the smallest meaning-bearing units in a language. There are two

types of morphemes, depending on whether they are attached to a word or stand alone in a

sentence: free morphemes, also called unbounded morphemes, can stand alone as if they

are words, bound morphemes can only be seen attached to a word. Morphemes can be

further analysed in two categories, depending on whether they modify the grammatical role

(i.e., part-of-speech) or the fundamental meaning of a word:

• Derivational Morphemes are bound morphemes that have the ability to modify the

meaning and part-of-speech of a word (e.g.“boya” (the paint) - “boya-cı” (the painter)).

Derivational morphemes are divided into 4 main categories:
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– Morphemes attached to verbs to form nominals: (e.g., “sev-2” (to love) -

“sevecen” (loving))

– Morphemes attached to verbs to form verbs (e.g., “böl-” (to split) - “bölüş-” (to

share))

– Morphemes attached to nominals to form verbs (e.g., “kan” (blood) - “kana-” (to

bleed))

– Morphemes attached to nominals to form nominals (e.g., “çocuk” (child) -

“çocukça” (childish))

• Inflectional Morphemes are bound morphemes attached to nouns, pronouns, nominal

phrases, verbs, and verb frames that modify functional relations such as case, tense,

voice, mood, person, and number. They are divided into 2 categories:

– Nominal inflectional morphemes indicate number, possession, and case:

* Number Suffix: The only number suffix is the plural suffix ‘lAr’3 and used

to indicate the plurality (e.g., “kediler” (cats), “kitaplar” (books))

* Possessive Suffixes: They attribute possession to an object (e.g., “arabam”

(my car), “arabası” (his/her/their car))

* Case Suffixes: They attribute the nominal to specific cases. In Turkish there

are 6 case suffixes: absolute form (e.g., “okul” (school)), accusative (e.g.,

“okulu” (the school)), dative (e.g., “okula” (to the school)), locative (e.g.,

“okulda” (at the school)), ablative (e.g., “okuldan” (from the school)) and

genitive (e.g., “okulun” (of the school))

* Other Markers: The other nominal inflectional markers are as follows:

‘-(y)IA/ile’ which can have comitative, instrumental or conjunctive meanings

and can used as a bound or as a free morpheme (e.g., “Ahmet’le” or “Ahmet

ile” (with Ali)), “ki(n)” that is used to form attributive adjectival phrases

2In Turkish, infinitives are given with - that either corresponds to -mak or -mek based on the vowel harmony
with the root.

3In Turkish, capital letters in the suffixes indicate variability, I denotes ‘ı’ or ‘i’, A: ‘a’ or ‘e’, for example,
lAr correspond to ler and lar.
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(e.g., “okuldaki arkadaşlar” (the friends at the school)) and pronominal

expressions (e.g., “okuldakiler” (the ones at the school)).

– Verbal inflectional morphemes attach to verbs in two ways: finite verb forms,

non-finite verb forms. A finite-verb acts as a verb in a sentence and a non-finite

verb acts as a nominal in a sentence:

* Voice Suffixes: Voice suffixes appear in finite and non-finite verb forms.

They come immediately after the verb root and precede all other suffixes.

They can be divided into 4 categories: causative (e.g., “kapat-” (to close

[s.t.])), passive (e.g., “bilin-” (to be known)), reflexive (e.g., “kurulan-” (to

dry yourself)), and reciprocal suffixes (e.g., “görüş-” (to see each other)).

* Negative Marker ‘-mA’: They can appear in both finite and non-finite

verb forms. They are located between the voice suffixes and the

tense/aspect/modality markers (e.g., “anlama-” (not to understand))

* Tense/Aspect/Modality Markers: They can appear in both finite and

non-finite verb forms. While Tense indicates the position of the state

or action in time (e.g., “Geçtin.” (You’ve passed.)), Aspect indicates the

extension of the state or action over the time that can be perfective or

imperfective (e.g., “Gitmelisin.” (You should go.)), Modality indicates the

reality of the state or action (e.g., “Kedi süt içer.” (The cat drinks milk.)).

* Copula Markers: Copula is a connecting word or a phrase in a particular

form of a verb that links a subject and a complement. They appear only in

finite verb forms. It is one of the peculiarities in Turkish grammar [54].

The copula in most cases corresponds to the verb “ol-” (to be) and has

various forms: The zero copula, which is the third person rule, where two

nouns or a single noun and an adjective are placed next to each other to

make a sentence without a copula (e.g., “Öğretmenler üzgün.” (The teachers

are sad.)), basic copula where sentences are created by the auxiliary verb

‘i-’ [55] (to be) by adding the auxiliary verb to a predicate, which can be

nouns, adjectives or conjugated verb stems (e.g., “Öğretmenler üzgündür.”
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(The teachers are sad.)), negative copula refers to the negation word “değil”

(not) (e.g., “Öğretmenler üzgün değil.” (The teachers are not sad.)), personal

copula is used to create a complete sentence by adding a suffix to a noun or an

adjective, as in a nonverbal person agreement (e.g., “(Onlar) Öğretmenler.”

(They are the teachers.)), the past copula indicates the past form of the

auxiliary verb “idi” (e.g., “Öğretmendiler.“ (They were the teachers.)), the

conditional copula indicates conditionality with the morpheme “ise” (e.g.,

“Öğretmenlerse” (If they are the teachers))

* Person markers: They appear in finite verb forms and are attached to both

verbal and nominal predicates to indicate the person of the subject (e.g.,

“Öğretmen değillerdi.” (They were not teachers.).

* Subordinating Suffixes: They appear only in non-finite verb forms and

are the main means of forming subordinate clauses in Turkish. They are

combined with verb stems to form nominals (e.g., “Okula git-me-yeceğ-i

belli.” (It is clear [that s/he won’t go to school].)).

3.1.2. Reduplication

Reduplication is used to repeat a word or part of a word, and it is performed in two forms in

Turkish:

• Emphatic Reduplication: It is used to emphasize the quality of an adjective (e.g.

“dar” (narrow) - “dapdar” (very narrow)).

• m-Reduplication: It is the generalization of the object to include also other similar

objects, events, or states of affairs (e.g., “kapı mapı” (doors and the like)).

• Doubling: It is performed with the repetition of a word for nouns, adverbs, or

adjectives. In this case, words can be used twice with and without mI4 (e.g.,

“yavaş yavaş” (slowly), “sarı sarı (yapraklar)” (many yellow (leaves)), “poşet poşet
4mI corresponds to the interrogative morpheme.
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(kıyafetler)” (many bags of (clothes)), “sakin mi sakin bir deniz” (a remarkably calm

sea)) or with similar sounding words (e.g., “ufak tefek” (tiny), “çoluk çocuk” (wife

and children)).

3.1.3. Clitics

Clitics are meaning-bearing entities that behave like independent words although they are

considered affixes at the morphological level [56]. The clitics in Turkish are as follows [57]:

• “mI” has the following meanings:

– Question particle in Yes/No questions (e.g., “İster miyiz?” (Do we want?))

– Adverbial clause marker (e.g., “Geldin mi” (As soon as you come))

– Intensifier in doubled forms (e.g., “ilginç mi ilginç” (very interesting))

• “dA” has the following meanings:

– Additive (e.g., “Görmedim de.” (Moreover, I didn’t see it.))

– Adversative (e.g., “Görmedim de gösterdiler.” (I didn’t see it but people showed

it to me.))

– Continuative/Topic Shifting (e.g., “Bu kitabı da Ahmet getirdi.” (As for this

book, Ahmet brought it.))

– Enumerating (e.g., “Ahmet de Ali de” (Both Ahmet and Ali))

• “-(y)sA/ise” has the following functions:

– Topic Shifting (e.g., “Akşamsa tiyatroya gittik.” (In the evening, we went to

theatre.))

– Contrastive (e.g., “Ahmet ise” (As for Ahmet))

• “ya” has the following meanings:
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– Contractive/Adversative Conjunction (e.g., “İzledim ya anlamadım.” (I watched

it but I couldn’t understand it.))

– Repudiative/Discourse Connective (e.g., “İzlemedim dedim ya!” (I told you that

I didn’t watched it!))

– Stressable discourse connective (e.g., “Ya gelemediyse?” (What if s/he couldn’t

come?))

• “ki” has the following meanings:

– Subordinate connection to a noun clause (e.g., “İnanıyorum [ki onlar gelecek].”

(I believe [that they will come].))

– Subordinate connection to an adverbial clause (e.g., “Not alıyorum [ki sonradan

sana hatırlatayım].” (I am taking notes [so that I’ll remind you later].))

– Repudiative Discourse Connective (e.g., “Gidemiyorum ki.” (I just can’t go.))

– Exclamations (e.g., “İstanbul yazın o kadar sıcak olur ki!” (İstanbul is so hot in

summer!))

– Relative Clause Marker (e.g., “Bugün okula gelirse, [ki geleceğini hiç

sanmıyorum,] oyuna gidecekmiş.” (If s/he will come to school today, which I

don’t think s/he will, s/he will go to the game.))

– Non-Restrictive Relative Clauses (e.g., “Ahmet [ki çok çalışkan], o bile sınavdan

düşük not aldı.” (Even Ahmet, [who is very hardworking] got a low grade in the

exam.))

– Restrictive Relative Clauses (e.g., “Bir yazar [ki dilekçe yazmayı bilmesin], onun

kitabı okunulmz.” (A writer [who doesn’t know how to write a petition], isn’t to

be trusted to read her/his book.))

• “bile” has the following meaning:

– Additive Connective (e.g., “İzledim bile.” (I have already watched it.))
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3.2. Word Classes

A word in Turkish can be assigned to one of the following syntactic categories: nominal (i.e.,

noun, pronoun, adjective, or adverb), verb, postposition, conjunction or discourse connective,

and interjection [54].

1. Nominal contains four categories:

(a) Noun is a word for a thing (e.g., “elma” (apple)), a person (e.g., “adam” (man)),

an abstract concept (e.g., “hüzün” (sadness)) or a proper noun of a thing (e.g.,

“UNESCO”), person (e.g., “Ayşe”) or a place (e.g., “İstanbul”).

(b) Pronoun is a word that is used as a substitute for a noun or noun phrase that

refers to the participants in the given context (e.g., “sen” (you), “ben” (I), “bu”

(this), “başkası” (another), “şurada” (here)).

(c) Adjective describes a noun by quality, property or status (e.g., “yumuşak” (soft),

“önemli” (important), “kırmızı” (red)). Determiners (e.g., “bir” (a/an), “her”

(each), “bütün” (all)) and numerals (e.g., “birinci” (the first), “üç yüz” (three

hundred)) also belong to this class.

(d) Adverb is used to specify a verb, an adjective, another adverb, or an entire

sentence. It expresses verbs by providing information about the manner (e.g.,

“yavaşça (slowly)), time (e.g., “şimdi” (now)), or degree of occurrence of an

event (e.g., “hep” (always)). Adverbs that describe adjectives or other adverbs

provide the degree to which the concepts they denote apply (e.g., “çok” (), “çok

fazla” (too much), “daha fazla” (more)). Examples of adverbs that refer to a

sentence are “muhtemelen” (possibly) and “maalesef” (unfortunately).

2. Verb is used to describe an action, event, process, state, or occurrence (e.g., “gel-” (to

come), “bisiklet sür-” (to ride), “bit-” (to end), “ol-” (to be), “kal-” (to remain)).

3. Postposition is a word that takes a noun, pronoun, or noun phrase and indicates its

relation to another word in the sentence (e.g., “karşı” (against), “sonra” (after), “için”

(for)).
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4. Conjunction and Discourse Connective Conjunction joins two or more sentences,

clauses, or words (“de · · · de” (both · · · and), “fakat” (but), “ve” (and)) (e.g., “kitap

ve defter” (book and notebook), “Ali de Ahmet de” (both Ali and Ahmet)). Discourse

connective is used within a sentence or sentences to provide cohesion in discourse.

They can introduce statements that are a development of a previous statement (e.g.,

“hatta” (moreover), “üstelik” (furthermore)), or they can be used to expand on a

previous statement (e.g., “yani/başka bir deyişle” (in other words)), or to state a fact

that seems to contradict what was just said (e.g., “halbuki” (whereas)).

5. Interjection is a word or a phrase that expresses feelings (e.g., “wow” (wow), “hay

allah” (oh dear)) or the speaker’s attitude towards the hearer (e.g., “yahu” (hey)) to

initiate a conversation.

3.3. Syntax

3.3.1. Constituents of a Sentence

In Turkish, sentences can be simple or complex in terms of the subordinate clauses that are

semantically dependent on the main clause5.

Examples:

• Tiyatroya gittik. (in English, “We went to the theatre.”)

• Dün [bulaşıkları yıkarken], [yıllardır görmediğim] arkadaşım aradı. (in English,

“Yesterday, [as I was washing the dishes], my friend [whom I hadn’t seen for years]

called.”)

Two main components of a simple sentence are the subject and the predicate. In a sentence,

the predicate expresses an event, process, or state of affairs with an agreement of the subject,

5Subordinate clauses are indicated by [] as defined in [57]
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and the subject of the sentence may be a person, place, or thing that possesses or is affected

by the predicate:

Examples:

• Kerem bir an durdu. (in English, “Kerem stopped for a moment.”)

• O öğretmendi. (in English, “S/he is a teacher.”)

• İstanbul, Türkiye’nin en büyük şehridir ve Avrupa ve Asya’yı birbirine bağlar. (in

English, “Istanbul is Turkey’s the largest city and connects Europe and Asia.”)

Turkish is a syntactically free order language. However, the unmarked order (neutral word

order) is subject-(object)-predicate (SOV) (e.g. “Ahmet okula gitti.” (in English, “Ahmet

went to the school.”)).

The sentence types are divided into 2 classes based on the predicate:

1. Verbal sentences have predicates that are finite verbs:

Examples:

• Kerem bana baktı. (in English, “Kerem looked at me.”)

• Bugün okula gideceğim. (in English, “I will go to school today.”)

2. Nominal sentences have predicates that do not contain a verb or use a verb in the form

of the copula (e.g., ol- (be)):

Examples:

• Bir tutsağım ben. (in English, “I am a prisoner.”)

• Ahmet doktor olacaktı. (in English, “Ahmet was going to be a doctor.”)
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3.3.2. Phrases

A phrase is a syntactic unit, which is a collection of syntactically coherent words that

functions as a unit in a sentence. There are three types of phrases: verb phrase, noun phrase,

and prepositional phrase.

3.3.2.1. Verb Phrase A verb phrase is composed of a verb, and additionally may contain

a complement of a verb or an adverbial:

Examples:

• Yürüyorum. (in English, “I am walking.”)

• Hızlı koşma! (in English, “Do not run fast!”)

• Ahmet suyu soğuk soğuk içti. (in English, “Ahmet drank the cold water too fast.”)

3.3.2.2. Noun Phrase A noun phrase primarily contains a noun or a group of words that

contain a noun. The role of a noun phrase is that of a subject and some kind of complement

such as object, subject complement, and complement of a postposition:

Examples:

• Ahmet geldi. (in English, “Ahmet came.”)

• Yavru kedi çok tatlıydı. (in English, “The kitten was so cute.”)

• Onlar yeni öğretmenler. (in English, “They are the new teachers.”)

• [Ahmet’in sevdiği] ekşi elma bitmişti. (in English, “[Ahmet’s favorite] sour apple

was finished.”)
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3.3.2.3. Postpositional Phrase A postpositional phrase consists of a noun phrase and a

postposition that follows the noun phrase. While the postposition is the head of the phrase,

the noun phrase is the complement of the phrase:

Examples:

• Akşama doğru yağmur yağabilir. (in English, “It may start raining towards

evening.”)

• İki günden beri okula gitmiyor. (in English, “S/he has not been to school for two

days.”)

• Her oyundan önce bir bardak çay içer. (in English, “S/he drinks a cup of tea before

every game.”)

3.3.3. Complex Sentences and Subordination

Complex sentences consist of at least one subordinate clause in addition to the main clause,

where a clause is a group of words that functions as a unit in a sentence. In Turkish, there

are three types of clauses: noun, relative, and adverbial clause.

3.3.3.1. Noun Clause It occurs as a noun phrase in a complex sentence as the subject or

object in the sentence:

Examples:

• Ahmet [senin okula gittiğini] bilmiyordu. (in English, “Ahmet didn’t know that [you

were going to school].”)

• Herkes [kitap yazmanı] istiyor. (in English, “Everyone wants [you to write a book].”)
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3.3.3.2. Relative Clause It occurs as an adjectival phrase that is used to modify noun

phrases:

Examples:

• [Öğretmen olan] oğlu, Ankara’da yaşıyor. (in English, “Her/His son, [who is a

teacher], lives in Ankara.”)

• [Evimizde beslediğimiz] kedi dün hastalandı. (in English, “The cat [we feed at home]

got sick yesterday.”)

3.3.3.3. Adverbial Clause It occurs as an adverbial phrase that expresses the verb in

terms of time, place, manner, and degree:

Examples:

• [Kedimiz üşümesin diye] ısıtıcıyı açtık. (in English, “We turned on the heater [so that

our cat would not get cold].”)

• Tam dışarı çıkacaktık [ki kapı çaldı]. (in English, “We were about to go out [when the

doorbell rang].”)

• [İlham geldi mi] şarkı söylemeye başlar. (in English, “[When inspired], she starts to

sing.”)

• [Birazdan yağmur yağacağı] söyleniyor. (in English, “It is said [that it will rain soon.”)

3.3.4. Conditional Sentences

Conditional sentences are based on a condition that is met when a certain action takes place:
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3.3.4.1. Predictive Conditionals It expresses a predictable relation between two

situations:

Examples:

• [Okula gitmezsen] sınıfta kalacaksın. (in English, “[If you do not go to school] you

will fail the class.”)

• [Çiçekler sulanmazsa] solacaklar. (in English, “[If the flowers are not watered] they

will wither.”)

• [Evini satacak olursan] ben almak isterim. (in English, “[If you sell your house] I

would like to buy it.”)

3.3.4.2. Knowable Conditionals It serves as a background for an inference, question, or

some kind of volitional utterance:

Examples:

• Ahmet [[Ali’nin geldiğini] biliyorsa] yemeğe gelmeyecektir. (in English, “[If Ahmet

knew [that Ali came]] he will not come to dinner.”)

• [Yemek hazırsa] hızlıca yiyebiliriz. (in English, “[If the food is ready] we can eat

quickly.”)

• [Sınavlara girse bile] mezun olamaz. (in English, “[Even if s/he takes the exams] s/he

will not graduate.”)

3.3.4.3. Universal Conditional Clauses It contains a question phrase that corresponds

to a “-ever” clause such as whoever and wherever in addition to a conditional marker:
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Examples:

• Ahmet [ne zaman maçta oynasa] takım her zaman galip olur. (in English, “[Whenever

Ahmet plays in the game] the team wins.”)

• [Kime sorduysak] hepsinden aynı cevabı aldık. (in English, “[Whoever we asked] we

had the same answer.”)

• [Ne kadar iyi olsan da] o okuldan kabul alamazsın. (in English, “[However good you

are] you cannot get an offer from that school.”)
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4. SEMANTIC PARSING MODELS FOR THE UCCA

REPRESENTATION

Semantic parsing is the task of mapping a text given in a natural language to its formal

representation, which provides an abstraction of its meaning that can be easily processed by

a machine to serve a particular NLP task.

In this chapter, we consider UCCA parsing, a semantic parsing in which the semantic

structure is the UCCA graph. UCCA parsing is challenging compared to other syntactic

parsing problems such as dependency parsing or constituency parsing. First, UCCA is

represented by graphs rather than trees as in syntactic parsing. Moreover, the UCCA

representation allows reentrancy with remote edges to support argument sharing, resulting in

an acyclic graph, non-terminal nodes compromising several tokens that are jointly considered

as a single entity according to semantic or cognitive consideration, and discontinuity

corresponding to non-projectivity. These features motivate the development of supervised

and unsupervised parsing models for UCCA parsing.

In this chapter, we present the proposed models, which are deep neural network models, one

of which is unsupervised, and attempt to answer the following questions:

Research Questions:

1. Which approach (transition-based, graph-based) is most effective for the UCCA-based

semantic parsing problem?

2. Are the constituency parsing models applicable to the semantic parsing problems after

preprocessing the UCCA representation?

3. Is the transition set of the transition-based parser important to learn the features of the

UCCA representation (discontinuous units, reentrancy, etc.)?

4. Given the problem of data scarcity in UCCA representation, up to what extent does an

unsupervised model learn semantic parsing?
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4.1. Related Work

With the published UCCA framework and datasets, the TUPA parser [46] is proposed, which

is the first parser to generate UCCA representations. It is a neural transition-based parser

model with additional transitions to handle discontinuous and remote nodes in UCCA graphs.

The transition NODE creates new non-terminal nodes, LEFT-EDGE and RIGHT-EDGE

create a new primary edge between the first two elements on the stack whose parent is the left

and right nodes, respectively. LEFT-REMOTE and RIGHT-REMOTE create a new remote

edge between the first two elements on the stack, creating reentrancy and the form of DAG.

Finally, SWAP pops the node on the stack and adds it to the top of the buffer, creating a

discontinuous unit in the UCCA representation.

In addition to the commonly used features (word, PoS tag, syntactic dependency label of

the top four stack elements, and the next three buffer elements), the features used in the

study are those related to discontinuous nodes [58], the number of remote children, which

is a UCCA specific feature, features for existing edges, the number of parents and children.

Since the TUPA parser [46] is the first parser for the UCCA representation, the authors also

investigate the impact of the transition classifier with three different models: TUPASparse

with a linear classifier with sparse features trained with the averaged structured perceptron

algorithm [59] MINUPDATE [60], TUPAMLP using a Multi-Layer Perceptron (MLP) with

two linear layers, and TUPABiLSTM using BiLSTM model, where the output of BiLSTM

with dense features representing the parser state (e.g., existing edge labels and previous

parser actions), is concatenated and fed into a feed-forward network similar to TUPAMLP

to select the next transition. The architecture of the TUPABiLSTM is given in Figure 4.1.

Hershcovich et al. [61] extend the TUPA parser with multi-task learning using other semantic

graph representations, namely AMR [15], UD [62, 63] and SDP [36]. In multi-task

transition-based parsing, TUPABiLSTM was used for UCCA parsing, the main task, and

a BiLSTM was added as a shared BiLSTM for all tasks with replication of the MLP for

each task. The architecture of the MTL model is given in Figure 4.2. In order to be able

to apply the parser to all semantic graph representations (UCCA, AMR, UD, and SDP),
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Figure 4.1 The architecture of the TUPABiLSTM parser

the representations were converted to a unified DAG format that allows all formats to be

represented with very little loss.

Figure 4.2 The architecture of the MTL model

The UCCA framework has been the main theme in some share tasks, e.g., “Cross-lingual

Semantic Parsing with UCCA” at SemEval 2019 [1] and “Meaning Representation Parsing
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(MRP)” cross-framework shared task [40, 64] in 2019 and 2020.

Current UCCA-based semantic parsers can be categorized based on their approaches as

follows:

• Transition-based [46, 65–67]: Transition-based approaches define a sequence of

actions that eventually build semantic graphs. Since the first proposed model is the

TUPA parser [46], transition-based approaches extend the TUPA parser by adding

extra transitions [68, 69], new features [65, 70], or layers [66, 71].

Arviv et al. [68] add LABEL, PROPERTY and ATTRIBUTE transitions with an

additional classifier evoked with a set of label/property/attribute values due to the large

number of node labels and properties in the MRP frameworks (EDS, PTG, UCCA,

AMR, DRG). Lai et al. [69] add the transition RESOLVE to the TUPA parser to deal

with multiple nodes and their dependencies, which is a very complex problem for the

transition REDUCE.

Pütz and Glocker [65] implement the TUPA parser with a set of features based on

the top three items on the stack and the buffer, as well as deep contextualized word

embeddings of the rightmost and leftmost parents and children of the respective

items. The authors also use additional training data for English from the 1B-word

benchmark [72] and for German from the archive of the newspaper taz. Bai and

Zhao [70] extend the TUPA parser with hand-crafted features that are existing node

labels related to the top four stack elements and the first three buffer elements, as well

as the last three actions performed by the parser, and, when there are fewer than three

actions before, zero embeddings instead. These features are mapped to embeddings

that are trained when the model is trained.

Dou et al. [67] use Stack-LSTM instead of BiLSTM of TUPA parser for UCCA

parsing. Lyu et al. [66] use TUPABiLSTM and TUPAMLP as a cascaded parser with

a multi-stage training procedure, first training TUPABiLSTM and retraining the model

with TUPAMLP .
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• Graph-based [73–80]: Graph-based approaches generally approach the task as a

search problem of finding the graph with the highest score among all possible graphs

for a given input. Some of the approaches leverage existing neural parser architectures

introduced specifically for dependency parsing (NeurboParser [81], JAMR [82] and

UDPipe [83]), while others introduce neural architectures for UCCA-based semantic

representation using a graph-based approach [73, 76, 77, 80].

The most common studies with comparable results apply constituency parsing

models [73, 74, 77, 80] to the UCCA representation after preprocessing that converts

DAGs into constituency trees. Jiang et al. [73] solve the semantic parsing problem for

UCCA by converting the UCCA representations into constituency trees by removing

remote edges and adding a ROOT node and applying the minimal span-based parser of

Stern et al. [84] with an additional classifier for remote edges. Li et al.[77] and Zhang et

al. [80] directly follow the graph-based UCCA parser of Jiang et al. [73]. Cao et al. [74]

apply the minimal span-based parser of Stern et al. [84] with a different conversion

method UCCA representations into constituency trees. The authors added some

auxiliary nodes TOP, HEAD for non-terminal nodes and TOKEN and MWE terminal

nodes.

Koreeda et al. [76] propose an encoder-biaffine architecture for all representations

presented in MRP 2019 [40] that uses a shared encoder and biaffine network to

predict edges with a pointer network to generate non-terminal nodes of the UCCA

representation and an additional BiLSTM to encode the context of the terminal and

non-terminal nodes.

• Composition-based [85]: Composition-based approaches follow the compositionality

principle and perform semantic parsing as the result of a derivation process that

incorporates both lexical and syntactic-semantic rules to develop a semantic graph

parser.

Donatelli et al. [85] apply the AM dependency parser of Lindemann et al. [86] after

converting UCCA annotations into AM dependency graphs.
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• Encoder-decoder-based [78, 87, 88]: Encoder-decoder approaches use an

encoder-decoder architecture to convert an input sentence into a semantic graph as

performed in NMT.

Na et al. [78] present an encoder-decoder architecture for the parsing problem, in which

BERT-BiLSTM is the encoder and the biaffine attention is the decoder. To process the

UCCA representation, it is converted to a bilexical framework using the semstr tool

before training the model, and then converted back to UCCA format.

Yu and Sagae [87] follow an encoder-decoder architecture using BiLSTM as the

encoder and self-attention as the decoder, as used by Kitaev and Klein [89]. For

non-terminal nodes with more than one terminal, the span representation of Cross and

Huang [90] is applied before the decoder of the model.

Ozaki et al. [88] apply Plain Graph Notation (PGN) as a universal notation with a

number of pseudo-nodes indicating the end of node prediction, end of label prediction,

etc. for the semantic frameworks presented in MRP 2020 [64]. The authors present

an encoder-decoder architecture where the pre-trained contextualized embedding

BERT [91] is the encoder and Transformer [92] is the decoder of the architecture that

generates PNG that is transformed into a semantic representation.

4.2. Proposed Models

In this section we describe the proposed models, which are supervised and unsupervised

models. The supervised models are self-attentive and incremental semantic parsers that are

graph-based and transition-based, respectively. The unsupervised model is the chart-based

zero-shot parser, which is a fully unsupervised model.

4.2.1. Graph-based Semantic Parser (Self-Attentive Semantic Parser)

We adopt the constituency parsing model based on the self-attention mechanism proposed by

Kitaev and Klein [93] to learn the UCCA semantic representations of a given text. The parser
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is built on an encoder-decoder architecture, where the encoder is based on self-attention

mechanism and the decoder is based on the CYK (Cocke-Younger-Kasami) algorithm [94].

The overall view of the encoder-decoder architecture is given in Figure 4.3. The parser

follows a chart-based constituency parsing approach where the constituency tree T of an

input sentence s = {w1, · · · , wn} with words wi is defined as a set of labeled spans:

T = {(it, jt, lt) : t = 1, · · · , |T |} (3)

where it and jt refer to the beginning and ending positions of the tth span respectively with

the label set lt ∈ L.

Figure 4.3 The overview of the self-attentive semantic parser model

We assign a score s(T ) to each tree, which is decomposed as follows:

s(T ) =
∑

(i,j,l)∈T

s(i, j, l) (4)

Here, s(i, j, l) denotes per-span scores predicted by the model.
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Each word wt is mapped into a dense vector xt which is a concatenation of the word

embedding ewt , PoS tag embedding ept , dependency label embedding edt , entity type

embedding eet , and entity iob (inside-outside-beginning) category embedding eeobt:

xt = ewt ⊕ ept ⊕ edt ⊕ eet ⊕ eeobt (5)

The overview of the encoder along with the remote edge recovery is given in Figure 4.4. The

encoder consists of multiple self-attention layers6 and only one of them is depicted in the

figure for simplicity reasons. The encoder learns a context vector yt for each position t for a

word vector xt.

Figure 4.4 An overview of the self-attention encoder

An MLP classifier with two fully-connected layers with ReLU activation function assigns

labeling scores s(i, j, l) to each span using the encoder output. We integrate remote edge

recovery that also shares the same encoder to recover remote edges in trees [73] as shown

6In our model, the encoder involves 8 self-attention layers.
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in Figure 4.4. Therefore, the model incorporates two independent MLPs to predict remote

edges and candidate parent nodes that use the same encoder.

The parsing loss is the sum of the cross-entropy losses introduced by both remote edges

Lremote and non-terminal node pairs Lnon−terminal as indicated below:

L = Lremote + Lnon−terminal (6)

As for inference, CYK (Cocke-Younger-Kasami) algorithm [94] is used to generate a

globally optimized tree T̂ for each sentence that acts as a decoder in the model (see

Figure 4.3). Therefore the tree with the maximum score is identified by the CYK algorithm

as follows:

T̂ = arg max
T

s(T ) (7)

4.2.2. Transition-based Semantic Parser (Incremental Semantic Parser)

We adopt the attach-juxtapose transition system of Yang and Deng [95] for the semantic

parsing problem. We use the same architecture of the TUPA parser [46] to compare the

results of the same architecture with a different set of transitions for the semantic parsing.

The transition-based constituency parsing model called attach-juxtapose [95] allows

strongly incremental parsing with two transitions attach and juxtapose. For a sentence

s = w1, · · · , wn, it starts with an empty tree and performs n actions that integrate the tokens

from the buffer containing words of the sentence into the tree. While the transition attach

attaches the new token as a child to an existing node in the tree, juxtapose juxtaposes the

new token as a sibling to an existing node in the tree by creating a shared parent node.

4.2.2.1. Attach-juxtapose transition system for UCCA parsing We extend the

transition set of attach-juxtapose [95] for the TUPA parser [46], which is a
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transition-based parser for the UCCA representation. The architecture of the TUPA

parser [46] with updated transition set is given in Figure 4.5.

Figure 4.5 Architecture of the TUPA model extended by attach-juxtapose transition set

Transition Set Given a sentence s = w1, · · · , wn, we predict a UCCA graph G over

the sequence using 3 transitions. In addition to the standard transitions, attach and

juxtapose, used in the attach-juxtapose [95] model, we add swap as the TUPA

parser.
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Figure 4.6 Transition set in the incremental parser

• attach(target node, parent label): Attach the token as a descendent of

target node with given parent label. If the target node is not a non-terminal node, a

new node is created before attaching the token to target node.

• juxtapose(target node, parent label, new label): Create an

internal node with the given label as the shared parent of the target node and the new

token. It then replaces target node in the tree.

• swap: Pop the second node on the stack and add it to the top of the buffer.
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(a) Semantic Parsing (b) Constituency Parsing

(c) Dependency Parsing

Figure 4.7 Representation of sentence “If you build they will come” in 3 representations

4.2.3. Chart-based Zero-shot Semantic Parser

We exploit the concept of syntactic distance [96, 97], which has been explored in particular

for constituency parsing [98–100] by using the PLMs directly without fine-tuning. Here, we

adopt chart-based zero-shot parsing based on the syntactic distance for three different parsing

problems, namely semantic, constituency, and dependency parsing, to explore the usability

of PLMs in the zero-shot setting.

An example of a UCCA representation, constituency tree, and dependency tree for the

sentence “If you build they will come” is shown in Figure 4.7.
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The method calculates scores for spans where an input sentence s = {w1, · · · , wn} is made

up of a set of labeled spans as follows:

T = {(it, jt, lt) : t = 1, · · · , |T |}

where it and jt refer to the beginning and ending positions of the tth span respectively with

the label set lt ∈ L. A score s(t) is assigned to each tree, which is decomposed as follows:

s(t) =
∑
(i,j)∈t

sspan(i, j) (8)

Here, sspan(i, j) denotes per-span scores that are calculated recursively by splitting spans

into smaller spans as defined below:

ssplit(i, k, j) = sspan(i, k) + sspan(k + 1, j) (9)

sspan(i, j) = scomp(i, j) +mini≤k<jssplit(i, k, j)

where scomp(·, ·, ·) measures the validity of the compositionality of the span(i, j) itself and

ssplit(i, k, j) measures the scores for how possible to split span (i, j) at position k. To

calculate scomp(·, ·, ·), [99] introduced two alternative labeled functions: sc(·, ·) characteristic

score function and sp(·, ·) pair score function. The pair score function computes the average

pairwise distance in a given span:

sp(i, j) =
1j − i+ 1

2


∑

(wx,wy)∈pair(i,j)

f(g(wx), g(wy)) (10)

sc(i, j) =
1

j − i+ 1

∑
i≤x≤j

f(g(wx), c)

c =
1

j − i+ 1

∑
i≤y≤j

g(wy)

where pair(i, j) calculates all combinations of bigrams (e.g. wx, wy) inside the span (i, j),

f(·, ·) is a distance measure function (Jensen-Shannon (JSD) and Hellinger (HEL)) that
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Figure 4.8 Model view (first 7 layers and 7 attention heads) for input sentence “The cat sat on the
mat”

measures the distance between two spans, and g(·) is the representation function that yields

the vth attention head on the uth layer of the pre-trained language model for g = {gd(u,v)|u =

1, · · · , l, v = 1, · · · , a}.

The attention heads and layers of the monolingual BERT [91] for the sentence “The cat sat

on the mat” are given in Figure 4.8. Each cell in the figure shows the attention pattern for

a particular layer that is indexed by the row, and the attention head that is indexed by the

column. The patterns are specific to the input text.

CYK (Cocke-Younger-Kasami) [94] is used for decoding to generate the trees. The parser

outputs tree t̂ that has the lowest score:

t̂ = arg min
T

s(t) (11)
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For each distance function with score functions [JSD−sp, JSD−sc, HEL−sp, HEL−sc],

we obtain the weights of the ith layer and jth attention head of that layer. Then we calculate

the span scores using the distance functions. We select the tree with the lowest score for each

distance function, which leads to 4 trees in ith layer and jth attention head. Therefore, we

finally obtain 4× l× a trees, where l is the number of layers and a is the number of attention

heads. The final F1 scores are calculated for each tree and the highest F1 score is reported in

the results.

4.2.3.1. Three Levels of Parsing with a Single Model We use the chart-based zero-shot

parsing model for three types of parsing ranging in different semantic and syntactic levels

with different granularities and structures of a given text:

• Dependency Parsing is concerned with the syntactic relations between words in a

sentence. These syntactic relations are discovered in terms of the dependencies of

words on each other. To apply the zero-shot parsing model to dependency parsing,

we compute the scores for each tree and then apply Eisner [101] decoding algorithm

(instead of CYK) to produce dependency trees using the tree scores.

• Constituency Parsing is concerned with extracting the syntactic structure of a

given text through phrasal constituents. Therefore, unlike dependency parsing, it is

concerned with the syntactic structure of an entire sentence rather than the relations

between words as opposed to dependency parsing. We apply zero-shot parsing without

adding any additional steps for constituency parsing.

• Semantic Parsing is concerned with extracting the semantic structure of a given text

using a formal representation. In particular, we use the UCCA [17] graph-based

semantic representation to extract semantic relations within the text. To perform

UCCA-based parsing, we first convert UCCA graphs into constituent trees by

removing discontinuities and remote edges [73, 102]. Then we perform zero-shot

learning to tackle semantic parsing as a constituency parsing problem. After finding

the tree with the lowest score, we convert constituency trees back to the UCCA-based
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graphs and restore discontinuity units. We disregard the remote edges and implicit

edges.

4.3. Experiments & Evaluation

We present the details of the datasets, the evaluation metrics, our experimental setting, and

the results of our evaluation for all proposed models.

4.3.1. Datasets

We used the SemEval 2019 shared task [1] dataset and the Turkish dataset described in

Chapter 5.. The details of the datasets are given in Table 4.1. The SemEval 2019 shared

task [1] dataset includes the English, German, and French languages from Wikipedia and

Twenty Thousand Leagues Under the Sea and the Turkish dataset includes only the Turkish

language from the METU-Sabanci Turkish Treebank [103, 104].

English-Wiki English-20K German-20K French-20K Turkish
Train 4,113 0 5,211 15 0
Validation 514 0 651 238 0
Test 515 492 652 239 400

Table 4.1 Number of sentences in each dataset in Semeval 2019 [1] and Turkish datasets

For the unsupervised parser model (see 4.2.3.), which is chart-based zero-shot parsing model,

we used the following dependency and constituency datasets in addition to the semantic

parsing datasets7:

• Constituency Parsing: We report the results of constituency parsing on the Penn

Treebank (PTB) [105] for English, on the SPMRL dataset [106] for and German and

French, and on the Turkish Annotated Treebank for Turkish [107] 8.
7We only use the test set of datasets for languages.
8https://github.com/olcaytaner/TurkishAnnotatedTreeBank2-15

50

https://github.com/olcaytaner/TurkishAnnotatedTreeBank2-15


• Dependency Parsing: We present the results of the model for dependency parsing on

Universal Dependencies v2.3 for English, German, French and Turkish.

Here we specify the size of the test sets used in all parsing tasks.

English German French Turkish
Dependency Parsing 2077 1000 416 979
Constituency Parsing 2416 5000 2541 63

Semantic Parsing
Wiki: 515
20-K: 492 652 239 50

Table 4.2 Size of the test sets of dependency, constituency, and semantic parsing datasets used in the
experiments

4.3.2. Evaluation Metrics

We followed the official evaluation metrics used in SemEval 2019 [1] for the evaluation

of semantic parsing. The evaluation method measures a matching score between each

output graph Go = (Vo, Eo, lo) predicted by the model and its corresponding gold graph

Gg = (Vg, Eg, lg) over the same sequence of nodes. Labeled precision and recall metrics are

calculated by dividing the number of matching edges in Go and Gg with their corresponding

labels to |Eo| and |Eg| respectively.

F1 is the harmonic mean of precision and recall:

F1 = 2 · Precision ·Recall

Precision×Recall
(12)

Unlabeled precision, recall, and F1 are computed analogously, but without requiring label

matching for the edges. In all semantic parsing experiments, both primary and remote edges

are evaluated separately.

We report the unlabeled F1 score and attachment score (UAS) for constituency parsing and

dependency parsing, respectively, for the chart-based zero-shot parsing experiments.
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4.3.3. Experimental Settings

We present the experimental setting of the models separately.

• Self-Attentive Semantic Parser We perform two single-lingual experiments, similar

to Hershcovich et al. [1] for English: 1. in-domain setting using the English-Wiki

corpus for both training and testing purposes (a separate validation set under the same

dataset is used for testing) 2. out-of-domain setting using the English-Wiki corpus for

training and the English-20K for testing purposes. We perform in-domain experiments

only for English, German and French since only one dataset is available for both

languages.

The semantic parser is implemented using the PyTorch package. For the encoder,

we use a self-attention layer with the same parameter values as in [92]. The word

embedding dimensionality is 100 with an embedding dimensionality of 50 for PoS

tags, 50 for dependency tags, 25 for entity types, and 25 for entity iob types. We used

the Adam optimizer [108], cross-entropy as the objective function, and early stopping

during training because of the variations in the size of the training sets.

All syntactic embeddings (i.e., word, PoS tags, dependency tags, entity types, and

entity iob types) are randomly initialized in the single-lingual experiments. In addition

to syntactic embeddings, we use pre-trained fasttext [109] character n-gram based

word embeddings. In addition, we use BERT [91] embeddings as contextualized

embeddings to incorporate contextual information. For the cross-lingual models, we

conduct experiments with and without contextual embeddings in addition to syntactic

embeddings.

• Incremental Semantic Parser We perform the same experiments defined in the

model settings of Self-Attentive Semantic Parser: single-lingual (in-domain and

out-of-domain) and cross-lingual.

The semantic parser is implemented using the PyTorch package. We use the Adam

optimizer [108], cross-entropy as the objective function, and early stopping during
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training due to variations in the size of the training sets. The parameters are LSTM

layer dimension 500, number of LSTM 2, word dropout 0.1, dropout 0.4, weight decay

10−5 and mini-batch size 32. We used pre-trained language models (BERT [91]) as

word embeddings.

• Chart-based Zero-shot Semantic Parser In the experiments, we use both

monolingual and multilingual PLMs. For English, we use the following monolingual

PLMs: BERT [91], GPT-2 [110], RoBERTa [111], and XLNet [112]. We follow

previous work [98–100] by using two variants of each PLM, where the X-base variant

consists of 12 layers, 12 attention heads and 768 hidden dimensions, while the X-large

variant has 24 layers, 16 attention heads and 1024 hidden dimensions. The GPT2

model corresponds to the X-base while GPT2-medium corresponds to the X-large

model.

We use bert-base-german-cased, bert-base-french-europeana-cased,

and bert-base-turkish-cased for German, French, and Turkish monolingual

PLMs respectively.

For multilingual experiments, we use the multilingual version of the BERT-base

model (M-BERT) [91], the XLM-base model (XLM-R) [113], which is a multilingual

RoBERTa model, and the large version of XLM (XLM-R-large) [114].

4.3.4. Results

4.3.4.1. Self-Attentive Semantic Parser The results of both single-lingual and

cross-lingual experiments on SemEval 2019 [1] datasets for English, French, and German

are given in Table 4.3. Since the Turkish dataset is very small (400 sentences), we report

results for Turkish on Zero-shot and Few-shot Cross-Lingual Model and Error Analysis.

For the single-lingual setting, the use of fasttext embeddings [115] along with BERT

contextualized embeddings [91] in addition to syntactic embeddings outperforms the other

settings in all languages. For the cross-lingual setting, the results have slightly decreased for
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Single-Lingual Exp. Cross-Lingual Exp.
Prim. Rem. All Prim. Rem. All

English-Wiki
syntactic emb. 74.5 2.1 73.04 74.8 44.7 74.19
syntactic emb. ⊕ fasttext 77.9 53.0 77.4 - - -
syntactic emb. ⊕ bert 78.3 52.8 77.79 79.6 48.5 78.97
syntactic emb. ⊕ fasttext ⊕ bert 80.2 55.4 79.7 - - -

English-20K
syntactic emb. 71.0 7.9 68.87 72.7 23.6 71.04
syntactic emb. ⊕ fasttext 73.8 25.0 72.15 - - -
syntactic emb. ⊕ bert 75.45 28.6 73.87 75.9 29.4 74.33
syntactic emb. ⊕ fasttext ⊕ bert 76.2 29.3 74.62 - - -

German-20K
syntactic emb. 77.3 31.5 76.09 80.4 49.3 79.58
syntactic emb. ⊕ fasttext 83.6 60.2 82.98 - - -
syntactic emb. ⊕ bert 85.1 63.7 84.54 86.2 53.6 85.34
syntactic emb. ⊕ fasttext ⊕ bert 86.7 65.1 86.13 - - -

French-20K
syntactic emb. 43.1 0 41.67 65.4 15.3 63.74
syntactic emb. ⊕ fasttext 43.2 0 41.77 - - -
syntactic emb. ⊕ bert 44.5 0 43.02 68.7 45.5 67.93
syntactic emb. ⊕ fasttext ⊕ bert 46.2 0 44.67 - - -

Table 4.3 Single-lingual and cross-lingual experimental results of self-attentive parser on Semeval
2019 dataset [1]

all languages except French. However, the results for French have improved significantly.

The cross-lingual setting helps predict remote edges in French, while it is not sufficient

to predict remote edges in single-lingual setting due to the insufficient amount of training

data for French. We did not perform experiments with pre-trained fasttext embeddings as

they are trained independently for different languages and are not available as multilingual

embeddings. Using BERT improves F1 scores by about 4% for English, 5% for German, and

4% for French in the cross-lingual setting.

Comparative results of our model with other participants of Semeval 2019 [1]9 are given in

Table 4.4. The results show that our model achieves state-of-the-art performance among the

other parsers in English and German. The model proposed by Jiang et al. [73] outperforms

9We report the official results given in [1]
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the other models in French. However, our results on unlabeled edges are still competitive

with those of [73].

English-Wiki
Labeled Unlabeled

All Prim. Rem. All Prim. Rem.
TUPA 72.8 73.3 47.2 85.0 85.8 48.4
HLT@SUDA 77.4 77.9 52.2 87.2 87.9 52.5
Davis 72.2 73.0 0 85.5 86.4 0
CUNY-PekingU 71.8 72.3 49.5 84.5 85.2 50.1
DANGNT@UIT.VNU-HCM 70.0 70.7 0 81.7 82.6 0
GCN-Sem 65.7 66.4 0 80.9 81.8 0
Self-Attentive UCCA Parser 79.7 80.2 55.4 89.6 90.3 55.3

English-20K
HLT@SUDA 72.7 73.6 31.2 85.2 86.4 32.1
TUPA 67.2 68.2 23.7 82.2 83.5 24.3
CUNY-PekingU 66.9 67.9 27.9 82.3 83.6 29.0
GCN-Sem 62.6 63.7 0 80.0 81.4 0
Self-Attentive UCCA Parser 74.62 76.2 29.3 87.69 89.7 30.1

German-20K
HLT@SUDA 84.9 85.4 64.1 92.8 93.4 64.7
TUPA 79.1 79.6 59.9 90.3 91.0 60.5
TüPa 78.1 78.8 40.8 89.4 90.3 41.2
XLangMo 78.0 78.4 61.1 89.4 90.1 61.4
MaskParse@Deskiñ 74.2 74.8 47.3 87.1 88.0 47.6
Self-Attentive UCCA Parser 86.13 86.7 65.1 94.1 94.4 64.5

French-20K
HLT@SUDA 75.2 76.0 43.3 86.0 87.0 45.1
XLangMo 65.6 66.6 13.3 81.5 82.8 14.1
MaskParse@Deskiñ 65.4 66.6 24.3 80.9 82.5 25.8
TUPA 48.7 49.6 2.4 74.0 75.3 3.2
TüPa 45.6 46.4 0 73.4 74.6 0
MaskParse@Deskiñ 65.4 66.6 24.3 80.9 82.5 25.8
Self-Attentive UCCA Parser 67.93 68.7 45.5 84.8 85.5 54.6

Table 4.4 Comparative F-1 results of the self-attentive parser with other participants of UCCA
framework at Semeval 2019 [1]

Zero-shot and Few-shot Cross-Lingual Model: Zero-shot learning [116, 117] and few-shot

learning [118] have recently shown outstanding success in various NLP tasks such as

dependency parsing and text classification. Zero-shot cross-lingual model is used when no

or few annotated examples are available in the target language. In contrast, the few-shot

55



cross-lingual model is used when only a small amount of training data is available during

training. Due to the insufficient size of the French and Turkish datasets, we performed both

few-shot and zero-shot learning as part of the cross-lingual experiments.

In the zero-shot setting for French and Turkish, we performed cross-lingual experiments

without using the dataset during training. In the few-shot setting of French, we used the train

set of French during training. For Turkish, we performed 5-fold cross-validation by adding

320 sentences to the merged training set in other languages and using 80 sentences as the

test set. We report the average of the scores obtained from each fold. The results are given

in Table 4.5. The results show that even a small amount of data significantly improves the

results in few-shot learning compared to zero-shot learning.

Labeled Unlabeled
Primary Remote All Primary Remote All

French
single-lingual 46.2 0 44.67 68.9 0 66.62
zero-shot 57.2 16.2 56.42 78.6 16.2 76.53
few-shot 68.7 45.5 67.93 85.8 54.6 84.48

Turkish
zero-shot 58.2 0.0 57.9 85.9 0.0 85.7
few-shot 74.8 21.2 73.5 89.5 23.4 88.2

Table 4.5 Effect of French and Turkish dataset on cross-lingual experiments for self-attentive parser

Error Analysis: We characterize the errors of our semantic parser by conducting further

experiments to analyze the effects of structural and linguistic features of sentences on the

accuracy of the parser.

• Sentence Length: The results for the different sentence lengths for SemEval

datasets [1] are given in Table 4.6. The results show that the longer the sentences

are, the lower the F-1 scores are for the remote edges except for the English-Wiki

dataset. Since UCCA can be extended to represent paragraph-level annotation, the

semantic structure of longer sentences can also be efficiently represented using the

UCCA framework. The results obtained from the primary edges for longer sentences

already confirm this. The frequency of a remote edge is 1 or 0 in each sentence in the

dataset, which does not let the model learn the remote edges properly. Therefore, the

efficiency of the model is more crucial for primary edges than for remote edges.
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English-Wiki English-20K German-20K French-20K
Sent. Len. Prim. Rem. All Prim. Rem. All Prim. Rem. All Prim. Rem. All
>= 10 80.8 50.8 79.76 73.2 30.1 72.33 87.2 66.7 86.61 68.2 45.4 67.42
>= 20 80.4 50.9 79.42 76.9 29.0 75.89 84.5 60.3 83.75 67.5 45.3 66.72
>= 30 79.8 63.0 79.18 75.8 26.6 74.74 83.4 59.2 82.67 69.1 42.7 68.17
>= 40 82.4 61.0 81.68 74.5 26.4 73.58 83.0 48.5 82.01 66.5 41.4 65.58
>= 50 78.5 61.5 77.93 74.2 0 72.55 82.9 49.2 81.84 66.8 39.8 65.83

Table 4.6 Results by the length of SemEval datasets [1] on self-attentive parser

In Table 4.7, we also present the results of few-shot learning for different sentence

lengths for the Turkish dataset. Since the sentences in the Turkish dataset are shorter

compared to the SemEval datasets [1], the performance of the model is better for

shorter sentences than for longer ones.

Labeled Unlabeled
Sent. Len. Primary Remote All Primary Remote All

≤ 5 97.7 32.4 95.3 99.2 35.6 96.4
≤ 10 81.4 24.6 78.6 91.7 28.5 89.9
≤ 20 75.6 25.4 73.2 88.2 26.4 86.5
≤ 50 52.3 0.0 51.4 84.5 0.0 82.6

Table 4.7 Results by the length of Turkish dataset on self-attentive parser

• Semantic Categories: We analyze the results of each semantic category to further

evaluate the performance of the model according to each category. The results of each

category are given in Table 4.8. The frequency of Adverbial (D), Function (F), Ground

(G), Linker (L), Connector (N), and State (S) are comparatively lower than that of the

other semantic categories in the dataset10. While the model struggles with predicting

categories with low frequency, more frequent categories are learned more accurately

by the model.

Scene Elements Non-Scene Elements Inter-Scene Relations Other
dataset P S A D C E N R H L G F
English-Wiki 0.68 0.24 0.77 0.67 0.83 0.80 0.87 0.86 0.75 0.56 0.65 0.73
English-20K 0.73 0.23 0.67 0.54 0.81 0.78 0.82 0.86 0.60 0.72 0.25 0.71
German-20K 0.79 0.27 0.81 0.77 0.90 0.87 0.30 0.92 0.79 0.88 0.71 0.88
French-20K 0.68 0.24 0.58 0.32 0.78 0.71 0.75 0.83 0.49 0.59 0.46 0.41
Turkish 0.82 0.48 0.88 0.64 0.65 0.57 0 0.21 0.68 0.37 0.41 0.39

Table 4.8 F-1 measure of predicting primary edges and their labels on self-attentive parser

10The details of the dataset can be found in [1].
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4.3.4.2. Incremental Semantic Parser The results of both single-lingual and

cross-lingual experiments with the SemEval 2019 [1] datasets for English, French, and

German are given in Table 4.9. For single-lingual experiments, the train set of the German

dataset is larger than that of the other datasets, which is the main reason for the higher F1

score in German as defined in the literature [119]. The results of English in the in-domain

setting and German have not changed in the cross-lingual setting. However, the results of

English in the out-of-domain setting and French have improved significantly. Moreover, the

cross-lingual setting helps predict remote edges in French, which couldn’t be predicted in

the single-lingual setting due to the insufficient amount of training data.

Single-Lingual Exp. Cross-Lingual Exp.
Primary Remote All Primary Remote All

English-Wiki 78.05 52.18 76.70 77.45 53.14 76.89
English-20K 70.19 25.17 69.30 79.57 49.52 78.47
German-20K 83.15 47.18 82.60 83.19 48.2 82.44
French-20K 39.65 0 38.73 68.19 18.49 67.71

Table 4.9 Single-lingual and cross-lingual experimental results of incremental parser on Semeval
2019 dataset [1]

Comparative results of our model with other participants of Semeval 2019 [1] are given

in Table 4.10. The results show that we could not achieve competitive results with the

self-attentive parser and the other state-of-the-art models in the literature. Our model

achieves the best results among the other parsers for English only in the out-of-domain

setting. This is a very important outcome that shows the adaptation of the model for datasets

from different domains.

Zero-shot and Few-shot Cross-Lingual Model: We perform both few-shot and zero-shot

learning as part of the cross-lingual experiments. We use the same settings of self-attentive

parser in the zero-shot and few-shot experiments. The results are given in Table 4.11. The

results show that even a small amount of data significantly improves the results in few-shot

learning compared to zero-shot learning similar to the results of the self-attentive parser.
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English-Wiki
Labeled Unlabeled

All Prim. Rem. All Prim. Rem.
TUPA 72.8 73.3 47.2 85.0 85.8 48.4
HLT@SUDA 77.4 77.9 52.2 87.2 87.9 52.5
Davis 72.2 73.0 0 85.5 86.4 0
CUNY-PekingU 71.8 72.3 49.5 84.5 85.2 50.1
DANGNT@UIT.VNU-HCM 70.0 70.7 0 81.7 82.6 0
GCN-Sem 65.7 66.4 0 80.9 81.8 0
Incremental UCCA Parser 76.89 77.45 53.14 82.20 83.62 53.13

English-20K
HLT@SUDA 72.7 73.6 31.2 85.2 86.4 32.1
TUPA 67.2 68.2 23.7 82.2 83.5 24.3
CUNY-PekingU 66.9 67.9 27.9 82.3 83.6 29.0
GCN-Sem 62.6 63.7 0 80.0 81.4 0
Incremental UCCA Parser 78.47 79.57 49.52 89.55 90.72 50.00

German-20K
HLT@SUDA 84.9 85.4 64.1 92.8 93.4 64.7
TUPA 79.1 79.6 59.9 90.3 91.0 60.5
TüPa 78.1 78.8 40.8 89.4 90.3 41.2
XLangMo 78.0 78.4 61.1 89.4 90.1 61.4
MaskParse@Deskiñ 74.2 74.8 47.3 87.1 88.0 47.6
Incremental UCCA Parser 82.60 83.15 47.18 91.29 90.60 60.67

French-20K
HLT@SUDA 75.2 76.0 43.3 86.0 87.0 45.1
XLangMo 65.6 66.6 13.3 81.5 82.8 14.1
MaskParse@Deskiñ 65.4 66.6 24.3 80.9 82.5 25.8
TUPA 48.7 49.6 2.4 74.0 75.3 3.2
TüPa 45.6 46.4 0 73.4 74.6 0
MaskParse@Deskiñ 65.4 66.6 24.3 80.9 82.5 25.8
Incremental UCCA Parser 67.71 68.19 18.49 80.61 82.43 32.14

Table 4.10 Comparative F-1 results of incremental parser with other participants of UCCA
framework at Semeval 2019 [1]
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Labeled Unlabeled
Primary Remote All Primary Remote All

French
single-lingual 39.65 0 38.73 54.13 0 52.02
zero-shot 67.18 13.21 66.42 81.15 30.86 80.11
few-shot 68.19 18.49 67.71 82.43 32.14 80.61

Turkish
zero-shot 52.08 18.89 49.56 83.48 31.78 82.23
few-shot 75.15 28.75 74.03 88.07 48.47 86.92

Table 4.11 Effect of French and Turkish dataset on cross-lingual model for incremental parser

Error Analysis: We characterize the errors of our semantic parser by conducting further

experiments to analyze the effects of structural and linguistic features of sentences on the

accuracy of the parser.

• Sentence Length: The results for the different sentence lengths for SemEval

datasets [1] are given in Table 4.12. The results show that the longer the sentences

are, the lower the F-1 scores are for all UCCA datasets. Unlike the self-attentive

parser, which is a graph-based approach, the incremental parser does not perform better

on longer sentences. The main reason for this is the propagating error in predicting

transitions in long-term dependencies [120, 121].

English-Wiki English-20K German-20K French-20K
Sent. Len. Prim. Rem. All Prim. Rem. All Prim. Rem. All Prim. Rem. All
>= 10 82.10 50.00 81.25 90.10 45.18 89.55 90.45 52.94 89.70 70.37 0 67.86
>= 20 95.15 62.15 94.60 80.80 45.83 79.84 91.41 60.00 90.95 81.13 40.00 79.90
>= 30 90.24 52.94 89.16 80.83 51.03 82.20 86.15 50.98 85.65 73.27 46.67 72.91
>= 40 91.67 50.00 90.72 77.52 51.03 78.40 88.93 39.66 87.75 75.00 18.75 73.62
>= 50 77.12 22.02 76.74 72.69 22.79 73.40 81.69 28.60 82.48 67.36 13.32 68.18

Table 4.12 Results by the length of SemEval datasets [1]

In Table 4.13, we also present the results of few-shot learning for different sentence

lengths for the Turkish dataset. Since the sentences in the Turkish dataset are shorter

compared to the SemEval datasets [1], the performance of the model is better for

shorter sentences than for longer ones.

• Semantic Categories: We analyze the results of each semantic category to further

evaluate the performance of the model according to each category. The results of

each category are given in Table 4.14. The frequency of Adverbial (D), Function (F),
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Labeled Unlabeled
Sent. Len. Primary Remote All Primary Remote All

≤ 5 95.81 24.05 94.60 98.48 57.48 67.67
≤ 10 82.45 30.15 81.48 92.44 37.87 91.54
≤ 20 74.62 23.32 73.27 86.70 33.90 85.54
≤ 50 68.17 0 67.36 85.78 0 83.73

Table 4.13 Results by the length of Turkish dataset on incremental parser

Ground (G), Linker (L), Connector (N), and State (S) are comparatively lower than

that of the other semantic categories in the dataset11. While the model struggles with

predicting categories with low frequency, more frequent categories are learned more

accurately by the model.

Scene Elements Non-Scene Elements Inter-Scene Relations Other
dataset P S A D C E N R H L G F
English-Wiki 0.60 0.22 0.75 0.94 0.84 0.81 0.84 0.83 0.74 0.55 0.62 0.70
English-20K 0.75 0.24 0.68 0.55 0.80 0.77 0.85 0.84 0.64 0.75 0.29 0.72
German-20K 0.78 0.26 0.79 0.76 0.90 0.82 0.28 0.91 0.76 0.86 0.70 0.87
French-20K 0.67 0.23 0.60 0.33 0.79 0.72 0.74 0.82 0.50 0.59 0.47 0.40
Turkish 0.83 0.52 0.87 0.63 0.66 0.59 0. 0.21 0.67 0.35 0.42 0.41

Table 4.14 F-1 measure of predicting primary edges and their labels on incremental parser

4.3.4.3. Chart-based Zero-shot Semantic Parser We present the results obtained from

each parsing separately below.

• Dependency Parsing Dependency Parsing results for all languages are given in

Table 4.15. The best results are obtained from multilingual PLMs in all languages.

Since the other unsupervised dependency parsing models are either finetuned [122,

123] or utilise other external resources such as Google Universal Treebanks [122]

or WSJ [123], we have not made a comparison with other models since the model

presented here is fully unsupervised, does not use any annotated data, and does not

incorporate any syntactic information during PLM pre-training.

• Constituency Parsing For constituency parsing, we either perform top-down or

chart-based parsing to generate trees. We further experiment with using different

11The details of the dataset can be found in [1].
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Monolingual Models
PLM English German French Turkish
BERT-base-cased4 26.48 26.59 24.78 35.56
BERT-large-cased 27.89 - - -
XLNet-base-cased 25.66 - - -
XLNet-large-cased 27.53 - - -
RoBERTa-base 27.68 - - -
RoBERTa-large 25.11 - - -
GPT2 19.66 - - -
GPT2-medium 21.44 - - -

Multilingual Models
M-BERT 30.80 30.69 34.37 41.62
XLM-R 30.80 31.84 34.27 41.25
XLM-R-large 32.66 28.58 26.19 39.13

Table 4.15 UAS scores for dependency parsing

layers in the PLMs. All unlabeled F1 scores for the constituency parsing are given

in Table 4.16 and Table 4.17. We use abbreviations TD, CP, and CC for Top-Down,

Chart-Pair (pair score function sp(·, ·)) and Chart-Characteristic (characteristic score

function sc(·, ·)) respectively. With the exception of English, we obtain the best results

with the top-down decoder and with XLM-R for German, French, and Turkish 12.

English German
PLM TD CP CC TD CP CC

Monolingual Models
BERT-base-cased 34.51 40.24 42.05 26.96 24.82 26.59
BERT-large-cased 38.93 43.68 44.58 - - -
XLNet-base-cased 40.12 42.14 43.47 - - -
XLNet-large-cased 38.32 42.60 43.73 - - -
RoBERTa-base 40.61 45.37 46.01 - - -
RoBERTa-large 34.30 42.19 43.26 - - -
GPT2 34.21 34.01 35.78 - - -
GPT2-medium 37.65 38.59 39.81 - - -

Multilingual Models
M-BERT 40.28 43.44 44.13 30.69 30.59 30.28
XLM-R 41.25 44.25 44.76 33.13 32.19 31.84
XLM-R-large 39.13 42.87 44.67 28.18 27.13 28.58

Table 4.16 Unlabeled F1 scores for constituency parsing in English and German

12The model is adopted from that of Kim et al. [99] and we prefer not to repeat the comparative scores here
again.
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French Turkish
PLM TD CP CC TD CP CC

Monolingual Models
BERT-base-cased 24.78 22.83 23.86 35.36 31.47 33.50

Multilingual Models
M-BERT 32.88 30.37 30.45 41.29 40.61 39.93
XLM-R 34.19 31.29 30.93 45.18 43.49 42.30
XLM-R-large 26.68 25.70 26.46 36.21 36.72 36.72

Table 4.17 Unlabeled F1 scores for constituency parsing in French and Turkish

• Semantic Parsing The unlabeled F1 scores for UCCA-based semantic parsing are

given in Table 4.18 and 4.19. The best results are obtained from RoBERTa-base

amongst the monolingual models and from XLM-R amongst the multilingual models

in English. Interestingly, both RoBERTa and XLM-R give similar results. For

German, French, and Turkish, the best results are obtained from multilingual models.

Since this is the very first study that performs UCCA-based semantic parsing in a

completely unsupervised framework, there is no other study that can be compared to

ours. Therefore, we report our results only as a baseline for future studies.

The results of dependency parsing are comparatively much lower than those of constituency

and semantic parsing in all languages. Unsupervised dependency parsing has mostly been

performed in the literature using probabilistic generative models [124] and is comparatively

harder than constituency parsing, as it requires learning finer relations between words rather

than between phrases in a sentence. Interestingly, however, the results of UCCA-based

semantic parsing are also promising and as good as the performance of constituency parsing.

It should be noted that UCCA-based semantic parsing has not yet been tackled with an

unsupervised learning model before.

As for the PLM models, the GPT and GPT2-medium perform comparatively poorly on all

parsing problems. Unlike other PLMs, the GPT models are auto-regressive language models

that do not allow to the incorporation of the context on both sides of a word, which might be

the reason of the poor performance of the GPT models.
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English-Wiki English-20K
PLM TD CP CC TD CP CC

Monolingual Models
BERT-base-cased 38.34 42.30 42.60 39.10 42.80 43.93
BERT-large-cased 38.33 42.93 43.52 39.41 43.82 44.75
XLNet-base-cased 37.00 39.62 40.18 37.57 39.56 42.70
XLNet-large-cased 38.41 41.25 42.27 39.98 41.20 41.52
RoBERTa-base 41.82 44.96 45.21 32.43 45.62 46.18
RoBERTa-large 37.65 41.37 41.62 36.44 41.78 41.92
GPT2 31.97 38.23 38.56 32.41 37.97 38.40
GPT2-medium 34.86 38.49 38.58 32.21 37.68 39.31

Multilingual Models
M-BERT 39.62 43.52 44.06 38.11 43.99 45.15
XLM-R 40.98 45.45 45.89 42.06 45.51 46.30
XLM-R-large 36.40 40.05 40.87 33.69 40.00 41.45

Table 4.18 Unlabeled F1 scores for semantic parsing in English (English-Wiki, English-20K)

German-20K French-20K Turkish
PLM TD CP CC TD CP CC TD CP CC

Monolingual Models
BERT-base-cased13 40.30 41.93 42.96 40.32 40.55 42.71 38.78 41.10 40.33

Multilingual Models
M-BERT 39.08 44.17 44.07 41.01 43.26 46.08 41.18 38.86 39.32
XLM-R 40.90 43.15 42.98 44.13 46.08 47.38 47.38 46.37 46.37
XLM-R-large 35.59 39.63 42.37 37.56 39.17 38.94 44.96 40.64 40.64

Table 4.19 Unlabeled F1 scores for semantic parsing in German, French and Turkish

Analysis of the Results

We analyse the attention layers and heads that contribute most to each parsing task, along

with the effect of sentence length in the experiments.

• Attention Layers We analyse the attention layers to see which layers provide the most

information for the parsing tasks.

– Dependency Parsing UAS scores obtained from multilingual models for each

layer are illustrated in Figure 4.9. The results show that we get the highest UAS

scores from the middle or the ones closer to the final layers of the PLMs for all

languages.
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(a) Bert-multilingual (b) XLM-R (c) XLM-R-large

Figure 4.9 UAS scores of multilingual PLMs for dependency parsing

(a) Bert-multilingual (b) XLM-R (c) XLM-R-large

Figure 4.10 F1 scores of multilingual PLMs for constituency parsing

– Constituency Parsing F1 scores obtained from multilingual PLMs for all layers

are given in Figure 4.10. Although there are slight differences between languages,

the general picture does not differ from the dependency parsing results, and again

the highest scores are mainly obtained from the middle layers.

– Semantic Parsing F1 scores obtained from monolingual models for all layers

along with the different distance functions are given in Figure 4.11. Only the

best scores obtained from the attentions in each layer are illustrated. The graphs

show that there is not much difference between the distance functions in terms of

their performance in parsing. However, we obtain the highest scores again from

the middle or towards the last layers, except for GPT-2, which achieves the best

results in the lower layers.

• Attention Heads We also analyse the attention heads in the layers to observe which

attention heads contribute the most to each parsing task. F1 scores obtained from

the attention heads in the different layers are given in Figure 4.12, Figure 4.13,
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(a) Bert-base (b) Bert-large (c) XLNet-base (d) XLNet-large

(e) RoBERTa-base (f) RoBERTa-large (g) GPT2 (h) GPT2-medium

Figure 4.11 F1 scores from monolingual PLMs using the English-Wiki dataset for semantic parsing

(a) English (b) German (c) French (d) Turkish

Figure 4.12 Unsupervised dependency parsing performance in all languages according to different
attention heads and hidden layers with HEL distance function (Light cells refer to higher
UAS scores)

and Figure 4.14 for dependency, constituency, and semantic parsing (with XLM-R)

respectively. The graphs support the findings regarding the hidden layers and also

show that the top heads contain more information for all tasks and languages, except

for Turkish constituency and semantic parsing, where the lower heads contain more

information. This could again be due to the length of the sentences in the Turkish

datasets.

• Multilinguality The results of the multilingual PLMs for all languages are given in

Figure 4.15. The F1 scores of the languages are very low in the first hidden layers

except for Turkish. The lower hidden layers could be more informative for short

sentences since the Turkish UCCA dataset involves shorter sentences compared to

other languages. This could be the reason for this difference between languages. The
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(a) English (b) German (c) French (d) Turkish

Figure 4.13 Unsupervised constituency parsing performance in all languages for different attention
heads and hidden layers with HEL distance function (Light cells correspond to higher
F1 scores)

(a) English-Wiki (b) English-20K (c) German-20K (d) French-20K (e) Turkish

Figure 4.14 Unsupervised UCCA semantic parsing performance in all languages with different
attention heads and hidden layers with HEL distance function (Light cells refer to higher
F1 scores)

(a) Bert-multilingual (b) XLM-R (c) XLM-R-large

Figure 4.15 F1 scores from multilingual PLMs using the UCCA datasets

results also support that the final layers bear more syntactic information compared to

the lower layers, especially for longer sentences, which is consistent with the findings

of other studies [98, 99, 125].

To analyze and compare the PLMs for the parsing problems, we look in particular at

the XLM-R multilingual PLM, since it generally outperforms the other models. The

comparative results are given in Figure 4.16. It can be clearly seen that the PLMs for

Turkish are informative for all parsing problems. Moreover, the results of the parsing

problems for French and German are all similar.

67



(a) Semantic Parsing (b) Constituency Parsing (c) Dependency Parsing

Figure 4.16 F1 scores of XML-R for all problems

samples < average samples > average
Language Av. Len Av. Len F1 Av. Len F1
English 20.46 12.76 43.73 28.96 39.04
German 18.82 11.62 33.71 30.07 30.37
French 29.73 16.82 34.64 46.05 31.85
Turkish 13.95 11.84 48.42 16.48 44.29

Table 4.20 F1 scores of constituency parsing for samples that are shorter and longer than the average
overall sentence length

• Sentence Length To understand the effect of sentence length, we extract the average

length of sentences in all datasets. The average sentence length of Turkish datasets for

all tasks is less than that of the other languages, whereas the average sentence length

of German and French is higher in all parsing datasets.

To investigate the relationship between sentence length and the accuracy of the parsing,

we run constituency parsing with XLM-R multilingual PLM and top-down parser on

1000 samples with length less than the average length of the dataset and 1000 samples

with length greater than the average length of the datasets in English, French, and

German. We only use 50 samples (25 less and 25 are greater than the average length

in Turkish since there are only 63 samples in the dataset. Table 4.20 gives the average

length of the sentences in each dataset along with the obtained F1 scores. The results

show that the model performs better on shorter sentences. This also confirms that the

model can hardly find distant relationships in longer sentences.
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4.4. Discussion

The answer to the questions we asked at the beginning of this chapter.

1. Which approach (transition-based, graph-based) is most effective for the UCCA-based

semantic parsing problem?

To answer this question, we propose self-attentive and incremental parsers as

graph-based and transition-based parsers, respectively. The self-attentive parser is

based on an encoder-decoder architecture, where the encoder of the Transformer [92]

with 2 MLP classifiers with 2 fully-encoded layers and ReLU activation function is

the encoder and CYK is the decoder. The transition-based model is based on the

BiLSTM layer and the adaptation of the attach-juxtapose transition set for the

UCCA representation. The experimental results show that the graph-based semantic

parser outperforms the transition-based approach in all languages except English with

out-of-domain setting. This conclusion has also been proven in previous studies using

graph-based approaches [71, 73, 80]. For longer sentences, the self-attentive parser

performs better than the incremental parser compared to shorter sentences. This

is evidence that transition-based parsers need a solution for longer sentences, since

predicting long-term dependencies is a challenge for transition-based parsers.

2. Are the constituency parsing models applicable to the semantic parsing problems after

preprocessing the UCCA representation?

We adopt self-attentive constituency parser proposed by Kitaev and Klein [93] for

semantic parsing. Since the UCCA representation is in the DAG formalism due to the

remote edges, we apply a preprocessing step to convert the UCCA representations into

constituency trees. We remove remote edges and add an extra MLP layer for predicting

remote edges and push the labels of the edges to the nodes as in the constituency tree.

In this way, we can easily apply the constituency parsing model for UCCA parsing.

There are also studies in the literature that use constituency parsing models for UCCA

parsing [73, 80] and the results of these models are comparatively high for the problem.
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This is the main motivation for our self-attentive UCCA parser in this thesis. We obtain

the best results for the English and German datasets of the SemEval 2019 [10] dataset.

These datasets are comparatively larger than the French dataset. We conclude that the

self-attentive encoder requires more train set to capture more information for the words

in the datasets.

3. Is the transition set of the transition-based parser important to learn the features of the

UCCA representation (discontinuous units, reentrancy, etc.)?

We adopt the attach-juxtapose system as a transition-based UCCA parser using

the same architecture of the TUPA parser [126], the first proposed transition-based

UCCA parser, and compare the results. The incremental parser outperforms the TUPA

parser [126] and demonstrates the importance of the transition set in a transition-based

parser. In particular, the incremental parser achieves the highest score in German and

competes with the graph-based parser. The model also outperforms the graph-based

parser in the English dataset in the out-of-domain setting. This shows that a

transition-based parser with an efficient transition set is adaptable for out-of-domain

datasets.

4. Given the problem of data scarcity in UCCA representation, up to what extent does an

unsupervised model learn?

Unsupervised models are very important in NLP tasks with the problem of lack

of data. The UCCA semantic representation is a comparatively new representation

compared to others (AMR, UDS, etc.) and the datasets are released for limited

languages (English, German, French, etc.). There are supervised studies on semantic

parsing for UCCA [46, 73, 80]. However, UCCA parsing has never been studied

in an unsupervised manner. There are studies in the literature that use PLMs for

NLP problems [98, 100] since PLMs contain enough syntactic knowledge in different

layers and heads for these problems. Therefore, we adopted chart-based zero-shot

parsing [98–100] for semantic parsing by comparing constituency and dependency

parsing. The results are lower than those of the supervised models, but we get an
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insight into the information of the PLMS weights for semantic parsing. For semantic

parsing, we obtain similar results for all languages with different sentence lengths.

Moreover, the best results are obtained in multilingual models.

4.5. Summary

In this chapter, we focus on the problem of the semantic parser from different perspectives.

We introduced models for UCCA parsing to investigate the difference between transition

and graph-based approaches, and supervised and unsupervised DL models. We showed

that the graph-based approach named self-attentive parser, which solves UCCA parsing as

constituency tree parser using self-attentive encoder and the CYK decoder, outperforms the

transition-based parser called incremental parser using a BiLSTM encoder with an extended

transition set. These results support the studies [73, 80] in the literature with higher results

for all languages.

We investigated the unsupervised parser model, called the chart-based zero-shot parser, using

the syntactic knowledge of PLMs. Using different distance functions, we tested the model

on different parsing problems, constituency, dependency, and semantic parsers, at different

semantic and syntactic levels. The results of the unsupervised model are obviously lower

than those of the supervised models. However, there are insights into the PLMs for the

problem that can be improved in a semi-supervised setting.

Our contributions in this chapter are as follows:

• We proposed 3 neural semantic parser models that learn UCCA-based semantic

representations of sentences, 2 of them supervised and one of them unsupervised.

• We conducted single-lingual and cross-lingual experiments for the semantic parsing

task with the supervised semantic parser models. For the cross-lingual experiments,

we performed both few-shot and zero-shot learning due to the insufficient size of the

available training data in French and Turkish.
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• We obtained state-of-the-art semantic parsing results in English and German

in single-lingual setting with the self-attentive semantic parser, and in English

out-of-domain experiments in cross-lingual setting with the incremental parser. The

results showed that the cross-lingual model performs better in low-resource languages.

• We introduced the unsupervised semantic parser model, which is the first attempt for

UCCA representation in an unsupervised setting. The model used distance functions

to compute scores from syntactic information learned by transformer-based PLMs.

We used the same model with different decoders specialized for various parsing

problems, namely dependency, constituency, and semantic parsing. To the best of

our knowledge, this is the first study that compares an unsupervised model for three

different parsing problems in a fully unsupervised setting and analyses the linguistic

information learned from PLMs during pre-training for three different parsing tasks

from syntax to semantics.
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5. ANNOTATION OF A TURKISH UCCA DATASET

UCCA is a recently proposed semantic annotation framework for representing the “semantic

meaning” of a sentence within a multi-layered framework, where each layer corresponds to

a semantic module. The ultimate goal of UCCA is to provide a semantic representation,

applicable across languages, that enables parsing across languages using cross-lingual

machine learning (ML) approaches, as well as parsing across different domains. It also

supports rapid annotation by non-experts who do not have a proficient linguistic background.

Due to these advantages, the UCCA representation has gained remarkable attention and has

been part of the recent shared tasks such as SemEval 2019 [1], MRP 2019 [40] and MRP

2020 [64].

Figure 5.1 Turkish UCCA dataset annotation procedure

In this chapter, we aim to annotate a Turkish UCCA dataset in a semi-automatic pipeline by

applying the self-attentive semantic parser proposed in Chapter 4.2.1. in zero-shot learning.

The annotation procedure consists of two steps: (1) An external semantic parser is trained

on a dataset that is a combination of English, German and French UCCA annotated datasets

released in SemEval 2019 [1] to produce semantic representations that are partially correct,

since there is no annotated dataset in Turkish. (2) The semantic representations obtained
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from the semantic parser are manually corrected as needed, which also helps to define

UCCA annotation rules in line with Turkish syntax. The annotation pipeline is illustrated

in Figure 5.1.

5.1. Related Work

5.1.1. Turkish Datasets

Turkish is an agglutinative language in which words are formed by productive affixation and

multiple suffixes can be attached to a root to form a new word form (e.g., gidebilirsek, which

means “if we can go” in English). It is possible to generate an infinite number of words

in Turkish, as shown by Sak et al. [127]. This poses a challenge in many NLP tasks, such

as language modeling, spell checking, and NMT, because of the out-of-vocabulary (OOV)

problem. Turkish grammar presents also other challenges, such as the free word order in a

sentence and the use of clitics [128, 129] that may have various meanings depending on the

context.

The datasets for many NLP tasks have been released mostly in English. The datasets that

have been released in Turkish are very limited. Current Turkish NLP studies generally focus

on building datasets for syntactic parsing, such as the METU-Sabanci Treebank [103, 104]

and the IMST Dependency Treebank [130]. Although semantic annotations are crucial for

NLP tasks, there are few studies on Turkish semantic annotation [32, 129, 131]. One of

the semantic datasets in Turkish is the Turkish Proposition Bank (PropBank) [131], the first

semantically annotated corpus built particularly for semantic role labeling (SRL). The other

annotated dataset in Turkish is the AMR corpus presented by Azin and Eryiğit [129] and

Oral et al. [32]. Azin and Eryiğit [129] presented the preliminary investigation on Turkish

AMR with 100 annotated sentences obtained from the Turkish translation of the novel Little

Prince based on AMR specifications to demonstrate the differences between the Turkish

and English annotations. Oral et al. [32] extended the annotation process by converting

the annotation process into a semi-automatic annotation using a rule-based parser in which

ProbBank [131] sentences are converted into AMR graphs. Human annotators used the
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output of the rule-based parser to build the dataset rather than annotating them from the

very beginning. The presented AMR corpus contains 700 sentences (100 sentences from the

Turkish translation of the novel Little Prince and 600 sentences from the IMST Dependency

Treebank [130–132]).

5.1.2. UCCA Annotated Datasets

Since UCCA was first proposed by Abend and Rappoport [17], English UCCA annotated

datasets, which are English Wikipedia [39] and English 20K Leagues Under The Sea, were

released [133] along with an annotation guideline14. These datasets were followed by other

UCCA annotated datasets in several languages, including French, German, Russian, and

Hebrew. For English, the datasets are obtained from Wikipedia [39], Web Treebank [134],

The Little Prince [64] and an English-French parallel corpus of Twenty Thousand Leagues

Under the Sea [133] including the first five chapters. The expansion of the UCCA dataset

to other languages started with the parallel corpus of Twenty Thousand Leagues Under the

Sea. The German dataset [1] consists of the entire book, while the French dataset contains

the first five chapters of the parallel corpus annotated using cross-lingual methods [133]. In

addition, the book The Little Prince is used for German [64], Russian [1], and Hebrew, the

last two languages being new to UCCA datasets.

5.2. Turkish Annotation Guideline

After obtaining the partially correct annotations from the external semantic parser trained

in zero-shot learning (see details in Chapter 4.2.1.), we manually analysed the output of

the parser and defined new rules in addition to the existing rules in the English UCCA

guideline [135], especially for the cases where the rules do not cover Turkish grammar. We

do not describe the existing UCCA annotation rules again here, but only describe the new

UCCA annotation rules that were encountered during annotation.

14https://universalconceptualcognitiveannotation.github.io/
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• Complex Sentences: Sentences in Turkish, as in other languages, can be either simple

or complex. In English, clauses are defined as E-Scene, A-Scene or Parallel Scene

in the UCCA annotation. However, there are also clauses called Adverbial clauses

that define verbs in Turkish. Therefore, we have added D-Scene to label these clauses

in the sentences. You can find examples of all types of clauses in Turkish, including

Adverbial clauses1516.

Examples:

– ⟨Seni üzmekten⟩A korkuyorum (in English, “I am afraid ⟨to upset you⟩”)

– ⟨Benden sonra aşık olduğu⟩E adamı gece gündüz izledim (in English, “I watched

⟨the man she had fallen in love with after me⟩ day and night”)

– ⟨Dönüp⟩H ⟨baktı bana⟩H (in English, “⟨S/he turned⟩ and ⟨looked at me⟩”)

– Dar yollarda ⟨koşarak⟩D giden Kerem’i yakaladım (in English, “I caught Kerem

⟨running⟩ on narrow roads”)

• Pronoun-dropping [136]: Pronoun subjects may be omitted in a sentence since

Turkish is a pro-drop language. Omitted pronoun subjects are marked with the label

A-IMPLICIT.

Examples:

– ⟨(Ben)17⟩A−IMPLICIT bilmiyorum (in English, “⟨I⟩ don’t know”)

– ⟨(Biz)⟩A−IMPLICIT bir süre sessiz yürüdük (in English, “⟨We⟩ walked in silence

for a while”)

• Genitive case: To express possession in Turkish, the genitive case suffix is attached to

the possessor and the possessive suffix is attached to the possessed noun. Pronominal

possessors of possessive nouns can also be omitted since the possessive suffix already

15The word or groups of words defining the semantic label and the corresponding words in English are
indicated in the examples by ⟨⟩.

16Please note that no punctuation is given in the example sentences for simplicity.
17The word between () indicates the omitted word in the examples.
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contains the possessive meaning. Omitted pronominal possessors of possessive nouns

are labeled with E-IMPLICIT.

Examples:

– ⟨(Onun)⟩E−IMPLICIT gözleri buğulanmıştı bir an (in English, “⟨Her/his⟩ eyes

were fogged for a moment”)

– ⟨(Onun)⟩E−IMPLICIT kumral saçları hafifçe karışmıştı (in English, “⟨Her/his⟩

brown hair was slightly tangled”)

• Inflectional suffixes: While inflectional suffixes are added to the end of the word when

it is a common noun (e.g., “kedi” (cat)), they are separated from the proper noun (e.g.,

“Kerem”, “İstanbul”) by an apostrophe. Since they relate the word to the Scene, we

separated inflectional suffixes from the proper nouns and labeled them as Relator.

However, we left the common nouns as they are.

Examples:

– Erkekler Parkı ’⟨na⟩R gidiyorsun (in English, “Your are going ⟨to⟩ the Erkekler

Park”)

– Milas ’⟨lı⟩R (in English, “The one ⟨from⟩ Milas”)

• Negation In Turkish, verbal negation is imposed by adding a suffix to the end of the

verb. However, to negate a nominal sentence, the word “değil” (not) is used within

the sentence. The negation word is marked as Adverbial, as defined in the English

guideline.

Example:

– Ne tuhaf şey ⟨değil⟩D mi (in English, “What a strange thing is ⟨not⟩ it”)

• Reduplication: In Turkish, there are three types of reduplication, which are defined

below:

– Emphatic Reduplication: It is used to emphasise the quality of an adjective

(“dar” (narrow) → “dapdar” (very narrow)). We label the word with its actual
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category as defined in the UCCA guideline, since it does not require any

additional rule18.

Example:

* ⟨Simsiyah⟩D olmaya başladı (in English, “It started to turn ⟨pitch black⟩”)

– m-Reduplication: In this form, a word is duplicated by adding ‘m’ letter to the

beginning of the second word, either by replacing the first consonant with ‘m’ or

by adding ‘m’ when the word begins with a vowel. We combine the reduplicated

form with the word during annotation, since the reduplicated form is usually not

a valid word (e.g., “etek metek” (skirt and the like))18.

Example:

* ⟨Etek metek⟩A almadı (in English, “S/he didn’t buy ⟨skirt and the like⟩”)

– Doubling: In this form, a word is doubled with the same form of the word (e.g.,

“koşa koşa” (in a hurry or willingly, depending on the context)). Analogously,

we combine the doubled form with the word to be concise with the annotation.

We label the word with its actual category as also defined in the UCCA guideline.

Examples:

* ⟨Koşa koşa⟩D geldim buraya (in English, “I came here ⟨in a hurry⟩”)

* ⟨Hızlı hızlı⟩D yürümeye başlamıştı (in English, “S/he was walking ⟨fast⟩”)

• Auxiliary verbs: In Turkish, auxiliary verbs are usually attached to the main verb

or nominal, called bound auxiliary verbs. There are also free auxiliary verbs such as

“ol-” (to be), “et-” (to do), “gel-” (to come), “dur-” (to stop), “kal-” (to stay), “düş-”

(to fall) etc. Bound auxiliary verbs are attached to the verb in the form of suffixes.

We decided not to label them separately because morpheme-level annotation is out of

scope in this study. We only label free auxiliary verbs as Adverbial, similar to the

actual guideline.

18During annotation, we did not come across any example of this type of marker. Therefore, the example
does not exist in the METU dataset.
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Examples:

– Özgür ⟨kalmak⟩D istemiyorum (in English, “I don’t want ⟨to be⟩ free”)

– Orada ⟨olmalıyım⟩D şimdi (in English, “I ⟨should be⟩ there now”)

• Postpositions: Unlike English, Turkish does not have prepositions [57]. Some English

prepositions correspond to inflectional suffixes in Turkish (e.g., “okulda” (at the

school), “arkadaşıyla” (with her/his friend)). The other prepositions are seen in the

form of postpositions that follow their complement phrases. Such postpositions are

identified with the label Relator because they relate the complement phrases to the

Scene.

Examples:

– Gözleri kor ⟨gibi⟩R yanıyordu (in English, “Her/his eyes were burning ⟨like⟩

embers”)

– Benden ⟨sonra⟩R aşık olduğu adamı izledim gece gündüz (in English, “I watched

the man she fell in love with ⟨after⟩ me day and night”)

– Ruhunun ⟨içine⟩R girdik (in English, “We got ⟨inside⟩ her/his soul”)

– Gözlerinde korku ve acı ⟨ile⟩R bize bakıyordu (in English, “S/he was looking at

us ⟨with⟩ fear and pain in her eyes”)

– Arkadaşı ⟨için⟩R buraya geldi18 (in English, “She came here ⟨for⟩ her friend”)

• Juxtaposition: One of the most common methods to co-ordinate two or more phrases

or sentences is simply to list them without using a connector. We combined such

phrases and labeled them as a whole. We also labeled each of them as a Parallel

Scene.

Examples:

– ⟨Bağışlayın⟩H ⟨koşa koşa geldim buraya⟩H (in English, “⟨Forgive me⟩ ⟨I came

running here⟩”)
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– ⟨Onu elinden kaçırmış⟩ ⟨onu bir başka erkeğe kaptırmıştı⟩H (in English, “⟨S/he

missed her/him⟩ ⟨S/he had lost her/him to another man⟩”)

• Clitics Clitics are usually in the form of a free morpheme (e.g., mI, dA, ya, ki, and

bile, ile). They have to be carefully annotated, as they may have different meanings in

different contexts.

– “mI”19 can be used in 3 different meanings.

1. Yes/No condition: It is used to make a question sentence. In this case, it is

labeled with a Function since it does not refer to a participant or a relation.

Example:

* Sakinleştin ⟨mi⟩F biraz (in English, “⟨Have⟩ you calmed down a bit?”)

2. Adverbial clause marker:It has the meaning of as soon as or once, and

connects two clauses. Therefore, it is labeled as Linker which corresponds

to the same category in the UCCA guideline18.

Example:

* Okula gittin ⟨mi⟩L arkadaş edinirsin (in English, “⟨When⟩ you go to

school, you make friends”)

3. Intensifier in doubled forms: It is used in a doubled form to connect the two

same adjectives in order to intensify the quantity. We combine the doubled

forms (e.g., “karanlık mı karanlık” (in English, very dark)) and label as a

whole18.

Example:

* ⟨Karanlık mı karanlık⟩E bir yolda yürüyoruz (in English, “We are

walking on a ⟨very dark⟩ road”)

– “dA” can be used in 6 different meanings.

1. Additive Function: It is labeled as an Adverbial since it attributes the

meaning of “moreover” to a sentence or a clause18.

19The clitic also involves the other forms of “mı”, such as “mi”, “mısın”, “mısınız” etc depending on the
vowel harmony and the person type.
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Example:

* Filmi izlemedim ⟨de⟩D (in English, “⟨Morover⟩ I did not watch the

movie”)

2. Adversative Function: It is labeled as a Linker since it links two or more

sentences with the meaning of “but” 18.

Example:

* Filmi izlemedim ⟨de⟩L anlattılar (in English, “I didn’t watch the movie

⟨but⟩ they told me” 20)

3. Continuative/topic shifting: It has the meaning of “also” or “either”,

depending on the position of the clitic in the sentence. It is labeled as

Elaborator if the clitic refers to the Participant, and as Adverbial if it

refers to the adverb.

Examples:

* O ⟨da⟩E burada bekler (in English, “S/he ⟨also⟩ waits here”)

* Sanırım o zaman ⟨da⟩D gelmemişti (in English, “I guess s/he didn’t

come then ⟨either⟩”)

4. Enumerating: This role is similar to Continuative/topic shifting and it is

also labeled as Elaborator18.

Example:

* Ayşe ⟨de⟩E Sema ⟨da⟩E filmi izledier (in English, “⟨Both⟩ Ayşe ⟨and⟩

Sema watched the movie”)

5. Modifier of Adverb It is labeled as Adverbial since it modifies the

Adverbial in the annotation.

Example:

* Şimdi adımlarını daha ⟨da⟩D hızlandırmıştı (in English, “Now s/he had

accelerated her steps ⟨even⟩ more”)
20The word “me” does not correspond to a word in Turkish, but it is expressed rather implicitly as a

morpheme in the verb “anlattılar” (in English, “they told me”)
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6. Discourse Connective It is labeled as Linker since it connects Scenes in

the sentence.

Example:

* Şimdi düşünüyorum ⟨da⟩L galiba o parkın dışında yapamayacağım ben

dedi Kerem (in English, “Now I’m thinking about it, ⟨and⟩ I guess I

can’t do it outside of that park, Kerem said”21)

– “ya” has 4 different meanings.

1. Contrastive adversative conjunction: It is labeled as a Linker that adds

a contrastive meaning such as “but”18.

Example:

* İzledim ⟨ya⟩L anlamadım (in English, “I watched ⟨but⟩ couldn’t

understand it”)

2. Repudiative discourse connective: It generally occurs at the end of a

sentence which is usually punctuated with an exclamation mark to express

the speaker’s opinion with a firm tone. Therefore, it is labeled as Ground18.

Example:

* Gitmedim dedim ⟨ya⟩G (in English “I told you I did not go”)

3. Reminding discourse connective: It generally occurs in a Scene-final

position that has the same role with the Repudiative discourse connective

but this time it is used for reminding purposes. Therefore, it is also labeled

as Ground18.

Example:

* [Sana söylemiştim ⟨ya⟩G]H [işte o okul]H (in English, “I told you that is

the school”)

4. Stressable discourse connective: It precedes a phrase and introduces an

alternative question. Since it precedes a phrase, we label it as a Linker18.

21The word “and” does not correspond to a word in Turkish, but it is expressed by clitic “da”.
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Example:

* ⟨Ya⟩L orayı bir daha bulamazsam (in English, “⟨What if⟩ I cannot find it

again”)

– ki has 4 different meanings.

1. Subordinator connective: It connects a noun, an adverbial clause, or a

clause with a sentence. If it connects a noun or a noun clause it is labeled as

a Relator, otherwise as a Linker.

Examples:

* İnanıyorum ⟨ki⟩R onlar gelecek (in English, “I believe ⟨that⟩ they will

come”)

* O kadar iyisin ⟨ki⟩L özgürlüğüm kısıtlanıyor istediğim gibi

davranamıyorum (in English, “You’re so good ⟨that⟩ my freedom

is being restricted I can’t act as I want”)

2. Repudiative discourse connective: Since it attributes the meaning of “just”

or “such” to a sentence and expresses the opinion of the speaker, it is labeled

as Ground.

Example:

* Öyle bir şey ⟨ki⟩G (in English, “It is such a thing”)

3. Exclamations: It is labeled as a Ground since it has the meanings of “o

kadar” (such) or “öyle(sine)” (so), and expresses the speaker’s opinion.

Example:

* Anlatacağım öyle bir şey ⟨ki⟩G (in English, “I will tell something like

that”)

4. Relative clause marker: It has two types: non-restrictive relative clauses

and restrictive relative clauses. Both types connect a clause with a sentence.

Therefore, it is labeled as a Relator.

Examples:

* Ahmet ⟨ki⟩R müzik sevmez o bile geldi (in English “Even Ahmet ⟨who⟩

does not like music came”)
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* Bugün okula gelirse ⟨ki⟩R geleceğini hiç sanmıyorum oyuna gidecekmiş

(in English “If s/he will come to the school today ⟨which⟩ I don’t think

s/he will s/he will go to the game”)

– “bile” It is an additive connective that has the meanings such as “already” or

“even”. Therefore, it is labeled as an Adverbial18.

Example:

* Gönderdim ⟨bile⟩D (in English “I have ⟨already⟩ sent it”)

• Subordinators: Subordinators link the clauses to superordinate clauses. The

subordinators in Turkish are “diye”, “ki”, “mI” and “dA”, as well as other obsolescent

subordinators that contain “ki’ (“ola ki”, “meğer ki” etc.). Since we already described

the other clitics above, we describe only “diye” here.

1. “diye” It relates the clause to a superordinate clause. Therefore, it is labeled as

Relator.

Example:

– Nereden biliyorsunuz ⟨diye⟩R sordu (in English “He asked ⟨(that)⟩R22 how

do you know”)

• Nominal sentences: In Turkish, nominal sentences do not contain an explicit verb.

If the predicate is not indicated by copular markers (e.g., “-(y)DI” (was), “-(y)mIş”

(was), and “-(y)sA” (if it is)), we inserted a generalizing modality marker ‘-DIr” (is)

as an implicit unit.

Examples:

– Nasıl bir kadın ⟨(dır)⟩S−IMPLICIT bu (in English “What kind of woman ⟨is⟩

this”)

– Onu döven adam da şurada şu ağacın altındaki ⟨(dir)S−IMPLICIT bu (in English

“The man who beat him ⟨is⟩ over there under that tree”)
22The word “that” is omitted in the English corresponds to “diye” in Turkish.
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• Conjunctions and discourse connectives In Turkish, conjunctions and discourse

connectives are used to link two or more items that have the same syntactic function.

While conjunctions are used to link phrases, subordinate clauses or sentences;

discourse connectives are used to link sentences. Here we only provide the rules

for conjunctions and discourse connectives, which are not covered in the other rules

described above.

– “halbuki/oysa”: The course connectives “halbuki”/“oysa” (whereas/however)

indicate a contrast between the two states. Since it is used to link different states,

it is labeled with a Linker.

Example:

* ⟨Oysa⟩L benim sizlere ne kadar çok anlatacağım vardı (in English

“⟨However⟩ I had so much to tell you”)

– “peki” It expresses the speaker’s agreement on the subject. Therefore, it is

labeled as Ground.

Example:

* ⟨Peki⟩G senin yerin neresi (in English “⟨So⟩ where is your place”)

– “Demek” It is used at the end or beginning of a sentence, and adds inferential

meaning by referring to the previous sentence. Since it also contains the attitude

of the speaker, it is labeled as Ground.

Example:

* Siz o dünyayı biliyorsunuz ⟨demek⟩G (in English “⟨So⟩ you know that

world”)

– “Yoksa” It is an inferential connective and is used in yes/no questions. It is used

when the speaker realizes that the situation is different from what s/he expects. It

is labeled as Adverbial.

Example:

* ⟨Yoksa⟩D biliyor musunuz orayı diye hayretle sordu (in English “Do you

know where it is?” he asked amazedly”)
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• “gibi” The role of “gibi” is derived from its primary function as a postposition. It

expresses the opinion of a speaker. Therefore it is labeled as Ground.

Example:

– Ne tuhaf başka şeyler önem kazandı ⟨gibi⟩G (in English “How weird other things

⟨seem⟩ to matter”)

• Subordinators [137]: A subordinator is a word or suffix that introduces a subordinate

clause and connects it to the main clause or another clause.

– Simplex subordinators: In Turkish “-(y)Ip” and “-(y)ArAk” are used as

subordinating suffixes in simplex subordinators for nominal and adverbial clauses

to link clauses. We labeled the clauses with “-(y)Ip” as Parallel Scene

since they define a new Scene, whereas we labeled the clauses with “-(y)ArAk”

as D-Scene since they modify the relation (Process or State) in the Scene.

Examples:

* ⟨Dar yollarda ⟨koşarak⟩D giden⟩D Kerem’i yakaladım (in English, “I caught

Kerem [⟨running⟩ on narrow roads]”)

* ⟨Kerem çayına iki şeker ⟨atıp⟩P ⟩H [yavaşça karıştırdı]H (in English,

“[Kerem ⟨added⟩ two sugars to his tea] and [stirred it slowly]”)

* ⟨Yataktan ⟨kalkıp⟩P ⟩H ⟨balkona çıkmış⟩H (in English, “[S/he ⟨got out of⟩

the bed] and [went out on the balcony]”)

– Complex Subordinators They consist of a postposition and a nominalizing

suffix. We labeled the postposition in the complex subordinators as a Linker

since it connects the adverbial clause evoking a Scene with the main Scene.

Examples:

* ⟨Ona yetişebilmekP ⟩H ⟨için⟩L ⟨peşinden koşuyordum⟩H (in English, “I was

running after her/him ⟨to⟩ catch up”)

* ⟨Bir şey anlatmakP ⟩H ⟨için⟩L ⟨[gelmiştin buraya⟩H (in English, “You came

here ⟨to⟩ say something”)
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* ⟨O özgürlüğünü teslim ettiğiP ⟩H ⟨için⟩L ⟨sanki rahatlamıştı⟩H (in English,

“It was as if she was relieved ⟨that⟩ she had surrendered her freedom”)

5.3. Inter-annotator Agreement

We employed 2 annotators who are native Turkish speakers with expertise and knowledge in

computational linguistics. The annotators were initially trained for UCCA annotation based

on the official UCCA guideline [17]. The annotation step was performed individually, which

was followed by a comparison phase in which the two annotations were compared to each

other to identify annotation agreements. To show how clear our annotation guideline is and

how uniformly it was understood by the annotators, we used accuracy and Cohen’s kappa

(κ) [138]. There was a disagreement in 616 edges out of 3, 981 edges in 400 sentences

in total. Thus, the disagreement between the two annotators is 15.47% and Accuracy is

84.53% based on the annotated tokens. Accuracy does not consider the expected chance

of agreements that are likely to occur. Therefore, we also calculated Cohen’s kappa (κ), a

statistical measure of the reliability of annotations between different annotators. Cohen’s

kappa (κ) is computed as follows:

kappa(κ) =
P (A)− P (E)

1− P (E)
(13)

where P (A) is the agreement between annotators, identical to accuracy, and P (E) is the

probability of chance agreement. Cohen’s kappa (κ)(*100) score for the annotation is 82.29.

The results between 80 and 90, indicate a strong agreement between the annotators. The

general disagreement that recurs in the training procedure mainly concerns the annotation of

the clitics.

5.4. Comparison of the Outputs in Automatic and Manual Annotation

We analyse the outputs obtained from the automatic annotation to see what kind of errors are

mostly corrected during manual annotation. Two example sentences parsed with the external

semantic parser are given in Figure 5.2 and 5.3 along with their gold annotations. For the
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(a) The output of the semantic parsing model (b) The gold annotation of the sentence

Figure 5.2 The semantic parse tree obtained from the semantic parsing model and the gold
annotation obtained from the manual annotation of the sentence, Yerinden kalkmıştı. (in
English, “S/he had stood up.”)

(a) The output of the semantic parsing model (b) The gold annotation of the sentence

Figure 5.3 The semantic parse tree obtained from the semantic parsing model and the gold
annotation obtained from the manual annotation of the sentence, Kurtulmak istiyor musun
oğlum? diye sordu Şakir. (in English, “Do you want to be saved son? asked Şakir.”)

first sentence in Figure 5.2, we added only the IMPLICIT edge. However, in the second

sentence given in Figure 5.3, the annotation of the labels was mostly incorrect and had to be

corrected manually.

When correcting the annotations obtained from the semantic parser model, we made almost

no additional corrections for the short sentences (with less than 5 words). The labels of

the terminal nodes were also mostly correct. We corrected most of the annotations for the

Parallel Scene (H) and, for that matter, the entire annotation of the sentence.
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Turkish En-Wiki En-20K Fr-20K De-20K
# sentences 400 5,141 492 492 6,154
# tokens 2,474 158,739 12,638 13,021 144,529
# edges 3,981 208,937 16,803 17,520 187,533
% primary 96.66 97.40 96.79 97.02 97.32
% remote 3.34 2.60 3.21 2.98 2.68
% Participant (A) 26.78 17.17 18.1 17.08 19.86
% Center (C) 10.02 18.74 16.31 18.03 14.32
% Adverbial (D) 7.36 3.65 5.25 4.18 5.67
% Elaborator (E) 5.38 18.98 18.06 18.65 14.88
% Function (F) 2.41 3.38 3.58 2.58 2.98
% Ground (G) 1.41 0.03 0.56 0.37 0.57
% Parallel Scene (H) 13.06 6.02 6.3 6.15 7.54
% Linker (L) 0.68 2.19 2.66 2.57 2.49
% Connector (N) 0.00 1.26 0.93 0.84 0.65
% Process (P) 11.33 7.1 7.51 6.91 7.03
% Relator (R) 1.81 8.58 8.09 9.6 7.54
% State (S) 5.10 1.62 2.1 1.88 3.34
% Punctuation (U) 14.67 11.28 10.55 11.16 13.15

Table 5.1 Proportions of the edges and labels as well as the number of sentences and tokens in the
UCCA datasets in Turkish, English, French, and German.

5.5. Annotation Statistics

We provide the statistical distributions in the annotated dataset with a comparison to other

annotated datasets in English, German, and French (see Table 5.1). In particular, we provide

the proportions of the edges and the labels in the final annotated dataset.

The average sentence length in the Turkish dataset is comparably shorter than that of the other

languages. Turkish sentences are syntactically simple and involve one predicate and one

subject. This results in fewer noun and verb phrases and consequently fewer Elaborator (E),

Center (C), and Relator (R) labels in the Turkish dataset. Also, due to the simple sentences,

the number of Linkers (L) is less than that of the other datasets. Due to the morphologically

rich nature of the Turkish language, morphemes that convert a verb to a nominal or a verb

into a verb are frequently used. Therefore, the number of Processes and States is higher

compared to the other datasets.
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5.6. Discussion

Due to the lack of annotated UCCA dataset in Turkish, one of the goals of this thesis

is to build a Turkish UCCA dataset. Since the UCCA representation supports rapid

annotation by non-experts who do not have proficient linguistic knowledge and does not

require external features such as semantic role labels, PoS tags, or stems, it is important

for AMR annotation. UCCA also enables parsing across languages using cross-lingual

machine-learning approaches because it is applicable across languages. Therefore, we chose

the UCCA representation as the graph-based semantic representation for the dataset and

followed a semi-automatic annotation approach to reduce the annotation effort. We used

the semantic parser proposed in the scope of the thesis for initial annotation and revised the

annotated sentences for Turkish grammar rules. Unlike the French UCCA dataset annotated

with an aligned corpus of Twenty Thousand Leagues Under the Sea, we used METU-Sabancı

Turkish Treebank [103, 104] with a semi-automatic pipeline.

An important fact concerning the quality of the dataset. Therefore we calculated the accuracy

and Cohen’s kappa (κ) [138] as the agreement between the annotators. The accuracy and

Cohen’s kappa (κ)(*100) scores for the annotation are 84.53% and 82.29, respectively. The

scores between 80 and 90 indicate a strong agreement between the annotators.

The guideline covers the specific Turkish grammar rules such as clitics, and subordinators in

addition to the rules which are already defined in the actual UCCA guideline.

5.7. Summary

In this chapter, we presented the Turkish UCCA dataset with 400 sentences obtained from

the METU-Sabanci Turkish Treebank. The annotation was performed in a semi-automatic

framework in which we used an external semantic parser in zero-shot learning trained on

UCCA datasets in other languages and tested with the raw Turkish dataset to obtain a partially

annotated dataset. Then, we analysed the discrepancies between the annotated sentences and

the English guideline to define new rules in line with Turkish grammar in addition to the
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ones which are already defined in the actual UCCA guideline. In doing so, we either utilized

the current specifications by describing how each linguistic construction should be annotated

to ensure consistent annotation based on the original guideline, or we defined new rules that

cover the syntactic rules peculiar to Turkish.

We believe that this corpus will be a crucial resource for advancing the state of the art in

semantic parsing in Turkish and especially in Turkish UCCA parsing. This will also be useful

for other NLP tasks that require semantic information, such as QA, text summarization, and

NMT.

Our contributions in this chapter are as follows:

• We presented the Turkish UCCA dataset with 400 sentences from the METU-Sabancı

Turkish Treebank [103, 104].

• We developed a semi-automatic pipeline for the annotation process that can be applied

to other languages.

• We prepared the Turkish UCCA guideline that covers the Turkish grammar rules that

are not covered in the English guideline [135].
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6. EXTRINSIC EVALUATION OF THE UCCA

REPRESENTATION

In this chapter of the thesis, we utilize the UCCA framework for extrinsic evaluation, in

which we apply UCCA to various NLP problems, including STS, text classification (binary,

multi-class, and multi-label), and QA. Since the focus language of this thesis is Turkish,

a low-resource language in terms of graph-based semantic representation data, we study

Turkish. In addition to Turkish, we also study English, a rich-resource language.

In this chapter, we verify the effectiveness of UCCA representation on several NLP tasks and

datasets. This chapter tries to answer the following research questions:

Research Questions:

1. Can semantic-aware models that use the UCCA representation perform relatively well

on NLP tasks compared to other current SOTA methods that do not utilise any semantic

information?

2. Are there differences in terms of the performance between semantic-aware and

syntax-aware models on NLP tasks?

3. Do semantic-aware models with different graph-based semantic representations

achieve different results on NLP problems?

4. Do the semantic-aware models using graph-based semantic representations achieve

different results in NLP problems? Is the NLP problem important for the performance

of the semantic-aware models?

We first present the proposed models with different representations (semantic, syntactic).

Then, we discuss the results of the proposed models with different representations for several

NLP problems to answer the questions posed above.

92



6.1. Related Work

6.1.1. Semantic Textual Similarity

The identification of STS in short texts was proposed in 2006 [139, 140], where the goal was

to identify whether two text segments are paraphrases of each other or not. Between 2012

and 2017, the semantic similarity task has been one of the main tasks in SemEval [141–145]

and the proposed models based on neural networks [146–150] were not only able to identify

a similarity between two texts but also able to generate a similarity score (usually between 0

and 5).

Measuring semantic similarity between texts has been performed using several methods in

the literature [151]: (i) the topological method, which utilises external semantic resources

such as WordNet in order to assess the similarity between two texts based on the topological

distance on such semantic networks [152–156], (ii) statistical similarity, which exploits

mainly statistical vector-based models along with dimension reduction techniques to assess

the similarity between two texts [153, 157, 158] , (iii) semantic-based method, which

combines a set of similarity measures such as soft cardinality [159], word n-gram overlap

to predict similarity between texts [148, 160], symbolic regression [161], (iv) ML method,

which builds a mathematical model based on lexical, syntactic and semantic features to

compute the similarity between given texts [3, 4, 150, 162–166].

Semantic similarity methods have recently made the most out of recent developments in

neural networks, especially the recent neural word embedding approaches. The most

commonly used neural network architectures for semantic similarity are Convolutional

Neural Networks (CNN) [150, 167], Long Short Term Memory Networks (LSTM) [168],

Bidirectional Long Short Term Memory (BiLSTM) [169], Recursive Tree LSTMs [170],

and Decomposable Attention Model (DAM) using n-grams [171].
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With state-of-the-art results on sentence-pair regression-classification tasks such as natural

language inference [172] and QA [173, 174], obtained from BERT [91], the pre-trained

language models are also applied to the STS task [4, 175–178].

In addition to supervised models, unsupervised models are also used with contrastive

learning with positive and negative sentence pairs. In one of the studies, SimCSE [3]

uses different dropout masks to compute different sentence vectors from an input sentence,

and ConSERT [179] uses token shuffling and adversarial attacks. The problem of the data

augmentation methods used in SimCSE [3] and ConSERT [179] is the meaning changes and

the generation of dissimilar positive pairs as a result of the meaning changes. DiffCSE [166]

uses masked language modeling based on word replacement instead of data augmentation.

DebiadCSE [164] designs an instance weighting method to penalize false negatives in the

model.

Semantic similarity has also been used in other tasks such as recommendation systems [180],

and code clone detection [181].

6.1.2. Text Classification

Text classification is a classical problem in NLP with a wide range of applications including

sentiment analysis [182], content detection [183], emotion classification [10]. With the

growing scale of data in industrial applications, neural approaches have been applied

to text classification problems, such as base DL models [183, 184], transfer learning

models [185, 186].

We present related work on text classification problems that we study in the scope of the

thesis.

6.1.2.1. Irony Detection Irony detection is becoming more popular as social media data

increases. Yet, it is challenging for both humans and automated tools. This motivates the

NLP community to solve the irony detection task. To raise awareness of irony detection,
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several shared tasks for different languages have been organized in the last decade, including

SemEval [187], IronITA [188], IroSVA [189], and DEFT [190].

Neural approaches stand out in the irony detection task with their high performance as

in other NLP tasks. Wu et al. [184] took the first place with a neural approach based

on a densely connected LSTM augmented with pre-trained word embeddings, sentiment,

and PoS tag features in Semeval 2018 for English [187]. Similar to Wu et al. [184],

Cimino et al. [191] proposed a BiLSTM model in which the last hidden layer of the

model is concatenated with sentiment features and sentence embedding features generated

via the TweetToLexiconFeatureVector [192] and TweetToSentiStrengthFeatureVector [193]

libraries. At DEFT 2017 [190], the winning team [194] proposed an approach based on a

CNN model combining 3 different sentiment-based embeddings trained with word2vec and

BERT, which are context, target, and sentence context embeddings in French. Last but not

least, González [189] used a Transformer-Encoder model for the same task in Spanish.

While the irony detection task has been tackled well in high-resource languages with publicly

available datasets, there is limited work conducted on Turkish, which is a low-resource

language when it comes to new NLP tasks such as irony detection. The studies conducted

on the Turkish irony detection task focus on datasets based on social media data [8, 9]. The

first study on irony detection in Turkish was conducted by Taslıoglu and Karagoz [195].

The authors built a new dataset from Twitter and analyzed the performance of a set of

supervised learning algorithms including Naive Bayes, Support Vector Machine (SVM), and

k-Nearest Neighbors (kNN). They incorporated textual features that are commonly used in

irony detection problems in the literature such as bracketed question marks, exclamation

marks, smileys, and diminutive forms. Similar to the study of Taslıoglu and Karagoz [195],

the study of Dülger [196] applied mostly traditional ML algorithms such as C4.5, Naive

Bayes, Logistic Regression (LR), as well as MLP. They used features based on patterns and

polarity. In the studies of Taslıoglu and Karagoz [195] and Dülger [196], irony detection

was treated as a binary classification problem and ML algorithms were compared using

various features. Cidecio et al. [8] compared DL approaches such as LSTM, BiLSTM, and

BERT for irony detection using a new dataset from Twitter. There were a few complications
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in their methodology due to the small size of the dataset, character limitation on Twitter,

grammar errors, and emojis. DL approaches were more successful compared to ML models

as demonstrated in the study of Cidecio et al. [8]. Ozturk et al. [9] extended the study of

Cidecio et al. [8] by increasing the size of the dataset and compared the DL approaches with

traditional ML models. The results showed that DL models perform better than traditional

ML models. They also analyzed the effect of using polarity scores and graph-based features

in traditional ML models. The results obtained with graph-based features are higher than

that of other models.

6.1.2.2. Multi-label Emotion Classification Emotion detection has been studied in

recent years [197–199], and with the success of DL models in NLP tasks, such as NMT [23,

200], STS [162, 163], the advanced DL models also employed in solving the MLEC

problem, such as LSTM [201, 202], CNN [203], GRU [204, 205], Transformers [206–208].

The MLEC problem is a popular task that is also addressed in the SemEval-2018 shared

task [10] for English, Arabic, and Spanish. The SemEval shared tasks released for emotion

classification play an important role in developing resources for emotion classification [201,

209].

NTUA-SLP [201], which took first place in the emotion classification subtask of

the SemEval-2018 shared task [10], presented BiLSTM with multi-layer self-attention

mechanism. As pre-trained embedding, they trained word2vec [210] with 550 million

English tweets, augmented with a set of effective word embeddings trained with the word

embeddings. To fine-tune the hyperparameters of the proposed model, the authors adopted

a Bayesian optimization approach that allows a time-efficient search for all possible values

in the high-dimensional space instead of a grid or random search. One of the other teams

that participated in SemEval-2018 is TCS Research [211], which combined three different

features (lexicon, DL features extracted from BiLSTM, SentiNeuron [212] features) into

a SVM to develop a unified ensemble system. The system was designed to handle noisy

sentiment multi-label datasets with a mixture of embeddings in parallel. The team that placed

third in the SemEval shared task [10], PlusEmo2Vec, applied neural network models to
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extract features and used these features in traditional ML classifiers (logistic regression, and

support vector regression (SVR)). They also extended the training set by using an external

dataset provided by the competition to learn a better representation of emojis and #hashtags.

The other studies also applied DL networks such as MLP [213], LSTM [202].

In addition to the SemEval shared task [10], multi-label emotion detection [6, 214, 215] is a

well-studied problem by researchers using various datasets such as GoEmotions [6]. Demsky

et al. [6] presented the GoEmotions dataset, a large, manually annotated dataset collected

from Reddit comments. The authors also presented baseline scores using the pre-trained

language model BERT [91].

6.1.2.3. Transfer Downstream Tasks Learning sentence embeddings is a fundamental

problem in NLP and has been extensively studied in the literature [5, 163, 216]. To evaluate

the quality of sentence embeddings, the SentEval toolkit[217] was introduced, which uses a

variety of tasks, including binary and multi-class classification.

6.1.3. Question Answering

Question Answering (QA) is a field of Information Retrieval (IR) and NLP that builds

systems to automatically answer questions posed by humans in natural language. The

research field of QA is very diverse, e.g., due to the type of the questions (multiple choice,

conversational, visual), the type of the answers (factoid, definition-based, hybrid), the source

of answer evidence (hybrid, raw text, knowledge base), the modeling approach for answer

retrieval (rule-based, ML, DL) [218].

Here we focus on factoid question answering, also called Reading Comprehension (RC),

since an understanding of natural language and knowledge about the world is required to

answer the question. One of the well-studied datasets for this problem is SQuAD (Stanford

Question Answering Dataset) [219]. Prior to the success of PLMs in NLP tasks, studies

focused on attentional mechanisms including Attention Sum [220], Self-matching [200],
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and Attention over Attention [221] for this problem. With the success of PLMs such as

BERT [91], ALBERT [222], and ELECTRA [223] show a strong capacity to capture the

contextualized sentence-level language representations, which improves QA performance.

6.1.4. Syntax-aware Models

Syntax-aware models have been effectively used in various NLP problems, such as sentiment

analysis [224, 225], text generation [226], QA [227], and SRL [227, 228], etc. In particular,

dependency trees used as syntactic information in problems requiring the relationship

between words such as NMT [229, 230], language model [12, 231], and SRL [232], are

gaining popularity. The studies demonstrate that syntactic information integrated into the

models improves the performance of the models.

Bastings et al. [229] presented Graph Convolutional Network (GCN) integrating syntax

using dependency representations of the dataset for NMT. Nguyen et al. [233] proposed a

hierarchical accumulation tree structure that integrates dependency trees into a self-attention

mechanism, and Duan et al. [234] presented a neural method for data-augmentation using

dependency trees for NMT.

Xie et al. [235] presented three methods by using parent-scaled self-attention (PASCAL),

syntax-aware word representation (SAWR), or constituent attention (CA) to integrate

dependency trees into the Transformer encoder of a seq2seq semantic parser to improve

the performance of the semantic parser. Guo et al. [226] treated text generation as a

graph generation problem that takes advantage of word-order and syntactic linkages. They

developed word graph model using GNN. The method involved incremental sentence

construction while maintaining syntactic integrity using a top-down, syntax-driven approach.

Using a GNN, Schlichtkrull et al. [227] worked on QA and SRL problems. The authors

developed a post-hoc technique for analyzing GNN predictions that highlights irrelevant

edges. Marcheggiani and Titov [232] used GCN to encode the constituent structures and

provide the information for the SRL system called SpanGCN.
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One of the most important NLP tasks that integrate syntax information with dependency

representations in the models is the language model. Li et al. [12] introduced syntax-aware

local attention (SLA), which can be adapted to different tasks, and integrated SLA

with BERT [91]. Huang et al. [224] used a graph attention network on a dependency

tree structure and external pre-training knowledge from the BERT language model to

better describe the relationship between context and aspect words. Gong et al. [236]

presented syntax-graph guided self-attention (SGSA), which combines source-side syntactic

knowledge with multi-head self-attention. Bugliarello and Okazaki [237] presented a

method called PASCAL, which is a self-attention mechanism that integrates the dependency

representation of the sentence. Sachan et al. [238] investigated fusion methods, late fusion

and joint fusion, to combine syntax information from dependency trees in pre-trained

transformers for NLP problems, namely SRL, NER, and RE.

6.1.5. Semantic-aware Models

In recent years, semantic-aware models have gained popularity due to their impressive

performance on NLP problems such as classification [183, 239], RC [240, 241], text

summarization [33, 242], language modelling [243], and NMT [25, 244–246]. The most

commonly used semantic representation in the studies is the AMR graph-based semantic

representation [183, 247, 248], which is relatively older than other representations.

Takase et al. [242] incorporated AMR into the standard encoder-decoder model using a

modified version of tree-LSTM to improve the results of summarization. Dohare et al. [33]

investigated a full-fledged text summarization pipeline with an AMR intermediate step. The

pipeline first generated an AMR graph of the given input and extracted a summary graph

of the generated AMR graph, and finally generated summary sentences from this summary

graph. Liu et al. [34] proposed a statistical summarization method using AMR to parse

sentences. The authors applied the summarization to AMR graphs and converted the graphs

to text using AMR-to-text generator. Vlachos et al.[247] proposed an approach to guide

NLP using particular information from an original text to generate its summary from its
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AMR graph. The approach is based on a standard sequence-to-sequence model [249] for

estimating a summary of an AMR graph. More specifically, information from an original

text that is not present in an AMR graph is used to improve the quality of a summary. Jin et

al. [250] proposed an encoder-decoder architecture that takes as input an original text along

with its semantic graph to predict a summary. Kouris et al. [248] proposed a framework

for generating summaries of individual documents using AMR semantic graph-to-text ML

predictions. The ML phase of the proposed framework was performed in two steps: (1)

tokens of the training set were represented in a continuous vector space (word2vec [210],

BERT [91]), (2) vectors are fed into a DL model to predict a summary of an original

text. The authors investigated five DL models: an attentive sequence-to-sequence model

with a pointer generator, a reinforcement learning model, a transformer, a transformer with

contextual embeddings, and a pre-trained encoder-transformer. Ribeiro et al. [251] presented

FACTGRAPH, which decomposes documents and summary into a meaning representation

with a graph encoder augmented with structure-aware adapters to capture interactions

between concepts based on graph connectivity, in addition to text representations with an

adapter-based text encoder.

Song et al. [23] showed that AMR graphs can be helpful in BiLSTM attention to NMT.

Nguyen et al. [25] investigated the effect of AMR with other representations SRL and

dependency trees in NMT models and proposed a method for incorporating AMR into

NMT models such as Seq2Seq, ConvSeq2Seq, and Transformer. Li and Flanigan [246]

presented a semantic-aware encoder-decoder architecture augmenting a Heterogeneous

Graph Transformer (HGT) by Yao et al. [252] for the task of NMT. The proposed architecture

combines graph representations of HGT with the semantic representation of AMR andthe

sentence representation of Vanilla Sequence Transformer to produce a target sequence

representation

Slobodkin et al. [245] proposed two parameter-free frameworks that integrate UCCA

semantic representation into Transformers by semantics-aware masking of (some of) the

attention heads for NMT. One of these systems acts on the encoder through a Scene-Aware

Self-Attention (SASA) head and the other acts on the decoder through a Scene-Aware
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Cross-Attention (SACrA) head. Zhang et al. [243] proposed a semantic BERT that combined

BERT with SRL as a language model and applied it to NLU benchmark datasets that include

natural language inference, RC, STS, and text classification.

Such a study to detect irony as a classification was proposed by Ahmed et al. [239], i.e., a

study in which directed unweighted graphs were constructed for each tweet in the dataset

and content similarity, maximum common subgraph similarity, and their variant were used

to compare the graphs in terms of similarity and classify the tweets as ironic or not. the other

classification problem toxic content detection, in which Elbasani and Kim [183] proposed a

neural approach based on a CNN model that integrates AMR graphs with external semantic

information.

Other NLP problems where semantic-aware models have been proposed are commonsense

reasoning [253], sentence matching [254], and data augmentation [255].

It is seen that semantic-aware models are commonly applied to complex NLP problems that

require abstract and semantic information about the text.

6.2. Semantic Textual Similarity

Semantic Textual Similarity (STS) deals with the similarity between two phrases or sentences

which is the evaluation of sentences or phrases according to their degree of semantic

similarity.

We propose a Siamese Recursive Neural Network (Siamese-RvNN), which is a combination

of a Siamese Network [256] and a Recursive Neural Network (RvNN) [257] to learn sentence

embeddings for the semantic similarity between two sentences in semantic textual similarity

task.

The overview of the proposed model flow is shown in Figure 6.1. First, we use the

self-attentive semantic parser model described in Chapter 4.2.1. trained with the UCCA

dataset to extract UCCA representations of the sentences in the STS dataset. We use the
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UCCA semantic representations of the STS dataset to train universal sentence embeddings

and predict the similarity between sentence pairs for the STS task.

Figure 6.1 The proposed system’s overview for STS

6.2.1. Proposed Method

Recursive Neural Network (RvNN) [257] is a type of neural network that applies the

same set of weights to a structured input. Each recursive network processes the nodes in

topological order in the given structure (in the form of a graph or a tree) and recursively

applies transformations to generate further representations from the previously computed

representations of the children.

We build the RvNN model with UCCA representations constructed by the self-attentive

UCCA semantic parser (see Section 4.2.1.) with a list of words represented as d-dimensional

vectors in a pre-trained word embedding matrix L ∈ IRd×|V| where |V | is the size of the

vocabulary. The UCCA graphs of the sentences in the STS dataset are obtained by the

self-attentive semantic parser. The UCCA representations of an example pair of sentences

taken from the STS dataset are given in Figure 6.2.
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(a) The cat is drinking some milk (b) The milk is being drunk by a cat

Figure 6.2 UCCA-based semantic representations of a sentence pair taken from STS dataset

Figure 6.3 The composition process for “The cat is drinking some milk.” using RvNN

As illustrated in Figure 6.3, we obtain the representation of “The cat” by the composition

of “The” and ”cat”, “some milk” by the composition of “some” and “milk” and the

representation of “The cat is drinking some milk” is obtained by the vectors of “The cat”,

“is”, “drinking” and “some milk”. The compositional sentence embedding is eventually

generated based on the UCCA semantic representation of the sentence, which also gives

semantic-informed sentence embeddings.

The composition is applied using a fully connected layer (i.e. one-layer MLP) for each node

in the semantic graph. The mean of the input vectors is fed into the MLP since RvNN is

adopted for non-binary trees that are the UCCA representation of sentences. For example, in

Figure 6.3, x1 <The> and x2 <cat> are combined by the following nonlinear composition

with weights W and the parent vector y1 is computed and y1, x3 (<is>, x4 <drinking> and
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Figure 6.4 Overview of the Siamese-RvNN model architecture

y2 are used to compute y3 as follows:

y1 = f(Wg(x1, x2) + b) (14)

y3 = f(Wg(y1, x3, x4, y2) + b) (15)

where f is a nonlinear activation function ReLU, g is the representation extractor function

that is mean in the model, W is the weight matrix (with a dimensionality of d×d, where d is

the embedding dimension of the pre-trained word embedding) and b corresponds to the bias

vector in this layer. A single MLP is used for the model, so the weights are the same for all

sentences in the dataset.

Here we combine Siamese Networks with RvNNs. Siamese networks [256] are dual-branch

networks with bound weights. In other words, they are built on the same network, which is

copied and merged with an energy function.

The Siamese architecture is given in Figure 6.4. There are two networks RvNNa and

RvNNb that simultaneously process one of the sentences in a given sentence pair. An

example pair of sentences is given in Figure 6.2. The training set consists of triplets

(x1, x2, y), where x1 and x2 are sentences in a pair in the training set, and y is the similarity

score that is between [0, 5] and defines the semantic similarity between the two sentences.

The goal is to minimize the distance between semantic similar sentences and maximize

the distance between dissimilar sentences in the embedding space for each pair, which is

followed during training.

104



We use the Manhattan distance [258] which performs comparatively better than other

distance metrics in Recurrent Neural Networks (RNN) [259–261] to measure the similarity

between sentences in a pair as follows:

g = exp(−αH(a) − βH(b)) ∈ [0, 1] (16)

Here, g is computed by the model where H(a) is the output of network RvNNa and H(b) is

the output of network RvNNb. α ve β are two parameters that are used to apply weighting

on the output of the two RvNN models: H(a) and H(b). We rescale the output to ensure that

the similarity is in the range of [0, 5].

6.2.2. Experiments & Results

6.2.2.1. Datasets We evaluated the Siamese-RvNN model on several STS tasks using the

output of the semantic parser model. We evaluated on 7 datasets that provide labels between

[0, 5] that correspond to a degree of semantic similarity:

• SICK Dataset [262] is compiled for sentence level semantic similarity/relatedness

task.

• STS Datasets [141–145, 263] involve 6 different datasets released by SemEval in years

between 2012 to 2017 for the STS task.

We also evaluated the Siamese-RvNN model on 7 other transfer downstream tasks with given

datasets:

• Movie Review (MR) [13] is a dataset annotated for sentiment classification task with

2 classes (binary classification).

• Customer Review (CR) [264] is a dataset annotated for product review classification

task with 2 classes (binary classification).
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Dataset Train Dev Test Task
MR 10,662 train in k-fold test in k-fold sentiment (movies)
CR 3,770 train in k-fold test in k-fold product reviews
SUBJ 10,000 train in k-fold test in k-fold subjectivity/objectivity
MPQA 10,606 train in k-fold test in k-fold opinion polarity
SST-2 67,349 872 1,821 sentiment (movies)
TREC 5,452 train in k-fold 500 question type
MRPC 4,726 train in k-fold 1,725 paraphrase

Table 6.1 The statistics of transfer downstream tasks

• Subjectivity / Objectivity (SUBJ) [265] is a dataset annotated for subjectivity

objectivity classification task with 2 classes (binary classification).

• Multi-Perspective Question and Answering (MPQA) [266] is a dataset annotated

for opinion polarity classification task with 2 classes (binary classification).

• Stanford Sentiment Analysis 2 (SST-2) [267] is a dataset annotated for sentiment

classification task with 2 classes (binary classification).

• Text Retrieval Conference (TREC) [11] is a dataset annotated for question type

classification task with 6 classes (multi-class classification).

• The Microsoft Research Paraphrase Corpus (MRPC) [268] is a dataset annotated

for paraphrase detection task with 2 classes (binary classification).

The details of the datasets are given in Table 6.1.

6.2.2.2. Evaluation Metric We use the SentEval toolkit [217] to evaluate the results

obtained from the STS task and use Spearman’s rank correlation ρ as the evaluation

metric [269]. We use the accuracy metric in all transfer downstream tasks and follow the

same configurations defined in SentEval 23.

23https://github.com/facebookresearch/SentEval
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6.2.2.3. Hyperparameters and Implementation Details For the STS task, we use a

combination of SNLI [172] and MNLI [270] as in Reimers and Gurevych [4] and Gao

et al. [3] to finetune embeddings. In all STS experiments, we assigned coefficients α =

β = 1. We use a batch size of 16, the Adam optimizer [108] for training, BERT [91]

(bert-base-uncased) pre-trained embeddings, a dropout of 0.2, and a learning rate of 1e − 4

in the proposed Siamese-RvNN model.

We use semantic-informed sentence embeddings from the RvNN to train a logistic regression

classifier for the transfer downstream tasks. In all transfer downstream experiments, 10-fold

cross-validation is performed as used in the study of Reimers and Gurevych [4] and the

SentEval toolkit [217].

We use the semantic parser described in Section 4.2.1. to extract the UCCA semantic graphs

used in the Siamese-RvNN model. The parser is based on encoder/decoder architecture that

solves the problem as chart-based constituency parsing. The encoder of the architecture is

the self-attention layers of the Transformer proposed by Vaswani et al. [92] with 2 MLP

classifiers with 2 fully-connected layers and ReLU activation function and the decoder

is the CYK algorithm [94]. The model is trained using the SemEval 2019 shared task

dataset [1], which includes English, German, and French languages. We use the cross-lingual

experiments of the model described in Section 4.3..

6.2.2.4. STS Task Results We conduct experiments on 7 STS tasks and report the

performance of the proposed method in Table 6.2. The Siamese-RvNN model significantly

improves the results on all datasets except SICK-R. Our model outperforms the previous best

average Spearman’s correlation with an improvement from 83.76 to 83.98, indicating that

semantic annotation with UCCA helps to learn better sentence embeddings than other models

such as SBERT [4] that uses pre-trained BERT along with Siamese and triple networks,

and SimCSE [3], a simple contrastive sentence embedding framework that uses pre-trained

BERT [91] and ROBERTA [111] with an MLP layer that can generate sentence embeddings
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from either unlabeled or labeled data. These two models use only pre-trained language

models to capture sentence embeddings without using any semantic structure of the text.

Our proposed model can significantly improve the results on 6 out of 7 datasets and

outperforms the previous state-of-the-art.

Our Proposed Model
Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.
Siamese-RvNN 78.46 87.75 82.61 86.83 84.39 87.03 80.82 83.98

State-of-the-art
Universal Sentence Encoder ♣ 64.49 67.80 64.61 76.83 73.18 74.92 76.69 71.22
SimCSE-BERTbase ♠ 75.30 84.67 80.19 85.40 80.82 84.25 80.39 81.57
SimCSE-Robertalarge ♠ 77.46 87.27 82.36 86.66 83.93 86.70 81.95 83.76
SBERT-NLI-large ♡ 72.27 78.46 74.90 80.99 76.25 79.23 73.75 76.55
SRoBERTa-NLI-large ♡ 74.53 77.00 73.18 81.85 76.82 79.10 74.29 76.68

Table 6.2 Task performance on STS tasks (Spearman’s correlation X 100). (♣ results from [2]; ♠
results from [3]; ♡ results from [4])

6.2.2.5. Transfer Downstream Task Results Table 6.3 shows the evaluation results of

the transfer downstream tasks. Siamese-RvNN achieves the best performance on 2 of 7 tasks.

Although we were not able to outperform the state-of-the-art results on average, we generally

achieved competitive results compared to other methods.

Model MR CR SUBJ MPQA SST-2 TREC MRPC Avg.
Siamese-RvNN 84.25 89.54 94.68 89.10 91.25 88.42 74.93 87.45
BiLSTM ♢ 81.1 86.3 92.4 90.2 - - - -
Universal Sentence Encoder ♣ 80.09 85.19 93.98 86.70 86.38 93.2 70.14 85.10
SimCSE-BERTbase ♠ 83.64 89.43 94.39 89.86 88.96 89.60 76.00 87.41
SBERT-NLI-large ♡ 84.88 90.07 94.52 90.33 90.66 87.4 75.94 87.69

Table 6.3 Transfer downstream test results of the proposed model (measured as accuracy). (♣ results
from [2]; ♠ results from [3]; ♡ results from [4]; ♢ results from [5])

6.3. Text Classification

Text classification is one of the most important tasks that aims to assign a sentence or

document to one or more predefined classes. Text classification spans a variety of tasks

such as emotion classification, sentiment analysis, news classification, etc.

108



We propose Graph Neural Networks (GNN) integrated syntactic or semantic information

as input to different types of text classification problems, namely irony detection (binary

classification), STS downstream tasks (binary and multi-class classification), and emotion

classification (multi-label classification).

The overview of the workflow is shown in Figure 6.5. First, we use the UCCA/AMR

semantic parser models and the dependency parser to extract semantic and syntactic

representations of the sentences in the text classification datasets. Then we use the semantic

and syntactic representations in GNN models for the text classification task.

6.3.1. Proposed Methods

6.3.1.1. Graph Neural Network For over a decade, Graph Neural Network (GNN) has

been used to process graph data in various fields [271], for example, in computer vision,

where images can be viewed as graphs with a regular structure and each pixel represents a

node connected to adjacent pixels by an edge [272, 273]. GNN has also been used in NLP,

where a text can be digitized by assigning indices to each character or word, resulting in a

simple graph where each token is a node and is connected to another node by an edge [274,

275].

There are several approaches to transforming a text into a graph, such as digitizing

text [274], statistical methods (PMI, TF-IDF) [276], dependency trees [277] or semantic

graphs (AMR) [183].

6.3.1.2. Preprocessing We propose GNNs that integrate semantic or syntactic

information. For this purpose, we use the adjacency matrix and the feature matrix extracted

from UCCA/AMR graph-based semantic representations, as well as dependency trees as

input to the models. We can divide the preprocessing into two steps: (1) converting the

datasets into graphs/trees for each problem and (2) extracting the adjacency and feature

matrices from the graphs/trees.
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Figure 6.5 The proposed system’s overview for text classification

1. Converting datasets into graphs/trees The parser models we used to extract graphs

and trees from the datasets are listed below:

• UCCA Semantic Parser We use the semantic parser described in Section 4.2.1.

to extract the UCCA semantic graphs. The parser is based on an encoder/decoder

architecture that tackles the parsing problem as chart-based constituency parsing.

Self-attention layers of the transformer [92] are used with 2 MLP classifiers with

2 fully-connected layers and a ReLU activation function in the output layers in
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(a) UCCA semantic representation

(b) AMR semantic representation

(c) Dependency representation

Figure 6.6 The semantic and syntactic representations of the Tweet “a gentle compassionate drama
about grief and healing” taken from the MR dataset [13] obtained from the parser
models, i.e., the UCCA semantic, AMR semantic, and dependency parsers.
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the encoder. The output layers of the encoder generate the per-span scores where

spans correspond to the constituents in the constituency tree. In the decoder, the

CYK algorithm [94] is used to generate a constituency tree with the maximum

score using the per-span scores obtained from the encoder. The semantic parser

extracts the UCCA representation of each tweet in the datasets.

• AMR Semantic Parser We adopt an external semantic parser for AMR proposed

by Roberts et al. [278] called T5 is a language model that has been finetuned on

English sentences and their AMRs. We use AMRLib integrated24 into spaCy

library [279]25 to extract the AMR graphs of the datasets.

• Dependency Parser We use an external dependency parser proposed by Dozat

and Manning [280] called Deep Biaffine Neural Dependency Parser to extract the

syntactic representation of the datasets for the problem. The parser model follows

the BiLSTM model with biaffine classifiers to predict arcs and labels. We use the

model26 integrated into the Stanza library [281] to extract the dependency trees

of the datasets.

Example of UCCA, AMR, dependency tree representations of “a gentle

compassionate drama about grief and healing” taken from the MR dataset [13] is

given in Figure 6.6.

2. Extracting adjacency and features matrices from graphs and trees Since the input

of the model, we use adjacency and features matrices from graphs/trees.

Since the inputs of the proposed model are adjacency and feature matrices, we

extracted the matrices from graphs and trees. The semantic representations of UCCA

and AMR are based on DAG, and the dependency trees are represented by trees. We

followed the same procedure, assuming that the dependency tree is a graph, so we

could use the same procedure for dependency trees

24https://amrlib.readthedocs.io/en/latest/
25https://spacy.io/universe/project/amrlib
26https://stanfordnlp.github.io/stanza/depparse.html
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(a) UCCA semantic adjacency matrix

(b) AMR semantic adjacency matrix

(c) Dependency adjacency matrix

Figure 6.7 The adjacency matrix extracted from UCCA, AMR, and dependency representations of
the sample “a gentle compassionate drama about grief and healing” taken from MR
dataset [13]. The gray color in the matrix represents the value of 1 and the white color to
the value of 0.
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For a given graph G = (V,E), where V is the set of nodes and E is the set of labeled

edges (UCCA - edges, AMR - relations between nodes, dependency tree - dependency

relations). We extracted the feature matrix X (n× k, where n is the number of nodes

(UCCA - terminal and non-terminal nodes, AMR - words, dependency tree - words

skipping the node ROOT) in the graph and k is the embedding dimension) and the

adjacency matrix A (n × n, where n is the number of nodes in the graph). For the

feature matrix, we used pre-trained word embeddings (BERT [91], RoBERTa [111],

etc.) for nodes (UCCA - terminal nodes, AMR - words, dependency tree - words) and a

randomly generated embedding with the same embedding dimension of the pre-trained

word embeddings for non-terminal nodes in UCCA.

The overview of the approach is illustrated in Figure 6.8 for UCCA/AMR semantic graphs

and dependency trees.

6.3.1.3. Models We use three types of GNNs in this study: Convolutional Neural

Networks (CNN), Graph Convolutional Networks (GCN), and Graph Attention Networks

(GAT).

• Convolutional Neural Network

Convolutional Neural Networks (CNN) are inspired by the visual cortex of the animal

brain. Recent work shows that CNNs perform very well in text classification [282,

283]. CNNs are used similarly in both text and image classification. The only

difference is that text classification uses a matrix of word vectors instead of pixel

values.

In this study, we extend the CNN model by incorporating semantic graphs and

dependency trees in the embedding layer. In order to incorporate the semantic graphs

and dependency trees, we use the feature matrix of each sample in the dataset obtained

from the external semantic or dependency parsers. The architecture of the CNN model

is given in Figure 6.9.
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Figure 6.8 The overview of the extraction of the UCCA, AMR semantic graphs, and dependency
trees along with the feature and adjacency matrix that will be integrated into the GNNs.
Each row in the feature matrix corresponds to the pre-trained word embedding of a node
in the graph/tree.

Figure 6.9 Architecture of CNN model for text classification
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As can be seen in Figure 6.9, the embedding layer of the CNN model consists of feature

matrices that are extracted from the representations and map the representations into

low-dimensional vectors. The feature matrix in the embedding layer is fed into the

convolution layer. Predefined filters roll over the feature matrix and reduce it into a

low-dimensional matrix. The next layer is the pooling layer, where max-pooling is

applied. In the fully connected layer, the output of the last pooling layer is fed into the

linear layer. Since we applied the CNN model for the binary classification problem

(irony detection), we use a softmax layer as the output layer to learn the prediction for

the given sample:

Z = softmax(H l) (17)

where H l is the final fully connected layer.

• Graph Convolutional Network

In the first text classification model, which uses GCNs [276], each document is

represented by a GCN and the embeddings of the nodes are induced based on the

properties of their neighborhoods. We adopt their approach for the text classification

problem. For this purpose, we use the adjacency matrix and the feature matrix

extracted from the representations (UCCA/AMR/dependency) of each sample. The

architecture of the GCN model is shown in Figure 6.10.

The hidden layer of the GCN is computed as follows:

H i+1 = σ(A ·H i ·W i) (18)

where Wi is the weight matrix for layer i, A is the adjacency matrix, H i is the feature

matrix of the hidden layer (H0 = X , where X is the feature matrix extracted from the

representations, and σ is ReLU non-linear activation function.

In the proposed model, we apply a multi-layer GCN where the layer size is a

hyperparameter that needs to be tuned in the graph.

116



Figure 6.10 Architecture of the GCN model for text classification

Similar to the CNN model, we applied the GCN model for the binary classification

problem (irony detection). We feed the output of the node in the final layer into

the softmax layer to learn the class of the given text for binary and multi-class

classification:

Z = softmax(H l) (19)

where H l is the feature matrix of the final GCN layer.

• Graph Attention Network

Graph Attention Network (GAT) is proposed by [284], which applies self-attention

layers into GAT to address the shortcomings of the GCN model which assigns equal

importance to every neighbor. GATs have been previously used in sentiment analysis

by incorporating dependency parsing trees [176, 285, 286]. We extend the GATs

by incorporating semantic graphs or dependency trees in the embedding layer. We

use the adjacency matrix and the feature matrix extracted from the representations

(UCCA/AMR/dependency) for each sample in the dataset, similar to the GCN model.

The architecture of the GAT model is given in Figure 6.11.
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Figure 6.11 Architecture of the GAT model for text classification

The hidden layer of the GAT is computed as follows:

H i+1 = σ(A ·H i ·W i) (20)

where Wi is the weight matrix in layer i, A is the adjacency matrix, H i is the feature

matrix of the hidden layer (H0 = X), where X is the feature matrix extracted from

the semantic graph or dependency tree, and σ refers to ReLU non-linear activation

function.

In the proposed model, we apply a multi-layer GAT where the layer size is a

hyperparameter that needs to be tuned in the graph.

Similar to the GCN model, the output layer differs depending on the problem. We feed

the output of the node in the final layer into the softmax layer to learn the class of given

text for binary and multi-class classification:

Z = softmax(H l) (21)
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where H l is the feature matrix of the final GAT layer.

For the multi-label classification problem, we used sigmoid function in the output layer

that squeezes the results between 0 and 1, and we used 0.5 as a threshold to convert the

probabilities into classes. The formula of the layer is in equation 22.

Z = sigmoid(H l) (22)

where H l is the feature matrix of the final GAT layer.

6.3.2. Experiments & Results

6.3.2.1. Datasets

• Irony Detection For the irony detection problem, we focus on a low-resource

language, Turkish, and conduct experiments on datasets released in Turkish [8, 9],

which is new compared to other languages [187–190, 287]. There are two versions of

the Turkish dataset. The first version [8] called Turkish-Irony-Dataset (IronyTR220)

is released in 2020 and the second one [9] IronyTR Dataset (IronyTR600) is released

in 2021. All data is collected from Twitter and other social media platforms. The

details of the datasets are given in Table 6.4.

Dataset Ironic Non-Ironic Total
Turkish-Irony-Dataset [8] (IronyTR220) 110 110 220
IronyTR Dataset [9] (IronyTR600) 300 300 600

Table 6.4 Turkish Datasets used in irony detection task

• Multi-label Emotion Classification We conduct experiments on 2 multi-label

emotion classification datasets, i.e., SemEval-2018 Task-1C and GoEmotions. The

details of the datasets are given below:

– SemEval-2018 Task-1C: Affect in Tweets The dataset is developed for Task

E-c: Detecting Emotions shared task [10], containing Tweets collected from 2016
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to 2017. Although the dataset is provided in three languages (Arabic, Spanish,

and English) for the emotion classification task, we used only English language

data for this study.

– GoEmotions: A Dataset of Fine-Grained Emotions contains 58k samples from

Reddit comments [6]. This dataset is annotated with the 28 emotions (27 emotion

categories or neutral). We mapped the 28 labels to Ekman’s [7] 6 categories. The

mapping details are given in Table 6.5. We randomly split the dataset into the

train (80%), development (10%), and test (10%) sets as defined in the paper [6].

Ekman GoEmotions

anger
anger
annoyance
disapproval

disgust disgust

fear
fear
nervousness

joy

admiration
amusement
approval
caring
desire
excitement
gratitude
joy
optimism
pride
relief

sadness

disappointment
embarrassment
grief
remorse
sadness

neutral neutral

Table 6.5 The mapping of the GoEmotions tagset [6] to the Ekman’s tagset [7]

The statistics of the datasets are provided in Table 6.6, and Table 6.7 gives the

percentage of texts annotated with given emotions in the datasets. The sum of the rows

is more than 100% because a text in a multi-label dataset may have multiple emotions
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annotated. The percentage of emotions shows that anger, disgust, joy, optimism, and

sadness received a higher percentage, while neutral, surprise and trust received a lower

percentage in the SemEval-2018 Task-1C dataset [10]. With a similar percentage, joy

and neutral received a higher percentage in the GoEmotions dataset [6].

Dataset Train Set Dev Set Test Set Total
SemEval-2018 Task-1C 6,838 886 3,259 10,983
GoEmotions 43,410 5,426 5,427 54,263

Table 6.6 Dataset statistics used in MLEC task

SemEval-2018 Task-1C Go Emotions
Emotion % Emotion %

Anger 36.1 Anger 12.85
Anticipation 13.9 Disgust 1.83

Disgust 36.6 Fear 1.67
Fear 16.8 Joy 40.11
Joy 39.3 Sadness 7.52

Love 12.3 Surprise 12.36
Optimism 31.3 Neutral 32.76
Pessimism 11.6 - -

Sadness 29.4 - -
Surprise 5.2 - -

Trust 5.0 - -
Neutral 2.7 - -

Table 6.7 Percentage of texts that were annotated with a given emotion in the MLEC datasets

• Transfer Downstream Tasks We also use the downstream tasks of the STS problem

which are binary or multi-class classification tasks. We used the same datasets as

described in Section 6.2..

6.3.2.2. Evaluation Metric We evaluated the models applied to binary and multi-class

classification problems using the following 4 metrics: accuracy, precision, recall, and

F1-score.

For multi-label classification, we reported Micro F1 and Macro F1 as well as multi-label

accuracy, also called Jaccard index. This evaluation metric is calculated by dividing the size
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of the intersection of the predicted labels and the gold labels by the size of the union of the

predicted and gold labels. This evaluation is performed for each text t in the test dataset and

then averaged over all instances in dataset D.

Accuracy =
1

|D|
∑
t∈D

Gt ∩ Pt

Gt ∪ Pt

(23)

where Gt and Ps are the gold and predicted labels of the sentence s and D is the total number

of sentences in the test set.

6.3.2.3. Hyperparameters and Implementation Details We use the PyTorch 3.7

package for the implementation of the GNNs. For the GNNs, we used the cross-entropy

as the objective function in binary and multi-class classification problems and the BCE loss

function as the objective function in multi-label classification. The Adam [108] is used as

the optimizer in the models with an epsilon value of 1e− 8 and the default max grad norm.

For the terminal nodes of the UCCA graphs and the nodes of the AMR and dependency

trees, we use monolingual (BERT [91], RoBERTa [111], XLNet [112]) and multilingual

pre-trained language models (M- BERT [91], XLM-R [113], XLM-R-large [114]) as

embeddings in the feature matrix X . The hyperparameter values we found for all models

in the problems can be found in Appendix 8.2..

We use the semantic parser described in Section 4.2.1. to extract the UCCA semantic

graphs used in the proposed models. The model is trained using the SemEval 2019 shared

task dataset [1]. We combine all training sets of datasets as train data of the model since

previously conducted experiments with the model show that combining all languages as

zero-shot experiments is more effective for low-resource languages [102]. We use the same

hyperparameter set that was used in the experiments given in Section 4.2.1.. To extract

AMR graphs and dependency trees of the datasets, we use the spaCy [279] and Stanza [281]

libraries respectively.
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6.3.2.4. Irony Detection Results We investigate the impact of the semantic framework

on the success of the proposed models for low-resource language in irony detection. For this

purpose, we conduct semantic and syntax-aware GNN model experiments for Turkish. The

experiments are conducted under 10-fold cross-validation for the datasets as used in the cited

papers [8, 9].

Table 6.8 and 6.9 give the results with state-of-the art results for the Turkish-Irony-Dataset [8]

and the IronyTR Dataset [9], respectively.

Method Accuracy Precision Recall F1-Score
Our proposed models

UCCA-CNN 88.60 91.82 85.59 88.18
UCCA-GCN 94.09 94.50 93.64 94.06
UCCA-GAT 94.09 92.82 95.45 94.17
Dep-CNN 93.64 93.64 93.64 93.64
Dep-GCN 94.12 92.73 94.55 92.86
Dep-GAT 93.64 93.64 93.64 93.64

State-of-the-art models
Gauss NB [8] 57.50 40.00 20.00 26.67
Multinomial NB [8] 55.00 50.00 27.50 35.50
SVM [8] 60.50 66.00 30.00 41.25
BERT [8] 87.50 90.71 84.00 87.23
LSTM [8] 50.00 50.00 100.00 66.67

Table 6.8 Irony detection results using the proposed models and state-of-the-art results for the
Turkish-Irony dataset [8]

We obtain the best F1 score with the UCCA-GAT and Dep-GCN models within the semantic

and syntax-aware models for the Turkish-Irony Dataset [8] and the IronyTR Dataset [9],

respectively. The results of the semantic and syntax-aware models are very similar.

We also analyze the models deeply in terms of the impact of layers and embeddings.

• Impact of Layers Here, we analyze the impact of the number of layers of the proposed

models on the performance (F1-Score) of the models. We perform the experiments

with BERT-base embeddings. We vary the number of layers from 1 to 7 and report the

results in Figure 6.12, 6.13 and 6.14 for semantic/syntax-aware CNN, GCN and GAT

models, respectively.
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Method Accuracy Precision Recall F1-Score
Our proposed models

UCCA-CNN 70.75 69.33 72.22 71.33
UCCA-GCN 69.17 65.58 80.67 72.35
UCCA-GAT 71.50 71.29 72.00 71.64
Dep-CNN 71.67 70.57 74.33 72.40
Dep-GCN 73.00 72.70 73.67 73.18
Dep-GAT 73.17 73.88 71.67 72.76

State-of-the-art models
Basic [9] 55.33 58.83 68.44 63.27
Polarity [9] 55.83 58.23 74.35 65.31
Graph [9] 58.17 61.40 67.90 64.49
Pol-Gra [9] 55.67 58.11 76.12 65.91
LSTM [9] 51.33 55.09 52.73 53.88
LSTM+ [9] 50.50 49.88 64.57 56.28
Bi-LSTM [9] 50.16 51.44 62.07 56.26
Bi-LSTM+ [9] 51.66 52.61 56.74 54.60
CNN-LSTM [9] 50.33 50.33 45.73 47.92
CNN-LSTM+ [9] 50.33 46.73 45.59 46.15
BERT [9] 69.00 71.34 65.75 68.43

Table 6.9 Irony detection results using the proposed models and state-of-the-art results for IronyTR
dataset [9]

– CNN: The Figure 6.12 shows that we achieve better performance in the 2nd

and 6th layers of the UCCA-CNN and Dep-CNN architectures for the small

dataset (Turkish-Irony-Dataset) and the 1st and 7th layers for the large dataset

(IronyTR Dataset), respectively, than the others overall. We can conclude that

while semantic-aware models learn with shallow models, syntax-aware models

need deeper models for this problem.

– GCN: As shown in the Figure 6.13, we achieve better performance with the 2nd

and 4th layers of UCCA-GCN and Dep-GCN architectures for the small dataset

and the 5th and 3rd layers for the large dataset (IronyTR Dataset) than with the

other layers overall. Semantic-aware model with one layer performs similarly for

the small dataset. However, for the large dataset, the semantic-aware model with

one layer performs worse, indicating that the shallow graph network structure is

not able to learn ironic features well. When the number of layers is greater than 2,
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(a) Turkish-Irony-Dataset (b) IronyTR Dataset

Figure 6.12 Scores of semantic/syntax-aware CNN models

(a) Turkish-Irony-Dataset (b) IronyTR Dataset

Figure 6.13 Scores of semantic/syntax-aware GCN models

the performance tends to decrease for small datasets. This indicates that further

increasing the number of layers beyond 2 degrades the performance of the model,

possibly due to the sharp increase in parameters. For the syntax-aware model, it

can be seen that the deeper model tends to perform better on small and large

datasets.

– GAT: We give the results in Figure 6.14. It can be seen that the 3rd layer of the

UCCA-GAT architecture performs better overall than others for the two datasets.

After the 3rd layer, there is a dramatic drop in results for the small dataset. This

shows that deeper semantic-aware models lose the ironic features needed for the

problem. However, for the large data set, the results do not decrease dramatically

for a while. After the 6th layer, there is a dramatic drop in results. The Dep-GAT
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(a) Turkish-Irony-Dataset (b) IronyTR Dataset

Figure 6.14 Scores of semantic/syntax-aware GAT models

architecture gets better results with 1st and 2nd layers for the TurkishIrony and

the IronyTR datasets. The shallow syntax-aware models perform better on this

problem. While there is an increase after the 4th layer, it tends to decrease

dramatically after the 7th layer for the larger dataset.

• Embeddings Following the success of the pre-trained language models,

we used monolingual and multilingual embeddings in the experiments.

As monolingual embeddings, we use the BERT-base pre-trained model

(bert-base-turkish-cased). As multilingual embeddings, we use the

multilingual version of the BERT-base model (M-BERT) [91], XLM-R [113], which

is a multilingual RoBERTa model, and the large version of XLM (XLM-R-large) [114].

The results of the models with embeddings are given in Table 6.10 and 6.11 for

semantic and syntax-aware models respectively. While we obtain better results with

semantic-aware models in monolingual experiments, the syntax-aware model gets

similar results with the multilingual RoBERTa (XLM-R) and its large version in the

small dataset.

6.3.2.5. Multi-Label Emotion Classification Results Tables 6.12 and 6.13 represent the

multi-label accuracy, Micro F1, and Macro F1 results obtained by applying the proposed

semantic and syntax-aware GAT (we used only the GAT model since we get the highest
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Turkish Irony Dataset [8] IronyTR Dataset [9]
Embeddings UCCA-CNN UCCA-GCN UCCA-GAT UCCA-CNN UCCA-GCN UCCA-GAT

Monolingual Embeddings
BERT-base 88.18 94.06 94.17 71.33 72.35 71.64

Multilingual Embeddings
M-BERT 88.00 91.20 85.45 69.01 68.48 68.00
XLM-R 87.89 90.55 87.73 67.02 67.45 68.16
XLM-R-large 87.32 90.32 86.15 70.33 68.68 69.95

Table 6.10 F1 scores of irony detection datasets with different embeddings

Turkish Irony Dataset [8] IronyTR Dataset [9]
Embeddings Dep-CNN Dep-GCN Dep-GAT Dep-CNN Dep-GCN Dep-GAT

Monolingual Embeddings
BERT-base 92.24 89.19 93.64 72.40 73.18 72.76

Multilingual Embeddings
M-BERT 88.29 90.91 88.70 70.63 69.55 71.10
XLM-R 91.48 92.86 89.81 70.70 68.85 68.13
XLM-R-large 93.64 92.31 80.98 72.04 72.04 67.09

Table 6.11 F1 scores obtained with monolingual and multilingual embeddings

accuracy in irony detection) model on the SemEval-2018 Task-1C [10] and GoEmotions [6]

datasets, respectively.

On SemEval-2018 Task-1C [10] dataset, overall, the best results are obtained with the

semantic-aware UCCA-GAT model (accuracy = 61.2). Our proposed models, UCCA-GAT

and Dep-GAT, outperformed the top three state-of-the-art approaches on the SemEval-2018

Task-1C dataset.

On GoEmotions [6] dataset, overall, the semantic-aware UCCA-GAT model performed best

(accuracy = 71.2). Our proposed models, UCCA-GAT and Dep-GAT, outperformed the top

three state-of-the-art studies on the GoEmotions dataset.

The results show that semantic and syntax-aware models are best suited for the MLEC

problem for two different types of texts (tweets and Reddit comments).

To understand the performance of the models for each emotion, we computed the

precision, recall, and macro F1 scores of the best performing model (UCCA-GAT) for the
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Method Accuracy Micro F1 Macro F1
Our proposed models

UCCA-GAT 61.2 66.1 60.0
Dep-GAT 59.7 63.5 57.8

Top three state-of-the-art models
NTUA-SLP [201] 58.8 70.1 52.8

TCS Research [211] 58.2 69.3 53.0
PlusEmo2Vec [288] 57.6 69.2 49.7

Table 6.12 Emotion classification results obtained from SemEval-2018 Task-1C dataset [10]

Method Accuracy Micro F1 Macro F1
Our proposed models

UCCA-GAT 71.2 75.4 63.9
Dep-GAT 68.7 74.7 61.1

Top three state-of-the-art models
BERT [6] - - 64.0

RoBERTa [215] 65.9 69.1 61.8
Dim-RoBERTa [215] 65.7 68.6 61.0

Table 6.13 Emotion classification results obtained from the GoEmotions dataset [6]

SemEval-2018 Task-1C and GoEmotions datasets. The results are shown in Table 6.14

and 6.15 for the SemEval-2018 Task-1C and GoEmotions datasets, respectively.

UCCA-GAT Dep-GAT
Emotion Precision Recall F1 Precision Recall F1
Anger 85.1 81.8 83.4 75.6 72.7 74.1
Anticipation 35.1 63.8 45.3 26.9 52.0 35.5
Disgust 73.6 89.0 80.6 74.8 88.0 80.8
Fear 32.3 76.3 45.4 28.6 72.1 41.0
Joy 77.6 91.2 83.9 82.5 65.3 72.9
Love 51.2 75.7 61.1 50.4 73.3 59.7
Optimism 67.8 85.2 75.5 70.4 73.5 71.9
Pessimism 81.3 60.4 69.3 58.8 76.0 66.3
Sadness 73.4 77.1 75.2 64.3 71.4 67.7
Surprise 52.9 15.2 23.6 23.1 52.9 32.1
Trust 54.2 09.4 16.0 21.7 54.2 31.0

Table 6.14 Scores for each emotion in SemEval-2018 Task-1C dataset [10]

The results show that both semantic and syntax-aware models performed better on emotions

“anger”, “disgust”, “joy”, “pessimism” and “sadness” on SemEval-2018 Task-1C dataset and
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UCCA-GAT Dep-GAT
Emotion Precision Recall F1 Precision Recall F1
Anger 85.8 84.0 84.9 90.7 68.9 78.3
Disgust 32.9 81.3 46.8 27.6 78.9 40.9
Fear 15.2 73.5 25.2 11.3 56.1 18.9
Joy 88.9 76.2 82.0 84.9 86.0 85.4
Sadness 32.0 68.0 43.5 41.1 55.4 47.2
Surprise 75.0 88.6 81.2 64.2 95.3 76.8
Neutral 79.7 87.9 83.6 82.8 78.3 80.5

Table 6.15 Scores for each emotion in GoEmotions dataset [6]

emotions “anger”, “disgust”, “joy”, “optimism” in GoEmotions dataset. One possible reason

for this could be the percentage of instances of these particular emotions in the datasets.

We also analyse the models deeply in terms of the impact of layers and embeddings.

• Impact of Layers To further analyze the layers’ impact on the proposed model,

we varied the number of layers from 1 to 6 and performed experiments using

BERT multilingual embeddings. Figure 6.15 illustrated the obtained results for the

SemEval-2018 Task-1C and GoEmotions datasets.

As shown in Figure 6.15(a), we achieved the highest results on the 3rd layer of the

UCCA-GAT and Dep-GAT models for the SemEval-2018 Task-1C dataset. After the

3rd layer, there is a dramatic drop in the F1 scores of the proposed models. This shows

that deeper models lose the semantic features needed for the task. Figure 6.15(b)

displayed the results of the GoEmotions dataset, where the highest performance can be

seen on the 2nd layer of UCCA-GAT and 1st layer of Dep-GAT models. These results

are similar to those of the SemEval-2018 Task-1C dataset. However, the dramatic drop

can be seen in F1 scores of both proposed models (UCCA-GAT and Dep-GAT) after

the 4th layer.

The results obtained for two datasets show that the semantic and syntax-aware models

(UCCA-GAT and Dep-GAT) do not need deeper layers for the MLEC problem.

The results of both datasets show that the semantic and syntax-aware models

(UCCA-GAT and Dep-GAT) do not require deeper layers for the MLEC problem.
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(a) SemEval-2018 Task-1C Dataset (b) GoEmotions dataset

Figure 6.15 Macro F1 scores obtained by proposed models with different number of layers on
SemEval-2018 Task-1C [10] and GoEmotions [6] datasets

However, some limitations of this study are the dependency on external parser models,

the difference between the domains used to train the parser models and the MLEC

problem, and finally the emotions and punctuation marks in the MLEC datasets.

• Embeddings The effect of the embeddings on the models’ success is huge [289].

Therefore, in our experiments, we tried monolingual and multilingual pre-trained

embeddings to understand the behavior of semantic and syntax-aware models. We

used BERT [91] (bert-base-cased), RoBERTa [111] (roberta-base), and

XLNet [112] (xlnet-base-cased) monolingual embeddings with base variants

consisting of 768 hidden dimensions, while we used multilingual versions of BERT

(M-BERT) [91] and RoBERTa (XLM-R) [113].

The results obtained by monolingual and multilingual pre-trained embeddings are

given in Table 6.16. The results show that multilingual embeddings are more effective

for the both proposed UCCA-GAT and Dep-GAT models.

6.3.2.6. Transfer Downstream Tasks Results Table 6.17 presents the accuracy results

of the semantic and syntax-aware GAT models (we used only the GAT model because we get

the best results in detecting irony with the GAT model) on 7 STS transfer downstream tasks

defined in SentEval [217] with the state-of-the-art results.
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SemEval-2018 Task-1C dataset GoEmotions Dataset
PLM UCCA-GAT Dep-GAT UCCA-GAT Dep-GAT

Monolingual Embeddings
BERT 58.0 56.3 61.5 58.9
RoBERTa 59.2 56.9 62.7 59.5
XLNet 56.5 54.0 59.2 57.0

Multilingual Embeddings
M-BERT 58.5 57.8 63.5 61.1
XLM-R 60.0 56.2 63.9 60.2

Table 6.16 F1 Scores obtained with monolingual and multilingual embeddings

The results show that the performance of the GAT model is far behind the state-of-the-art

results. The main reason is that the models achieve state-of-the-art results, learn sentence

embeddings, and then apply the learned sentence embeddings to transfer downstream

tasks [3, 4]. Our proposed SiamseRvNN model (see Section 6.2.) also uses the same

procedure. Therefore, we only compare the performance of the semantic and syntax-aware

GAT (UCCA-GAT, AMR-GAT and Dep-GAT) models with each other for 7 transfer

downstream tasks.

Our proposed models
MR CR SUBJ MPQA SST-2 TREC MRPC Avg.

UCCA-GAT 82.04 83.37 90.38 87.29 89.35 81.92 73.50 83.98
AMR-GAT 81.55 81.11 88.98 83.94 85.83 79.65 72.87 83.42
Dep-GAT 80.66 81.62 89.10 85.76 88.03 81.06 75.25 83.07

State-of-the-art
Siamese-RvNN 84.25 89.54 94.68 89.10 91.25 88.42 74.93 87.45
BERT-CLS embedding ♡ 78.68 84.85 94.21 88.23 84.13 91.40 71.13 84.66
BiLSTM ♢ 81.1 86.3 92.4 90.2 - - - -
Universal Sentence Encoder ♣ 80.09 85.19 93.98 86.70 86.38 93.2 70.14 85.10
SimCSE-BERTbase ♠ 83.64 89.43 94.39 89.86 88.96 89.60 76.00 87.41
SBERT-NLI-large ♡ 84.88 90.07 94.52 90.33 90.66 87.4 75.94 87.69

Table 6.17 Results of transfer downstream tasks (measured as accuracy) using proposed models
and state-of-the-art results (♣ results from [2]; ♠ results from [3]; ♡ results from [4]; ♢
results from [5])

The results show that the UCCA-GAT model is better than the AMR-GAT model, which

is also a semantic-aware model. The analysis of the adjacency matrices extracted from the

semantic AMR parsers shows that the relations such as about, like, of, etc. are defined as

concepts and used as edge labels. Since our models use the nodes without edge labels, the
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(a) UCCA-GAT (b) AMR-GAT (c) Dep-GAT

Figure 6.16 Confusion matrices of the semantic and syntax-aware GAT models on TREC
dataset [11]

model misses the concepts that are important for the problem. This also leads to a sparse

adjacency matrix compared to other adjacency matrices extracted from UCCA graphs and

dependency trees.

To understand the impact of the methods, we give the class-wise results of the semantic

(UCCA/AMR) and syntax-aware (dependency) GAT models for the TREC dataset [11]

(multi-class classification problem) in Table 6.18.

UCCA-GAT AMR-GAT Dep-GAT
Class Precision Recall F1 Precision Recall F1 Precision Recall F1
num 0.97 0.89 0.93 0.90 0.84 0.87 0.91 0.82 0.87
loc 0.86 0.79 0.83 0.86 0.78 0.82 0.82 0.80 0.81
hum 0.80 0.80 0.80 0.74 0.80 0.77 0.77 0.85 0.81
desc 0.85 0.83 0.84 0.82 0.83 0.82 0.87 0.87 0.87
enty 0.70 0.85 0.77 0.77 0.83 0.80 0.81 0.87 0.84
abbr 0.86 0.67 0.75 0.64 0.78 0.70 0.67 0.67 0.67

Table 6.18 Class-wise results of TREC dataset [11]

Figure 6.16 shows the matrices of the semantic and syntax-aware GAT models on the TREC

dataset[11]. The results show that the UCCA-GAT model predicts the class num better than

other models. In addition, the Dep- GAT model is better at predicting the class desc.

We also analyze the models deeply in terms of the impact of layers and embeddings.
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(a) MR Dataset (b) CR Dataset

(c) SUBJ Dataset (d) MPQA Dataset

(e) SST-2 Dataset (f) TREC Dataset

(g) MRPC Dataset

Figure 6.17 Scores of semantic/syntax-aware GAT models

• Impact of Layers Here, we analyze the impact of the number of layers of the proposed

models (UCCA-GAT, AMR-GAT, Dep-GAT) on the performance (accuracy) of the

models. We perform the experiments with embeddings in which we obtained the best

results. We vary the number of layers from 1 to 7 and report the results in Figure 6.17

for all datasets with the UCCA-GAT, AMR-GAT, and Dep-GAT models. The results

show that the syntax-aware model learns in deeper layers and semantic-aware models

(UCCA-GAT and AMR-GAT) tend to learn in shallow layers or in middle layers.
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• Embeddings We also present an analysis of pre-trained language models used in the

extraction of feature matrices from UCCA, AMR, and dependency representations. We

used BERT [91] (bert-base-cased), RoBERTa [111] (roberta-base), and

XLNet [112] (xlnet-base-cased) monolingual embeddings with base variants,

which include 768 hidden dimensions, whereas we used multilingual versions

of BERT (M- BERT) [91], and RoBERTa (XLM-R) [113] and its large version

(XLM-R-large) [113].

The results obtained by monolingual and multilingual pre-trained embeddings are

given in Table 6.19, 6.20 and 6.21 for UCCA-GAT, AMR-GAT, and Dep-GAT

respectively. The results show that multilingual embeddings are more effective for both

proposed semantic and syntax-aware models. For the monolingual embeddings, the

results of RoBERTa pre-trained word embeddings are higher than the others (BERT,

XLNet).

PLM MR CR SUBJ MPQA SST-2 TREC MRPC
Monolingual Embeddings

BERT 78.33 79.15 87.80 82.78 85.01 80.40 69.68
RoBERTa 80.16 79.89 89.11 87.29 89.35 79.11 72.52
XLNet 74.62 75.99 83.15 77.46 80.56 76.82 67.71

Multilingual Embeddings
M-BERT 79.27 81.94 88.15 83.11 83.14 81.00 72.35
XLM-R 82.04 82.23 89.48 84.76 85.01 81.92 72.93
XLM-R-large 78.78 83.37 90.38 85.82 87.59 81.42 73.50

Table 6.19 Accuracy results obtained with monolingual and multilingual embeddings in
UCCA-GAT model

6.4. Question Answering

Question Answering (QA) is the task of producing generated answers to questions asked

by a human in natural language. We propose semantic-aware BERT integrated semantic

information as an attention mechanism to BERT for the question-answering problem.
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PLM MR CR SUBJ MPQA SST-2 TREC MRPC
Monolingual Embeddings

BERT 77.68 81.11 83.98 83.11 82.48 75.61 70.43
RoBERTa 81.55 79.44 85.44 83.44 85.83 79.65 70.78
XLNet 72.64 72.12 82.56 78.15 79.68 71.95 68.87

Multilingual Embeddings
M-BERT 78.77 79.71 87.45 82.17 83.91 76.42 71.19
XLM-R 79.49 79.28 88.98 83.56 84.46 78.20 72.87
XLM-R-large 80.10 80.08 87.95 83.94 85.01 78.62 72.35

Table 6.20 Accuracy results obtained with monolingual and multilingual embeddings in AMR-GAT
model

PLM MR CR SUBJ MPQA SST-2 TREC MRPC
Monolingual Embeddings

BERT 77.30 79.50 86.43 82.99 83.64 78.80 70.78
RoBERTa 78.95 80.11 89.10 83.14 88.03 79.62 71.59
XLNet 72.45 74.40 82.47 78.04 81.38 75.27 69.51

Multilingual Embeddings
M-BERT 79.39 79.55 84.69 82.64 84.51 79.89 73.51
XLM-R 80.19 81.62 87.59 83.84 85.78 81.06 74.09
XLM-R-large 80.66 81.14 88.11 85.76 86.49 79.49 75.25

Table 6.21 Accuracy results obtained with monolingual and multilingual embeddings in Dep-GAT
model

6.4.1. Proposed Method

With the inspiration of syntax-aware BERT [12], we use graph-based semantic

representation, UCCA, for local attention and integrate it with standard Transformer

attention.

6.4.1.1. Semantic-aware Local Attention Local attention involves limiting each token

to attend to a subset of the other tokens in the input. Recent studies employing local attention

use fixed or dynamic windows to derive the important local regions [249, 290, 291]. Here,

we apply semantic-aware local attention, where the semantic structure is derived from the

UCCA graph-based semantic representation.
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Figure 6.18 The adjacency matrix extracted from UCCA representation of the sample “a gentle
compassionate drama about grief and healing” taken from MR dataset [13]. The gray
color in the matrix represents the value of 1 and the white color to the value of 0.

The UCCA representation of a sentence is represented as a graph G = (V,E,X), where

V is the set of nodes, E is the set of labeled edges representing the UCCA relations, and

X is the set of non-terminal tokens of the sentence. Since the UCCA graph has terminal

nodes that are tokens of the sentence and non-terminal nodes compromising several tokens

that are jointly considered as a single entity. We consider adjacent words to be connected to

the same non-terminal node. An example of an adjacency matrix extracted from the UCCA

representation of a sentence “a gentle compassionate drama about grief and healing” is

given in Figure 6.18.

In the representation, each token xi is mapped to a node vi and the distance from node vi to

vj is denoted by dis(vi, vj). The distance from token xi to xj is calculated as follows:

D(i, j) = min dis(vk, vj), k ∈ [i− 1, i+ 2] (24)

Semantic-aware local attention with given query Q and key K is computed as follows:

Mloc
ij =

 0 D(i, j) ≤ m

−∞ prevent from attending
(25)

Sloc = softmax(
QKT

√
d

+Mloc)
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Figure 6.19 Overview of the semantic-aware BERT model

where m is a threshold to restrict the distance D(i, j), and d is the dimension of keys.

Finally, we compute the attention score by combining the local attention with the standard

global attention as given follow:

gi = σ(Wghi + bg) (26)

Âi = (giS
loc
i + (1− gi)S

glb
i )V

where gi is the gate value calculated for each token xi, hi is the hidden vector of token xi from

the previous layer, Wg is a learnable linear transformation, bg is the bias. Âi is calculated as

a weighted average over values V with scores of local and global attention.

The architecture of the semantic-aware BERT model is given in Figure 6.19

6.4.1.2. Semantic-BERT for Question Answering We applied semantic-BERT for QA,

which is commonly solved by BERT [91]. For QA, we use the semantic-aware BERT with

two parameters, the input question, and the passage containing the answer of the question,

similar to BERT. The architecture of the semantic-BERT for QA is given in Figure 6.20.
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Figure 6.20 Architecture of semantic-BERT model for QA

Dataset Title Context Question
Train 756 2,400 14,221
Dev 133 541 2,520

Table 6.22 Statistical details of the QA dataset

6.4.2. Experiments & Results

6.4.2.1. Dataset We evaluated the Semantic-BERT model on the Turkish Question

Answering dataset (TQuAD)27. It is a QA dataset that contains question-answer pairs created

through crowd-sourcing, using Wikipedia as a base. The details of the dataset are given in

Table 6.22.

6.4.2.2. Evaluation Metric We use Exact Match (EM) and F1 score, the standard

evaluation metrics of QA. EM represents the percentage of questions where the predicted

27https://huggingface.co/datasets/husnu/tquad2
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answer exactly matches one of the correct answers for the question, and F1 score measures

the average overlap between the predicted and correct answers for the questions.

6.4.2.3. Hyperparameters and Implementation Details We use the semantic parser

described in Section 4.2.1. to extract UCCA semantic representations of the datasets. The

few-shot experiment setting of the Turkish UCCA dataset is used to train the model. The

details of the experiments and hyperparameters are given in Section 4.3..

The inputs of the BERT model are tokenized using the WordPiece tokenizer, where words

can be split into several sub-words. Since the tokens of the UCCA semantic representation

are words, we apply the same masking value to the sub-words split by the WordPiece

tokenizer in the semantic-aware local attention. We use bert-base-turkish-cased

and bert-base-multilingual-cased BERT for the experiments. The maximum

length is set to 512. We use the Adam optimizer [108] for training. The number of epochs is

5 and the batch size is 16 for the problem. We used a small learning rate (1e− 5), similar to

previous studies [12].

6.4.2.4. Results We conducted experiments on the TQuAD dataset and reported the

performance of the proposed method in Table 6.23 with the results of the BERT model.

Turkish Multilingual
EM F1 EM F1

BERT [91] 36.3 56.9 41.7 62.6
Syntax-aware BERT [12] 40.9 59.4 48.3 66.8
Semantic-aware BERT 42.4 61.6 50.1 68.7

Table 6.23 Task Performance on QA

According to the results of fine-tuning the TQuAD dataset in Table 6.23, the multilingual

BERT achieves better results than Turkish for QA. This is due to the larger size of train set

of the multilingual model. Moreover, the semantic information integrated into local attention

increases EM and F1 results for Turkish and multilingual models for BERT compared to the

syntax-aware BERT. The semantic information in Semantic-BERT increases the EM results
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by up to 1.5 and 1.8 and F1 results by up to 2.2 and 1.9 compared to syntax-aware BERT for

Turkish and multilingual models. Since the UCCA representation can consist of multiple

sentences, usually one paragraph or multiple paragraphs [17], the UCCA representation

covers the context of the question better than the dependency tree used in syntax-aware

BERT.

Question:
Elway 38 yaşındayken hangi Super Bowl’u kazanmıştır?
Answer: Super Bowl XXXIII
semantic-aware BERT: Super Bowl XXXIII
syntax-aware BERT [12]: Super Bowl
Question:
Hürjet projesinin hangi bir diğer proje ile arasında bir sanayi geçişi sağlanacağı
belirtilmiştir?
Answer: Milli Muharip Uçak Projesi
semantic-aware BERT: Milli Muharip Uçak
syntax-aware BERT [12]: Uçak Projesi
Question:
Piri Reis’in Osmanlı İmparatorluğu’nun Akdeniz Hakimiyetini sağlamak için yaptığı
seferlerin başlangıç noktası neresidir?
Answer: Gelibolu
semantic-aware BERT: Eğriboz Bahriye Azapları
syntax-aware BERT [12]: Mısır
Question:
Piri Reis Gelibolu’da dünya haritasını kaç yılında hazırlamıştır?
Answer: 1513
semantic-aware BERT: (1513)
syntax-aware BERT [12]: (1554)

Table 6.24 Sample results taken from proposed model semantic-aware BERT and syntax-aware
BERT [12]

Since the multilingual BERT performs better in the TQuAD dataset, the results of the

semantic-BERT are not surprising. In addition, we have used semantic parser trained in

few-shot experiments (see Section 4.3.) in which we used English, German, and Turkish

train set to extract the UCCA representation of the TQuAD dataset. This may also have an

important impact on the semantic-BERT results.

When analysing the errors of semantic-aware and syntax-aware BERT, it is clear that

semantic-aware BERT obtains more accurate answers from larger contexts for the given
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question than syntax-aware BERT. In particular, the semantic-aware BERT is better at

predicting answers that are phrases. Some of the errors of the semantic-aware BERT are

due to the incorrect UCCA representation of context and question caused by the semantic

parsing model. The errors of the semantic parsing model degrade the performance of the

semantic-aware BERT. Some errors of semantic-aware and syntax-aware BERT with correct

answers are given in Table 6.24.

6.5. Discussion

The answer to the questions we asked at the beginning of this chapter.

1. Can semantic-aware models using UCCA representation perform relatively well on

NLP tasks compared to other current SOTA methods that do not utilise any structures

semantic information?

To evaluate the semantic-aware models, we proposed semantic-aware models for

various NLP tasks that require semantic information. In the STS task, we applied

Siamese-RvNN using the UCCA semantic representation to generate semantically

informed sentence embeddings. The results of the STS task showed that the

semantically-informed model outperformed the SOTA methods [2–4], indicating that

the UCCA semantic annotation helps to learn better sentence embeddings. We also

used the semantic-aware sentence embeddings for transfer downstream tasks defined

in the SentEval toolkit [217]. The model achieved the best performance at 2 of 7 tasks,

which have a larger train set within the downstream tasks.

For the text classification problem, we proposed semantic aware GNN models. We

applied the proposed methods to a wide range of datasets (binary, multi-class and

multi-label classification) for Turkish and English. The irony detection problem

for Turkish has comparatively small datasets (Turkish-Irony [8] and IronyTR [9])

and the problem is not well studied. The semantic-aware models (UCCA-CNN,

UCCA-GCN and UCCA-GAT) outperformed the SOTA methods [8, 9]. For MLEC

problem, we only applied the UCCA-GAT model since we obtained the best results
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by UCCA-GAT in the irony detection problem. We used 2 different datasets for the

problem, namely SemEval-2018 Task-1C [10] and GoEmotions [6]. We obtained

the highest Accuracy results for the datasets and outperformed the SOTA methods

for SemEval-2018 Task-1C [201, 211, 288] and Go-Emotion [6, 215]. The MLEC

datasets are noisy compared to other datasets. The SemEval-2018 Task-1C dataset

consists of tweets that contain hashtags, emotions (labels in text), and punctuation

marks, while the GoEmotions dataset consists of Reddit comments that contain fewer

emotion words and no hashtags compared to SemEval-2018. This may be one of the

reasons for the worse results of the SemEval dataset compared to the GoEmotions

dataset. Another reason may be the length of the text in the datasets (Average no. of

words: SemEval-2018 Task-1C = 16.06, GoEmotions = 12.84) since the experimental

results of the parsers show that the models perform better on shorter texts than on

longer ones [102]. The last reason could be the number of emotion classes in the

datasets (SemEval-2018 Task-1C: 11, and GoEmotions: 7), which could lead to

the low performance of the proposed model on the SemEval-2018 Task-1C dataset.

Finally, we applied the semantic-aware model (UCCA-GAT) to downstream tasks of

the SentEval toolkit [217]. We couldn’t outperform the SOTA methods [2–4]. One

of the methods is our Siamese-RvNN model. The main reason for the low results is

that the SOTA methods were mainly proposed for STS and then the learned sentence

embeddings were applied to downstream tasks. By applying the semantic-aware

models on different problems for Turkish and English with different size of datasets,

we get an insight into the limitations of the proposed model.

For QA, we proposed semantic-BERT in which an adjacency matrix extracted from the

UCCA representation is integrated into the local attention mechanism of BERT [91].

We obtain better results using semantic-BERT it also proves the importance of

semantic information in the models.

2. Are there differences in terms of the performance between semantic-aware and

syntax-aware models on NLP tasks?
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To answer this question, we applied the semantic and syntax-aware models to the

text classification problem. We applied the dependency trees as syntactic information

in the GNN models as syntax-aware models. Initially, we applied the dependency

trees and the UCCA representation in the irony detection problem, which is a binary

classification problem in Turkish. The syntax-aware model performed better in the

larger dataset (IronyTR [9]) compared to the semantic-aware model. However, the size

of the irony detection datasets is very small. Therefore, we applied the semantic-aware

and syntax-aware models for the MLEC, which is a multi-label classification problem,

using only the GAT model, since we obtained the highest accuracy results on the

irony detection problem with this model. For the MLEC with larger datasets in

English, we achieved the highest accuracy scores using the semantic-aware model

with 61.2 accuracy (1.5 gain over the syntax-aware model) for the SemEval-2018 Task

-1C dataset [10] and 71.2 accuracy (2.5 gain over the syntax-aware model) for the

GoEmotions dataset [6]. Finally, we applied these models to downstream tasks of the

SentEval toolkit [217], which are binary and multi-class classification problems. The

semantic-aware models perform better on these problems, with the exception of the

MRPC dataset, which is similar to the irony detection and MLEC results.

The experimental results show that the syntax-aware model (Dep-GAT) learns in

deeper layers and semantic-aware models (UCCA-GAT and AMR-GAT) tend to learn

in shallow layers or in the middle layers. Since syntactic features are encoded in the

shallow layers and semantic features are encoded in the deeper layers of the pre-trained

language models [292, 293], we obtained better results for the syntax-aware model

with deeper layers and for the semantic-aware models (UCCA-GAT and AMR-GAT)

with shallow layers.

3. Do semantic-aware models with different graph-based semantic representations

achieve different results on NLP problems?

We applied UCCA, which is the main topic of this thesis, and the AMR as another

semantic representation. We chose the AMR representation because both semantic

representations are based on DAG and the AMR representation is a well-studied
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representation in the literature. We compared these representations in downstream

tasks of the SentEval toolkit [217]. The results of the semantic-aware model with

UCCA representation were comparatively better than those of the model with AMR

representation. We applied a similar method to extract adjacency and feature matrices

from the AMR representation, in which the adjacency matrix was comparatively sparse

because we only used the nodes of the graphs. However, the edges of the AMR are

also very informative due to the core roles extracted from the PropBank.

4. Do the semantic-aware models using graph-based semantic representations achieve

different results in NLP problems? Is the NLP problem important for the performance

of the semantic-aware models?

NLP problems mainly suffer from capturing the semantic of the text in an abstract

way. The recent studies on various NLP problems such as summarization [34, 242]

and NMT [25, 246] proposed methods with semantic representations to address this

problem. We also applied the semantic-aware models to 3 different problems: STS,

text classification, and QA, to answer this question. For 3 problems, the results prove

that incorporating semantic information into the models improves the performance of

the models. The important part of the proposed models for the problems is that the

models are very capable of integrating semantic information. In the STS task, we

applied Siamese-RvNN, where RvNN uses a recursive structure in the tree hierarchy

(see Section 6.2.). For text classification, we used GNN models that take adjacency

and feature matrix extracted from graphs as input(see Section 6.3.). Finally, we used

semantic-BERT, where we integrated semantic information into the local matrix as the

adjacency matrix for QA (see Section 6.4.).

6.6. Summary

In this chapter, we focus on semantic-aware models for NLP problems as an extrinsic

evaluation of the UCCA representation. We introduced models for STS, text classification,

and QA. We showed that semantic-aware models using the UCCA semantic representation
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outperform SOTA methods for problems, proving that semantic information improves the

performance of the models for the problem.

We also investigated syntactic information and AMR semantic representation as semantic

information in text classification. The results of the semantic-aware model with AMR and

the syntax-aware model with dependency tree are comparatively lower than those of the

semantic-aware model with UCCA representation.

Finally, we applied the semantic-aware BERT model to the QA problem, but it can be applied

to any NLP problem using BERT.

Our contributions in this chapter are as follows:

• We introduced a neural network architecture Siamese-RvNN for evaluating the

semantic textual similarity between two sentences.

• Our proposed Siamese-RvNN model outperformed other approaches in the STS task.

We also obtained competitive results in transfer learning tasks by using semantically

informed sentence embeddings in downstream NLP tasks such as sentiment analysis.

• We proposed semantic and syntax-aware GNN models for text classification. To the

best of our knowledge, this is the first study to integrate the UCCA framework into

GNNs for text classification and to compare the effects of semantic and syntactic

representations for this problem.

• We compared semantic and syntax-aware models for text classification in a wide

range of problems (binary, multi-class, and multi-label) and languages (Turkish

and English) in detail. The experimental results showed that the semantic-aware

model outperformed the syntax-aware models. Moreover, the semantic-aware model

outperformed the state-of-the-art performance on the datasets.

• We proposed a semantic-aware BERT model for QA. This is the first attempt to

integrate the UCCA representation into the BERT model in the attention mechanism.
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Experimental results show that semantic information improves the performance of the

BERT model for QA.
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7. CONCLUSION

7.1. Contributions

In this thesis, we focused on UCCA representation from different perspectives, especially

for the Turkish language. We showed that UCCA graph-based semantic representation

is powerful for language understanding. We have discussed the properties of UCCA

and devised different neural parsing algorithms for UCCA representation. Furthermore,

we proposed a parser model (self-attentive) that allowed us to annotate a dataset in a

semi-automatic pipeline process for Turkish which is a low-resource language. The proposed

Turkish dataset is an important contribution even though the dataset is comparatively smaller

than other UCCA datasets annotated in other languages which are the English Wikipedia [39]

and English 20K Leagues Under The Sea [133]. Also, the provided guideline, which covers

the grammatical rules of Turkish that are different from English, helps researchers to extend

the dataset. The method can also be helpful for researchers to annotate a dataset in different

languages. We also evaluated the UCCA representation as a source of semantic information

by using it for various NLP problems with a comparison between semantic and syntactic

representations.

In Chapter 4., we proposed three different parsing models for UCCA representation.

Different approaches are applied to understand the impact of transition-based and

graph-based parsers for UCCA representation. Our graph-based model yielded

comparatively better improvement in F1 scores for UCCA representation compared to

other studies in the literature. The incremental parser obtained better results than the

TUPA parser [126], a transition-based parser which is the first parser introduced for UCCA

representation. The experiments performed with these two models also provided a detailed

analysis of the impact of the size of the dataset. The last presented model is an unsupervised

parsing model. To the best of our knowledge, this is the first time that an unsupervised

parsing model is applied to the UCCA representation, with an in-depth analysis of the model
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for semantic and syntactic parsing problems, namely semantic, dependency, and constituency

parsing.

In Chapter 5., we proposed a semi-automatic pipeline for dataset annotation. We took

advantage of the UCCA representation, which is a cross-linguistic annotation scheme, and

used an external semantic parser proposed in Chapter 4. to obtain an initial annotation for

the raw sentences. After analysing the parsed sentences as the output of the parser model, we

determined the discrepancies between the Turkish and English rules defined in the English

UCCA guideline. Accordingly, we defined rules for Turkish grammar.

In Chapter 6., we presented semantic-aware models for various NLP problems, namely STS,

text classification, and QA. For the STS problem, we used the Siamese model with RvNN

called Siamese-RvNN, which uses the UCCA representation for the STS datasets. For text

classification, we used GNN models with semantic information and analysed the impact

of UCCA representation on the problem by using AMR representation as another semantic

representation and dependency trees as syntactic representation. Finally, we applied the

semantic-BERT by integrating the UCCA representation with local attention aggregated with

attention of BERT for QA.

7.2. Challenges

The UCCA representation is a comparatively new representation in the literature and

studies are limited compared to other graph-based semantic representations such as AMR,

EDS. Moreover, the properties of the UCCA representation (reentrancy, discontinuous unit,

non-terminal nodes) differ from other syntactic representations in the parsing problem.

The dataset annotation in this thesis is a major contribution to the literature. Annotation of

datasets is usually critical, as even the slightest error can lead to bigger errors. Moreover,

the annotation process is time-consuming, expensive, and requires expertise. Since UCCA

is a cross-linguistic annotation scheme, annotation may be easier than other representations.

However, there are still discrepancies between Turkish and English, for which there is a

detailed annotation guideline.
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Another challenge we encountered is building semantic and syntax-aware models using the

trained parsing models. Since the problem of dependency parsing is older than semantic

parsers, many of the proposed models have very effective results [294–296]. Moreover,

the dataset size of AMR representations and dependency trees is larger than that of UCCA

representations. The final challenge is the accumulated error due to the use of external parsers

for the semantic and syntax-aware models since the models use the parsers to obtain semantic

and syntactic information from the datasets.

7.3. Further Analysis

Future work on UCCA representation includes improving the current parsing models using

semantic representations with similar properties such as DAG, discontinuity, etc., to learn

representation in-framework settings to leverage the models.

For the Turkish UCCA dataset, an annotated dataset at the morpheme level will be targeted in

the future because Turkish is an agglutinative language and new words are formed by adding

morphemes to roots. Moreover, morphemes in Turkish are also meaningful units and should

be incorporated in the semantic representation. Moreover, the foundational layer of UCCA

can be easily extended to include morphemes as defined by Abend and Rappoport [17].

Exploring the contribution of UCCA in various NLP problems is also a very important

research topic, as the results presented in Chapter 6. demonstrate the importance of semantic

information in NLP problems.

149



REFERENCES

[1] Daniel Hershcovich, Zohar Aizenbud, Leshem Choshen, Elior Sulem, Ari

Rappoport, and Omri Abend. SemEval-2019 Task 1: Cross-lingual Semantic

Parsing with UCCA. In Proceedings of the 13th International Workshop on

Semantic Evaluation, pages 1–10. 2019.

[2] Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua, Nicole Limtiaco, Rhomni St.

John, Noah Constant, Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,

Yun-Hsuan Sung, Brian Strope, and Ray Kurzweil. Universal Sentence Encoder.

CoRR, abs/1803.11175, 2018.

[3] Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple Contrastive

Learning of Sentence Embeddings. CoRR, abs/2104.08821, 2021.

[4] Nils Reimers, Iryna Gurevych, Nils Reimers, Iryna Gurevych, Nandan Thakur,

Nils Reimers, Johannes Daxenberger, and Iryna Gurevych. Sentence-BERT:

Sentence Embeddings using Siamese BERT-Networks. In Proceedings of

the 2019 Conference on Empirical Methods in Natural Language Processing.

Association for Computational Linguistics, 2019.

[5] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c Barrault, and Antoine

Bordes. Supervised Learning of Universal Sentence Representations from

Natural Language Inference Data. In Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing, pages 670–680. 2017.

[6] Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo Ko, Alan S. Cowen,

Gaurav Nemade, and Sujith Ravi. GoEmotions: A Dataset of Fine-Grained

Emotions. CoRR, abs/2005.00547, 2020.

[7] Paul Ekman and Harriet Oster. Facial Expressions of Emotion. Annual review

of psychology, 30(1):527–554, 1979.

150
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Sinirsel Yöntemlerin incelenmesi. 2020.

[9] Asli Umay Ozturk, Yesim Cemek, and Pinar Karagoz. IronyTR: Irony Detection

in Turkish Informal Texts. International Journal of Intelligent Information

Technologies (IJIIT), 17(4):1–18, 2021.

[10] Saif M. Mohammad, Felipe Bravo-Marquez, Mohammad Salameh, and

Svetlana Kiritchenko. SemEval-2018 Task 1: Affect in Tweets. In Proceedings

of International Workshop on Semantic Evaluation (SemEval-2018). New

Orleans, LA, USA, 2018.

[11] Ellen M Voorhees and Dawn M Tice. Building a question answering test

collection. In Proceedings of the 23rd annual international ACM SIGIR

conference on Research and development in information retrieval, pages

200–207. 2000.

[12] Zhongli Li, Qingyu Zhou, Chao Li, Ke Xu, and Yunbo Cao. Improving BERT

with Syntax-aware Local Attention. CoRR, abs/2012.15150, 2020.

[13] Bo Pang and Lillian Lee. Seeing Stars: Exploiting Class Relationships for

Sentiment Categorization with Respect to Rating Scales. In Proceedings of

the 43rd Annual Meeting of the Association for Computational Linguistics

(ACL’05), pages 115–124. 2005.

[14] Omri Abend and Ari Rappoport. The state of the art in semantic representation.

In Proceedings of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 77–89. 2017.

[15] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt,

Ulf Hermjakob, Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan

Schneider. Abstract meaning representation for sembanking. In Proceedings

151



of the 7th linguistic annotation workshop and interoperability with discourse,

pages 178–186. 2013.

[16] Stephan Oepen and Jan Tore Lønning. Discriminant-Based MRS Banking. In

LREC, pages 1250–1255. 2006.

[17] Omri Abend and Ari Rappoport. UCCA: A Semantics-based Grammatical

Annotation Scheme. In Proceedings of the 10th International Conference on

Computational Semantics (IWCS 2013)–Long Papers, pages 1–12. 2013.

[18] Aaron Steven White, Drew Reisinger, Keisuke Sakaguchi, Tim Vieira, Sheng

Zhang, Rachel Rudinger, Kyle Rawlins, and Benjamin Van Durme. Universal

decompositional semantics on universal dependencies. In Proceedings of the

2016 Conference on Empirical Methods in Natural Language Processing, pages

1713–1723. 2016.

[19] Fei Liu, Jeffrey Flanigan, Sam Thomson, Norman Sadeh, and Noah A

Smith. Toward Abstractive Summarization Using Semantic Representations.

In Proceedings of the 2015 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies,

pages 1077–1086. 2015.

[20] Kexin Liao, Logan Lebanoff, and Fei Liu. Abstract Meaning Representation for

Multi-Document Summarization. pages 1178–1190, 2018.

[21] Xuan Zhang, Huizhou Zhao, KeXin Zhang, and Yiyang Zhang. SEMA: Text

Simplification Evaluation through Semantic Alignment. In Proceedings of the

6th Workshop on Natural Language Processing Techniques for Educational

Applications, pages 121–128. 2020.

[22] Fuad Issa, Marco Damonte, Shay B Cohen, Xiaohui Yan, and Yi Chang.

Abstract meaning representation for paraphrase detection. In Proceedings of

the 2018 Conference of the North American Chapter of the Association for

152



Computational Linguistics: Human Language Technologies, Volume 1 (Long

Papers), pages 442–452. 2018.

[23] Linfeng Song, Daniel Gildea, Yue Zhang, Zhiguo Wang, and Jinsong Su.

Semantic neural machine translation using AMR. Transactions of the

Association for Computational Linguistics, 7:19–31, 2019.

[24] Elior Sulem, Omri Abend, and Ari Rappoport. Semantic structural

decomposition for neural machine translation. In Proceedings of the Ninth Joint

Conference on Lexical and Computational Semantics, pages 50–57. 2020.

[25] Long HB Nguyen, Viet H Pham, and Dien Dinh. Improving neural machine

translation with AMR semantic graphs. Mathematical Problems in Engineering,

2021, 2021.

[26] Weiwen Xu, Huihui Zhang, Deng Cai, and Wai Lam. Dynamic Semantic

Graph Construction and Reasoning for Explainable Multi-hop Science Question

Answering. CoRR, abs/2105.11776, 2021.

[27] Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravishankar, Salim Roukos,

Alexander Gray, Ramón Fernandez Astudillo, Maria Chang, Cristina Cornelio,

Saswati Dana, Achille Fokoue-Nkoutche, et al. Leveraging Abstract Meaning

Representation for Knowledge Base Question Answering. In Findings of

the Association for Computational Linguistics: ACL-IJCNLP 2021, pages

3884–3894. 2021.

[28] Tahira Naseem, Srinivas Ravishankar, Nandana Mihindukulasooriya, Ibrahim

Abdelaziz, Young-Suk Lee, Pavan Kapanipathi, Salim Roukos, Alfio Gliozzo,

and Alexander Gray. A semantics-aware transformer model of relation

linking for knowledge base question answering. In Proceedings of the 59th

Annual Meeting of the Association for Computational Linguistics and the 11th

International Joint Conference on Natural Language Processing (Volume 2:

Short Papers), pages 256–262. 2021.

153



[29] Elior Sulem, Omri Abend, and Ari Rappoport. Simple and Effective Text

Simplification Using Semantic and Neural Methods. In Proceedings of the 56th

Annual Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), pages 162–173. 2018.

[30] Ronald Langacker. Cognitive Grammar: A Basic Introduction. 2008.

[31] Martha Palmer, Daniel Gildea, and Paul Kingsbury. The proposition bank: An

annotated corpus of semantic roles. Computational linguistics, 31(1):71–106,

2005.
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[136] Elvan Göçmen, Onur Sehitoglu, and Cem Bozsahin. An Outline of Turkish

Syntax, 1995.

[137] Deniz Zeyrek and Bonnie Webber. A Discourse Resource for Turkish:

Annotating Discourse Connectives in the METU Corpus. In Proceedings of

the 6th workshop on Asian language resources. 2008.

[138] Jacob Cohen. A Coefficient of Agreement for Nominal Scales. Educational and

psychological measurement, 20(1):37–46, 1960.

[139] Yuhua Li, David McLean, Zuhair A Bandar, James D O’shea, and Keeley

Crockett. Sentence Similarity Based on Semantic Nets and Corpus Statistics.

IEEE transactions on knowledge and data engineering, 18(8):1138–1150, 2006.

[140] Rada Mihalcea, Courtney Corley, Carlo Strapparava, et al. Corpus-based and

Knowledge-based Measures of Text Semantic Similarity. In AAAI, volume 6,

pages 775–780. 2006.

168



[141] Eneko Agirre, Daniel Cer, Mona Diab, and Aitor Gonzalez-Agirre.

SemEval-2012 task 6: A pilot on semantic textual similarity. In * SEM 2012:

The First Joint Conference on Lexical and Computational Semantics–Volume

1: Proceedings of the main conference and the shared task, and Volume

2: Proceedings of the Sixth International Workshop on Semantic Evaluation

(SemEval 2012), pages 385–393. 2012.

[142] Eneko Agirre, Daniel Cer, Mona Diab, Aitor Gonzalez-Agirre, and Weiwei Guo.

SEM 2013 shared task: Semantic textual similarity. In Second joint conference

on lexical and computational semantics (* SEM), volume 1: proceedings of the

Main conference and the shared task: semantic textual similarity, pages 32–43.

2013.

[143] Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor

Gonzalez-Agirre, Weiwei Guo, Rada Mihalcea, German Rigau, and Janyce

Wiebe. SemEval-2014 Task 10: Multilingual Semantic Textual Similarity. In

Proceedings of the 8th international workshop on semantic evaluation (SemEval

2014), pages 81–91. 2014.

[144] Eneko Agirre, Carmen Banea, Claire Cardie, Daniel Cer, Mona Diab, Aitor

Gonzalez-Agirre, Weiwei Guo, Inigo Lopez-Gazpio, Montse Maritxalar, Rada

Mihalcea, et al. SemEval-2015 task 2: Semantic textual similarity, English,

Spanish and pilot on interpretability. In Proceedings of the 9th international

workshop on semantic evaluation (SemEval 2015), pages 252–263. 2015.

[145] Eneko Agirre, Carmen Banea, Daniel Cer, Mona Diab, Aitor Gonzalez Agirre,

Rada Mihalcea, German Rigau Claramunt, and Janyce Wiebe. SemEval-2016

task 1: Semantic textual similarity, monolingual and cross-lingual evaluation.

In SemEval-2016. 10th International Workshop on Semantic Evaluation; 2016

Jun 16-17; San Diego, CA. Stroudsburg (PA): ACL; 2016. p. 497-511. ACL

(Association for Computational Linguistics), 2016.

169
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résultats du Défi Fouille de Textes DEFT2017. 2017.

[191] Andrea Cimino, Lorenzo De Mattei, and Felice Dell’Orletta. Multi-task

Learning in Deep Neural Networks at Evalita 2018. Proceedings of the 6th

175



evaluation campaign of Natural Language Processing and Speech tools for

Italian (EVALITA’18), pages 86–95, 2018.

[192] Felipe Bravo-Marquez, Marcelo Mendoza, and Barbara Poblete. Meta-level

sentiment models for big social data analysis. Knowledge-based systems,

69:86–99, 2014.

[193] Mike Thelwall, Kevan Buckley, and Georgios Paltoglou. Sentiment strength

detection for the social web. Journal of the American Society for Information

Science and Technology, 63(1):163–173, 2012.
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[284] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
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8. APPENDIX

8.1. UCCA guideline with Turkish examples

A text in the foundational layer of UCCA representation consists of Scenes. It may consist

of one or more scenes as shown in the following examples.

• Ahmet okula gitti (in English, “Ahmet went to the school”) (1 Scene)

• Ahmet eve döndü ve duş aldı (in English, “Ahmet went back home and took a shower”)

(2 Scene)

8.1.1. Categories

8.1.1.1. Scene Elements: Each Scene should have a main relation describing a

movement or action called Process (P) or a temporally persistent state called State (S).

The other components of a Scene are Participant (A), which can be one or more,

and Adverbial (D), which describes the relation in time, location or ground. Below are

examples from Turkish of Scene-elements.

• Ben ⟨bir tutsağım⟩S (in English, “I am a prisoner”)

• Ahmet okula yürüyerek ⟨gitti⟩P (in English, “Ahmet went to school on foot”)

• ⟨Elmayı⟩A alabilir (in English, “He may take the apple”)

• ⟨Ayşe⟩A ⟨okulda⟩A kaldı (in English, “Ayşe stayed at school”)

• Ahmet yüzmeye ⟨başladı⟩D (in English, “He started swimming”)

• Soruyu ⟨hızlıca⟩D cevapladı (in English, “She answered the question quickly”)

• Ayşe ⟨sık sık⟩D spora gider (in English, “Ayşe often goes to the gym”)
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8.1.1.2. Non-Scene Unit Elements: Non-Scene relations do not evoke a Scene, which

is the main difference with the Scene elements. The main concept in non-Scene units

is Center (C), and other relations that detail the Centers. While Elaborator (E)

determines the semantic type or quantification of the magnitude of the parent entity that is

a Center, Connector (N) connects entities that have similar features or types. Finally,

Relator (R) relates an entity to other relations or units that are attached with different

aspects.

• ⟨1996⟩C ⟨yılı⟩E (in English, “the year 1966”)

• ⟨onun⟩E ⟨eli⟩C (in English, “his hand”)

• ⟨biraz⟩E ⟨şeker⟩C (in English, “some sugar”)

• ⟨⟨Ben⟩C ⟨ve⟩N ⟨⟨(benim)⟩E−IMPLICIT ⟨arkadaşım⟩C⟩C okula beraber gittik (in

English, “I and my friend went to school together”)

• Ali [⟨fırının⟩C ⟨içindeki⟩R] kurabiyeleri] aldı (in English, “Ali took the cookies from

the oven”)

8.1.1.3. Inter-Scene Relations: Inter-Scene relations category is composed of

Parallel Scene (H), Linker (L) and Ground (G). Parallel Scene is a

Scene that does not take place in the main Scene as a Participant, a Center, or an

Elaborator. The Parallel Scenes can be linked to other Scenes with Linker,

which is a relational word between Parallel Scenes. Ground is a unit that relates

units to their speech event, which can be either a speaker, or a hearer. The main difference

with Linker is that it does not relate Scenes. Linkage is a term used in Inter-Scene

relations in which a Scene is a unit in one of Participant, Center, Elaborator,

Adverbial (described in Section ??) or Parallel Scene.

• ⟨Eğer⟩L ⟨okula gidersen⟩H ⟨Ahmet ile karşılaşırsın⟩H (in English, “If you go to school,

you will meet Ahmet”)
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• ⟨Arkadaşını beklerken⟩H ⟨ayakkabısını boyadı⟩H (in English, “While waiting for her

friend, she polished her shoes”)

• ⟨Sadece kendi istediklerini söyledin⟩H ⟨çünkü⟩L ⟨sen de suçlusun⟩H (in English, “You

just said what you wanted because you’re guilty too”)

• ⟨İlginçtir⟩G okumakta zorlanmadı (in English, “Interestingly, it wasn’t hard to read”)

• ⟨Gördüğünüz gibi⟩H ⟨gelmediler⟩H (in English, “They didn’t come as you see”)

• ⟨Eski kocası⟩A her zaman oradadır (in English, “Her/his ex husband is always there”)

• ⟨Seni üzmekten⟩A korkuyorum (in English, “I’m afraid to upset you”)

• ⟨⟨Her⟩E ⟨istediğini⟩P ⟩C yerine getiriyordum. (in English, “I was doing whatever s/he

want”)

• Ürkütücü şeyler ⟨⟨buE ⟨anlattıklarınız⟩P ⟩C (in English, “These are the scary things

you’re talking about”)

• ⟨Dar yollarda koşarak giden⟩D Kerem’i yakaladım (in English, “I caught Kerem

running on narrow roads”)

• ⟨Bahçeye giren (köpek)⟩E köpek kahverengidir (in English, “The dog entering the

garden is brown”)

• ⟨[Yan daireye] taşınan (Ahmet)⟩E Ahmet evime geldi (in English, “Ahmet who moved

to the next flat, came to my house”)

8.1.1.4. Other: The final category is Other in which the Function (F) unit is only a

part of the construction.

• ⟨Ayy⟩F sandalyeden düştü (in English, “Ouch he fell from the chair”)

• İstanbul ⟨’a⟩F mı gidiyorsun (in English, “Your are going to the Erkekler Park”)

• Kerem ⟨bir⟩F an durdu (in English, “Kerem stopped for a moment”)
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8.1.1.5. Remote and Implicit Units: If an entity is missing and referred from another

position in the text, an edge is added for the entity as IMPLICIT. If it is not referred in the

text, a new token is created as a REMOTE unit.

• ⟨(O)⟩A−IMPLICIT okula gelmedi (in English, “He didn’t come to school”)

• [⟨(Benim)⟩E−IMPLICIT Çocukluğum] aklıma geldi (in English, “I remembered my

childhood”)

• [Ali okuldan geldi]H ve [televizyon izledi ⟨(Ali)⟩A−REMOTE] (in English, “Ali came

from school and watched television”)

• [Okula yeni kayıt olan ⟨(çocuk)⟩A−REMOTE] çocuk] bugün gelmedi (in English, “The

newly enrolled child did not come today”)

• Ne [ondan bahsedebildim] ne [yaşadıklarımdan ⟨(bahsedebildim)⟩P−REMOTE] (in

English, “I could neither talk about her/his nor talk about my experiences”)

8.2. Hyperparameters of Text Classification

8.2.1. Irony Detection

Table 8.1 lists the hyperparameter values used in the models.

Parameters Turkish Irony Dataset [8] IronyTR Dataset [9]
UCCA-CNN UCCA-GCN UCCA GAT UCCA-CNN UCCA-GCN UCCA GAT

weight decay 0.1 0.2 0.2 0.2 0.2 0.2
batch size 64 2 1 64 2 1
learning rate 0.0001 0.005 0.0005 0.001 0.0001 0.0005
filter sizes [3,4,5] - - [3,4,5,6] - -
# of filters 50 - - 50 - -
dropout rate 0.2 0.1 0.1 0.2 0.2 0.2
# of MLP 2 - - 2 - -
#of neurons ins in FC 200 - - 200 - -
# of hidden 200 800 200 800
# of head - - 1 - - 1

Table 8.1 Hyperparameters used for the different models in experiments
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8.2.2. Multi-label Emotion Classification

Table 8.2 lists the hyperparameter values used in the model.

Parameters SemEval-2018 Dataset [10] GoEmotions Dataset [6]
UCCA-GAT Dep-GAT UCCA-GAT Dep-GAT

weight decay 0.1 0.2 0.2 0.2
batch size 1 1 1 1
learning rate 0.001 0.005 0.001 0.005
dropout rate 0.2 0.1 0.1 0.2
# of hidden 400 400 400 400
# of head 2 4 2 4

Table 8.2 Hyperparameters used for the different models in monolingual experiments

8.2.3. Transfer Downstream Tasks

Table 8.3, 8.4, and 8.5 list the hyperparameter values used in the UCCA-GAT, AMR-GAT

and Dep-GAT models, respectively, for transfer downstream tasks.

Parameters MR CR SUBJ MPQA SST-2 TREC MRPC
weight decay 0.2 0.1 0.2 0.2 0.2 0.1 0.1
batch size 1 1 1 1 1 1 1
learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
dropout rate 0.1 0.1 0.1 0.2 0.1 0.1 0.1
# of hidden 800 800 800 800 400 800 800
# of head 2 1 2 2 4 1 1

Table 8.3 Hyperparameters used for the UCCA-GAT for transfer tasks in experiments

Parameters MR CR SUBJ MPQA SST-2 TREC MRPC
weight decay 0.1 0.1 0.2 0.1 0.2 0.1 0.1
batch size 1 1 1 1 1 1 1
learning rate 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4 1e-4
dropout rate 0.2 0.1 0.2 0.1 0.2 0.1 0.1
# of hidden 800 400 800 800 800 400 800
# of head 2 1 2 2 4 1 1

Table 8.4 Hyperparameters used for the AMR-GAT for transfer tasks in experiments
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Parameters MR CR SUBJ MPQA SST-2 TREC MRPC
weight decay 0.1 0.1 0.2 0.1 0.2 0.1 0.1
batch size 1 1 1 1 1 1 1
learning rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
dropout rate 0.1 0.1 0.2 0.1 0.2 0.1 0.1
# of hidden 800 400 800 800 800 400 800
# of head 2 1 2 2 4 1 1

Table 8.5 Hyperparameters used for the Dep-GAT for transfer tasks in experiments
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