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ABSTRACT

FLIGHT MANEUVER CLASSIFICATION USING ARTIFICIAL
NEURAL NETWORKS

Fikrican Pusat

Master of Science, Computer Engineering
Supervisor: Prof. Dr. Mehmet Önder Efe

December 2022, 81 pages

There are globally known basic flight maneuvers performed by fighter and aerobatics pilots

with agile aircraft. These basic flight maneuvers have strict rules that the pilots should

follow to complete the maneuver and can be used to evaluate the pilot’s or aircraft’s

capabilities. Flight data is classified into flight maneuvers by aviation professionals before

evaluation. The need for this classification created a research area to be filled: Automatic

flight maneuver classification. This study proposes a solution to the automatic flight

maneuver classification problem by exploiting artificial neural networks. It also contributes

a flight maneuver classification dataset to the literature. This dataset was generated using

professional flight simulation tools. The flight data attributes were evaluated and selected

to give the optimum performance in terms of accuracy, precision, and recall. The types of

artificial neural networks used and compared were single hidden layer neural networks, deep

neural networks, and recurrent neural networks. Combinations of these types, activation

functions, optimization methods, and gradient descent algorithms were tested against the

problem to maximize the performance of the solution. There are no secondary studies on the

subject of flight maneuver classification and this study also fills this gap by contributing

a systematic literature review on ”flight maneuver classification using machine learning
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methods”. The solution proposed by this study successfully classified ten distinct flight

maneuvers such as basic descent and ascent, but also more complex ones such as Immelman,

split-s, and lazy-eight. The results were evaluated by calculating accuracy, precision, recall,

and loss parameters on test data. The best-performing artificial neural network type, which

is deep neural networks, gave over 96 percent accuracy and less than 0.1 loss in the test

set. All the artificial neural network types and solutions gave over 90 percent accuracy with

correctly chosen attributes. This study also contributed a software program that classifies the

flight maneuver in real-time while the flight maneuver is being performed in a simulation. It

was seen that this software was also accurately predicting the pilots’ intended maneuvers in

real-time.
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ÖZET

YAPAY SİNİR AĞLARI İLE UÇUŞ MANEVRASI SINIFLANDIRMA

Fikrican Pusat

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Mehmet Önder Efe

Eş Danışman: Doç. Dr. Adı Soyadı
Eylül 2022, 81 sayfa

Çevik uçaklarla savaş ve akrobasi pilotları tarafından gerçekleştirilen dünyaca bilinen temel

uçuş manevraları vardır. Bu temel uçuş manevraları, pilotların manevrayı tamamlamak için

uyması gereken katı kurallara sahiptir ve pilotun veya uçağın yeteneklerini değerlendirmek

için kullanılabilir. Uçuş verileri, değerlendirilmeden önce havacılık uzmanları tarafından

uçuş manevraları olarak sınıflandırılır. Bu sınıflandırma ihtiyacı, doldurulması gereken

bir araştırma alanı yaratmıştır: Otomatik uçuş manevrası sınıflandırması. Bu çalışma,

otomatik uçuş manevrası sınıflandırma problemine yapay sinir ağlarından yararlanarak

bir çözüm önermektedir. Aynı zamanda literatüre bir uçuş manevrası sınıflandırma

veri seti sağlamaktadır. Bu veri seti, profesyonel uçuş simülasyon araçları kullanılarak

oluşturulmuştur. Uçuş verisi öznitelikleri, doğruluk, kesinlik ve geri çağırma açısından

optimum performansı verecek şekilde değerlendirildi ve seçildi. Kullanılan ve karşılaştırılan

yapay sinir ağlarının türleri, tek gizli katmanlı sinir ağları, derin sinir ağları ve

tekrarlayan sinir ağlarıdır. Çözümün performansını en üst düzeye çıkarmak için bu

türlerin kombinasyonları, aktivasyon fonksiyonları, optimizasyon yöntemleri ve gradyan

iniş algoritmaları probleme karşı test edilmiştir. Uçuş manevrası sınıflandırması konusunda

literatürde ikincil bir çalışma bulunmamaktadır ve bu çalışma aynı zamanda ”makine
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öğrenme yöntemleri kullanılarak uçuş manevrası sınıflandırması” konusunda sistematik bir

literatür taraması içererek bu boşluğu doldurmaktadır. Bu çalışma tarafından önerilen çözüm,

temel yükselme ve alçalma gibi on farklı uçuş manevrasını ve aynı zamanda Immelman,

split-s ve lazy-eight gibi daha karmaşık olanları da başarıyla sınıflandırmıştır. Sonuçlar,

test verileri üzerinde doğruluk, kesinlik, geri çağırma ve kayıp parametreleri hesaplanarak

değerlendirilmiştir. En iyi performans gösteren yapay sinir ağı türü olan derin sinir ağları,

test setinde yüzde 96’nın üzerinde doğruluk ve 0,1’den az kayıp vermiştir. Tüm yapay

sinir ağı türleri ve çözümleri, doğru seçilmiş veri seti elemanlarıyla yüzde 90’ın üzerinde

doğruluk sağlamıştır. Bu çalışma aynı zamanda, uçuş manevrası bir simülasyonda yapılırken,

uçuş manevrasını gerçek zamanlı olarak sınıflandıran bir yazılım programını da literatüre

sağlamaktadır. Bu yazılımın pilotların yapmak istedikleri manevraları da gerçek zamanlı

olarak doğru bir şekilde tahmin ettiği görülmüştür.

Keywords: sinir ağları, uçuş manevrası, sınıflandırma, tanılama
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1. INTRODUCTION

Basic flight maneuvers have strict rules while performing them. The pilot strictly follows

some aircraft data (angles, speeds, pressures, and so forth) to be in foreseen ranges to

complete the maneuver. Completing these maneuvers is almost a mechanical process.

Then, an automatic solution can help distinguish different maneuvers to help the pilots

perform better, and the avionics professionals analyze flight data easier. This solution

would take a burden from the avionic professionals manually classifying the aircraft data

to different maneuvers, and remove the possibility of human error from the classification

process. To achieve this solution, researchers developed methods to automatically classify

flight maneuvers such as flight regime algorithms, data thresholds, and machine learning

methods. . .

According to Jesan (2004), artificial neural networks are good algorithms for pattern

recognition problems since they are error-prone, and can evolve for different recognition

problems [1]. The problem at hand is a pattern recognition problem since it is simply trying

to find some patterns of attributes while performing specific maneuvers, so it seems logical to

apply back-propagation artificial networks for the problem at hand. Also, we have numerical

input and categorical output, that is, our output is the selection of flight maneuvers from a

finite set (classification).

There are studies that try to solve this classification problem using aerodynamics in the

literature. For example, in a similar attempt to solve the problem of maneuver classification,

Travert (2009) considered neural networks as advanced and not necessary to be considered in

his paper. He, instead, used commercial flight regime recognition algorithms [2]. In another

attempt at helicopter maneuvers, Barndt et al. (2007) tried to establish criteria and thresholds

for determining flight maneuvers. They used the flight test database of The Navy [3].

Machine learning concepts are also used in numerous studies to solve the flight maneuver

classification problem. The most utilized methods are density-based spatial clustering

of applications with noise (DBSCAN), k-means, and Bayesian networks. DBSCAN and

1



k-means clustering are together used by Blanks, Sedgwick, Bone, and Mayerchak (2017),

and Dang, Tran, Alam, and Duong (2003) [4, 5]. Socha et al. (2018) used DBSCAN alone

while Wang, Han, Hu, and Zhan (2019) used k-means clustering alone [6, 7]. Bayesian

networks are mentioned as a solution to the problem by Wu et al. (2018), Meng et al. (2019),

and Chen et al. (2019) [8–10]. Dynamic time warping is also a utilized machine learning

method to classify flight maneuvers. It is used by Ruotsalainen et al. (2009), and Wei et al.

(2020) [11, 12].

The concept of neural networks got more popular and easier to grasp with tools and special

libraries over time, and they are a better choice now than ever. While they do not solely

focus on artificial neural networks (ANN), there are some studies that show ANNs can

be used for flight maneuvers and regime classification. Pechaud and Kim (2001), needed

maneuver classification for determining in-flight loads in maneuvers. They used artificial

neural networks for their applications. They obtained data through real flights with air data

instruments attached to a Cessna 172P Aircraft and successfully classified maneuvers [13].

Oza et al. (2003) use multilayer perceptrons with one hidden layer and radial basis function

networks for the problem at hand using real helicopter flight data. They evaluated their work

by implementing cross-validation and confusion matrices and saw that they get high accuracy

[14]. Bodin (2020), used logistic regression, support vector machines, and ANNs to classify

flight maneuvers using professional simulation flight test data. She compared and evaluated

these methods in her study by using recall, accuracy, precision, and confusion matrices. The

study shows that artificial neural networks are the best algorithm among the others [15].

These studies that try to solve the maneuver classification problem are explained further in

the Related Work (3.) section. The studies utilizing ANNs to solve the flight maneuver

classification problem show promising results while not exploring the ANNs in depth.

This study aims to fill the gap by testing and comparing numerous ANN structures and

optimization methods against the classification problem with a multitude of classes and

provide the first thorough analysis in the literature on this subject.
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1.1. Scope Of The Thesis

This thesis focuses on providing a means to automatically classify flight data into multiple

flight maneuvers by exploiting artificial neural networks. To achieve this goal, this thesis

answers the following questions:

• Can artificial neural networks be used to classify flight data into flight maneuvers?

• Which artificial neural network types and optimization methods are best suited for this

purpose?

• How do these different types and methods perform against the problem?

To answer the above questions, this thesis explores the below concepts:

• Creating a flight environment to collect flight data using simulation tools.

• Exploring flight data attributes best suited for flight maneuver classification.

• Determining flight maneuvers to classify.

• Exploring and inventing data feature evaluation and selection methods.

• Exploring and comparing neural network types for flight maneuver classification.

• Exploring optimization methods, functions, and algorithms of said neural network

types.

1.2. Contributions

This thesis provides a solution to the automatic flight maneuver problem by contributing

below items to the literature:

• It includes the first secondary study, a systematic literature review, on flight maneuver

classification with machine learning methods.
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• A flight simulation environment to collect flight data with a computer program

collecting the dataset in real-time is introduced.

• An open-source flight maneuver dataset is contributed.

• It evaluates existing and invents new data feature selection methods to reveal the flight

data feature importance in terms of flight maneuver classification.

• It covers the first thorough analysis of using and comparing different types of artificial

neural network types for the purpose of flight maneuver classification in the literature.

It explores and compares SHLNNs, DNNs, and RNNs on the said subject.

• It contributes an open-source highly accurate real-time flight maneuver classifier

program.

• The results of the study show that flight maneuver classification can be done with high

performance using artificial neural networks.

All the contributions introduced in this thesis are shared online [16] for reproducibility’s

sake. Any researcher can easily reproduce and improve the results of this thesis simply by

using the source code, the dataset, and the documentation.

1.3. Organization

The organization of the thesis is as follows:

• Chapter 1 presents our motivation, contributions, and the scope of the thesis.

• Chapter 2 provides background information on:

The data preprocessing methods which are absolute scaling and random shuffling.

The feature selection methods which are Pearson correlation, Kendall correlation,

and Spearman correlation as well as analysis of variance.
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The information on ANNs starts from the neurons, and continues with perceptrons,

activation functions, classification methods, different types of ANNs, loss functions,

and finally the back-propagation and optimization methods.

The classification performance metrics.

• Chapter 3 includes the methodology and results of the systematic literature review

on ”flight maneuver classification using machine learning methods”. The SLR

was conducted using “Guidelines for performing Systematic Literature Reviews in

Software Engineering” by Kitchenham and Stuart (2007) [17]. A total of 16 primary

studies were found using specified research methodology. They were evaluated and

explained in light of carefully crafted research questions.

• Chapter 4 explains how the information shown in Chapter 2 is implemented to achieve

the flight maneuver classification goal step by step. This chapter starts with explaining

the data collection method developed solely by this thesis, and continues with how the

dataset is utilized with preprocessing, feature selection, and ANN methods.

• Chapter 5 demonstrates the results of the thesis. The performance of the mentioned

ANNs with mentioned optimization methods can be seen in this chapter in the form of

explained performance metrics.

• Finally, Chapter 6 states the summary of the thesis and possible future directions.
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2. BACKGROUND OVERVIEW

2.1. Data Preprocessing

The dataset consists of different data features with different limits and units. Biases may

occur when these kinds of data are used to train a neural network, such as some features

dominate the output classification due to their scales being different from others. This is why

the dataset is normalized between [-1, 1] using maximum absolute scaling before being used

in training. This normalization method is given as Equation 1.

xscaled =
x

max(|x|) (1)

The next preprocessing is only applied when training without recurrent neural networks.

The dataset is originally ordered by time in chronological order. The maneuvers are grouped

together in the dataset. The lines in the dataset are randomly shuffled before being used in

training with a single hidden layer and deep neural networks to reduce over-fitting caused by

this grouping. Shuffling also helps to create a balanced training and validation split. Shuffling

happens before normalization.

2.2. Feature Selection

The use of the correlation calculation provides both removing redundant features and giving

an idea of which features are the most relevant to the categorical output when used with

numerical input categorical output datasets.

The Pearson correlation was first pitched by Karl Pearson (1895). It can be calculated

using Equation 2. The ρx,y represents the correlation between two random variables x and

y, cov(x, y) represents the covariance between them, and finally, sx and sy represents the

standard deviation of the random variables [18].
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ρx,y =
cov(x, y)

sxsy
(2)

The Spearman correlation, first introduced by Spearman (1904), is defined as the Pearson

correlation of the ranks of the random variables. It can be calculated using Equation 3 [19].

The R represents the rank of a random variable.

ρR(x),R(y) =
cov(R(x)R(y))

sR(x)sR(y)

(3)

The Kendall correlation, first introduced by Kendall (1938), can be calculated using Equation

4 [20]. The xi represents the ith observation of the random variable X .

τ =
2

n(n− 1)

X

i<j

sgn(xi, xj)sgn(yi, yj) (4)

Finally, the main feature selection method is ANOVA. Fisher (1921) pitched the ANOVA

correlation [21] and it became a widely excepted data mean and variance analysis since

then. The explanation of the ANOVA calculation is not in the scope of the thesis and it was

calculated using an open-source library.

2.3. Artificial Neural Networks

The neurons are at the heart of artificial neural networks. The idea of simulating the neurons

of the living brain as a computational processing unit came from Rosenblatt (1958). He

called these processing units ”perceptrons”. These processing units include weight vectors

that weigh the neuron inputs according to the importance for classification and an activation

function that uses the weighted input values and outputs a neuron response. A neuron can

be represented using Equation 5 and Figure 2.1. [22]. The training of the neural network is

simply trying to find the weights of all the neurons in the network to satisfy the output goal.

7



Figure 2.1 A model of a neuron.

y = φ(
nmaxX

n=1

wnxn) (5)

The xn represents each input of the neuron, wn represents the weights of each input, nmax

represents the number of inputs, φ represents the activation function, and y represents the

neuron response in Equation 5.

The activation functions are the functions that executes the output of the neurons.

Rosenblatt (1958) simply used the Heaviside step function as the activation function in the

perceptron model [22]. As the neural networks’ popularity increased in time, which was

not very popular when it was first pitched due to the high computation costs of the time,

and the goals of the neural networks got more and more complex, other activation functions

were tried and proven to be better for different kinds of problems. The activation functions

explored in this thesis are defined in Table 2.1.

The neurons together form network layers. There are three layer types: Input, hidden, and

output. Each neuron in the input layer accepts each input data feature as its input. Hidden

layers are the layers between the input and output layers. The inputs of the neurons in

the hidden layers are each output of the previous layer’s neurons. The number of hidden

layers determines the depth of the neural network. The output of the neurons in the output

layer determines the classification result. An example of a neural network with one hidden

layer can be seen in Figure 2.2. Hornik et al. (1989) showed that this kind of multilayer
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Table 2.1 Activation functions.

Function name Function plot Function

ReLU [23] φ(x) = max(x, 0)

Sigmoid [24] φ(x) =
1

1 + exp(−αx)

Softmax [25] φ(x)i =
exp(xi)P
j exp(xj)

Softplus [23] φ(x) = log(exp(x) + 1)

Softsign [23] φ(x) =
x

abs(x) + 1

tanh [24] φ(x) = tanh(x)

SELU [23] φ(x) = if x > 0 : s ∗ x
if x < 0 : s ∗ α ∗ (exp(x)− 1)

ELU [23] φ(x) = if x > 0 : x
if x < 0 : α ∗ (exp(x)− 1)
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feed-forward network can simulate any given function successfully. They showed that

carefully chosen weights can result in an estimator function [26]. One run to get a neural

network’s output is called forward propagation. The forward-propagation can be represented

with Equation 6. This equation is the output of any given neuron in the neural network.

Calculating each neuron response from the input layer to the output layer in order results in

an estimation which is the output layer neuron responses.

Figure 2.2 A neural network model.

alj = φl(
X

k

wj
l
ka

l
k
−1 + blj) (6)

The φl represents the activation function of the lth layer, alj represents the output of the lth

layer’s jth neuron, wj
l
k represents the weight of the neuron’s kth input, alk

−1 represents the

output of the (l − 1)th layer’s kth neuron, and blj represents the bias term of the neuron in

Equation 6. The first layer neuron outputs can be considered the dataset inputs with this

equation.

We will see in this thesis that the activation functions of the layers can be different from

each other. A real-time ANN classifier simply would take a data sample as input and apply

forward propagation to classify that sample. To give an example, the 10 output neurons

seen in Figure 2.2 represents each of the flight maneuver to be classified. The responses of
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these neurons after a run of forward propagation can be seen in Figure 2.3. Brownlee (2020)

suggests that the softmax function, when used in the output layer, gives a nice probability

distribution between the classes to predict. Summing the output layer responses would result

in 1 if this is the case [27]. By looking at Figure 2.3, we can determine that the maneuver is

the second class, which is descent (The maneuvers are explained further in the thesis) with a

0.552 probability.

Figure 2.3 A prediction.

Single hidden layer neural networks are simple and shallow one hidden layered neural

networks. It is the basis of neural networks and is useful for non-complex classification

problems.

Deep neural networks are formed of multiple hidden layers and are generally better with

more complex classification problems with numerical input datasets. Das and Roy (2019)

also mention that DNNs are formed of more than one hidden layer and they can be referred

to as stacked neural networks [28].

Recurrent neural networks differ from other types of neural networks due to exploiting

historical data. The RNNs feed back the outputs to their input to include historical

information, causing a sense of memory. This kind of architecture works brilliantly with

sequential data, as opposed to feed-forward neural networks which assume no correlation

exists between data features and data samples. Recurrent neural networks are mostly used in

speech recognition and natural language processing where the sequence of the data matters

[29]. The dataset of this study is a time series where the samples are logged with a frequency

of 30 Hz. The goal and the form of the dataset are suitable to be used with recurrent neural

networks. Since the sequence of the data matters with this kind of neural network, random

shuffling preprocessing should not be applied to the dataset. Hochreiter and Schmidhuber

(1997) first introduced the LSTM method and ANN layers [30]. LSTMs became the basis of

recurrent neural networks after this point.
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Brownlee (2019) explains the loss value as the value that shows how far the neural network

is away from satisfying its goal. The purpose of the training is to minimize the loss value

computed by the loss function [31]. A similar statement can be read by the Keras tutorial on

loss [32]. The loss functions that are explored to get the success of the neural networks in

this thesis are defined under Table 2.2.

Table 2.2 Loss functions.

Function name Function

Categorical Cross-Entropy [31] L =
P

k Pklog(Qk)

KL Divergence [33] L =
P

k Pklog(
Pk

Qk

)

MSE L =
1

kmax

P
k(Pk −Qk)

2

MAE [34] L =
1

kmax

P
k abs(Pk −Qk)

Cosine Similarity [32] L = −P ||P ||22||Q||22

Huber Loss [35][32] L = For each value x in error = Pk − Qk :
if abs(x) <= d : 0.5x2

if abs(x) > d : d|x|− 0.5d2

where d is delta

Categorical Hinge [32] L =
P

k max(1− PkQk, 0)

The Pk represents the response of a neuron while Qk represents the expected result. The loss

(and also the cost) is calculated using the response and the expected values.

The back-propagation algorithm was pitched by Rumelhart et al. (1986) and it runs right

after the forward propagation in a training neural network [36]. As we discussed earlier, the

purpose of the training of an ANN is to adjust the neuron weights to create an estimator. The
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back-propagation algorithm is the one adjusting the weights in training by minimizing the

loss values calculated. It does that using calculating the gradient of the loss function.

Grant Sanderson (2017) explains the calculus behind the gradient with a back-propagation

algorithm by using the MSE loss function for the simplest artificial neural network shown in

Figure 2.4 [37].

Figure 2.4 A simple ANN model.

By referencing Equation 6, we can give the response of the output neuron as Equation 7 for

the simple ANN shown in Figure 2.4 as al [37].

zl = wlal−1 + bl , al = φ(zl) (7)

Assume we fed forward a training sample and the expected output of the sample is denoted

as y. Then the cost would be calculated as Equation 8 using the MSE function [37].

C0 = (al − y)2 (8)

Remember that we are trying to minimize the cost value and we are interested in the Equation

9 since it represents the cost value change rate as the weight wl is changed. We can see that

due to the dependencies of the variables, we can write a partial derivative chain [37].

∂C0

∂wl
=

∂zl

∂wl

∂al

∂zl
∂C0

∂al
(9)

When we actually compute the derivatives, we get Equation 10. This equation shows how a

change in a specific weight, wl in this case, affects the cost for a single data sample [37].
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∂C0

∂wl
= al−1φ′(zl)2(al − y) (10)

We can generalize this equation to the whole dataset, meaning we can find the full loss

change rate for that specific weight wl using Equation 11. Where n is the total number of

samples and k is each data sample index [37].

∂C

∂wl
=

1

n

X

k

∂Ck

∂wl
(11)

Note that we can adjust the biases just like weights. Then in a similar fashion, we can

calculate the derivative shown in Equation 9 by replacing wl with bl and get Equation 12 to

find that it results in 1 [37].

∂C0

∂bl
=

∂zl

∂bl
∂al

∂zl
∂C0

∂al
(12)

The two gradients we found are both a part of the full gradient that we should be computing

shown in Equation 13. The number of neurons and layers only changes the size of this matrix

[37].

∇C = [ ∂C
∂w1

∂C
∂b1

... ∂C
∂wl

∂C
∂bl

] (13)

Then finally we need to do the same thing we did for wl, bl for al−1 too. Since al−1 also

depends on its own biases and weights, the same chain rule applies to that too. We did

everything on the output layer’s neuron but now we can apply it to the previous layer and find

the full gradient matrix. This is simply back-propagation at work [37]. A run of the forward

propagation and back-propagation is called an epoch. Weights and biases are updated in

each epoch towards the loss goal. This change rate is called the learning rate. The learning

rate is an important hyperparameter for a training ANN. A small learning rate would cause a

slow or stuck training session while a large learning rate would cause unstable training. The
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learning rate is generally denoted using ”η”. This epoch loop is iterated until the threshold

epoch is reached or the predetermined ANN loss is achieved. The flowchart of this classical

training loop can be seen in Figure 2.5.

Figure 2.5 A training flow-chart.

Since the back-propagation algorithm is pitched, a lot of ANN optimizers are added to the

literature which all are its variations. The one we covered above is batch gradient descent,

which is the classical one. Ruder (2017) investigates the ANN optimizers included in

Tensorflow with Keras [38]. Incidentally, the optimizers tried in this thesis are the same

ones.

Ruder (2017), starts to lay the foundation by explaining that the purpose of the gradient

descent is to minimize a J(θ) objective function where θ is the weights and biases of a

network. The batch gradient descent can be summarized with Equation 14 where ∇θJ(θ)

is the derivative of the loss function w.r.t. θ. In batch gradient descent, the loss should be

calculated using the whole dataset for one update of the weights and biases. This is why this

method is computationally too slow but guaranteed to find the local minima [38].
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θ = θ − η.∇θJ(θ) (14)

The SGD can be summarized with Equation 15. The SGD updates the weights and biases

with each data sample. This is why SGD is a bit more sloppy than batch gradient descent

while being much faster.

θ = θ − η.∇θJ(θ; x
i; yi) (15)

The mini-batch gradient is the combination of both SGD and batch gradient descent to

combine the goods of both. It simply creates batches of data samples and updates the

parameters for each batch. When the batch size is 1, this method turns into SGD, when

the batch size is dataset size, this method turns into batch gradient [38].

The Adagrad [39], introduced by Duchi (2011), adapts η accordingly with θi which is each

network parameter. Since the η is changed by the algorithm and not given, the trainer is not

concerned with choosing a learning rate with this method. The Equation 16 shows how the

Adagrad method adapts the parameter-specific learning rate. The θt+1,i represents the value

of ith network parameter at data sample t + 1, ϵ represents a smoothing term to avoid zero

division, and Ruder defines ”Gt,ii is a diagonal matrix where each diagonal element i, i is

the sum of the squares of the gradients w.r.t. θi” [38].

gt,i = ∇θtJ(θt,i),

θt+1,i = θt,i −
ηp

Gt,ii + ϵ
.gt,i

(16)

The term Gt,ii gets larger in each iteration and the learning comes to a stop at one point

with the Adagrad method [38]. The Adadelta method [40], pitched by Zeiler (2012) and the

RMSprop method [41] pitched by Hinton (2012), successfully base their methods on top of

Adagrad and solve the mentioned problem independently from each other [38].
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Two other optimization methods that are adapting the learning rate are Adam and Adamax

[42], which were pitched by Kingma and Ba (2014).

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

θt+1 = θt −
η√

v̂t + ϵ
m̂t

(17)

In these optimization methods, the weights and biases are updated with each data sample

using Equation 17 for Adam optimization and Equation 18 for Adamax optimization [38].

Kingma and Ba (2014) initializes vt and mt with 0 and gives the default values of β1 = 0.9,

β2 = 0.999, and ϵ = 10−8 [42].

ut = max(β2.vt−1, |gt|)

θt+1 = θt −
η

ut

m̂t

(18)

Finally, the Nadam optimization, introduced by Dozat (2015), incorporates Nesterov

momentum into Adam optimization [43].

2.4. Performance Metrics

The successes of the classification models are evaluated using accuracy, precision, and recall

for each maneuver [15]. The formula for these performance metrics can be seen in Equation

19.

The accuracy is the ratio of correctly classified vs. the total predictions for a specific class.

This measure can be misleading in scenarios where the dataset is imbalanced and the number
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of negatives is high. For example, this measure becomes irrelevant with a classification

problem with 10 classes.

Precision is a measure of how much a classification decision of a specific class should be

trusted. Low precision for a class means it is highly likely this class is predicted but the

actual result is another class.

Recall is a measure of identifying a class over the whole dataset without missing one. Low

recall for a class means it is highly likely that another class is predicted but the actual result

is that specific class.

accuracy =
TP + TN

TP + TN + FP + FN
,

precision =
TP

TP + FP
,

recall =
TP

TP + FN

(19)
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Figure 3.1 Literature review process flow

3. RELATED WORK

A systematic literature review was conducted to interpret all available studies and get a

comprehensive understanding of the usage of machine learning methods for the purpose

of flight maneuver classification. Through the research questions, this literature review

contributes a way to explore flight data attributes, and machine learning algorithms used to

classify flight maneuvers. It also provides a comparison between these methods, especially

artificial neural networks, in the form of performance and accuracy.

The systematic literature review is conducted by a literature search in well-known libraries:

IEEE Explore, ACM DL, arXiv, Wiley Online Library, Science Direct, ResearchGate, and

Web of Science. It is conducted using “Guidelines for performing Systematic Literature

Reviews in Software Engineering” [17] by Kitchenham and Stuart (2007).

3.1. Research Design

Activities to the research method can be seen below and a visual representation in the form

of a flow-chart can be seen in Figure 3.1:

1. Define research questions (Output: Research questions).

2. Determine search strategy (Output: Search string).
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3. Search is performed on a selection of digital libraries (Output: First set of publications

– Table 3.1)

4. Apply exclusion criteria by reviewing titles and abstracts. (Output: Second set of

publications)

5. Apply inclusion criteria to the second set of publications from the full text. (Output:

Final set of publications)

3.1.1. Research Questions

PICOC(Population, Intervention, Comparison, Outcomes, and Context) that derive the

research questions can be seen below:

• Population: Machine learning and aviation researchers.

• Intervention: Machine learning using flight data for flight maneuver classification.

• Comparison: Usage areas, different implementations, performance, and accuracy of

machine learning algorithms with aircraft flight data for the purpose of flight maneuver

classification.

• Outcomes: A good grasp and understanding of current developments in aviation

academies and industry that use machine learning algorithms for the purpose of flight

maneuver classification, and possible research areas to conduct studies to fill the gap

with neural networks.

• Context: Academic and industrial studies.

Using this PICOC, research questions are defined below:

• RQ-1. Which aircraft flight data attributes are relevant to achieving flight maneuver

classification?
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• RQ-2. Which machine learning algorithms are used for flight maneuver classification?

– RQ-2.1. How are machine learning algorithms and techniques implemented to

achieve flight maneuver classification?

– RQ-2.2. How are the performance and accuracy of these algorithms?

– RQ-2.3. How the performance and accuracy of these algorithms can be

increased? Which optimization methods are used with the mentioned algorithm?

• RQ-3. What is the role of ANNs in flight maneuver classification? How it is compared

to other machine learning methods?

3.1.2. Search Strategy

The search string is a combination of logically formulized keywords to be used in search

facilities of digital libraries. The researcher can find all the related studies and filter out

others with a finely chosen search string. The search string chosen for this SLR is:

“(detect OR classification OR recognize OR recognition OR identify OR identification

OR classify) AND (manoeuvre OR maneuver) AND (aircraft OR flight)”

This search string is used in multiple well-known digital libraries for computer science and

software engineering: IEEE Explore, ACM DL, arXiv, Wiley Online Library, Science Direct,

ResearchGate, and Web of Science. The search string is searched in the title and abstract of

the studies to eliminate brief mentions. The search date range is from 1943 to 2021. 1943

is the year when the first computational model for a neural network is introduced to the

literature. Results of the searches in digital libraries can be seen below in Table 3.1. The

total number of publications found in these digital libraries combined was 674, which forms

the first set of publications.

Note that there is no term containing “machine learning” related concepts in the search

string. The reason for this decision is to make the first set of publications wider. The titles
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and abstracts of the publications are going to be skimmed using exclusion and inclusion

criteria for the second set of publications. That step will be the point where the publications

not including machine learning methods will be eliminated. There are lots of different

approaches to machine learning, and a keyword may cause missing publications.

Table 3.1 List of searched digital libraries and the numbers of found publications

Digital Library URL Number of Publications
ACM DL dl.acm.org 9
IEEE Explore ieeexplore.ieee.org 369
arXiv arxiv.org 15
Wiley Online Library onlinelibrary.wiley.com 61
Science Direct sciencedirect.com 103
ResearchGate researchgate.net 100
Web of Science apps.webofknowledge.com 17

3.1.3. Publication Selection

Exclusion criteria are applied by reviewing titles and abstracts of the first set of publications

for the publication to get into the second set of publications. Publications satisfying any of

the exclusion criteria are eliminated. The exclusion criteria’s exclusion conditions can be

seen below:

• EC-1. The researcher cannot access the publication;

• EC-2. The publication is not in English;

• EC-3. The publication is a duplicate that is found in another digital library;

• EC-4. The publication does not mention “flight maneuver classification” as explained

in the 1.Introduction section;

• EC-5. The publication briefly mentions “flight maneuver classification” without

proposing a method for it;
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• EC-6. The publication does not mention any machine-learning method;

• EC-7. The search string is only found on the publication as a reference to other

publications.

EC-4 and EC-5 are applied to remove any unrelated publications. Remember that there

was no term containing “machine learning” in the search string: EC6 is used to introduce

a “machine learning” filter to the publication selection. The number of the second set of

publications was 16.

Inclusion criteria are applied by reviewing the full text of the second set of publications to get

the final set of publications. To get into the final set of publications, the reviewed publication

has to satisfy any of the conditions below:

• IC-1. The publication compares flight data attributes for better flight maneuver

classification;

• IC-2. The publication mentions machine learning methods to achieve flight maneuver

classification;

• IC-3. The publication includes comparisons of different flight maneuver classification

methods, performance, and accuracy wise;

• IC-4. The publication includes comparisons of machine learning methods and

traditional aviation methods for flight maneuver classification;

• IC-5. The publication is a primary study.

The first four inclusion criteria are strongly related to the research questions. These inclusion

criteria ensure the included publications answer at least one of the research questions.

Besides these criteria, the fifth criterion ensures the included publications are primary studies.

The inclusion criteria did not eliminate any studies and the number of studies in the final set

of publications was 16.
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Study
No

Study Title, Authors, Year Venue Ans
RQs

1 Maneuver Identification Challenge by Samuel et al. (2021) [44] IEEE HPEC Conference Paper 1

2 Automatic Detection of Flight Maneuvers with the Use of
Density-based Clustering Algorithm by Socha et al. (2018) [6]

ISC-NTAD Conference Paper 1, 2

3 Identification of Flight Maneuvers and Aircraft Types Utilizing
Unsupervised Learning with Big Data by Blanks et al (2017) [4]

SIEDS Conference Paper 1, 2

4 Research on High Precision Terrain Dynamic Loading Technology
Based on Flight Trajectory Prediction by Wu et al. (2018) [8]

IEEE ITOEC Conference Paper 1, 2

5 Flight Motion Recognition Method Based on Multivariate Phase
Space Reconstruction and Approximate Entropy by Qu, Lv, Yang,
and Tang (2021) [45]

Chinese Control Conference
Paper

1, 2

6 Threat Assessment for Rotte Based on Cooperative Tactical
Recognition by Meng, Zhou, and Zhang (2019) [9]

IEEE IUCC – DSCI – SmartCNS
Conference Paper

1, 2

7 An Automatic Method to Estimate the Calibration Quality of the
Aeromagnetic Compensation by Wang, Han, Hu, and Zhan (2019)
[7]

IEEE International Geoscience
and Remote Sensing Symposium
Conference Paper

1, 2

8 Optimal Guidance Method for UCAV in Close Free Air Combat by
Chen et al. (2019) [10]

IEEE IUCC – DSCI – SmartCNS
Conference Paper

1, 2

9 A Novel Algorithm for Identifying Patterns from Multisensor Time
Series by Ruotsalainen et al. (2009) [11]

WRI World Congress on
Computer Science and
Information Engineering
Conference Paper

1, 2

10 Trajectory Prediction For Low-Cost Collision Avoidance Systems
by Baumgartner and Maeder (2009) [46]

IEEE AIAA Digital Avionics
Systems

1, 2

11 Classification of aircraft maneuvers for fault detection by Oza et al.
(2003) [14]

International Conference on
Multiple Classifier Systems Paper

1, 2, 3

12 HMM relative entropy rate concepts for vision-based aircraft
manoeuvre detection by Molloy and Ford (2013) [47]

Australian Control Conference
Paper

1, 2

13 A flight maneuver recognition method based on multi-strategy
affine canonical time warping by Wei et al. (2020) [12]

Applied Soft Computing Journal
Paper

2

14 Link between Flight Maneuvers and Fatigue by Jylha et al. (2011)
[48]

ICAF Journal Paper 1, 2

15 Automatic Flight Maneuver Identification Using Machine Learning
Methods by Bodin (2020) [15]

Linköping University Master of
Science Thesis in EE

1, 2, 3

16 A machine learning-based framework for aircraft maneuver
detection and classification by Dang et al. (2021) [5]

ATM Seminar Paper 1, 2

Table 3.2 Included studies

3.2. Research Results

The studies included in this SLR can be seen in Table 3.2. below. This table also contains

information on which research questions does the study answers in the “Ans RQs” column.
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RQ-1. Which aircraft flight data attributes are relevant to achieve flight maneuver

classification?

The study (No.1) introduces a challenge where they provide a large, verified, and professional

dataset and expect AI developers to take this challenge and compete. This challenge and the

dataset are introduced by MIT Air Force AI Accelerator and the writers are academicians

from this department. There are three challenges introduced by using the same dataset:

classify possible and impossible maneuvers, classify which maneuver is performed (18

classes), and finally score the performance of the maneuver. The dataset is a very detailed

and verified dataset that, interestingly, includes PNG files where the flight is drawn in 2D

from a bird’s eye view. This dataset also includes these data attributes: time (sec), xEast(m),

yNorth(m), zUp(m), vx(m/s), vy(m/s), vz(m/s), heading(deg), pitch(deg), roll(deg) [44].

The study (No.2) collects 414 maneuvers from flight training students using the TRD40 flight

simulator. Only bank and vertical speed data attributes are used to classify maneuvers [6].

The study (No.3) gathers data from open-source ADS-B by U.S. Air Force. They perform

feature engineering to select data attributes where they consider many attributes. By

combining some ordinary flight data such as turn rate, climb rate, acceleration, heading,

altitude, distance, G forces, etc. they create new data attributes. The derivation of each of

these new data attributes is detailed in the study. They also include the contributions of these

attributes to classification results [4].

The study (No.4) uses altitude, yaw angle, and roll angle to work with the Bayesian network

to classify somersault, half-somersault, constant height, descent, climb, hoick, combat curve,

hover, roll, dive, and half-roll reverse maneuvers. The maneuvers also act as an observation

node state set [8].

The study (No.5) uses height, roll, pitch, and yaw to classify flight motions which are climb,

landing, right turn up, left turn up, right S motion, left S motion, fixed height hover, and spiral

upward. They use these attributes as time-ordered sequences and they try to distinguish these

sequences. The height, roll, pitch, and yaw are the raw data attributes of the proposed method
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but the classification is performed on the approximate entropies and recurrence plots that are

generated from the raw data [45].

The overall target of the study (No.6) is to assess the threat posed by the opponent aircraft.

That is why this study focuses on classifying the opponent’s maneuver from the possible

maneuvers which are G-force left turn, G-force right turn, G- force diving, and G-force

climbing. The data attributes used for this purpose are the opponent’s relative distance (which

includes latitude, longitude, and altitude of each aircraft), speed of each aircraft, heading of

each aircraft, and tactical situations [9].

The study (No.7) uses the vector magnetic field of aircraft which is obtained from the vector

magnetometer as the data to solve the classifying problem. The authors especially avoid

attitude information because that information is not always available. This study classifies

the maneuver into two classes: level flight, and maneuvering [7].

Similar to study (No.6), study (No.8) also tries to classify an opponent aircraft’s maneuver.

The data attributes to perform the method are relative distance, relative height, relative

altitude of the opponent, and relative performance. The classes to classify from are straight

flight, hover, loop, snake, and battle turn [10].

The study (No.9) uses multi-sensor time-series operational loads measurement flight

recording of F-18 Hornet aircraft as the dataset. The operational load data consists of

more than 100 data attributes which are time-ordered. The example data attributes are

Mach number, phi angle, roll rate, and acceleration. One should note that this dataset is

not pre-labeled into classes to recognize. The maneuvers to classify are split s, steep turn,

and loop [11].

The study (No.10)’s classes of flight maneuvers are straight flight, slow turn, initiate left turn,

initiate right turn, terminate turn, and circle. The data attributes of maneuver classification

are generated from earlier sections of trajectory prediction state estimates. Also, a state

machine model is used with a probability of state changes where states are maneuvers [46].
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The study (No.11) uses data from real helicopter flights with AH1 Cobra and OH58c Kiowa.

The data attributes are revolutions per minute of the planetary gear, torque, and vibration

data from six accelerometers [14].

The study (No.12) uses morphologically processed image sequences as the data attribute.

They classify aircraft maneuvers from the images mentioned [47].

The study (No.14) mentions altitude, angular velocities, accelerations, roll, pitch, roll rate,

G, pitch rate, and yaw rate as useful to identify flight maneuvers which are split s, roll turn,

turn, loop, push, roll, and oblique loop [48].

The study (No.15) uses load factor, roll, pitch, yaw, roll rate, pitch rate, angle of attack, angle

of sideslip, delta Mach, delta altitude, stick inputs, pedal inputs, and throttle inputs to classify

six flight maneuvers which are bleed off turn, wind up turn, slow down turn, steady turning

sideslip, 360 degrees roll, and barrel roll. The dataset used was obtained from 24 flight tests

at Saab Aeronautics [15].

The study (No.16) uses automatic dependent surveillance- Broadcast data collected from

Singapore Flight Information Region. The dataset includes 2793 flights. This dataset is

open-source and available for reference (No.19). The flight paths collected are drawn in the

study for visualization. The classified maneuvers are sequencing, track shortening, weather,

and coordinate optimization. They differ from agile aircraft maneuvers since this study

focuses on civil airplane air traffic control [5].

RQ-2. Which machine learning algorithms are used for flight maneuver classification?

The study (No.2) uses density-based spatial clustering of applications with noise (DBSCAN)

for flight maneuver classification [6].

The study (No.3) tries not only to classify flight maneuvers but also to classify aircraft types

from the dataset using unsupervised learning. It uses k-means and k-medoids cluster models

for classification. It also points out that the DBSCAN algorithm can be used for the same

purpose which is later tried by the study (No.2) indeed [4].
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The study (No.4) uses Dynamic Bayesian Networks, which is a model to work with

stochastic processes, for flight maneuver classification and, furthermore, flight path

estimation [8].

The study (No.5) uses Multivariate Phase Space Reconstruction and Approximate Entropy

for flight maneuver classification. It calls this method: Flight Motion Recognition Model

[45].

The study (No.6) takes a different approach and tries to classify the maneuvers of an

opponent aircraft. The overall target of this study is not to classify maneuvers but to assess

the threat posed by the opponent aircraft. To assess the thread this study proposes a Bayesian

network with 3-tier architecture. The middle layer is the one that recognizes the intent of the

opponent [9].

The study (No.7) uses k-means and the Gaussian Mixture Model for the aircraft maneuver

classification problem [7].

The study (No.8) uses Dynamic Bayesian Networks to classify the opponent aircraft’s

maneuver [10].

The study (No.9) uses a template-based approach to flight maneuver classification problem

since it is seen that the problem was a pattern recognition problem [11].

The study (No.10) uses Interacting Multiple Model filtering which is an extension of the

Kalman Filter. Interacting Multiple Model filtering provides a solution to state estimation

problems. Also, a state machine model is used where states are different maneuvers (namely

straight flight, slow turn, initiate left turn, initiate right turn, terminate turn, and circle). The

aircraft type to classify maneuver is a glider in this study [46].

The study (No.11) uses multilayer perceptrons and radial basis function networks for the

purpose of maneuver classification of helicopters [14].

The study (No.12) uses Hidden Markov Model filters to classify maneuvers from

morphologically processed image sequences. This study focuses on identifying if a
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maneuver is being performed at the moment or not instead of classifying which maneuver is

being performed [47].

The study (No.13) uses multi-strategy affine canonical time warping to solve the problem. It

also includes dynamic time warping for comparison with MACTW [12].

The study (No.14) uses an approximate pattern-matching algorithm in their AMANA

software. It also backs this algorithm by manually creating templates for each flight

maneuver manually and comparing them [48].

The study (No.15) uses logistic regression, support vector machines and ANNs to classify

six flight maneuvers, and compare the results gained [15].

The study (No.16) uses DBSCAN, isolation forest, and k-means algorithms sequentially to

identify flight maneuvers [5].

RQ-2.1. How are the machine learning algorithms and techniques implemented to achieve

flight maneuver classification?

The study (No.2) identifies clusters using the two data attributes mentioned in RQ-1 with the

DBSCAN algorithm. This was done without time being a parameter. This is why a second

clustering was needed to distinguish the same maneuvers performed at different times where

the time is added [6].

The study (No.3) first had 4 clusters to identify: Take-off, landing, cruising, and

maneuvering. After this clustering, these clusters are also divided into sub-clusters. The

total number of maneuvers classified is the number of total sub-clusters [4].

The study (No.4) shows their Dynamic Bayesian Network prediction models to perform the

job which has 6 nodes. It also includes a flowchart for the implementation of the classification

model [8].

The study (No.5) first unites the Phase Space Reconstruction of the data attributes mentioned

in RQ-1 using Bayesian theory to achieve Multivariate Phase Space Reconstruction. At
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this point, they use Recurrence Plot and Approximate Entropy to distinguish maneuvers. It

includes a detailed step-by-step implementation and flowchart of their method [45].

The study (No.7) uses the k-means method to distinguish magnetic field data from different

headings. The Gaussian Mixture Model is used to identify aircraft attitude (phi, theta, psi

angles) which reflects the maneuver being performed [7].

The study (No.8) proposes a 10-node DBN model to decide on a maneuver for the aircraft

accordingly to the maneuver performed by the opponent aircraft. The nodes and states are

explained thoroughly in the study [10].

The study (No.9)’s architecture to solve the problem is as follows: First, template definition

and signal quantization on the dataset is performed; second, dynamic time warping matrices

are found; and finally, the patterns, using DTW matrix, are classified [11].

The study (No.11) has one hidden layer of multi-layer perceptrons and radial basis function

networks and a combination of the two. It includes the results of these combinations [14].

The architecture proposed by the study (No.14) includes manually created templates for each

maneuver. The automatically generated rules for maneuver classification are checked with

these templates [48].

The study (No.16) shares the architecture of their proposed solution to maneuver

classification problem. This proposed solution follows the DBSCAN algorithm, major flow

classification, flow-based nominal flight plan, isolation forest, and k-means as there is k

number of clusters corresponding to each maneuver [5].

RQ-2.2. How are the performance and accuracy of these algorithms?

The study (No.2) successfully classifies 390 of 414 maneuvers. The sensitivity is found to

be 0.9420. It is found that the sensitivity of the results was higher for the data created by the

experienced flight students [6].

The study (No.3) figures that 12 of the 14 sub-cluster distributions were significantly different

from the main dataset. The chi-squared results are included to show these results. The study
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concludes that the proposed methods can confidently classify maneuvers and flight phases,

and also aircraft types [4].

The study (No.5) shows the Recurrence Plots of eight different aircraft motions and states

that similar motions’ RPs are similar. Also, the approximate average value significantly

changes for four different types of aircraft motions. The study (No.5) does not include a

result in the form of accuracy or performance [45].

The study (No.7)’s main purpose is to calculate the figure of merit of aeromagnetic

compensation to reduce the magnetic interference of the aircraft. The maneuver classification

is needed to automatically calculate the FOM. That is why automated vs. manual FOM

calculations are used as the performance and accuracy criteria. The automated FOM

calculation using the maneuver classification algorithm calculates the FOM the same as the

manual calculation. One should note that maneuvers are only classified into two classes in

this study since it was enough to calculate the FOM [7].

The study (No.8) also does not aim to classify maneuvers only. It proposes a decision-making

solution for an aircraft fighting with another maneuvering aircraft. That is why it does

not include any classification results. However, it shows simulation results where the

decision-making solution uses the maneuver classification method and makes decisions

correctly [10].

Remember that the study (No.9)’s dataset was not pre-labeled. The results are calculated

by automatically detecting maneuvers and comparing them by letting an experienced analyst

manually detect the same maneuver. For the split-s, the accuracy is 100% and for loops, the

accuracy is 97% [11].

The study (No.10) shares a bird-vision view of a flight with time points marked, and a plot

showing the probability distribution of each maneuver vs. time. The plot can be mapped into

the flight and one can deduct that maneuver classification is done correctly. However, the

study does not include detailed accuracy and performance results [46].
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The study (No.11) implements cross-validation by dividing their dataset. A confusion matrix

is shared which includes all 14 classes. It is seen that MLPs outperform RBFs. After similar

maneuvers are united, accuracy gets up to 95%. Very detailed accuracy and correlation

results are available for both MLPs and RBFs with different depths for this work [14].

A large set of results are shared by the study (No.13) [12].

The study (No.15) uses 4-fold cross-validation to optimize the algorithm parameters and

calculate the results. Recall, accuracy, precision, TPR, and FPR are measured for algorithms.

On average, LR TPR is 96%, precision is 65%, accuracy is 94%, and FPR is 3%. SVM TPR

is 92%, precision is 80%, accuracy is 97%, and FPR is 3%. ANN TPR is 94%, precision is

77%, accuracy is 97%, and FPR is 2%. They included every result from every algorithm for

every maneuver in the study [15].

RQ-2.3. How the performance and accuracy of these algorithms can be increased? Which

optimization methods are used with the mentioned algorithm?

The study (No.2) increases the performance and accuracy by adjusting the DBSCAN

algorithm’s clustering parameters by trial and error and using other references [6].

The study (No.3) finds the optimal number of clusters in the first phrase is four which is

explained in RQ 2.1. The optimal number of clusters and sub-clusters are different for

different kinds of algorithms (k-means, k-medoids) [4].

The study (No.5) gives the approximate entropy calculation variables (initial dimension) m

= 2, (threshold) r = 0.15std [45].

The study (No.7) uses the similarity criterion function, which is also shared in the paper, to

optimize the k-means algorithm [7].

The study (No.9) performs quantization on data attributes to get higher performance from

the over 100 data attributes. The attributes are quantized into three levels: high, mid, and low

[11].
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The study (No.11) noticed that, from the confusion matrix, some maneuvers were being

confused with others (namely hover, hover turn left, hover turn right, and coordinated turn

right, coordinated turn left). The maneuvers that are being confused are simply united

because the maneuvers were very similar. This action increases the accuracy of the algorithm.

Also, the MLP networks give better results than RBF networks and the accuracy gets higher

as the network gets larger [14].

The study (No.15) uses L2 regularization with a logistic regression algorithm to optimize

logistic regression parameters. It uses kernel functions to classify nonlinearly and multiclass

classifications (multiple SVMs united) to classify a number of classes with support vector

machines. The study also mentions feature selection to get higher accuracies with SVMs

[15].

RQ-3. What is the role of ANNs for flight maneuver classification? How it is compared to

other machine learning methods?

The study (No.11) uses ANNs, namely multilayer perceptron networks, and radial basis

function networks, for the purpose of flight maneuver classification for helicopters. Real

flight data is used and got very good results which are mentioned in RQ2.2. The study

(No.11) does not mention any comparisons with other methods [14].

The study (No.15) uses ANNs and other algorithms for the problem and compares them by

considering TPR, FPR, precision, recall, and accuracy. ANNs are found to be slightly better

than other algorithms. Unfortunately, the study does not include ANN architecture from

which they got the results to replicate the results [15].

3.2.1. Literature Review Discussion

RQ-1. Which aircraft flight data attributes are relevant to achieve flight maneuver

classification?
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Fifteen of sixteen studies answer this research question. Two of the studies share an

open-source database on which they performed flight maneuver classification. There are

lots of different data attributes mentioned for this research question since the studies’ scopes

are different, e.g. air traffic, helicopter, aircraft, etc. However, the most occurring ones

can be said to be roll, pitch, yaw, roll rate, pitch rate, and yaw rate, which are aircraft

axis and axis speed rates. Altitude and longitudinal G force are also mentioned multiple

times. The author also included the classified maneuvers in this research question. The

most classified maneuvers were landing, climb, rolls, split s, and loops. There were, again,

different maneuvers mentioned since the scopes were different.

RQ-2. Which machine learning algorithms are used for flight maneuver classification?

Fifteen of sixteen studies answer this research question. DBSCAN (3 studies), k-means (3

studies), and Bayesian networks (3 studies) were the most utilized solution to the maneuver

classification problem. They were followed by dynamic time warping (2 studies), and

artificial neural networks (2 studies). The general performance and accuracies of the studies

were all relatively high. The ones sharing accuracy results shared over 90better results which

are specific to the algorithms they used or some data pre-processing such as normalization,

etc. Some of the studies (such as (No.5), (No.7), (No.16)) mixed the algorithms in complex

architectures to get better results.

RQ-3. What is the role of ANNs for flight maneuver classification? How it is compared to

other machine learning methods?

Only two studies ((No.11), and (No.15)) used ANNs for the problem. Both of them did not

share any ANN architectures and ANN optimization methods. However, the results were

very high for both of them. The study (No.15) compared the results of ANNs with logistic

regression, and vector support machines and found ANNs to be better at classifying flight

maneuvers. The simplistic presentation of ANNs (without architectures, activation function

definitions, optimization methods) in these studies show that there is a gap in the literature

about ANNs and flight maneuver classification. This gap can be filled with a thesis with
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a whole ANN solution including data attributes, data processing, ANN architecture, and

results.

3.2.2. Potential Threats to Validity

Reliability: The issue of reliability is strongly related to individuals’ results in the same

study. Since the author of this study is only one person, reliability issues can be questioned.

To give an example, the search strategy is not peer-reviewed and only written by the single

author of this SLR.

Internal Validity: Internal validity is strongly related to the factors that can be comprising

the findings of the research. The search string for the SLR studies can be a cause of

comprising if the search string is not defined properly. Missing publications can cause

internal validity problems. In this In SLR’s situation, the search string is chosen such that

it gives a huge amount of studies to search from. The real elimination started when the

author started to eliminate studies by reviewing the abstracts of the studies. Another threat

to internal validity is the exclusion and inclusion criteria since it is determined and applied

by the only author.

External Validity: External validity is strongly related to the generalizability of the results.

The SLR is conducted on multiple well-known digital libraries to avoid threats to external

validity. However, the number of publications in the final set of publications is low.

Construct Validity: Construct validity is strongly related to the research questions and the

purpose of the researchers’ correlation. This situation is avoided using PICOC and strongly

relating the research purpose, questions, and method.

This SLR reviewed the literature on flight maneuver classification with machine learning

methods with the purpose of exploring and getting a comprehensive understanding of it. Of

the 674 studies in the first set of publications, 16 of them are selected by exclusion criteria.

All of the 16 studies made the final set of publications since the inclusion criteria did not

eliminate any studies. RQ1 is answered by 15, RQ2 is answered by 15, and RQ3 is answered
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by 2 studies. RQ4 is not answered by any of the studies. Generalization on 2 of the research

questions was successfully reached.

It is found that flight maneuver classification is a hot topic in literature, and it is getting

more popular each year. A good number of machine learning methods are used and got good

results. It is also found that flight maneuver classification can be looked at from different

perspectives, such as air traffic control, helicopter development, aircraft development. . .

This SLR shows that there is a gap in flight maneuver classification using artificial neural

networks. Also, it shows that there is a gap in comparing machine learning methods and

traditional aviation methods when it comes to flight maneuver classification.
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4. PROPOSED METHOD

4.1. Data Acquisition and Dataset

This paper contributes a flight maneuver classification dataset to the literature. The dataset

is available on GitHub [16]. This dataset is created using X-Plane Flight Simulator 11 as

the flight environment (to perform flights and obtain data). Laminar Research (2020), the

publisher of X-Plane 11, mentions X- Plane 11 is an engineering tool since it can simulate

any given aircraft’s flight efficiency with high accuracy and explains how they provide a

realistic flight in documentation named “How X- Plane Works” [49]. This accuracy of The

X-Plane Flight Simulator provides a level of confidence in the solution provided in this paper

since the data to train the neural network will be accurate to the real aircraft. Flights were

performed with F-4 Phantom 2, which is a supersonic aircraft by Boeing Company.

X-Plane has built-in properties such as logging the data of the user’s choice or sending it

through UDP. By choosing groups of data, users can interact with real-time aircraft data. One

can use the open source program developed for this paper to read X-Plane data sent using

UDP and create own dataset [16]. The mentioned dataset is created using the program and

selecting the below data groups in the X-Plane output menu to send using UDP. Selectable

data groups provided by X-Plane that one should select to obtain the dataset, and the

flight data features that are included in these data groups are explained below. A detailed

explanation of the data features can be found in the dataset output reference of X-Plane [50].

The dataset attributes as they appear on the open-source dataset can be seen in Table 4.1.

4.1.1. Flight Data Features

Speeds contain the aircraft speeds in indicated airspeed and true airspeed. Since these values

have a high correlation between them, only the indicated airspeed in knots is placed on the

dataset. The indicated airspeed is the value presented in the aircraft head-up display and the
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Table 4.1 Data attributes.

No Data attribute Unit Data group
0 Vind kias Speeds
1 VVI fpm Mach, VVI, g-load
2 Gload-norml G
3 Gload-axial G
4 Gload-side G
5 elev-stick [-1, 1] Joystics aileron/elevator/rudder
6 ailrn-stick [-1, 1]
7 ruddr-stick [-1, 1]
8 elev-surf [-1, 1] Flight controls aileron/elevator/rudder
9 ailrn-surf [-1, 1]
10 ruddr-surf [-1, 1]
11 M ftlb Angular moments
12 L ftlb
13 N ftlb
14 Q rad/s Angular velocities
15 P rad/s
16 R rad/s
17 pitch degrees Pitch, roll, & headings
18 roll degrees
19 hding-true degrees
20 hding-mag degrees
21 alpha degrees Angle of attack, sideslip, & paths
22 beta degrees
23 hpath degrees
24 vpath degrees
25 slip degrees
26 throttle [0, 1] Throttle
27 lift lb Aerodynamic forces
28 drag lb
29 side lb
30 L lb-ft
31 M lb-ft
32 N lb-ft
33 flight enum Maneuver

maneuvers were performed by checking the indicated airspeed. The speed data correspond

to the attribute Vind-kias.
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Mach, VVI, g-load contain good distinguisher information in the context of maneuver

classification. VVI is the vertical velocity in feet per minute. G-load information is the

axial, side, and across the aircraft, relative to the aircraft body-axis, pressures on the aircraft.

G-load information depends on angular velocities and moments. Due to this reason, they

give a good idea of the aircraft’s state. These data correspond to the attributes VVI-fpm,

Gload-norml, Gload-axial, and Gload-side in the dataset.

Joystics aileron/elevator/rudder contain the pilot input information. It represents the pilot

input provided to the stick. The aileron provides roll, the elevator provides pitch, and the

rudder provides yaw movements. They are the ratio to full upward or rightward deflection

and range between -1, and 1. These data correspond to the attributes ailrn-stick, elev-stick,

and ruddr-stick in the dataset.

Flight controls aileron/elevator/rudder contain the control surface response of the pilot

input. The aileron is the control surface that provides the roll movement, the elevator is the

control surface that provides the pitch movement, and the rudder is the control surface that

provides the yaw movement. Control surfaces contain the pilot input information and the

control computer’s corrections and effects. They also range between -1, and 1 parallel to

the joystick information. These data correspond to the attributes ailrn-surf, elev-surf, and

ruddr-surf in the dataset.

Angular moments contains roll torque (L), pitch torque (M), and yaw torque (N) in

foot-pounds. These data correspond to the attributes L-ftlb, M-ftlb, and N-ftlb.

Angular velocities contain the aircraft’s pitch (Q), roll (P), yaw (R) axes turn rates measured

in aircraft body axes in radians per second. These rates tend to change in different

configurations and states of the aircraft. They provide a good distinguisher of aircraft’s

orientation at the moment as wanted from the data features. These data correspond to the

attributes Q-rad/s, P-rad/s, and R-rad/s in the dataset.

Pitch, roll, & headings contain the aircraft’s position angles measured in aircraft body

axes in Euler angles with respect to the earth’s surface. These values vary greatly as the
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aircraft moves. True heading and magnetic heading are included in the dataset. These data

correspond to the attributes pitch-deg, roll-deg, hding-true, and hding-mag in the dataset.

Angle of attack, sideslip, & paths contains the vertical path angle, angle of attack (alpha),

sideslip (beta), and the horizontal path angle all in degrees. These pieces of information vary

greatly as aircraft are in different orientations and speeds. That is why they are useful in the

context of flight maneuver classification. These data correspond to the attributes alpha-deg,

beta-deg, vpath-deg, and slip-deg.

Throttle (actual) contains another pilot input which is the commanded throttle to gain thrust.

It ranges between 0 (no thrust) and 1 (maximum thrust). The throttle data correspond to the

attribute thro1-part.

Aerodynamic forces contains the forces acting on the aircraft in pounds. These forces are

lift, drag, and side forces. These data correspond to the attributes lift-lb, drag-lb, and side-lb.

4.1.2. Maneuvers

In a similar attempt to classify flight maneuvers with neural networks, Bodin (2020)

classified 6 maneuvers which are bleed-off turn, wind Up Turn, slow-down turn, steady

turning sideslip, 360° roll, and barrel roll [15]. Similarly, Oza et al. (2003) classified 14

helicopter maneuvers which are hover, hover turn left, hover turn right, coordinated turn left,

coordinated turn right, forward flight low speed, and 8 more that were not mentioned [14].

Samuel et al. (2021) and MIT invite academia and industry to a flight maneuver classification

challenge. This challenge clearly defines 18 flight maneuvers [44]. Based on these

definitions, this paper tries to classify below 10 maneuvers:

Level flight is performed by keeping the aircraft’s altitude, attitude, and speed constant for a

forward flight.
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Sustained turn is performed by sustaining altitude and airspeed while applying a steady

bank angle between 60° and 90° and pitching up with small corrections. Aircraft changes

its’ heading in the meanwhile.

Ascend is simply performed by pitching up command to an aircraft in level flight to gain

altitude. Descend is performed by pitching down command to an aircraft in level flight to

lose altitude.

Reverse flight is performed by rolling the aircraft to a 180° bank angle and keeping altitude

and airspeed constant.

Immelman is performed to change aircraft heading 180° in a fast manner. It is performed by

completing a 180° vertical climb turn and correcting the bank angle to 0° to go from reverse

flight to level flight [44].

Aileron roll is performed by rolling the aircraft at a constant roll rate until 360° is completed

and the aircraft is returned to the level flight at the same altitude and airspeed as before [44].

Split-S Split-S is considered to be the reverse of the Immelman maneuver. It is performed

by rolling the aircraft from level flight to reverse flight and performing a vertical descending

loop by a pitch-up command until the aircraft returns to level flight with a 180° heading

difference [44].

Chandelle is performed to gain altitude and change heading at the same time. The aircraft

gains altitude and changes heading at constant rates and performed similarly with sustained

turn. The only difference is keeping the flight path angle more than 0° to gain altitude [44].

Lazy 8 is the most complex one to perform and classify among all the maneuvers in this

paper. The aircraft follows the path to draw the number eight. The aircraft gains altitude

while the bank angle is high and the aircraft is turning and returns to level flight at the same

altitude as at the start [44].
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4.2. Implementation

The steps taken to create and train the neural network models, and develop a real-time flight

maneuver classifier program are as below:

1. Preprocessing of the dataset is performed before feature selection. The dataset is

normalized using maximum absolute scaling. The features of the dataset are scaled between

[-1, 1] after this step. Random shuffling is also performed on the dataset before feature

selection.

2. Feature selection is performed using three techniques: Correlation calculation, ANOVA,

and being used in single hidden layer neural network models.

The flight dataset includes some data features that are strictly relevant such as horizontal path

and heading. Correlation matrices reveal these highly correlated features, and also reveal the

correlation between the data features and the maneuver categories. The correlation matrices

were created using an open-source Python library, Pandas and they can be seen in Figure

4.1. The indexes in the figure match the indexes in the dataset file. These correlation values

range between [0, 1], 1 being the maximum correlation. Most highly correlated data features

(exceeding 0.75 on every correlation method) can be seen in Table 4.2.

Figure 4.1 Correlation matrices.
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Table 4.2 Correlation of data features.

Data feature 1 Data feature 2 Pearson Kendall Spearman
8 - elev-surf 5 - elev-stick 0.978 0.908 0.982
9 - ailrn-surf 6 - ailrn-stick 0.993 0.897 0.972
17 - pitch 1 - VVI 0.947 0.760 0.918
21 - alpha 5 - elev-stick 0.924 0.824 0.946
22 - beta 4 - Gload-side 0.852 0.825 0.949
23 - hpath 19 - hding-true 0.943 0.930 0.939
24 - vpath 1 - VVI 0.965 0.869 0.972
24 - vpath 17 - pitch 0.984 0.850 0.958
27 - lift 2 - Gload-norml 0.996 0.954 0.996
29 - side 4 - Gload-side 0.998 0.967 0.998
29 - side 22 - beta 0.856 0.817 0.945
30 - L-lb-ft 12 - L-ftlb 0.984 0.788 0.908
32 - N-lb-ft 13 - N-ftlb 0.999 0.902 0.978

From Table 4.2, we can clearly see that some of our features are highly correlated. To

consider a few: elev-surf, elev-stick features, and airn-surf, ailrn-stick features are highly

correlated due to control surface value being the direct result of a pilot providing input to the

stick. We can also see that the vertical velocity (VVI) is highly correlated with the vertical

path. There is no point in including both of these data features in the dataset when training.

Figure 4.2 ANOVA scores.

43



The flight maneuver dataset that this study contributes is a numerical input categorical output

one. Brownlee (2019) suggests the use of the ANOVA correlation coefficient when the

dataset is numerical input and categorical output [51]. Scikit-learn, which is an open-source

machine learning and data analysis library for Python, includes feature selection using

ANOVA by using the f-test method. ANOVA was used as the primary data feature selection

algorithm in this study.

ANOVA scores are calculated after the correlation calculation. The ANOVA scores of the

features can be seen in Figure 4.2. The features sorted according to the highest ANOVA

scores that do not have a correlation score of more than 0.75 with another data feature

are: ’elev-stick’, ’Q’, ’lift’, ’VVI’, ’Gload-axial’, ’drag’, ’thro1’, ’Vind-’, ’ruddr-stick’,

’slip’, ’beta’, ’M-lb-ft’, ’hpath’, ’ailrn-surf’, ’hding-mag’, ’ruddr-surf’, ’R’, ’roll’, ’P’,

’L-lb-ft’, ’N’, ’M’.

The final feature selection method, invented for this thesis, was to use all the triple

combinations of the above data features to train a simple single hidden layer neural network

architecture shown in Figure 2.2 with 2 epochs. The resulting accuracy and the loss for

each triple combination are logged for each data feature in the triple combination. The

accumulated average accuracy and loss for each data feature can be seen in Figure 4.3. The

activation function of the hidden layer was rectified linear unit, and the activation function of

the output layer was softmax to provide a probability distribution. Loss is calculated using

sparse categorical cross-entropy and the Adam algorithm is used as the optimizer.

The data features included and sorted by the success of classifying flight maneuvers are

in Table 4.3. The main difference between ANOVA scores and ANN evaluation is the

importance of roll is much higher when used in ANN than shown in ANOVA scores due

to the artificial neural networks’ success in learning complex patterns. We can clearly see

that the accuracy rises and the loss lowers when roll is included in the dataset. The inverse

applies to heading and hpath. We can see that the importance of heading to classify aircraft

maneuvers is lower than the ANOVA score shows. We can clearly see that the results are
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Figure 4.3 ANN scores.

parallel and ANOVA is a fierce data feature selection method for our case, other than these

two deviations. Also, the invented feature selection method was also proven to be working.

Table 4.3 Data features sorted by feature selection methods.

ANOVA Score ANN Avg Acc Ann Avg Loss
5 - elev-stick 1 - VVI 1 - VVI
14 - Q 5 - elev-stick 5 - elev-stick
27 - lift 27 - lift 27 - lift
1 - VVI 18 - roll 18 - roll
3 - Gload-axial 3 - Gload-axial 14 - Q
28 - drag 14 - Q 3 - Gload-axial
26 - thro1-part 26 - thro1-part 26 - thro1-part
0 - Vind 25 - slip 28 - drag
7 - ruddr-stick 9 - ailrn-surf 9 - ailrn-surf
25 - slip 28 - drag 25 - slip
22 - beta 16 - R 15 - P
31 - M-lb-ft 15 - P 16 - R
23 - hpath 7 - ruddr-stick 7 - ruddr-stick
9 - ailrn-surf 0 - Vind 22 - beta
20 - hding-mag 22 - beta 0 - Vind
10 - ruddr-surf 23 - hpath 10 - ruddr-surf
16 - R 31 - M-lb-ft 31 - M-lb-ft
18 - roll 20 - hding-mag 13 - N-ftlb
15 - P 10 - ruddr-surf 30 - L-lb-ft
30 - L-lb-ft 13 - N-ftlb 11 - M-ftlb
13 - N-ftlb 30 - L-lb-ft 20 - hding-mag
11 - M-ftlb 11 - M-ftlb 23 - hpath
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3. Building and training ANNs is the core process of the study. Different artificial

neural networks were tested against the flight maneuver classification problem. The types of

artificial neural networks used and compared were single hidden layer neural networks, deep

neural networks, and recurrent neural networks. Combinations of these types, activation

functions, optimization methods, and back-propagation algorithms were tested against the

problem to maximize the performance of the solution, in terms of accuracy, precision, and

recall.

Python Programming Language is used for the development of the flight maneuver classifier

program. Python provides a nice, high-level but fast working environment for machine

learning applications. Tensorflow for Python is used as the neural network library in the

flight maneuver classification to build and train the models. It is an open-source machine

learning library, a very good tool for artificial neural networks.

This step starts with building and training the single hidden layer neural network. Neural

networks’ foundation lies at the node weights. That is why neural networks are good at

weighing the features that are more important according to the loss function. Accuracy

and loss are calculated by training an ANN with 128 single hidden layer nodes with ReLU

activation function, output layer nodes with softmax activation function, the loss calculation

method of sparse categorical cross-entropy, and Adam optimization, one by one by removing

the least feature in Table 4.3’s average accuracy. Removing the features does not have a

considerable positive effect. This situation can be seen in Figure 4.4. This is why all data

features are used after removing the ones with a high correlation with another feature and a

lower ANOVA score.

Nl ∈ [8, 16, 32, 64, 128, 254] (20)

To see the impact of the number of nodes in the hidden layer, the values presented

in Equation 20 are tried. The accuracy and loss changing according to the number of

hidden layers are in Figure 4.5. Since the 128 nodes and 256 nodes both gave a %99.7
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validation accuracy, 128 nodes were selected. These tests were also done with ReLU hidden

activation function, softmax output activation function, the loss calculation method of sparse

categorical cross-entropy, and Adam optimization.

Figure 4.4 Single layer neural network accuracy and loss by removing data features.

Figure 4.5 Single layer neural network accuracy and loss with different number of hidden nodes.

After selecting the features and the number of hidden nodes, different types of optimizers,

hidden layer activation functions, and losses were combined to get the maximum validation

accuracy. Note that the output activation function is kept as softmax to give a nice probability
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Table 4.4 Optimizer, loss function, and activation functions.

Optimizers Loss Functions Activation Functions
SGD Categorical Cross-entropy RELU
AdaGrad Sparse Categorical Cross-entropy Sigmoid
RMSprop KL Divergence Softmax
Adadelta Mean Squared Error Softplus
Adam Mean Absolute Error Softsign
AdaMax Cosine Similarity tanh
NAdam Huber Loss SELU
FTRL Categorical Hinge ELU

distribution of flight maneuvers. The experimented alternatives are in Table 4.4. The

combination of the Adam optimizer, ReLU activation function, and sparse categorical

cross-entropy gave the maximum validation accuracy (%99.7). The trials to get the data

features and the number of hidden layers were also done with these selections. When the

neural network with chosen features and parameters was trained for ten epochs, the accuracy

was %99.9, the validation accuracy was %99.86, the loss was 0.0051, and the validation loss

was 0.0064.

Nl ∈ [8, 16, 32, 64, 128] (21)

Nn ∈ [2, 3, 5] (22)

Similarly to the SHLNN case, the combinations of values presented in Equation 21 number

of hidden nodes in each hidden layer and values presented in Equation 22 number of hidden

layers are tried. These tests were also done with ReLU hidden activation function, softmax

output activation function, the loss calculation method of sparse categorical cross-entropy,

and Adam optimization. The resulting accuracy and loss can be seen in Figure 4.6. A few

options of the combinations converged with almost perfect accuracy. The three hidden layers

with 128 hidden nodes were chosen to be the best deep neural network model.
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The combination of the Adam optimizer, ReLU activation function, and sparse categorical

cross-entropy gave the maximum validation accuracy (%99.7) again for DNN case too.

Figure 4.6 DNN accuracy and loss with different number of hidden nodes.

Table 4.5 RNN time frames.

Time Frame Accuracy Validation Accuracy Loss Validation Loss
0.5 seconds 94.7% 92.5% 0.19 0.26
1 seconds 94.6% 96% 0.19 0.15
2 seconds 93.2% 92.1% 0.24 0.31
3 seconds 94.1% 94.8% 0.21 0.27
4 seconds 92.8% 93.7% 0.24 0.25

Finally, a recurrent neural network with three hidden 128 nodes LSTM layers and 1 hidden

32-node dense hidden layer was created. The optimization method was Adam, the loss

function was sparse categorical cross-entropy, and the activation function was rectified linear

unit. One thing to consider when working with recurrent neural networks is the sequence

length. Determining the time frame can drastically affect the result. The dataset is ordered

by time and the period of sampling is 33.3 ms. By finding the sequence length, we are finding

the time frame of a sample of a recurrent network. 1 second, 2 seconds, 4 seconds, and 6
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seconds were the time frames. The accuracy, validation accuracy, loss, and validation loss

are in Table 4.5. The optimal time frame was 1 second for the 30 Hz dataset.

4. Creating a real-time flight maneuver classifier program was the final step of the

implementation. The algorithm to classify the maneuver in real-time can be seen in Figure

4.7 below.

Figure 4.7 The flowchart of the classifier program.

If the most probable classification’s probability (maximum valued output of the softmax

layer) is less than 0.8, the sample is classified as “Unidentified”. “Unidentified” classification

generally occurs in maneuver transitions. For example, passing from ascending to level

flight, there is a spot in which the neural network gives a high probability to both “ascend”

and “level flight”, naturally. At this point, it is meaningless to classify the maneuver since

the sample does not belong to both of the maneuvers.

50



5. EXPERIMENTAL RESULTS

The thesis compared the three neural network types using accuracy, loss, precision, and

recall. The validation accuracy and the validation loss values were presented in Table

(5.2). The neural networks were trained using the main dataset and evaluated using the

validation dataset. The information on these datasets can be seen in Table 5.1. The

random shuffling of the dataset over and over again while developing showed no over-fitting.

Also, two sets of validation data taken at different times were used to get the validation

accuracy and performance metrics scores to show the absence of over-fitting. Since the data

collection was easy, thanks to the developed data collection program, the independent flights

were conducted to get the validation dataset that is not used in training at all. While the

validation accuracy and validation loss values mentioned in Chapter 4. were obtained using

cross-validation of the main dataset, the accuracy and loss values in Chapter 5. are obtained

using independent validation data. Since we do not have a limit on data samples, k-fold

cross-validation is not needed. This situation provides a level of confidence in the solution

since it shows that the study can classify independent and never seen flight data to show no

over-fitting. According to the results shown in Table 5.2, all three types of neural networks

were highly successful at classifying ten flight maneuvers. We can clearly see from the

validation accuracy and loss values (obtained from the independent validation dataset) that

there was no over-fitting.

Table 5.1 Dataset statistics.

Dataset Samples Samples per Maneuver
Main Dataset 70031 9037 6924 10617 5706 9750 4438 4551 3500 5098 10410
Validation Dataset 14163 2008 1883 1319 1076 1546 763 990 582 1281 2715

5.1. Single Hidden Layer Neural Network

The results for the best performing single hidden layer neural network found in Chapter 4.

are represented in this section. The confusion matrix can be seen in Figure (5.1) and the
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Table 5.2 Results summed up with validation dataset.

ANN Type Validation Accuracy Validation Loss
Single Hidden Layer 96.0 % 0.15
Deep Neural Network 96.4 % 0.22
Recurrent Neural Network 95.6 % 0.24

performance metrics results can be seen in Figure (5.2) for the single hidden layer network

model. The only seemingly bad result occurs with the precision of the split-s maneuver.

The ”split-s” maneuver is more likely to be predicted when another maneuver is being

performed. We can see this from the confusion matrix. While the ”split-s” maneuver is

predicted correctly for 550 samples, it is predicted falsely 77 times when the actual maneuver

was ”reverse” and 114 times when the actual maneuver was ”descend”. The higher number

of false positives caused low precision. This situation is only logical since split-s starts when

the aircraft is in reverse state and the aircraft descends while performing this maneuver. Since

descend is likely to be predicted as split-s, we can see that the recall of descend move is lower

than others with 89 percent due to a higher number of false negatives.

5.2. Deep Neural Network

The results for the best-performing deep neural network found in Chapter 4. are represented

in this section. The confusion matrix can be seen in Figure (5.3) and the performance metrics

results can be seen in Figure (5.4) for the DNN. The exact same arguments can be made with

this type of neural network as in SHLNNs. The confusion matrix and performance metrics

results are shared for reproducibility’s sake. We can see that the biggest differences are the

precision of lazy-8 being improved with DNNs to an almost perfect with 99.9% and the

precision of aileron roll being decreased due to a higher number of false positives (confusion

with level flight).
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Figure 5.1 Confusion matrix of SHL Neural Network Model.

Figure 5.2 Performance metrics of SHL Neural Network Model.

5.3. Recurrent Neural Network

The results for the best-performing recurrent neural network found in Chapter 4. are

represented in this section. The confusion matrix can be seen in Figure (5.5) and the

performance metrics results can be seen in Figure (5.6) for the RNN model. The first thing to

notice is that RNNs are better at classifying split-s maneuvers with more precision since they

include the previous samples. The RNNs do not falsely predict a ”reverse” as a ”split-s” like

the other ANN types but it still confuses ”descend” with ”split-s”. While split-s precision

is higher than other types, it is still the worst result of the bunch. We can also notice that
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Figure 5.3 Confusion matrix of DNN Model.

Figure 5.4 Performance metrics of DNN Model.

we have a decrease in ”Immelman” precision with RNNs. The other performance metrics

are very similar to the SHLNNs and DNNs. This shows that all the artificial neural network

types created similar flight maneuver models and predicted very parallel to each other. One

should also note that the number of predictions is 29 less than the number of data samples.

This is due to the last sample of this kind of neural network being the time series batch of the

last 30 samples of the dataset.
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Figure 5.5 Confusion matrix of RNN Model.

Figure 5.6 Performance metrics of RNN Model.

5.4. Combined Results

The average of the performance metrics results were calculated for each ANN type over

every class and they can be seen in Figure 5.7. The maneuver accuracy is calculated using

the accuracy values shown in Figures 5.2, 5.4, and 5.6 using Equation 19. We can see that

the results are very close to each other. The DNN model is slightly better on recall and total

accuracy while almost the same with others on maneuver accuracy and precision. Hence the

DNN model is chosen to be the best performing ANN type for flight maneuver classification.

Due to this reason, the DNN model was the model used in the real-time flight maneuver
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classification program. The best performing network model for each ANN type can be seen

in Table 5.3.

Figure 5.7 Performance metrics of ANNs over every class.

Table 5.3 Best performing models.

ANN Type Hid. Layers and Neurons Activation Function Loss Function Optimization Method Time Frame
SHLNN 1 x 128 Hidden: ReLU SCCE Adam -

Output: Softmax
DNN 3 x 128 Hidden: ReLU SCCE Adam -

Output Softmax
RNN 3 x 128 LSTM + 1 x 32 Hidden: ReLU SCCE Adam 30 samples

LSTM: tanh & sigmoid
Output: softmax & sigmoid

The real-time flight maneuver classification program, which is available at GitHub [16], also

was prospering. The program is shared openly for the reproducibility of this study. The

program successfully classified and provided feedback to the X-Plane screen in real-time.

Figure 5.8 shows a screenshot from the real-time flight maneuver classification program

correctly classifying a maneuver.
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Figure 5.8 Real-time flight maneuver classification program correctly classifying a maneuver.

5.5. Discussion

Some of the maneuvers in this thesis can also include another one. The models’ success

to find the more complex maneuver in these cases was happily surprising. For example,

the models were successfully classifying the Immelman maneuvers where the altitude of the

aircraft raises, just like an ascend. However, due to the lack of harmony, while collecting the

data, the low precision in the split-s maneuver is introduced. This lack of harmony is caused

by differing starting and ending times of maneuvers and sloppy maneuver executions. This

concern was also mentioned by Bodin (2020) in her study [15].

Another concern about this thesis is that the flights to collect the dataset were performed by

multiple people, who have little to no simulation flight experience. However, this can also be

a strong side, since the trained models classified these flights with high performance, even if

they were sloppy.

A thing to consider is the dataset having time jumps. The moments in between the flight

maneuvers were not logged while collecting the dataset. While this is not a problem for

SHLNNs and DNNs, it can be for RNNs. The first 30 samples of data batches of each
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maneuver will always have another maneuver’s ending samples in this case. The reason for

the slight underperforming of RNNs can be this.

In the end, having a program, which is an almost ready product, that is performing the

classification in real-time was very satisfying to achieve. It was also very fun to play around

with it. Please note that all the contributions introduced in this thesis are shared online [16]

for reproducibility’s sake. Any researcher can easily reproduce and improve the results of

this thesis simply by using the source code, the dataset, and the documentation.
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6. CONCLUSION

6.1. Concluding Remarks

This chapter states the summary of the thesis and possible future directions.

The thesis was able to provide means to classify flight maneuvers by exploiting three types of

neural networks: Single hidden layer, deep, and recurrent. The best-performing model was

found for each of the ANN types and they were compared in terms of validation accuracy,

classification accuracy, precision, and recall.

The comparisons showed that each of the three types of neural networks was successful

when it comes to flight maneuver classification, while the deep neural network model with

3 hidden layers of 128 neurons was the best with a small margin. Also, this study revealed

the best activation functions, loss functions, and optimization methods for each ANN type to

be used for flight maneuver classification. The ReLU was the best activation function for a

hidden layer and the softmax was the best activation function for an output layer on all three

ANN types. The best choice of activation function for an LSTM layer was the combination

of tanh and sigmoid functions. The best loss function was sparse categorical cross-entropy

and the best optimization method was the Adam method.

The dataset used in this study was also contributed by this study. This study provided

means to collect flight data by explaining the process while also contributing an open-source

program that is collecting the flight data. The resulting flight dataset was convenient and

accurate to be used. The study also contributes the source code that is training the neural

networks and the real-time flight maneuver classifier program for anyone that wants to

reproduce the results achieved in this study.

The feature selection methods were also exploited. The correlation matrices showed the

highly correlated flight features independent of the flight maneuver. The ANOVA feature

importance method was used to find the best flight maneuver distinguisher data features.

They were pilot elevator command, lift force, Q angular velocity, and vertical velocity.
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In addition to ANOVA, a new feature importance method was invented. All the triple

combinations of each possible data feature are fed into a simple shallow neural network

and resulting accuracy and loss values were accumulated. This method showed that the most

important features were vertical velocity, pilot elevator command, and lift force. The same

features were found to be important with both methods which provided a level of confidence.

6.2. Future Work

This study can be scaled up simply by increasing the number of flight maneuvers and

repeating the steps explained using the available sources. The study also can be scaled up by

exploring different neural network types for the problem.

The dataset used in this study is coming from one source. All the flights were performed

with one kind of aircraft. A possible future study can scale up this study by including other

datasets obtained with different aircraft.

Data imputation methods to incorporate incomplete features in the flight maneuver dataset

can be included as further development. These techniques aim to fill in incomplete features

using the available data and can be implemented using statistical methods such as mean or

median imputation, or machine learning algorithms. Using data imputation may potentially

improve the performance of a neural network classifier on the dataset, as the presence of

incomplete features can negatively impact the model’s ability to learn effectively.

Another direction for future research is the use of neural network techniques for flight

envelope detection. The flight envelope defines the limits of an aircraft, such as maximum

speed and altitude, and it is important to monitor and enforce these limits to ensure safe

operation. Currently, flight envelope detection is often done using rule-based systems.

However, these systems can be inflexible and may not be able to adapt to changes in the

aircraft or its environment. Machine learning algorithms, on the other hand, have the

potential to learn and adapt to such changes, and could potentially provide a more robust

and accurate method for flight envelope detection.
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