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ABSTRACT

EXPLAINING ARTIFICIAL NEURAL NETWORKS WITH DECISION
TREE ENSEMBLES

Sayit Kılıç

Master of Science, Computer Engineering
Supervisor: Assoc. Prof. Dr. Burkay GENÇ

April 2023, 73 pages

With the development of efficient algorithms, artificial intelligence (AI) applications have

become ubiquitous in almost every aspect of our lives. They have even started to be used

in critical areas such as defense industry, economy, and healthcare. However, the use of AI

models in these important areas raises concerns about their reliability. Therefore, explaining

how these black box models work has become an important goal. This thesis, we propose

a simple and fast model to explain the decisions of any black box model. To achieve this,

we attempt to explain the basic behavior of the model through a set of semi-random decision

trees. Our approach only requires the data used to train the black box model and the model

itself to work. Current state-of-the-art explainable AI (XAI) models typically produce local

explanations for a black box model’s decision regarding a single observation. On the other

hand, models that produce global explanations use complex computations to understand the

effect of each feature on the model’s decisions. However, our proposed approach defines

separate regions in the model’s general decision space to explain the decision-making process

of the model, and requires significantly less computational power than other advanced XAI

techniques while producing both local and global explanations.
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ÖZET

YAPAY SİNİR AĞLARININ KARAR AĞACI TOPLULUKLARI İLE
AÇIKLANMASI

Sayit Kılıç

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Assoc. Prof. Dr. Burkay GENÇ

March 2023, 73 sayfa

Verimli algoritmaların gelişmesiyle yapay zeka uygulamaları hayatımızın neredeyse her

alanında kullanılır hale geldi. Savunma sanayi, ekonomi ve sağlık gibi insan hayatı için çok

önemli konularda bile kullanılmaya başlandı. Bu önemli konularda yapay zeka modellerinin

kullanımı, bu modellerin güvenilirliği hakkında soru işaretlerine neden olmaktadır. Bu

nedenle, bu siyah kutu modellerinin nasıl çalıştığını açıklayabilme önemli bir hedef haline

gelmiştir. Bu tezde, herhangi bir kara kutu modelin kararlarını açıklamak için basit ve hızlı

bir model öneriyoruz. Bunu yapmak için, modelin temel davranışını yarı rastgele karar

ağaçlarının bir kümesi aracılığıyla açıklamaya çalışıyoruz. Yaklaşımımızın çalışması için

sadece kara kutu modeli eğitmek için kullanılan verilerine ve modelin kendisine ihtiyaç

duymaktayız. Mevcut son teknoloji açıklanabilir yapay zeka modelleri genellikle siyah

kutu modellerin tek bir gözlem hakkındaki kararı için yerel açıklamalar üretmektedir. Öte

yandan, genel açıklamalar üreten modeller, her özniteliğin modelin kararları üzerindeki

etkisini anlamak için karmaşık hesaplamalar kullanır. Ancak, önerdiğimiz yaklaşım, modelin

karar verme sürecini açıklamak için modelin genel karar uzayında ayrı ayrı bölgeler tanımlar

ve hem yerel hem de genel açıklamalar üretirken diğer ileri XAI tekniklerine göre önemli

ölçüde daha az hesaplama gücü gerektirir.

Keywords: Açıklanabilir Yapay Zeka, Açıklanabilirlik, Topluluk Modeli, TEXAI
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1. INTRODUCTION

Artificial intelligence (AI) has become an increasingly essential part of our daily routines,

from voice assistants to fraud detection systems in our banks. However, AI is often viewed as

a black box, making it difficult for humans to understand the decision-making process behind

AI-generated outcomes [2, 3]. The absence of transparency regarding the implementation of

AI in crucial domains like healthcare and finance can result in doubt and suspicion towards

its use. To address this issue, the domain of explainable artificial intelligence (XAI) has

emerged, which aims to develop models and methods that can be understood and interpreted

by humans [4].

XAI is a multidisciplinary research field that seeks to develop algorithms and models capable

of providing clear and understandable explanations for decision-making processes. With the

rapid expansion of AI usage across a range of domains, including healthcare, finance, and

security, the demand for accountable and trustworthy AI systems has grown considerably.

The significance of XAI stems from the fact that many modern AI systems function as “black

boxes” meaning their decision-making processes are opaque to human understanding. This

poses a critical challenge in situations where these systems make decisions with real-world

consequences, such as medical diagnosis, financial trading, or autonomous vehicles. In these

cases, it is essential to have a clear grasp of the reasoning behind an AI system’s outputs,

particularly when they have an impact on human welfare.

XAI draws on expertise from various fields, including computer science, cognitive science,

philosophy, and others, to develop techniques and approaches that enable AI systems to

provide transparent and understandable explanations of their process of making a decision.

These approaches include methods from machine learning, natural language processing, and

visualization, among others, with the aim of creating more transparent and interpretable AI

systems.

In summary, the ultimate goal of XAI is to improve the transparency, interpretability,

and accountability of AI systems, especially in contexts where the consequences of their
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decisions are significant. By leveraging interdisciplinary expertise and developing techniques

and approaches that enable AI systems to provide transparent and interpretable explanations,

XAI promotes trust and confidence in AI systems, mitigates unintended consequences or

errors, and paves the way for the responsible and ethical deployment of AI in society.

1.1. Motivation

Explainable Artificial Intelligence (XAI) not only enhances the credibility of artificial

intelligence models, but also offers several advantages that drive our motivation in this thesis.

XAI can potentially increase the accuracy of Artificial Intelligence (AI) models in several

ways. One way is by allowing humans to better understand and correct errors in the AI

model’s decision-making process. XAI models provide human-interpretable explanations

of the AI model’s decisions, allowing users to identify and correct any errors or biases in

the model’s logic. In addition, XAI models can enable users to fine-tune the AI model’s

parameters and features to better fit the specific problem or domain, which can lead to

improved accuracy. For example, a study on medical diagnosis found that an XAI model

that allowed clinicians to adjust the importance of different features achieved higher accuracy

than a traditional AI model [5]. Moreover, XAI can help detect and prevent errors or biases in

the training data used to develop the AI model. By providing explanations of the AI model’s

decisions, XAI can reveal any underlying biases or inaccuracies in the data and allow users

to address them before they affect the model’s performance.

The comprehension of an AI model’s decision-making process can provide individuals

with valuable insights into the problem domain being addressed. XAI can aid medical

professionals and researchers in the medical field by enabling them to comprehend how AI

models diagnose diseases or prescribe treatments. Through the provision of natural language

explanations of the features or variables that the model employs to make decisions, XAI

can assist medical professionals in identifying patterns or relationships that may not be

immediately evident from the data. Similarly, in the financial domain, XAI can facilitate

analysts in understanding how AI models predict stock prices or recognize fraudulent
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transactions. By visualizing the connections between various variables and emphasizing

the factors that significantly influence the model’s decision-making process, XAI can enable

analysts to acquire insights into the market trends or patterns detected by the model.

As AI technologies continue to be integrated into important domains such as defence

industry, finance, and criminal justice, ethical values such as fairness, transparency,

accountability, and privacy are becoming increasingly paramount in AI development. One

of the major ethical worries regarding AI systems is that they may entrench or maintain

existing biases and discrimination. This can occur if the training data of AI model is biased

or if the algorithms used to make decisions are designed with bias. Another important ethical

consideration in AI is the potential for these systems to cause harm to individuals or society

as a whole. This can occur if AI systems are used inappropriately or if they make decisions

that have unintended consequences.

The assurance of ethical alignment in the training of AI models is crucial in order to avoid

unintentional negative consequences and promote responsible AI development. XAI plays

a vital role in achieving this objective by providing developers and users with the ability to

comprehend AI model decisions. This transparency assists in identifying potential biases

or unfairness in the data or algorithms employed to train the models and implementing

corrective actions to align with ethical values.

AI systems must be designed to ensure that they do not perpetuate or amplify existing biases

or discrimination and must uphold basic human rights and values. XAI can play a critical

role in ensuring ethical alignment in AI systems. By providing transparent and interpretable

explanations for their decision-making processes, AI systems can be made more accountable

and can be designed in a way that is consistent with ethical values.

One important example of unethical behavior by an AI model is the case of a hiring algorithm

developed by Amazon in 2014. The algorithm was designed to evaluate job candidates’

resumes and assign them a score based on their qualifications. However, it turned out

that the system was biased towards female candidates. The system’s bias against female

candidates was that they were trained over a ten-year period with resumes sent to Amazon,
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with the majority of them male candidates. As a result, the algorithm gave lower scores

to resumes that contained words associated with women, such as “women’s,” “female,” and

“she.” Amazon eventually scrapped the algorithm after the bias was discovered, and this

case highlights the potential of AI models to maintain and prolong exist discrimination if

not trained with care and ethical considerations [6, 7]. Therefore, the development of AI

models featuring explainability and transparency represents a positive stride in building trust

and confidence in these technologies and promoting responsible and ethical development.

1.2. Problem Definition

Despite significant advances in the research on eXplainable Artificial Intelligence (XAI),

contemporary models have certain limitations and drawbacks. LIME (Local Interpretable

Model-Agnostic Explanations) [8] and SHAP (SHapley Additive exPlanations) [9] are the

most widely well-known models in this area.

LIME is an approach for explaining black-box machine learning model predictions at a local

level by generating a simplified “local surrogate model” that imitates the behavior of the

black box model. To create the surrogate model, LIME perturbs the feature values of the

instance and uses the black-box model to predict the labels of these instances, then trains the

surrogate model based on these predictions. The surrogate model’s feature weights serve as

feature importances, indicating the impact of each feature to the original model’s decision.

However, the drawback of LIME is that it may not always provide a faithful explanation of

the model’s behavior. LIME approximates the global behavior of the original model by

building a local surrogate model, which may not capture all the nuances of the original

model’s behavior. The choice of kernel function used in LIME may also impact the resulting

explanations, and determining the appropriate kernel function for a given problem may be

challenging.

SHAP is an algorithmic approach that explains the contribution or importance of each feature

for a specific prediction made by an AI system. It uses shapley values to distribute credit or

blame fairly among the features. The method assigns an relevance point to each feature
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based on its impact to the output. However, SHAP can be computationally expensive

and time-consuming to calculate for large datasets or complex models because it requires

calculating the marginal contribution of each feature to the prediction for every possible

combination of features, which is computationally intensive.

Another potential issue with both LIME and SHAP is that they may not provide a

comprehensive picture of the model’s behavior. Both methods focus on explaining the

impact of individual features to the AI system predictions but may not capture complex

interactions between features or the overall structure of the model. Furthermore, LIME and

SHAP explanations may be specific to a particular input example and may not generalize

well to other examples.

In the “Tree Ensemble for Explainable Artificial Intelligence(TEXAI)” model we presented,

all the structural behaviors of the black box model are uncovered without requiring any

additional data beyond the model’s training data. This is achieved by analyzing the model’s

behavior on observations instead of computing complex feature importance scores. In this

way, we introduce a novel XAI approach that is simple, rapid, and resource-efficient, with

minimal computational requirements.

1.3. Organization

The organization of the thesis is as follows:

• Chapter 1 presents problem definition, our motivation, contributions and the scope of

the thesis.

• Chapter 2 provides an overview of the overall scope and methodology of the literature.

• Chapter 3 gives a comprehensive information about state of the art XAI models.

• Chapter 4 introduces our TEXAI model.

• Chapter 5 demonstrates the metric results of our TEXAI Model.
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• Chapter 6 provides a summary of the thesis and outlines potential future directions.
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2. BACKGROUND OVERVIEW

2.1. Artificial Intelligence

The term Artificial Intelligence (AI) pertains to the creation of computer systems that

have the ability to carry out functions which would usually necessitate human intelligence,

like recognizing visual inputs, comprehending speech, making decisions, and translating

languages. According to Russell and Norvig, AI can be defined as “the study of agents that

receive percepts from the environment and take actions that affect that environment” [10] as

shown in figure 2.1. AI has been around for over sixty years and has made remarkable

progress recently due to greater accessibility to data and the advent of more advanced

computing systems.

Figure 2.1 Artificial Intelligence

There are many different AI methods, and they can be classified in different ways based on

model type, problem-solving approach, learning type, and other criteria. For the purpose of

our discourse, we shall limit our discussion to the types of models that are pertinent to our

thesis or those that are prevalent in the field of AI.
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Figure 2.2 Relations of AI, machine learning, and deep learning. 1

2.1.1. Machine Learning

Machine learning (ML) is a branch of artificial intelligence (AI) that enables computer

systems to learn and enhance their performance based on experience, without requiring

explicit programming [11]. According to Tom Mitchell, a renowned computer scientist,

machine learning is the study of algorithms that enable computer programs to automatically

improve through experience [11].

Supervised learning, unsupervised learning, and reinforcement learning are the three main

types of machine learning. In supervised learning, a dataset with known input and output

pairs is used to train the computer, which then learns to predict the output for new inputs.

In contrast, unsupervised learning involves the computer being given an unlabeled dataset

and tasked with discovering patterns and structures within the data. Reinforcement learning

is another approach in which an agent learns how to act within an environment by taking

actions and receiving penalties or rewards according to those actions.
1Adapted from “AI vs Machine Learning vs Deep Learning” by Emerj. Available at: https://emerj.

com/ai-vs-machine-learning-vs-deep-learning-whats-the-difference/
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Figure 2.3 An artificial neural network diagram. 2

Machine learning is used in various fields such as natural language processing, speech

recognition, autonomous vehicles etc. Different types of algorithms are used in machine

learning, including decision trees, k-nearest neighbors, support vector machines, neural

networks, and deep learning models [12, 13].

2.1.2. Artificial Neural Networks

Artificial Neural Networks (ANNs) are a branch of Artificial Intelligence (AI) that has gained

a lot of interest in recent times. ANNs can learn from input data and make decisions

according to that learning, by taking inspiration from the organization of the biological neural

networks found in the human brain.

According to Haykin, an ANN is a “massively parallel distributed processor that has a

natural propensity for storing experiential knowledge and making it available for use” [14].

Artificial Neural Networks (ANNs) consist of numerous interconnected processing nodes,

called neurons, that receive inputs and generate outputs. as shown in figure 2.3. The

connections between the neurons are weighted, which allows the network to learn from data

by adjusting the weights to improve its performance on a given task.

2Adapted from TIBCO Software Inc., 2021). Available at : https://www.tibco.com/sites/
tibco/files/media_entity/2021-05/neutral-network-diagram.svg

9

https://www.tibco.com/sites/tibco/files/media_entity/2021-05/neutral-network-diagram.svg
https://www.tibco.com/sites/tibco/files/media_entity/2021-05/neutral-network-diagram.svg


Artificial Neural Networks (ANNs) have been effectively implemented in various fields such

as image recognition, natural language processing, and prediction tasks [15]. ANNs are

particularly useful in learning intricate patterns and relationships in data, which makes them

suitable for tasks that cannot be modeled using conventional methods. This attribute of ANNs

is one of their significant advantages.

Artificial Neural Networks (ANNs) can be categorized based on various factors such as their

architecture, learning algorithm, and activation function. Several common types of ANNs

exist, including feedforward propogated networks, convolutional neural networks, among

others [16].

Despite their success, ANNs are not without their challenges and limitations, including the

need for large amounts of training data, overfitting risk, and the difficulty of interpreting the

internal workings of the network [17]. Nonetheless, despite the challenges and limitations,

ANNs are still considered a potent approach for addressing various AI problems. As such,

their ongoing improvement and advancement are expected to have a significant impact on

the development of the field in the future.

2.1.3. Decision Trees

Decision Tree is a versatile algorithm that can be used for both classification and regression

tasks. It has been applied in a wide range of fields and industries, including healthcare,

finance, marketing, engineering, and many more. [18]. The Decision Tree algorithm is

a robust and uncomplicated method that builds a tree-like structure by dividing the data

recursively according to the feature values that offer the highest information about the target

variable or reduce the variance in it.

Both classification and regression tasks can be performed by decision trees. In classification

task, the goal is to assign a label to a given instance according to its features. In regression,

the goal is to predict a numerical value for a given instance based on its features. The

construction of the decision tree algorithm involves recursively dividing the data using
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feature values that enhance the distinction between classes or reduce the variance in the

target variable.

Decision Trees have several advantages over other machine learning algorithms. First, they

are easy to understand and interpret, as they represent a set of decision rules that can be

visualized as a tree. This makes them useful for explaining the reasoning behind the model’s

predictions and gaining insights into the data. Second, they are capable of handling both

categorical and continuous data, as well as NA values and noisy data, without the need for

data normalization or transformation. Lastly, they can capture complex interactions between

features, such as nonlinear and hierarchical relationships, by constructing decision rules

based on multiple features.

In conclusion, Decision Tree is a powerful and versatile algorithm in artificial intelligence

that can be helpful for various fields like classification, regression, and feature selection.

Decision Trees have several advantages such as interpretability, flexibility, and robustness

which make them a popular choice for individuals working in the field of artificial

intelligence.

2.1.4. Decision Tree Ensembles

Ensemble methods refer to the use of multiple machine learning models to improve the

overall performance of a predictive task, as compared to using a single model. Decision

tree ensembles, are a popular type of ensemble method that use multiple decision trees to

create a stronger model. Two primary types of tree ensembles are “bagging” and “boosting”.

Bagging, also known as bootstrap aggregating, entails building multiple decision trees using

randomly selected subsets of the training data, and then combining their predictions, typically

through averaging, to obtain the final prediction. This technique was introduced by Breiman

in 1996 [19], and studies have shown that utilizing bagging can improve the accuracy and

robustness of decision tree models. [20].
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Boosting, on the other hand, involves iteratively constructing decision trees that focus on

the data points that were misclassified by previous trees. The most well-known algorithm

for boosting decision trees is AdaBoost, which was proposed by Freund and Schapire in

1997 [21]. AdaBoost has been shown to increase the performance of decision tree models

on a variety of datasets [22].

Random Forest, Gradient Boosting, and XGBoost are some of the most common tree

ensembles. Random Forest is a machine learning technique that involves creating numerous

decision trees on different subsets of the training data and consolidating their predictions to

obtain a final prediction [23]. The Gradient Boosting algorithm constructs decision trees in

a sequential manner, where each subsequent tree aims to rectify the mistakes made by the

previous tree [24]. XGBoost is known for its speed and scalability, and uses a regularized

gradient boosting algorithm to build a strong model [25].

Ensemble methods using decision trees have emerged as a popular and effective

machine learning technique and using in diverse applications, such as speech recognition,

bioinformatics, finance, and many others thanks to improve predictive accuracy and reduce

overfitting [26].

2.2. Explainable Artificial Intelligence

Explainable artificial intelligence (XAI) is a specialized domain within AI that emphasizes

the creation of AI systems that are transparent, easily comprehensible, and capable of being

explained to people. XAI aims to provide users with a better understanding of how AI

systems make decisions by revealing the internal workings of the AI models. XAI has

been defined by the Defense Advanced Research Projects Agency(DARPA) as “the ability

to understand, appropriately trust, and effectively use AI systems.” [27, 28]. XAI research

employs various techniques, including model interpretation, visualization, and explanation,

to make the AI models decision process more transparent and interpretable.

The origins of the requirement for XAI can be traced back to the initial stages of AI research.

In the 1960s and 1970s, AI researchers were primarily focused on developing rule-based
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systems, which were designed to mimic human reasoning and decision-making processes.

These systems were inherently interpretable, as the rules used to make decisions were

explicitly defined and transparent to the user. As the AI field advanced, researchers started to

concentrate on more intricate and potent machine learning models, like neural networks.

Even though these models were proficient in accomplishing remarkable performance in

various tasks, they were frequently opaque and hard to interpret. This lack of transparency

led to concerns about the reliability, fairness, and accountability of AI systems.

The importance of XAI became even more apparent in the 1990s and 2000s, as AI systems

became increasingly embedded in everyday life. For example, AI models were used in credit

scoring, healthcare decision-making, and criminal justice systems, raising concerns about

bias, discrimination, and lack of accountability. In response to these concerns, researchers

began to develop a range of XAI methods, with the aim of making AI systems more

transparent and understandable to human users.

Moreover, XAI has become increasingly important due to legal obligations that require

AI systems to be transparent and interpretable. For example, the General Data Protection

Regulation (GDPR) of the European Union enforces that individuals possess the entitlement

to receive an explanation of the verdicts taken by AI systems that impact them [29]. Similarly,

in the United States, as per the Fair Credit Reporting Act (FCRA), automated systems

are mandated to provide customers with explanations regarding credit determinations [30].

These legal obligations highlight the significance of XAI in ensuring that AI systems are

accountable, fair, and unbiased.

XAI has a significant impact on the development and deployment of AI systems, particularly

in sensitive domains. By providing users with insight into the decision-making process of AI

systems, XAI can enhance the accountability, transparency, and fairness of AI models.
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2.2.1. Categorization of explanations

Various classification schemes have been proposed for explanations. One commonly used

approach involves categorizing explanations according to two factors: the basis of the

explanation and the timing of the explanation. The basis of explanation pertains to the

classification of explanation that either clarifies a single observation or clarifies the entire

architecture of an black box model. The timing of disclosure refers to when the explanation

is provided, either during the decision-making process or after the fact. As a combination of

these distinctions, we can classify explanations in 4 main categories.

Local Post-Hoc explanations refer to a set of methods used to provide an understanding

of the rationale behind a model’s prediction for a given input instance. These methods

are employed after the model has generated its output, and they help to shed light on the

reasoning behind the decision made by the model.

The purpose of local post-hoc methods is to pinpoint the input features that held the most

sway in the decision-making mechanism of the model. One popular technique for doing this

is known as “feature importance analysis,” which involves evaluating the impact of each input

feature to the model’s decision. Other methods include perturbation analysis, which involves

altering the input features and observing the effect on the model’s output, and LIME (Local

Interpretable Model-Agnostic Explanations), which creates simple, interpretable method to

approximate the original model’s behavior for the given input[8].

Local post-hoc methods can be helpful in diverse applications where understanding the

reasoning behind a model’s prediction is important. For example, in medical diagnosis,

local post-hoc explanations can help doctors understand which features of a patient’s

medical history were most influential in the diagnosis. Similarly, in credit risk assessment,

local post-hoc explanations can help lenders understand which factors led to a given loan

application being approved or denied.

Global Post-Hoc explanations are a set of methodologies utilized to comprehend the

overall operation of a model, regardless of the input instance. In contrast to local post-hoc
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explanations, which focus on expounding the prediction for a single input instance, global

post-hoc techniques examine the model holistically to detect input-independent factors that

contribute to the model’s decision-making process.

Global post-hoc techniques endeavor to determine the most crucial input features for the

entire model instead of individual input cases. This can be achieved by utilizing methods

such as permutation feature importance, where each input feature’s values are randomly

shuffled, and the impact on the model’s overall performance is assessed. As an example

SHAP (Shapley Additive Explanations) method can be presented as an example.

Global post-hoc methods are advantageous in applications where comprehending the overall

behavior of a model is vital, such as in regulatory compliance or auditability. By examining

the model as a whole, global post-hoc methods provide insights into the decision-making

process of the model and facilitate identification of potential biases or inaccuracies in the

model’s output. Moreover, these techniques are applicable for optimizing the model by

identifying the most significant features that should be prioritized in future iterations.

Local Self-Explaining explanations refer to the set of methods that aim to explain how the

model works by analyzing the intermediate results that occur during the model’s training or

prediction phase. These methods focus on providing transparency into the inner workings of

the model and can be useful in applications where model interpretability is important.

An instance of a local self-explanatory model is the Layer-wise Relevance Propagation (LRP)

approach, wherein importance scores are attributed to each input feature based on their

contribution to the model’s output [31]. LRP has been shown to provide accurate and reliable

explanations for diverse models, including neural networks and deep learning models.

Global Self-Explaining explanations pertain to the process of clarifying the intermediate

outcomes that arise during the model’s training and operation without necessitating an extra

process or a separate model. This type of explanation is commonly utilized in deep learning

models, where the model’s intricacy makes it challenging to construe the output based solely

on the input features.
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An instance of a Global Self-Explaining Explanation technique is Integrated Gradients,

which computes the average gradient of the model output concerning the input feature,

incorporated over a course from a baseline input to the current input[32]. This method has

been shown to provide intuitive and reliable explanations of deep neural network models.

Integrated Gradients have been extensively studied and have been used in diverse domains,

such as vision systems and natural language processing.

2.2.2. Explainability Techniques

Explainability techniques in Explainable Artificial Intelligence (XAI) allude to a collection

of methodologies employed to offer an understanding of the decisions of AI models. These

techniques aim to increase transparency, accountability, and trust in the models by explaining

how they arrive at their predictions or decisions.

Feature Importance is a method used in machine learning to identify which features or

variables in a dataset have the most impact on a model’s output. The knowledge derived from

such techniques can be significant in multiple scenarios, such as recognizing the essential

factors that govern business performance, comprehending the elements that lead to a medical

diagnosis, or refining the design of a product. Various techniques can be employed to

compute feature importance, each with its own strengths and limitations.

A frequently used technique for evaluating feature importance is based on the notion of

information gain. Information gain is an indicator of the reduction in entropy (or uncertainty)

that is achieved by segregating a dataset based on a specific feature. Attributes that lead to

the most significant decline in entropy are deemed to be the most informative and, thus, the

most vital. This method is commonly used in decision tree algorithms such as C4.5 and

CART. [33, 34].

Another commonly used approach for determining feature importance is permutation. It

entails randomly shuffling the values of an individual attribute and observing the influence on
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the model output. Attributes that have the most substantial effect on the model’s performance

when shuffled are deemed to be the most crucial [23].

Over the years, there has been an increasing interest in utilizing feature importance

methodologies to enhance the interpretability and transparency of black box models. By

understanding which features are most important to a model’s predictions, stakeholders can

gain insight into the underlying drivers of a decision and assess the model’s fairness and

bias [9].

While feature importance techniques can be useful, it is important to note that they have

limitations and should be used in conjunction with other explainability techniques such as

model visualization and local interpretation. Additionally, the choice of feature importance

method may depend on the specific characteristics of the dataset and the model being used.

Surrogate Model refers to a simplified model that is constructed to imitiate the behavior of

a more intricate model. The goal of a surrogate model is to provide a more interpretable

representation of the underlying model, allowing stakeholders to gain insight into the factors

driving the model’s output.

Surrogate models can be created using a diverse techniques, such as decision trees, linear

regression, and neural networks. The key is to create a model that is simpler and easier to

understand than the original model, while still capturing the essential features of the original

model’s behavior.

Surrogate models are often utilized when the internal workings of a model are not easily

accessible, particularly in opaque models. By creating a surrogate model that imitiates

the black box model, stakeholders can gain insight into the factors driving the model’s

predictions without needing to understand the intricacies of the original model [35].

Surrogate models can also be used to perform sensitivity analysis, which involves varying

the inputs to the model and observing the impact on the model’s predictions. By creating a

surrogate model that imitiates the original model, sensitivity analysis can be performed more

quickly and efficiently than by directly varying the inputs to the original model [36].
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Example Driven explainability technique involves providing interpretable explanations for a

black box model’s predictions based on specific examples or instances. The idea is to present

an explanation of how the model arrived at a particular prediction by highlighting the most

influential features or attributes that contributed to the prediction for that particular instance.

Example Driven explanations can be created using a variety of methods, such as LIME [8],

counterfactual explanations [37], and prototype explanations [38]. LIME generates an

explanation by fitting a local linear model to the neighborhood of the instance of interest.

Counterfactual explanations provide a set of alternative instances that would have led to a

different prediction. Prototype explanations identify a small set of representative examples

that can explain the model’s behavior across a range of instances.

Example Driven explanations can be particularly useful in situations where the model’s

behavior is non-intuitive or unexpected. By providing explanations that are specific

to particular instances, Example Driven techniques can help build trust in the model’s

predictions and can provide insight into how the model is processing information.

Provenance-Based approach to explainability focuses on providing information about the

origin and history of the data and model used in making a prediction. This can include

information about the source of the data, the transformation steps of data, and the specific

features or variables that were used in the model. By providing this information, users can

better understand how the model arrived at its prediction and make more informed decisions

about how to use the model.

Provenance-Based techniques have been applied in various domains, such as healthcare,

finance, and machine learning. In healthcare, the provenance of a model’s output

can be helpful for clinicians to understand the reason behind a diagnosis or treatment

recommendation. In finance, it can assist regulators and auditors in tracing the data lineage

for compliance purposes. In machine learning, it can aid in identifying the data and features

that are most influential in a model’s decision-making process.
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One of the popular methods in Provenance-Based techniques is Provenance Graph, which

is a directed acyclic graph (DAG) that represents the lineage of data and computations in a

workflow [39]. Provenance Graphs have been used in various domains, such as scientific

workflows and database systems, to capture the lineage of data and provide explanations for

the results.

In recent times, Provenance-Based techniques have garnered significant attention owing to

their capacity to offer transparency and interpretability for intricate models. However, there

are still challenges in applying these techniques, such as the scalability of capturing and

analyzing the provenance of large datasets and models[40].

Declarative Induction approach to explainability focuses on generating human-readable

rules or decision trees that summarize the behavior of a black box model [41]. This approach

involves training an interpretable model that is as accurate as possible while still being simple

and understandable [42]. The resultant model can be utilized to furnish justifications for

particular predictions, in addition to obtaining discernments regarding the performance of

the opaque model in a broader sense.

One example of the Declarative Induction approach is the use of decision trees to summarize

the behavior of a black box model. Decision trees can be trained using techniques such

as CART or C4.5 to generate a tree-like structure that represents a set of rules for making

predictions [43]. These rules can be easily understood by humans and can provide insights

into how the black box model is making its predictions.

2.2.3. Operations To Enable Explainability

As the need for explanation of artificial intelligence models increases, several techniques

have been developed to enable explainability operations.

First-Derivative Saliency refers to a method for interpreting machine learning models

that involves calculating the first derivative of a model’s output with respect to its input.
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This approach has gained popularity in recent years as a way to provide insight into the

decision-making processes of complex machine learning models.

The concept underlying the First Derivative Saliency method is to determine the most

relevant input features that affect a model’s output by computing the differentiation of the

output base on input. This technique is especially valuable in image and text classification

problems, where comprehending the rationale behind a model’s decisions can be challenging.

There are several different techniques for calculating First Derivative Saliency, including

the popular “gradient-based” methods which includes Gradient-weighted Class Activation

Mapping (Grad-CAM) and Guided Backpropagation (GBP). These methods have been

shown to be effective in identifying salient features in image data [44, 45].

In addition to image classification, First Derivative Saliency has also been applied to natural

language processing assignments like sentiment analysis and named entity recognition [46,

47]. Applications have demonstrated the usefulness of First Derivative Saliency for

interpreting complex models in a wide range of domains.

Overall, “First Derivative Saliency” is an important tool for interpreting machine learning

models and gaining insight into their decision-making processes. As machine learning

gains prominence and becomes integral to diverse applications, the ability to understand

and explain these models will become even more crucial.

Layer-wise Relevance Propagation(LRP) is a method used to interpret the predictions of

neural networks by assigning correlation scores to input features. The idea behind LRP is

to propagate the correlation scores of the output of a model back to its inputs, in order to

identify which input features were important for making the prediction. LRP can be used to

understand how a neural network arrives at its decisions, and to identify potential biases or

errors in its predictions [31, 48].

The basic idea of LRP is to assign relevance scores to each neuron in the network, which

represent the contribution of that neuron to the final prediction. These relevance scores are
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then propagated backwards through the network using a set of propagation rules, which

depend on the architecture and activation functions of the network.

One of the advantages of LRP is that it provides a principled approach for interpreting the

output of a neural network, without requiring any external knowledge or preconceptions

about the problem being solved. LRP has demonstrated its efficacy in explaining the

predictions of diverse neural network architectures, spanning convolutional neural networks,

deep belief networks, and recurrent neural networks. Its applications span across image

classification, natural language processing, and drug discovery, where it has proven to be a

useful tool for detecting possible biases and identifying significant features in neural network

predictions.

Input Perturbations is employed to interpret the predictions made by machine learning

models by altering the input data and evaluating its impact on the output. The underlying

concept of this technique is to identify the features of input data that are critical

for the model’s predictions. This method is beneficial in comprehending the model’s

decision-making process, discovering any possible predispositions or inaccuracies, and

enhancing the model’s effectiveness.

Input perturbations can take many forms, including adding noise to the input data, removing

or replacing certain features, or manipulating the input in other ways. The effect of these

perturbations on the model’s output can be analyzed to determine which attributes are most

critical for model’s predictions.

Input perturbations are a powerful and versatile technique as they can be applied to any

type of machine learning model, regardless of its structure or training approach. This

model-agnostic technique has been successfully utilized to explain the predictions of a broad

range of machine learning models, such as decision trees, support vector machines, and

neural networks.

One common method for analyzing the effect of input perturbations is to use sensitivity

analysis, which involves calculating the change in the model’s output for a given change
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in the input. Another method is to use visualization techniques, such as heatmaps or

scatterplots, to identify patterns in the model’s predictions and their relationship to the input

data.

Input perturbations have found applications across diverse fields, including but not limited

to image classification, natural language processing, and healthcare. It has been shown to

be effective at identifying relevant features, detecting potential biases in machine learning

models, and improving the interpretability and transparency of these models.

Attention is a deep learning technique that enables the model to concentrate on specific parts

of the input data during processing [49]. This mechanism is inspired by human cognition,

where the brain selects information to process based on its importance to the given task.

The implementation of attention in deep learning has been proven to enhance the model’s

performance in various applications such as image classification, speech recognition, and

machine translation [50].

The attention mechanism functions by assigning a significance score to each element in the

input data, depending on its significance to the task. These scores are then utilized to compute

a weighted summation of the input, which is subsequently propagated through the remainder

of the network. The significance scores are obtained through training and can be viewed as

an indication of the significance of each input element.

Attention offers the advantage of enhancing the interpretability of deep learning models, as it

enables us to comprehend the specific regions of the input data that the model is emphasizing

during processing. This ability can be valuable in gaining insight into the decision-making

process of the model, detecting possible biases or inaccuracies, and refining the model’s

performance.

LSTM (Long Short-Term Memory) is a variant of recurrent neural networks that excels

in handling sequential data. What distinguishes LSTM is its capacity to selectively retain

and retrieve information over a period, aided by gating signals that regulate the information
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flow through the network. These gating signals are acquired through training, and offer an

indication of the significance of distinct segments of the input sequence.

In an LSTM, the gating signal consists of three gates: the input gate, the forget gate, and the

output gate. The input gate regulates the amount of new input to be added to the memory

cell, the forget gate determines how much old information should be retained in the memory

cell, and the output gate determines the extent to which the current memory cell value should

be output to the next layer in the network.

The gating signal is computed by taking a linear transformation of the input and the previous

hidden state, and then applying a sigmoid function. By doing so, the model is capable

of learning a function that is flexible enough to adapt to various input sequences, and can

manage the flow of information in the network efficiently.

In an LSTM, the gating signal has been shown to be a useful tool for understanding the inner

structure of the model, along with for improving the performance of the network on certain

tasks [51–53]. By analyzing the gating signals, researchers can gain insights into which parts

of the input sequence are most crucial to the task at hand, and can use this information to

refine the network architecture and training process.

Explainability-aware architecture design is a growing tendency in deep learning involves

integrating explanation techniques within the model architecture to improve interpretability.

This approach is gaining popularity as it can lead to more reliable and better-performing

models in diverse domains, including finance, healthcare, and autonomous driving.

The attention mechanism is one such technique that enables the model to selectively focus

on relevant parts of the input and produce a more interpretable output. This approach

has been effectively utilized in natural language processing (NLP) tasks, such as machine

translation [54] and text classification [55].

Another example of an explainability-aware architecture design is the use of graph neural

networks (GNNs), which can model the structure and relationships between entities in a

23



graph and provide a more interpretable output. GNNs have been applied in various domains

such as social networks [56], drug discovery [57], and recommendation systems [58].

In addition to attention and GNNs, there are other techniques that can be used to design

explainability-aware architectures, includes decision trees, and causal models [59].

By incorporating explainability techniques directly into the model architecture,

explainability-aware architecture design can provide a more interpretable and transparent

model, which can lead to better performance and more reliable predictions.

2.2.4. XAI Visualizing Techniques

Another important aspect of XAI is visualizing the decision-making process of these models,

which can help humans better understand and trust their outputs. Some popular methods for

visualizing the internal workings of machine learning models has revealed.

A common technique is to visualize the importance of different features, which can reveal

the features that have the greatest influence on a model’s predictions. For instance,

permutation-based techniques such as “Permutation Feature Importance (PFI)” and “Partial

Dependence Plot (PDP)” can be utilized to analyze the impact of individual attributes on

the model’s output [60]. Alternatively, “Integrated Gradients” and “Layer-wise Relevance

Propagation (LRP)” can be used to visualize the contribution of each feature to the model’s

output by computing the output’s gradient with respect to the input [31].

Another approach to visualizing machine learning models is to use saliency maps, which

highlight the parts of an image that the model is focusing on when making its predictions.

For example, Grad-CAM (Gradient-weighted Class Activation Mapping) calculates the

gradient of the output concerning the feature maps of the last convolutional layer, a heatmap

is generated that pinpoints the image regions that are most significant for the model’s

prediction. [44].
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Raw declarative and natural language processes are another XAI visualization methods that

convert model behavior into natural language for human comprehension. Raw declarative

models map complex model decisions to simple, understandable rules or logic that a

non-expert can easily interpret. Natural language processes, on the other hand, convert

the model’s behavior into a more human-readable text, allowing users to understand the

reasoning behind a particular prediction.

One example of raw declarative methods is the “Decision Trees”, which are commonly used

for classification tasks and can be visualized as a hierarchical structure of if-else statements

that explain the reasoning behind the model’s predictions [61].

Natural language processes have also been applied in XAI to enhance model interpretability.

One example is the work of Lei[62], who proposed a natural language generation method to

explain model behavior. The method generates textual explanations for model predictions,

which can be used to understand the reasoning behind the model’s decisions.

Both raw declarative and natural language methods provide a way to translate complex

model decisions into human-readable formats. These methods can help to improve model

transparency and foster greater trust in machine learning systems.

2.2.5. Evaluation XAI Methods

Evaluation of XAI methods is an essential step in determining the effectiveness and

usefulness of these methods. The evaluation can be conducted using various metrics such

as, accuracy, precision, recall, and F1 score. In addition to these traditional metrics, there are

also several other metrics specific to XAI, such as interpretability and transparency [63].

A common method for evaluating explainable artificial intelligence (XAI) techniques

involves employing human participants to assess the quality of the explanations generated

by these methods. This approach is particularly relevant when evaluating methods

designed to explain complex models, includes ANNs. For instance, Li et al. [64] utilized
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human participants to evaluate the effectiveness of explanation methods in elucidating the

predictions made by neural networks.

Another approach to evaluating XAI methods is to use simulation experiments to measure the

effectiveness of these methods in identifying errors or biases in the models they are designed

to explain. For example, Kaur et al. used simulation experiments to make assesment the

effectiveness of different explainable artificial intelligence methods in identifying biases in

a predictive model for predicting breast cancer recurrence [65]. Simulation experiments

involve creating artificial datasets to evaluate the performance of XAI methods. These

datasets are created to mimic real-world scenarios and are designed to test the ability of

XAI methods to accurately explain the decisions made by machine learning models. By

simulating different scenarios, researchers can evaluate the robustness of XAI methods and

determine their effectiveness in different contexts.
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3. RELATED WORK

3.1. Local Interpretable Model-Agnostic Explanations

Local Interpretable Model-Agnostic Explanations(LIME) is a method to explain the

predictions of opaque machine learning models by generating understandable and localized

approximations of these models. In 2016, Ribeiro et al. introduced LIME, which has since

become a commonly used technique for enhancing interpretability in machine learning. [61].

The basic idea behind LIME is to create interpretable model that which imitates the actions

of a complex model in a limited area surrounding a specific instance. This approximation

can then be used to understand why the black box model made a certain prediction for that

instance. To create this local approximation, LIME first selects a set of important features

for the instance in question, then generates a dataset of perturbed instances by randomly

sampling from the feature distributions. The black box model is then used to predict the

output of these perturbed instances, and a linear regression model is trained on the perturbed

instances and their corresponding black box model predictions. The coefficients of this linear

regression model represent the importance of each feature in the local approximation.

LIME has several advantages over other explainability methods. First, it can be used with

any black box model, including deep learning models. It makes LIME “Model-Agnostic”.

Second, it produces interpretable explanations that are easy to understand and can be used

to build trust in machine learning systems. Finally, it can be used to explain both individual

predictions and the overall behavior of a model.

There have been many applications of LIME in various fields, including healthcare [66],

finance [67], and NLP [68]. However, there are also some constraints to LIME, such as the

fact that it only approximates the black box model in a small region around the instance, and

that the explanations may not be globally consistent.

In conclusion, LIME is a powerful and widely used technique for explaining black box

machine learning models. Its ability to create simple, interpretable approximations of
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complex models has made it a popular choice for building trust in machine learning systems.

However, as with any explainability method, it is important to understand its limitations and

use it appropriately.

3.2. SHAP (SHapley Additive exPlanations)

The SHAP technique is an approach for interpreting the results of intricate black box models.

It offers a method to evaluate the impact of each input feature on the model’s prediction for

a specific instance. The SHAP values demonstrate the alteration in the anticipated model

output when a specific feature value is observed, compared to when the feature value is

substituted by a baseline value. [9].

The SHAP technique utilizes the concept of Shapley values from cooperative game theory,

which provides a way to fairly allocate the total value of a coalition of players to each player

based on their individual contributions [69]. The Shapley value is a method for assigning

a payoff to each player in a cooperative game. It is based on the idea that the contribution

of each player to the total payoff should be proportional to their marginal contribution to

any coalition that achieves the payoff. In other words, the Shapley value is a way of fairly

dividing the payoff among the players based on their contributions. In machine learning, the

coalition of players in the context of SHAP is the set of input features, and the value is the

output of the model. The Shapley values represent the marginal contribution of each feature

to the difference between the actual prediction and the expected prediction for a given input

instance.

ϕS
j (x) =

∑
T⊆1,...,p\j

|T |!(p− |T | − 1)!

p!

[
fT∪j(x)− fT (x)

]
(1)

In equation 1, ϕS
j (x) represents the SHAP value for feature j in the context of input x. p is

the total number of attributes in the dataset, T is a subset of the feature indices excluding

feature j. fT (x) represents the predicted output of the machine learning model when only

the features in subset T are present in the input x. fT∪j(x) represents the predicted output of
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the model when both feature j and the features in subset T are present in the input x. The

equation calculates the difference in predicted output between the input x with feature j and

the features in subset T , and the input x with only the features in subset T . These differences

are then weighted and averaged over all possible subsets of features, resulting in a SHAP

value for feature j that provides a measure of feature importance and can be used to interpret

the predictions of the any black box model.

The SHAP method is model-agnostic, meaning it can be used with various machine learning

models, such as ANNs, decision trees, and linear models. This approach makes the SHAP

method versatile and applicable to a wide range of problems. The method approximates the

model locally to calculate the SHAP values, enabling it to handle complex models and large

datasets without significant computational overhead [9].

The SHAP method has found applications in various domains, including healthcare [70],

finance [71], and natural language processing [72]. It has also been integrated into popular

machine learning libraries, such as XGBoost [25] and scikit-learn [73], making it accessible

to a wide range of users.

To summarize, the SHAP method is a potent approach to interpret the results of complicated

machine learning models. It utilizes Shapley values from cooperative game theory to

estimate the input feature’s contribution to the model’s prediction for a given instance,

regardless of the model’s type. The SHAP method uses a model-agnostic approach to

compute the SHAP values through a local approximation of the model, which makes it

scalable to large datasets and complex models. Due to its widespread applications and its

integration into popular machine learning libraries, the SHAP method is an invaluable tool

for both researchers and practitioners.
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4. PROPOSED METHOD

In the context of our thesis, we introduce a novel technique denominated as the “Tree

Ensemble for Explainable Artificial Intelligence(TEXAI)” which related to the concept

of explainable artificial intelligence. This approach is aligned with the theoretical

underpinnings and empirical evidence we have expounded in the preceding sections. Broadly

speaking, the TEXAI model we have devised takes as input an artificial neural network

(ANN) and it’s training dataset, as depicted in figure 4.1. Subsequently, it generates a

comprehensive explication for the decisions made by the ANN.

Figure 4.1 Basic workflow of TEXAI model

The structure of our TEXAI possesses the capability to elucidate the decision-making process

of any black-box model. As such, our TEXAI can be categorized as model-agnostic. It can

be classified as a post-hoc approach, given its ability to generate explanations regarding

the decision-making of the black-box model subsequent to its training phase. It does not

require any supplementary processing during the training of the black box model. And

our TEXAI has the capacity to generate two types of explanations: one pertaining to an

individual observation and the other concerning the overall structure of the opaque model.

This duality of explanations allows us to assert that our model generates both local and global

explanations.

The research carried out by the Defense Advanced Research Projects Agency(DARPA)

has shown that there is a trade-off between the predictive accuracy and the explainability

accuracy of a model[1]. The model prediction accuracy is inversely proportional to its
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explainability. The models that achieve high predictive performance tend to have lower

explainability accuracy. The comparative scheme of DARPA, which is illustrated in

figure 4.2, highlights this trade-off between predictive performance and explainability. Thus,

there is a need to find a balance between accuracy and explainability in order to obtain a

model that is both accurate and interpretable.

Figure 4.2 Learning techniques and their explainability.[1]

The central question we aim to address in this study is whether models that exhibit high

predictive accuracy can be transformed into highly explainable models. This question serves

as the primary inspiration for our proposed method. In light of this, we have chosen to utilize

the decision tree method as it is considered to be one of the most suitable techniques for

generating explainable models. However, it is not realistic to expect that a single decision

tree can achieve the same level of performance as a neural network. Therefore, we have opted

to construct an ensemble that comprises multiple decision trees to simulate the behavior of a

neural network. Our methodology involves the utilization of the surrogate model technique,

whereby an additional model is developed to emulate the black box model in order to provide

an explanation of its decision process. Simultaneously, it can be asserted that the our TEXAI

was conceived utilizing the Declarative Induction explanation technique, as it was built

through the utilization of self-explanatory decision trees.

4.1. TEXAI Model Development

The subsequent sections of our thesis shall provide an elaborate elucidation of the phases

involved in the development of our TEXAI. For the purpose to gain preliminary insight, we
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present the pseudo code of our model in Algorithm and the visual flowchart in figure 4.3.

Algorithm TEXAI model development
1: procedure MAIN(Dataset,ANN )
2: D =DATAAUGMENTATION(Dataset)
3: predictions = ANN.predict(D)
4: D[Target] = predictions
5: TreeForest =CREATEDECISIONTREEFOREST(Dataset)
6: Paths =TREEFOREST.CREATEPATH
7: Paths =PRUNE(Paths)
8: Paths =REMOVEOVERLAPPEDPATHS(Paths)
9: Return Paths
10: end procedure
11: procedure DATAAUGMENTATION(Dataset)
12: length = Dataset.length
13: for each integer i in length do
14: Pickrandom2Observations
15: Dataset.append(mean(twoobservations))
16: end for
17: Return Dataset
18: end procedure
19: procedure CREATEDECISIONTREEFOREST(Dataset)
20: ColumnCount = Dataset.Columns.Count
21: for each integer i in MaxTreeCount do
22: RandomlySelectedColumns = Dataset.Columns.randomSample(TempColCount)
23: TempDataset = Dataset[RandomlySelectedColumns]
24: Tree = sklearn.DecisionTreeClassifier().F it(TempDataset[RandomlySelectedColumns], T empDataset[Target])
25: Forest.Add(Tree)
26: end for
27: Return Forest
28: end procedure
29: procedure PRUNE(Paths)
30: for each path p in paths do
31: if CHECK(p) isFalse then
32: Paths.remove(p)
33: end if
34: end for
35: Return Paths
36: end procedure
37: procedure CHECK(Path)
38: if Path.Coverage > MinCoverage & Path.Purity > MinPurity & Path.Proba > MinProba then
39: Return True
40: else
41: Return False
42: end if
43: end procedure
44: procedure REMOVEOVERLAPPEDPATHS(Paths)
45: groups = Paths.GroupBy(Breakdownfeatures, direction)
46: for each group g in groups do
47: tempPaths.add(group.pickMoreInclusive())
48: end for
49: Return tempPaths
50: end procedure

In the initial phase of this study, a rudimentary artificial neural network (ANN) was trained

and assessed using the dataset, attaining an accuracy rate of roughly 39%. Though this

accuracy rate may appear low or unsatisfactory, it is noteworthy that our objective in this

thesis does not entail the presentation of a highly efficacious ANN model. Rather, our

aim is to explicate the decision-making mechanisms of the ANN in a manner that can be
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Figure 4.3 TEXAI model work flow schema.

comprehended by human beings, even when the accuracy rate is diminished. Consequently,

no attempts were made to enhance the performance of the model.

It is commonly understood that there exists a positive correlation between the amount of

data and the accuracy of models. Furthermore, as the amount of the data increases, a more

comprehensive understanding of the model’s behavior can be attained. Based on these

suppositions, we have taken the initiative to augment our input dataset. By doing so, we

aim to ensure that the threshold values obtained in the node breakdown of a decision tree are

more consistent. For instance, suppose a dataset comprises of two observations, where the

x1 value of the first observation is denoted as t1 and its target class is c1, and the x1 value of

the second observation is t2 and its target class is c2. In a model trained with this data, the
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threshold value for attribute x1 would be the average of t1 and t2. However, it is evident that a

more precise threshold value could be derived if additional observations between t1 and t2 for

the x1 attribute were present in the dataset. As a result, we have augmented our input dataset

to incorporate more data using a data augmentation method that generated new observations

by averaging two randomly chosen observations, thereby doubling the data volume.

n =

nf/2∑
i=2

(
nf

i

)
(2)

The proposed TEXAI takes an augmented and preprocessed dataset, and a neural network

model as input, and generates a set of rules as output. The algorithm initiates by constructing

a set of n decision trees, each independently built on a subset of the original dataset. The

subset is created by randomly selecting a subset of features from the original dataset. It is

important to note that the value of n indicates the maximum number of sample datasets

that can be generated through random feature selection from the original dataset. The

equtation for n represented in equation 2 where n is the maximum number of trees to be

created and nf is the number of features in dataset. An example of these trees is shown

in figure 4.4.Each path of each tree represents a rule. In the information presented about

the leaf in the figure 4.4, the array named “classes” shows the target class distribution in

that leaf. The class with the maximum value in this array is the prediction of the path that

reaches that leaf. And the other informations such as gini impurity, probability, sample count

and coverage in the figure 4.4 will be explained subsequent part of the our thesis. Among

the n trees, many different rules may make the same decisions as the ANN that requires

explanation, thus locally simulating its behavior. The core idea of our approach is to identify

the paths resulting in these rules, which provide a local explanation of the ANN model, and

then create an ensemble of them to explain the entire ANN model.

Note that, each tree was trained using different and random sub-samples of features and

observations. Due to the use of a randomized subset of features, different decision trees were

created and the consistency of the node thresholds in these decision trees was observed. Not

all paths were immediately accepted though. Only decisive paths which satisfy the threshold
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Figure 4.4 Decision tree example

we established based on the following three metrics were used, namely, Gini impurity,

probability and coverage metrics.

Gini impurity is a measure of the impurity or heterogeneity of a set of data points. It is

commonly used in decision tree algorithms for classification tasks. A smaller value of Gini

impurity indicates a more pure or homogeneous set of data points, where all data points

belong to the same class. Conversely, a larger value of Gini impurity indicates a more impure

or heterogeneous set of data points, where the data points belong to multiple classes with

roughly equal probabilities. Formally, the Gini impurity of a set S is defined in equation 3

where pj is the proportion of data points in S that belong to class j. The summation is taken

over all classes j.

gini(S) = 1−
∑

p2j (3)

The probability assigned to a leaf node is a computed estimate of the likelihood that a novel

data point would be classified as a certain class label, which is determined based on the ratio

of observations of that class label present in the leaf node to the overall number of samples in

that node. In a formal context, the probability associated with a class label c for a given leaf

node L may be mathematically expressed as illustrated in equation 4. Herein, c signifies the

class label that is most commonly observed in the leaf node, n(c, L) represents the number

of samples in the leaf node L belonging to the class c, and n(L) refers to the total number of

samples contained in the leaf node L.
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p(L) =
n(c, L)

n(L)
(4)

In our study, we utilized the concept of coverage as the third criterion for evaluating decision

tree paths. This addition was motivated by the issue of overfitting. The aim was to

ensure that the rule set generated by the model would exhibit similar levels of accuracy

on both training and test datasets. The conventional definition of coverage for a leaf in

decision trees is the ratio of the number of observations in the leaf to the total number of

observations. However, in our classification approach, the target attribute was based on

predictions generated by ANN. Occasionally, the ANN may predict a specific class for a

limited number of observations, which may be contained within a single leaf. Using the

standard coverage equation to evaluate this path to leaf may result in it being categorized as

nondecisive. However, upon further examination, it may be discovered that this leaf covers

the entire area associated with the relevant class in hyperspace. To address this issue, we

formulated an alternative coverage equation and presented it as equation 5. In this equation,

c represents the class with the maximum number of observations in the leaf, n(c, L) denotes

the number of observations in leaf node L that belong to class c, and n(c) indicates the total

number of observations belonging to class c. This modified equation enables us to obtain

a more accurate assessment of the coverage for each leaf in the decision tree, even when

dealing with non-uniform class distributions.

C(L) =
n(c, L)

n(c)
(5)

Each individual path of the decision trees was evaluated based on the three metrics previously

mentioned. Those paths that were determined to be non-decisive were subsequently

eliminated, resulting in a reduced set of paths. As examples, the following two rules

were generated from the abalone dataset. In this context, the symbol P is used to

denote the probability associated with a leaf node, while N represents the number of

observations classified to that specific leaf node. Additionally, GI pertains to the measure
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of impurity known as “Gini Impurity”, while the “Classes” array indicates the distribution of

observations based on their target class.

Rule 1: (Viscera weight>0.44475) then (Height>0.155) then (Length>0.6825) ⇒

“Class11” P:97.0 N:128 GI:0.02 Classes:[0,0,4,124]

Rule 2: (Diameter>0.335) then (I≤0.5) then (Shell weight≤0.21975) then (Whole

weight>0.761) then (Whole weight≤1.088) ⇒ “Class9” P:97.3 N:150 GI:0.01

Classes:[0,146,4,0]

Despite the elimination of non-decisive paths, it is possible that some remaining paths may

overlap on the same plane. In such scenarios, the path that covers a larger area on the plane

is preserved while the other path is discarded. During this process, rules that are on the same

hyperplane and provide the same target class as a prediction are consolidated into groups.

Among these groups, the most comprehensive rule is selected, and the rest are eliminated.

To provide an illustration, two rules generated by our model on the same hyperspace are

presented below. Rule 3 is more comprehensive, as evident from the N value, which denotes

the total number of observations covered by that rule. Hence, rule 3 is retained while rule 4

is eliminated.

Rule 3: (I≤0.5) then (Length>0.4475) then (Length<0.59) ⇒ “Class9” P:100.0 N:158

GI:0.0 Classes:[0,158,0,0]

Rule 4: (I≤0.5) then (Length>0.4925) then (Length≤0.59) ⇒ “Class9” P:100.0 N:79 GI:0.0

Classes:[0,79,0,0]

After applying the filtering criteria as described previously, a set of rules that define each

target class of the neural network are obtained. These rules are derived from the decision

trees’ leaves and are linear in nature, dividing the space into two halves, one of which

corresponds to the neural network’s class decision and the other half suggests a different

class. The set of these rules describes a region that potentially contains open half-spaces,

which closely matches the neural network’s decisions locally. It should be noted that the
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neural network is a non-linear model and, as a result, the regions described by our set of

rules are only piece-wise approximations of the original regions of the neural network.

By manipulating the parameters of algorithm , specifically the minimum gini impurity, purity

and probability values, we can generate tighter or looser regions. When the regions are

tighter, the resulting explanations of the neural network is more accurate, but may fail to

account for some observations. Conversely, when the regions are looser, the explanations

of the neural network is less accurate, but the number of labeled observations increases.

In the next section, we present experimental results obtained from the “Wine Quality” and

“Abalone” datasets.
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5. EXPERIMENTAL RESULTS

5.1. Datasets

In the process of constructing our TEXAI model, we employed two distinct datasets,

designated as “Abalone” and “Wine Quality”. A substantial portion of each dataset, that is

80%, was allocated for utilization in the development of the TEXAI model. The remaining

20% was reserved as a test phase for evaluation purposes. In order to ensure the accuracy and

effectiveness of the TEXAI model development process, it is crucial to utilize pre-processed

datasets that were originally used to train the black-box model.

5.1.1. Abalone Dataset

Figure 5.1 Abalone dataset target class distribution

Primarily, in the process of developing our model TEXAI, we employed the abalone dataset,

which can be accessed from [74]. This dataset contains a total of 4,177 observations,

comprising of 9 attributes and a target column that indicates the number of rings. These

attributes include sex(F,I,M), length, diameter, height, whole weight, shucked weight, viscera

weight, and shell weight.
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The target attribute of the dataset utilized in this study comprises numerical values, rendering

it suitable for regression tasks. However, the objective of the thesis is to investigate the

decision-making process of classification models. Unfortunately, as illustrated in figure 5.1,

there are a large number of classes and the number of observations in each class is quite

unbalanced. Due to the scarcity of observations in certain target classes, black box models

have a tendency to predict target classes with a high number of observations for all instances.

Our TEXAI model, developed with the predictions and inputs of the ANN model, will have

no observations for target classes characterized by a low number of instances. Consequently,

we eliminated instances belonging to target classes with low observation count from our

dataset. Thus, by subsampling the four most populated classes (8, 9, 10, and 11 rings)

we obtained a more balanced classification problem. Upon completion of the elimination

process, a final count of 2378 observations remained. During the development process of

TEXAI, 1902 observations were employed for training purposes while the remainder of

the dataset was allocated for testing the model’s performance. The training dataset was

augmented to twice its original size using the augmentation technique described in the

previous section.

5.1.2. Wine Quality Dataset

Figure 5.2 Wine quality dataset target class distribution
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Additionally to Abalone dataset, during the testing phase, the wine quality dataset,

which is also available on [75] was utilized. This dataset contains a total of 178

observations, comprising of 13 attributes and a target column that indicates the quality

of wine. These attributes include alcohol, malic acid, ash, alcalinity of ash, magnesium,

total phenols, flavanoids, nonflavanoid phenols, proanthocyanins, color intensity, hue,

od280/od315 of diluted wines, proline. The target attribute of the dataset comprises three

unique classes, and their distribution is depicted in figure 5.2. During the development

process of TEXAI, 142 observations were employed for training purposes while the

remainder of the dataset was allocated for testing the model’s performance. The training

dataset was augmented to twice its original size using the augmentation technique described

in the previous section.

5.2. Threshold Tuning

In the preceding section, where rule elimination was to be performed, the utilization of

probability, coverage, and gini impurity thresholds was discussed. In this section, we present

an experimental approach for determining an optimal threshold value.

To determine minimum probability threshold, we conducted a systematic investigation

in which we gradually increased the probability value by 1 percent increments while

maintaining all other parameters constant. We then evaluated the resulting TEXAI model’s

performance. The findings of our study are presented in figure 5.3 where the y-axis shows the

normalized values about results and the x-axis shows the minimum probability value. Our

analysis uncovered a direct relationship between the minimum probability threshold and the

TEXAI model’s decision accuracy. Increasing the minimum probability threshold decreases

the area covered by the TEXAI in the ANN’s decision space and increases the number of

observations for which the TEXAI cannot make a decision. However, this decrease in the

decision space also results in a reduction in the number of incorrect predictions made by the

TEXAI. Conversely, decreasing the minimum probability threshold increases the number of

incorrect predictions made by the TEXAI, but reduces the number of observations for which
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the TEXAI is uncertain. Therefore, a trade-off exists between the TEXAI being indecisive

and making incorrect decisions. Consequently, it is crucial to select an appropriate minimum

threshold to achieve an optimal balance. Based on our empirical findings, for Abalone

dataset, we have determined that a probability value higher than the 44 percent is required

for a path to be decisive.

Figure 5.3 Minimum probability evaluation(Abalone)

As observed in our minimum probability analysis, a similar trade-off exists between the

TEXAI model providing an incorrect estimate and being undecisive. Similar to the

assessment of the minimum probability threshold, we employed a systematic methodology.

While maintaining constancy of all other variables, we systematically incremented the

coverage parameter by 1% increments and assessed the outcomes. Based on our experimental

analysis, which is presented in figure 5.4 where the y-axis shows the normalized values about

results and the x-axis shows the minimum coverage value and considering the generic nature

of our coverage equation 5, we found that a minimum coverage value of 13% represents a

reasonable compromise between model error and model indecisiveness.
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Figure 5.4 Minimum coverage evaluation(Abalone)

Both figure 5.3 and figure 5.4, The “No Prediction” displays the normalized quantity of

observations that were left unclassified by TEXAI, whereas the “Wrong Prediction” exhibits

the normalized quantity of observations that were incorrect classified by TEXAI. Conversely,

the “Correct Prediction” line demonstrates the normalized quantity of observations that

were accurately classified by TEXAI. The term “purity” pertains to the purity of TEXAI.

The purity of TEXAI was computed according to test dataset using equation 6 where the

symbol σ(r) represents the purity of the TEXAI, the symbol ε represents the number of

rules that predict the same target class as the ANN for that observation, while the symbol

lambda denotes the total number of rules that fit the observation. Additionally, the symbol N

represents the total number of observations.

σ(T ) =

∑
ε
λ

N
(6)

Upon analyzing both figures 5.3 and figure 5.4, it becomes apparent that the optimal values

for probability and coverage are 44% and 13%, respectively. This conclusion is based on the
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observation that up to these threshold values, there was a significant and rapid increase in the

number of correct predictions and purity, accompanied by a sharp decline in the number of

incorrect predictions. However, beyond these threshold values, while the purity and number

of correct predictions continued to increase gradually, the number of observations in which

the model was indecisive increased rapidly.

5.3. Results

As a consequence of the procedures outlined in the preceding segment, a total of 203 rules

were derived for the abalone dataset and 150 rules were obtained for the wine quality dataset.

Due to the random sampling of datasets from the main dataset for the purpose of constructing

decision trees, these figures may vary, even for the identical dataset and model. Nevertheless,

given the creation of a substantial number of decision trees, any disparity in these figures is

expected to be negligible. Each rule indicates a target class. The set of rules indicating a

class defines the area covered by that class in hyperspace. Table 5.1 illustrates the count

of rules that pertain to target classes in the “Abalone” dataset, while table 5.2 presents the

corresponding rule count for the target classes in the Wine dataset.

Target Class Rules Count

Class 8 85

Class 9 45

Class 10 23

Class 11 75

Total 228

Table 5.1 Abalone dataset rules count

Target Class Rules Count

Class 0 111

Class 1 59

Class 2 49

Total 219

Table 5.2 Wine quality dataset rules count

As we previously discussed, our starting point was to mimic high-performing models with

low interpretability, such as ANN, by transforming them into decision tree ensembles that

have high interpretability. Therefore, our evaluation should focus on the extent to which our

TEXAI mimics ANN. Broadly speaking, all AI models take an input and produce an output.
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Consequently, the similarity between two AI methods or models is determined by comparing

the outputs they generate for the same inputs.

The decision-making process for the TEXAI model that we developed can be described as

follows: For a given observation, all rules that match the observation are considered, and

each of these rules has one vote which is the target class of them. The target class that

receives the highest number of votes is then selected as TEXAI’s estimate for that particular

observation.

During the evaluation of our results, we employed two distinct approaches. The first

approach involved a comparison between the decisions made by the Artificial Neural

Network (ANN) and those made by the TEXAI model, using the test datasets.

The visual representations provided below illustrate prediction plots made over the

“Abalone” dataset, with figure 5.5 representing the predictions of ANN for observations,

figure 5.6 representing the predictions of TEXAI for observations, and figure 5.7 displaying

the differences between the predictions of ANN and TEXAI.

The prediction plots for the wine quality dataset that we have used as secondary dataset

are presented in figure 5.8 for ANN predictions, figure 5.9 for TEXAI predictions, and

figure 5.10 for the differences between ANN and TEXAI predictions.

According to both datasets we used, the results are presented in table 5.3. As can be seen

from the results, there is an agreement of almost 94% between the ANN’s and TEXAI’s

decisions on the wine dataset, and an agreement of 81% on the abalone dataset. Note

that, in the abalone dataset there is also a large number of observations where the TEXAI

model couldn’t make a prediction. That is because of the tightness of the TEXAI model

constructed. We could easily decrease the number of “no predictions” in favor of the true

and false predictions. For each dataset the desired ratio can be obtained by the model builder

using the parameters described above.

As a secondary approach for evaluation, we conducted individualized assessments for each

rule that was created. It was explicitly stated that each of our rules is linked to a target class.

45



Figure 5.5 ANN prediction plots(Abalone) Figure 5.6 TEXAI prediction plots(Abalone)

Figure 5.7 ANN vs TEXAI predictions(Abalone)

Dataset Test Observation Count Matched with NN Wrong Prediction No Prediction

Abalone Dataset 476 386 46 44

Wine Quality Dataset 64 60 4 0

Table 5.3 Metric results of TEXAI
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Figure 5.8 ANN prediction plots(Wine Quality) Figure 5.9 TEXAI prediction plots(Wine Quality)

Figure 5.10 ANN vs TEXAI predictions(Wine Quality)

In order to carry out this evaluation, we extracted all the observations that satisfied rule from

the test data and subsequently predicted their corresponding target classes using an Artificial

Neural Network (ANN) model. The degree of correspondence between the target class of

the rule and the predictions made by the ANN were then determined as a percentage. As an

example, the observations and ANN predictions that followed a specific rule which obtained

from abalone dataset are depicted in figure 5.11. Notably, out of 58 observations that adhered

to the specified rule, 55 of them exhibited agreement between the ANN and the rule. This

corresponded to a compliance rate of approximately 95%. It is important to consider the

possibility that the differences in predictions may also arise due to the “overfitting” issue of

ANN. Out of the 203 rules obtained from the Abalone dataset, a total of 153 and, similarly,
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out of the 219 rules obtained from the wine quality dataset, 162 of them demonstrate a perfect

match with the predictions generated by the Artificial Neural Network (ANN) at a 100% level

of accuracy. The average compliance rate for all rules generated within the Abalone dataset

was estimated to be 97%, while that of the wine quality dataset was 98%. Therefore, we can

conclude that each rule is fairly successful in recognizing a specific class.

Figure 5.11 ANN predictions for observations which fits one rule (Abalone)

Moreover, the TEXAI framework we have established enables us to identify which features

hold greater significance in the model’s decision-making process. Hence, TEXAI can also

function as a feature importance extraction method. Figure 5.12 shows the number of rules

containing each feature for wine quality dataset. For example, in the ”Wine Quality” dataset,

where we obtained 219 rules, more than half of the rules contain the color intensity property.

Based on this observation, we can infer that the feature of color intensity holds greater

significance in the model’s decision-making process compared to other features.
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Figure 5.12 Feature importance (Wine Quality)
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6. CONCLUSION

The concept of Explainable Artificial Intelligence (XAI) has become a noteworthy area of

focus in recent times, mainly because of the surge in the utilization of intricate black box

models, such as deep neural networks, in different fields. XAI aims to provide interpretability

and transparency to these models, enabling humans to understand the decision-making

processes and reasoning behind the models’ predictions. In addition, the development of

XAI techniques is essential in ensuring ethical and trustworthy AI systems. XAI can enable

the detection and mitigation of biased or discriminatory decisions made by black box models,

which is critical in domains such as healthcare and finance.

While the development of XAI techniques is still in its infancy, there have been notable

advancements in the development of XAI techniques in recent times, including the proposal

of various XAI methods, such as LIME, SHAP, and our proposed Tree Ensemble for

Explainable Artificial Intelligence (TEXAI). These methods offer varying degrees of

interpretability and transparency, with trade-offs in terms of computational complexity and

accuracy.

This thesis proposes a novel ensemble model of decision tree-based rules, coined as “Tree

Ensemble for Explainable Artificial Intelligence (TEXAI)” with the primary objective of

providing insights into the decision-making processes of black box models, such as neural

networks. The model takes a dataset and a black box model as inputs, generating a

rule set that endeavors to describe the decision boundaries of the black box model. The

model demonstrates a remarkable degree of efficacy, as evidenced by the metric results

presented in the preceding section. Additionally, we enabled the model to be adjusted

through the use of parameters in the filtering process of the rules, thereby allowing for

its tunability. By implementing more stringent rule filters, one can augment the accuracy

of the estimated regions; however, this also has the potential to introduce areas where no

predictions are made. Moreover, it is worth noting that the effectiveness of the rule set

may be constrained in scenarios where there exists a prominent non-linearity within the
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decision-making process. Notwithstanding, we contend that our approach offers several

benefits over other state-of-the-art XAI models, such as SHAP and LIME, in terms of

performance and simplicity. We firmly believe that our approach will make a positive

contribution to the field of explainable artificial intelligence and we hope that it will facilitate

the responsible and ethical deployment of AI systems in various domains.

In the future, we want to look into different ways of increasing both prediction power and

accuracy of the TEXAI. And each rule that is created in the process of modeling defines

separate regions within the hyperplane. Through further refinement, these separate regions

can be consolidated into a single contiguous region, allowing for the identification of clear

regions that effectively delineate each target class.

In conclusion, this thesis proposes a new and innovative ensemble model, TEXAI, that

provides interpretability and transparency to black box models, such as neural networks,

thereby enabling a better understanding of the decision-making process behind the model’s

predictions. By demonstrating the presented metric results, we have shown its efficacy.

However, it is worth noting that the effectiveness of the rule set may be limited in scenarios

where there exists a prominent non-linearity within the decision-making process. Despite

this limitation, we believe that our approach offers several advantages over other XAI

models in terms of performance and simplicity. We hope that this model will contribute

positively to the field of explainable artificial intelligence, enabling the responsible and

ethical deployment of AI systems in various domains.
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