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ABSTRACT

COMPARATIVE STUDY ON MUSIC SOURCE SEPARATION
METHODS

Burak Baysal

Master of Science, Computer Engineering
Supervisor: Prof. Dr. Mehmet Önder EFE

December 2022, 102 pages

Blind source separation is the concept that separates the source signals from the mixture

signal. ”Blind” means no prior knowledge of the source or the mixing environment. The

blind source separation problem is a problem domain that has been studied in the literature

for a long time. The most familiar problem example of the domain is the ”Cocktail Party

Problem.” Imagining the party environment and the sound of the environment is to be

recorded. The recorded audio signal comprises audio signals such as speech, laughter, music,

or even the footstep from the street. Is it possible to extract the source signals, i.e., the audio

signal of the music, from this mixture signal? Blind source separation methods aim to obtain

the original signals with the least possible loss.

In the beginning, statistics and computational approaches were dominant in the literature.

Independent component analysis methods were widely used in blind source separation

studies in early studies. Following these approaches, which are based on matrix factorization,

methods such as the Degenerate Unmixing Estimation Technique, which contains more

complex calculations, have emerged. Recently, machine learning-based approaches have
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become dominant in the literature, and deep learning methods have begun to be utilized

broadly in separating signals.

This thesis aims to comprehensively compare the methods related to the problem domain

of blind source separation. In addition to the techniques in the literature for a long time,

deep learning-based models employed effectively by today’s technologies are also included

in the comparative study. Seven different methods of source separation are studied in the

thesis. While the classical methods FastICA, NMF, and DUET are included within the scope

of the thesis, the machine learning-based models Open Unmix, Spleeter, Wave-U-Net, and

Hybrid Demucs have been examined. After providing detailed information about the source

separation methods, the experimental study was carried out. The MusDB18-HQ dataset

was used during the experiment. Accordingly, an experiment was performed to analyze the

audio signals and separate them into four components: vocal, drum, bass, and other. The

performance of which method was evaluated with the SDR metric. The evaluation was also

made according to music genres and added to the results of the thesis experiment.

Keywords: blind source separation, music source separation, music information retrieval
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ÖZET

MÜZİK KAYNAĞI AYIRMA YÖNTEMLERİ ÜZERİNE
KARŞILAŞTIRMALI ÇALIŞMA

Burak Baysal

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Mehmet Önder EFE

Aralık 2022, 102 sayfa

Kör kaynak ayrıştırma problemi uzun zamandır literatürde üzerine çalışmalar yapılan

bir problem alanıdır. Problem alanına dair bilinen en yaygın örnek ise ”Kokteyl Parti

Problemi”’dir. Problemin tanımında bir parti ortamından bahseder ve ortamın sesi

kaydedilecek olunursa, kaydedilen bu ses sinyali konuşma, kahkaha ve müzik v.b ses

sinyallerinin bir karışımı olacaktır. Peki bu karışım sinyalinden kaynak sinyalleri yani

örneğin müziğe ait ses sinyalini çıkartmak mümkün müdür? Kör kaynak ayırma metotları,

karışım sinyalinden orijinal sinyallerin mümkün olan en az kayıpla elde edilmesini amaçlar.

Başlarda literatürde istatistik ve hesaplama temelli yaklaşımlar hakimdi. Bağımsız

bileşen analizi metotlar ilk zamanlarda kör kaynak ayrıştırma çalışmalarında çokça

kullanılmaktaydı. Matris faktorizasyonunu temel alan bu yaklaşımların ardından daha

karmaşık hesaplamaları içeren Dejenere Ayrıştırma Tahmin Tekniği gibi yöntemler ortaya

çıkmıştır. Son zamanlarda ise literatürde makine öğrenmesi temelli yaklaşımlar baskın hale

gelmiş ve derin öğrenme metotları sinyalleri ayrıştırmada yoğun halde kullanılır olmaya

başlamıştır.
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Bu tez çalışmasıyla kör kaynak ayırma problem alanına dair metotların kapsamlı bir

karşılaştırması amaçlanmıştır. Literatürde uzun zamandır yer alan metotların yanı sıra

günümüz teknolojilerinin etkin kullandığı derin öğrenme temelli modeller de karşılaştırmalı

çalışmaya dahil edilmiştir. Kaynak ayrıştırmaya dair yedi farklı metot tez kapsamında

çalışmaya dahil edilmiştir. Klasik metotlardan FastICA, NMF ve DUET tez kapsamında

çalışırken, makine öğrenmesi temelli metotlardan da Open Unmix, Spleeter, Wave-U-Net

ve Hybrid Demucs ile modelleri incelenmiştir. Kaynak ayrıştırma metotlarına dair detaylı

bilgi sağladıktan sonra deneysel çalışma gerçekleştirilmiştir. Bu doğrultuda ses sinyallerinin

analiz edilerek vokal, davul, bas ve diğer olmak üzere dört farklı bileşene ayrıştırılması

deneyinde hangi metodun nasıl performans gösterdiği SDR metriği ile değerlendirilmiştir.

Aynı zamanda mizük türlerine göre de değerlendirme yapılarak tez deney sonuçlarına

eklenmiştir.

Keywords: kör kaynak ayrıştırma, müzik kaynağı ayrıştırma, müzik bilgisi alma
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1. INTRODUCTION

Blind Source Separation (BSS) is a significant field of study in digital signal processing.

In the early times of BSS studies, approaches were mainly based on matrix factorization

and higher-order statistics; after the emergence of artificial neural networks, researchers

tried to use network-based approaches in BSS studies. Some of these studies gave

promising results. BSS methods are used in various domains like feature extraction, financial

time series analysis, speech recognition, biomedical signal analysis (e.g., EEG, fMRI),

telecommunications, data mining, and signal denoising [3]. With its opportune outputs, BSS

is a popular topic in signal processing, artificial network, and other disciplines [4].

What makes the separation of sources ”blind”? The ”blind” term refers to having

little or no knowledge about source signals’ or the mixing environments’ frequency

characteristics. A deficiency of knowledge makes BSS problems more challenging. That is

why some assumptions about source signals are used while applying these methods, such

as non-Gausuanity, and statistical independence [4]. Also, it is tough to make a clean

measurement of signal mixtures since the environment in which the signals are mixed will

often be less sensitive than the experimental environment. Two main limitations cause this

situation; a) a source signal always has noise, and b) environmental voices such as footsteps,

e.g., may corrupt the source signal [5]. When thinking of the audio example, with that limited

information, BSS aims to construct source signals by using only observed signals received

by a sensor, mostly a microphone, located in the room or concert hall e.g.

One of the well-known typical BSS problems is the ”cocktail party problem.” Talking,

laughing, music, and noise can be heard simultaneously when considering a party

atmosphere. If enough microphones are located to surround the atmosphere, all of these

microphones record the different linear mixtures of these sounds. BSS refers to the operation

of constructing original music or voice signals from these recorded linear mixture signals by

microphones [4]. The overall ”cocktail party” problem is depicted in Figure 1.1.
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Figure 1.1 Sample depiction of the cocktail party problem.
s1,s2 are denotes the sounds which are produced by music, and voice are superposed and
recorded by the microphones. Both microphones receive the unique weighted sum of the
two sources. The weight of each microphone (a1,b1 and a2,b2) indicates the proximity of

the microphone to the sound source [6].

1.1. Motivation

Many algorithms offer solutions to BSS problems. Most BSS methods are based on prior

knowledge and a theoretically constructed cost function; therefore, they are considered

unsupervised learning methods. Pre and post-processing stages of data are essential for

extracting physically expressive, reliable, coherent components [4]. BSS methods may

be divided into two groups; classical approaches and machine learning-based approaches.

Some classical algorithms such as Non-negative matrix factorization (NMF), FastICA [7]

[8] are based on matrix factorization but with the emerging machine learning methods

in recent years, models are getting more sophisticated and versatile. In addition to

being complex, machine learning-based models also produce promising results in Music

Information Retrieval (MIR) field. In this thesis, we aims to provide an extensive treatment

of well-known classical and contemporary machine learning-based methods in the field of

MIR. We give a guiding comparison of experimental results in terms of time, genre, and SDR

scores. The methods used and their classification are shown in Table 1.1.

1.2. Contribution of this Thesis

In this thesis, we aim to provide a comprehensive comparative study of BSS methods in the

field of MIR, implement the methods used, and then observe and report their experimental
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Classical Approaches Machine Learning-Based Approaches
FastICA Spleeter
Non-Negative Matrix Factorization OpenUnmix
Degenerate Unmixing Estimation Technique Hybrid Demucs

WaveUNet

Table 1.1 Used Blind Source Separation Methods

performances in similar hardware and software environments. The key contributions of the

dissertation can be listed as follows;

• Giving mathematical principals of well-known classical algorithms and model

implementation details of popular machine learning algorithms used in music source

separation

• Generally, well-known classical algorithms have not been used in music source

separation problems; machine learning algorithms mostly run with CLI. Sample

implementations of these algorithms in the thesis may be a reference for future studies.

• Comparison of classical and machine learning algorithms with the same dataset and

environmental conditions.

• In addition to comparing SDR results, extensive experiments have been done on genre

and time domain. These results may help researchers with their genre-specific studies.

1.3. Organization

The organization of the thesis is as follows:

• Chapter 1 presents an introduction to the main subject of the thesis, our motivation,

and our contributions.

• Chapter 2 provides background knowledge about blind source separation, and machine

learning terms and definitions.
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• Chapter 3 shows the results of literature research about comparative studies on blind

source separation methods.

• Chapter 4 introduces classical methods and machine-learning based methods which

are used in this study

• Chapter 5 states the methodology of the experimental study.

• Chapter 6 demonstrates the experiments’ time, genre, and SDR results.

• Chapter 7 states the conclusion of the thesis, which includes a summary and comments

about future directions.
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2. BACKGROUND OVERVIEW

The following part of this thesis moves on to describe in detail the BSS problem with the

mixing and unmixing model and the mathematical foundations of the problem. Then, some

mathematical principles used in the algorithms are introduced. At the end part of the section,

machine learning basics and some concepts used in machine learning models are explained.

2.1. Blind Source Separation

In real life, the easiest way to solve big problems is to break them into smaller pieces. On

this subject, Henry Ford’s aphorism is generic in terms of describing the issue; ”There are

no big problems; there are just a lot of little problems.” Blind source separation also sees

mixing signals as the big problem and aims to reconstruct the source signals as separated

signals to make this big problem smaller. The ”blind” concept here indicates that we do

not have enough priori knowledge about the source signals or the coefficients of the mixing

environment that produces the mixture.

BSS has been applied in various fields. For example, in [9], a popular BSS method

Independent Component Analysis, shortly ICA, was used in image fusion tasks for remote

sensing at the geological spatial information processing domain. The most famous BSS

example in the audio signal processing domain is the ”cocktail party” problem. If a party

atmosphere is to be imagined, music is played in the background, and some people talk or

laugh loudly; also, there may be coughing or clapping sounds. In case enough input sensors,

microphones for this example, are placed around the room, each microphone can measure

these audio signals with different weights [4]. The main goal of BSS is to reconstruct original

signals from observed mixed signals and generate isolated components of mixed audio, such

as talking, music, and clapping.

Human-made signals are transmitted in a medium such that convolutive transmission may

change the spatial and spectral characteristics of the signals. Consequently, the initially

transmitted source signals and the output may differ completely [1]. Mixing the source
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Figure 2.1 The original signals

Figure 2.2 Mixing signals formed after source signals are mixed

signals produces some effects. These effects then provide a basis for extracting the source

signals from the mixing signals. For example, suppose that three independent signals are

artificially generated, such as a sine wave, a sawtooth signal, and a random signal, as seen in

Figure 2.1. After a random mixing matrix mixes these signals, mixture signals comprise as

in Figure 2.2. The three effects mentioned are as follows [10];

• Independence: Assuming statistically independence of source signals plays a crucial
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role in BSS problems. Although this assumption does not fit well with real-world

scenarios, it is necessary to solve the problem in a practical sense. However, mixture

signals are dependent, even if the source signals are independent. The source signals

are shared between each mixture signal, so this common usage of signals ensures the

dependencies between mixture signals. Figure 2.3 illustrates this point clearly.

• Normality: Source signals are tended to be non-Gaussian distribution. For example,

if a speech signal is plotted as a histogram, it shows a ”peaky” distribution. However,

based on the central limit theorem, when these source signals are mixed, the mixture

signals distribution are tended to be more Gaussian, meanly plotted as a ”bell-shaped”

histogram. The mixture of non-Gaussian signals will contain more information about

the mixing. If looking at the joint distribution of non-Gaussian signals, it will scatter

on a square. After getting the mixture by mixing these two independent, non-gaussian

signals by an orthogonal mixing matrix, if the mixtures of these two signals are plotted,

a meaningful parallelogram structure will be formed and show uniform distribution.

This prior knowledge will help us find the other from the signal. The distribution

of Gaussian signals and the mixture of these two signals will be almost symmetrical.

It will not be possible to obtain meaningful data for the mixing matrix to solve the

mixture. Figure 2.4 is a good illustration of the gaussian distribution effect on mixing.

• Complexity: The complexity of the mixture signal is greater than or equal to the

complexity of the least complex signal among the source signals that constitute the

mixture signal. This can be briefly in Figure 2.5

These effects help extract source signals using several mixture signals by extracting source

signals with as many independent, non-gaussian and complex characteristics in that mixture

signals [10]. The overall steps of BSS are depicted in Figure 2.6 and include pre-processing,

separation, and post-processing. For inferring informative components after the separation

process, importance should be given to pre-processing and post-processing steps [4].

The broad use of BSS can be expressed mathematically as below;
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Figure 2.3 Independence of source and mixing signals
Even if the independence of the source signals, the mixture signals that comprised by the

source signals are correlated with each other, because they include the proportion of source
signals within them. If the scatter of the signals defined in Figure 2 and their mixtures are

plotted, the top row of the graph shows the scatters of the sinusoidal-sawtooth signal on the
left side and the sinusoidal-random signal on the right side. The scatter structure in these

two subgraphs indicates the independence between signals. The scatters of the mixtures of
signals are shown at the bottom row of the graph. On the left side, the scatter of the mixture
signal 0-1, and on the right side, the scatter of the mixture signal 0-2 is plotted. In contrast

to the graph above, the structure’s direction shows the dependence between mixture signals.
They behave the same or in opposite directions, indicating the correlation between them.
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Figure 2.4 Gaussian and Non-Gaussian effect on signals and mixtures
The signals plotted on both sides were randomly generated, and the scatter plot describes

the joint density distributions of the signals and their mixtures, and the histogram describes
the distribution of the signals added to the graph.

Left: The originals and mixtures of the signals show a unifor distribution. In addition,
although the original signals have a non-gaussian distribution, the mixture of their signals

are tended to be gaussian distribution and creates a more bell-shaped histogram output.
Right: Both the original distribution and the mixing distribution of the two gaussian signals

are almost symmetrical, and it is difficult to obtain data on the mixing matrix.
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Figure 2.5 Complexity of mixing two signals
Two pure sine waves are plotted at the top of the figure. When these two sinusoidal waves

are mixed, they create a more complex mixture signal, plotted below the figure. The
complexity conjecture can be taken as a basis, and the prior knowledge that the signal to be

extracted from a complex signal will be less complex will contribute to solving the BSS
problems.

Figure 2.6 Processing Steps of Blind Source Separation

x(k) = [x1(k), x2(k), ..., xn(k)] is denoted as an output sensor value of MIMO nonlinear

system. BSS methods aim to discover a reverse procedure and rebuild the source signals,

represented as s(k) = [s1(k), s2(k), ..., sm(k)]. The mathematical formulation is expressed

below, and the block diagram of the overall architecture is depicted in Figure 2.7 [4];

x = As (1)

y(k) = Wx(k) = WAs(k) (2)
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Figure 2.7 Blind Source Separation Block Diagram [1]

where A is an unknown, invertible, and square matrix, namely a mixing matrix, and W is

unmixing matrix which is also the inverse of mixing matrix A [6]. The ”blind” characteristic

of BSS reveals at Formula 1. Both mixing matrix, meanly how the sources are mixed, and

source signals are unknown, so there is no prior knowledge while signals are observed.

The number of signals is also crucial to BSS. A consequence of many sources than observed

mixing signal can lead to a challenging task in a BSS domain. If this constraint may be

defined formally, there should be at least as many observed mixing signals as the source

signals; if the system cannot ensure that (m < n), this concept is called an overcomplete

BSS problem [4] [10].

Sources are mixed in different physical environments. Also, how easily separate sources

blindly depend enormously on this environment. Instantaneous mixing is the most

straightforward mixing strategy, and the beginning BSS studies were designed accordingly.

Nevertheless, in real-world cases, instantaneous mixing is commonly impossible [1]. BSS

problems can be categorized into three titles to address different mixture styles such as[4];

(i) instantaneous linear mixing

(ii) linear convolution mixing
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(iii) nonlinear mixing

2.1.1. Linear Mixing

2.1.1.1. Instantaneous Linear Mixture In an instantaneous mixing system, M source

signals are linearly combined and received by the N input sensor. Thus, Equation 3 represents

a time-invariant instantaneous linear mixing system, and in Figure 2.8 depicts the block

diagram [1].

xj(k) =
m∑
i=1

ajisi(k) + vj(k) (3)

where the observed signals are indicated as xj(k)(j ∈ 1, 2, ..., N), the source signals are

indicated as si(k)(i ∈ 1, 2, ...,M), additive noise related with the kth sensor is indicated as

vj(k), and aji(k)(j ∈ 1, 2, ..., N, i ∈ 1, 2, ...,M) represents nxm mixing matrix A which

includes linear coefficients of source signals while mixing.

Equation 4 is obtained in case using the vector form of the components and ignored

noise factor in the Equation 3, resulting in a more easy-to-use equation; where s(k) =

[s1(k), s2(k), ..., sN(k)
T ], x(k) = [x1(k), s2(k), ..., sN(k)

T ], and A is the mixing matrix

[4].

x(k) = As(k) (4)

BSS aims to find anmxn demixing matrix as denoted by W, which is formulated at Equation

5 [1].

yi(k) =
w∑
j=1

wij(k)xj(k) (5)
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Figure 2.8 Instantaneous Linear Mixture Block Diagram [1]

2.1.1.2. Linear Convolution Mixture Convolutive mixtures of signals are closer to

real-world cases. For instance, sound waves can be reflected, and the delays that occur due

to the reflections caused by the waves hitting various obstacles during the propagation of the

sound waves yield an acoustic sound. Hundreds or thousands of signals’ reflections in such

reverberant environments lead to time dependencies in the mixture. In addition to the time

dependencies of signals, mixtures likewise have time dependencies [1].

Assuming the M sensor measures N statistically independent source signals following the

convolution mixing process [11]. Observed signals are indicated as xj(t), j = 1, 2, ...,M ,

source signals are indicated as si(k), i = 1, 2, ..., N , and the following expression, Eq. 6

indicates the linear convolution model [4].

xj(t) =
N∑
i=1

aji(t) ∗ si(t) =
N∑
i=1

L−1∑
τ=0

aji(τ )si(t− τ) (6)

where convolution operation is denoted by ∗, and aij is the jth sensor’s impulse response

about ith source signal.

All channels can be expressed as Lth-order finite impulse response filter; thus convolution

mixing model can be shown with the FIR matrix representation proposed by Lambert as

follows [4];
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x = As (7)

where A is the finite impulse response filter of the form;

A =


aT11 ... aT1m

... . . . ...

aTn1 ... aTnm

 (8)

where aji is a column that denotes the Lth-order FIR filter and has the L dimension.

To express it as a vector form, Equation 7 is represented as;

x(t) =
L−1∑
τ=0

A(τ)s(t− τ) (9)

2.1.2. Nonlinear Mixture

Nonlinear mixtures of signals are more convenient for real-world facts. It is a challenging

problem to solve nonlinearly mixed signals in the BSS domain. Besides requiring additional

information or well-defined boundaries. Nonlinear mixing is an extended version of linear

mixing [12] [13] [14];

x(t) = f(s(t)) + n(t) (10)

where x(t) are denoted as an observed signal vectors with M -dimensional, s(t) are

denoted as a source signal vectors with N -dimensional, n(t) are additive noise vectors with

M -dimensional, and f : RN → RM is a reversible nonlinear separating function [4]. BSS

aims to find a mapping function g to decompound source signals from measured signals by

sensors. The expression of the mathematical model is as follows;
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y(t) = g(x(t)) (11)
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Figure 2.9 Classifications of Machine Learning Approaches

2.2. Machine Learning Essentials

2.2.1. Machine Learning Concept

Human beings base their past mistakes, behaviors, or previous developments and build new

learnings on them. So, can computers do this skill too? This insight constitutes the basis for

machine learning. Machine learning is the science of making better predictions or foresight

by concluding old experiences, which are problem-specific historical data provided as input

to the algorithm. The ”learning” in the phenomenon means that the algorithm can improve

itself based on the data collected in various ways. While the algorithm explicitly designed

for the specific problem domain can only solve that existing problem, the researchers search

for an approach in which the machine, meanly the algorithm, will discover its solution

based on the sample or training dataset initially provided [15]. Machine learning is one

of the sub-branches of computer science and initially emerged due to pattern recognition and

artificial intelligence studies. The machine learning concept has succeeded in time with

computational statistics studies and has gained proficiency in prediction. Today, studies

in areas such as pattern recognition, natural language processing, image recognition, and

computer vision are built on machine learning [16].

Machine learning approaches may be divided into four main categories, as shown in Figure

2.9
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• Supervised learning: Supervised learning aims to predict unobserved data by

identifying the linkage between the data and the related label in the training set with

various mathematical and statistical operations. The training set contains input data

such as an image or audio and label data corresponding with the input as an output.

If the problem is formulated, an unknown mapping function f maps input variable X

to the dependent output variable Y , Y = f(X). Supervised learning aims to find

an approximate f̂ function with provided {xi, yi}i=1,...,n as a sample, which maps

f̂(X ) → Y , where X ∈ X ⊂ Rd, Y ∈ Y ⊂ R are two random variables, and

minimizes the expected loss. If the hypothesis space for f is restricted asF , supervised

learning formulation can be expressed as follows [17];

f̂ = argmin
f∈F

E
[
L(Y, f(X))

]
(12)

• Unsupervised learning: The goal of the unsupervised learning approach is to find the

latent structure lying under the training dataset. In unsupervised learning, data in the

training set is unlabelled. Therefore algorithm has an input X but not any output.

Unsupervised learning is suitable for clustering o segmentation tasks.

• Semi-supervised learning: Observed data in the real world might only have a label

sometimes. In semi-supervised learning, labeled data is rare in the dataset, and

numerous unlabeled data exist. Semi-supervised learning focuses on classifying

unlabelled data with the inferred information from labeled data.

• Reinforcement learning: It represents learning based on trial and error. The agent

interacts with the environment e with state s after input i comes to the agent and

takes action a. The system produces a scalar reinforcement signal according to the

environment and state transition. This signal is a reward to the agent for the subsequent

state. The software agent is not addressed on what to do, and it is ensured that the

agent gains intelligence with the environment, situation, action, transition, and reward

knowledge [18].
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Figure 2.10 A Neuron in Artificial Neural Network

2.2.2. Artificial Neural Network

Scientific studies gain inspiration from life and the earth. A precedent of this behavior is

artificial neural networks, which have a structure that illustrates the brain’s logic. There are

neurons in the human brain, and they communicate through synapses. A similar structure

exists in artificial neural networks; each neuron builds on what the previous neuron learned.

In artificial neural networks, each neuron is a computational unit. This unit receives N

inputs numbered 1 to N from other neurons or external data sources, such as a training

set. One input has its data values denoted as xi, and corresponding weight value wi. The

neuron’s input is the sum of the product of associated weight and data values,
∑N

i=1wixi =

w1x1 + w2x2 + ... + wNxN . After the summation, if the resulting value is greater than a

threshold value t, the neuron’s output would be 1, else 0. This equation can be expressed as

g(
∑N

i=1wixi − t), where g is an activation function. If the parameter for g is negative, then

the output is 0; else, for the nonnegative parameter, the output is 1. However, also it depends

on the activation function [19]. There are various activation functions used in artificial neural

networks for different purposes. Commonly used functions are shown in Table 2. The unit

structure is depicted in Figure 2.10.
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Name Function Plot

Linear Activation f(x) = x

Binary Step Activation f(x) =

{
0, for x < 0

1, for x ≥ 0

Sigmoid Activation f(x) = 1
1+e−x

ReLU Activation f(x) = max(0, x)

Leaky ReLU Activation f(x) = max(0.1x, x)

TanH Activation f(x) = (ex−e−x)
(ex+e−x)

Table 2.1 Activaion Functions
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ANN phenomenon has been a hotspot research topic in literature in recent years. It

produces promising results in various domains, such as pattern/image/speech recognition,

classification, stock market predictions, and other major branches of engineering and science

as well [20]. Over the course of time, types of artificial neural networks followed an

evolutionary development. The deficiency of some network types to find acceptable solutions

to some problem domains led to the emergence of new network types. Today, diverse network

types can be employed in distinct ANN problem domains, such as convolutional neural

networks in image processing problems or recurrent neural networks in problem domains,

including time dependencies. The following is a brief description of commonly used ANN

types.

2.2.2.1. Feed-Forward Neural Networks

One of the simplest forms of ANN. Neurons are basic units of ANN, and if neurons are

grouped, they compose a layer of networks. There are three types of layers; input layer,

hidden layer, and output layer. The training data enters the network with the input layer.

Neurons, i.e., nodes, are connected to nodes at the next layer. Nodes do some computations

described above and transfers new value to the next node. If all nodes at the preceding

layer are connected with all nodes at the subsequent layers, this network can be called fully

connected; otherwise, called a partially connected network. The output layer’s result is the

network’s prediction based on training data. The basic structure of the feed-forward network

can be described as the input data flow by multiplying with weights.

A network can include one layer or consist of more than one layer. It is called a single-layer

feed-forward network when it has one layer, otherwise, called a multi-layer feed-forward

network. Figure 2.11 depicts the multi-layer feed-forward neural network.

The critical distinction between traditional computational algorithms and neural networks

is the ”learning” ability of neural networks. Neural networks can learn from past

experimentations and tries to give better performance at new attempts than earlier.

”Backpropagation algorithm” is mainly used as a ”learning” way while training neural

networks. Like other networks, the backpropagation algorithm is used to gain the ”learning”
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Figure 2.11 A multi-layer feed-forward neural network

ability to feed-forward neural networks. Essentially, backpropagation involves the process

of updating weights in the network. The error signal is the difference between the output

produced by the network and the desired output. The nodes’ weights are updated by the

backward propagation of the gradient vector, which is obtained after taking the derivative of

the error signal according to the weight parameter [20].

Considering that ”iteration” represents the training sample here, The error of neuron j at the

output at iteration n can be expressed;

ej(n) = xj(n)− yj(n) (13)

where xj(n) is the appropriate output of neuron j, and yj(n) is the actual output.

The instantaneous value of the energy error on behalf of neuron j can be defined as 1
2
e2j(n).

Thus, the total error value of the network can be expressed in Equation 14.
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ξ(n) =
1

2

∑
j∈C

e2j(n) (14)

where C represents the neuron set that takes part at the output layer. Considering the train

set consists of N samples, then average squared error energy is obtained, such as in Equation

15.

ξav =
1

N

N∑
n∈1

ξ(n) (15)

Weights and biases are free parameters in the network, and both instantaneous energy error

and average energy error function of all these free parameters. ξav represents the cost function

for the training set used as input to the network and indicates the learning progress. The

backpropagation aims to adjust the parameters according to the ξav function and minimize

the cost function.

Two approaches are utilized while updating free parameters; batch update and sequential

update. In the sequential update, free parameters are updated after learning from every

sample in the training set. However, in the batch update, they are updated after all training

samples. One complete processing of the training set is called an epoch.

The output of neuron j can be given as in Equation 16.

yj(n) = f

 m∑
i=0

wji(n)yi(n)

 (16)

where f is the nonlinear activation function, andm is the number of total inputs feeds neuron

j. In this equation, bias is excluded.

Determining the changes in the neuron j’s weights is related to the proportional partial

derivatives of instantaneous error energy with related weight. The chain rule simplifies the

statement. It can be expressed in Equation 17.
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∂ξ(n)

∂wji(n)
=

∂ξ(n)

∂ej(n)

∂ej(n)

∂yj(n)

∂yj(n)

∂wji(n)
(17)

End of the backpropagation, free parameters are updated, and learning can only occur after

this. The update to employed to wij is created with the delta rule and is expressed as follows;

∆wij = −η
∂ξ(n)

∂wij(n)
(18)

This backpropagation mechanism is the basis for the learning process of many neural

networks.

2.2.2.2. Convolutional Neural Networks

In ANN, the network’s neurons optimize themselves throughout the learning process. The

neurons in convolutional neural networks, i.e. CNN, do the same optimizing as well. To

do some computational operations over the raw input with neurons and produce a class

score at the output layer. Also, there is a cost function to assess the network’s success,

such as in traditional ANN. The crucial distinction between traditional ANN and CNN

is that CNN has mastery in pattern recognition in the image processing specialization.

This specialization ensures the robustness and suitability of the network by providing

image-specific characteristics and reducing the parameters [21].

Another essential dissimilarity between ANN and CNN is the third dimension of neurons

composing the CNN layer. Along with the spatial height and width dimensions, the neuron

has a depth size and refers to the activation volume. Before the completion of the network,

neurons are intensified and then match the possible output class number [21]. The overall

architecture is depicted in Figure 2.12

In CNN, there are three layers; convolutional layer, pooling layer, and fully-connected layer;
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Figure 2.12 Convolutional neural network architecture

Convolutional layer It is CNN’s leading player, and learnable kernels are a valuable

instrument of this player. Each layer accepts feature maps generated from the earlier layers

as input, convolves them with learnable kernels, and yields an output. Nonlinear functions

such as ReLU are used as activation functions. The output is transformed into a feature map

with the activation function and then provided as input to the following layer. This can be

expressed as follows [22];

xlj = f

∑
i∈Mj

xl−1i ∗ klij + blj

 (19)

where Mj is the set of input maps, and b is an additive bias given to each output map. In

addition, the discrete convolution operation is expressed as [17],

(f ∗ g)(x) =
∞∑

u=∞

f(u)g(x− u) (20)

Convolution helps us see the big picture. High-level features such as borders and edges

can be extracted with the help of convolution. Initially, the convolution receives low-level

features such as color or gradient orientations. As this information is stacked in the following

layers, the convolution layer will begin to receive high-level features. At the end of the

network, the input becomes more fully meaningful.
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One of the fundamental properties of CNN is that features are not required to extract

manually. The kernel, i.e., filter, is being employed for this objective. Relevant filters can

capture the spatial and temporal dependencies at the input. Kernels are small depending

on the spatial dimensionality of the input. Nevertheless, they shift along the input and can

analyze all values without being detached from the spatial dimensionality. An example of

convolution is illustrated in Figure 2.13. Input data with 9x9 size exists on the left side, and

by applying a 3x3 Sobel filter to this input, the output value is positioned in the 4x4 size

output feature map on the right.

Three hyperparameter changes the output size, thus affecting network complexity

significantly; stride, padding, and depth [21].

• Stride: The stride specifies the pixel number to shift in the subsequent convolution. In

the example above, the stride is set to 1. In such a case, too many activations will be

generated for receptive fields that overlap too often, increasing complexity. Otherwise,

if the value is determined more than the optimized value, it will not be able to capture

the features in the input.

• Padding: The padding hyperparameter adjusts the boundaries of the input by padding

the borders with zero values, and In the example above, the padding is set to 0. Thus,

the kernel will also capture data located at the boundaries of the input and take all

spatial dimensionality into account.

• Depth: A hyperparameter significantly affects the network’s number of neurons. It

corresponds to the number of filters used in the hidden layer. Changing the number of

filters will also cause a significant change in the number of parameters in the network,

and its complexity will change at this rate.

Let W be the input size, F be the kernel size, S be the number of steps in the stride, and P is

the value to be applied for zero-padding, the spatial dimensonality of output resulting from

the convolution be calculated as;
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Figure 2.13 A simple convolution representation

(W − F ) + 2P

S + 1
(21)

Pooling layer To make the network more manageable, reducing the parameters can

be followed. The pooling layer aims to reduce the parameters by reducing the spatial

dimensionality of the input, which is a representation of the input data of the network at

the relevant layer. Generally, the pooling layer is employed in between the subsequent

convolutional layers. Various types of computing are used in pooling layers, such as max,

average, and L2 norm. MAX operation, 2x2 kernel, and 2 for stride value are commonly

utilized for the pooling layers. For this setting, the pooling layer downsizes the activation

map by 25

Fully connected layer It is the last layer shown in the figure. The neurons have no

connection within the layer. They bind to neighboring layers and function similarly to

traditional ANN [21].

2.2.2.3. Recurrent Neural Networks

In a feed-forward network, the neuron’s output is input to the neuron placed in the next layer.

This structure is sometimes useless, especially considering the whole learning process. For

example, the stock price series depends on the former runs, and the road map of the market

gives a clue for future predictions. For operating this type of problem domain, recurrent

Neural Networks (RNNs) are employed.
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Figure 2.14 A typical cell structure of RNN

RNNs work with the principle that feeds the neuron with its produced output at the preceding

step. Thus, the neuron acts like a memory cell. In this way, for example, RNN can take

into account even the first word of the sentence representing a sequence of words because

its weight and values are included in the computational process producing the network’s

output. RNNs are a kind of artificial neural network primarily used to hit on patterns in a

data sequence, such as stock prices, sensors used in industry, and genome data [23]. The cell

structure of RNNs is depicted in Figure 2.14. The mathematical expression of the cell is as

follows [24];

ht = σ(Whht−1 +Wxxt + b),

yt = ht

where x(t) is the input data, y(t) is the output of the cell at time t, and it equals the hidden

state h(t), which is provided as an input to the subsequent layer. In addition, Wi and Wj

denote the weights, and b denotes the bias.

The critical problem presumably to be encountered in RNN is vanishing, or exploding

gradient values [25]. Especially for long sequences, small gradient values such as < 1

diminish through backpropagation computation, and finally, they have the risk of vanishing.
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Figure 2.15 A typical cell structure of LSTM

As a consequence, the contribution of the data at the beginning of the sequence or a particular

time ahead to the output will be eliminated. The same scenario is suitable for large gradient

values, which will cause to exploding gradient and changes output dramatically. This

weakness has been an essential origin of motivation in the emergence of LSTM networks

[26].

Long Short-Term Memory Network Long Short-Term Memory Network, i.e., LSTM, is

a type of RNN. LSTMs vary from to handle long–term dependencies more successfully than

RNNs. Cells in the LSTM network are called memory cell because it keeps their internal

state across the cell by defining their weight as 1. This kind of cell ensures that the gradient

can pass throughout the network and prevents it from vanishing or exploding. Typical LSTM

cell and structure are both depicted in Figure 2.15.

To overcome long-term dependency problems in LSTMs, additional information is stored in

gated cell structures out of the neural network flow [26]. A gated structure enables forgetting

or carrying the related data to with cell state. There are three gates in LSTM networks; input,

forget, and output. Considering Figure 2.15, xt, ht, and yt are denoted as input, recurrent

hidden state, and output, respectively. Wx, Wh, Wi, Wo, and Wc are the weight for the

related node, and b is the bias. Gates and their mathematical expressions as follows [24];
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• Input gate: Uses tanh activation function for computing and regulates how much data

needs to be used from the input node to add the cell’s internal state.

it = σ(Wihht−1 +Wixxt + bi) (22)

c̃t = tanh(Wc̃hht−1 +Wc̃xxt + bc̃) (23)

• Forget gate: Determines what information will be abandoned and no longer be

included. This can be expressed as follows;

ft = σ(Wfhht−1 +Wfxxt + bf ) (24)

• Output gate: Determines the amount of data that will be used from that cell’s output.

ot = σ(Wohht−1 +Woxxt + bo) (25)

Finally, the internal state and hidden state of the LSTM cell at the end of the flow can be

expressed as follows;

ct = ft · ct−1 + it · c̃t (26)

ht = ot − tanh(ct) (27)

Bi-Directional Long Short-Term Memory Network Traditional RNN architecture deals

with only previous context. To overcome this point, the bi-directional RNN model, i.e.

BiLSTM, introduced by [27] that work in a way that is simultaneously being trained with

an isolated hidden layer in both directions [24]. The additional hidden layer is being trained

from the end of the data sequence to the beginning, so the model can also reflect the data

to the output without depending on the previous context [23]. The overall structure of the

BiLSTM is depicted in Figure 2.16.

The LSTM cells in the architecture demonstrated in Figure 2.16 are identical to the LSTM

cells demonstrated in Figure 2.15. Therefore, in the forward layers, the mathematical
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Figure 2.16 The overall structure of Bi-directonal LSTM

computations will take place as Paragraph 2.2.2.3., where the sequence inputs (
−→
h L
t ,
−→c Lt )

from t = 1 to T . In contrast, in the backward layers, data sequence flows with reverse time

steps, t = T to 1, and sequence inputs are as (
←−
h L
t ,
←−c Lt ). Considering the duplicate notions

in Figure 2.15, the mathematical expressions of the cell of the backward layer, denoted as L,

are as follows [24];

←−
f L
t =σ(WL←−

f h
hLt+1 +WL←−

f x
hL−1t + bL←−

f
),

←−
i Lt =σ(WL←−

i h
hLt+1 +WL←−

i x
hL−1t + bL←−

i
),

←−̃
c Lt =tanh(WL←−̃

c h
hLt+1 +WL←−̃

c x
hL−1t + bL←−̃

c
),

←−c Lt =
←−
f L
t · ←−c Lt+1 +

←−
i Lt ·
←−̃
c Lt ,

←−o Lt =σ(WL←−o hh
L
t+1 +WL←−o xh

L−1
t + bL←−o ),

←−
h L
t =←−o Lt · tanh(←−c Lt )

(28)
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The final output of the BiLSTM architecture is as follows;

yt = W−→
h y

−→
h t +W←−

h y

←−
h t + by (29)
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3. RELATED WORK

Comparative studies of BSS methods have been carried out in different fields and have

guided researchers from different disciplines. In particular, the blind separation of signals

from health data (e.g., EEG) has been a popular topic. In [28], the authors focus on

removing muscle artifacts in EEG signals. They use Empirical Mode Decomposition (EMD)

based BSS, Independent Component Analysis (ICA) based BSS, and Canonical Correlation

Analysis based BSS methods. In [29], the authors compare BSS methods on fMRI signals.

Differently from the preceding study, the authors use Infomax (maximum likelihood) [30],

FastICA, joint approximate diagonalization of eigenmatrices (JADE) [31], and eigenvalue

decomposition (EVD) [32] algorithms for separation.

In [33], matrix factorization-based BSS methods were compared for audio signals. The

authors have done an experimental study utilizing FastICA, Principal Component Analysis,

and NMF algorithms. Their results show that FastICA performs superior in separating mixed

signals with the negentropy technique for finding a maximum non-Gaussianity. In [34], on

the other hand, the authors present a BSS study using the Kernel Additive Model (KAM) [35]

approach apart from conventional methods. In addition, promising results have emerged with

the KAM-CUST model developed by the authors.

When these studies are considered for a thorough assessment, it can be seen that classical and

neural network-based approaches are not widely studied to reveal all subtleties involved. In

addition, the FastICA and NMF approach is insufficient in the MIR literature. In this respect,

this study aims to fill the mentioned gap.
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4. USED MODELS

4.1. Classical Methods

4.1.1. FastICA

Independent component analysis, i.e., ICA, has been one of the popular topics in the literature

for a long time. Signals can be mixed in various ways or mediums. For instance, in a cocktail

party problem, music or talking are separated signals, and sensors perceive these separated

signals as mixed. The primary goal of ICA is to extract meaningful features from mixed

signals such as stock market data, sensor data, or sound waves. From another standpoint, it

can also be considered dimensionality reduction or a filtering operation to determine which

feature will be passed and which will still be represented in the data [5].

ICA is a version of the principal component analysis (PCA) approach [36, 37]. The main

distinction between ICA and PCA is that ICA aims to optimize higher-order statistics,

but PCA aims to optimize the covariance matrix [8, 37]. Thus, ICA finds independent

components, whereas PCA finds uncorrelated components of the input data [8].

Two major approaches are used to solve ICA problems; statistical approaches and neural

network approaches. In statistical approaches, objective functions are built on higher-order

cumulants of the observed signals and then minimized [38]. Statistical ICA approaches have

many popular algorithms, such as Infomax and FastICA. The primary objective of these

algorithms is to extract independent elements by [8];

(i) maximizing the non-Gaussianity

(ii) minimizing the mutual information

(iii) employing the maximum likelihood (ML) estimation technique

The fast-fixed point algorithm (FastICA) is the most widespread due to its quick convergence

and good separation performance [39].
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Figure 4.1 ICA mixing and unmixing block diagram

The ICA method performs a matrix multiplication to obtain the mixed output as follows:

x = As (30)

where x is an observed signal vector, s is a source signal vector, andA is a constant invertible

mixing matrix to be estimated. The main goal of ICA algorithms is to estimate the invertible

mixing matrix A and extract the predicted source vector denoted by ŝ with the unmixing

matrix W , which is an approximation of A−1 as follows:

ŝ = Wx (31)

The mixing and unmixing steps are depicted in Figure 4.1. The number of components of the

mixture and signals can be different sometimes, and the number of mixtures depends on the

sensors that receive and transmit the signals. As depicted in the matrix, the first component
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of observed signals depends on the first row of mixing matrix A, which can be expressed

as x11 = a11s11 + a12s21 + ...+ a1psp1. Similar to the mixing operations; the first extracted

signal can be expressed as y11 = w11x11 + w12x21 + ...+ w1pxp1 [5].

ICA has two ambiguities;

• Ambiguity of sign: The ICA model has not been affected by changing the independent

components’ sign. Because, in Equation 30, both A and s are unknown, any divider

at the aj column in the mixing matrix A can easily exclude the scalar multiplier in the

component si. Also, without affecting the generated signals, the weight in unmixing

matrix W can multiply with −1 [5, 8].

• Ambiguity of order: Considering the Equation 30, it can be expressed as follows,

x =
n∑
i=1

aisi (32)

Similar to the ambiguity of signs, in virtue of the anonymous nature of A and s, their

order can freely modify without affecting the sum of expression. Also, the weight

matrix W is initialized unsystematically. While attempting to find the independent

component, the weight matrix is rotated, and when it encounters the independent

component, it extracts it from the observed signals. For that reason, the order of

components is not taken into account [5, 8].

4.1.1.1. ICA Estimation Principles The basic concept of estimation in the ICA model

is non-gaussianity as, without nongaussian, a prediction cannot be made. Keep the Central

Limit Theorem in mind. According to the Central Limit Theorem, a mixture of the two

independent distributions tends to be Gaussian. That is, the independent components that

compose the distribution in each case must show a less gaussian distribution than the sum of

distribution [8].

Assuming that the data vector x, which is a mixture of independent components, is distributed

according to the ICA model and to predict one of the independent components, Equation 31
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can be employed. Equation 31 represents independent components as a linear transformation

of xi, which can be expressed as; ŝ = wTx =
∑

i=1wixi where w is needed to be

determined. If w is considered the inverse of A, this linear transformation should correspond

to an independent component. w cannot be precisely determined because it represents

the inverse of A, and A is unknown. Here a good estimator can be found utilizing the

central limit theorem. The underlying assumption is that wTx must be at least gaussian as

x, which is a sum of source signals, and the estimation can be improved by maximizing

the non-gaussianity. Since x is a data vector and w is a weight vector, maximizing the

on-gaussianity of the weight vector w will bring it closer to the solution [8].

More briefly, all these three ways are based on searching a rotation of unmixing matrix and

projecting into it to preprocessed data [5]. Maximizing the non-gaussianity can be enhanced

in 3 ways;

• By using classical statistics measures, such as kurtosis, or negentropy

• By minimizing the mutual information

• By maximum likelihood estimation

Measures of Non-Gaussianity Maximizing the non-gaussianity is vital for ICA

estimation. For this reason, two measurements are utilized [40]; kurtosis and negentropy.

Kurtosis: One method of measuring the non-gaussianity is to use the fourth central moment,

i.e., kurtosis. Unmixing matrix aims to maximize the kurtosis of the yielded signals to find

an optimal solution to the ICA problem [7]. Although kurtosis calculation is straightforward,

it is not robust for identifying non-gaussianity because of the sensitivity to outlier data [8].

The kurtosis of y is defined as;

K(y) = E{y4} − 3(E{y′2})2 (33)
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and normalized kurtosis is defined as the ratio of the fourth moment to the second moment

and expressed as;

K̂(y) =
E
[
y4
]

E [y2]2
− 3 =

1
N

∑N
i=1(xi − µ)4

( 1
N

∑N
i=1(xi − µ)2)2

− 3 (34)

Recall y has a unit variance, and Eq. becomes to as;

K(y) = K̂(y) = E
[
y4
]
− 3 (35)

In [12], the fourth moment of the Gaussian signals is defined as (3E
[
y3
]
)2, thus K̂(y) =

E
[
y4
]
− 3 = E[3(E

[
y2
]
)2] − 3 = E

[
3(1)2)

]
− 3 = 0, where E

[
y2
]
= 1. Therefore

the gaussian random variable has zero kurtosis [5]. In other words, nongaussian random

variables, at least for most, have nonzero kurtosis [12]. Yielded signal’s kurtosis is needed

to be maximize to extract independent components from y = wTx [5].

Negentropy: The other measurement of the non-gaussianity is negentropy.

Initially, if the concept of entropy has to be defined, entropy indicates how many ”various”

random variables are in a distribution. The greater the entropy, the more various random

variables are present and the more unpredictable the distribution.

Let Y discrete random values and ai are the possible values, entropyH of Y can be expressed

as;

H(Y ) = −
∑
i

P (Y = ai)logP (Y = ai) (36)

This expression can easily be adapted for continuous variables as well. It is then called

differential entropy and is expressed as:

H(Y ) = −
∫
f(y)logf(y)dy (37)

where y is a random continuous variable with density f(x) and H is the entropy of y.
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Gaussian distributions have random variables that span a wider area. According to

information theory, gaussian variables have the most scattered structure in a distribution

that includes random variables with equal variance. Therefore, it will have the most

considerable entropy. The random variables that compose the distribution will form a more

”peaky” structure if gathered in a particular region. Therefore, the distribution will be more

predictable, and its entropy will be lower. As a result, entropy can be employed as a handy

instrument to measure the level of non-gaussianness [8].

To measure non-gaussianity as well, negentropy, which is a slightly distinct version of

entropy, is used and let ygauus is normal distribution that has the identical mean and variance

with y [41]; negentropy can be expressed as ,

J(y) = H(ygauss)−H(y) (38)

Two features of negentropy are critical;

• Always non-negative, but the pdf is definitely gaussian if it is zero.

• Invariant to invertible linear transformations.

However, calculating negentropy is a challenging operation because of its computational

heaviness. Thus, an approximation of negentropy is employed. One of the useful

approximations is stated in [8]. Approximation in the Eq. 39 can be obtained by using

the nonquadratic function G;

J(y)α
[
E
{
G(y)

}
− E

{
G(υ)

}]2
(39)

where both υ and y have zero mean and unit variance, but y is a random variable, υ

is a gaussian variable. The choice of G has importance there. There are two different

nonquadratic function options for good approximation stated in [8].
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G1(u) =
1

a1
log cosha1u and G2(u) = −exp(−u2/2) (40)

where some proper can be chosen, such 1 ≤ a1 ≤ 2.

Minimizing the Mutual Information One way of ICA estimation is minimizing the

mutual information.

Mutual information is utilized for finding the dependencies between random variables.

Mutual information can be expressed as;

I(yq, y2, ..., yn) =
m∑
i=1

H(yi)−H(y) (41)

where I is the information between the yi, i = 1, ...,m random values, andm is the scalar that

indicates the number of random variables. The essential measurement of the dependencies

between random variables is mutual information. It has two crucial features;

• Always nonnegative

• If and only if statistically independence of the random variables is ensured, mutual

information is zero.

Therefore, it can confidently be used to figure out statistical states. In [42], a significant

property of mutual information is stated for invertible linear transformations;

I(yq, y2, ..., yn) =
m∑
i=1

H(yi)−H(x)− log |det(y)| (42)

It can be written as;

H(y) = H(Wx) = H(x) + log
∣∣det(W)

∣∣ (43)
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where det(W) is the determinant of W.

Let recall negentropy and form the expression as;

I(yq, y2, ..., yn) = C −
∑
i=1

J(yi) (44)

where C is a constant that is unrelated to W.

Mutual information yields two different ICA estimations; one of these in Equation 2, W,

have to be determined by minimizing the mutual information between the si which is

transformed. The other one is in Equation 45, maximizing the sum of non-gaussianity for

minimizing the mutual information.

Maximumum Likelihood Estimation One of the widely known

information-theoretical-based ICA estimators is maximum likelihood.

The probability density function of the data set in a statistical model can be represented with

the likelihood function. It can be used to find unknown parameters of the statistical model.

In [43], the log-likelihood function of the nose-free ICA model is expressed as;

L =
T∑
t=1

n∑
i=1

logpi(wix(t)) + T log
∣∣det(W)

∣∣ (45)

where W is the matrix that is the inverse of A, on the distribution of si known assumption,

f is the pdf of si, and x = 1, ..., T is the observed inputs. For the last part of the equation,

log
∣∣det(W)

∣∣ for matrix W, random vector x, and probability density function pi, the density

of y = Wx becomes to px(Wx)
∣∣det(W)

∣∣.
4.1.1.2. ICA Preprocessing Some preprocessing steps are applied, but the most widely

known are; centering and whitening.
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Centering The purpose of the centering phase is to subtract the data value from the mean,

thus, center the data. The calculation of the centering phase is expressed as follows [5];

D = X− µ =


d1

d2
...

dn


=


x1 − µ

x2 − µ
...

xn − µ


(46)

where X is a vector, µ is the mean of X, and D is the vector after the centering step.

Whitening One of the preprocessing methods of ICA is whitening. After the centering

step, two computations are made to whiten the data; 1) uncorrelated the observed signal by

transforming the observed signal linearly, and 2) scaling each signal to have unit variance.

Lets ˆ[x] be the whiten data vector; the covariance matrix of the whiten vector ˆ[x] and the

identity matrix is equal;

E
{
x̂x̂T

}
= I (47)

One way of whitening transformation is to exploit the eigenvalue decomposition (EVD) of

the covariance matrix, E{x̂x̂T} = V DV T , where V is the eigenvectors of the covariance

matrix, and D is the diagonal matrix of eigenvalues. The following transformation can

whiten the observed vector [8];

x̂ = V D−1/2V Tx (48)

where D can be obtained by the component-wise prcess as D−1/2 =

diag(d
−1/2
1 , d

−1/2
2 , ..., d

−1/2
n ). The equation transforms into a new form with Eq. 30

and Eq. 48 [8];
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x̂ = V D−1/2V TAs = Âs (49)

Hence;

E{x̂x̂T} = ÂE{ssT}ÂT = ÂÂT = I (50)

As seen in the expression above, the newly formed mixing matrix becomes orthogonal due

to whitening the data vector [8].

After decorrelation, scaling the vectors can be done by projecting onto PCA space as U =

VD. Vectors in U have a unit length. For scaling the decorrelated data to have unit variance

as follows; x̂ = λ−
1
2U = λ−

1
2VD, where λ is the eigenvalue of the covvariance matrix. The

scaling phase provides becoming the data rotationally symmetric at the end of the phase.

4.1.1.3. Algorithm FastICA is based on measuring non-gaussianity of wTx and aims to

learn to maximize it. It uses a fixed-point iteration scheme for maximizing. Measuring

non-gaussianity uses the convergence specified in Eq 39 because it is computational

expensiveness. For example, the nonquadraticG function specified in Eq 39 and its derivative

are as follows [8];

g1(u) = tanh(a1u) and G2(u) = −exp(−u2/2) (51)

With this approach, it is assumed that data had been pre-processed, as mentioned above.

FastICA algorithm has the steps given in Algorithm 1, where k denote the total step number

of the algorithm, which is used to stop the algorithm if the algorithm does not converge below

the given threshold value.

FastICA has some advantages comparing the other ICA methods [41];
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Algorithm 1 FastICA Algorithm
1: for 1 to number of components c do
2: wp ≡ random initialisation
3: for 0 to k do
4: wp ≡ 1

n
(Xg(W TX)− g′(W TX)W )

5: wp ≡ wp −
∑p−1

j=1(w
T
p wj)wj

6: wp ≡ wp/
∥∥wp∥∥2

7: if wp < threshold then
8: break;
9: end if

10: end for
11: W ≡ [w1, w2, ..., wc]
12: end for

• Fast convergence: Cubic convergence compared to the ordinary ICA

• Simplicity: No learning parameter

• Generalization: Using nonlinearity can find independent components of any

non-gaussian distribution.

• Performance: With suitable nonlinearity g
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Figure 4.2 Factorization of the V matrix into non-negative matrices W and H [2]

4.1.2. Non-Negative Matrix Factorization

Unsupervised learning algorithms use matrix factorization operations. A matrix can be a

representation of the significant components that compose it. Matrix factorization aims to

extract these representations and then benefit them in the stages, such as analysis, from these

representations. However, some constraints can be employed during factorization. Different

constraints may be preferred according to different problem domains, and these extracted

factors may deduce different representations of the input data [2].

Practically, there is an implication between the values of the factors and their physical

meanings. If a factor is positive, it has physical significance. It has an impact area, but

if it is zero or negative, it indicates that it has no physical effect on the system [2].

Non-negative matrix factorization (NMF) is a type of factorization with a non-negative

constraint and factors a non-negative matrix V into two separate non-negative matrices,

W and H . Figure 4.2 depicts an example for a more insightful understanding of NMF.

The V matrix, an illustrative time-frequency representation of any audio source signal,
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consists of non-negative spectral vectors containing six time frames, N = 6, and six spectral

coefficients, K = 6. The representation may appear unstructured, but factorization will

result in ”prototype” four vectors, R = 4, that can represent spectral vectors. These vectors

are weighted and superimposed accordingly. Behind the factorization, two matrices emerge

a template vectors W representing spectral vectors and an activation matrix H containing the

weights for this template. In this way, the source signal will become easier to process [2].

The mathematical expression of obtaining the non-negative V and the non-negativeW matrix

for a given V non-negative matrix can be expressed as;

V ≈ WH (52)

where, V is composed of N observed data vectors with K-dimensional data samples. Then,

this matrix can be approximately factorized into a (K×R dimensional) W matrix called the

basis vectors or template vectors and a (R×N dimensional) H matrix called the activations.

The dimension parameter R here represents the rank of the factorization and is chosen

smaller than K and N [2].

4.1.2.1. Mathematical Expression A non-negative matrix can be defined as all matrix

elements equal or greater than zero. A non-negative V ∈ RKxN
≥0 matrix has K ∈ N rows and

N ∈ N columns, and K and N are considered large. Given R ∈ N number is often less than

K, and N . Matrix V can be factorized into two matrices that, W ∈ RKxR
≥0 and H ∈ RRxN

≥0 ,

such in Eq. 52 or as follows;

Vij ≈ (WH)ij =
R∑

m=1

WikHkj (53)

Considering Eq. 53, the model can be evaluated column by column, v ≈ Wh, each data

vector in the V matrix consists of the linear combination of the columns of W containing

the basis vectors using the activation vector h. W represents a large number of data vectors
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in low dimensions. In this respect, it is crucial to correctly estimate W to find the observed

data’s latent structure and make a good source separation approximation [44].

The cost function is used to measure how successful the approximation is. Cost functions are

based on different metrics, and the same for NMF. The two most widely used cost functions

use Euclidean distance or Kullback–Leibler divergence. Both have simple implementation

and convergence guarantees and are frequently used in NMF reference algorithms [4].

For A,B ∈ RKxN is the two matrices that have entries Akn and Bkn for k ∈ [1 : K] and

n ∈ [1 : K], the square of the Euclidian distance of between these two matrices is as follows;

∥A−B∥2 =
K∑
k=1

N∑
n=1

(Akn −Bkn)
2 (54)

Considering Eq. 54, the Euclidean distance for the NMF problem is as follows;

∥V −WH∥2 (55)

where R is the rank parameter, V ∈ RKxN
≥0 is a non-negative source matrix, and W ∈ RKxR

≥0

and H ∈ RRxN
≥0 are the resulting matrices after factorization.

According to the cost function, W and H should be optimized simultaneously. This case

reveals a further problem that needs to be solved, the joint optimization problem, as the cost

function holds two matrices that need to be optimized. Joint optimization is a challenging

task due to the difficulty of computation. Firstly, the non-negativity constraint makes the

problem harder to solve. Secondly, if W or H matrices are attempted to optimize separately,

the function will be convex, but optimizing both matrices will lose the convexity of the

function. Losing convexity will make it unattainable to reach a global minima using

convexity instruments, but numerical optimization is feasible to reach at least one local

minima [2].
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Figure 4.3 Flowchart of NMF optimization

4.1.2.2. Learning the Factorization Gradient descent can be widely employed in

optimization problems and can be applied to cost function ∥V −WH∥2 by utilizing W

and H functions. Because of the joint optimization problem’s computational challenge, one

method is to optimize sequentially. First, factor H is fixed, and the W matrix is learned

concerning H; then, the roles change so that the logic remains the same, and factor H

is learned concerning W by keeping the learned W matrix fixed [2]. The flow of the

optimization is depicted as 4.3 [4].

Let express the gradient function ϕ : RD → R as;

ϕW (H) := ∥V −WH∥2 (56)
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with setting D := RN for H ∈ RRxN where H has D dimensional vector space. In that

gradient computation, WKxR
≥0 is fixed. The parameter of the gradient function ϕW , Hpv has

parameters p ∈ [1 : R] and v ∈ [1 : N ]. The reason for utilizing the distinct parameters from

r and n forH is to differentiate the parameters used in the partial derivative expression below

[2].

The partial derivative of gradient function ϕW to the parameter Hpv can be expressed as;

∂ϕW

∂Hpv

=
∂(
∑K

i=1

∑N
n=1(VknWkrHrn)

2)

∂Hpv

(57)

end of the partial derivate computation, the expression is obtained as;

∂ϕW

∂Hpv

= 2((W TWH)pv − (W TV )pv) (58)

Considering H(0) ∈ RRxN as a random starting point, reducing the Euclidean distance with

the additive update rule can be obtained with the help of Eq. 58;

H(l+1)
rn = H(l)

rn − γ(l+1)
rn · ((W TWH(l))rn − (W TV )rn) (59)

,for l = 0, 1, 2, ... and γ(l)rn ≥ 0 is some appropriate variable called as step size [2].

After finding the learned H factor, the same computations are done for the W factor, and

similarly for a random starting point W (0) ∈ RKxR, the following reduce the Euclidean

distance;

W
(l+1)
kr = W

(l)
kr − γ

(l+1)
kr · ((W (l)HHT )kr − (V HT )kr) (60)

for l = 0, 1, 2, ... and γ(l)rn ≥ 0 is some appropriate value for step size [2].

48



Although the gradient descent method is widely used, there are still some issues for NMF.

These are;

• Ambiguity about choosing step size that guarantees convergence.

• Unclear behavior at joint local minima.

• Non-negativity constraint have yet to be handled.

In [44], the authors propose a therom for solving these issues called multiplicative update

rule. Multiplicative update rules are obtained by setting the step size parameter in the additive

update rules [2]. More exactly, the step size is set;

γ(l)rn :=
H

(l)
rn

(W TWH(l)) rn
(61)

Thus, the update rule in Eq. 59 becomes;

H(l+1)
rn = H(l)

rn −
H

(l)
rn

(W TWH(l))rn
·
(
(W TWH(l))rn − (W TV )rn

)
= H(l)

rn

(W TV )rn
(W TWH(l))rn

(62)

As well step size for W ;

γ
(l)
kr :=

W
(l)
kr

(W (l)HHT )kr
(63)

then Eq. 60 becomes;

W
(l+1)
kr = W

(l)
kr

(V HT )kr
(W (l)HHT )kr

(64)

NMF algorithm has the steps given in Algorithm 2. Similar to Algorithm 1, the

hyperparameter k indicates the total step number of the algorithm.
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Algorithm 2 NMF Algorithm

1: W (0), H(0) ≡ random initialisation
2: l = 0
3: for l to k do
4: H(l+1) ← H(l) (W (l))TV

(W (l))TW (l)H(l)

5: W (l+1) ← W (l) V (H(l+1))T

W (l)H(l)(H(l+1))T

6: if
∥∥∥H(l) −H(l−1)

∥∥∥
2
≤ ε and

∥∥∥W (l) −W (l−1)
∥∥∥
2
≤ ε then

7: H ← H(l)

8: W ← W (l)

9: break;
10: end if
11: l = l + 1
12: end for
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4.1.3. Degenerate Unmixing Estimation Techniques

There is a fundamental assumption in the classical methods mentioned earlier. Signal

receivers were more than signal sources. This blind source separation medium is called

a degenerate. Degenerate refers to more sources than mixtures in the environment, and

blind source separation became challenging when the mixing matrix could not be inverted.

Therefore, the methods which separate sources by inverting the mixing matrix can not solve

under-determined problems. Degenerate Unmixing Estimation Technique, shortly DUET,

uses time-frequency representations of the mixture to obtain attenuation and delay values for

estimating independent components [45].

The primary intuition on which Degenerate Unmixing Estimation Techniques, DUET, are

based can be expressed as follows. Source signals that do not overlap much in the

time-frequency representation can be extracted from the given two anechoic mixture signals,

and it doesn’t matter how many source signals there are. The medium, as mentioned above,

already applies to speech signals [45].

The disjointness assumption is essential to DUET. The time-frequency domain contains the

source signals’ separated interpretation if the signals are disjoint. After correctly partitioning

the time-frequency plane, DUET can extract the source signal from the anechoic mixture

signals. Although disjointness cannot be achieved in simultaneous speeches, the signal

energy that dominates the time-frequency plane belongs to one of the source signals. Thus,

the speech signals that make up the source signals can be separated [45].

4.1.3.1. Assumptions

Anechoic Mixing Considering sn(t) ∈ 1, .., N are the original signals, mixtures are

received from two anechoic signal sensors, e.g., microphone, pair. If the path is only

direct, the first mixture’s attenuation and delay parameters can be absorbed into the source

characterization. Let the number of the sources be denoted asN , γn is denoted as the coming
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delay between the microphones, and dn is the comparable attenuation of the routes between

sensors and sources [45].

x1(k) =
N∑
n=1

sn(k) (65)

x2(k) =
N∑
n=1

dnsn(k − γn) (66)

W-Disjoint Orthogonality One of the essential assumptions for DUET is the W-disjoint

orthogonality assumption. For a given functions sn(k) and sm(k), and windowed Fourier

transform function, W (k). Then two supports ŝn(k) and ŝm(k), are obtained from sn(k)

and sm(k), after being transformed by W (k). If ŝn(k) and ŝm(k), are orthogonal, sn(k) and

sm(k) are called w-disjoint orthogonal. Firstly, in the following expression, the windowed

Fourier transform function of sn(k) is;

ŝn(υ, ρ) := FW [sn](υ, ρ) :=
1√
2π

∫ ∞
−∞

W (k − υ)sn(k)e−iρkdk (67)

Then the W-disjoint orthogonality may be more precisely expressed as;

ŝn(υ, ρ)ŝm(υ, ρ) = 0, ∀υ, ρ, ∀n ̸= m (68)

W-disjoint orthogonality also indicates the useful feature of the signals which is the

disjointness of the supports of them in the time-frequency (TF) representation. Thus, it

constitutes the mathematical expression of the assumption that the dominant signal energy

belongs to one source in forming the TF representation of the mixture signal.

For appropriate separation of TF representation of the mixture signal, the mask function is

specified, and the fractionating is conducted according to this mask function. Orthogonality

is also employed to specify the mask function. The mask function can be represented as;
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Mn(υ, ρ) :=


1, ŝn(υ, ρ) ̸= 0

0, otherwise
(69)

Then the source sn(k) is partitioned from the mixture signal as follows.

ŝn(υ, ρ) =Mn(υ, ρ)x̂1(υ, ρ), ∀υ, ρ (70)

In this regard, it is crucial to correctly specify the masking function for successfully dividing

the TF representation [45].

Local Stationarity Fourier transform can be stated for the pair as a widely known as;

sn(k − γ)↔ e−iργ ŝ(ρ) (71)

Regarding the notation in Eq. 67

FW
[
sn(· − γ)

]
(υ, ρ) = e−iργFW

[
sn(·)

]
(υ, ρ) (72)

where W (k) ≡ 1. W (k), a windowing function, Eq.72 is not needed to be true. Considering

the Hamming windows function, for example, to think signal windows separated by a

few seconds are associated with the shift of phase, there is no reason. From the DUET

perspective, this is called local stationary. Let ∆ denoted as the maximum probable time

change in the mixing model Eq. 72 holds ∀γ , |γ| ≤ ∆ [45]. Local stationary can be

expressed more formally as;

FW
[
sn(· − γ)

]
(υ, ρ) = e−iργFW

[
sn(·)

]
(υ, ρ), ∀γ, |γ| ≤ ∆ (73)
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Microphones Close Together Estimating delay and attenuation parameters accurately

from the TF point is a critical step of DUET. The local stationary assumption is utilized for

this estimation and forms the delay in time to the multiplicative parameter. To avoid phase

ambiguity because of phase-wrap, the multiplicative parameter e−iργ uniquely identifies γ, if

|ργ| < π so that this constraint can be defined as;

|ργn| < π, ∀ρ, ∀n (74)

If microphones are close together to meet the distance requirement of less than πl/ρmax,

where the speed of sound is denoted as l and the sources’ maximum frequency is denoted as

ρmax, this assumption is satisfied [45].

Different Spatial Signatures DUET relies on the relativity of two parameters which delay

and attenuation. If the spatial characteristics of source signals are identical, then their mixing

parameters are also the same, and they do not change the mixture spatial characteristics

uniquely. In such cases, DUET may not be able to parse correctly and fail as these

mixing parameters are significantly critical to DUET. This constraint can be expressed in

mathematical form as;

(dn ̸= dm) or (γn ̸= γm), ∀n ̸= m (75)

4.1.3.2. Algorithm In this paragraph, the assumptions will be employed separately.

Considering the assumptions of local stationary and anechoic mixing, the expressions in

Eq. 65 and Eq.66 can be arranged as follows;

x̂1(υ, ρ)
x̂2(υ, ρ)

 =

 1 · · · 1

d1e
−iργ1 · · · dNe

−iργN



ŝ1(υ, ρ)

...

ŝn(υ, ρ)

 (76)
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Afterward, continuing with the W-disjoint orthogonality assumption, the idea that the energy

of one source signal is dominant at each (ρ, υ) the mixing procedure can be represented as

follows;

for each (υ, ρ),

x̂1(υ, ρ)
x̂2(υ, ρ)

 =

 1

dne
−iργn

 ŝn(υ, ρ) for some n (77)

,where n indicates the active sources at (ρ, υ). DUET uses the observation that the ratio in

the TF representation relies on the mixing parameter of the dominant source signal at (ρ, υ)

rather than the source signals.

∀(ρ, υ) ∈ ψn,
x̂2(υ, ρ)

x̂1(υ, ρ)
= dne

−iργn (78)

where

ψn := {(υ, ρ) : ŝn(υ, ρ) ̸= 0} (79)

The mixing parameters of the TF points can be computed as represented;

d̃(υ, ρ) :=
∣∣x̂2(υ, ρ)/x̂1(υ, ρ)∣∣ (80)

γ̃(υ, ρ) := (−1/ρ)∠(x̂2(υ, ρ)/x̂1(υ, ρ)) (81)

Since the mixing parameters are found, the indicator functions that will produce the binary

masks can be described as follows;

Mn(υ, ρ) :=


1, (d̃(υ, ρ), γ̃(υ, ρ)) = (dn, γn)

0, otherwise
(82)
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and the mixture can be demixed by this mask. However, assumptions may not always be

met. In this case, the local parameters of the mixing cannot be predicted correctly. In such a

circumstance, the definition of ψ in Eq.79 would revise to;

ψn :=
{
(υ, ρ) :

∣∣ŝn(υ, ρ)∣∣≫ ∣∣ŝm(υ, ρ)∣∣ , ∀m ̸= n
}

(83)

and then,

∀(ρ, υ) ∈ ψn,
x̂2(υ, ρ)

x̂1(υ, ρ)
≈ dne

−iργn (84)

Thus, a cluster around the local mixing parameter will be obtained, and this cluster will be

separable as long as it satisfies the assumption of not being spatially identical [45].

Two-Dimensional Smoothed Weighted Histogram Some cases where the assumptions

are not fully satisfied, the mechanism changes to the clustering structure. The relevant

attenuation and delay parameters are clustered. For dn and γn, the maximum likelihood

estimators are employed. Considering the following model;

x̂1(υ, ρ)
x̂2(υ, ρ)

 =

 1

dne
−iργn

 ŝn(υ, ρ) +
v̂1(υ, ρ)
v̂2(υ, ρ)

 , ∀(υ, ρ) ∈ ψn (85)

,where v̂1 and v̂2 denotes the noise that represent not satisfied assumptions. The other term,

symmetric attenuation, is utilized instead of estimating dn as before. Now, estimating as;

ϕn := dn −
1

dn
(86)

If the sensor, i.e., microphone, signals are swapped, the reflection of the attenuation will be

around a center (ϕ = 0) and symmetrical; for that reason, it is called symmetric attenuation.

Thus, estimating the local symmetric attenuation parameter can be defined as;
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ϕ̃(υ, ρ) :=

∣∣∣∣ x̂2(υ, ρ)x̂1(υ, ρ)

∣∣∣∣− ∣∣∣∣ x̂1(υ, ρ)x̂2(υ, ρ)

∣∣∣∣ (87)

Following the maximumum likelihood estimator in [46], the estimators can be defined as;

ϕ̃n =

∫∫
(υ,ρ)∈ψn

∣∣x̂1(υ, ρ)x̂2(υ, ρ)∣∣p ρqϕ̃(υ, ρ)dυdρ∫∫
(υ,ρ)∈ψn

∣∣x̂1(υ, ρ)x̂2(υ, ρ)∣∣p ρqdυdρ
(88)

and

γ̃n =

∫∫
(υ,ρ)∈ψn

∣∣x̂1(υ, ρ)x̂2(υ, ρ)∣∣p ρqγ̃(υ, ρ)dυdρ∫∫
(υ,ρ)∈ψn

∣∣x̂1(υ, ρ)x̂2(υ, ρ)∣∣p ρqdυdρ
(89)

which p and q are parameters of the expressions; in this way, the expressions are

parameterized. The p and q parameters can be chosen in various ways, but rather than

picking the parameters, estimators need the support of the TF representation of the source

signal. This requirement makes the solution difficult, but estimates form clusters around

the delay mixing parameters and the proper symmetric attenuation, as stated in the previous

paragraph. The two estimators in Eq.88 and Eq.89 suggest a two-dimensional weighted

histogram construction to specify the clusters, then estimate the parameters, (dn, γn). The

histogram plays a significant role in localization and separation. The center of the resulting

cluster points on the histogram constructed using indices, (ϕ̃(υ, ρ), γ̃(υ, ρ)), and weights,∣∣(x̂1(υ, ρ), x̂2(υ, ρ)∣∣p ρq, will represent the exact mixing parameters. Thus, for a sufficiently

separated (dn, γn) mixing parameter from each other, if a window is chosen big sufficiently to

perceive the additions of one source signal, N different peaks will emerge, and this emergence

provides the anechoic mixing parameters[45].

Firstly, for the formal definition of two dimensional smoothed histogram, the points that

contribute to the histogram is needed to be defined. Let ∆ϕ, ∆γ are the smoothing resultant

widths;
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I (ϕ, γ) =

{
(υ, ρ) :

∣∣∣ϕ̃(υ, ρ)− ϕ∣∣∣ < ∆ϕ,
∣∣γ̃(υ, ρ)− γ∣∣ < ∆γ

}
(90)

When all assumptions are fulfilled, the histogram can be defined as:

H(ϕ, γ) =


∫∫ ∣∣ŝn(υ, ρ))∣∣2p ρqdυdρ, |ϕn − ϕ| < ∆ϕ, |γn − γ| < ∆γ

0, otherwise
(91)

Separating the Sources By locating the peaks In the histogram by different methods,

such as k-means and peak tracking [47], mixing parameters can be found. After the

mixing parameters are determined, creating the mask to separate the sources from the TF

representation is performed. Each TF point is assigned to the peak that the nearest parameter

estimates deducted from the TF point. Symmetric attenuation is transformed to attenuation

as;

d̃n =
ϕ̃+

√
ϕ̃2
n + 4

2
(92)

where (ϕn, γn), n = [1 : N ] is peak centers of histogram. Assigning peak to TF points by;

J(υ, ρ) := argmin
k

∣∣∣d̃ke−iγ̃kρx̂1(υ, ρ)− x̂2(υ, ρ)∣∣∣2
1 + d̃2k

(93)

Then, each TF point is assigned to an estimation of mixing parameter by;

M̃n(υ, ρ) :=


1, J(υ, ρ) = n

0, otherwise
(94)

And the last step is separating each TF representation of source signals by;
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˜̂sn = M̃n(υ, ρ)

(
x̂1(υ, ρ) + d̃ne

−iγ̃kρx̂2(υ, ρ)

1 + d̃2n

)
(95)

After obtaining TF representation of the source signals, these representations are converted

back to the time domain [45].

The overall steps for the DUET algorithm are as follows [45];

1. Build time-frequency representations from mixtures; x̂1(υ, ρ) ← x1(k), x̂2(υ, ρ) ←

x2(k)

2. ϕ←
∣∣∣ x̂2(υ,ρ)x̂1(υ,ρ)

∣∣∣− ∣∣∣ x̂1(υ,ρ)x̂2(υ,ρ)

∣∣∣, γ ← −1
ρ
∠
∣∣∣ x̂2(υ,ρ)x̂1(υ,ρ)

∣∣∣
3. Build two dimensional smoothed weighted histogram, H(ϕ, γ)

4. Find peaks and peak centers and determine the actual mixing parameters

5. For each peak in the histogram, build a time-frequency binary mask

6. Apply masks to mixtures and get each source’s time-frequency representation

7. Convert the time-frequency representations of the sources to the time domain.
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Figure 4.4 Open-Unmix Model

4.2. Machine Learning Methods

4.2.1. Open-Unmix

In addition to obtaining state-of-art results in music source separation studies, the authors

also aim for Open-Unmix to be a basis for these studies. With the the structure, which is

similar to MNIST, of the project, the dataset can be downloaded instantly, and training can

be started immediately [48]. To separate sources with the Open-Unmix model, it is necessary

to train the model separately for each source. Considering the fact that there is a separate

model output for each source, this creates flexibility on the one hand and a disadvantage

on the other. Figure 4.4 depicts the Open-Unmix model, and explanations of the model

are as follows: Open-Unmix starts with a fully connected layer, batch normalization, and

hyperbolic tangent activation function, followed by three Bi-LSTM layers and continues

with two fully connected layers with batch normalizations and ReLU activation functions.

At the end of the model, the output of ReLU activation multiplies by spectrogram values,
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and the predicted source is obtained. Some important notes about the model are as follows;

[49];

• Fully connected layers before Bi-LSTM layers are helpful for dimensionality reduction

to provide more distilled input data to Bi-LSTM layers while the time dimension stays

the same.

• Skip connections aid convergence and allow the network to learn without the help of

layers. At the same time, multiplying the input spectrogram by the output of the last

ReLU activation shows that this output is the weight of the predicted source on the

original spectrogram, not the spectrogram data of the predicted source [50].
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Figure 4.5 U-Net Architecture

4.2.2. Spleeter

Spleeter is an implementation of the U-Net [51] architecture. U-Net was found for

biomedical image segmentation [52], later used in audio source separation studies, and after

successful results, it has become one of the popular architectures in this field.

The input of the network is the spectrogram of audio. The network first processes this

spectrogram with two-dimensional convolutions, and in each convolution, a smaller encoded

output of the previous input emerges, and finally, latent data is obtained. This latent

data is then reconstructed by decoding with two-dimensional deconvolution layers. Each

deconvolution layer has the same shape as its corresponding convolution layer, and its output

is concatenated with the data encoded in the corresponding convolution layer. Finally, the

latent data is rescaled, and the mask applied to the spectrogram is created to predict the

source [49] The U-Net model is depicted in Figure 4.5.

U-Net uses, firstly, six convolution layers for encoding and five deconvolutional layers for

decoding. These layers are strides of two and have a 5× 5 kernel size. Batch normalization
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and ReLU activation functions are used between all encoder and decoder layers. However,

the output layer has softmax activation as it builds a mask for the spectrogram.

The variation between Spleeter and the original U-Net is that the audio is processed in

stereo, not mono. It works with two-channel audio as input and output (channel, time steps,

frequency bins), and the architecture remains identical [53].
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Figure 4.6 Wave-U-Net Architecture

4.2.3. Wave-U-Net

Wave-U-Net, a modification of U-Net, separates audio sources directly using waveforms

instead of the spectrogram [49]. Figure 4.6 depicts Wave-U-Net architecture. Wave-U-Net

uses a similar convolution/deconvolution sequence; however, it processes on waveform

instead of the spectrogram. It performs source separation by applying one-dimensional

convolution/deconvolution operations on audio signals. Again, similar to U-Net, it

concatenates the corresponding encoded and decoded data.

Another dissimilarity in the U-Net model is the output layer. The model generates output for

each source by applying convolutional filters, and hyperbolic tangent activations to the last

feature map [54].
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Figure 4.7 Hybrid Demucs Architecture

4.2.4. Hybrid Demucs

In audio source separation studies, the methods work over waveform or spectrogram.

Similarly, the original Demucs [55] only performed audio source separation with waveform

input. Hybrid Demucs, on the other hand, adds the spectral domain to the original

architecture and provides analysis in multi-domain [56]. The overall architecture is depicted

in Figure 4.7. The original Demucs has the U-Net structure and, unlike U-Net, it consists of

two Bi-LSTM layers in the middle of sequential encoders and decoders to better handle

long-term context. It comprises six encoder and decoder layers with a skip connection

between corresponding layers. The encoder layer includes a convolution layer with a kernel

size of 8 and a stride size of 4, followed by ReLU activation. Then, the encoder end with

the 1 × 1 convolution layer with Gated Linear Unit activation. The decoder layer sums the
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corresponding skip connection with the input from the previous decoder and applies GLU

with 1 × 1 convolution. The decoder layer ends with a convolution with a kernel size of 8

and a stride of 4, followed by a ReLU activation [56].

With Hybrid Demucs, the author extends Demucs with spectral domain and provides

multi-domain analysis. Besides the spectral domain, Hybrid Demucs have compressed

residual branches, local attention, and singular value regularization improvements. Another

distinction is that ReLU activations in the model change with Gaussian Error Linear

Units. Each encoder layer has compressed residual branches that are composed of dialeted

convolutions. Inside, convolutions are processed separately for both time dimension and

frequency bins. However, in the fifth and sixth layers, there are additional two-layer

Bi-LSTM and local attention. Thus, Bi-LSTM, between encoders and decoders in the

original Demucs, is moved into the encoder at Hybrid Demucs. After decoding, the output

spectrogram is inversed with the ISTFT and summed with the temporal output. This way,

the model creates the final prediction output [56].
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5. METHODOLOGY

5.1. Data Preparation

MUSDB18-HQ [57] dataset was used while experimental studies. It is a popular dataset

in audio source separation studies. MUSDB18-HQ is an uncompressed version of the

MUSDB18 dataset, and it consists of 150 tracks separated as training and test subsets.

Signals of songs are stereophonic and encoded at 44.1 kHz.

Combining the train and test subsets of the dataset, 150 songs were used for the audio source

separation experiment. Drums, bass, vocals, and other components were mixed artificially

instead of the mixture in the dataset and the song itself. After that, the separation experiment

was carried out. The mixing algorithm is as follows;

Algorithm 3 Source Mixing Algorithm
1: for 1 to number of components do
2: min ← minimum of component
3: max ← maximum of component
4: if max < 1 or min > 1 then
5: component← component

max
2

− 0.5

6: end if
7: end for

The matrix factorization-based approaches, FastICA and NMF, cannot solve

underdetermined BSS problems as the mixing matrix is not invertible. Hence R × N

matrix was given as an input to these algorithms, in which R is the number of components,

and N is the number of samples of the song. R = 4 as components are vocal, bass, drums,

and others.

Other methods, on the other hand, separate sources using two channels. The input data

of these methods was prepared by applying the mixing algorithm for two channels. The

sources were mixed with each channel’s mixing algorithm, and then the mean of these four

components was taken. The mean values represented one channel. Thus, the C ×N matrix

created with two channels became the input of the algorithms.
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5.2. Method Implementation Details

Pre-trained models trained by the authors of methods were used in experiments for machine

learning methods. Application specific subtleties are given as follows:

• FastICA; there are two important parameters for the FastICA algorithm. The threshold

value can also be defined as the error of the separation and iteration. Values used at

implementation are 1e− 8 and 5000, respectively.

• NMF; [58] was used while implementing the NMF algorithm. Similarly, threshold and

iteration parameters have a key role in NMF, and they were determined as 1e− 5 and

1000, respectively. The reason for choosing lower values compared to FastICA is that

the algorithm run time is quite long.

• DUET; The implementation has been used in experimental studies as in the library,

which includes several separation methods mentioned in [59].

• Spleeter; Pre-trained model called “spleeter:4stems” was used in experimental studies,

and there are no additional parameters.

• Wave-U-Net; Pre-trained model at [60] was used in experimental studies.

• Hybrid Demucs; Pre-trained model called “mdx” was used in experimental studies,

and there are no additional parameters.

• Open Unmix; Pre-trained model called “umxl” was used in experimental studies, and

there are no additional parameters.

5.3. Metric

The performance evaluation results are obtained by comparing the source signal with the

estimated signal. Initially, the estimated source is divided into four components;
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ŝj = starget + einterf + enoise + eartif (96)

where einterf , enoise, eartif is the error term related to interferences, noise, and artifacts,

respectively.

For calculating the related errors, in [61], the authors propose orthogonal projections. Let∏
{y1, ..., yn} is denoted as the orthogonal projector onto the subspace spanned by y1, ...yk

vectors. Considering T as the length o vectors, the projector have TxT dimension. Three

orthogonal projectors can be described as;

Psj :=
∏{

sj
}

Ps :=
∏{

(sj′ )1≤j′≤n

}
Ps,n :=

∏{
(sj′ )1≤j′≤n, (ni)1≤i≤m,

} (97)

,ehere (sj′ )j′ ̸=j is denoted as perceived signal from unwanted sources and (ni)1≤i≤m from

sensor noises.

Thus, the error term components can be defined as;

starget :=PsJ ŝj

einterf :=Psŝj − PsJ ŝj

enoise :=Ps,nŝj − PsJ ŝj

eartif :=ŝj − Ps,nŝj

(98)

Source-to-Distortion Ratio (SDR), a frequently used metric in the field of blind source

separation, was used to evaluate the separated sources. SDR can be considered an overall

score of source separation quality [49]. SDR can be expressed as;

SDR := 10log10

∥∥starget∥∥2∥∥einterf + enoise + eartif
∥∥2 (99)
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Museval [62] library was used to measure SDR metric values.

5.4. Experimental Environment

Experiments were conducted on the computer’s operating system and hardware

specifications: Ubuntu 20.04, Intel Core i7-1065G7, 24 GB RAM, and 2 GB NVidia MX330

GPU. All experiments were run with the CPU due to the lack of GPU memory and a primary

processor on which all methods can run.
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FastICA NMF DUET Hybrid Demucs Wave-U-Net Open Unmix Spleeter

9,21 296,20 29,21 574,17 357,20 148,29 23,21

Table 6.1 Average Time Spent Per Track in Seconds.

FastICA NMF DUET Hybrid Demucs Wave-U-Net Open Unmix Spleeter

23,22 673 73,02 1435,43 893 370,71 58,04

Table 6.2 Total Separation Time in Minutes

6. EXPERIMENTAL RESULTS

The results will be collected under three headings; time evaluation, genre evaluation, and

score evaluation.

6.1. Time Evaluation

The time spent during the source separation process is an essential indicator of how method

complex. The average time spent per piece for each method is shown in Table 6.1 and

depicted in Figure 6.1. The total time taken in minutes for separation is given in Table 6.2.

Hybrid Demucs architecture works with the spectral and time domains, and two Bi-LSTM

layers are located in the center of the architecture. Hence the complexity has increased, and

the separation time has increased considerably. Since the experiments are done with the

CPU, it is expected that the machine learning-based methods will take longer, but it can be

concluded that the GPU memory requirement is higher for Hybrid Demucs or Wave-U-Net.

6.2. Genre Evaluation

When thinking of rock music, drums come to mind, along with the guitar. Different genres

of music give weight to different instruments. In this regard, it is significant to explain how

the audio source separation methods perform. The average separation time of the methods
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Figure 6.1 Avreage Time Spent Per Track

Singer/Songwriter Pop/Rock Country Rock Rap Reggae Electronic Heavy Metal Pop Jazz

14 72 3 17 8 2 8 12 11 3

Table 6.3 Numbers of Tracks In The Dataset By Genre.

for each genre, the average track length of the relevant genre in the data set, and the ratio

of these values are shown in Table 6.6. In addition, the number of tracks according to the

genres in the dataset is shown in Table 6.3.

SDR scores of each method’s performance in separating different components are tabulated.

Vocal scores are in Table 6.4, bass scores are in Table 6.5, drums scores are in Table 6.6, and

other scores are in Table 6.7. The mixture file created as a result of taking the mean value

over the first axis of these components after stacking is also compared with the ground truth

mixture file, and SDR scores are obtained and are shown in Table 6.8.

6.3. Score Evaluation

The median value of the SDR scores of the blind source separation methods after the artificial

mixing and separation of 150 tracks in the MUSDB18-HQ dataset is shown in Table 6.7.

Therefore, it can be seen that Spleeter, Open Unmix, and Wave-U-Net methods give better
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Methods

Genre FastICA NMF DUET Hybrid Demucs Open Unmix Spleeter Wave-U-Net

Singer/Songwriter -25,512 -22,935 -5,678 -14,759 -16,341 0,641 -1,922
Pop/Rock -22,445 -19,357 -4,678 -11,176 -0,031 3,886 -0,642
Country -13,824 -16,960 -1,071 -6,811 -1,159 -1,168 1,607
Rock -20,635 -20,598 -3,641 -10,107 1,860 4,955 0,234
Rap -22,304 -20,905 -7,076 -11,642 -6,518 2,612 -1,479
Reggae -21,645 -19,599 -6,388 -10,472 -12,639 4,800 0,271
Electronic -30,544 -28,465 -18,262 -13,682 -4,602 -0,203 -1,547
Heavy Metal -22,724 -20,380 -5,826 -13,030 0,627 2,077 -0,280
Pop -21,194 -20,394 -5,539 -10,467 -2,927 2,958 -1,970
Jazz -23,729 -23,064 -10,550 -12,651 -18,917 3,182 -1,506

Table 6.4 Vocals Component SDR Scores By Genre.

Methods

Genre FastICA NMF DUET Hybrid Demucs Open Unmix Spleeter Wave-U-Net

Singer/Songwriter -20,654 -19,179 -16,351 -17,084 1,313 0,251 -7,680
Pop/Rock -22,496 -20,486 -19,221 -19,516 -0,716 0,063 -9,945
Country -21,873 -24,113 -17,742 -18,260 4,813 0,293 -8,754
Rock -20,748 -21,160 -16,009 -17,435 0,183 1,153 -7,011
Rap -24,149 -22,359 -18,020 -20,260 0,673 0,742 -9,582
Reggae -18,213 -17,724 -15,161 -16,042 2,380 0,623 -6,549
Electronic -19,342 -17,026 -13,941 -17,365 0,308 1,324 -7,012
Heavy Metal -21,995 -19,920 -17,617 -18,920 -0,543 0,018 -9,930
Pop -21,842 -22,497 -17,373 -18,336 -1,665 -0,001 -9,282
Jazz -57,417 -59,130 -42,362 -48,966 0,971 -5,992 -36,074

Table 6.5 Bass Component SDR Scores By Genre.

results than other methods. For each method, better results are also observed in different

components.

6.4. Waveform Evaluation

For a waveform examination, the waveforms of each method and each component for that

method are depicted in Figure 6.2 and Figure 6.3 for a sample track called ”Actions - Devil’s

Words”. NMF and FastICA methods’ waveforms generally show a uniform distribution,

while other components show a reasonable form.
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Methods

Genre FastICA NMF DUET Hybrid Demucs Open Unmix Spleeter Wave-U-Net

Singer/Songwriter -26,323 -22,618 -10,473 -18,898 0,191 0,101 0,946
Pop/Rock -20,957 -19,336 -5,145 -13,273 1,771 1,383 2,169
Country -18,487 -22,147 -4,202 -12,962 6,210 1,155 3,220
Rock -19,675 -20,269 -4,793 -11,521 2,616 1,165 2,068
Rap -22,402 -20,615 -6,005 -14,098 1,939 0,628 2,248
Reggae -20,938 -18,961 -5,383 -13,306 0,059 -0,282 0,242
Electronic -17,892 -15,269 -4,205 -10,259 3,234 2,266 3,259
Heavy Metal -20,561 -18,625 -3,719 -13,096 0,483 0,555 1,505
Pop -23,190 -21,218 -7,902 -15,209 0,966 1,158 2,519
Jazz -58,338 -59,447 -25,711 -45,379 0,203 -8,450 -17,671

Table 6.6 Drums Component SDR Scores By Genre.

Methods

Genre FastICA NMF DUET Hybrid Demucs Open Unmix Spleeter Wave-U-Net

Singer/Songwriter -21,368 -20,025 -3,425 -5,632 -12,462 -17,221 -1,334
Pop/Rock -22,740 -20,221 -6,078 -7,119 -15,948 -18,552 -2,246
Country -23,794 -26,680 -0,738 -8,511 -11,130 -20,174 -3,639
Rock -22,388 -22,543 -3,392 -6,664 -18,281 -17,973 -2,205
Rap -26,756 -24,496 -15,725 -11,672 -21,459 -22,929 -5,003
Reggae -22,038 -20,295 -6,516 -8,930 -11,365 -19,437 -4,861
Electronic -22,464 -18,708 -4,970 -6,539 -17,083 -17,383 -1,692
Heavy Metal -19,997 -18,704 -3,449 -5,051 -15,950 -16,113 -1,260
Pop -22,344 -20,705 -4,942 -5,616 -15,524 -16,865 -1,966
Jazz -25,633 -25,371 -6,413 -9,122 -6,270 -20,925 -3,626

Table 6.7 Other Component SDR Scores By Genre.

Methods

Genre FastICA NMF DUET Hybrid Demucs Open Unmix Spleeter Wave-U-Net

Singer/Songwriter -15,131 -13,712 -3,008 -8,389 -2,529 -2,525 0,972
Pop/Rock -14,430 -13,329 -2,232 -7,544 -1,885 -1,877 0,813
Country -13,824 -16,960 -1,071 -6,811 -1,159 -1,168 1,607
Rock -13,133 -15,032 -1,142 -6,610 -1,244 -1,236 0,982
Rap -14,774 -14,377 -3,831 -7,967 -2,177 -2,223 0,903
Reggae -13,203 -11,779 -1,265 -6,746 -1,311 -1,348 1,042
Electronic -13,601 -11,407 -1,424 -6,708 -0,825 -0,820 1,375
Heavy Metal -13,823 -13,364 -1,591 -6,985 -1,350 -1,346 0,498
Pop -14,720 -14,803 -2,478 -8,043 -2,193 -2,190 1,092
Jazz -17,955 -15,141 -4,474 -10,373 -4,117 -4,148 0,243

Table 6.8 Mixture Component SDR Scores By Genre.
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Methods

Components FastICA NMF DUET Hybrid Demucs Open Unmix Spleeter Wave-U-Net

Vocals -13,630 -13,776 -2,050 -7,904 -1,962 -1,954 0,798
Bass -20,936 -19,355 -2,112 -10,992 0,462 1,874 -0,645
Drums -20,264 -18,142 -3,178 -13,103 4,176 2,702 3,077
Other -26,762 -25,503 -24,105 -23,897 -4,669 -1,145 -14,671
Mixture -14,345 -13,692 -2,140 -7,439 -1,754 -1,768 0,941

Table 6.7 SDR Scores of Methods By Components.

Figure 6.2 Drum and Vocal Component Waveform of Methods
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Figure 6.3 Bass and Other Component Waveform of Methods
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7. CONCLUSION

In this study, various algorithms used in audio source separation studies were implemented,

and results were obtained via a series of experiments. Several important features noted during

the experiments are as follows;

• RAM requirements were high for NMF, Hybrid Demucs, Wave-U-Net, which have

high runtimes, and DUET, which have high computational complexity.

• Although Hybrid Demucs won first place in Sony Music Demixing Challenge 2021

with SDR scores on the MusDB-HQ dataset, and it could not show a similar

performance in artificially mixed components.

• Classical methods have been implemented in many studies. However, the star ratings

of the official GitHub repositories of machine learning-based models are an essential

indicator of their popularity in the community. Accordingly, as of October 2022,

Spleeter is far ahead of other methods with 20.7k stars. Then comes Hybrid Demucs

with 4.4k stars, Open Unmix with 869 stars, and Wave-U-Net with 632 stars. Our

findings are in good compliance with these numbers.

• Considering the results, the Spleeter method displayed the best performance according

to the working time and score values.

• The fact that matrix factorization-based NMF and FastICA algorithms cannot solve

under-determined problems and this constitutes a drawback.

This study will help the researchers studying on BSS in terms of selection of the most

appropriate algorithm when a particular metric is essential.
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[29] Nicolle Correa, Tülay Adali, and Vince D Calhoun. Performance of blind source

separation algorithms for fMRI analysis using a group ICA method. Magn Reson

Imaging, 25(5):684–694, 2006.

[30] A J Bell and T J Sejnowski. An information-maximization approach to blind

separation and blind deconvolution. Neural Comput, 7(6):1129–1159, 1995.

81



[31] J.F. Cardoso and Antoine Souloumiac. Blind beamforming for non gaussian

signals. Radar and Signal Processing, IEE Proceedings F, 140:362–370, 1994.

doi:10.1049/ip-f-2.1993.0054.

[32] P. Georgiev and A. Cichocki. Blind source separation via symmetric eigenvalue

decomposition. In Proceedings of the Sixth International Symposium on Signal

Processing and its Applications (Cat.No.01EX467), volume 1, pages 17–20 vol.1.

2001. doi:10.1109/ISSPA.2001.949764.

[33] Norsalina Hassan and Dzati Athiar Ramli. A comparative study of blind source

separation for bioacoustics sounds based on fastica, pca and nmf. Procedia

Computer Science, 126:363–372, 2018. ISSN 1877-0509. doi:10.1016/j.procs.

2018.07.270.

[34] Dominique Fourer and Geoffroy Peeters. Single-Channel Blind Source

Separation for Singing Voice Detection: A Comparative Study. arXiv e-prints,

arXiv:1805.01201, 2018.

[35] Antoine Liutkus, Derry Fitzgerald, Zafar Rafii, Bryan Pardo, and Laurent Daudet.

Kernel additive models for source separation. IEEE Transactions on Signal

Processing, 62(16):4298–4310, 2014. doi:10.1109/TSP.2014.2332434.

[36] Pierre Comon. Independent component analysis, a new concept? Signal

Processing, 36(3):287–314, 1994. ISSN 0165-1684. doi:10.1016/0165-1684(94)

90029-9. Higher Order Statistics.

[37] Alaa Tharwat. Principal component analysis - a tutorial. International Journal

of Applied Pattern Recognition, 3(3):197–240, 2016. doi:10.1504/IJAPR.2016.

079733. PMID: 79733.

[38] David Overbye and Roland Priemer. Blind multiuser detection for ds-cdma

using independent component analysis neural network. International Journal

of Smart Engineering System Design, 5(4):555–564, 2003. doi:10.1080/

10255810390445517.

82



[39] Zhang Min, Zhu Mu, and Ma Wenjie. Implementation of fastica on dsp for blind

source separation. Procedia Engineering, 29:4228–4233, 2012. ISSN 1877-7058.

doi:10.1016/j.proeng.2012.01.648.

[40] Te-Won Lee (auth.). Independent Component Analysis: Theory and Applications.

Springer, 1 edition, 1998. ISBN 9781441950567; 1441950567; 9781475728514;

1475728514.

[41] Anke Meyer-Baese and Volker Schmid. Chapter 8 - transformation and

signal-separation neural networks. In Anke Meyer-Baese and Volker Schmid,

editors, Pattern Recognition and Signal Analysis in Medical Imaging (Second

Edition), pages 245–289. Academic Press, Oxford, second edition edition, 2014.

ISBN 978-0-12-409545-8. doi:10.1016/B978-0-12-409545-8.00008-X.

[42] Athanasios Papoulis and S Unnikrishna Pillai. Probability, random variables,

and stochastic processes. Tata McGraw-Hill Education, 1986.

[43] Dinh-Tuan Pham and Philippe Garat. Blind separation of mixture of independent

sources through a quasi-maximum likelihood approach. IEEE Transactions on

Signal Processing, 45(7):1712 – 1725, 1997. doi:10.1109/78.599941.

[44] Daniel Lee and H. Sebastian Seung. Algorithms for non-negative matrix

factorization. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural

Information Processing Systems, volume 13. MIT Press, 2000.

[45] Rickard Scott. The DUET blind source separation algorithm. In S Makino and

K T W Sawada, editors, Blind Source Separation, Signals and Communication

Technology, pages 217–241. Springer, Dordrecht, 2007.

[46] O. Yilmaz and S. Rickard. Blind separation of speech mixtures via

time-frequency masking, 2004. doi:10.1109/TSP.2004.828896.

[47] Scott Rickard, Radu Balan, and Justinian Rosca. Real-time time-frequency based

blind source separation. 2002.

83
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