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ABSTRACT
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Master of Science, Mathematics
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May 2022, 76 pages

We study generalizations of the concept of direct-injectivity (respectively

pure-direct-injectivity) from module categories to abelian categories (respectively

Grothendieck categories). We examine for which categories or under what conditions

direct-injective objects are injective or quasi-injective. Also we examine for which categories

or under what conditions pure-direct-injective objects are injective, quasi-injective,

pure-injective or direct-injective. We investigate classes all of whose objects are

direct-injective (respectively pure-direct-injective). We also give applications of some

results to module categories and comodule categories.
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ÖZET

GROTHENDIECK KATEGORİLERDE SAF DİREKT İNJEKTİF
NESNELER

Aliye Yiğit

Yüksek Lisans, Matematik
Danışman: Assoc. Prof. Dr. Sultan Eylem TOKSOY

Mayıs 2022, 76 sayfa

Bu tezde direkt-injektif (sırasıyla saf-direkt-injektif) kavramlarının modül kategoriden

abel kategorilere (sırasıyla Grothendieck kategorilere) genelleştirilmesi üzerine çalıştık.

Hangi kategorilerde ya da hangi koşullar altında direkt-injektif nesnelerin injektif ya

da yarı-injektif olduğunu inceledik. Ayrıca hangi kategorilerde ya da hangi koşullar

altında saf-direkt-injektif nesnelerin injektif, yarı-injektif, saf-injektif ya da direkt-injektif

olduğunu inceledik. Bütün nesneleri direkt-injektif (sırasıyla saf-direkt-injektif) olan

sınıfları belirledik. Ayrıca bazı sonuçlarımızın modül kategorilere ve eşmodül kategorilere

uygulamalarını verdik.

Keywords: saf alt nesneler, direkt-injektif nesneler, saf-direkt-injektif nesneler, abel

kategoriler, Grothendieck kategoriler
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1. INTRODUCTION

A right R-module M is said to be direct-injective if every submodule A of M with A

isomorphic to a direct summand of M is a direct summand of M . Direct-injective modules

were introduced by Nicholson in [1] and further studies on direct-injective modules were

done by Chae and Kwon in [2], Xue in [3] and Zhizhong in [4]. The notion of extending

module was generalized to purely extending by Fuchs in [5] and basic characterisations were

given by Clark in [6]. Motivated by their work the notion of pure-direct-injective modules

were introduced and studied by Maurya, Das and Alagöz in [7]. Namely, a right R-module

is said to be pure-direct-injective if every pure submodule A of which with A isomorphic to

a direct summand is a direct summand.

In this work we study generalizations of these notions to abelian categories and Grothendieck

categories, namely direct-injective objects and pure-direct-injective objects respectively.

Some generalizations of direct-injective modules to abelian categories were studied by Crivei

and Kör in [8] and Crivei and Keskin Tütüncü in [9]. An objectM of an abelian categoryA is

said to be direct-injective if every subobject A of M with A isomorphic to a direct summand

of M is a direct summand. Let M and N be objects of an abelian category A. M is called

N -injective if for every subobject A of N any homomorphism from A to M can be extended

to a homomorphism from N to M . M is said to be quasi-injective if it is M -injective. We

have the following implications.

injective⇒ quasi-injective⇒ direct-injective

An object M of a Grothendieck category A is said to be pure-injective if M is relatively

injective for every pure short exact sequence in A and it is said to be pure-direct-injective

if every pure subobject A of M with A isomorphic to a direct summand of M is a direct

summand. We also have the following implications.

injective⇒ pure-injective⇒ pure-direct-injective
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In Chapter 2 some definitions and lemmas which will be used in the next sections of the paper

are recalled. It is shown that a locally finitely presented Grothendieck category A is regular

if and only if every pure-injective object of A is injective if and only if every pure-injective

object of A is absolutely pure (Theorem 2.12.11).

In Chapter 3 the concept of direct-injectivity is generalized to abelian categories. It is

obtained that the class of direct-injective objects of an abelian category A with enough

injectives need not be closed under subobjects and taking finite coproducts (Corollary

3.1.5 and Corollary 3.1.6). It is shown that the coproduct of two direct-injective objects

of an abelian category A with enough injectives is direct-injective if and only if every

direct-injective object of A is injective (Corollary 3.1.7). It is proved that an abelian

category A with enough injective objects is (cosemi)hereditary if and only if every (finitely

cogenerated) quotient object of an injective object of A is direct-injective (Theorem 3.1.11).

It is shown for a locally finitely presented Grothendieck category A that A is regular if and

only if every pure-injective object ofA is a quasi-injective (Proposition 3.1.14). Also classes

all of whose objects are direct-injective are investigated. It is proved that an abelian category

A is spectral if and only if A has enough injectives and every object of A is direct-injective

if and only if A has enough injectives and every subobject of a direct-injective object of A

is direct-injective (Theorem 3.2.2). It is shown that a locally finitely presented Grothendieck

categoryA is semisimple if and only if every object ofA is direct-injective if and only if the

coproduct of two direct-injective objects of A is direct-injective (Theorem 3.2.7).

In Chapter 4 the concept of pure-direct-injectivity is generalized to Grothendieck categories.

It is obtained that the class of pure-direct-injective objects of a locally finitely presented

Grothendieck category A need not be closed under pure subobjects and taking finite

coproducts (Corollary 4.1.5 and Corollary 4.1.6). It is proved that the coproduct of two

pure-direct-injective objects of a locally finitely presented Grothendieck category A is

pure-direct-injective if and only if every pure-direct-injective object of A is pure-injective

(Corollary 4.1.7). Also it is proved that a locally finitely presented Grothendieck category A

is regular if and only if every pure-direct-injective object of A is direct-injective (Theorem

4.1.9). It is obtained for a locally finitely presented Grothendieck category A that A is

2



regular and the coproduct of two pure-direct-injective objects is pure-direct-injective if

and only if every pure-direct-injective object of A is injective (Proposition 4.1.11). As a

result of this, it is given for a locally finitely presented regular Grothendieck category A

that if the coproduct of two pure-direct-injective objects is pure-direct-injective, then every

pure-direct-injective object of A is quasi-injective (Corollary 4.1.12). It is obtained that

if every pure-direct-injective object of a locally finitely presented Grothendieck category

A is quasi-injective, then A is regular (Proposition 4.1.13). It is proved for a locally

finitely presented Grothendieck category A whose class of pure-injective objects is closed

under extensions that A is pure hereditary if and only if every quotient of a pure-injective

object of A is pure-direct-injective (Theorem 4.1.17). It is obtained that the class of

pure-direct-injective objects of a locally finitely presented Grothendieck category A need

not be closed under taking quotients (Corollary 4.1.18). It is shown that a locally finitely

presented Grothendieck category A is pure-semisimple if and only if every object of A is

pure-injective if and only if every object of A is pure-direct-injective if and only if every

subobject of a pure-direct-injective object of A is pure-direct-injective (Theorem 4.2.6).

Relative pure-direct-injective objects of a Grothendieck category A are defined and it is

shown for objects M,N1, N2 of A that if M is pure-direct-N1 ⊕N2-injective, then M is

pure-direct-N1-injective and M is pure-direct-N2-injective.

In Chapter 5 applications of some of our results to module and comodule categories are given.

It is obtained that a coalgebra C over a field is hereditary if and only if every factor comodule

of an injective right C-comodule is direct-injective (Corollary 5.1.4). As a result of Theorem

3.2.2 it is obtained for comodule categories that a coalgebra C over a field is cosemisimple

if and only if every right C-comodule is direct-injective if and only if every subcomodule of

a direct-injective right C-comodule is direct-injective (Corollary 5.1.6). Also as a result of

Theorem 4.1.9 it is obtained that a coalgebra C over a field is cosemisimple if and only if

every pure-injective right C-comodule is injective if and only if every pure-direct-injective

right C-comodule is direct-injective (Corollary 5.1.8).
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2. PRELIMINARIES

In this chapter some preliminary information which will be needed is given. Definitions,

Examples, Propositions and Theorems which are not cited here can be found in [10], [11]

and [12].

2.1 Categories

Definition 2.1.1. A category A consists of

(1) a collection Ob(A) of objects;

(2) a collection MorA(A,B) of moprhisms f : A −→ B for each A,B ∈ Ob(A);

(3) a function ◦ : MorA(A,B) × MorA(B,C) −→ MorA(A,C) which is called the

composition and assigns a morphism g ◦ f ∈ MorA(A,C) to every pair (f, g) where

f ∈ MorA(A,B) and g ∈ MorA(B,C) for each A,B,C ∈ Ob(A)

such that the following conditions are satisfied.

(i) for each f ∈ MorA(A,B), g ∈ MorA(B,C), h ∈ MorA(C,D) we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f

(ii) for each A ∈ Ob(A) and for each f ∈ MorA(B,A), g ∈ MorA(A,C) there exists a

morphism 1A ∈ MorA(A,A) such that 1A ◦ f = f and g ◦ 1A = g. The morphism 1A

is called the identity morphism.

Example 2.1.1. [12, Example 1.3.2] The canonical example of a category is the category of

sets, denoted as Set, which can be described as follows:

Objects. All sets X .

Morphisms. All functions between sets f : X −→ Y .
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Example 2.1.2. [12, Example 1.3.3] The second canonical example is the category of

groups, denoted as Grp. This category can be described as follows:

Objects. All groups (G, ·). Here, · : G×G −→ G is the group operation.

Morphisms. All group homomorphisms φ : (G, ·) −→ (H, ·). Specifically, set functions

φ : G −→ H where φ(g · g′) = φ(g) · φ(g′).

Example 2.1.3. [12, Example 1.3.4] The third canonical example is the category of

topological spaces, denoted Top. We describe this category as follows:

Objects. All topological space (X, τ) where τ is a topology on the set X .

Morphisms. All continuous functions f : (X, τ) −→ (Y, τ ′).

Example 2.1.4. [12, Example 1.3.9] Let Ring be the category described as follows:

Objects. Unital rings (R,+, ·). That is, ring R with a multiplicative identity 1 which is not

equal to its additive identity 0.

Morphisms. (Unit preserving) Ring homomorphisms φ : R −→ R′. That is, functions

φ : R −→ R′ such that

φ(a+ b) = φ(a) + φ(b)

φ(a · b) = φ(a) · φ(b)

φ(0R) = 0R′ and φ(1R) = 1R′ . This category is called the category of rings.

Example 2.1.5. [12, Example 1.3.8] The category of abelian groups Ab can be described as

follows:

Objects. All abelian groups (G, .)

Morphisms. Group homomorphisms.

Example 2.1.6. Let R be a ring. The category of left R-modules R-Mod can be described

as follows:

Objects. All left R-modules.

Morphisms. Module homomorphisms.

Example 2.1.7. Let R be a ring. The category of right R-modules Mod-R can be described

as follows:

Objects. All right R-modules.

Morphisms. Module homomorphisms.
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Example 2.1.8. The categoryDivAb of divisible abelian groups can be described as follows:

Objects. All divisible abelian groups.

Morphisms. All group homomorphisms.

Definition 2.1.2. A categoryA is called a small category if the class of objects and the class

of morphisms are sets.

Definition 2.1.3. The opposite category of a categoryA, which is denoted byAop, is defined

as follows:

The objects of the category Aop coincide with the objects of category A, that is Ob(A) =

Ob(Aop).

The composition β ◦ α in Aop is defined as the composition α ◦ β in A.

Definition 2.1.4. A preadditive category is a category A such that for each pair of objects

A,B there exists an abelian group operation + on the set MorA (A,B) such that

◦ : MorA (A,B)×MorA (B,C) −→ MorA (A,C)

(f, g) 7→ g ◦ f

is bilinear. That is, given morphisms f, g : A −→ B and h, k : B −→ C we have that

(h+ k) ◦ f = (h ◦ f) + (k ◦ f)

h ◦ (g + f) = (h ◦ g) + (h ◦ f)

Example 2.1.9. [13] The category Ab of abelian groups is a preadditive category. Indeed,

if X, Y are two abelian groups, then the set Mor (X, Y ) has canonically an abelian group

structure: for f, g ∈ MorAb (X, Y ) we put f+g : X −→ Y for the homomorphism of groups

defined by (f + g)(x) = f(x) + g(x).

Example 2.1.10. [13] The category Aop, the dual of a preadditive category, is also

preadditive.
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Definition 2.1.5. [11] A category A′ is said to be subcategory of a category A under the

following conditions:

(1) A′ ⊂ A.

(2) MorA′(A,B) ⊂ MorA(A,B) for all A,B ∈ A′.

(3) The composition of any two morphisms in A′ is the same as their composition in A.

(4) 1A is the same in A′ as in A for all A ∈ A′.

Furthermore, we say that A′ is a full subcategory of A if for each pair of objects A,B of A′

we have MorA(A,B) = MorA′(A,B).

Example 2.1.11. The category of abelian groups Ab is a full subcategory of the category of

groups Grp.

2.2 Functors

Throughout the composition of morphisms f ∈ MorA(A,B), g ∈ MorA(B,C) will be

denoted by gf instead of g ◦ f .

Definition 2.2.1. A covariant functor F : A −→ B between categories A and B is a

mapping which assigns each object A of A to an object F (A) of B and each morphism

f ∈ MorA(A,B) in A to a morphism T (f) ∈ MorB(T (A), T (B)) in B such that the

following conditions are satisfied.

(1) If f ∈ MorA(A,B) and g ∈ MorA(B,C), then F (gf) = F (g)F (f).

(2) F (1A) = 1F (A) holds for every object A of A.

Definition 2.2.2. A contravariant functor F : A −→ B between categories A and B is a

mapping which assigns each object A of A to an object F (A) of B and each morphism f ∈

MorA(A,B) in A to a morphism F (f) ∈ MorB(F (B), F (A)) in B such that the following

conditions are satisfied.
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(1) If f ∈ MorA(A,B) and g ∈ MorA(B,C), then F (gf) = F (f)F (g).

(2) F (1A) = 1F (A) holds for every object A of A.

Example 2.2.1. The functor 1A : A −→ A such that 1A(A) = A for all A ∈ A and

1A(α) = α for all morphisms α in A is called the identity functor on A.

Example 2.2.2. If A′ is a subcategory of A, then the covariant functor I : A′ −→ A such

that I(A) = A for all A ∈ A′ and I(α) = α for all morphisms α inA′ is called the inclusion

functor of A′ in A.

Definition 2.2.3. [12, Definition 1.8.1] Let A,B, C be categories and F : A −→ B and G :

B → C be functors. Then the composite functor GF : A −→ C is a functor which assigns

to each object A of A an object G(F (A)) of C and assigns to each morphism f : A −→ B

in A a morphism G(F (f)) : G(F (A)) −→ G(F (B)) in C.

Definition 2.2.4. [12, Definition 1.8.3] LetA and B be categories and suppose F : A −→ B

is a functor. Then F is said to be forgetful whenever F does not preserve the axioms and

structure present in the objects of A.

Example 2.2.3. [12, Example 1.8.4] Consider a group (G, ·) with · binary operation. In

some sense, groups are simply sets with added structure, while group homomorphisms are

simply functions that respect group structure. Hence we can create a map between Grp and

Set that forgets this structure:

(G, ·) −→ G

φ : (G, ·) −→ (H,+)

φ : G 7→ H

We can demonstrate that this process is functorial. Observe that 1G : (G, ·) −→ (G, ·) is

the identity homomorphism, then one can readily note that 1G(g) = g for all g ∈ G, so that

it is also an identity function on the underlying set G. Therefore F (1G) = 1F (G). Next if

φ : G −→ H and ψ : H −→ K are group homomorphisms, then F (ψφ) is the underlying
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function (ψφ) : G −→ K. Note however that for each g ∈ G,

F (ψφ)(g) = ψ(φ(g)) = F (ψ)F (φ)(g)⇒ F (ψφ) = F (ψ)F (φ)

Hence, we see that we have a forgetful functor F : Grp −→ Set which leaves behind group

operations and moreover regards every group homomorphism as a function.

Example 2.2.4. [12, Example 1.8.5] Let (R,+, ·) be a ring. Recall that (R,+) is an abelian

group. Hence we can forget the structure of · : R×R −→ R and treat every ring as an

abelian group. Then this defines a forgetful functor F : Ring −→ Ab which simply maps

a ring to its abelian group. This works on the morphisms, since every ring homomorphism

φ : (R,+, ·) −→ (S,+, ·) is a group homomorphism φ : (R,+) −→ (S,+) on the abelian

groups.

Definition 2.2.5. [12, Definition 1.8.8] Let F : A −→ B be a functor. Then F is said to be

(1) full if for all A,B, every morphism g : F (A) −→ F (B) in B is the image of some

f : A −→ B in A,

(2) faithful if for all f1, f2 : A −→ B in A with F (f1) = F (f2) implies that f1 = f2,

(3) fully faithful if it is both full and faithful.

Definition 2.2.6. [12, Definition 1.8.13] A category A is called concrete category if there is

a faithful functor F : A −→ Set.

Definition 2.2.7. Let F : A −→ B be a functor. F is said to preserve the property P if the

image of a morphism (or an object or a diagram) under F : A −→ B which has the property

P in A has also the same property P in B.

Definition 2.2.8. Let F : A −→ B be a functor. F is said to reflect the property P if

whenever the image of a morphism (or an object or a diagram) of A under F : A −→ B has

a property P in B, already has that property P in A.
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2.3 Natural transformations

Definition 2.3.1. [10] Let F : A −→ B and G : A −→ B be two covariant functors.

Suppose that for every object A ∈ A we have a morphism ηA : F (A) −→ G(A) in B such

that for every morphism α : A −→ A′ in A the diagram below is commutative.

F (A)
ηA //

F (f)

��

G(A)

G(f)

��
F (A′) ηA′

// G(A′)

Then we call η a natural transformation from F to G and we write η : F −→ G.

Example 2.3.1. Let A and B be two categories and F : A −→ B be a covariant functor.

1F : F −→ F is a natural transformation.

Example 2.3.2. Consider the categories Grp and Set. Take the covariant functors F :

Grp −→ Set and G : Set −→ Grp. For FG : Set −→ Set and 1Set : Set −→ Set,

η : 1Set −→ FG is also a natural transformation.

2.4 Special morphisms

Definitions, Examples, Propositions and Theorems which are not cited here can be found in

[14] and [15].

Definition 2.4.1. A morphism f : A −→ B in a category A is called an isomorphism

provided that there exists a morphism g : B −→ A with gf = 1A and fg = 1B. In this case

g is called the inverse of f and f is said to be invertible.

Remark 2.4.2. A morphism f in a category A is an isomorphism if and only if f is an

isomorphism in Aop.

Proposition 2.4.3. If f : A −→ B, g : B −→ A and h : B −→ A are morphisms in a

category A such that gf = 1A and fh = 1B, then g = h.
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Proof. Let f : A −→ B, g : B −→ A and h : B −→ A are morphisms such that gf = 1A

and fh = 1B. Then h = 1Ah = gfh = g1B = g.

Corollary 2.4.4. If g1 and g2 are inverses of a morphism f in a category A, then g1 = g2.

Proof. Let f : A −→ B be a morphism and g1 and g2 be inverses of f in A. Since g1 is an

inverse of f , fg1 = 1B and g1f = 1A. Since g2 is inverse of f , fg2 = 1B and g2f = 1A.

Therefore g1 = 1Ag1 = g2fg1 = g21B = g2.

Remark 2.4.5. Inverse of a morphism f is unique and it is denoted by f−1.

Proposition 2.4.6. If f : A −→ B and g : B −→ C are isomorphisms, then so is gf and

(gf)−1 = f−1g−1.

Proof. Let f : A −→ B and g : B −→ C are isomorphisms. Since f : A −→ B is an

isomorphism, there exists f−1 : B −→ A such that ff−1 = 1B and f−1f = 1A. And also

since g : B −→ C is an isomorphism, there exists g−1 : C −→ B such that gg−1 = 1C

and g−1g = 1B. Then (gf)(f−1g−1) = g(ff−1)g−1 = gg−1 = 1C and (f−1g−1)(gf) =

f−1(g−1g)f = f−11Bf = 1A. Since the inverse of gf is unique, (gf)−1 = f−1g−1.

Definition 2.4.7. Two objects A and B of a category A are said to be isomorphic provided

that there is an isomorphism f : A −→ B between them.

Proposition 2.4.8. Every functor F : A −→ B preserves isomorphisms.

Proof. Let f : A −→ B is an isomorphism in a category A. Then F (f)F (f−1) =

F (ff−1) = F (1B) = 1F (B). Similarly, F (f−1)F (f) = F (f−1f) = F (1A) = 1F (A).

So F (f) is an isomorphism in B.

Definition 2.4.9. A morphism α : A −→ B in a category A is said to be monomorphism (or

monic) if αf = αg implies that f = g for all pair of morphisms f, g.

In other words, α is monic if it is left cancellable.
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Definition 2.4.10. A morphism α : A −→ B in a category A is said to be epimorphism (or

epic) if f, g : B −→ C the equality fα = gα implies that f = g for all pair of morphisms

f, g.

In other words, α is epic if it is right cancellable.

Proposition 2.4.11. SupposeA andB are sets. Then the following conditions are equivalent

for a morphism f : A −→ B.

(1) f is one-to-one.

(2) f is monic.

Proof. (1) ⇒ (2) Let f : A −→ B, g, h : C −→ A be functions of sets and fg =

fh. Therefore (fg)(x) = (fh)(x), that is f(g(x)) = f(h(x)) for all x ∈ A. Since f is

one-to-one, g(x) = h(x). Then g(x) = h(x) for all x ∈ A and therefore g = h. So f is

monic.

(2) ⇒ (1) Let us take C = {a} and define the functions g, h : C −→ A by g(a) = x and

h(a) = y for some x, y ∈ A. Suppose that f(x) = f(y). Since x = g(a) and y = h(a),

f(g(a)) = f(x) = f(y) = f(h(a)), that is (fg)(a) = (fh)(a). Since f is left cancellable,

g(a) = h(a), i.e. x = y. Thus f is one-to-one.

Remark 2.4.12. In a concrete category every one-to-one morphism is monic but the converse

of this need not be true.

Example 2.4.1. Take the divisible group (Q,+) and normal subgroup Z of Q. Consider the

quotient group Q/Z = {p/q + Z : p/q ∈ Q}. We know that Q/Z is also divisible. Take the

homomorphism h : Q −→ Q/Z which is defined by h(x) = x + Z for all x ∈ Q. This h is

not one-to-one because h(1) = 1+Z = Z = 2+Z = h(2) but 1 ̸= 2. We want to show that

h is a monomorphism, that is left cancellable. Let f, g : A −→ Q be two homomorphisms

such that f ̸= g whereA is a divisible abelian group. So for at least one a ∈ A, f(a) ̸= g(a).

Then f(a) − g(a) ̸= 0. We can write f(a) − g(a) = r/s where r/s ∈ Q and s ̸= −1, 1.

Since A is divisible, for some r ∈ Z+ there exists an element b of A such that a = rb. Then
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we can write r(f(b) − g(b)) = r(f(b)) − r(g(b)) = f(rb) − g(rb) = f(a) − g(a) = r/s.

So f(b)− g(b) = 1/s. Therefore h(f(b)) ̸= h(g(b)) if otherwise, that is h(f(b)) = h(g(b)),

then h(f(b)− g(b)) = 0 + Z. Thus 1/s+ Z = h(1/s) = 0 + Z = Z and therefore 1/s ∈ Z.

But this is a contradiction since s ̸= −1, 1.

Proposition 2.4.13. SupposeA andB are sets. Then the following conditions are equivalent

for a morphism f : A −→ B.

(1) f is onto.

(2) f is epic.

Proof. (1) ⇒ (2) Let f : A −→ B be an epimorphism. Take functions g, h : B −→ {0, 1}

defined as follows:

g(x) =


x, if x ∈ Im(f)

0, if otherwise

h(x) =


x, if x ∈ Im(f)

1, if otherwise

So g(f(y)) = f(y) = h(f(y)) for all y ∈ A and therefore gf = hf . Since f is epic, g = h.

If Im(f) = f(A) ⫋ B, then there exists an element x such that x ∈ B but x ̸= Im(f). Since

g = h, then 0 = g(x) = h(x) = 1. This is a contradiction. So f(A) = B. Thus f is onto.

(2) ⇒ (1) Suppose f : A −→ B is onto. Let g, h : B −→ C be two functions such that

gf = hf . Since f is onto, there exists an element a such that f(a) = b for all b ∈ B.

g(b) = g(f(a)) = gf(a) = hf(a) = h(f(a)) = h(b) for all b ∈ B. So g = h, that is f is an

epimorphism.

Remark 2.4.14. In every concrete category every onto morphism is epi but the converse of

this need not be true.

Example 2.4.2. Take A = Ring and take inclusion homomorphism i : Z −→ Q.

Clearly, i is not onto. We want to show that i is epi. Let g, h : Q −→ R be

13



two ring homomorphisms. Suppose gi = hi. Since gi = hi, g(m) = gi(m) =

hi(m) = h(m) for all m ∈ Z. So g = h. g(m/n) = g(mn−11) =

g(m)g(n−1)g(1) = h(m)g(n−1)h(1) = h(m)g(n−1)h(nn−1) = h(m)g(n−1)h(n)h(n−1) =

h(m)g(n−1)g(n)h(n−1) = h(m)g(nn−1)h(n−1) = h(m)g(1)h(n−1) = h(m)h(1)h(n−1) =

h(m1n−1) = h(m/n) for every m/n ∈ Q. Thus g = h.

Theorem 2.4.15. Let f and g be two morphisms in a category A.

(1) If f and g are monic, then fg is monic.

(2) If f and g are epic, then fg is epic.

(3) If fg is monic, then g is monic.

(4) If fg is epic, then f is epic.

Proof. (1) Suppose (fg)h = (fg)k for two morphisms h, k in A. Then we have f(gh) =

(fg)h = (fg)k = f(gk). Since f is left cancellable, gh = gk and since g is left cancellable,

h = k.

(2) Suppose h(fg) = k(fg) for two morphisms h, k in A. Then we have (hf)g = h(fg) =

k(fg) = (kf)g. Since g is right cancellable, hf = kf and since f is right cancellable,

h = k.

(3) Since fg is monic, fg is left cancellable. Let gh = gk for two morphisms h, k in A.

Suppose f(gh) = f(gk). So we have (fg)h = f(gh) = f(gk) = (fg)k. Since fg is left

cancellable, h = k. Thus g is monic.

(4) Since fg is epic, fg is right cancellable. Let hf = kf for two morphisms h, k in A.

Suppose (hf)g = (kf)g. So we have h(fg) = (hf)g = (kf)g = k(fg). Since fg is right

cancellable, h = k. Thus f is epic.

Definition 2.4.16. [15, Definition 7.19] A morphism α : A −→ B said to be section if there

is a morphism β : B −→ A such that βα = 1A.

Proposition 2.4.17. [15, Proposition 7.21] LetA be a category, f : A −→ B and g : B −→

C be morphisms in A. Then the following hold.

14



(1) If f : A −→ B and g : B −→ C are sections, then gf is a section.

(2) If gf is a section, then f is a section.

Proof. (1) Given h with hf = 1A and k with kg = 1B, we have

(hk)(gf) = h(kg)f = h(1B)f = hf = 1A.

(2) Given h with h(gf) = 1A, we have (hg)f = 1A.

Proposition 2.4.18. [15, Proposition 7.22] Every functor preserves sections.

Proof. Let F : A −→ B be a functor and f is a section. If hf = 1A, then F (h)F (f) =

F (hf) = F (1A) = 1F (A).

Proposition 2.4.19. [15, Proposition 7.23] Every fully faithful functor reflects sections.

Proof. Let F : A −→ B be a functor and f is a section. Given h : F (B) −→ F (A)

with hF (f) = 1F (A), there is a morphism k : B −→ A with h = F (k) by fullness. Thus

F (kf) = F (k)F (f) = hF (f) = 1F (A) = F (1A), so that kf = 1A by faithfulness.

Proposition 2.4.20. SupposeA andB are sets. Then the following conditions are equivalent

for a morphism f : A −→ B.

(1) f is one-to-one.

(2) f is a section.

Proof. (1)⇒ (2) Let f : A −→ B be a one-to-one map. For b ∈ Im(f) there is an element

x ∈ A such that f(x) = b. Denote this element by b̂.

g(b) =


b̂, if b ∈ Im(f)

α, if otherwise
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So for every a ∈ A, (gf)(a) = g(f(a)) = ˆf(a) = a. Thus gf = 1A.

(2)⇒ (1) Suppose gf = 1A for some g : B −→ A. And suppose fh = fk for two functions

h, k in Set. Then

h = 1Ah = (gf)h = g(fh) = g(fk) = (gf)k = 1Ak = k.

Thus f is monic.

Remark 2.4.21. In every concrete category every section is one-to-one but the converse of

this statement need not be true.

Example 2.4.3. Take the category of left R-modules A = R-Mod. Consider f : Z −→ Z

defined by f(n) = 2n for all n ∈ Z. This f is clearly one-to-one. If we take Z as a set,

since f is one-to-one there is a function g : Z −→ Z such that gf = 1Z. Because in Set

every one-to-one function is a section. But this g is not a module homomorphism. If it was a

module homomorphism, then for all n ∈ Z, 2g(n) = g(n) + g(n) = g(n + n) = g(2n) =

g(f(n)) = gf(n) = n. If n = 1, 2g(1) = 1 and so g(1) = 1/2 /∈ Z.

Definition 2.4.22. [15, Definition 7.24] A morphism α : A −→ B said to be retraction if

there is a morphism β : B −→ A such that αβ = 1B.

Proposition 2.4.23. [15, Proposition 7.27] LetA be a category, f : A −→ B and g : B −→

C be morphisms in A. Then the following hold.

(1) If f : A −→ B and g : B −→ C are retractions, then gf is a retraction.

(2) If gf is a retraction, then g is a retraction.

Proof. (1) Given h with fh = 1B and k with gk = 1C , we have

(gf)(hk) = g(fh)k = g(1B)k = gk = 1C .

(2) Given h with (gf)h = 1C , we have g(fh) = 1C .
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Proposition 2.4.24. [15, Proposition 7.28] Every functor preserves retractions.

Proof. Let F : A −→ B be a functor and f is a retraction. If gf = 1B, then F (g)F (f) =

F (gf) = F (1B) = 1F (B).

Proposition 2.4.25. [15, Proposition 7.29] Every fully faithful functor reflects retractions.

Proof. Let F : A −→ B be a functor and f is a retraction. Given h : F (B) −→ F (A)

with F (f)h = 1F (B), by fullness there is k : B −→ A with h = F (k). Thus F (fk) =

F (f)F (k) = F (f)h = 1F (B), so that by faithfulness fk = 1B.

Proposition 2.4.26. SupposeA andB are sets. Then the following conditions are equivalent

for a morphism f : A −→ B.

(1) f is onto.

(2) f is a retraction.

Proof. (1)⇒ (2) Let f : A −→ B be onto. So for all b ∈ B, there is an element a ∈ A such

that f(a) = b. Denote this element by ab. Define g : B −→ A by g(b) = ab for all b ∈ B.

So for all b ∈ B, fg(b) = f(g(b)) = f(ab) = b. Therefore fg = 1B. Thus f is a retraction.

(2)⇒ (1) Suppose f : A −→ B is a retraction, that is there exists a morphism g : B −→ A

such that fg = 1B. Let hf = kf for two morphisms h, k in Set. Then

h = h1B = h(fg) = (hf)g = (kf)g = k(fg) = k1B = k.

So f is an epimorphism.

Remark 2.4.27. In every concrete category every retraction is onto but the converse of this

statement need not be true.

Example 2.4.4. Take Ab. Consider Qp = {x ∈ Q | ∃k ∈ Z,∃n ∈ N, x = k/pn}. Qp is a

subgroup of Q and Z is a subgroup of Qp. Qp is a normal subgroup of Q and Z is a normal
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subgroup of Qp in Ab. So Qp/Z can be constructed and this group is an abelian group too.

Consider f : Qp/Z −→ Qp/Z defined by f(x + Z) = px + Z. For all b + Z ∈ Qp/Z,

there is an element k ∈ Z, n ∈ N such that b = kp−n. Also since there is an element

x = kp−n−1 + Z ∈ Qp/Z such that f(kp−n−1 + Z) = pkp−n−1 + Z = b + Z, f is onto.

Since f is onto in Set, it is a retraction. So there exists a function h : Qp/Z −→ Qp/Z such

that fh = 1Qp/Z. But this function is not a group homomorphism If it was, then p−1 + Z =

(fh)(p−1) = f(h(p−1)) = ph(p−1) = h(p−1) + ... + h(p−1) = h(p−1 + ... + p−1 + Z) =

h(pp−1+Z) = h(1+Z) = 0+Z. Therefore h(0+Z) = 0+Z because group homomorphisms

preserve the identity and when p is prime p−1+Z = 0+Z so 1/p ∈ Z. This is a contradiction.

So h is not a group homomorphism. As a result there is no homomorphism h : Qp/Z −→

Qp/Z such that fh = 1Qp/Z. So f is not a retraction.

2.5 Products and Coproducts

Definition 2.5.1. [12, Definition 3.3.4] Let A be a category and A and B are objects of A.

The product of A and B is an object A × B equipped with morphisms π1 : A × B −→ A

and π2 : A × B −→ B with the following universal property: for an object X of A with

morphisms f : X −→ A, g : X −→ B, there exists a unique morphism h : X −→ A × B

such that the diagram below commutes.

X
g

##
h
��

f

{{
A A×Bπ1
oo

π2
// B

Example 2.5.1. [12, Example 3.3.1] Let (G, ·) and (H,△) be two groups with operations

· : G×G −→ G and △: H ×H −→ H . The product group of G,H is the group

(G×H, ∗) = {(g, h) | g ∈ G, h ∈ H}
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defined by (g, h) ∗ (g1, h1) = (g · g1, h △ h1). This product satisfies the required universal

property, hence Grp has products. If G,H are abelian groups, then the product group is

replaced with the direct sum. In this case, the product is denote by (G⊕H, ∗).

Example 2.5.2. [12, Example 3.3.3] Let X, Y be two sets in Set category. The cartesian

product of X × Y defined as the set

X × Y = {(x, y) |x ∈ X, y ∈ Y }

and projection functions by

πX : X × Y −→ X πX(a, b) = a

πY : X × Y −→ Y πY (a, b) = b.

Then given any set W with functions f : W −→ X and g : W −→ Y , we can define

h : W −→ X×Y by h(a, b) = (f(a), g(b)), which satisfies the required universal property.

So Set has products.

Example 2.5.3. [12, Example 3.3.6] Consider the category Ring of rings with identity. We

can create products as follows: let (R,+, ·) and (S,+, ·) be two rings with zeros 0R and 0S ,

and units 1R, 1S . Then the product ring of R, S is the ring

(R× S,+, ·) = {(r, s) | r ∈ R, s ∈ S}

where for all pairs (r1, s1) and (r2, s2) in R× S, we define the ring operation as follows:

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2) and (r1, s1) · (r2, s2) = (r1 · r2, s1 · s2). This product

satisfies the required universal property, hence Ring has products.

Definition 2.5.2. [12, Definition 3.4.3] Let A be a category and A and B are objects of

A. The coproduct of A and B is an object AΠB of A which is equipped with morphisms

i1 : A −→ AΠB and i2 : B −→ AΠB with the following universal property: for any object

X of A with a pair of morphisms f : A −→ X and g : B −→ X , then there exists a unique
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morphism h : AΠB −→ X such that the diagram below commutes.

X

A
i1
//

f
;;

A×B
h

OO

B
i2
oo

g
cc

Example 2.5.4. [12, Example 3.4.1] Let (G, ·) and (H, ◦) be two groups with group

operations · : G × G −→ G and ◦ : H × H −→ H . The coproduct of G and H is the

group

(G ∗H, ⋆) = {g1h1g2h2...gihi | gj ∈ G, hj ∈ H}

with the following operation. If g1h1...gjhj and g′1h
′
1...g

′
kh

′
k are two elements of G ∗H , then

(g1h1...gjhj) ⋆ (g
′
1h

′
1...g

′
kh

′
k) = g1h1...gjhjg

′
1h

′
1...g

′
kh

′
k

We require the group operation to obey the following two rules. Let g1h1...gjhj ∈ G ∗H . If

g ∈ G, then

g ⋆ (g1h1...gjhj) = (g.g1)h1...gjhj

If h ∈ H , then

(g1h1...gjhj)h = g1h1...gj(hj ◦ h)

Definition 2.5.3. [11, Chapter I, p.24] Let {(Ai)}i∈I be a family of objects in an arbitrary

category A. A product for the family of morphisms {pi : A −→ Ai}i∈I , called projections,

with the property that for any family {αi : A′ −→ Ai}i∈I there is a unique morphism

α : A′ −→ A such that piα = αi for all i ∈ I . The object A will be denoted by
∏

i∈I
Ai.

Definition 2.5.4. [11, Chapter I, p.26] The coproduct of the family {(Ai)}i∈I in an arbitrary

category A is defined dually to the product. Thus the coproduct is a family of morphisms

{ui : Ai −→ A}i∈I called injections, such that for each family of morphisms {αi : Ai −→

A′}i∈I we have a unique morphism α : A −→ A′ with αui = αi for all i ∈ I . The object A

will be denoted by
⊕

i∈I
Ai.
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Remark 2.5.5. If finite products and finite coproducts exist in a category A, then there exists

a canonical morphism

f : A1ΠA2Π...ΠAn −→ A1 × A2 × ...× An

of the coproduct to the product.

In R-Mod and Ab, finite products and finite coproducts of a family of objects {Ai}, where

i = 1, . . . , n, are isomorphic to each other and called the direct sum, denoted by
⊕n

i=1Ai.

2.6 Kernels and Cokernels

Definition 2.6.1. Let A be a category. An object T of A is said to be terminal if for each

object A there exists exactly one morphism f : A −→ T with codomain T . An object I of

A is said to be initial if for each object A there exists exactly one morphism f : I −→ A

with domain I . An object Z of A is a zero object if it is both initial and terminal. Given

any two objects A,B there exists exactly one morphism f : Z −→ A with domain Z and

exactly one morphism g : B −→ Z with codomain Z. Hence, for any two objects A,B

there exists a morphism through the zero object between them, namely given by fg, called

the zero morphism from B to A.

Remark 2.6.2. Initial, terminal and hence zero objects of a category A are unique up to an

isomorphism.

Example 2.6.1. Let T be a set with exactly one element. Since for any set X in Set there

exists one and only one function f : X −→ T mapping every element of X to the single

element of T , T is an initial object in Set. On the other hand, for any set X we can write a

function f : ∅ −→ X , so ∅ is an initial object in Set. In fact, it is the only initial object since

for any other initial object Y there would have to be a morphism g : Y −→ ∅ from Y to ∅.

Definition 2.6.3. [11, Chapter I, p.14] Let A be a category with a zero object and let α :

A −→ B. Then a morphism u : K −→ A is called the kernel of α if αu = 0 and if for every

morphism u′ : K ′ −→ A such that αu′ = 0 there is a unique morphism γ : K ′ −→ K such

that uγ = u′.
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Proposition 2.6.4. [16, Proposition 1.1.14] Let A be a category and f : A −→ B be a

morphism. If i : K −→ A and i′ : K ′ −→ A are both kernels of the morphism f , then there

is a unique isomorphism j : K −→ K ′ such that i′j = i.

Proof. Since i′ : K ′ −→ A is a kernel, there is a unique morphism j : K −→ K ′ such that

i′j = i. Since i : K −→ A is also a kernel, there is a unique morphism j′ : K ′ −→ K such

that ij′ = i′. Then i′jj′ = ij′ = i′. Since i′ : K ′ −→ A is a kernel and i′jj′ = i′ = i′1K′ ,

it follows that jj′ = 1K′ . Similarly, ij′j = i′j = i. Since i : K −→ A is a kernel and

ij′j = i = i1K , it follows that j′j = 1K . This proves that j is an isomorphism.

Proposition 2.6.5. [16, Proposition 1.1.15] A kernel of a morphism is always a

monomorphism.

Proof. Let i : K −→ A be a kernel of a morphism f : A −→ B. Let g : X −→ K and

h : X −→ K be morphisms such that ig = ih. Then fig = 0X,B = fih. Since i : K −→ A

is a kernel of f and ig = ih, g = h. This shows that i can be left cancellable. Hence i is a

monomorphism.

Definition 2.6.6. [11, Chapter I, p.15] Let A be a category with a zero object and let α :

A −→ B. Then a morphism u : B −→ E is called the cokernel of α if uα = 0 and if for

every morphism u′ : B −→ E ′ such that u′α = 0 there is a unique morphism γ : E −→ E ′

such that γu = u′.

Proposition 2.6.7. [16, Proposition 1.1.14] Let A be a category and f : A −→ B be a

morphism. If v : B −→ K and v′ : B −→ K ′ are both cokernels of the morphism f , then

there is a unique isomorphism j : K −→ K ′ such that jv = v′.

Proof. Since v : B −→ K is a cokernel of f , there is a unique morphism j : K −→ K ′

such that jv = v′. Since v′ : B −→ K ′ is also cokernel of f , there is a unique morphism

j′ : K ′ −→ K such that j′v′ = v. Then jj′v′ = jv = v′. Since v′ : B −→ K ′ is a cokernel

and jj′v′ = v′, it follows that jj′ = 1K′ . Similarly, j′jv = j′v′ = v. Since v : B −→ K

is a cokernel and j′jv = v = v1K , it follows that j′j = 1K . This proves that j is an

isomorphism.
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Proposition 2.6.8. [16, Proposition 1.1.15] A cokernel of a morphism is always an

epimorphism.

Proof. Let i : B −→ K be a cokernel of f : A −→ B. Let g : K −→ X and h : K −→ X

be morphisms such that gi = hi. Then gif = 0A,X = hif . Since i : B −→ K is a

cokernel of f and gi = hi, g = h. This shows that i can be right cancellable. Hence i is an

epimorphism.

2.7 Exact sequences

Definition 2.7.1. [11, Chapter I, p.16] If A′ −→ A is the kernel of some morphism, then A′

is called a normal subobject of A. If every monomorphism in a category is normal, then the

category is said to be normal.

Definition 2.7.2. [11, Chapter I, p.16] If A −→ A
′′ is the cokernel of some morphism,

then A′′ is called a conormal quotient object of A and if every epimorphism in a category is

conormal, then the category is said to be conormal.

Definition 2.7.3. [11, Chapter I, p.18] LetA be a normal and conormal category with kernels

and cokernels. If every morphism α : A −→ B can be written as a composition

A v // I
q // B

where q is an epimorphism and v is a monomorphism, then A is called an exact category.

Definition 2.7.4. [11, Chapter I, p.18] LetA be an exact category. A sequence of morphisms

... // Ai−1
αi−1 // Ai

αi // Ai+1
αi+1 // Ai+2

αi+2 // ...

in A is called an exact sequence if Ker(αi+1) = Im(αi) as subobjects of Ai+1 for every i.

Proposition 2.7.5. [11, Proposition 15.1] Let A be an exact category. Then the following

statements hold.
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(1) A α // B
β // C is exact in A if and only if A Bαoo C

βoo is exact in Aop.

(2) 0 // A
α // B is exact if and only if α is a monomorphism.

(3) A
α // B // 0 is exact if and only if α is an epimorphism.

(4) 0 // A α // B // 0 is exact if and only if α is an isomorphism.

Proof. (1) Consider

A
q // I

v // B
r // J

w // C

where v = im(α) and w = im(β). Then r = coim(β). If A // B // C is exact, then

v = ker(β) and hence also v = ker(r). Therefore r = coker(v) and hence also r = coker(α).

Then r = ker(α) as well as r = im(β) in the dual category and so A Boo Coo is

exact.

(2) If α is a monomorphism, then its Ker(α) = 0 and so 0 // A // B is exact.

Conversely, if 0 // A // B is exact, then Ker(α) = 0. Let A
q // I

v // B be a

factorization of α as an epimorphism followed by a monomorphism. Then q = coker(α).

Since the latter is 0, q must be an isomorphism. But then α = vq must be a monomorphism.

(3) Follows from (1) and (2).

(4) Since a normal category is balanced that is, every morphism which is both a

monomorphism and an epimorphism is also an isomorphism, the proof of this part follows

from (2) and (3).

Definition 2.7.6. [11, Chapter I, p.19] Let A be an exact category. A sequence

0 // A α // B
β // C // 0

is said to be short exact sequence if and only if α is a monomorphism, β is an epimorphism

and α = ker(β) equivalently β = coker(α).

Definition 2.7.7. [11, Chapter I, p.32] Let A be an exact category. Then a short exact

sequence

0 // A
α // B

β // C // 0
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splits if β is a retraction.

Corollary 2.7.8. Let 0 // A
f // B

g // C // 0 be a short exact sequence. The

following assertions are equivalent:

(1) f is a section.

(2) g is a retraction.

(3) A is a direct summand of B.

Then B is canonically isomorphic with the direct sum A⊕ C.

Proof. (1)⇒ (2) Clear.

(2) ⇒ (3) Let e : B −→ A be a retraction of f and p = fe. Then p2 = p. Every element

b ∈ B can be decomposed as b = (b − p(b)) + p(b). Since e(b − p(b)) = e(b) − ep(b) =

e(b)− efe(b) = e(b)− e(b) = 0, b− p(b) ∈ Ker(e) and p(b) ∈ Im(f). This decomposition

is unique since if b = f(a) and e(b) = 0, 0 = e(b) = e(f(a)) = a. This shows that

B ∼= Im(f)⊕Ker(e) is a direct sum and f : A −→ B is the canonical inclusion of Im(f).

By exactness, Ker(e) ∼= Im(f) and hence B ∼= A⊕ C.

(3)⇒ (1) Clear.

2.8 Pullbacks and Pushouts

Definition 2.8.1. [11, Chapter I, p.9] Given two morphisms α1 : A1 −→ A and α2 : A2 −→

A with a common codomain, a commutative diagram

P
β2 //

β1
��

A2

α2

��
A1 α1

// A

is called a pullback for α1 and α2 if for every pair of morphisms β1′ : P ′ −→ A1 and

β2
′ : P ′ −→ A2 such that α1β1

′ = α2β2
′, there exists a unique morphism γ : P ′ −→ P such

that β1′ = β1γ and β2′ = β2γ.
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Definition 2.8.2. [11, Chapter I, p.9] Given two morphism α1 : A −→ A1 and α2 : A −→ A2

with a common domain, a commutative diagram

A
α1 //

α2

��

A1

β1
��

A2 β2
// R

is called a pushout for α1 and α2 if for every pair of morphism β1
′ : A1 −→ R′ and

β2
′ : A2 −→ R′ such that β1′α1 = β2

′α2, there exists a unique morphism γ : R −→ R′ such

that β1′ = γβ1 and β2′ = γβ2.

Proposition 2.8.3. [11, Proposition 7.1] In the pullback diagram

P
β2 //

β1
��

A2

α2

��
A1 α1

// A

if α1 is a monomorphism, then β2 is also a monomorphism.

Proof. Suppose that β2f = β2g for some morphisms f and g. Then α1β1f = α2β2f =

α2β2g = α1β1g. Since α1 is a monomorphism, β1f = β1g. Therefore f = g by uniqueness

of factorization through the pullback. This shows that β2 is a monomorphism.

Proposition 2.8.4. In the pushout diagram

A
α1 //

α2

��

A1

β1
��

A2 β2
// R

if α1 is an epimorphism, then β2 is also an epimorphism.

Proof. Suppose that fβ2 = gβ2. Then fβ1α1 = fβ2α2 = gβ2α2 = gβ1α1. Since α1 is an

epimorphism, fβ1 = gβ1. Therefore by uniqueness of factorization through the pushout we

have f = g. This shows that β2 is an epimorphism.
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Proposition 2.8.5. [11, Proposition 7.2] If each square in the diagram

P //

��

Q //

��

B′

��
A // I // B

is a pullback and B′ −→ B is a monomorphism, then the outer rectangle is a pullback.

Proof. Given morphisms X −→ A and X −→ B′ such that X −→ A −→ I −→ B =

X −→ B′ −→ B we must find a unique morphism X −→ P such that X −→ P −→ A =

X −→ A and X −→ P −→ Q −→ B′ = X −→ B′. Now since the right-hand square is a

pullback, there is a unique morphismX −→ Q such thatX −→ Q −→ I = X −→ A −→ I

and X −→ Q −→ B′ = X −→ B′. Since the left-hand square is a pullback we have a

unique morphism X −→ P such that X −→ P −→ A = X −→ A and X −→ P −→ Q =

X −→ Q. Then the morphism X −→ P satisfies the required conditions. Since B′ −→ B

is a monomorphism, P −→ A is a monomorphism by Proposition 2.8.3 and the uniqueness

of the morphism X −→ P follows from this.

Proposition 2.8.6. If each square in the diagram

A //

��

I //

��

B

��
A′ // P // Q

is a pushout and A −→ A′ is an epimorphism, then the outer rectangle is a pushout.

Proof. Given morphisms B −→ X and A′ −→ X such that A −→ I −→ B −→ X =

A −→ A′ −→ X we must find a unique morphism Q −→ X such that B −→ Q −→ X =

B −→ X and A′ −→ P −→ Q −→ X = A′ −→ X . Now since the right-hand square is

a pushout we have a unique morphism Q −→ X such that B −→ Q −→ X = B −→ X

and P −→ Q −→ X = P −→ X . Since the left-hand square is a pushout we have a unique

morphism P −→ X such that I −→ P −→ X = I −→ B −→ X and A′ −→ P −→
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X = A′ −→ X . The morphism Q −→ X satisfies the required conditions. A −→ A′ is an

epimorphism, B −→ Q is an epimorphism by Proposition 2.8.4 and the uniqueness of the

morphism follows.

Proposition 2.8.7. [11, Proposition 13.1] Consider a commutative diagram

K
γ //

∥

P
β2 //

β1
��

A2

α2

��
K u // A1

α1 // A

where the right-hand square is a pullback, u is the kernel of α1 and γ is the morphism into

the pullback induced by two morphisms u : K −→ A1 and 0 : K −→ A2. Then γ is the

kernel of β2.

Proof. Since u = β1γ and u is a monomorphism, then γ must be a monomorphism. Also

β2γ = 0 by construction of γ. Now let v : X −→ P be such that β2v = 0. Then 0 =

α2β2v = α1β1v and since u is the kernel of α1, w : X −→ K such that uw = β1v. Then we

see that γw = v since each of these morphisms gives the same thing when composed with

both β1 and β2. This proves that γ is the kernel of β2.

Proposition 2.8.8. [11, Proposition 13.2] Consider a diagram

A′ // A

��
B′ // B

where B′ −→ B is the kernel of some morphism B −→ B
′′
. Then the diagram can be

extended to a pullback if and only if A′ −→ A is the kernel of the composition A −→ B −→

B
′′
.

Proof. (⇒) Suppose there is a morphism A′ −→ B′ such that A′ −→ A −→ B = A′ −→

B′ −→ B. If there is another A′′ and there are morphisms A′′ −→ A and A′′ −→ B′ such

that A′′ −→ A −→ B = A
′′ −→ B′ −→ B, then there is a unique morphism A

′′ −→ A′
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such that A′′ −→ A′ −→ B′ = A
′′ −→ B′ and A′′ −→ A′ −→ A = A

′′ −→ A. Since u

is the kernel of B −→ B
′′ , B′ −→ B −→ B

′′ is zero. A′ −→ A −→ B −→ B′ = A′ −→

B′ −→ B −→ B
′′ is zero and A′′ −→ A −→ B −→ B

′′
= A

′′ −→ B′ −→ B −→ B
′′ is

zero. So there is a unique morphism A
′′ −→ A such that A′′ −→ A′ −→ A = A

′′ −→ A.

Hence A′ −→ A is the kernel of A −→ B −→ B
′′ .

(⇐) Suppose that A′ −→ A is the kernel A −→ B −→ B
′′ . Then A′ −→ A −→ B −→ B

′′

is zero. Since B′ −→ B is the kernel of B −→ B
′′ , there is a unique morphism A′ −→ B′

such that A′ −→ B′ −→ B = A′ −→ A −→ B. Suppose that X −→ A −→ B = X −→

B′ −→ B. Then X −→ A −→ B −→ B′ is zero. Hence there is a unique morphism

X −→ A′ such that X −→ A′ −→ A = X −→ A. Then also X −→ A′ −→ B′ −→ B =

X −→ A′ −→ A −→ B = X −→ B′ −→ B and since B′ −→ B is a monomorphism

X −→ A′ −→ B′ = X −→ B′. So the diagram can be extended to a pullback.

Proposition 2.8.9. Consider the diagram

B //

��

C

B′ // C ′

where C −→ C ′ is the cokernel of some morphism A −→ B. Then the diagram can be

extended to a pushout if and only if B′ −→ C ′ is the cokernel of the composition A −→

B −→ B′.

Proof. (⇒) Suppose there is a morphism C −→ C ′ such that B −→ C −→ C ′ = B −→

B′ −→ C ′. If there is another C ′′ and there are morphisms C −→ C
′′ and B′ −→ C

′′

such that B −→ C −→ C
′′
= B −→ B′ −→ C

′′ , then there is a unique morphism

C ′ −→ C
′′ such that C −→ C ′ −→ C

′′
= C −→ C

′′ . Since u is the cokernel of A −→ B,

A −→ B −→ C is zero. A −→ B −→ B′ −→ C ′ = A −→ B −→ C −→ C ′ is zero

and A −→ B −→ B′ −→ C
′′
= A −→ B −→ C −→ C

′′ is zero. So there is a unique

C ′ −→ C
′′ such that B′ −→ C ′ −→ C

′′
= B′ −→ C

′′ . Hence B′ −→ C ′ is the cokernel of

A −→ B −→ B′.

(⇐) Suppose that B′ −→ C ′ is the cokernel A −→ B −→ B′. Then A −→ B −→
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B′ −→ C ′ is zero. Since B −→ C is the kernel of A −→ B, there is a unique morphism

C −→ C ′ such that B −→ C −→ C ′ = B −→ B′ −→ C ′. Suppose that B −→ C −→

C
′′
= B −→ B′ −→ C

′′ . Then B −→ B′ −→ C ′ −→ C
′′ is zero. Hence there is

a unique morphism C −→ C
′′ such that C −→ C ′ −→ C

′′
= C −→ C

′′ . Then also

B −→ B′ −→ C ′ −→ C
′′
= B −→ C −→ C ′ −→ C

′′
= B −→ B′ −→ C

′′ and since

B′ −→ C ′ is an epimorphism B′ −→ C ′ −→ C
′′
= B′ −→ C

′′ . So the diagram can be

extended to a pushout.

2.9 Grothendieck categories

Definition 2.9.1. [10] A category A is said to be an abelian category if it is a preadditive

category satisfying the following conditions.

(1) A has a zero object.

(2) A has a binary products.

(3) Every morphism in A has a cokernel and a kernel.

(4) Every monic morphism is a kernel and every epi is a cokernel.

Example 2.9.1. Let R be a ring. Then the category of right R-modules Mod-R is an abelian

category.

Remark 2.9.2. Let A be an abelian category. For every morphism f : M −→ N in A we

have the following notation and analysis:

Ker(f)
ker(f) //M

f //

coim(f)
��

N
coker(f) // Coker(f)

Coim(f)
f

// Im(f)

im(f)

OO

where f is an isomorphism.
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Definition 2.9.3. Let A be a category, A be an object of A. For an arbitrary category J , let

F : J −→ A be a functor. A family of morphisms ϕi : A −→ F (i), i ∈ J , such that for

each morphism f : i −→ j in J the following diagram commutes

A
ϕj

!!

ϕi

}}
F (i)

F (f)
// F (j)

is called a cone with A over F and it is denoted by Cone(A|F ). Dually a family of

morphisms ϕ : F (i) −→ A, i ∈ J , such that for every morphism f : i −→ j in J the

following diagram commutes

F (i)
F (f) //

!!

F (j)

}}
A

is called a cone with F over A and it is denoted by Cone(F |A).

Definition 2.9.4. LetA and J be categories. A functor△ : A −→ Fun(J ,A) which sends

an object A of A to the functor △(A) : J −→ A under which each i ∈ J is mapped to A

and every morphism in J is mapped to the identity of A is said to be the diagonal functor.

Definition 2.9.5. Let F : J −→ A be a functor. The limit of F is an object limF equipped

with a natural transformation η : △(limF ) −→ F such that (limF, u) is universal from

△ to limF . This means that for any other pair (A, η′ : △(A) −→ F ) with η′ a natural

transformation and A ∈ A, there exists a unique morphism h : A −→ limF in A such that

the following diagram is commutative.

△(limF )
η // F

△(A)

△(h)

OO

η′

;;
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The morphism η : △(limF ) −→ F forms a cone with limF over F via family of morphisms

ηi : limF −→ F (i) for all i ∈ I .

Definition 2.9.6. Let F : J −→ A be a functor. The colimit of F is an object colimF

equipped with a natural transformation η : F −→ △(colimF ) such that (colimF, η :

F −→ △(colimF )) is universal from F to △. This means that for any pair (A, η′ :

F −→ △(A)) with η′ a natural transformation whereA ∈ A, there exists a unique morphism

h : colimF −→ A in A such that the following diagram is commutative.

F
η//

η′ $$

△(colimF )

△(h)
��

△(A)

Definition 2.9.7. Let (I,≤) be a poset, let (Ai)i∈I be a family of objects and fij : Aj −→ Ai

for all i ≤ j be a family of morphisms. If we have the following properties

(1) fii is the identity on Aii

(2) fik = fij = fjk for all i ≤ j ≤ k

then the pair ((Ai)i∈I , (fij)i≤j) is called an inverse system of objects and morphisms on I .

Definition 2.9.8. Let (Xi, fij) be an inverse system of objects and morphisms in a category

A. The inverse limit of this system is an object X , which is denoted by lim←−Xi, inA together

with morphisms πi : X −→ Xi satisfying πi = fijπj for all i ≤ j. The pair (X, πi) must

be universal in the sense that for any other such pair (Y, ψi) there exists a unique morphism

u : Y −→ X such that the following diagram is commutative for all i, j..

Y

ψi

��

u
��

ψj

��

X

πj~~ πi   
Xj fij

// Xi
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Definition 2.9.9. Let (I,≤) be a directed set. Let {Ai | i ∈ I} be a family of objects indexed

by I and fij : Ai −→ Aj be a morphism for all i ≤ j with the following properties

(1) fii is the identity on I .

(2) fik = fij = fjk for all i ≤ j ≤ k.

Then the pair ((Ai)i∈I , (fij)i≤j) is called a direct system over I .

Definition 2.9.10. Let (Xi, fij) be a direct system of objects and morphisms in a category

A. The direct limit of this system is an object X , which is denoted by X = lim−→Xi, in A

with morphisms ϕ : Xi −→ X such that ϕi = ϕjfij for all i ≤ j. The direct limit (X,ϕi) of

the direct system (Xi, fij) is universal in the sense that for any other such pair (Y, ψi) there

is a unique morphism u : X −→ Y such that uϕi = ψi for each i ∈ I . That is the following

diagram is commutative for all i, j.

Xi

fij //

ϕi

  
ψi

��

Xj
ϕj

~~
ψj

��

X

u
��
Y

Definition 2.9.11. A family of objects {Ui}i∈I is called a family of generators for a category

A if for every pair of distinct morphisms α, β : A −→ B there is a morphism u : Ui −→ A

for some i such that αu ̸= βu. An object U in A is called a generator for A if {U} is a

family of generators for A.

Definition 2.9.12. [17] A category A is called a Grothendieck category if

(1) A is an abelian category.

(2) Every (possibly infinite) family of objects in A has a coproduct.

(3) Direct limits are exact in A.
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(4) A has a generator, i.e. there is an object U in A for every object X of A there is an

epimorphism U (I) → X , where U (I) denotes a coproduct of copies of U .

Example 2.9.2. [17] Let R be a ring. Then the category of right R-modules Mod-R is a

Grothendieck category.

Definition 2.9.13. [18] Let C be a coalgebra over a field. The category of right comodules

over the coalgebra C denoted by MC . The objects are all right C-comodules and the

morphisms between two objects are the morphisms of comodules. We will also denote

the morphisms in MC from M to N by ComC(M,N). Similarly, the category of left

C-comodules will be denoted by CM.

Example 2.9.3. [18, Corollary 2.2.8] The categoryMC is a Grothendieck category.

Definition 2.9.14. [19] An object M of a category A is said to be finitely generated if

whenever M =
∑
Mi for a family (Mi)I of subobject of M , there is an i ∈ I such that

M =Mi.

Definition 2.9.15. [19] An object M of a category A is said to be finitely presented if it

is finitely generated and every epimorphism L −→ M when L is finitely generated has a

finitely generated kernel.

Definition 2.9.16. [19] A category A is said to be locally finitely generated (presented) if it

has a family of finitely generated (presented) generators.

2.10 Injective objects

Definition 2.10.1. [10] In any category an object I is called injective if every morphism

h : B −→ I from I factors through every monic g : B −→ A, as h′g = h for some h′.

B
g //

h
��

A

h′��
I
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Theorem 2.10.2. [20] Let A be an abelian category and (Qi)i∈I a family of objects of A

such that the product Q =
∏
Qi exists. Then Q is injective if and only if each Qi is injective.

Proof. (⇒) Let πi : Q −→ Qi be the canonical projections and αi : Qi −→ Q morphisms

such that πiαi = 1Qi
. If Q is injective and f : X ′ −→ X is a monomorphism in A and

g : X ′ −→ Qi is a morphism in A, then αig : X ′ −→ Q. There exists h : X −→ Q with

hf = αig and therefore πihf = πiαig = 1Qi
g = g. Hence Qi is injective.

(⇐) Assume that Qi is injective for any i ∈ I , and let g : X ′ −→ Q be a morphism

in A. Let hi : X −→ Qi be such that πig = hif . From the definition of products it

follows that there exists a unique morphism h : X −→ Q such that πih = hi. Then

πi(hf) = (πih)f = hif = πig. So hf = g. Thus Q is injective.

Definition 2.10.3. Let A be an abelian category, a short exact sequence which satisfies one

of the equivalent conditions of Corollary 2.7.8 is a split exact sequence.

Lemma 2.10.4. Let A be an abelian category and M be an object of A. Then the following

conditions are equivalent.

(1) M is an injective object of A.

(2) Every short exact sequence starting with M , splits.

Proof. (1)⇒ (2) Let

0 //M //N //L //0

be a short exact sequence. Since M is injective, for every morphism g : M −→ M , there

exists a morphism h : N −→ M such that hf = g. Since 1M ∈ MorA(M,M), there exists

a morphism h : N −→M such that hf = 1M . So the sequence splits.

(2)⇒ (1) Let

0 //K //N //L //0
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be a short exact sequence in A and f : K −→ M be a morphism. Then by pushout we have

the following commutative diagram with exact rows:

0 // K
α //

f
��

N

g
��

β // L //

∥

0

0 //M γ
// G

δ
// L // 0

We know that β = δg. Since β is an epimorphism, δ is also an epimorphism. Thus

0 //M //G //L //0

is a short exact sequence. By assumption

0 //M //G //L //0

splits. So there exists a morphism h : G −→ M such that hγ = 1M . Put φ = hg. Then

φα = hgα = hγf = 1Mf = f . So M is an injective.

Definition 2.10.5. The category A is said to have enough injectives if every object is a

subobject of an injective object.

Definition 2.10.6. Let A be an abelian category and α : L −→ M be a monomorphism. If

every φ : M −→ N is a monomorphism when φα is a monomorphism, then α is called an

essential monomorphism.

Definition 2.10.7. Let A be an abelian category. An essential monomorphism α : L −→M

is maximal if every monomorphism φ :M −→ L with φα essential is an isomorphism.

Definition 2.10.8. Let A be an abelian category. An essential monomorphism α : L −→M

with M injective is called an injective envelope.

Definition 2.10.9. [13] A category A is said to have injective envelope if every object of A

has an injective envelope.

36



2.11 Pure subobjects

Definition 2.11.1. [19, Definition, p.353] A short exact sequence

0 //L //M //N //0

in a Grothendieck categoryA is said to be pure if every finitely presented object is relatively

projective to it. In this case L is a pure subobject of M .

Definition 2.11.2. [19, Definition, p.354] Also an object M of a Grothendieck categoryA is

said to be flat if every short exact sequence

0 //K //L //M //0

is pure.

Definition 2.11.3. [21, p. 160] Consider a class E of short exact sequence of objects an

abelian category A such that every sequence isomorphic to a sequence in E is also in E .

The corresponding class of monomorphism is denoted by Em and epimorphism is denoted

by Ee. E is called a proper class if it satisfies the following conditions.

(1) Every short exact sequence is in E .

(2) If α,β ∈ Em, then βα ∈ Em if defined.

(3) If α,β ∈ Ee, then βα ∈ Ee if defined.

(4) If βα ∈ Em, then α ∈ Em.

(5) If βα ∈ Ee, then β ∈ Ee.

Lemma 2.11.4. [19, Lemma 6(i)] The class Pure of pure short exact sequences in a

Grothendieck category A forms a proper class.
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Definition 2.11.5. [22] A Grothendieck category A is said to be regular if every object M

of A is regular in the sense that every short exact sequence

0 //L //M //N //0

is pure in A.

Theorem 2.11.6. [19, Theorem 4] Let A be a locally finitely presented Grothendieck

category. Then the following statements are equivalent.

(1) A is regular.

(2) All objects are flat.

(3) All short exact sequences are pure.

(4) All finitely presented objects are projective.

2.12 Pure-injective objects

Definition 2.12.1. Let A be a Grothendieck category and M be an object of A. M is called

a pure-injective object if it is relatively injective to every pure short exact sequence in A.

Proposition 2.12.2. [23, Proposition 4.1] Let A be a Grothendieck category and {Ai}i∈I
a family of objects of A. Then A =

∏
i∈I Ai is pure-injective if and only if each Ai is

pure-injective.

Lemma 2.12.3. Let A be a Grothendieck category and M be an object of A. Then the

following conditions are equivalent.

(1) M is pure-injective object of A.

(2) Every pure exact sequence starting with M splits.
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Proof. (1)⇒ (2) Let

0 //M //N //L //0

be a pure exact sequence inA. Since M is pure-injective, for every morphism g :M −→M

there exists a morphism h : N −→ M such that hf = g. Since 1M ∈ MorA(M,M), there

exists h : N −→M such that hf = 1M . So the sequence splits.

(2)⇒ (1) Let

0 //K //N //L //0

be a pure exact sequence in A and f : K −→ M be a morphism. Then by pushout we have

the following commutative diagram with exact rows:

0 // K
α //

f
��

N

g
��

β // L //

∥

0

0 //M γ
// G

δ
// L // 0

We know that δg = β. Since Pure is a proper class by Lemma 2.11.4, δ ∈ Puree. Now the

sequence

0 //M //G //L //0

splits by assumption. So there exists a morphism e : G −→ M such that eγ = 1M . Put

h = eg. Then hα = egα = eδf = 1Mf = f . So M is pure-injective.

Definition 2.12.4. The category A is said to have enough pure-injectives if every object is

a pure subobject of a pure-injective object, that is for every object M of A there is a pure

monomorphism f :M −→ P with P pure-injective.

Theorem 2.12.5. [24, Theorem 4.1] Every locally finitely presented Grothendieck category

A has enough pure-injective objects.

The following definitions are particular cases of [21, Definitions, p.162] when Pure is

considered instead of a proper class E .
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Definition 2.12.6. Let A be a Grothendieck category. A pure monomorphism α : L −→

M is pure-essential if every φ : M −→ N , such that φα is a pure monomorphism, is a

monomorphism.

Definition 2.12.7. Let A be a Grothendieck category. A pure-essential monomorphism α :

L −→ M is maximal if every monomorphism φ : M −→ N with φα pure-essential is an

isomorphism.

Definition 2.12.8. Let A be a Grothendieck category. A pure-essential monomorphism α :

L −→M with M pure-injective is called a pure-injective envelope.

Corollary 2.12.9. [24, Corollary 4.5] Every object of a locally finitely presented

Grothendieck category A has a pure-injective envelope.

Definition 2.12.10. An object M of Grothendieck category is said to be absolutely pure if it

is a pure subobject of every object containing it.

Theorem 2.12.11. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(1) A is regular.

(2) Every pure-injective object of A is injective.

(3) Every pure-injective object of A is absolutely pure.

Proof. (1)⇒ (2) SinceA is regular, every object ofA is flat by [19, Theorem 4]. Therefore

every short exact sequence is pure exact. This implies that every pure-injective object is

injective.

(2)⇒ (3) Clear.

(3) ⇒ (1) Let M be an object of A. Since there are enough pure-injective objects in A by

[24, Theorem 4.1], there exists a pure exact sequence

0 //M //P //P/M //0
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with P pure-injective and therefore P is absolutely pure by assumption. Then M is also

absolutely pure by [25, Lemma 8.1]. This means that every object of A is absolutely pure

and therefore every short exact sequence in A is pure. So A is regular.
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3. DIRECT INJECTIVE OBJECTS IN ABELIAN

CATEGORIES

3.1 Direct-injective objects

Definition 3.1.1. Let A be an abelian category. An object M of A is said to be

direct-injective if every subobject A of M with A isomorphic to a direct summand of M

is a direct summand.

Proposition 3.1.2. Let A be an abelian category. Then the following conditions are

equivalent for an object M of A.

(1) Given a direct summand N of M with the inclusion map i : N −→ M and any

monomorphism f : N −→ M there is an endomorphism g : M −→ M of M such

that gf = i.

(2) M is direct-injective.

(3) Any monomorphism f : N −→M with N a direct summand of M splits.

Proof. (1) ⇒ (2) Let N be a direct summand of M and K be a subobject of M which

is isomorphic to N . Let f : N −→ K be that isomorphism. There is an endomorphism

g : M −→ M such that gf = i where i : N −→ M is the inclusion monomorphism by

assumption. Let h = πg where π :M −→ N is the canonical projection. Then hf = πgf =

πi = 1N . So f : N −→ K splits. Thus K is a direct summand of M .

(2)⇒ (3) Let f : N −→M be a monomorphism with N a direct summand of M . We know

that Im(f) ∼= N and N is a direct summand of M . Since M is direct-injective, Im(f) is also

a direct summand of M . Thus f splits.

(3)⇒ (1) Since f : N −→M is a splitting monomorphism, there is a morphism α :M −→

N such that αf = 1N . Let g = iα :M −→M . Then gf = iαf = i1N = i.
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Lemma 3.1.3. Let A be an abelian category. If N ⊕M is direct-injective, then an exact

sequence

0 //N
f //M //T //0

of objects and morphisms of A splits.

Proof. Let i1 : N −→ N ⊕M and i2 :M −→ N ⊕M be inclusion maps. Since N ⊕M is

direct-injective and i2f : N −→ N ⊕M is a monomorphism, there exists an endomorphism

h : N ⊕M −→ N ⊕M such that hi2f = i1 by Proposition 3.1.2. Put g = p1hi2 where

p1 : N⊕M −→ N is the canonical projection map, then we have gf = p1hi2f = p1i1 = 1N .

So f splits.

Theorem 3.1.4. Let A an abelian category with enough injective objects, M be an object of

A and f :M −→ K be a monomorphism from M to an injective object K of A. Then M is

injective if and only if K ⊕M is direct-injective.

Proof. (⇒) Assume that M is injective. So K ⊕M is injective by Theorem 2.10.2. Since

every injective object is direct-injective, M ⊕K is direct-injective.

(⇐) Assume that M ⊕K is direct-injective. Then the following short exact sequence

0 //M //K //K/ Im(f) //0

splits by Lemma 3.1.3. So M is injective.

Corollary 3.1.5. LetA be an abelian category with enough injective objects. Then the class

of direct-injective objects of A need not be closed under subobjects.

Proof. Let M be an object which is not direct-injective. Then its injective envelope E(M)

is direct-injective and M is a subobject of E(M) which is not direct-injective.

Corollary 3.1.6. LetA be an abelian category with enough injective objects. Then the class

of direct-injective objects of A need not be closed under taking finite coproducts.
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Proof. Let M be an object which is direct-injective but not injective. Since A has enough

injective objects, there is an exact sequence

0 //M //E(M) //E(M)/M //0

where E(M) denotes the injective envelope of M . Since M is not injective, M ⊕E(M) can

not be direct-injective by Theorem 3.1.4.

Corollary 3.1.7. Let A be an abelian category having enough injective objects. The

coproduct of two direct-injective objects of A is direct-injective if and only if every

direct-injective object of A is injective.

Proof. (⇒) Let M be a direct-injective object in A. Since A has enough injective objects,

there exists an exact sequence

0 //M //I //N //0

with I injective. Since I is injective and every injective object is direct-injective, I is

direct-injective. Then M ⊕ I is direct-injective by assumption and therefore M is injective

by Theorem 3.1.4.

(⇐) It is clear by Theorem 2.10.2.

Proposition 3.1.8. Direct summands of direct-injective objects of an abelian categoryA are

direct-injective.

Proof. Let M be a direct-injective object of A and let N be a direct summand of M . We

consider any direct summand A of N . Let iN : N −→ M and iA : A −→ N be the

inclusion maps and let h : A −→ N be a monomorphism. Then g = iNh : A −→ M is a

monomorphism.

0 // A
h //

i
��

N
iN //M

f
vv

M
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Since M is direct-injective, there exists an endomorphism f :M −→M such that fiNh = i

where i : A −→M is a monomorphism. Put f ′ = πNfiN . Then f ′h = πNfiNh = iA.

Definition 3.1.9. An abelian categoryA is said to be hereditary if and only if every subobject

of a projective object is projective if and only if every quotient object of an injective object

is injective.

Definition 3.1.10. An abelian category A is said to be semihereditary if every finitely

generated subobject of a projective object is projective and cosemihereditary if every finitely

cogenerated quotient object of an injective object is injective.

Theorem 3.1.11. Let A be an abelian category. Assume that A has enough injectives. Then

the following conditions are equivalent.

(1) A is (cosemi)hereditary.

(2) Every (finitely cogenerated) quotient object of an injective object of A is

direct-injective.

Proof. (1)⇒ (2) Clear.

(2) ⇒ (1) Let I be an injective object and J be a subobject of I . Let π : I −→ I/J

be the canonical epimorphism. Being a quotient object of E(I/J)⊕ I , E(I/J)⊕ I/J

is direct-injective by assumption, where E(I/J) denotes the injective envelope of I/J .

Therefore I/J is injective by Theorem 3.1.4.

Definition 3.1.12. An object M of an abelian category A is called N -injective if for every

subobject A of N any homomorphism from A to M can be extended to a homomorphism

from N to M .

Definition 3.1.13. An object M of an abelian category A is called a quasi-injective object if

it is M -injective.

Proposition 3.1.14. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.
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(1) A is regular.

(2) Every pure-injective object of A is a quasi-injective.

Proof. (1)⇒ (2) SinceA is regular, every pure-injective object ofA is injective by Theorem

2.12.11. Since every injective object is quasi-injective, every pure-injective object of A is

quasi-injective.

(2) ⇒ (1) Let M be a pure-injective object of A. Since A has enough injective objects,

there is an injective object I and a monomorphism f : M −→ I . Since I is injective, it is

pure-injective. So M ⊕ I is pure-injective. Now M ⊕ I is quasi-injective by assumption.

Since every quasi-injective object is direct-injective, M ⊕ I is direct-injective. We have an

exact sequence

0 //M //I //I/M //0

with I injective and M ⊕ I is direct-injective. Thus M is injective by Theorem 3.1.4. Hence

A is regular by Theorem 2.12.11.

3.2 Classes all of whose objects are direct-injective

Definition 3.2.1. An abelian category A is called a spectral category if every short exact

sequence in A splits.

Theorem 3.2.2. LetA be an abelian category. Then the following conditions are equivalent.

(1) A is spectral.

(2) A has enough injectives and every object of A is direct-injective.

(3) A has enough injectives and every subobject of a direct-injective object of A is

direct-injective.

Proof. (1)⇒ (2)⇒ (3) Clear.

(3)⇒ (1) LetM be an object ofA. SinceA has enough injective objects,M has the injective
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envelope E(M). Since E(M)⊕E(M) is direct-injective, M⊕E(M) is also direct-injective

by assumption. Therefore M is injective by Theorem 3.1.4. Thus A is spectral.

Definition 3.2.3. [17] Let A be a Grothendieck category. An object M of A is simple if it is

non-zero and has no other subobjects than 0 and M .

Definition 3.2.4. [17] LetA be a Grothendieck category. An object M ofA is semisimple if

it is a coproduct of simple subobject.

Definition 3.2.5. A Grothendieck categoryA is said to be semisimple if every object ofA is

semisimple.

Proposition 3.2.6. [17, Proposition 6.7, Chapter V] A locally finitely generated

Grothendieck category A is semisimple if and only if it is spectral.

Theorem 3.2.7. Let A be a locally finitely generated Grothendieck category. Then the

following conditions are equivalent.

(1) A is semisimple.

(2) Every object of A is direct-injective.

(3) The coproduct of two direct-injective objects of A is direct-injective.

Proof. (1)⇒ (2)⇒ (3) Clear.

(3) ⇒ (1) Since every quasi-injective object is direct-injective, the coproduct of two

quasi-injective objects of A is quasi-injective by assumption. Then A is semisimple by

[26, Corollary 2.3].
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4. PURE DIRECT INJECTIVE OBJECTS IN

GROTHENDIECK CATEGORIES

4.1 Pure-direct-injective objects

Definition 4.1.1. Let A be a Grothendieck category. An object M of A is said to be

pure-direct-injective if every pure subobject A of M with A isomorphic to a direct summand

of M is a direct summand of M .

Proposition 4.1.2. [27, Proposition 3.2] Let A be a Grothendieck category. Then the

following conditions are equivalent for an object M of A.

(1) Given a direct summand N of M with the inclusion i : N −→ M and any

monomorphism f : N −→ M with Im(f) a pure subobject of M there is an

endomorphism g :M −→M of M such that gf = i.

(2) M is pure-direct-injective.

(3) Any monomorphism f : N −→ M with N a direct summand of M and Im(f) pure in

M splits.

Proof. (1)⇒ (2) Let K be a pure subobject of M which is isomorphic to N . Let

f : N −→ K be that isomorphism. There is an endomorphism g : M −→ M such that

gf = i where i : N −→ M is the inclusion monomorphism by assumption. Let h = πg

where π : M −→ N is the canonical projection. Then hf = πgf = πi = 1N . So

f : N −→ K splits. Thus K is a direct summand of M .

(2) ⇒ (3) Let N be a direct summand of M and f : N −→ M be a monomorphism with

Im(f) pure in M . Then, since Im(f) ∼= N , Im(f) is a direct summand of M and f splits.

(3) ⇒ (1) Let N be a direct summand of M , i : N −→ M be the inclusion map and

f : N −→M be a monomorphism with Im(f) pure in M . Since f : N −→M is a splitting
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monomorphism by assumption, there is a morphism e : M −→ N such that ef = 1N . Let

g = ie :M −→M . Then gf = ief = i1N = i.

Lemma 4.1.3. Let A be a Grothendieck category. If N ⊕M is pure-direct-injective, then a

pure short exact sequence

0 //N
f //M //K //0

of objects and morphisms of A splits.

Proof. Let

0 //N
f //M //K //0

be a pure exact sequence in A. Suppose that N ⊕ M is pure-direct-injective in A. Let

i1 : N −→ N ⊕ M and i2 : M −→ N ⊕ M be the inclusion maps. Since N ⊕ M

is pure-direct-injective, there exists an endomorphism h : N ⊕M −→ N ⊕M such that

hi2f = i1 by Proposition 4.1.2. Define g :M −→ N by g = π1hi2 where π1 : N⊕M −→ N

is the canonical projection map. Then gf = π1hi2f = π1i1 = 1N . Thus the sequence

splits.

Theorem 4.1.4. Let A be a Grothendieck category and

0 //N //M //K //0

be a pure exact sequence in A with M pure-injective. Then N ⊕M is pure-direct-injective

if and only if N is pure-injective.

Proof. (⇒) Assume that

0 //N //M //K //0

is a pure exact sequence with M pure-injective and N ⊕M is pure-direct-injective. Then

the sequence

0 //N //M //K //0
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splits by Lemma 4.1.3. So N is a direct summand of a pure-injective object M . Thus N is

pure-injective by Proposition 2.12.2.

(⇐) Suppose N is pure-injective. Then N ⊕M is pure-injective by Proposition

2.12.2 and therefore N ⊕M is pure-direct-injective since pure-injective objects are

pure-direct-injective.

Recall that every locally finitely presented Grothendieck category has enough pure-injective

objects (see [28, Theorem 4.1] or [29, Corollary 1.5]).

Corollary 4.1.5. LetA be a locally finitely presented Grothendieck category. Then the class

of pure-direct-injective objects of A need not be closed under pure subobjects.

Proof. Let M be an object of A which is not pure-direct-injective. But its pure-injective

envelope PE(M) is pure-direct-injective and M is a pure subobject of PE(M) which is not

pure-direct-injective.

Corollary 4.1.6. LetA be a locally finitely presented Grothendieck category. Then the class

of pure-direct-injective objects of A need not be closed under finite coproducts.

Proof. Let M be an object which is pure-direct-injective but not pure-injective. Since A has

enough pure-injective objects by [28, Theorem 4.1], there is a pure exact sequence

0 //M //PE(M) //PE(M)/M //0

where PE(M) denotes the pure-injective envelope of M . Since M is not pure-injective,

M ⊕ PE(M) can not be pure-direct-injective by Theorem 4.1.4.

Corollary 4.1.7. Let A be a locally finitely presented Grothendieck category. Then every

pure-direct-injective object of A is pure-injective if and only if the coproduct of two

pure-direct-injective objects of A is pure-direct-injective.

Proof. (⇒) It is clear by [23, Proposition 4.1].

(⇐) Let M be a pure-direct-injective object in A. Since every locally finitely presented
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Grothendieck category A has enough pure-injective objects by [29, Corollary 1.5], there

exists a pure exact sequence

0 //M //P //N //0

with P pure-injective. Since P is pure-injective and every pure-injective object is

pure-direct-injective, P is pure-direct-injective. Now M ⊕ P is pure-direct-injective by

assumption. Thus M is pure-injective by Theorem 4.1.4.

Proposition 4.1.8. Direct summands of pure-direct-injective objects of a Grothendieck

category A are pure-direct-injective.

Proof. Let M be a pure-direct-injective object of A and N be a direct summand of M . Let

K be a pure subobject of N which is isomorphic to a direct summand L of N . Since N is a

direct summand ofM , it is a pure subobject ofM . SoK is a pure subobject ofM by Lemma

2.11.4. Therefore K is a direct summand of M . Thus K is a direct summand of N . Hence

N is pure-direct-injective.

Theorem 4.1.9. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(1) A is regular.

(2) Every pure-direct-injective object of A is direct-injective.

Proof. (1) ⇒ (2) Clear since every short exact sequence in a regular category A is pure

exact by [19, Theorem 4].

(2) ⇒ (1) Let M be a pure-injective object of A. Since A has enough injective objects,

there is an injective object I and a monomorphism f : M −→ I . Since I is injective,

it is pure-injective. So M ⊕ I is pure-injective by Proposition 2.12.2 and therefore it is

pure-direct-injective. Now M ⊕ I is direct-injective by assumption. We have an exact

sequence

0 //M //I //I/M //0
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with I injective and M ⊕ I direct-injective. Thus M is injective by Theorem 3.1.4. Hence

A is regular by Theorem 2.12.11.

Remark 4.1.10. Pure-direct-injective objects of locally finitely presented regular

Grothendieck category need not be injective.

Example 4.1.1. Let F be a field. Consider the F -subalgebra

R =<
∞⊕
i=1

Fi, 1 >

of
∏∞

i=1 Fi generated by
⊕∞

i=1 Fi and 1 where Fi = F for n = 1, 2, .... Then R is a von

Neumann regular ring. Also R is continuous by [30, Example 3]. But R is not self-injective.

Proposition 4.1.11. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(1) A is regular and the coproduct of two pure-direct-injective objects is

pure-direct-injective.

(2) Every pure-direct-injective object of A is injective.

Proof. (1) ⇒ (2) Let M be a pure-direct-injective object of A. Since every locally finitely

presented Grothendieck category A has enough pure-injective objects by [28, Theorem 4.1],

there exists a pure exact sequence

0 //M //P //N //0

with P pure-injective. Now M ⊕ P is pure-direct-injective by assumption. Then M is

pure-injective by Theorem 4.1.4 and therefore M is injective by Theorem 2.12.11.

(2) ⇒ (1) Let M be a pure-injective object of A. Then M is injective by assumption and

therefore A is regular by Theorem 2.12.11. Since the coproduct of two injective objects is

injective, the coproduct of two pure-direct-injective objects is pure-direct-injective.
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Corollary 4.1.12. Let A be a locally finitely presented regular Grothendieck category.

If the coproduct of two pure-direct-injective objects is pure-direct-injective, then every

pure-direct-injective object of A is quasi-injective.

Proposition 4.1.13. Let A be a locally finitely presented Grothendieck category. If every

pure-direct-injective object of A is quasi-injective, then A is regular.

Proof. Let M be a pure-injective object of A. Since there are enough injectives in A,

M has an injective envelope E(M). So M ⊕ E(M) is pure-injective and therefore it is

pure-direct-injective. Now M ⊕ E(M) is quasi-injective by assumption. Then M ⊕ E(M)

is direct-injective. Thus M is direct-injective by Theorem 3.1.4. Hence A is regular by

Theorem 4.1.9.

Definition 4.1.14. A class C of objects of a category is said to be closed under extensions if

A,M/A ∈ C implies that M ∈ C.

Definition 4.1.15. A Grothendieck category A is said to be pure-hereditary if epimorphic

image of an injective object is pure-injective.

Proposition 4.1.16. Let A be a Grothendieck category. If the class of pure-injective objects

of A is closed under extensions, then the following conditions are equivalent.

(1) A is pure hereditary.

(2) Every quotient of a pure-injective object of A is pure-injective.

Proof. (1) ⇒ (2) Let M be a pure-injective object of A and K be a subobject of M . Since

A has enough injectives, there exists an exact sequence

0 //K //I //L //0
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with I injective. We have the following commutative diagram with exact rows and columns

0

��

0

��
0 // K //

��

M //

��

M/K //

∥

0

0 // I //

��

G //

��

M/K // 0

L

��

= L

��
0 0

Since A is pure-hereditary, L is pure-injective because it is an epimorphic image of an

injective object. Since the class of pure-injective objects closed under extensions by

assumption and M and L are pure-injective, G is pure-injective. Since I is injective,

0 //I //G //M/K //0

splits by Lemma 2.10.4. Therefore M/K is pure injective.

(2) ⇒ (1) Let M be an injective object of A and K be a subobject of M . Since A

has enough injective objects, there is an injective envelope E(M/K) of M/K. Since

E(M/K) ⊕ M/K is a quotient object of the pure-injective object E(M/K) ⊕ M ,

E(M/K)⊕M/K is pure-injective by assumption. We know that every pure-injective object

is pure-direct-injective and therefore E(M/K) ⊕ M/K is pure-direct-injective. Then the

following pure exact sequence splits by Lemma 4.1.3.

0 //M/K //E(M/K) //E(M/K)/(M/K) //0

Thus M/K is pure-injective by Lemma 2.12.3. Hence A is pure-hereditary.

Theorem 4.1.17. Let A be a locally finitely presented Grothendieck category. If the class

of pure-injective objects of A is closed under extensions, then the following conditions are
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equivalent.

(1) A is pure hereditary.

(2) Every quotient of a pure-injective object of A is pure-injective.

(3) Every quotient of a pure-injective object of A is pure-direct-injective.

Proof. (1)⇒ (2) Clear by Proposition 4.1.16.

(2)⇒ (3) Clear since every pure-injective object is pure-direct-injective.

(3)⇒ (1) LetM be an injective object ofA andN be a subobject ofM . SinceA has enough

pure-injective objects by [28, Theorem 4.1], there exists pure-injective envelope PE(M/N)

of M/N . Since it is a quotient object of a pure-injective object, PE(M/N) ⊕ M/N is

pure-direct-injective. Therefore the following pure exact sequence splits

0 //M/N //PE(M/N) //PE(M/N)/(M/N) //0

by Lemma 4.1.3. ThusM/N is pure-injective by Lemma 2.12.3. HenceA is pure-hereditary.

Corollary 4.1.18. Let A be a locally finitely presented Grothendieck category. Then the

class of pure-direct-injective objects of A need not be closed under taking quotients.

4.2 Classes all of whose objects are pure-direct-injective

Recall that an abelian category A is called a spectral category if every short exact sequence

in A splits. We can give the following immediate result without proof.

Proposition 4.2.1. LetA be a spectral Grothendieck category. Then the following conditions

are equivalent.

(1) Every object in A is pure-direct-injective.

(2) Every pure-direct-injective object of A is injective.
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(3) Every pure-direct-injective object of A is direct-injective.

Definition 4.2.2. A Grothendieck categoryA is called pure-semisimple if it is locally finitely

presented and each of its objects is pure-projective, that is every object of A is projective

relative to every pure exact sequence in A.

Remark 4.2.3. If a Grothendieck category A is pure-semisimple, then every object is

pure-injective by [28, Theorem 2].

Remark 4.2.4. Let A be a locally finitely presented Grothendieck category. A is called

pure-semisimple if it has pure global dimension zero, which means that each of its objects is a

direct summand of a coproduct of finitely presented objects (see [24]). A is pure-semisimple

if and only if it satisfies the pure noetherian property a coproduct of any family of

pure-injective objects in A is pure-injective (see [29, Theorem 1.9]).

Lemma 4.2.5. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(1) A is pure-semisimple.

(2) Every pure exact sequence in A splits.

Proof. (1)⇒ (2) Every object of A is pure-projective by Definition 4.2.2. Since every pure

exact sequence ending with a pure-projective object splits which can be proved dually to

Lemma 2.12.3, every pure exact sequence splits.

(2)⇒ (1) Suppose that every pure exact sequence in A splits. Let M be an object of A. We

want to show that M is pure-projective. Since every locally finitely presented Grothendieck

category has enough pure-projective objects(see [19, Lemma 6 (ii)]), there exists a pure exact

sequence

0 //K //P //M //0

with P pure-projective. By assumption this sequence splits and therefore M is

pure-projective by [23, Proposition 4.1]. This means that A is pure-semisimple.
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Theorem 4.2.6. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(1) A is pure-semisimple.

(2) Every object of A is pure-injective.

(3) Every object of A is pure-direct-injective.

(4) Every subobject of a pure-direct-injective object of A is pure-direct-injective.

Proof. (1)⇒ (2) Clear by Theorem 4.2.5.

(2)⇒ (3) Clear since every pure-injective object is pure-direct-injective.

(3)⇒ (4) Clear by assumption.

(4) ⇒ (3) Let M be an object of A. Since A has enough pure-injective objects by [29,

Corollary 1.5], there exists a pure exact sequence

0 //M //P //L //0

with P pure-injective. Since P is pure-injective, it is pure-direct-injective and therefore M

is pure-direct-injective by assumption.

(3)⇒ (1) Let

0 //M //N //L //0

be a pure exact sequence in A. By assumption M ⊕N is pure-direct-injective. So the

sequence splits by Lemma 4.1.3. Thus A is pure-semisimple by Theorem 4.2.5.

4.3 Relative pure-direct-injective objects

Definition 4.3.1. LetA be a Grothendieck category andM , N be objects ofA. An objectM

ofA is called pure-direct-N -injective if every pure subobject A of N which is A isomorphic

to a direct summand of M is a direct summand of N .
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Lemma 4.3.2. Let M and N be objects of a Grothendieck category A. Then M is

pure-direct-N -injective if and only if for every monomorphism f : P −→ N with P a

direct summand of M and Im(f) pure in N and for every morphism g : P −→ M , there

exists a morphism h : N −→M such that hf = g.

Proof. (⇒) Let M be a pure-direct-N -injective object of A. Let f : P −→ N be a

monomorphism with P a direct summand of M and Im(f) pure in N . Let g : P −→ M be

a morphism. Since M is pure-direct-N -injective, Im(f) is a direct summand of N . Thus f

splits. Since f : P −→ N is a splitting monomorphism, there is a morphism ψ : N −→ P

such that ψf = 1P . Let h = gψ : N −→M . Then hf = gψf = g1P = g.

(⇐) Let K be a pure subobject of N which is isomorphic to a direct summand L of M .

Let φ : L −→ K be that isomorphism. Now i1φ : L −→ N is monomorphism where

i1 : K −→ N is the inclusion map. Then there exists a morphism h : N −→ M such that

hi1φ = i2 where i2 : L −→ M is the inclusion map. If π : M −→ L is the projection map,

then define ψ = πh : N −→ L. Now ψi1φ = πhi1φ = πi2 = 1L. So i1φ splits. Thus K is a

direct summand of N . So M is pure-direct-N -injective.

Proposition 4.3.3. Let A be a Grothendieck category and M,N1, N2 be objects of A.

If M is pure-direct-N1 ⊕N2-injective, then M is pure-direct-N1-injective and M is

pure-direct-N2-injective.

Proof. Let f : P −→ N1 be a pure monomorphism with P a direct summand of M .

0 −→ P −→ N1 −→ N1 ⊕N2

Since i1f is a composition of two pure monomorphisms, i1f is also a pure monomorphism

by [19, Lemma 6(i)], where i1 : N1 −→ N1 ⊕ N2 is the inclusion map. Since M is

pure-direct-N1 ⊕N2-injective, every diagram as follows can be completed commutatively,
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i.e. there is a unique morphism h : N1 ⊕N2 −→M such that hi1f = g.

0 // P
f //

g

��

N1
i1 // N1 ⊕N2

h
uu

M

Now put ψ = hi1. Then g = hi1f = ψf . So M is pure-direct-N1-injective. Similarly, it can

be shown that M is pure-direct-N2-injective.
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5. APPLICATIONS

In this chapter we give applications of some of our results to module and comodule

categories.

5.1 Modules and Comodules

Remark 5.1.1. Let R be a unitary ring and Mod(R) be the category of right R-modules.

Mod(R) is a locally finitely generated Grothendieck category with enough injectives and

enough projectives. Mod(R) is hereditary if and only if the ring R is right hereditary.

Then we have the following corollary of Theorem 3.1.11 for module categories.

Corollary 5.1.2. [3, Theorem 4] Let R be a unitary ring. Then the following conditions are

equivalent.

(1) R is right hereditary.

(2) Every factor module of an injective right R-module is direct-injective.

Remark 5.1.3. Let C be a coalgebra over a field and MC be the category of right

C-comodules.MC is a locally finitely generated Grothendieck category. Then it has enough

injectives. The category MC is hereditary if and only if C is a (left and right) hereditary

coalgebra (see [31]).

Then we have the following corollary of Theorem 3.1.11 for comodule categories.

Corollary 5.1.4. Let C be a coalgebra over a field. Then the following conditions are

equivalent.

(1) C is hereditary.

(2) Every factor comodule of an injective right C-comodule is direct-injective.
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Remark 5.1.5. Let C be a coalgebra over a field. Then the category MC of right

C-comodules is spectral if and only ifMC is semisimple if and only if C is cosemisimple.

Now we have the following result of Theorem 3.2.2 for comodule categories.

Corollary 5.1.6. Let C be a coalgebra over a field. Then the following conditions are

equivalent.

(1) C is cosemisimple.

(2) Every right C-comodule is direct-injective.

(3) Every subcomodule of a direct-injective right C-comodule is direct-injective.

Proof. C is a cosemisimple coalgebra if and only if every right C-comodule is injective in

the categoryMC (see [18, Theorem 3.1.5]).

We have the following corollary of Theorem 4.1.9 for module categories.

Corollary 5.1.7. [7, Proposition 19] Let R be a unitary ring. Then the following conditions

are equivalent.

(1) R is a von Neumann regular ring.

(2) Every pure-injective right R-module is injective.

(3) Every pure-direct-injective right R-module is direct-injective.

Also we have the following corollary of Theorem 4.1.9 for comodule categories.

Corollary 5.1.8. Let C be a coalgebra over a field. Then the following statements are

equivalent.

(1) C is cosemisimple.
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(2) Every pure-injective right C-comodule is injective.

(3) Every pure-direct-injective right C-comodule is direct-injective.

Proof. C is cosemisimple if and only if every right C-comodule is injective if and only if

every right C-comodule is projective by [18, Theorem 3.1.5]. If a coalgebra C over a field

is cosemisimple, then the category of right C-comodules MC is regular. Conversely, if

MC is regular, then every right C-comodule K is FP -injective, that is every short exact

sequence of the form 0 //K //M //N //0 is pure (see [19]). The category of

right C-comodules MC coincides with the category σ[∗C C] of submodules of C-generated

left C∗-modules (see [19, Section 2.5]). SinceMC is locally noetherian, every FP -injective

right C-comodule is injective by [22, 35.7]. Therefore, every right C-comodule is injective.

Hence, C is cosemisimple by [19, Theorem 3.1.5].
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6. CONCLUSION

In this thesis we study direct-injective objects in abelian categories and pure-direct-injective

objects in Grothendieck categories. Also we give applications of some of our results to

module and comodule categories. Our results given in Chapter 3. and Chapter 4. are new

in abelian categories and Grothendieck categories respectively. We can list some of the most

important results as follows:

6.1 Direct-injective Objects

Theorem 6.1.1. Let A an abelian category with enough injective objects, M be an object of

A and f :M −→ K be a monomorphism from M to an injective object K of A. Then M is

injective if and only if K ⊕M is direct-injective.

Theorem 6.1.2. Let A be an abelian category. Assume that A has enough injectives. Then

the following conditions are equivalent.

(1) A is (cosemi)hereditary.

(2) Every (finitely cogenerated) quotient object of an injective object of A is

direct-injective.

Proposition 6.1.3. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(1) A is regular.

(2) Every pure-injective object of A is a quasi-injective.

Theorem 6.1.4. LetA be an abelian category. Then the following conditions are equivalent.

(1) A is spectral.

(2) A has enough injectives and every object of A is direct-injective.
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(3) A has enough injectives and every subobject of a direct-injective object of A is

direct-injective.

Theorem 6.1.5. Let A be a locally finitely generated Grothendieck category. Then the

following conditions are equivalent.

(1) A is semisimple.

(2) Every object of A is direct-injective.

(3) The coproduct of two direct-injective objects of A is direct-injective.

6.2 Pure-direct-injective Objects

Theorem 6.2.1. Let A be a Grothendieck category and

0 //N //M //K //0

be a pure exact sequence in A with M pure-injective. Then N ⊕M is pure-direct-injective

if and only if N is pure-injective.

Theorem 6.2.2. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(1) A is regular.

(2) Every pure-direct-injective object of A is direct-injective.

Proposition 6.2.3. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(1) A is regular and the coproduct of two pure-direct-injective objects is

pure-direct-injective.

(2) Every pure-direct-injective object of A is injective.
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Theorem 6.2.4. Let A be a locally finitely presented Grothendieck category. If the class

of pure-injective objects of A is closed under extensions, then the following conditions are

equivalent.

(1) A is pure hereditary.

(2) Every quotient of a pure-injective object of A is pure-injective.

(3) Every quotient of a pure-injective object of A is pure-direct-injective.

Proposition 6.2.5. LetA be a spectral Grothendieck category. Then the following conditions

are equivalent.

(1) Every object in A is pure-direct-injective.

(2) Every pure-direct-injective object of A is injective.

(3) Every pure-direct-injective object of A is direct-injective.

Theorem 6.2.6. Let A be a locally finitely presented Grothendieck category. Then the

following conditions are equivalent.

(1) A is pure-semisimple.

(2) Every pure exact sequence in A splits.
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